Active Leisure, Passive Leisure and Health

Soumyadip Roy ${ }^{1}$ and Peter F. Orazem ${ }^{2}$
${ }^{1}$ Assistant Professor and Assistant Dean (International Strategy), Jindal School of Banking and Finance, OP Jindal Global University, Sonipat Narela Road, Near Jagdishpur Village, Sonipat, Haryana 131001, India soumyadiproy@jgu.edu.in +919315618908
${ }^{2}$ University Professor of Economics and Director, Program for the Study of Midwest Markets and Entrepreneurship, 267 Heady Hall, Iowa State University, 518 Farmhouse Lane, Ames, Iowa 50011-1054 pfo@iastate.edu 515294 8656.

August 2021

Abstract

Leisure consumption has been increasing in the United States since the 1960s. Over the same period, inactive lifestyles have contributed to adverse health outcomes. We propose a new way of categorizing leisure into groups based on the amount of physical exercise needed. Our results show that physically active leisure is a normal good whose demand rises with education and health, while physically passive leisure is an inferior good whose demand rises with lower education and poorer health. These patterns allow us to propose a taxonomy that categorizes various leisure activities into 'Active' and 'Passive' groups.

Keywords: Time allocation, Active and Passive Leisure, Health

1. Introduction

Health plays a significant role in labor market outcomes. Following Grossman (1972), good health is presumed to improve productivity and participation in market work. A large body of literature ${ }^{1}$ has generated a consensus that poor health has negative effects on wages and labor force participation, in line with Grossman's theory.

[^0]Research by Aguiar and Hurst (2007) shows that leisure consumption has increased dramatically in the United States since the 1960s whereas the number of market hours worked have remained relatively stable. During the same period, incidence of obesity among US adults has seen a substantial increase. ${ }^{2}$ Such increasing trends in obesity, adult-onset diabetes and other ailments associated with inactive lifestyles have raised concerns about inadequate time allocated to exercise in the United States, leading to deterioration in health [Meltzer and Jena (2010)]. In the medical profession, it is well known that obesity not only impairs health and longevity, but also is a significant factor behind deaths in the United States. [Carlson et al (2018)]

Some of the common reasons for increasing obesity and health deterioration mentioned in the literature are- lack of time for exercising, increasing reliance on cars and consumption of processed foods. ${ }^{3}$ Although several indicators of health have seen an improvement since the 1960 s, ${ }^{4}$ sedentary lifestyles and associated adverse health consequences are so severe that the phenomenon has been referred to as "an obesity epidemic" by Philipson and Posner (2008). An argument advanced is that there is just not enough time for exercise [King et al (2000)].

In this context, we examine the following question: If lack of time is cited as a major reason for deteriorating health caused by obesity and other diseases related to lifestyle, how could it be that, over the same period, leisure consumption has actually gone up substantially? Shouldn't individuals who have spare time to watch TV and consume other sedentary forms of leisure also have time to exercise or engage in physically demanding nonmarket activities, which have positive effects on health?

One possible explanation is via income effects - worse health is associated with lower
productivity that reduces wages, so individuals may or may not decide to work less depending on their labor-leisure preferences, leaving the overall effect on leisure ambiguous. Reverse causality is another challenge here -more available time may lead to better health due to engagement in exercise or conversely, better health may also provide more time to exercise because of income effects.

[^1]An interesting piece of this puzzle may be answered by looking at leisure activities in their active and passive forms. We show that in theory, active and passive leisure would respond differently to health endowments and income, which can explain the persistence of deteriorating health due to lack of physical exercise even as total leisure consumption rises. ${ }^{5}$

We address this question using the 2006-08 and 2014-16 waves of the American Time Use Survey (ATUS) that included information on self-reported health status. We show that there are differences in leisure types that correspond to presumed effects on health, and that individuals choose active and passive leisure differently depending on their current incomes, wages, and health status. Active Leisure that enhances or maintains health is a normal good whose demand rises with education and health. Passive Leisure that contributes to deteriorating health due to sedentary lifestyles, is an inferior good whose demand rises with lower education and poorer health. These results also suggest that Aguiar and Hurst's (2007) finding that the most educated are consuming less leisure is consistent with rising incomes for the most educated, which would raise the time they allocate to Active Leisure while lowering their use of Passive Leisure. Their finding that the least educated are consuming more Passive Leisure is consistent with the falling real incomes for the least educated which would raise their time spent on sedentary activities and contribute to rising rates of obesity and diabetes among the poor.

The empirical specifications focus on the relationship between health, income and leisure. Our empirical specification allows us to categorize leisure activities as either active or passive depending on their relationship to income, wages and health. Our results help to explain the puzzle of deteriorating health due to changes in lifestyle, even as consumption of leisure has been increasing in the United States. Our findings that Active and Passive Leisure respond differently to income and wages could help policymakers design mechanisms which encourage higher consumption of active leisure to reverse the rise of obesity and its related adverse health consequences.

The paper is arranged as follows - Section 2 reviews past studies that contribute to our analysis; Section 3 outlines the theoretical model; Section 4 describes the data; Section 5 proposes an econometric strategy; Section 6 discusses the results; and Section 7 concludes.

[^2]
2. Literature Review

This paper fits into two branches of literature. First, economists have looked at the relationship between health and paid market work. Second, the role of health in other daily activities such as sleep, exercise and leisure has also been analysed. Our paper contributes to the second group by examining the relationship between health, income and leisure time allocation.

2A. Health and Paid Work

Grossman (1972) proposed that lost time is one of the major consequences of illness. His model forms the basis of several studies, which look at the effects of poor health on labor supply (e.g. Coile 2004, Wu 2003, Rust and Phelan 1997, Bound 1991).

Studies in this area have examined the relationship of poor health, caused by different factors, on various labor market outcomes. Bartel and Taubman (1979) studied the effects of specific diseases and found strong negative effects on earnings ($20 \%-30 \%$ reductions) and negative effects on labor supply. Others have studied the negative impacts of diseases on labor market outcomes (Mitchell and Burkhauser 1990; Rees and Sabia 2015; Tunceli et al. 2005). Mental health and its relationship with labor market outcomes has also been studied extensively (Chatterji et al. 2007; Ettner, Frank, and Kessler 1997; Ojeda et al. 2010; Fletcher 2014). The main insight from these studies is that ill-health (physical or mental) is correlated with negative effects on employment, work hours and wages.

2B. Role of health in other daily activities

Health affects non-market work as much as it affects market work. There is substantial literature studying the gendered effects of health on housework (Gimenez-Nadal and Sevilla 2012, 2014; Ones, Memis, and Kizilirmak 2013; Robinson and Godbey 1999). Results are not always consistent. Podor and Halliday (2012) found that better health leads to more time allocated to the market and to home production in the U.S., while Gimenez- Nadal and Ortega-Lapiedra (2013) found that in Spain, better health is associated with less time allocated to non market work. While the link between exercise and obesity or BMI is difficult to measure precisely (Courtemanche et al, 2015, 2020), it is well understood that there exist positive effects of exercising on health. However, the tradeoffs between time investments in health and wages are complex. Higher
opportunity costs of time lower time spent exercising (Chen et al, 2002; Lenhart, 2019) ${ }^{6}$ and reduce average time spent sleeping (Biddle and Hamermesh, 1990). But while Pampel et al (2010) found that sleep deprivation lowers health and productivity, Ozturk and Kose (2019) find that less time spent on leisure and sleep is correlated with better health. Further complicating any analysis of health and leisure time allocation are findings that willingness to pay for health improvements themselves depend on current health, education and age (Johannesson, 1996; Johannesson and Johansson, 1997).

While the literature on labor supply is extensive (Keane, 2011; Keane and Rogerson, 2012), analysis of leisure by type is less developed. Aguiar and Hurst (2007) reviewed the trends in leisure demand over almost 40 years, starting in 1965. They found that less educated individuals were consuming more leisure while college educated individuals were consuming less leisure. Leisure demand responds to the business cycle (Aguiar et al, 2013), and to changing technology such as the development of virtual games (Aguiar et al, 2017). ${ }^{7}$ There have been important changes in leisure over time and demographic groups, such as the large increase in television viewing for less-educated individuals while leisure demand for the most educated actually fell (Aguiar and Hurst, 2007). Recent work by Aguiar et al (2021) show that time spent on video gaming and recreational computing is a luxury good for younger men. Their study looks at six broad categories of activities, one of which is leisure.

3. Theoretical Model

Extending Becker's (1965) analysis of optimal time allocation, we develop a model for Active and Passive Leisure. Individuals with different health endowments will consume different amounts and types of leisure. Our model will identify how allocation of time towards different types of leisure activities is affected by health endowments, holding constant other factors such as education, age, gender, location and race. The theoretical model generates reduced form time allocation equations and testable hypotheses that will guide our empirical work.

[^3]The utility maximization problem for the individual consists of three primary choices: active leisure (A); passive leisure (P); and an aggregate market good (x). The individual derives pleasure from all three.
(1) $\mathrm{U}=\mathrm{U}(\mathrm{x}, \mathrm{A}, \mathrm{P})$

The objective function is to maximize utility, subject to constraints on income and time. The budget constraint specifies money income that is obtained by working hours at the T remuneration rate $w\left(H, Z_{L}, Z_{D}\right)$ The hourly wage is assumed to depend positively on current health (H), an assumption that is based on results of several studies that show positive association between the two ${ }^{8}$. Z_{L} denotes a vector of local labor institutions that also affect wages but not the marginal utility of leisure such as union coverage, occupation and industry. Z_{D} is a vector of demographics such as age, education, and gender that may affect both the wage and the demand for leisure. Y denotes non-wage income. We normalize the price of market goods to be 1 . The budget constraint is
(2) $w\left(H, Z_{L}, Z_{D}\right) \cdot T+Y=x$

The time constraint standardizes total time available to be 1 , and so time spent at work, and on Active and Passive leisure represent proportions of time that add up to 1:
(3) $T+P+A=1$

Next, we make a key assumption that utility (enjoyment) from Active leisure also depends on the level of health.

The motivation behind this assumption is straightforward: Unhealthy individuals cannot derive the same satisfaction from the time spent on physical activity as can someone who is healthy. On the other hand, consumption of Passive leisure is not limited by health at all since it does not require any physical exercise and hence it enters the utility function on its own. This prompts us to specify the utility function as (1A) $U(x, A, P)=U(w(H) \cdot(1-A-P), f(H) \cdot A, P)$ where $f(H)$ denotes how efficiently health is converted into satisfaction derived from Active leisure. Presuming diminishing marginal utility, we assume that $f^{\prime}(H)>0, f^{\prime \prime}(H)<0$.

[^4]For simplicity, Equation 1A uses a wage equation where wages depend only on health. Assuming utility function to be separable in goods and leisure:

$$
U(x, A, P)=u(x)+v(f(H) \cdot A, P)
$$

FOCs imply that:

$$
v\left(f(H) A^{*}, P^{*}\right) \cdot f(H)=v_{P}\left(f(H) A^{*}, P^{*}\right) \cdot f(H)
$$

Which yields the marginal rate of substitution between active and passive leisure,

$$
f(H) \frac{\left(f(H) A^{*}, P^{*}\right)}{(f(H) A}
$$

The greater the utility derived from active leisure, the greater has to be the marginal utility from passive relative to active leisure. Along any indifference curve, healthier people will pick more active leisure intensive time allocations.

While the compensated effect implies that increases in health endowments will raise the share of time spent on Active leisure, the uncompensated effect is ambiguous. However, we can show that the reduced form effects for Active and Passive leisure will not be the same. ${ }^{9}$ In particular, the reduced form effects of the health endowment and income on the two types of leisure will be different. To explore those issues, we need empirical analysis of the effects of health on demand for leisure by type, motivated by the reduced form equations:
(4A) $A=A\left(H, w\left(H, Z_{L}, Z_{D}\right), Z_{D}, Y\right)$
(4B) $\mathrm{P}=\mathrm{P}\left(\mathrm{H}, \mathrm{w}\left(\mathrm{H}, \mathrm{Z}_{\mathrm{L}}, \mathrm{Z}_{\mathrm{D}}\right), \mathrm{Z}_{\mathrm{D}}, \mathrm{Y}\right)$
Equations 4A and 4B form the basis of our empirical specifications where we examine how demand for A and P are associated with $\mathrm{H}, \mathrm{w}\left(\mathrm{H}, \mathrm{Z}_{\mathrm{L}}, \mathrm{Z}_{\mathrm{D}}\right),, \mathrm{Z}_{\mathrm{D}}$ and Y . We make a distinction between wages $w\left(H, Z_{D}, Z_{L}\right)$ and income Y, where we use family income as a measure of nonlabor income Y , which is not directly associated with the individual's health. Models with both are estimated below.

One limitation of the theoretical model is that it does not take into account the potential dynamic relationship between stock of health (H) and Active leisure (A). While we assume that utility derived from Active leisure is dependent on the health level of the individual, it is also likely that physical exercise due to higher participation in Active leisure also affects health.

[^5]
4. Data

We use data from the 2006-08 and 2014-16 waves of the American Time Use
Survey (ATUS). These surveys elicit responses on the time individuals spend on various activities including time spent at market work, household work such as childcare, cooking or cleaning, nonmarket work such as volunteering, and leisure activities such as recreation or watching television. The ATUS sample is drawn from the Current Population Survey (CPS) and includes residents aged 15 or older living in the United States. The sample excludes active military personnel and individuals living in institutions (e.g. hospitals and prisons). Various waves of the ATUS include unique modules. Since we are interested in exploring the association of health and time allocation choices, we use the ATUS Eating and Health (EH) module that was carried out from 2006 to 2008 and 2014 to 2016. Health is reported in five categories - excellent, very good, good, fair and poor.

This study also requires information on how individuals allocate 24 hours in a day in various activities. The best source of data for this purpose are the ATUS Activity Summary Files. These files contain information about the total number of minutes each respondent spent doing each activity. The level of detail in this dataset is such that every minute out of a total of 1440 minutes in a day are accounted for. The broad categories in the ATUS activity summary files include - personal care, household activities, caring for household members (childcare, adult care), caring for non-household members, work-related activities, education, leisure (includes socializing and relaxing) and sports. This provides us with detailed information on how individuals choose to allocate their time in a typical day.

For this we merge the ATUS EH module data with the ATUS activity summary files using the unique household identifier. Since only one member was interviewed from each household, this makes sure that the individuals in the EH module and the Activity Summary files can be uniquely identified. Different households are surveyed every year. This sample consists of data on 64,798 individuals. ${ }^{10}$

[^6]For the American Time Use Surveys, individuals are randomly selected from a subset of households that have completed their eighth and final month of interviews for the Current Population Survey (CPS). ATUS respondents are interviewed only once about how they spent their time on the previous day, where they were, and whom they were with. The survey is sponsored by the Bureau of Labor Statistics and is conducted by the U.S. Census Bureau.

The ATUS sample if a three-stage stratified sample ${ }^{11}$ to make it nationally representative. Being drawn from the CPS sample, the ATUS sample universe is the same as the CPS universe. At the first stage, the ATUS sample is chosen in a way that it is distributed across states "approximately equal to the proportion of the national population each one represents". In the second, stratification is done based on race/ethnicity, presence and age of children and number of adults. And in the third, an eligible person from each household in the second stage is randomly selected. ATUS provides a 'Final weight' variable that indicates the number of persondays the respondent represents. We use this weight in our regressions to make the data and associated analysis nationally representative.

Next, we list the key variables used in the study. More details are in the appendix.

4A. Health Status (H)

The Eating and Health module respondent files for the American Time Use Survey (200608) contains the variable EUGENHTH which is the response to the question - 'In general, would you say your physical health was excellent, very good, good, fair or poor?'. The response of this question is one of the five categories (excellent, very good, good, fair or poor). We use this categorical variable to create a dummy for each health category. Our excluded category is the middle category (good). Summary statistics for this variable are reported in table 1. Among the 64,798 individuals in our dataset, responses were as follows: 19% Excellent, 34% Very Good, 30% Good, 12% Fair and 4% Poor. Overall, out of 64,798 individuals, Excellent and Very Good health account for 33,831 individuals whereas Fair and Poor health are reported for 10,526. The first group can be considered respondents in good health and the second to be ones who are not in good health for this analysis.

[^7]
4B. Nonlabor Income (Y)

Ideally, we would have a measure of the household income net of the income earned by the surveyed member. Because nonlabor income does not vary with the wage or hours of work, it can be viewed as a pure income effect on labor or leisure including the various types of leisure. In the American Time Use Survey- Current Population Survey (ATUS-CPS) files, income is measured in bins of varying sizes both across all household members and for each member above age 15 . There is no simple way to subtract individual earned income from the total as these incomes are also reported in categories. Instead, we use a measure of family income, HUFAMINC, that provides the combined family income of all members for the previous year from all sources including jobs, net income from business, farm or rent, pensions, dividends, interest income, and social security. We convert these bins to create a continuous variable by taking the midpoints of the bins. Since the top bin measures income greater than $\$ 150,000$, we use a 'highest income' dummy variable for this bin. We convert the continuous income variable in thousands for easier interpretation of coefficients.

To identify the nonlabor income effect, we make use of the fact that the wage of the surveyed individual is defined by $w\left(H, Z_{L}, Z_{D}\right)$ in equations $4 A$ and $4 B$. When we include surveyed individual's human capital, H, local labor market conditions, Z_{L}, and demographic variables, Z_{D}, as additional controls in the regression, the coefficient on aggregate household income will capture the effect of household income independent of those determinants of the individual's labor income. We can then interpret the coefficient as reflecting the income effect on leisure type.

4C. Leisure Activities

The Activity Summary files in the ATUS use the ATUS activity coding lexicon that is a 3tier classification system. There are 17 first-tier categories that we will be aggregating into Active (A) and Passive (P) leisure. The number of minutes an individual spends during the diary day in such activities add up to 1440 . Due to the level of detail in the data, the dataset contains many zeroes. The following are the time allocation choices that we categorized as leisure. They sum up to 324 minutes on average, or 22.5% of the average day. The average amount of time spent on each leisure type is shown in Figure 1.

The leisure activities are grouped into Sports, Non Sports, Socializing, Television Viewing, Relaxing Arts, Tobacco Consumption, Games Computer use and Hobbies. This is done by using the ATUS activity coding lexicon and details on each category is provided in Appendix section A2.

4D. Demographics $\left(Z_{D}\right)$

The elements of the vector of personal attributes, , that may affect both wages and demand for leisure include:

Years of formal education: The ATUS Activity Summary files includes a measure of accumulated schooling.

Female: Dummy indicating the respondent is female.
Age: Age of respondent (TEAGE in ATUS dataset)
Number of children: Number of children in the household less than 18 years of age (TRCHILDNUM in the Activity Summary files)

White: Dummy variable indicating respondent is White
Black: Dummy variable for Race of respondent being Black ($=1$ if respondent is black, 0 otherwise) (using the PTDTRACE variable in ATUS)

Other Race: Dummy variable indicating Race other than White or Black.
Metro: Dummy variable indicating respondent lives in a Metropolitan area Table 1 provides summary statistics for all variables used in this study. As is clear from table 1, The top three categories on which Americans spent the most amount of time, between 2006-8 and 2014-16 are TV viewing, socializing and hobbies. The bottom three are Tobacco, Arts and Sports.

5. Methods

5A. Econometric Model

Our econometric model uses the number of minutes spent on a particular activity as the dependent variable. For each individual i in year t, total leisure time $\left(L_{i i}\right)$ is decomposed into active $\left(A_{i i}\right)$ and passive $\left(P_{i i}\right)$ types according to:

Denote each leisure type j by $L_{i t}{ }^{*}$. We will allocate $L_{i t}$ to either $\left(A_{i t}\right)$ or $\left(P_{i t}\right)$. Applying (4A) and (4B), health may affect leisure allocation in two ways, indirectly through the wage that affects the value of time and directly through its effect on the relative utility of Active versus Passive leisure. The empirical specification we use is of the following form:
(5) L
where is a vector of health status brought into the period, , is a vector of demographic measures, S_{i} is a vector of state fixed-effects and is household income. In this formulation, we implicitly assume that the wage is determined entirely by demographic and health factors and so its effect is captured by the other regressors, an assumption we will relax later. The vector of health coefficients, β^{j}, will represent the correlation between health status and leisure choice through the combined effects of the wage and Active leisure productivity channels.

Because time allocation and health are subject to choice over the lifespan, even if current health is not easily adjusted, both are likely subject to unobserved variables which raises concerns about endogeneity in the health measures in equation (5). Gimenez-Nadal and Ortega Lapiedra (2013) suggested an instrumental variable technique where regional average health measures are used to instrument for individual health. One could argue that average health is an indicator of better local public health services or indicative of local cultural and/or behavioral factors that influence individual behavior in the area. The instrument is valid if these regional heath measures affect time allocation only through health and do not have a direct effect on leisure demand.

The ATUS-CPS data identifies state of residence and residence in one of the 12 largest metropolitan areas, but does not identify more disaggregated residential information. Nevertheless, we attempted the Gimenez-Nadal and Ortega-Lapiedra strategy using state averages of obesity, binge drinking, smoking, and diabetes. While the instruments passed standard tests for weak instruments and exogeneity, the results generated some health effects
on time allocations that seemed implausibly large, perhaps because the use of state average health generates too much imprecision in projected individual health. ${ }^{12}$

For that reason, we applied the strategy suggested by Ozturk and Kose (2019) that embeds the estimation of equation (5) in a system equation to correct for correlations in the error terms across equations. We use Seemingly Unrelated Regression (SUR) models to estimate equation (5) for all leisure time allocation choices. As mentioned by Ozturk and Kose (2019), there are two main advantages to using this method. First - estimating a system of time allocation choices for various activities puts a constraint whereby more time dedicated to one activity leaves less time available for another. Secondly, an endogeneity problem is generated when allocation choices are used as dependent variables in OLS regressions and therefore it is unrealistic to assume that residuals are not correlated while estimating a set of time allocation choices. The SUR framework allows the residuals to be correlated across time allocation choices. The literature is divided on the use of Tobit versus OLS regressions with SUR for estimating time allocation choices. We use Ozturk and Kose (2019) methodology with SUR system and OLS regressions.

Our strategy also employs a large number of fixed effects for states, time periods, and demographics (household size, race) to capture the effect of common unobservables on health. These coefficients are interpretable as the correlation between individual time allocation and the deviations of individual health status from the norms for the individual's state, year, age, race, and household size. These norms would include the type of fixed state averages of health outcomes used as instruments in the Gimenez-Nadal and Ortega-Lapiedra (2013) strategy. Our results generated the same signs as the IV strategy but yielded more plausible results.

Our interest is in finding regularities in how time allocations respond to these deviations in health and income. The pattern of coefficients supports the establishment of a taxonomy that aggregates various leisure types into Active or Passive groups based on their correlations with health and income.

[^8]
5B. Aggregation

The leisure types are too numerous for a parsimonious representation of leisure demand which motivates us to develop aggregations of leisure types. We try to aggregate various leisure activities into groups so that we can examine how the groups are associated with changes in health and income. To do this, our intention is to group activities that are similar to one another, for which we use pairwise tests of leisure activities.

We use the reduced form equation (5) to test if pairs of variables are sufficiently similar in their relationship with health status and income that we can impose joint equality of all five parameters relating leisure demand to health status and income.

Specifically, we test whether the coefficients on predetermined health are jointly equal: $\beta^{j}=\beta^{j \prime}$ and $\theta^{j}=\theta^{j \prime}$ for leisure types $j \neq j^{\prime}$.

With five equality restrictions, each hypothesis is distributed $\chi^{2}(5)$. If the null hypothesis cannot be rejected, then we conclude that the relationship between the two leisure types are aggregable. Rejection of the null suggests the two leisure types are not aggregable. In this way, we are able to derive Active and Passive leisure groups. This is discussed in detail in section 6B below.

5C. Wage Estimation

It is useful to know how much of the education and wage effects operate through the taste mechanism and how much works through the opportunity cost of time. To investigate that question, we need to estimate a wage equation, $w\left(H, Z_{L}, Z_{D}\right)$, that includes factors Z_{L} that would shift wages without affecting the tastes for leisure. That exercise is admittedly hard to validate, but we suggest an identification scheme using union membership, which is known to raise wages but would not have an obvious effect on leisure tastes. The individual hourly wage is the dependent variable.
(6) where $Z_{i t}^{\prime}$ represents a vector of demographics including age, education gender but not health, as we want to estimate the wage independent of the individual's health status, to capture the expected value of time based on skill and market factors. The wage estimation includes
dummy variables for industry, union membership and occupation to capture ,!, which denotes a vector of local labor institutions that affect wages but not the marginal utility of leisure. Results are presented in Appendix table A2.

In the second stage, we estimate the AL and PL equations with the predicted wage from equation (6) as a regressor. Because the predicted wage is a generated regressor, we use bootstrapped standard errors based on 50 replications to correct for the sampling variation in the first-stage estimation.

$$
\begin{equation*}
=\alpha_{j}+\partial . \widehat{w_{-} t t}+H_{i t}^{\prime} \beta+Z_{i t}^{\prime} \gamma+Y_{i t} \theta+S_{i} \rho+\epsilon_{i t} \tag{7}
\end{equation*}
$$

Where $L_{i t}$ represents $A L_{i t}$ or $P L_{i t}$, the aggregate Active and passive leisure groups and $\widehat{w_{-} l t}$ represents the predicted wage from equation 6 .

6. Results

The econometric model laid out in section 5 is used to estimate the relationship between health and various leisure time allocation choices. We use the pattern of responses to justify which activities to allocate to Active leisure and which fit under the Passive leisure category.

6A. Health, Income and Leisure Time Allocation

Table 2 contains results of the econometric estimation on each leisure activity Sports, Non-Sports, Television Viewing, Socializing, Arts, Tobacco Use, Relaxation, Games, Computer Use and Hobbies. The dependent variable for all regressions reported in this table is the minutes spent on the j^{n} leisure activity. Table 2 shows how health is associated with leisure time allocation choices. The joint test of the null hypothesis that the four health categories do not affect time spent on each of the various leisure activities is rejected in every instance. However, the pattern of results are very different.

The two types of leisure that undoubtedly require physical exercise are - Sports and Non Sports. The distinction between the two seems arbitrary at times with walking being under Sports and Hiking being under Non-Sports. For these two categories, excellent and very good health are significantly positively correlated with more time spent. The other leisure category that has a
similar relationship with health is Arts - perhaps because it is intellectually if not physically active.

The opposite pattern holds for Television Viewing, Socializing, Tobacco Use, Relaxation, Computer Use and Games for whom very good or good health is negatively associated with time allocation. The most consumed leisure category (Figure 1) is Television Viewing that is consumed at an average of 3 hours per day. Individuals with poor health allocate 73 more minutes to television viewing than do individuals in the reference group with good health. Television Viewing increases as health deteriorates, consistent with Podor and Halliday's results (2012) who calculate that movement from good to bad health results in 335 additional hours of TV viewing for men, and 304 additional hours for women. A similar, though less dramatic, pattern holds for Relaxation and Socializing.

We compute health elasticities for all leisure activities and report them in table 3. ${ }^{13}$ The elasticities again show a pattern. Active Leisure types (Sports, Non-Sports and Arts) have positive values for good and excellent health and positive income elasticities. The more sedentary Passive Leisure types (Television Viewing, Tobacco, Relaxation, Games, Socializing, Computer Use and Hobbies) have negative or very small elasticities with respect to excellent health, good health, and income.

Because income is associated positively with the Active Leisure types, Sports, Non Sports, and Arts are normal goods in the necessity range. Some of the sedentary leisure activities including Television Viewing, Socializing, Tobacco Usage, Relaxation, and Games are inferior goods. Hobbies and Computer Use are virtually insensitive to income.

The patterns of leisure choice in response to health endowments and income suggest a strategy for aggregating the leisure types into aggregates that we will call Active Leisure and Passive Leisure. Logically, if two leisure types are part of the same group, they should share a common reduced form relationship to the exogenous variables in equations (4A, B).

6B. Aggregation

The results of tables 2 and 3 suggest a plausible aggregation. Some of the relationships are illustrated in Figure 2. Time spent on Sports and Non-Sports fall as health status deteriorates from

[^9]excellent to fair and then levels off, consistent with the coefficient patterns in table 2. Television Viewing and Socializing increase as health deteriorates.

Visual inspection of the coefficients on the health and income measures in Table 2 show three leisure types with positive income effects, Sports, Non-sports and Arts. All three have a pattern that better than average self-reported health increases time allocation while poorer than average health measures lower time allocation. We combine Sports, Non-Sports, and Arts into an aggregate category, Active Leisure. In Table 4, we report pairwise tests involving our aggregate Active Leisure group and all the other leisure types. We reject the null hypothesis that Active Leisure and each leisure type has the same coefficients on health and income. The null is rejected for every test, a result that would occur randomly 0.4% of the time. We use that finding along with the qualitative similarity in their relationships to health status and income to justify combining all the remaining leisure types into our Passive Leisure aggregate.

After aggregation, we estimate the leisure groups (Active and Passive) with the same specification as in (5). Results are reported in table 5. Columns (1) and (3) report the unrestricted reduced form specifications. These estimations can be viewed as the generalization of the leisure type regressions reported in table 2. Endowments of excellent and very good health are positively and significantly associated with more time spent on Active Leisure, but are negatively associated with participation in Passive Leisure. The implied elasticities reported in Table 6 tell us that the responses of Active and Passive Leisure to health status are very small. The income elasticities show that Active Leisure is a normal good in the range of necessities, while Passive Leisure is an inferior good.

6C. Health and Wages

We are interested in finding out how leisure responds to health and income. Having already analysed how nonlabour income is associated with leisure, it is useful to know how much of the education and wage effects operate through the taste mechanism and how much works through the opportunity cost of time. Since the wage $w\left(H, Z_{L}, Z_{D}\right)$ measures, the opportunity cost of time, we see how leisure responds to changes in wages. We are curious to check if wage income and nonlabour income are similarly associated with leisure demand or not.

The analysis in columns 1 and 3 in Table 5 subsume the wage effect into the effects of education and work experience on leisure demand. We estimate equation (6) and use the predicted wage in equation (7). The results of the first stage wage estimation are in the Appendix table A2. Results of the second stage estimations of equation (7) are reported in columns (2) and (4) of table 5.

The previous results for health are virtually unaffected. The coefficients on predicted wage are significant for Active Leisure and Passive Leisure. While the sign is positive for Active Leisure, it is negative for Passive Leisure. Higher wages cause a substitution from passive to active forms of leisure.

The income measure we have used in this study is family income. However, the wage estimation points to the fact that as purchasing power increases, individuals prefer to consume more active leisure and less passive leisure. This points towards robustness of our initial results, which we obtained by using nonlabour income, and proves that aggregation of various leisure activities in this way is meaningful.

In the first column in Table 5, the partial effect of education evaluated at the sample mean for age is negative on Active Leisure through 16 years of schooling. ${ }^{14}$ However, after controlling for the predicted wage, the marginal effect of education is positive on Active Leisure at all schooling levels. The negative net effect in column 1 is due to the positive effect of education on the opportunity cost of time, which lowers demand for Active Leisure, even as education itself strengthens taste for Active Leisure. In column 3, the partial effect of education on Passive Leisure is initially positive but turns negative after grade 2 . The negative effect increases in magnitude as education increases. After controlling for predicted wage, the marginal effect is negative at higher levels of education. This suggests that additional years of schooling results in declining taste for Passive Leisure.

[^10]
7 Conclusion

In light of the insights made by Aguiar and Hurst (2007) of an increasing trend in leisure consumption in the U.S., this analysis provides a deeper understanding of the interrelationships between education, health and leisure demand. We show both theoretically and empirically how health endowments and education will alter the choices of leisure activities that will and will not enhance health. The model suggests that the reduced form relationships between health and income and leisure demand would allow us to aggregate leisure into two types, Active and Passive. These two types of leisure have sharply contrasting reduced form relationships with health endowments and income. Higher income, more education and better health endowments are positively associated with the demand for Active Leisure, while the reverse is true for Passive Leisure. In crafting policies aimed at halting the trend toward rising obesity and diabetes, these results suggest that breaking the cycle of poverty by raising years of schooling but also by emphasizing physical education for young children would leave them with better endowments of health and education when they enter the labor market. Because health and education both reinforce ability to generate incomes that may raise the demand for Active relative
to Passive Leisure, this strategy has the potential to generate reinforcing behaviors that would enhance health and income over the life cycle. We are unable to test this as this would require longitudinal data.

Our findings illustrate the importance of how efficiently health is converted into satisfaction derived from Active leisure. Although the opportunity cost of time is the same for Active and Passive leisure, an individual is not indifferent between choosing Active versus Passive leisure as their health improves. Better health raises the utility of Active relative to Passive leisure. We know that wages rise with improved health also, but without that rising utility from Active leisure as the health endowment rises, one would not get the separation in leisure choices between healthier and high wage versus less healthy and low wage individuals.

Our empirical approach using SUR models allows us to find patterns among leisure choices. While studies before have looked at the effects of health on leisure, grouping leisure activities according to their association with health and income is new. In the literature,
various leisure activities are treated as a homogenous group, whereas we show that they can have very different relationship with health and income based on the level of physical activity required. The limitation of this approach, is that we are unable to test how these relationships change over time. Since consumption of more 'Active' leisure will have a positive effect on health over the long run and 'Passive' Leisure will have negative effects, it will be interesting to see how these long-run effects vary with income. Future studies can look at this component of 'Active' and 'Passive' Leisure.

Appendix

A1: Theoretical Model:

$$
U\left(\begin{array}{ll}
x & P)
\end{array}(w(H) \cdot(1 \quad P), f(H)\right.
$$

FOCs:
$J_{A}=u_{x}(w(H) \cdot(1-A-P), f(H) \cdot A, P) \cdot(-w(H))+u_{A}(w(H) \cdot(1-A-P), f(H) A, P) \cdot f(H)=0$
$J_{P}=u_{x}(w(H) \cdot(1-A-P), f(H) \cdot A, P) \cdot(-w(H))+u_{P}(w(H) \cdot(1-A-P), f(H) A, P)=0$
$\Rightarrow u_{A}\left(w(H) \cdot(1-A-P), f(H) A^{*}, P^{*}\right) \cdot f(H)=u_{P}\left(w(H) \cdot(1-A-P), f(H) A^{*}, P^{*}\right)$
Assuming utility function to be separable of the following form:

$$
U(x, A, P)=u(x)+v(f(H) . \quad P)
$$

FOCs imply that:
$(f(H) A \quad) . f(H) \quad(f(H) A \quad)$
$f(H) \frac{(f(H) A \quad)}{(f(H) A \quad)}$
i.e. the Marginal rate of substitution between active and passive leisure is given by $f(H)$.

Next, we compute comparative statics results to find out the effect of health on Active and Passive leisure consumption.

Comparative statics

$J_{A A} \frac{\partial A}{\partial H}+J_{A P} \frac{\partial P}{\partial H}+J_{A H}=0$
$J_{P A} \frac{\partial A}{\partial H}+J_{P P} \frac{\partial P}{\partial H}+J_{P H}=0$
So:
$\left[\begin{array}{ll}J_{A A} & J_{A P} \\ J_{P A} & J_{P P}\end{array}\right]\left[\begin{array}{l}\partial A / \partial H \\ \partial P / \partial H\end{array}\right]=\left[\begin{array}{l}-J_{A H} \\ -J_{P H}\end{array}\right]$
$\frac{\partial A^{*}}{\partial H}=\frac{1}{\Delta}\left|\begin{array}{ll}-J_{A H} & J_{A P} \\ -J_{P H} & J_{P P}\end{array}\right|=\frac{1}{\Delta}\left(-J_{A H} J_{P P}+J_{A P} J_{P H}\right)$
$\frac{\partial P^{*}}{\partial H}=\frac{1}{\Delta}\left|\begin{array}{ll}J_{A A} & -J_{A H} \\ J_{P A} & -J_{P H}\end{array}\right|=\frac{1}{\Delta}\left(-J_{A A} J_{P H}+J_{P A} J_{A H}\right)$
where $\Delta \equiv J_{A A} J_{P P}-J_{A P} J_{P A}$ (assume $\Delta>0$, to satisfy Second Order Sufficiency condition), and all derivatives are evaluated at the optimal solution.

Partial effects (economizing on notation):
$J_{A A}=u_{x x} \cdot w^{2}+u_{A A} \cdot f^{2}$
$J_{A P}=u_{x x} \cdot w^{2}+u_{A P} \cdot f$
$J_{P A}=u_{x x} \cdot w^{2}+u_{P A} \cdot f$
$J_{P P}=u_{x x} \cdot w^{2}+u_{P P}$
$J_{A H}=u_{x x} \cdot(-w) \cdot\left(-w^{\prime}\right) \cdot(1-A-P)+v_{A A} \cdot f \cdot f^{\prime} \cdot A$
$J_{P H}=u_{x x} \cdot(-w) \cdot\left(-w^{\prime}\right) \cdot(1-A-P)+v_{P A} \cdot f^{\prime} \cdot A$
$\frac{\partial A^{*}}{\partial H}=\left\{\begin{array}{l}-\left[u_{x x} \cdot w \cdot w^{\prime} \cdot(1-A-P)+v_{A A} \cdot f \cdot f^{\prime} \cdot A\right] \cdot\left[u_{x x} \cdot w^{2}+u_{P P}\right] \\ +\left[u_{x x} \cdot w^{2}+u_{A P} \cdot f\right] \cdot\left[u_{x x} \cdot w \cdot w^{\prime} \cdot(1-A-P)+v_{P A} \cdot f^{\prime} \cdot A\right]\end{array}\right\} \cdot \frac{1}{\Delta}$
$\frac{\partial P^{*}}{\partial H}=\left\{\begin{array}{l}-\left[u_{x x} \cdot w \cdot w^{\prime} \cdot(1-A-P)+v_{P A} \cdot f^{\prime} \cdot A\right] \cdot\left[u_{x x} \cdot w^{2}+u_{A A} \cdot f^{2}\right] \\ +\left[u_{x x} \cdot w^{2}+u_{A P} \cdot f\right] \cdot\left[u_{x x} \cdot w \cdot w^{\prime} \cdot(1-A-P)+v_{A A} \cdot f \cdot f^{\prime} \cdot A\right]\end{array}\right\} \cdot \frac{1}{\Delta}$
Therefore, the comparative statics results reflect many factors, including the fact that the health stock changes the productivity of work. One possible avenue to simplify the problem is to treat the amount of time spent at work as fixed and then look at the choice between Active and Passive leisure. However, we do not adopt this approach since the relationship between health and wages is key for this paper and this relationship ultimately determines why one form
of leisure might be chosen vis-à-vis the other. Since fixing work ultimately amounts to fixing the wage rate, such an approach may not be advisable.

Therefore, the reduced form solutions for $\frac{\partial A^{*}}{\partial H}$ and $\frac{\partial P^{*}}{\partial H}$ are different. We are unable to sign these two expressions since the sign of $v_{A P}$ is unknown. Therefore we are able to conclude that the reduced forms may be written as: $\frac{\partial A}{}=g(H) a \quad-\quad q(H)$ and it is clear from the above that in equilibrium Health capital has different effects on Active and Passive Leisure.

Simplifying assumptions on dependence of wages on health, constancy of working hours may be of interest to make intuitive sense of these reduced form solutions. However, this is a key result from the theoretical model and we use this result for our econometric estimation and later to aggregate different leisure time allocation choices into Active and Passive groups.

A2: Details on each Leisure group

Sports: Playing baseball, playing basketball, playing billiards, participation in equestrian sports, fencing, fishing, playing football, golfing, doing gymnastics, playing hockey, participation in martial arts, playing racquet sports, playing rugby, playing soccer, softball, vehicle touring/racing, playing volleyball, walking, participation in water sports, weightlifting/strength training, working out (unspecified), wrestling, and ping pong.

Non-Sports: Doing aerobics, biking, boating, bowling, climbing (includes spelunking and caving), dancing, hiking, hunting, participation in rodeo competitions, rollerblading, running, skiing (includes ice skating and snowboarding), using cardiovascular equipment, doing yoga, bungee jumping.

Socializing: Socializing and communicating with others, attending or hosting social parties/receptions/ceremonies and attending meeting for personal interest.

Television Viewing: Watching television and movies (not religious), television (religious), listening to the radio and listening to/playing music (not radio)

Relaxing: Doing nothing/goofing off/wasting time, hanging around/hanging out (alone), sitting in the hot tub/Jacuzzi/whirlpool/sauna, breaks at work, unspecified activity, watching wife
garden/watching husband cook dinner, lying around/ sitting around, sunbathing, grieving, worrying/crying, watching husband assemble lawnmower, resting/relaxing/lounging, reflecting/daydreaming/fantasizing/wondering, looking at pictures in a photo album or looking at photos on computer or camera.

Arts: Performing arts
Tobacco Consumption: Smoking a cigarette/cigar/pipe, smoking marijuana/pot/weed, having a cigarette/rolling a cigarette or chewing tobacco/using recreational drugs.

Games (Indoor): Playing board games/ Scrabble/cards, hitting a piñata, playing games over the Internet, spinning dreidels, hiding matzo/ hiding Easter eggs or working jigsaw puzzle/crossword puzzles.

Computer Use: Unspecified computer use, surfing the internet, downloading files/music/ pictures (personal interest), burning CDs, using social networking or computer programming (personal interest)

Hobbies: Scrapbooking/making a scrapbook, making Halloween costumes (for self), making holiday/ other decorations, dyeing Easter eggs, artistic painting, videotaping/ photography/model making/ jewellery making, making pottery/sculpting/wood working, making Christmas decorations, taking pictures, collecting/organizing stamps or coins, bird watching, researching family tree, reading for personal interest, writing for personal interest.

A3: Elasticities

The elasticity for each independent variable (health and income) a computed at the mean of the other independent variables. The margins function along with eyex function in Stata allows us to do this at sample means. Details on this method are available at https://www.stata.com/support/faqs/statistics/elasticities-using-margins/

For one such example: the elasticity of Sports w.r.t Excellent health and Income are computed as
 independent variables in equation 5.

References

Aguiar M, Bils M, Charles K and Hurst E. 2021 "Leisure Luxuries and the Labor Supply of Young Men", Journal of Political Economy, Volume 129, No: 2.

Aguiar, M. and Hurst, E. 2007. "Measuring Trends in Leisure: The Allocation of Time over Five Decades", Quarterly Journal of Economics, 122 (3), 969-1006. Aguiar, Mark, Erik Hurst, and Loukas Karabarbounis. 2013. "Time Use during the Great Recession." American Economic Review, 103 (5): 1664-96.

Banwell C, Hinde S, Dixon J, Sibthorpe B. "Reflections on expert consensus: a case study of the social trends contributing to obesity". Eur J Public Health. 2005 Dec;15(6):564-8. doi: 10.1093/eurpub/cki034. Epub 2005 Sep 1. PMID: 16141305.

Bartel, A., and P. Taubman. 1979. "Health and Labor Market Success: The Role of Various Diseases." The Review of Economics and Statistics 61 (1): 1-8.

Bartik, Timothy. 1991. "Who Benefits from State and Local Economic Development Policies?" W.E. Upjohn Institute. https://research.upjohn.org/cgi/viewcontent.cgi?article=1093\&context=up_press Becker, Gary S. "A Theory of the Allocation of Time." The Economic Journal 75, no. 299 (1965): 493-517

Biddle J, Hamermesh D. 1990. "Sleep and the allocation of time." Journal of Political Economy, 98(5): 922-1043.

Bound J. 1991, "Self-Reported Versus Objective Measures of Health in Retirement Models". Journal of Human Resources 1991; 26: 106-38.

Coile C. 2004, "Health Shocks and Couples Labor Supply Decisions". NBER Working Paper 2004. Case, A. and Deaton, A. 2015, "Rising midlife morbidity and mortality, US whites" Proceedings of the National Academy of Sciences, Dec 2015, 112 (49) 15078-15083

Carlson SA, Adams EK, Yang Z, Fulton JE. Percentage of Deaths Associated With Inadequate Physical Activity in the United States. Prev Chronic Dis 2018;15:170354. DOI:
http://dx.doi.org/10.5888/pcd18.170354external icon
Cawley, J, 2004 "The Impact of Obesity on Wages" J. Human Resources Spring 2004 vol. XXXIX no. 2 451-474

Cawley, J and Ruhm, C. 2011 "The Economics of Risky Health Behaviors", Handbook of Health Economics, (2), 95-199.

Chirikos, Thomas N., and Gilbert Nestel. 1985 "Further Evidence on the Economic Effects of Poor Health." The Review of Economics and Statistics, vol. 67, no. 1, 1985, pp. 61-69. JSTOR, www.jstor.org/stable/1928435.
Chatterji, P., M. Alegria, M. Lu, and D. Takeuchi. 2007. "Psychiatric Disorders and Labor Market Outcomes: Evidence from the National Latino and Asian American Study." Health Economics 16 (10): 1069-1090.

Chen, S., Shogren, J, Orazem, P. and Crocker, T. 2002 "Prices and health: Identifying the effects of Nutrition, Exercise and medication choices on blood pressure", American Journal of Agricultural Economics, 84(4), 990-1002.

Courtemanche, C, Heutel, G and McAlvanah, P. "Impatience Incentives and Obesity", The Economic Journal, 125(582), 1-31

Courtemanche, C, Pinkston. J., Ruhm, C and Wehby, G. 2016. "Can Changing Economic Factors Explain the Rise in Obesity?", Southern Economic Journal, 82(4), 1266-1310.

Courtemanche, Charles and Pinkston, Joshua C. and Stewart, Jay, "Time Spent Exercising and Obesity: An Application of Lewbel's Instrumental Variables Method" (January 2020). NBER Working Paper No. w26670.

Cutler, DM (2001), "The reduction in disability among the elderly", Proceedings of the National Academy of Sciences of the United States of America, 01 Jun 2001, 98(12):6546-6547 Ettner, S. L., R. G. Frank, and R. C. Kessler. 1997. "The Impact of Psychiatric Disorders on Labor Market Outcomes." ILR Review 51 (1): 64-81.
Ettner SL, 1996 "New evidence on the relationship between income and health", Journal of Health Economics, Volume 15, Issue 1.

Ford ES, et al. (2007) Explaining the decrease in U.S. deaths from coronary disease,1980-2000. The New England Journal of Medicine 356(23):2388-2398

Fletcher, J. M. 2014. "The Effects of Childhood ADHD on Adult Labor Market Outcomes." Health Economics 23 (2): 159-181.

Paul Frijters, John P. Haisken-DeNew and Michael A. Shields, "The causal effect of income on health: Evidence from German reunification," Journal of Health Economics, Volume 24, Issue 5, 2005.

Gimenez-Nadal, J. I., and A. Sevilla. 2012. "Trends in Time Allocation: A Cross-Country Analysis." European Economic Review 56 (6): 1338-1359.

Gimenez-Nadal \& Raquel Ortega-Lapiedra (2013) Health status and time allocation in Spain, Applied Economics Letters, 20:15, 1435-1439

Gimenez-Nadal, J. I., and A. Sevilla. 2014. "Total Work Time in Spain: Evidence from Time Diary Data." Applied Economics 46 (16): 1894-1909.

Grossman, Michael 1972 "On the Concept of Health Capital and the Demand for Health Journal of Political Economy 1972 80:2, 223-255

Hochschild, A.R., 1997. "The Time Bind: When Work Becomes Home and Home Becomes Work" New York: Metropolitan Books.

Johannesson, M., Johansson, O., and O'Conor, R. 1996. "The Value of Private Safety Versus the Value of Public Safety," Journal of Risk and Uncertainty, 13, 263-275. Johannesson, M., Johansson O., and Lofgren, K. 1997. "On the Value of Changes in Life Expectancy: Blips Versus Parametric Changes," Journal of Risk and Uncertainty, 15, 221-239

Keane, M., 2011. "Labor Supply and Taxes: A Survey", Journal of Economic Literature, 49(4), 9611075.

Keane, Michael, and Richard Rogerson. 2012. "Micro and Macro Labor Supply Elasticities: A Reassessment of Conventional Wisdom." Journal of Economic Literature, 50 (2): 464-76. Keuangkham, S. 2017. "Health Status and the Allocation of Time: Empirical Evidence from Laos." Journal of the Graduate School of Asia-Pacific Studies 33 (3): 21-34.

Lenhart, O. 2019 "Higher Wages, Less Gym Time? The effects of Minimum Wages on Time Use", Southern Economic Journal, 86(1), 253-270.

Meltzer, David O, and Anupam B Jena. "The economics of intense exercise." Journal of
health economics vol. 29,3 (2010): 347-52. doi:10.1016/j.jhealeco.2010.03.005
Mitchell, J. M., and R. V. Burkhauser. 1990. "Disentangling the Effect of Arthritis on Earnings: A Simultaneous Estimate of Wage Rates and Hours Worked." Applied Economics 22 (10): 12911309.

Ones, U., E. Memis, and B. Kizilirmak. 2013. "Poverty and Intra-Household Distribution of Work Time in Turkey: Analysis and Some Policy Implications." Women's Studies International Forum 41: 55-64.

Ojeda, V. D., R. G. Frank, T. G. McGuire, and T. P. Gilmer. 2010. "Mental Illness,
Nativity, Gender and Labor Supply." Health Economics 19 (4): 396-421.

Ozurk and Kose 2019 "Health, time allocation and work: empirical evidence from Turkey", Applied Economics, 51, 5609-5622
Pampel, F., Krueger, P. and Denney, J. 2010 "Socioeconomic disparities in Health Behaviors", Annual Review of Sociology, 36, 349-370.

Parsons, Donald, 1977, "Health, Family Structure and Labor Supply", The American Economic Review, Sep., 1977, Vol. 67, No. 4 (Sep., 1977), pp. 703- 712

Pelkowski and Berger, 2004, "The impact of health on employment, wages, and hours worked over the life cycle", The Quarterly Review of Economics and Finance, Volume 44, Issue 1,2004,Pages 102-121, ISSN 1062-9769.

Philipson, Tomas and Posner, Richard, (2008), "Is the Obesity Epidemic a Public Health Problem? A Decade of Research on the Economics of Obesity," No 14010, NBER Working Papers, National Bureau of Economic Research, Inc, https://EconPapers.repec.org/RePEc:nbr:nberwo:14010.

Podor, M. and Halliday, T. 2012. "Health status and the allocation of time", Health Economics, 21 (5), 514-527.

Pinkston, Joshua C., 2017. "The dynamic effects of obesity on the wages of young workers" Economics \& Human Biology, Elsevier, 27(PA), 154-166.

Robinson, J. P., and G. Godbey. 1999. Time for Life: The Surprising Ways Americans Use
Their Time. 2nd Edition. University Park, PA: Pennsylvania State University Press.
Rees, D. I., and J. J. Sabia. 2015. "Migraine Headache and Labor Market Outcomes."
Health Economics 24 (6): 659-671.
Rust J and Phelan C., 1997 "How Social Security and Medicare Affect Retirement Behavior in World of Incomplete Markets". Econometrica 1997; 65: 781-831.

Sandra L. Hofferth, Sarah M. Flood and Matthew Sobek. American Time Use Survey Data Extract
Builder: Version 2.7 [dataset]. College Park, MD: University of Maryland and Minneapolis, MN: IPUMS, 2018.

Tunceli, K., C. J. Bradley, D. Nerenz, L. K. Williams, M. Pladevall, and J. E. Lafata. 2005. "The Impact of Diabetes on Employment and Work Productivity." Diabetes Care 28 (11): 2662-2667.

Wu S. 2003, "The Effects of Health Events on the Economic Status of Couples". Journal of Human Resources 2003; 38; 219-30.

Yasemin Ozturk \& Tekin Kose (2019), "Health, time allocation and work: empirical evidence from Turkey", Applied Economics, 51:51, 5609-5622, DOI: 10.1080/00036846.2019.1616070

Figures
Figure 1: Average number of minutes spent on leisure activities

Data Source: American Time Use Survey (ATUS) - Eating and health Module from 2006 to 2008 and 2014 to 2016 (Sample size: 64,798)

Figure 2: Elasticities of health

Non Sports

Socializing

Table 1: Summary Statistics of key variables

Variable	\boldsymbol{N}	Mean	Std. Dev.	Min	Max
Sports	64,798	5.5	33.4	0	1230
Non-Sports	64,798	12.0	43.5	0	1073
TV Viewing	64,798	175.2	175.6	0	1433
Arts	64,798	5.7	35.8	0	870
Tobacco	64,798	0.4	4.9	0	475
Relaxation	64,798	17.7	62.6	0	1095
Games	64,798	11.6	50.9	0	1156
Computer Use	64,798	9.5	41.1	0	990
Socializing	64,798	65.2	111.2	0	1151
Hobbies	64,798	25.4	66.9	0	1370
Excellent Health	64,798	0.2	0.4	0	1
Very Good Health	64,798	0.3	0.5	0	1
Fair Health	64,798	0.1	0.3	0	1
Poor Health	64,798	0.0	0.2	0	1
Income (thousands)	64,798	61.2	43.6	2.5	150
Age (years)	64,798	47.2	17.8	15	85
Education (years)	64,798	13.9	3.1	0	23
Gender	64,798	1.1	0.7	0	2
Race_White	64,798	0.8	0.4	0	1
Race Black	64,798	0.1	0.3	0	1
Number of Children	64,798	0.9	1.1	0	11

Data Source: American Time Use Survey (ATUS) - Eating and health Module from 2006 to 2008 and 2014 to 2016. Income variable if from CPS. Leisure activities (Sports, Non-Sports, TV Viewing, Socializing , Arts, Tobacco, Relaxation, Games, Computer Use and Hobbies) are in minutes. Health, gender and race variables are dummies .

Table 2: SUR Time Allocation estimates:

Depend
nt
nt
Variable:
Non avis
Minutes spent on leisure activity

Tel
$\begin{array}{cccccccccc}\text { Cpo } & - & \text { ion } & \text { tali } & \text { Art } & \text { Tob } & \text { Rel } & \text { Ga } & \text { Com } & \text { Ho } \\ \text { ats } & \text { Spa } & \text { vie } & \text { zen } & S & \text { nco } & \text { ana } & \text { mes } & \text { pouter } & \text { bbs }\end{array}$ $\begin{array}{ccc}\text { Cpo } & \text { vie } & \text { min } \\ \text { res } & g & \text { Use ion mes Use es }\end{array}$
$3.57 \quad 8.43$
$\begin{array}{cccccccccc}5^{* *} & 0^{* *} & 23 . & - & 1.13 & - & 2.41 & 3.0 & - & 1.8 \\ * & * & 91^{*} & 1.6 & 7 * * & 0.21 & 8^{* *} & 53^{*} & 1.056 & 92^{*} \\ & & * * & 32 & & 6^{* * *} & * & * * & * & \end{array}$ t Health
$\begin{array}{cccccccccc}(9.1 & (16 . & (- & (- & 12.6 & (- & (- & (- & (- & (2.5 \\ 8) & 53) & 12 . & 1.2 & (2.6 & 3.72) & 3.34 & 5.1 & 2.18) & 2)\end{array}$
1.613 .20

Very $\begin{array}{cc}1 * * & 7 * * \\ * & *\end{array}$
$\begin{array}{ccc}- & - & 1.32 \\ 13 . & 2.7 & 3 * * \\ 64^{*} & 11^{*} & *\end{array}$
Good
Health
$\begin{array}{cccccccccc}(4.9 & (7.5 & (- & (- & (3.7 & (- & (- & (- & (0.71 & (1.9 \\ 4) & 1) & 8.4 & 2.4 & 4.7 & 2.68) & 4.50 & 3.0 & (0.7 & 1) \\ & 9) & 8) & 4) & &) & 1) & & \end{array}$
$\begin{array}{ccccccccccc} & - & - & 28 & 3.6 & - & 0.07 & 2.23 & 1.6 & 1.211 & 0.4 \\ \text { Fair } & 0.17 & 1.13 & 40^{*} & 3.6 & 0.86 & 17 & 6^{* *} & 30^{*} & * & 01\end{array}$ $\begin{array}{ccccccccccc}\text { Health } & (- & (- & 13 . & (2.4 & (- & (1.09 & (2.7 & (2.4 & (2.20 & (0.4 \\ & 0.38 & 1.96 & (13 . & (2.4 & 1.80 &) & 1) & 1) &) & 7) \\ &) &) & 00) & 4) &) &) & & & & \end{array}$ $\begin{array}{ccccccccccc} & - & - & 73 . & 9.9 & - & & 13.1 & & \\ & 0.01 & 3.13 & 54^{*} & 46^{*} & 0.61 & 0.20 & 3^{* *} & 1.5 & 2.818 & - \\ \text { Poor } & 51 & 0 * * & * * & * * & 5 & 4^{*} & * & 61 & * * & 0.2 \\ \text { Host } & \text { * }\end{array}$ Health

$$
\begin{array}{cccccccccc}
(- & (- & (21 . & (4.2 & (- & (1.98 & (10 . & (1.4 & (3.28 & (- \\
0.02 & 3.46 & 59) & 9) & 0.82 &) & 22) & 8) &) & 0.1 \\
) &) &) &) & 2)
\end{array}
$$ Income $0.03 \quad 0.02 \quad-\quad-\quad 0.01$

$\begin{array}{llllllllll}38 * & 72 * & 0.3 & 0.0 & 89^{*} & 0.00 & 0.05 & 0.0 & 0.003 & 0.0\end{array}$

$(7.9$	$(4.9$	$(-$	$(-$	18.1	$(-$	$(-$	$(-$	$(-$	$(-$
$8)$	$1)$	18	2.7	1.	1	$6.19)$	6.39	1.5	$(-$

 $\begin{array}{cccccccccc}(- & (- & (- & (- & (- & (4.32 & (7.0 & (- & (- & (- \\ 26.6 & 3.38 & 0.3 & 1.1 & 6.10 & () & 4) & 15.03 & 27 . \\ 6) &) & 7) & 1) &) & & & 09) &) & 87)\end{array}$ $\begin{array}{cccccccccc}0.00 & 0.00 & 0.0 & 0.0 & 0.00 & - & 0.00 & 0.0 & 0.003 & 0.0 \\ 670 & 155 & 269 & 151 & 190 & 0.00 & 755 & 181 & 21 * * & 232 \\ * * * & * * & * * * & * * * & * * * & 0361 & * * * & * * * & * & * * *\end{array}$ (16. (2.9 (13.) (10. (4.2) (- (9.9 (28. (6.31) (29. 36) 0) 35) 96) 7) 5.92) 1) 89)) 37) $\begin{array}{ccccccccccc}\text { Educatio } & 1^{* *} & 2^{* *} & 36^{*} & 86 & 0.08 & 0.10 & 0.10 & 0.4 & 0.589 & 1.6 \\ * & * & & 37 & 27^{* *} & 8 & 23 & * & * *\end{array}$ $\begin{array}{cccccccccc}(- & (- & (5.5 & (0.7 & (- & (3.00 & (- & (- & & (- \\ 9.33 & 4.23 & 1) & 6) & 0.34 &) & 0.25 & 1.2 & (- & (-1) \\) &) & 1) & 1.06) & 1)\end{array}$ | 0.01 | 0.05 | - | 0.0 | 0.0 | 0.00 | -0.00 | 0.07 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 38^{*} | 0.0 | 724 | 32^{*} | 724 | 979 | 459^{*} | $9 *$ | 515 |
| | $* *$ | $* *$ | $* *$ | | $* *$ | $* *$ | $* * *$ | 6 | 7 | $\mathrm{n}^{\wedge} 2$

$\begin{array}{cccccccccc}(1.5 & (5.7 & (- & (3.0 & (1.2 & (- & (5.9 & (- & (- & (0.5 \\ 5) & 6) & 9.4 & 3) & 7) & 4.33) & 9) & 4.7 & 1.64) & 6)\end{array}$ $\begin{array}{cccccccccc}- & - & - & & & - & - & - & - & 5.5 \\ 4.59 & 5.91 & 41 . & 1.5 & 0.08 & - & 3.66 & 4.6 & -.10 & \\ 0^{* *} & 7 * * & 43^{*} & 24 & 76 & 5 * * & 7^{* *} & 52^{*} & * * * & 8^{*} \\ * & * & * * & & & & * & * * & & \end{array}$ $\begin{array}{llllllllll}- & (- & (- & (1.7 & 10.3 & (- & (- & (- & (- & (10 .\end{array}$

	17.4	17.1	31.	$3)$	$1)$	$2.69)$	7.50	11.	$7.43)$	$95)$
	$5)$	$7)$	$97)$				$)$	$59)$		
	0.03	-	-	-		-	-	0.0		0.0
Age *	24^{*}	0.00	0.0	0.0	0.00	0.00	0.07	017	0.031	008
Education	$* *$	035	601	894	258	0043	$29 *$	317	$5 * * *$	808
n	$(13$.	$(-$	$(-$	$(-$		7	$* *$			
	$92)$	0.12	5.2	11.	$(1.0$	$(-$	$(-$	(8)	$(16.9$	$(10.8$
	$(17$.									
		$1)$	$4)$	$45)$	$2)$	$0.13)$	$4)$	$2)$	$8)$	$98)$

Joint
$\begin{array}{ccccccccccc}\text { Effect of } & 65.0 & 144 . & 892 & 55 & 34.1 & 14.0 & 220 & 12 . & & \\ \text { Health } & 6^{* *} & 07^{*} & .18 & 14^{*} & 3^{* *} & 7 * * * & 15^{*} & 18^{*} & 23^{*} & 5.2 \\ \text { (F } & * & * * & * * * & * * & * & 7^{* *} & * * & * * & & *\end{array}$ statistic)
Year
Fixed Yes effects
State
Dummie Yes S
Race
Dummie Yes S
Metropol
ian Area Yes dummy
Highest
Income Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dummy
Number
of Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Chidren
Number
$\begin{array}{lllllllllll}\text { of } & 647 & 647 & 647 & 647 & 647 & 6479 & 647 & 647 & 6479 & 647\end{array}$
$\begin{array}{lllllllllll}\text { Observant } & 98 & 98 & 98 & 98 & 98 & 8 & 98 & 98 & 8 & 98\end{array}$ ions
R
$\begin{array}{lcccccccccc}\text { Squared } & 0.02 & 0.0 & 4 & 15 & 6 & 4 & 0.04 & 2 & 0.01 & 0.1\end{array}$

F	27.6	17.9	162	14.	3.11	44.5	28.	.69	103	
	7	3	.27	74		3.86	9			.35

t statistics in parentheses. ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$ "
Note: SUR estimations are reported. Data is from American Time Use Survey's Eating and Health
Module from 2006-08 and 2014-16.
Income data is from CPS. Regressions weighted by survey weight.

Table 3: Estimated elasticities of leisure type with respect to health and income

Elasticities at mean	$\begin{gathered} \text { Spo } \\ \text { rts } \end{gathered}$	NonSports	Televi sion Viewi ng	Sociali zing	Arts	$\begin{aligned} & \text { Toba } \\ & \text { cco } \\ & \text { Use } \end{aligned}$	Relaxa tion	Ga mes	Comp uter Use	$\begin{aligned} & \text { Hobb } \\ & \text { ies } \end{aligned}$
Excellent Health ${ }^{\text {a }}$	0.14	0.144	-0.02	0.004	$\begin{gathered} 0.0 \\ 4 \end{gathered}$	-0.15	-0.03	0.06	-0.02	0.01
Very Good Health ${ }^{\text {a }}$	0.12	0.102	-0.27	-0.014	$\begin{gathered} 0.0 \\ 8 \end{gathered}$	-0.17	-0.05	0.05	0.01	0.02
Fair Health ${ }^{\text {a }}$	$\begin{gathered} 0.00 \\ 4 \end{gathered}$	-0.012	0.02	0.006	$\begin{gathered} - \\ 0.0 \\ 2 \end{gathered}$	0.03	0.02	0.02	0.02	0.002
Poor Health a	$\begin{gathered} 0.00 \\ 1 \end{gathered}$	-0.012	0.17	0.006	$\begin{aligned} & 0.0 \\ & 04 \end{aligned}$	0.04	0.003	$\begin{gathered} 0.00 \\ 6 \end{gathered}$	0.01	0.00
Income ${ }^{\text {a }}$	0.47	0.15	-0.14	-0.037	0.2	-0.9	-0.18	0.06	-0.02	-0.03

[^11]Table 4: Results of joint tests of significance -

	Active leisure: Sports, Non-sports, Arts
TV Viewing	Reject Null
Socializing	Reject Null
Tobacco	Reject Null
Games	Reject Null
Computer Use	Reject Null
Relaxation	Reject Null
Hobbies	Reject Null

Null hypothesis: between leisure activities i and j
(1)
=

$$
\begin{equation*}
=\beta \tag{2}
\end{equation*}
$$

(3)

$$
\begin{equation*}
= \tag{4}
\end{equation*}
$$

Rejection/Non-Rejections of null are at 1% level of significance, values of test statistics and p values reported in appendix table A1.

Table 5: SUR regressions results for aggregated leisure categories
(1)
(2)
(3)
(4)

Dependent variable: Leisure
Groups (Active and Passive)
Active Leisure Passive Leisure

Excellent Health	13.16***	11.12***	-30.43***	-19.89***
	(17.24)	(1.13)	(-12.32)	(4.01)
Very Good Health	6.139***	4.02***	-19.18***	-10.96***
	(9.60)	(0.93)	(-9.28)	(3.05)
Fair Health	-2.180^{*}		$37.62^{* * *}$	12.24
	(-2.51)	(1.23)	(13.37)	(5.26)
Poor Health	-3.783**	1.57	101.1***	-14.39
	(-2.79)	(3.66)	(23.04)	(11.32)
Predicted Wage		0.302**		-0.69**
		(0.09)		(0.32)
Income	0.0803***	0.05***	-0.500***	-.226***
	(9.69)	(0.01)	(-18.64)	(0.04)
Age	-1.709***	-1.66***	-5.265***	-1.64
	(-19.25)	(0.23)	(-18.33)	(0.76)
Age^2	0.0102***	0.01***	0.0937***	0.03***
	(12.65)	(0.00)	(36.08)	(0.00)
Education	-3.509***	-0.02	4.126**	8.58***
	(-7.79)	(0.02)	(2.83)	(2.32)
Education^2	0.0755***	0.03	-0.244***	-0.37***
	(5.40)	(0.02)	(-5.40)	(0.08)
Age* Education	0.0346***	0.02	-0.0787***	-0.03
	(7.58)	(0.01)	(-5.33)	(0.03)
Gender	$-10.42^{* * *}$	-7.9***	-45.19***	-43.85***
	(-20.20)	(0.91)	(-27.08)	(2.68)
Year Fixed Effects	Yes	Yes	Yes	Yes
State Dummies	Yes	Yes	Yes	Yes
Race Dummies	Yes	Yes	Yes	Yes
Metropolitan Area dummy	Yes	Yes	Yes	Yes
Highest Income Dummy	Yes	Yes	Yes	Yes
Number of Children	Yes	Yes	Yes	Yes
Number of Observations	64798	20233	64798	20233
R-Squared	0.03	0.02	0.18	0.05
F	34.25	8.08	209.8	15.43

OLS regression results, standard errors are in parentheses. All 4 models contain dummy variables for 50 states. Models (2) and (4) are on sample of working population only.
$* * *$ p-value $<0.01, * *$ p-value <0.05, * p-value <0.10.

Table 6: Estimated elasticities of Active and Passive leisure with respect to health and income:

Elasticities at mean	Active Leisure	Passive Leisure
Excellent Health	0.10	-0.01
Very Good Health	0.09	-0.02
Fair Health	-0.01	0.01
Poor Health	-0.01	0.01
Income	0.21	-0.1

Appendix Table A1: Bivariate test statistics (Chi-square(5)) and p-values for aggregation:

	Sports	Non-Sports	Arts	Active Leisure
Non-Sports	$87.08(0.00)$			
Arts	$15.34(0.00)$	$149.55(0.00)$		$5254.95(0.00)$
TV Viewing	$4665.25(0.00)$	$4874.90(0.00)$	$4538.37(0.00)$	$1015.07(0.00)$
Socializing	$491.20(0.00)$	$632.21(0.00)$	$464.89(0.00)$	$1314.17(0.00)$
Tobacco	$411.09(0.00)$	$757.58(0.00)$	$273.34(0.00)$	$1129.64(0.00)$
Games	$360.68(0.00)$	$604.19(0.00)$	$290.05(0.00)$	$808.42(0.00)$
Computer Use	$109.39(0.00)$	$329.66(0.00)$	$64.95(0.00)$	$1960.90(0.00)$
Relaxation	$1156.53(0.00)$	$1446.57(0.00)$	$1065.27(0.00)$	$613.64(0.00)$
Hobbies	$97.40(0.00)$	$224.80(0.00)$	$82.78(0.00)$	

Reported values are chi-square test statistics for each pairwise test of health and income. pvalues are in parentheses

Appendix Table A2: Wage estimation	
Dependent variable: Hourly Wage	
Age	$0.35^{* * *}$
	(0.42)
Age^2	$-0.003^{* * *}$
	(0.00)
Education	$-1.05^{* * *}$
	(0.10)
Education^2	$0.07^{* * *}$
	(0.00)
Gender	$-1.85^{* * *}$
Union Membership	(0.13)
Industry Dummies	Yes
Occupational Dummies	Yes
Race Dummies	Yes
Metropolitan Area dummy	Yes
Highest Income Dummy	Yes
Number of Children	Yes
Number of Observations	20233
R-Squared	0.43
F	34.13

[^0]: ${ }^{1}$ Chirikos and Nestel (1985); Parsons 1977 ; Pelkowski and Berger (2004); and Cawley(2004)

[^1]: ${ }^{2}$ Centers for Disease Control and Prevention (CDC) data available at: https://www.cdc.gov/nchs/data/hestat/obesity_adult_09_10/obesity_adult_09_10.htm
 ${ }^{3}$ In the Australian context, a study by Banwell et al (2005) finds these to be major contributors. Although this study is for Australia, incidence of obesity and reasons associated are similar across the developed world
 ${ }^{4}$ Such as declining morbidity and mortality in Case and Deation (2015), coronary diseases in Ford (2007) and reduction in disability among the elderly in Cutler (2001)

[^2]: ${ }^{5}$ The relationship between health and leisure activities has been studied only by a handful of papers - Podor and Halliday (2012), Gimenez-Nadal and Ortega-Lapiedra (2013), Keuangkham (2017) and Ozturk and Kose (2019).

[^3]: ${ }^{6}$ The findings in these studies may not hold more generally. The wage measure in Chen et al (2002) is a generated value based on a regression and not an observed value, and the estimated wage effect in Lenhart (2019) is the effect of state minimum wages on exercise time for a sample of low skill workers.
 ${ }^{7}$ Young men are devoting more time to video gaming and recreational computer use to the extent that they are lowering time spent working.

[^4]: ${ }^{8}$ Ettner (1996) shows that higher income is associated with better mental and physical health. Frijters et al (2005) find significant positive association between health and income.

[^5]: ${ }^{9}$ Please see Appendix for details

[^6]: ${ }^{10}$ Distribution over years: 11,153 from 2006; 10,660 from 2007; 10,937 from 2008; 11,212 from 2014; 10,626 from 2015 and 10,210 from 2016 for a total of 64,798 individuals

[^7]: ${ }^{11}$ See https://www.bls.gov/tus/atususersguide.pdf for more details

[^8]: ${ }^{12}$ The Gimenez-Nadal and Ortega-Lapiedra (2013) IV estimates also appeared quite large, being more than twice as large for market work and 10 times larger for nonmarket work compared to their OLS estimates.

[^9]: ${ }^{13}$ Details on computation of elasticities are in Appendix section A3

[^10]: ${ }^{14}$ The estimated education effect is of the form $\stackrel{i t}{ }=\gamma_{E}+2 \cdot \gamma_{E E} \cdot E_{i t}+\gamma_{E A} \cdot A_{i t}$, where is years of schooling and is age. We evaluate the partial derivative at the sample average age of 47 years and alternative levels of education.

[^11]: ${ }^{\text {a }}$ Evaluated at sample means.

