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INTRODUCTION 

The problem of guided waves in solid/fluid/solid trilayers has been investigated in 
great detail both theoretically and experimentally. Lloyd and Redwood were the first to 
investigate guided wave propagation in a layered plate composed of two solids with perfect 
contact, slip, or a fluid layer at their interface [l]. Rokhlin et al. studied the elastic interface 
wave guided by a thin film between two solids and utilized it in predicting the strength of 
adhesive bonds [2,3]. Couchman et al. [4] and Guyott and Cawley [5] reported on the 
phenomenon of resonance splitting in the vicinity of classical Lamb modes in symmetrical 
trilayers. Laperre and Thys investigated elastic wave dispersion in both symmetric and 
asymmetric trilayers composed of two solid plates separated by a fluid layer [6]. A number 
of papers have appeared on the use oftrilayers as antireflection coating [7-9]. 

The main goal of this work is to experimentally observe the slow squirting mode of 
a solid/fluid/solid trilayer: A mode with similar characteristics has been predicted by 
Franklin in the case of a fluid layer between an elastic plate and a solid substrate [10]. The 
well-known lowest order asymmetric mode in an immersed plate [11], that exhibits similar 
dispersion behavior but different frequency dependence, has been experimentally observed 
by Desmet et al. [12]. 

LOW-FREQUENCY ASYMPTOTIC BERA VIOR OF THE SQUIRTING MODE 

Figure 1 shows a symmetric trilayer composed of a thin fluid film between two 
identical, isotropic and homogeneous plates with vacuum on each side. The two plates have 
the same thickness of 2h and are composed of the same material, characterized by its 
density Ps, its shear wave velocity cn and its longitudinal wave velocity cL' The density, 
sound velocity, and thickness of the fluid layer are Pfi cf and dfi respectively. The z-
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direction is chosen along the thickness of the plates which are infinite in the perpendicular x 
and y directions. 

The dispersion equations of the Global Symmetric Modes (GSM) and Global 
Antisymmetric Modes (GAM) that exist in such a structure are given by Eqs. (4) and (5), 
respectively, in Ref 13. It must be emphasized that this symmetry or anti symmetry is global 
with respect to the center of the structure. The squirting mode we are focusing on is a 
member of the GSM family as its displacement profile is symmetric with respect to the 
center of the thin fluid film. Following the mathematical method of Achenbach [14] 
Coulouvrat et al. derived a low-frequency asymptotic expression (Eq. 8 of Ref 13) for the 
phase velocity of what they call the Fo+ mode (F for fluid, + for symmetric, and 0 for 
lowest-order) from the general solution of Global Symmetric Modes. For convenient 
comparison to our following results we include their equation here 

(1) 

where kx = 0) / Cx is the wave number in the x-direction, Cx is the phase velocity of the 
guided mode, and kr = 0) / cr is the wave number of the shear wave mode in the plate. 
The appearance of the plate's density in Eq. (1) is just an artifact caused by the normal
ization process based on the shear wave number in the solid, kr = 0) / cr = 0) Jps / J.1, 

where J.1 is the shear modulus of the solid. Substituting this expression for kr along with 
the ratio between the shear and longitudinal velocities in the solid expressed in terms of 
Poisson's ratio v, we arrive at the following expression for the phase velocity 
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Figure 1. Geometry of the solid/fluid/solid trilayer and the coordinate system. 
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(2) 

where E denotes Young's modulus. Equation (2) is equivalent to Eq. (1). However, it 
clearly shows that this mode depends only on the stiffuess of the plates and the density of 
the liquid film between them. One surprising aspect ofEq. (2) is that the phase velocity is 
not simply a function ofthe fluid mass since the fluid density is not multiplied but rather 
divided by the thickness of the fluid layer. Later we will demonstrate that this intriguing 
feature is due to the squirting effect of the thin gap between the plates, that accelerates the 
fluid more and more as the gap narrows. 

PHYSICAL MODEL FOR THE SQUIRTING MODE 

The squirting mode of a thin fluid layer bounded by two thin solid plates 
corresponds to longitudinal vibrations of the fluid caused by the symmetric transverse 
vibrations of the plates. This implies that as the two plates undergo small symmetric 
transverse vibrations in opposite directions they force the fluid in the very thin gap between 
them to experience a much larger displacement in the longitudinal direction, hence the name 
"squirting" mode. Based on this simple physical model, we present the following derivation 
that leads to Eq. (2) starting from the basic principles of strength of materials and fluid 
mechanics. 

Let us consider again the solid/fluid/solid trilayer shown in Figure 1. We will start 
from the well-known differential equation governing the bending deformation of a plate: 

(3) 

where w is the transverse displacement in the z -direction and p denotes the fluid 
pressure. The balance of momentum equation for the fluid can be written as follows 

(4) 

where u denotes the longitudinal displacement of the fluid. Exploiting the continuity 
equation for incompressible fluid we can write 

df au W=--. 
2 ax (5) 

Combining Eqs. (3), (4) and (5) yields the following wave equation 

(6) 
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For harmonic vibrations of w = A e[i(kx x - co t)], we can write the dispersion equation as 

(7) 

which can be rearranged to a form identical to Eq. (2) by substituting kx = co / ex' 

Figure 2 shows the phase velocity of the squirting mode plotted as a function of 
frequency for the case of two 5-mm-thick aluminum plates bordering a I-mm-thick water 
layer. The shear and longitudinal wave velocities in aluminum were taken as cr = 3100 mls 
and cL = 6380 mis, respectively, while the density of aluminum was taken as Ps = 2800 
kg/m3. The sound velocity in water was taken as cf= 1470 mis, and its density as Pf= 
1000 kg/m3. The solid line represents the dispersion curve obtained by numerically solving 
the exact dispersion equation (Eq. 4 in Ref. l3).The dotted line represents the low
frequency asymptote given by Eq. (1). At very high frequencies the squirting mode 
approaches the Stoneley-Scholte velocity. 

VISCOUS ATTENUATION 

Whenever an acoustic mode propagating in a fluid/solid structure produces large 
relative motion between the fluid and solid constituents, the viscosity of the fluid is 
expected to assume a crucial role. The primary effect of viscosity is usually significant, 
sometimes prohibitive, attenuation combined with a less significant effect on the velocity. In 
order to explore the effects of fluid viscosity on the propagation properties of the squirting 
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Figure 2. Phase velocity of the squirting mode plotted as function of frequency along with 
its low- and high-frequency asymptotes. 
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mode, we have to re-formulate the dispersion equation taking into account the nonvanishing 
shear stresses in the fluid . This analysis is detailed in Ref. 15. The results presented here are 
adapted from that reference and interested reader should consult it for specific details. 

Figure 3 shows the attenuation of the squirting mode denoted by Fo+ along with 
the next two higher-order symmetric modes (solid lines). The dimensions and material 
properties used in these calculations are the same as those used in generating Figure 2 
except for the viscosity of the fluid which was taken as 1'] = 1.0 kg / ms, one thousand times 
the viscosity of distilled water, in order to represent a viscous fluid . It is very clear from 
these curves that the squirting mode is much more attenuated by the viscosity of the fluid 
when compared to other modes. This is to be expected because of the very large relative 
fluid/solid displacement produced by the squirting mode. A simple explicit formula that 
approximates the attenuation coefficient of the slow squirting mode in the range 8 «dj < 
2h «A, where 8 is the viscous skin depth and A is the wave length in fluid can be 
derived very easily. The final result can be written as: 

(8) 

The prediction of this approximate model is also shown in Figure 3 as a dashed line. The 
most important conclusion we can draw from these attenuation calculations is that, in spite 
of its relative sensitivity to fluid viscosity, the attenuation of the squirting mode is quite 
acceptable over a wide frequency range of interest. It should be mentioned here that the 
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Figure 3. Attenuation coefficient versus frequency curves for the three low.est-order 
symmetric modes of the solid/fluid/solid trilayer (solid lines). The prediction of the 
approximate model for the squirting mode is also shown in dashed line. 
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effect of fluid viscosity on the phase velocity of the modes propagating in the trilayer is 
negligible. 

EXPERIMENTAL TECHNIQUE AND RESULTS 

In the squirting mode of a solid/fluid/solid trilayer the solid plates contribute their 
stiffness while the fluid layer provides the necessary inertia. Consequently, this mode can be 
effectively generated and detected from either the solid or the fluid component of the 
trilayer system. We have taken advantage of this fact in designing an experimental setup to 
measure the phase velocity of the squirting mode. Figure 4 shows the schematic diagram of 
the experimental arrangement. A damped 200-kHz ultrasonic immersion transducer is used 
as a transmitter to shake the water filling the thin gap between the two aluminum plates. 
The transducer is excited by a 300 Jls-Iong tone-burst signal generated by a function 
generator that is also used to trigger an oscilloscope which displays the rf signal that can be 
acquired by a computer for further processing. The vibrations generated in the trilayer 
structure are detected from the outside using a Polytec OFV 302 Helium-Neon laser
interferometer. An SRS 530 tracking filter was used to pre-filter the signal acquired by the 
interferometer before digitizing by a LeCroy 9410 oscilloscope. 

The geometry of the aluminum/water/aluminum trilayer arrangement is shown in 
Figure 5. The gap between the two plates that can be filled with water is only 25 mm wide 
and its actual thickness as measured by ultrasonic transmission at 5 MHz was 0.8175 mm 
on the average, approximately 7 % larger than the thickness of the separator shims. The 
reduction in the width of the water layer was necessary to restrain water motion side ways 
thereby simulating the infiniteness in the theoretical model in the lateral direction. The 
whole arrangement was sealed using Silicone rubber. 
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Figure 4. Schematic diagram of the experimental setup used in measuring the phase velocity 
of the squirting mode. 
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Figure 5. Geom~try and dimensions of the aluminum/water/aluminum trilayer arrangement 
used in the dispersion experiment. 

In order to accurately measure the phase velocity of the squirting mode as a function 
of frequency, individual measurements were performed by detecting the normal vibration of 
the plate at different points on the plate above the water layer by the interferometer at 
specific frequencies. A peak was identified in the detected rf signal and monitored in the 
time domain as the detection point was moved through a larger distance (50-100 mm) in 
numerous small (2-5 mm) steps in order to assure that the same peak was followed. The 
phase velocity of the squirting mode was then determined as the ratio of the total 
propagation distance to the accumulated propagation time. Figure 6 shows the results of the 
phase velocity measurements superimposed on the theoretically calculated dispersion curve 
of the squirting mode. The experimental error of our measurements, which is mainly caused 
by existing spurious interferences, is estimated at ± 7 %. This uncertainty is indicated by 
error bars in Figure 6. Considering the numerous technical difficulties associated with the 
measurement, the agreement between the experimental and theoretical results is quite good. 

CONCLUSIONS 

The squirting mode in symmetric solid/fluid/solid trilayers is a special mode of wave 
propagation in which the two plates flex sideways in opposite phase thereby forcing the 
fluid in the thin gap between them to undergo large displacements in the longitudinal 
direction. This is a unique mode of wave propagation which can not be associated with any 
of the free Lamb modes in a single plate. A simple physical model that provides a better 
insight into the physics of this mode was presented. It was shown that the squirting mode is 
supported by both the solid (stiffuess) and the fluid (inertia) and no analogous mode can 
exist if one of them is absent. It was found that the thickness of the fluid layer exerts a 
crucial effect on the attenuation of this mode while it does not significantly affect the 
higher-order modes. A dispersion experiment was designed to study the behavior of this 
mode. The experimentally measured phase velocity values turned out to be in good 
agreement with those predicted by theory. To the best of our knowledge, these 
measurements constitute the first conclusive experimental evidence of the existence of the 
slow squirting mode first predicted by Lloyd and Redwood in 1965. 
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Figure 6. Experimentally measured phase velocity of the squirting mode in the 
aluminum/water/aluminum trilayer. 
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