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ABSTRACT

This paper examines the accuracy of high-resolution nested mesoscale model simulations of surface
climate. The nesting capabilities of the atmospheric fifth-generation Pennsylvania State University (PSU)–
National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5) were used to create high-
resolution, 5-yr climate simulations (from 1 October 1994 through 30 September 1999), starting with a
coarse nest of 20 km for the western United States. During this 5-yr period, two finer-resolution nests (5 and
1.7 km) were run over the Yampa River basin in northwestern Colorado. Raw and bias-corrected daily
precipitation and maximum and minimum temperature time series from the three MM5 nests were used as
input to the U.S. Geological Survey’s distributed hydrologic model [the Precipitation Runoff Modeling
System (PRMS)] and were compared with PRMS results using measured climate station data.

The distributed capabilities of PRMS were provided by partitioning the Yampa River basin into hydro-
logic response units (HRUs). In addition to the classic polygon method of HRU definition, HRUs for
PRMS were defined based on the three MM5 nests. This resulted in 16 datasets being tested using PRMS.
The input datasets were derived using measured station data and raw and bias-corrected MM5 20-, 5-, and
1.7-km output distributed to 1) polygon HRUs and 2) 20-, 5-, and 1.7-km-gridded HRUs, respectively. Each
dataset was calibrated independently, using a multiobjective, stepwise automated procedure. Final results
showed a general increase in the accuracy of simulated runoff with an increase in HRU resolution. In all
steps of the calibration procedure, the station-based simulations of runoff showed higher accuracy than the
MM5-based simulations, although the accuracy of MM5 simulations was close to station data for the
high-resolution nests. Further work is warranted in identifying the causes of the biases in MM5 local climate
simulations and developing methods to remove them.

1. Introduction

Research with respect to climate simulation and pre-
diction has attracted considerable efforts over the last

30 year, with global aspects clearly dominating. How-
ever, it is the regional and the local climate that are of
central importance to societies and the biosphere. For
example, a hydrologist who is interested in the water
budget of a reservoir may find little help from the out-
put of global climate models (GCMs). Even if the
coarser-scale water budget would be predicted properly
by the climate model, the high-resolution patterns of
precipitation and temperature are of greater impor-
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tance. The advent of high-resolution GCMs may im-
prove the situation; however, hydrologic modeling at
the basin scale requires climatological information on
scales that are generally much finer than the typical grid
size of even the highest-resolution GCMs commonly
used for climate simulations (e.g., Phillips 1995). There-
fore, research of “downscaling” methods has become
important.

Statistical or dynamical methods can be used to
downscale information from coarse-resolution GCMs
to the basin scale for hydrologic modeling. Statistical
downscaling (Wilks 1995; Wilby et al. 1999; McCarthy
et al. 2001) uses empirical relations between features
reliably simulated by a GCM at grid-box scales (e.g.,
500-hPa geopotential height) and surface predictands at
subgrid scales (e.g., precipitation occurrence and
amounts). Dynamical downscaling uses regional cli-
mate simulations with initial and lateral boundary con-
ditions from GCM output. This study uses regional cli-
mate simulations from the atmospheric fifth-generation
Pennsylvania State University (PSU)–National Center
for Atmospheric Research (NCAR) Mesoscale Model
(MM5), with initial and boundary conditions from the
National Centers for Environmental Prediction
(NCEP)–NCAR reanalysis output (Kalnay et al. 1996),
to create high-resolution (1.7-km grid spacing) climate
simulations 5 years in length, centered over the Yampa
River basin in northwestern Colorado.

The dramatic increase in computing power over the
last few years has made it possible to run high-
resolution regional climate simulations over extended
periods. In a previous study, Hay et al. (2002) used daily
precipitation and temperature from a 10-yr regional cli-
mate model simulation on 52-km grid spacing as input
to a distributed hydrologic model for four basins in the
United States. Their results indicated that the coarse
resolution of the regional climate model output could
be used for reliable basin-scale modeling through bias
correction; but, even when bias corrected, the regional
climate model output did not contain the day-to-day
variability necessary for hydrologic modeling. It was
felt that a finer-resolution regional climate model simu-
lation was needed for accurate representation of pre-
cipitation and temperature at the local scale.

Grell et al. (2000) showed that high-resolution (1 km)
model simulations might be necessary when the high-
resolution pattern of precipitation distribution becomes
important. Leung and Qian (2003) examined the sensi-
tivity of precipitation and snowpack simulations to
model resolution by nesting a regional climate model in
complex terrain. A regional 40-km resolution and one
5-yr simulation at 13-km resolution for the Pacific
Northwest and California were examined. They found

that higher spatial resolution improves the accuracy of
simulated snowpack more so than that of precipitation.

Many of the high-resolution mesoscale modeling ef-
forts used in hydrologic applications have been con-
ducted and analyzed for a single season or an individual
storm period. For example, 1) Benoit et al. (2000)
looked at one 3-day storm period in five basins in
southern Ontario, Canada, using the nesting capabili-
ties of a nonhydrostatic mesoscale atmospheric model
(35-, 10-, and 3-km grid spacing) and the WATFLOOD
hydrologic model; 2) Westrick and Mass (2001) looked
at a 7-day rain-on-snow event in the Snowqualamie
River watershed using the nesting capabilities of MM5
(36-, 12-, and 4-km grid spacing) and the Distributed
Hydrology-Soil-Vegetation Model (DHSVM); 3) West-
rick et al. (2002) looked at predicting peak flows during
one cool season of 1998–99 over six watersheds in
Washington using MM5 and DHSVM; 4) Lin et al.
(2002) looked at a hydrograph during the 1996 July
flash flood in the Sagenueay region of eastern Quebec,
Canada, using a high-resolution atmospheric model and
an offline routing module; and 5) Seuffert et al. (2002)
looked at two 3-day forecasts using a mesoscale
weather prediction model and the “TOPMODEL”-
Based Land Surface–Atmosphere Transfer Scheme
(TOPLATS)—a land surface hydrologic model.

This paper describes research that focuses on the fea-
sibility of forecasting runoff on a daily basis over an
extended period using a nonhydrostatic multiscale re-
gional climate model at a high resolution that resolves
individual valleys and massifs. To examine how well
precipitation and temperature generated from a high-
resolution coupled atmosphere–land surface modeling
system can simulate runoff in a hydrologic model, a set
of three 5-yr experiments using the nesting capabilities
of MM5 was run. The first MM5 experiment was run
with 20-km resolution and provided input for the
higher-resolution simulations. The second and third ex-
periments were run using 5- and 1.7-km resolutions,
respectively. MM5 output was used as input to a dis-
tributed hydrologic model [U.S. Geological Survey’s
(USGS) Precipitation Runoff Modeling System
(PRMS)] and compared with runoff produced in PRMS
using standard climate observations. A multiobjective,
stepwise automated technique was used to calibrate
PRMS to each of the input datasets used in the com-
parison.

The Yampa River basin in Colorado (see Fig. 1) was
chosen as the study area. The Yampa River basin is a
mountainous basin where the runoff is strongly depen-
dent on snowmelt. The basin is 1430 km2 in area and
ranges in elevation from 2000 to 3800 m. The finer-
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resolution MM5 simulations (5 and 1.7 km) were cen-
tered over the Yampa River basin.

The strengths of this study, compared to previous
high-resolution mesoscale modeling efforts, are the 1)
long period of the simulations (5 years) and 2) the au-
tomated calibration of PRMS to each of the input
datasets being tested (MM5 and measured climate sta-
tion data). This allows for the summary of the advan-
tages and limitations of high-resolution climate model-
ing with more confidence.

2. Data

The following two types of daily data were compiled
for hydrologic modeling: 1) measured climate station
data and 2) MM5 output.

a. Station data

Daily maximum and minimum temperature and pre-
cipitation data from stations in and around the Yampa
River basin (see Fig. 1) were compiled from the Na-
tional Weather Service (NWS) cooperative network
of climate stations across the contiguous United
States. These data were extracted from the National
Climatic Data Center (NCDC) “Summary of the Day”
(TD3200) dataset produced by the NOAA Climate Di-
agnostics Center, in Boulder, Colorado (Eischeid et al.
2000). The quality control performed by NCDC in-

cludes the procedures described by Reek et al. (1992),
which flag questionable data based on checks for (a)
extreme values, (b) internal consistency among the
variables (e.g., maximum temperature less than mini-
mum temperature), (c) constant temperature (e.g., five
or more days with the same temperature are suspect),
(d) excessive diurnal temperature range, (e) invalid re-
lations between precipitation, snowfall, and snow
depth, and (f) unusual spikes in the temperature time
series. Records at most of these stations start in 1948,
and continue through to the present. In addition, snow
telemetry (SNOTEL) data were retrieved from the
Natural Resources Conservation Service (see informa-
tion available online at http:www.wcc.hrcs.usda.gov/
snow). Figure 1 shows the location of the NWS and
SNOTEL climate stations used in this study.

b. Atmospheric model output

A climate version of MM5 (Grell et al. 2000) was
used to produce the daily precipitation and tempera-
ture inputs to PRMS. A set of three MM5 simulations
were run for five water years (Wys; from 1 October
1994 through September 30 1999). These simulations
were conducted using the nesting capabilities of MM5.
The lateral boundary conditions produce an unavoid-
able negative effect on the nested simulations because
of the mismatch of grid sizes, different terrain repre-
sentations, and the physical parameterization’s sensitiv-

FIG. 1. Location of Yampa River basin (USGS ID 09239500) and climate stations.
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ity to grid size. To minimize these effects an appropri-
ate grid-size ratio for the nested grids was chosen, and
care was taken in the placement of the inner domain
boundaries to avoid pronounced topographical fea-
tures.

The first MM5 experiment (nest0) was run with 20-
km resolution. This simulation provided input for the
higher-resolution simulations. The second experiment
(nest1), was centered over the Yampa River basin, and
was run with 5-km resolution. The third experiment
(nest2, centered over the Yampa River basin) was run
with 1.7-km resolution. The size of the nest2 domain
took into account the considerable computational ex-
penses associated with the decreased integration time
step to assure computational stability and to make high-
resolution climate simulations feasible. Figure 2 shows
the domain for each of the MM5 nests.

All precipitation is predicted explicitly when using
the 1.7-km resolution (nest2), and convective param-
eterizations, a likely source of error (Grell et al. 2000),
are excluded from the nest2 model runs. Boundary con-
ditions for the coarse domain (nest0) came from
NCEP–NCAR reanalysis output (Kalnay et al. 1996).
Boundary conditions for nest1 and nest2 domains came
from the nest0 and nest1 runs, respectively. The soil
temperature and soil moisture were initialized by inte-
grating nest0 and nest1 for 2 years. For nest2, initial soil

temperature and moisture were interpolated from nest1
and integrated for 1 year to achieve the initial state.

The climate version of MM5 used includes all MM5
capabilities (Grell et al. 1995), such as many choices of
parameterizations for convection, microphysics, radia-
tion, and turbulence. It is also nonhydrostatic (Dudhia
1989), allowing it to be used on cloud resolving scales.
Turbulence was parameterized using the 1.5-order clo-
sure developed by Burk and Thompson (1989), with the
surface layer modified as in Blackadar (1976, 1979) and
coupled with the land surface parameterization by
Smirnova et al. (2000). This multilevel soil–vegetation
scheme incorporates an energy-conserving solution for
fluxes of heat and moisture in the soil and at the sur-
face, as well as for the two-layer snow model. This
model configuration was used successfully by Grell et
al. (2000) in their regional climate simulations in the
Alps. Also, the same coupling of the boundary layer
scheme and the land surface model is used in the daily
weather forecasts of the rapid uptake cycle (RUC)
model (Benjamin et al. 2004) and has been evaluated
on the daily basis. All of the nests employed the same
parameterizations of physical processes (except for no
implicit convection in nest2).

Convection was parameterized with an ensemble-
based scheme (Grell and Dévényi 2002), while grid-
resolved precipitation formation was parameterized us-

FIG. 2. Nested domains for MM5.
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ing the Reisner scheme (Reisner et al. 1998). The Rapid
Radiative Transfer Model (RRTM) scheme (Mlawer et
al. 1997) was used for the parameterization of atmo-
spheric radiation.

3. Hydrologic model

The hydrologic model chosen for this study is the
U.S. Geological Survey’s PRMS (Leavesley et al. 1983;
Leavesley and Stannard 1995). PRMS is a distributed-
parameter physically based watershed model. Distrib-
uted-parameter capabilities are provided by partition-
ing the watershed into hydrologic response units
(HRUs). Each HRU is assumed homogenous with re-
spect to its hydrologic response. PRMS is conceptual-
ized as a series of reservoirs (impervious zone, soil
zone, subsurface, and groundwater) whose outputs
combine to produce streamflow. For each HRU, a wa-
ter balance is computed daily and an energy balance is
computed twice each day. The sum of the water bal-
ances of each HRU, weighted by unit area, produces
the daily watershed response.

a. HRU configurations

HRU delineation, characterization, and parameter-
ization were done using the Geographic Information
System (GIS) interface the GIS Weasel (Viger et al.
1998). For this study, two types of HRUs were delin-
eated for the Yampa River basin (see Fig. 3): 1) classic
polygons and 2) grids. Climate station and MM5 output
are used as input to PRMS configured with each of
these HRU configurations (Figs. 3b–e).

HRUs were delineated for the polygon method by 1)
subdividing the basin into two flow planes for each
channel, 2) subdividing the basin using three equal area
elevation bands, and 3) intersecting the flow-plane map
with the elevation-band map. This resulted in 68 HRUs
for the Yampa River basin (see Fig. 3b).

HRUs were delineated for the grid method based on

the three MM5 nests of 1) 20-, 2) 5-, and 3) 1.7-km
grids. This resulted in 11, 75, and 553 gridded HRUs for
the Yampa River basin, respectively (see Figs. 3c–e).

Hydrologic model parameters describing topo-
graphic, vegetation, and soil characteristics were gen-
erated using the GIS Weasel for each HRU from the
following four digital databases: 1) USGS 3-arc second
digital elevation models, 2) State Soils Geographic
(STATSGO) 1-km gridded soil data (U.S. Department
of Agriculture 1994), 3) U.S. Forest Service 1-km grid-
ded vegetation type and density data (U.S. Department
of Agriculture 1992, personal communication), and 4)
USGS 1-km gridded land use/land cover data (Ander-
son et al. 1976). For cases in which an HRU contained
more than one soil or vegetation type, the dominant soil
or vegetation type was used.

b. PRMS input datasets

For each HRU, PRMS requires daily inputs of pre-
cipitation (PRCP), maximum temperature (TMAX),
and minimum temperature (TMIN). Sixteen runs were
configured for PRMS and are outlined in Table 1 and
Fig. 4. The runs compare 1) two types of climate input
(climate stations and MM5 output), 2) two types of
HRU configurations (polygons and grid cells), and 3)
three methods of climate distribution (xyz; percent
area, and MM5). The xyz distribution methodology is
described below. The percent area method is used to
compare MM5 output using the classic polygon ap-
proach of the HRU configuration with grid-cell HRU
configuration. Output from the MM5 simulations were
already distributed to each of the respective gridded
HRU configurations (1-to-1 distribution technique in
Table 1).

The xyz method uses multiple linear regressions
(MLR) to distribute daily measured precipitation and
maximum and minimum temperature data from a
group of stations (a single daily mean value) to each
HRU in a basin (Hay et al. 2000; Hay and Clark 2003)

FIG. 3. Maps for the Yampa River basin showing (a) 30-m digital elevation model (DEM), (b) polygon HRU configuration, and
MM5 grids at (c) 20, (d) 5, and (e) 1.7 km.
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based on the longitude (x), latitude (y), and elevation
(z) of the HRU. To account for seasonal climate varia-
tions, MLR Eq. (1) was developed for each month and
for each dependent variable [the climate variables
(CV): PRCP, TMAX, and TMIN] using the set of in-
dependent variables of x, y, and z (xyz) from the set of
climate stations shown in Fig. 1,

CV � b1 x � b2 y � b3 z � b0. �1�

The monthly MLR equations describe the spatial re-
lations between the monthly dependent CV and the
independent xyz variables. Equation (1) describes a
plane in three-dimensional space with “slopes” b1, b2,
and b3 intersecting the CV axis at b0. Note that for each
month the best MLR equation for a given CV did not
always include all the independent variables (i.e., x, y,
and z).

To estimate the daily value of each CV for each

FIG. 4. Description of PRMS configurations.

TABLE 1. PRMS simulation name descriptions. Percent area: percent area of grid cell within each polygon; 1 to 1:
no distribution needed.

PRMS simulation name HRU configuration Input data Distribution to HRU method

XYZ_poly Polygon Station data xyz
XYZ_20km 20 km Station data xyz
XYZ_5km 5 km Station data xyz
XYZ_1.7km 1.7 km Station data xyz
nest0_20km 20 km Raw MM5 nest0 1 to 1
nest1_5km 5 km Raw MM5 nest1 1 to 1
nest2_1.7km 1.7 km Raw MM5 nest2 1 to 1
nest0_poly Polygon Raw MM5 nest0 Percent area
nest1_poly Polygon Raw MM5 nest1 Percent area
nest2_poly Polygon Raw MM5 nest2 Percent area
nest0b_20km 20 km Bias-corrected MM5 nest0 1 to 1
nest1b_5km 5 km Bias-corrected MM5 nest1 1 to 1
nest2b_1.7km 1.7 km Bias-corrected MM5 nest2 1 to 1
nest0b_poly Polygon Bias-corrected MM5 nest0 Percent area
nest1b_poly Polygon Bias-corrected MM5 nest1 Percent area
nest2b_poly Polygon Bias-corrected MM5 nest2 Percent area
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HRU, the following procedure was used: 1) from a set
of stations, mean daily values of each CV [CV(stamean)]
and corresponding mean x, y, and z values [x(stamean),
y(stamean), and z(stamean)] were used with the slopes of the
monthly MLRs in Eq. (1) to estimate a unique y inter-
cept (b0est) for that day [Eq. (2)]; and 2) Eq. (3) was
solved using b1, b2, and b3 from Eq. (1), b0est from Eq.
(2), and the x, y, and z values of the HRU of interest
[x(HRU), y(HRU), and z(HRU)],

b0est � CV�stamean� � �b1 x�stamean� � b2 y�stamean�

� b3 z�stamean��, �2�

CV�HRU� � b0est � b1 x�HRU� � b2 y�HRU� � b3 z�HRU�.

�3�

c. Hydrologic model calibration

To effectively assess the performance of the MM5-
based simulations of runoff a multiobjective, stepwise
automated calibration scheme was used (Hay et al.
2006) to calibrate PRMS using each of the input
datasets (shown in Fig. 4 and Table 1), giving each type
of input an “equal” performance chance. For each step
in the automated calibration procedure the following
were selected: 1) calibration dataset(s), 2) PRMS pa-
rameters that influence a given model state and corre-
sponding parameter ranges, 3) objective function(s),
and 4) the optimization algorithm. Table 2 lists for each

calibration step the associated model state and the pa-
rameters being calibrated and their descriptions.

Calibration datasets were developed for the follow-
ing four PRMS model outputs: 1) solar radiation (SR),
2) potential evapotranspiration (PET), 3) annual water
balance, and 4) daily runoff components. For each
model output, a single-parameter sensitivity analysis
was conducted using Monte Carlo techniques. The sen-
sitive parameters influencing each of the model outputs
were calibrated in a multistep procedure similar to that
presented by Hogue et al. (2000). The PRMS param-
eters calibrated for each model state are listed in Table 2.

The first step in the calibration procedure used mean
monthly solar radiation values. The snowmelt and
evapotranspiration computations in PRMS require
daily values of SR. For this study, daily SR values were
calculated in PRMS from daily air temperature
(Leavesley et al. 1983). Where available, daily SR can
be input directly into PRMS, but in general, these data
are not available.

Measured monthly SR values are available for 217
stations in the United States (available online at http://
rredc.nrel.gov/solar/old_data/nsrdb/redbook/mon2/). A
dataset of mean monthly SR values at each of the cli-
mate station sites (SNOTEL and NWS) in the United
States was developed. A MLR was developed between
the measured monthly SR values at the 217 stations and
independent variables (climate statistics calculated us-
ing climate stations collocated with the measured solar

TABLE 2. PRMS calibration information.

Step
Calibration dataset associated

with PRMS state

PRMS parameters
used to calibrate

model state Parameter description

1 Mean monthly solar radiation dday_intcp Intercept in temperature degree-day relation
dday_slope Slope in temperature degree-day relation
tmax_index Index temperature used to determine precipitation adjustments

to solar radiation
2 Mean monthly PET jh_coef Coefficient used in Jensen–Haise PET computations
3 Annual water balance adjust_rain Precipitation adjust factor for rain days

adjust_snow Precipitation adjust factor for snow days
4 Daily flow components: adjmix_rain Factor to adjust rain proportion in mixed rain–snow event

1) peak flow tmax_allrain If HRU maximum temperature exceed this value, precipitation
assumed rain

2) groundwater flow cecn_coef Convection condensation energy coefficient
3) all daily flow emis_noppt Emissivity of air on days without precipitation

freeh2o_cap Free-water holding capacity of snowpack
potet_sublim Proportion of PET that is sublimated from snow surface
smidx_coef Coefficient in nonlinear surface runoff contributing area algorithm
smidx_exp Exponent in nonlinear surface runoff contribution area algorithm
gwflow_coef Groundwater-routing coefficient
ssrcoef_sq Coefficient to route subsurface storage to streamflow
soil2gw_max Maximum rate of soil water excess moving to groundwater
soil_moist_max Maximum available water holding capacity of soil profile
soil_rechr_max Maximum available water holding capacity for soil recharge zone
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radiation). For each month a separate MLR equation
was developed, choosing from the following indepen-
dent variables: latitude; longitude; elevation; mean pre-
cipitation (days � 0°C); mean precipitation; number of
rain days; mean maximum temperature; and the differ-
ence between mean maximum and mean minimum
temperature. Adjusted R2 values ranged from 0.83 to
0.98. Mean monthly SR values, referred to as “mea-
sured” values in this paper, were calculated at each
SNOTEL and NWS climate station site using the
monthly MLR equations. Solar radiation output from
the station closest to the centroid of the Yampa River
basin was used as the calibration dataset for the first
step in the calibration process.

The objective function used to calibrate the mean
monthly solar radiation values produced from PRMS
was as follows:

OFabs � 	
m�1

12

abs�log�INTm� � log�SIMm��, �4�

where OFabs is the objective function, m is the month,
and INT and SIM are the mean monthly interpolated
and simulated solar radiation values, respectively.

The second step in the calibration procedure used a
calibration dataset derived from mean monthly PET
maps provided by the NWS. The NWS derived the PET
map values from the free-water evaporation atlas of
Farnsworth et al. (1982). The basin mean monthly val-
ues, referred to as measured values in this paper, were
calculated from the PET maps and used in the calibra-
tion process. The objective function is similar to that
used for solar radiation [Eq. (4)].

The third step of the calibration procedure used an
annual water balance objective function based on the
annual runoff totals,

OFwb � 	
y�1

nyr

abs��MSDy � SIMy��MSDy�, �5�

where OFwb is the annual water balance objective
function, y is the year, nyr is the total number of years,
and MSD and SIM are the annual runoff totals for
measured and simulated runoff, respectively.

The fourth step of the calibration procedure used the
sum of three objective functions to calibrate daily run-
off values,

OFro � OFdaily � OFpeak � OFgw, �6�

where OFro is the total of three objective functions:
OFdaily, OFpeak, and OFgw. OFdaily is an objective
function calculated using daily measured and simulated
flow values; OFpeak is an objective function calculated
using daily flows that were determined to be peak val-
ues; OFgw is an objective function calculated using the

groundwater portion of the daily measured and simu-
lated flows. The groundwater portion of daily measured
and simulated flows was estimated using the Hy-
drograph Separation (HYSEP) program of Sloto and
Crouse (1996).

OFdaily, OFpeak, and OFgw were calculated using
the normalized root-mean-square error (NRMSE)

NRMSE � � 	
n�1

ndays

�MSDn � SIMn�2� 	
n�1

ndays

�MSDn

� MN�2�1�2

, �7�

where n is the day; ndays is the total number of days;
and MSD, SIM, and MN are the measured, simulated,
and mean daily values associated with OFdaily,
OFpeak, or OFgw.

For this study, the shuffle complex evolution (SCE;
Duan et al. 1992, 1993, 1994) was chosen as the opti-
mization algorithm. The SCE method has been used
successfully by a number of researchers (e.g., Yapo et
al. 1996; Kuczera 1997; Hogue et al. 2000; Madsen 2003;
Hay et al. 2006), and is discussed in detail in Duan et al.
(1992, 1993, 1994).

An important component of this study was to treat
the MM5 output the same as the climate station data.
PRMS was calibrated for each input dataset with the
same technique to avoid biasing one data input over
another. There were only 5 years of MM5 output for
this study. Therefore, calibration had to be confined to
a shorter period of time than what is usually deemed
appropriate. Yapo et al. (1996) found that approxi-
mately 8 yr of data were needed to achieve model cali-
brations that are insensitive to the period selected. Be-
cause this was impossible for this study (only 5 years of
MM5 output), it was decided to make two separate
calibration runs of 2 years for each set: 1) two wet water
years (WYs 1998–99) and 2) two dry water years (WYs
1996–97).

4. Results

a. Hydrologic model input data

For comparison purposes, PRCP, TMAX, and TMIN
station data were distributed to each of the three MM5
nests (see Figs. 3c–e) using the xyz methodology de-
scribed earlier. These xyz values at each HRU configu-
ration were used for direct (one to one) comparison
with corresponding MM5 output.

1) PRECIPITATION

Figures 5a–c shows the xyz daily basin PRCP mean
by month, and that produced by MM5 for the three
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nests. Figure 6 shows the corresponding percent num-
ber of rain days for each by month [MM5 values below
the trace value reported by climate stations (0.01 in.)
were considered dry days]. The MM5 output captures
the gross aspects of the seasonal cycle of the daily basin
PRCP mean by month seen in the xyz output for each
nest, although there are some large discrepancies. Fig-
ure 5d shows the measured daily basin PRCP mean by
month for each individual climate station. The peak in
PRCP mean data for the month of April that appears in

the xyz nest1 and nest2 (black lines in Figs. 5b,c) is
present in the station data (Fig. 5d). MM5 output (gray
lines) does not show the April increase in PRCP. When
compared with xyz, MM5 tends to generate more rain
days but less rain (except in summer) at the coarser
resolutions (nest0 and nest1, Figs. 6a–b). Rain days for
MM5 are most consistent with that produced using xyz
for the 5-km nest (nest1, Fig. 6b). Most notable differ-
ences are found in Fig. 6c in which MM5 produces far
fewer rainy days in the summer months when compared

FIG. 5. Daily basin precipitation mean by month (1994–99) for xyz
(black) and MM5 output (gray) for (a) nest0 (20 km), (b) nest1 (5 km),
and nest2 (1.7 km). (d) Raw station data are also shown.

FIG. 6. Percent number of rain days by month for xyz (black) and MM5 output (gray) for (a) nest0 (20 km),
(b) nest1 (5 km), and nest2 (1.7 km).
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with any of the other outputs. This translates into sub-
stantially lower summer PRCP amounts for the sum-
mer months (Fig. 5c).

Based on these results, the raw MM5 datasets were
“corrected” for biases based on the xyz output for each
MM5 nest. The method is similar to the transform
method suggested by Panofsky and Brier (1968), and
has been used by Wood et al. (2002) and Hay et al.
(2002) to correct biases in the atmospheric model out-
put that is being used in hydrologic models. The bias
corrections were made on a monthly basis using a prob-
ability-swap method, which preserved the precipitation
distribution. The MM5 PRCP biases were corrected us-
ing the following steps. 1) Force the MM5 PRCP values
to have the same number of PRCP days as that of the
xyz output. This was accomplished by (a) ranking the
MM5 precipitation output and (b) setting all values to

zero with ranks equal to or lower than the number of
dry days in the xyz output. 2) Fit a gamma distribution
to the resultant station and MM5 time series (restricted
to PRCP days). 3) For each MM5 PRCP day [i.e., all
MM5 values above the thresholds identified in step
(1b)], compute the cumulative probability in the
gamma distribution fitted to the MM5 output, and then
replace the raw MM5 value with the PRCP amount
associated with the matched cumulative probability in
the gamma distribution fitted to the xyz output. The
bias adjustments to the MM5 PRCP “correct” the
monthly mean values making them identical (not
shown) to that shown for the xyz in Figs. 5 and 6.

2) TEMPERATURE

Figures 7 and 8 show the xyz daily basin TMAX and
TMIN mean by month (black lines) and those produced

FIG. 7. Daily basin maximum temperature mean by month for xyz (black) and MM5 output (gray) for (a) nest0
(20 km), (b) nest1 (5 km), and nest2 (1.7 km).

FIG. 8. Daily basin minimum temperature mean by month for xyz (black) and MM5 output (gray) for (a) nest0
(20 km), (b) nest1 (5 km), and nest2 (1.7 km).
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by MM5 (gray lines) for the three nests. MM5 TMAX
values are substantially lower than xyz output in all
but the summer months. MM5 TMIN values are some-
what similar to xyz values in the winter months for the
two finer-scale nests (Figs. 8b–c). MM5 values for all
nests tend to be higher in the summer months, and for
TMIN this tendency increases as the grid resolution
increases.

Hay et al. (2002) found that in the snowmelt-domi-
nated basins, PRMS simulations of runoff were strongly
affected by TMAX. Based on the results for tempera-
ture shown in Figs. 7 and 8, a bias correction was per-
formed on the raw MM5 TMAX and TMIN datasets to
produce the bias-corrected MM5 temperature datasets.
Biases were removed in the MM5 temperature datasets
by 1) computing a monthly climatology of the MM5
maximum and minimum temperature for each day, 2)
subtracting the daily MM5 value of maximum and mini-
mum temperature from that climatology (to produce a
daily anomaly value), and 3) adding the daily maximum
and minimum temperature anomaly from the MM5
model to the corresponding xyz monthly station clima-
tology of maximum and minimum temperature. Be-
cause of the nature of the temperature bias correction,
the monthly climatologies of bias-corrected MM5 out-
puts are the same.

b. Hydrologic model output

The hydrologic model PRMS was calibrated for two
calibration periods, 16 times, using three types of data
(station data and raw and bias-corrected MM5 output),
and four HRU configurations (polygons and 10-, 5-,
and 1.7-km grids). Table 1 lists each configuration com-
bination and the abbreviation used for each. Outputs
from the following four hydrologic model states were
calibrated: 1) solar radiation, 2) PET, 3) annual water
balance, and 4) daily runoff components. The following
sections describe the results from each calibration step.

1) SOLAR RADIATION

Figure 9 shows the basin mean monthly solar radia-
tion values for measured versus calibrated and evalu-
ated solar radiation values from the 16 PRMS simula-
tions (listed in Table 1). The solid red and black lines
show the results from the first step of the multistep
calibration procedure. The red lines show the results
using parameters calibrated using WYs 1996–97, and
the black lines show the results using parameters cali-
brated using WYs 1998–99. The general trend for all
PRMS simulations is the close match of calibrated solar
radiation with that measured (gray line). Evaluated re-
sults (dashed red and black lines) for each calibration

period represent the solar radiation values calculated
by PRMS for the evaluation period after the final step
in the multistep calibration process. The solar radiation
values calculated for the two evaluation periods shows
the tightest fit to that measured when using xyz-based
input to PRMS.

For this study, solar radiation was estimated in
PRMS using daily air temperature data (Leavesley et
al. 1983). The green line in Figs. 9e–g shows the solar
radiation from MM5 for comparison purposes. Mean
monthly solar radiation values from MM5 match mea-
sured values in all months, except for July and August
in which MM5 produces more solar radiation than that
indicated in the measured data.

2) POTENTIAL EVAPOTRANSPIRATION

Figure 10 shows the basin mean monthly PET-esti-
mated values for measured versus calibrated and evalu-
ated PET values from the 16 PRMS simulations listed
in Table 1. The solid red and black lines show the re-
sults from the second step of the multistep calibration
procedure. These plots are similar to those shown for
solar radiation (Fig. 9). Calibration fit is not as tight as
that for solar radiation. As with solar radiation results,
the PET values calculated for the two evaluation peri-
ods shows the tightest fit to measured PET when using
xyz-based input to PRMS.

3) ANNUAL WATER BALANCE

An annual water balance objective function was used
to calibrate annual runoff volumes. Figure 11 shows the
annual water balance values for measured (gray line)
versus calibrated (large gray diamonds and black dots)
and evaluated (small gray diamonds and black dots)
water balance values from the 16 PRMS simulations
listed in Table 1. The calibration results for the annual
water balance all closely match measured values, with a
few exceptions when using raw MM5 input (Figs.
11e,g,k,m). Evaluation results show a consistent under-
estimation of the annual water balance when using the
xyz-based input to PRMS. Evaluation results using
MM5 output are variable.

4) DAILY RUNOFF

Three objective functions were used when calibrating
the daily runoff (see Table 2). Each was computed from
the daily hydrograph values, and therefore all three
were calibrated in the same calibration step. Figure 12
shows results for the groundwater component of the
calibration. Figure 12 is similar to that shown for the
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annual water balance (Fig. 11). In general, the calibra-
tion and evaluation results using xyz-based input to
PRMS (Figs. 12a–d) all produce groundwater percent-
ages similar to that measured. MM5 output is not nearly

as consistent, although both raw and bias-corrected
MM5 output distributed to the polygon HRUs produce
much better estimates of groundwater than those using
the MM5 grids as HRUs.

FIG. 9. Basin mean monthly solar radiation values: measured vs calibrated and evaluated values from the 16
PRMS simulations.
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FIG. 10. Basin mean monthly potential evapotranspiration values: measured vs calibrated and evaluated values
from the 16 PRMS simulations.
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FIG. 11. Annual water balance: measured vs calibrated and evaluated values from the 16 PRMS simulations.
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FIG. 12. Percent groundwater by year: measured vs calibrated and evaluated values from the 16 PRMS
simulations.
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The Nash–Sutcliffe (NS) goodness of fit (Nash and
Sutcliffe 1970) and the root-mean-square error (RMSE)
were chosen to evaluate the performance of the PRMS
calibration and evaluation for daily runoff. The NS
value is calculated as follows:

NS � 1.0 � 	
n�1

ndays

�MSDn � SIMn�2�	
n�1

ndays

�MSDn � MN�2,

�8�

where MSD is the measured daily runoff value, SIM is
the simulated daily runoff values, MN is the average of
the measured values, and n is the number of values out
of a total of ndays. An NS value of one indicates a

perfect fit between measured and simulated values. A
value of zero indicates that the fit is as good as using the
average value of all of the measured data.

Figure 13 shows the NS and RMSE statistics for the
calibration and evaluation periods from the 16 PRMS
simulations outlined in Table 1. The large red and black
dots show the calibrated values and the small red and
black dots show the evaluated values of the two statis-
tics. Red indicates calibration using data for WYs 1996–
97, and black indicates calibration using data for WYs
1998–99. A line is drawn between the calibrated and
evaluated values for each PRMS simulation to indicate
the range between the calibration and evaluation values
(smaller ranges indicate better model performance).

FIG. 13. Nash–Sutcliffe goodness-of-fit and root-mean-square error statistics for the two
calibration/evaluation periods from the 16 PRMS simulations.
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The blue (green) horizontal line indicates the best cali-
bration (evaluation) results for the NS and RMSE re-
sults.

Evident from Fig. 13 is the small-range and good
statistic values (higher NS and lower RMSE) compared
to MM5 for the xyz-based PRMS simulations, espe-
cially when calibrating using WYs 1996–97 (wet years).
This is shown by the small range in the NS, and espe-
cially the RMSE. The range between the calibration
and evaluation for the NS and RMSE statistics are
smaller when using the wet years compared to the dry
years for all PRMS simulations, with the exception of
the NS values for raw MM5 output. These results agree
with previous calibration studies that indicate that re-
sults are better for wet periods than for dry periods (i.e.,
Yapo et al. 1996).

Of particular interest in Fig. 13 is the high skill of
both the raw and bias-corrected MM5 simulations. This
skill is most evident for the finer nests, in which the NS
scores and the RMSE are close to those obtained using
station data. The high skill in the raw MM5 simulations
indicates that the calibration process is able to remove
the MM5 model biases.

The difference in model accuracy between calibra-
tion and evaluation is larger in the MM5 output than in
the xyz station-based simulations. This is most likely a
problem of “overfitting” during the calibration process,
a problem that is exacerbated when using imperfect
model forcing data (as is the case with the MM5 simu-
lations). Either longer calibration periods or probabi-
listic methods of model calibration (e.g., Vrugt et al.
2003) may help to alleviate this problem.

Figure 14 shows scatterplots of daily runoff values
produced from the 16 PRMS simulations versus the
measured values from both calibration (gray dots) and
evaluation (black dots) periods. The gray line indicates
the one-to-one relation between simulated and mea-
sured daily runoff. The NS values for the calibration
and evaluation periods on each plot are shown in gray
and black, respectively.

Visual inspection of the scatterplots leads to the
conclusion that the PRMS simulation using the
XYZ_1.7km dataset, calibrated using WYs 1996–97,
produces the most accurate runoff. The NS values for
this run are very similar to those shown for the
XYZ_5km- and XYZ_poly-based PRMS simulations.
Consistent with what was shown in the annual water
balance plots (Fig. 11), xyz-based PRMS simulations
seem to show a general underestimation of the peak
runoff values, but they also show much less scatter
around the one-to-one line than do the MM5-based
runs. For example, while the RMSE and NS values for
nest2_poly or nest1b_poly may look reasonable (see

Fig. 13), the scatterplots in Fig. 14 show variability in
the simulated flow that is not present in the measured
runoff or in the xyz-based runs.

Results comparing PRMS output using polygon-
based HRUs versus grid-based HRUs (see Fig. 3) gen-
erally show an increase in accuracy as resolution in-
creases, especially when using xyz-based input to
PRMS (see Fig. 13). Note that the polygon-based
HRUs are approximately equal in size to the 5-km
HRUs (68 versus 75 HRUs, respectively), but the
PRMS output using polygon HRUs tends to have re-
sults as good as those produced using the 5- and 1.7-km
HRUs (see Fig. 13). This indicates that the concept of a
hydrologic response unit is a valid one, but if the HRUs
are small enough, improvements in simulation accuracy
may not occur. When the HRUs are increased from 5
(75 HRUs) to 1.7 (553 HRUs) km, the increase in com-
puter run time is significant.

5. Summary and conclusions

This paper examined the simulation of runoff
through coupling of a high-resolution nested mesoscale
climate model and a hydrologic model. The nesting ca-
pabilities of the atmospheric fifth-generation Pennsyl-
vania State University–National Center for Atmo-
spheric Research Mesoscale Model (MM5) were used
to create high-resolution, 5-yr-long climate simulations,
starting with a coarse nest of 20 km over the western
United States. During this 5-yr period two finer-
resolution simulations (5 and 1.7 km) were created for
the Yampa River basin in Colorado. Daily precipitation
(PRCP) and maximum and minimum temperature
(TMAX and TMIN, respectively) time series from the
three MM5 nests (raw and bias corrected) were used as
input to the U.S. Geological Survey’s distributed hy-
drologic model [the Precipitation Runoff Modeling Sys-
tem (PRMS)] and compared with results using standard
climate observations.

Analysis of the MM5-generated PRCP showed prob-
lems when using the 1.7-km resolution MM5 nest
(nest2). The nest2 MM5 runs do not include the con-
vective parameterizations found in the nest0 and nest1
runs, because convective precipitation should occur
without parameterization at this scale (1.7 km). The
nest2 MM5 runs show an underestimation of PRCP for
the summer months, when convection is dominant. This
has little effect on the PRMS simulations because the
Yampa River basin is snowmelt dominated and sum-
mer rainfall has little impact on the hydrograph.

Analysis of the MM5-generated TMAX and TMIN
indicates that errors in nest0 (20 km) are seen in nest1
(5 km) and nest2 (1.7 km). The finer-resolution nests
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FIG. 14. Measured vs simulated daily runoff from the 16 PRMS simulations and the two calibration (gray)/
evaluation (black) periods. Gray line indicates the 1:1 measured daily runoff line. Text in plots indicates the
Nash–Sutcliffe goodness-of-fit statistic values for the calibration (gray) and evaluation (black) periods.

586 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 7



should not be expected to correct larger-scale biases
produced by the driving (coarser resolution) domain.
The finer-scale simulations thus face two areas of im-
provement: 1) reduction of larger-scale error from the
parent simulation, and 2) reduction of local errors that
may be produced by the local parameterizations of the
boundary layer and surface processes.

The distributed capabilities of PRMS are provided by
partitioning the Yampa River basin into hydrologic re-
sponse units (HRUs). In addition to the classic polygon
method of HRU definition, HRUs for PRMS were de-
fined from the three MM5 experiments. This resulted in
16 datasets (see Table 1 for descriptions) tested in
PRMS using a multiobjective, stepwise automated cali-
bration procedure.

PRMS was calibrated using each of the 16 input
datasets with the same technique to avoid biasing one
data input over another. This was an important com-
ponent of this study: to treat the MM5 output the same
as the climate station data. Independent calibration of
each dataset avoids biasing one data input over an-
other. Calibration datasets were developed for four
PRMS model outputs: 1) solar radiation, 2) potential
evapotranspiration (PET), 3) annual water balance,
and 4) daily runoff components. Two separate calibra-
tion runs of 2 yr were performed for each input dataset:
1) two wet water years (WYs 1998–99) and 2) two dry
water years (WYs 1996–97).

Results comparing PRMS output using polygon
HRUs and grid-based HRUs generally show an in-
crease in accuracy as resolution increases. Results com-
paring PRMS output when calibrating using wet versus
dry water years show that calibration using wet years
generally gives better evaluation results. The multiob-
jective, stepwise procedure gives the user a higher level
of knowledge on how well the intermediate states of
PRMS are being reproduced. Analysis of results for
each step in the calibration indicates that PRMS is able
to simulate solar radiation and PET accurately on a
basin mean monthly basis, the annual water balance,
and the daily runoff components (groundwater, peak,
and daily flows). Comparisons of MMS- and xyz-based
PRMS simulations show, for each step of the calibra-
tion process, the best overall results for the xyz-based
simulations.

An interesting result from this study is that increased
horizontal resolution did not markedly improve the ac-
curacy of the MM5 simulations. Because a given MM5
simulation can be viewed as a single (stochastic) real-
ization of seasonal climate, it may be a better use of
computer resources to perform MM5 simulations with
multiple ensemble members at a coarse horizontal reso-
lution rather than with a deterministic run (a single

ensemble member) at a fine horizontal resolution. This
probabilistic approach to seasonal climate simulation is
consistent with the large uncertainties in seasonal cli-
mate forecasts. There is clearly a trade-off between
horizontal resolution and ensemble size, and rigorous
evaluation of the benefits of each will help guide future
regional climate model simulations.

The high-resolution land–atmosphere MM5 simula-
tions introduce the possibility of using the hydrologic
storages and fluxes directly from MM5. If this were
feasible, then hydrologic simulations could be per-
formed within the atmospheric modeling framework,
and there would be no need for a separate hydrologic
model. However, this paper indicates that there are
large biases in MM5 simulations of near-surface meteo-
rology (precipitation, temperature) that can profoundly
affect simulations of land surface storages and fluxes
(snowpack, soil moisture, and runoff). Until MM5 bi-
ases can be removed, or significantly reduced, there will
be a need for offline land surface model simulations of
hydrologic processes.

In conclusion, a one-way coupling of an atmospheric
and a hydrologic model does not yield runoff simula-
tions that are as accurate as those produced using only
climate station data in a hydrologic model. To use fine-
resolution atmospheric model output for hydrologic
modeling, inaccuracies in the atmospheric model must
be addressed. To use MM5 output in hydrologic model
simulations at the basin scale, research in the areas of
bias identification and removal in the MM5 simulations
of local climate are warranted.
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