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This paper describes a new approach for classifying NDE wave­
forms. Using this approach a set of matched filters is constructed, 
one for each category of waveform, based on parameters from auto­
regressive models. The method offers advantages in terms of.hard­
ware implementation over conventional pattern recognition approaches. 
Feasibility is shown using computer generated data. Results are 
then presented for real data from acoustic emission experiments. 

INTRODUCTION 

In recent years signal processing and pattern recognition tech­
niques have been successfully applied to the problem of classifying 
several types of nondestructive evaluation (NDE) data, including 
eddy current (Doctor and Harrington, 1980), ultrasonic (Busse et al., 
1981), and acoustic emission (AE) waveforms (Hutton et al., 1981, 
Harrington and Doctor, 1980, Melton et al., 1982). The techniques 
that have been developed, however, are computationally complex to 
the point of prohibiting real-time processing of NDT data for on­
line monitoring/inspection applications. This is mainly due to the 
fact that the features that have been found to be important in the 
classification process have been calculated via transforms, such as 
the fast Fourier transform (FFT). For ultrasonic and acoustic emis­
sion waveforms the situation is made even worse by the high band­
width of the data. 

In this paper a new approach is described for classifying NDE 
waveforms. Using this approach, a set of matched filters are con­
structed, one for each category of waveform, based on parameters of 
autoregressive models of the data. This approach has advantages in 
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terms of real-time processing because the matched filters can be 
implemented as recursive digital filters. This means that the 
waveform data may be processed serially. 

The first part of the paper presents background on autoregres­
sive models and shows how such a model may be viewed as a recursive 
filter. The second section describes an experiment with computer 
generated data that establishes the feasibility of the approach and 
relates it to conventional pattern recognition. The third section 
describes the application of the approach to acoustic emission data. 
The final section discusses the results and some of the research 
issues that surround this approach. 

BACKGROUND 

Over the past 15 years new approaches to spectral analysis 
have been developed as an alternative to approaches using Fourier 
transforms. These new approaches, all of which have been shown to 
be equivalent (van den Bos, 1971), are called autoregressive (AR) 
modeling, maximum entropy spectral analysis (MESA), and linear pre­
diction (LP). They have been developed respectively by statisti­
cians, physical scientists, and engineers for applications within 
their particular areas of endeavor. 

The essence of these techniques is that they allow high reso­
lution spectral estimates to be computed from limited amounts of 
data by extrapolating (predicting) data values between the measured 
points defined by data sampling. This increases their spectral 
resolution, making it much greater than that of the Fourier trans­
form techniques for any given data set (Burg, 1967, van den Bos, 
1971). 

Mathematically the model is viewed in the Z-transform domain as 
an all-pole filter, H(z), excited by a white Gaussian process, U(z) 
(Makhoul, 1976). The transfer function for this relationship is 
written as: 

y(z) - U(z)H(z) 

Figure 1 represents this graphically. Here U(z), H(z), and Y(z) 
are the complex Z-transforms of the corresponding sequences un' 
hn' and Yn' In other words 

U(z) (2) 
n=-oo 

if we let Z=ejw, then we have the more familiar discrete Fourier 
transform. 



CLASSIFICATION OF NDE WAVEFORMS 1119 

U(Z) -1 H(Z) ~ VIZ) 

VIZ) = U(Z) H(Z) 

Fig. 1. Transfer function relationship for autoregressive model. 

Since H(z) is required to be an all-pole filter in our model, 
we can rewrite it as 

G 
H(z) = A(z) (3) 

where A(z) is a polynomial in z whose roots are the poles of the 
model and G is a constant gain term. Thus we may write: 

Y(z) GU(z) 
= A(2j) 

rearranging (4) we have 

Y(z)A(z) = GU(z) 

If we write out A(z) as a polynomial, we have 

+00 
A(z) = 1 - L (akZ- k ) 

k=l 

Substituting (6) into (5) and rearranging, we have 

Y(z) 
+00 

GU(z) + L (akZ-k)y(z). 
k=l 

(4) 

(5) 

(6) 

(7) 

If we now take the inverse Z-transform of both sides of (7), we have 

+00 
Yn GUn + L (akYn-k)· 

k=l 
(8) 

Thus for this modeling approach the current value of Yn is 
seen to depend only on the past values of Yn and a sample, un' 
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from a white noise process. In practice the model is limited to a 
finite number of poles and takes the form 

p 

Yn = GUn + L (akYn-k) (9) 
k=l 

for a p-th order model. 

This model is equivalent in form to a p-th order recursive fil­
ter with input u and output y. We have, then, a mathematical model 
of the data, y, that consists of a linear filter that, when excited 
by white noise, has the same spectral properties as the data. We 
can think, therefore, of this filter as being spectrally matched to 
the data. 

To compute the filter coefficients Eq. (9) is thought of as a 
regression equation with Yn the independent variable. The dependent 
variables are represented by the Yn-k, the regression coefficients 
by the ak, and the residual error by the GUn' Thus the name auto~ 
regressive modeling, since the data are regressed with themselves. 
GUn may also be thought of as a prediction error, thus the term 
linear prediction. For more details and an explanation of the term 
maximum entropy, the reader is referred to Childers (1978). 

This leads us to the main idea in this paper, which is the use 
of such spectrally matched recursive filters to classify waveforms 
from different sources. The next section of the paper considers 
the use of these filters to classify computer generated data. The 
results of such a classification are compared to a conventional 
pattern recognition approach using the filter coefficients, that is 
the ak' as pattern recognition features. 

FEASIBILITY OF APPROACH 

This section presents the results of a computer experiment de­
signed to test the hypothesis that recursive filters whose coeffi­
cients are the average autoregressive parameters for two categories 
of waveforms can be used to discriminate waveforms from each cate­
gory by examining the prediction error of the two filters when each 
is applied to an unknown waveform. 

To test this hypothesis a set of test data was generated for 
two different autoregressive processes. Fifty waveforms were 
generated for each process using the following equations: 

Process 1: x1n O.75*x1n-1 - O.5*x1n-2 + wn 

Process 2: x2n O.5*x2n-1 - O.25*x2n_2 + wn 

where wn is one sample from a random number generator. 
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The next step in testing the hypothesis was to compute a second­
order autoregressive model for each waveform. This was done using 
the FTMXL subroutine in the IMSL (1982) subroutine package. This 
subroutine implements the Box and Jenkins (1976) iterative algorithm 
for computing AR parameters. Figure 2 shows a cluster plot of these 
parameters. The vertical axis is AR parameter 1, while the horizon­
tal axis is AR parameter 2. Note that the parameters form two dis­
tinct clusters corresponding to the two sets of test waveforms. The 
centers of the two clusters (computed by taking the average of each 
parameter within each category) are: 

AR Parameter 1 AR Parameter 2 

Process 1: 0.73469 
Process 2: 0.49413 

-0.49089 
-0.25951 

Using these average AR coefficients as parameters for two recursive 
filters, each waveform in the test was categorized based on the dif­
ference between the prediction error of the category-two filter and 
the category-one filter. This is represented diagramatica11y in 
Fig. 3. 

The results for classifying the waveforms with recursive fil­
ters were excellent. Figure 4 is the same as Fig. 4 but with the 
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Fig. 2. Cluster plot of training data. 
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Fig. 3. Block diagram of waveform classification procedure. 
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Fig. 4 . Classification results for training data . X and + repre­
sent misc1assified points . 

misc1assified waveforms identified. Note that one category-two 
waveform and three category- one waveforms were misc1assified. This 
is a 96% performance rate . An independent set of 100 waveforms 
was generated using the same procedure outlined above for the first 
set but with an independent set of w(n) . These data were classified 
using the filters derived from the first set of data. Figure 5 is 
a cluster plot showing the results for the independent test data . 
Again, the classification accuracy was 96%. 
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Fig. 5. Classification results for test data. X and + represent 
misclassified points. 

APPLICATION TO ACOUSTIC EMISSION DATA 

After its feasibility was established, the approach was applied 
to acoustic emission data to test its performance on real data. The 
AE data were generated experimentally using a simulated joint speci­
men of 7075-T65l aluminum. The specimen was configured such that 
it generated AE from bolt-hole fretting and crack growth. Further 
details have been reported earlier in these proceedings (Hutton and 
Lemon, 1982, Melton et a1., 1982). The data were recorded using 
wideband piezoelectric transducers and a Biomation 1010 transient 
recorder with a sample rate of 5 MHz and a buffer size of 4096 points. 

For this analysis 467 AE waveforms were considered, 230 fret­
ting waveforms and 237 crack AE waveforms . For each waveform a 
thirtieth order autoregressive model was computed using the algo­
rithm presented by Andersen (1974). This algorithm stems from maxi­
mum entropy method of spectrum analysis. For each class of wave­
forms (crack AE or fretting), the autoregressive parameters were 
stored for use in conventional pattern recognition and averaged to 
provide the coefficients for the matched filters. 

The results of conventional pattern recognition were excellent. 
Using the autoregressive parameters as features, a multivariate linear 
decision rule was calculated using the ARTHUR pattern recognition 
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package (Duewer, et al.). In doing this, 80% of the data were used 
as a training set and the rema1n1ng 20% as a test of the decision 
rule. The results of this analysis were that for the training set, 
98% of the fretting and 100% of the crack AE were correctly classi­
fied. For the test set, 100% of the fretting and 98% of the crack 
AE were correctly classified. 

Following the conventional pattern recognition analysis, the 
average autoregressive parameters from a ISO-waveform subset of the 
data was used as the coefficients for the matched filters. These 
filters were then used in the manner described above to classify each 
of the 467 waveforms, including the 150 in the "training" set. The 
results of this classification were that 84% of the crack AE was 
correctly classified and 77% of the fretting. 

DISCUSSION 

This paper has presented a new approach for classifying NDE 
waveforms. The approach consists of computing autoregressive (AR) 
models for each waveform in a training set of data. For each cate­
gory of data the average AR parameters are computed and used as co­
efficients of recursive filters. Unknown waveforms are classified 
by running them through the filter for each category. The mean 
square prediction error is computed and summed for each filter. 
The waveform is classified as belonging to the category whose filter 
had the lowest prediction error. 

On computer generated data the procedure was shown to compare 
extremely well with conventional pattern recognition using the AR 
parameters as features. Both achieved an accuracy of approximately 
96% on both the training and test data. Based on the promise of 
these results, the technique was tried on real data from an acoustic 
emission experiment. 

On the real data the procedure did not perform as well. Conven­
tional pattern recognition using the AR coefficients as features had 
a classification accuracy of about 98%. The AR modeling procedure, 
however, only had a classification accuracy of about 80%. This 
points to the need for further study of this approach. 

Some of the questions that need to be answered are common to 
this approach and modern spectrum analysis in general. The order of 
the AR model, that is, the number of coefficients computed, certainly 
affects the accuracy of the procedure. In this work the order was 
chosen by qualitataively comparing plots of the power spectra com­
puted via fast Fourier transforms (FFTls) and AR models. There are 
more rigorous procedures, such as the Akaike Information Criteria 
(AIC), for determining the best order model for a given set of data 
(Akaike,1974, Tong, 1975 and 1977). These procedures need to be 
applied to the acoustic emission data to see if the results improve. 
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For the computer generated test and training data, the order was 
known precisely since it was under our control. 

There are other closely related modeling techniques that should 
be tried, one of which is autoregressive-moving average (ARMA) model­
ing (Box and Jenkins, 1976). This type of model assumes a pole-zero 
model instead of an all-pole model. The all-pole model can, in 
theory, approximate zeros (Chen, 1982), but an extremely high-order 
model may be required. For a waveform with a sharp low-frequency 
cutoff, due perhaps to transducer characteristics, the ARMA model 
might be more appropriate than the AR model since it could account 
directly for the low-frequency zeros. In the future, pattern recog­
nition approaches based on modern spectral analysis techniques should 
outperform more general techniques since the physical characteristics 
of the system under study can be mathematically incorporated in the 
analysis approach. 
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