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ABSTRACT

In order to capture the business dynamics underlying SOA-based service systems,

we propose and formalize the concept of a competitive service market (CSM). A CSM is

composed of a set of composite service providers, each managing a collection of atomic

service providers. With the help of service composition protocol, composite service

providers are able to invoke atomic services and aggregate them into value-added com-

posite services for servicing various types of customers’ requests. Centering around the

setting of a competitive service market, our research is separated into three parts:

1. Aiming to support the quantitative-based decision processes of different market

players, we construct stochastic models to conduct performance analysis at various

levels spanning vertically on the structural hierarchy of the service market.

2. In the context of requirements analysis, we classify the concept of service and

service instance in terms of their respective functional and non-functional features.

Hereafter, we identify the related storage issues and propose a counting Bloom

filter-based hybrid storage architecture for the service registry design underlying

the service market. A feature-based service discovery protocol is developed to

demonstrate the usefulness of this design.

3. The business relationship between different market players are typically framed

through the service level agreements (SLAs), which specify the attributes of QoS-

based metrics and service costs for the realized service provisioning. SLAs con-

stitute the backbone structure for managing the CSM. We identify several SLA
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design patterns in terms of different business scenarios that can occur in the life

cycle of a service market. Against each pattern we study the corresponding SLA

design scheme that can meet its unique requirements. In addition, we systemat-

ically investigate the application of Bayes estimator in these schemes, since the

knowledge of their negotiation counterpart or market competitors is essential for

reaching the goal of utility optimization. At the end, we cast the hybrid SLA

design framework into a stochastic model that allows decision makers to obtain

evaluations of performance of interest.
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CHAPTER 1. Introduction

Services computing has two main objectives: maximize the utilization of the existing

business assets and increase the capability of satisfying the ever-changing market re-

quirements, which are essential to ensure the sustainable competitive edge in the global

supply chain. An agile business product line should be able to horizontally span com-

pany walls while supporting multiple business functionalities and multiple types of users.

The ever-increasing computational power and the wide deployment of internet service

provide strong support to help the enterprises achieve the goal of services computing.

Service-oriented architecture (SOA) provides a flexible and extensible platform to

instantiate the business management philosophy of services computing. It introduces

two primary business advantages [1][2]:

• The adoption of SOA-based resource management architecture enables the business

firm to save cost by leveraging existing software and hardware assets.

• The embedded universally agreed-upon specifications allow the enterprises to de-

liver various types of business applications through the enterprise-wide service

composition or business-to-business application integration in an automatic way.

Thriving and diverse service-oriented applications across different business spectrums

motivate us to address the related theoretical research from a deeper business oriented

thought. Pertaining to this vision, we formalize the concept of Competitive Service

Market (CSM) as an generic framework to study the business dynamics for various

service systems implemented either on the Web or on other platforms [3].
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1.1 Background

A competitive service market is formulated as CSM = {ASP , CSP,AS}, where

• ASP = {aspi : i = 1, . . . , ‖ASP‖}: ASP is a set of atomic service providers, de-

noted by aspi, which is assumed to embed with self-contained functionality without

needing the cooperation of other agents to provide a specific type of service.

• CSP = {cspi : i = 1, . . . , ‖CSP‖}: CSP is a set of composite service providers,

denoted by cspi, which can invoke several atomic service providers in a service

composition process.

• AS = {ASi : i = 1, . . . , ‖AS‖}: AS is a set of atomic services existing in the

market.

Here, ‖ASP‖, ‖CSP‖ and ‖AS‖ stand for the sizes of sets ASP , CSP and AS, respec-

tively. Atomic services act as the basic units in a service system. The realization of

their functionalities does not require the involvement of other units. On the other hand,

service composition protocol aggregates several atomic services into a composite service

controlled by a given business logic and then delivers it to the customer [4]. The service

composition process enables a collection of heterogeneous service providers to collaborate

in a virtual coalition that can span across different enterprises. In the CSM setting, the

service composition protocol is owned and deployed by the composite service providers,

which aslo act as the interface between the consumers and the market, whereas atomic

service providers are hidden from the consumers.

Figure.1.1 illustrates an example of a competitive service market. The market has two

composite service providers: composite service provider 1 and composite service provider

2. Through the service composition protocol, composite service provider 1 can invoke

the atomic services provided by content service 1, information system 2, information

system 3 and marketing service while composite service provider 2 can invoke the atomic
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services provided by content service 2, information system 3, information system 1 and

marketing service.

Figure 1.1 An example of competitive service market

Figure.1.2 displays a composite service that is able to be composed by composite

service provider 2. This composite service describes the workflow of a content service

provisioning process. In Figure.1.2, the information system 2 is an information infras-

tructure service provider which provides storage space for electronic medias, such as

movies and on-line games. The content service 1 is a content service provider which

can add unique features developed in-house to the media based on customers’ vari-

ous requirements. A specialized marketing consultant, i.e., marketing service shown in

Figure.1.2 is also hired to improve the market share and manage the customer service.

From the topological point of view, each composite service can be treated as a work-

flow graph, in which a vertex represents an atomic service and an edge stands for the busi-
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Figure 1.2 An example of composite service

ness logic underlying the composite service. Figure. 1.3 illustrates a composite service ex-

ample consisting of eight atomic services, which is denoted as S = {AS1, AS2, . . . , AS8}.
In our research, we use S to denote the composite service.

Figure 1.3 An example of composite service

With respect to a given composite service provider, cspo, we define the set of atomic

service providers maintaining the business relationship with cspo as controlled group

denoted as CGo. The business relationship between a composite service provider and

an atomic service provider belonging to its controlled group is framed as the service

level agreement (SLA) which will be investigated in detail later. Figure.1.4 shows a

conceptual diagram of cspo and its controlled group. In our research, we use CGt
o to

represent a set of atomic service providers which belong to CGo and provide the same

type of atomic service identified with superscript t.

In the example shown in Figure.1.4, we have CGo = CG1
o∪CG2

o∪CG3
o∪CG4

o. In set CG1
o,

there are three atomic service providers: asp1,asp2 and asp3 which can provide atomic

service, AS1. From the viewpoint of a composite service provider, the existence of multi-

ple candidates makes it necessary to develop a strategy that decides which atomic service

provider should be selected for a given type of atomic service. This is the main objective
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Figure 1.4 Composite service provider and its controlled group

of the service composition protocol and has been extensively studied from various per-

spectives [5][6]. From the point of view of an atomic service provider, the existence of

other agents sharing the same functionality constitutes a potential competition, which

asks more strategic decision capabilities if it intends to generate profit from the service

provisioning process.

1.2 Management Issues for Service Market

Figure.1.5 displays the conceptual diagram of the management architecture for a

service market. A set of functional components are connected through the information

flow channel.

• A large amount of atomic service providers register their profiles in the market.

These profiles are stored in the service registry and provide service attributes

as the inputs for the service composition protocol. Once the number of stored

service profiles increases, the related indexing and discovery tasks can become

quite challenging. In [7], we develop a hierarchical service structuring approach

based on pattern recognition techniques. In [8], we design the counting Bloom

filter-based service storage architecture and develop multi-level service discovery

protocol based on this architecture.
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Figure 1.5 Management architecture of service market

• The module of Service profile processor extracts various types of information from

the input service profile, and perform necessary operations before storing a service

profile in the registry. For instance, in order to use the numerical-based pattern

recognition algorithms, the service profiles have to be quantized before a clustering

algorithm can be applied.

• The Service composition module is embedded with a set of optimization algorithms

to discover and aggregate several services into the target business process. The

service profile parameters stored in the service registry are used as the inputs

for the optimization algorithms. In the service market, the service composition

process affects the business interests of multiple service agents at different levels.

For instance, the composite service provider focuses on the end-to-end performance

of the whole business process while an atomic service provider tends to maximize

its own interest. One of the challenges of these optimization algorithms is to

balance the business interests of different service agents in accordance with a set

of pre-determined objectives [5].
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1.3 Structure the Competitive Service Market From the

Perspective of Supply-and-Demand Relationship

In the competitive service market, atomic service providers are the upper stream

services suppliers who manage the underlying service infrastructures and deliver the

services to the composite services providers in accordance with the pre-designed SLAs.

On the other hand, a composite services provider plays a twofold role:

• From the perspective of an outside service consumer, the composite service provider

behaves like a seller of composite service.

• From the viewpoint of atomic service provider selling services, the composite ser-

vice provider behaves like a purchaser of atomic service.

In the CSM setting, the above supply-and-demand relationships are delineated by the

following constraints in terms of the requirements analysis of the requested composite

service, e.g., S = {AS1, . . . , ASm}.

Functionality constraint : From the perspective of functional requirements, the func-

tionalities associated with every participating atomic service should have at least

one candidate service provider, which indicates that ‖CGi
o‖ > 0 ∀ ASi ∈ S ,

Where ‖ · ‖ represents the number of candidates.

Quality of service(QoS)-based constraint : In reality, every incoming service re-

quest is subject to certain QoS requirements along with several dimensions, such

as availability and the response time. These various QoS requirements are framed

as either global QoS constraints or local QoS constraints in terms of their respective

objectives. For instance, cspo is scheduled to deliver S illustrated in Figure. 1.3.

A local QoS constraint is that the availability for the participating atomic ser-

vice AS1 needs to be at least 90%; and a global constraint is that the end-to-end

response time should be less than 8 hours.
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Profit-based constraint : In order to deliver the required service, the composite ser-

vice provider has to purchase atomic services from related service providers, which

naturally incurs costs. The budget of a service consumer, γ represents the upper

bound for the total cost of the composite service provider if it wants to gener-

ate some non-negative profit from this service delivery process. This profit-based

constraint is formulated as

j=m∑
j=1

Cj
o,i ≤ γ ∃ aspi ∈ CGj

o ∀ASj ∈ S . (1.1)

Cj
o,i represents the transaction cost between composite service provider cspo and an

atomic service providers belonging to CGj
o which is able to deliver the functionality

associated with ASj. If Equation.1.1 is not satisfied, then there does not exist

any economically feasible solution for the composite service provider to deliver the

service request S .

Among the three major constraints usually involved in the service composite process,

both QoS-based constraint and the profit-based constraint are within the scope of non-

functional requirements. Mathematically, a service composition process can always be

framed as an optimization problem that has to satisfy these three constraints.

1.4 Research Challenges and Contributions

Managing the competitive service market not only involves a set of decision making

processes with different objectives and instantiations, but also requires the construction

of the underlying service infrastructure to support the diverse business activities in the

market. Our research focuses on three fundamental issues of the service management,

which are listed as follows:

1. The decision making processes rely on quantitative models to help predict the

performance of various types of market players. In the competitive service market,
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the market players differ in the position they hold in the market and their respective

system features. Moreover, these market players interact with each other through

various types of business relationships. How to capture these differences and their

interrelations in the modeling effort is the first issue we will address.

2. Each service provider can support multiple quality configurations for a single type

of service by controlling the performance of its service facility. This feature is

essential to gaining a competitive edge in the service market. Therefore, a service

provider tends to register every possible quality configurations in the service reg-

istry. As a consequence, a scalable storage space is required to store these service

parameter configurations and support the increased complexity of service discovery

process.

3. The business relationships between different market players in the competitive

service market are framed through the service level agreement (SLA). A signed SLA

stipulates the service cost and service qualities, which are essential for searching,

delivering and monitoring the realized services. In the competitive service market,

the ever-changing business scenarios can affect the framing process of the business

relationship, i.e., SLA design protocol. How to design SLAs in different business

scenarios and understand the dynamic business relationships framed by different

SLA design protocols is the third issue we will address.

The contributions of this research are summarized as follows:

1. We propose the concept of a competitive service market in order to capture the

business dynamics underlying the service systems. We characterize the service

chain in the market based on the formalized structural hierarchy and the con-

strained supply-and-demand relationship.

2. We systematically discuss the modeling issues of the service market.
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• In accordance with the hierarchical structure of the service market, we inves-

tigate the modeling approaches at both atomic service level and composite

service level, along with market level.

• We discuss the influences of heterogeneous time scales between the composite

service and atomic service on the calculation of end-to-end response time.

We develop an algorithm to solve this issue by capturing the time-dependent

behavior.

3. In accordance with the service requirements analysis, we classify the concept of ser-

vice and the concept of service parameter configuration in terms of the functional

and non-functional features.

• In the context of the classification of service and its service parameter config-

urations, we divide the service discovery process into a two-step procedure.

• Based on the chaining relationship connecting service, service parameter con-

figuration and service provider, we develop a scalable storage architecture

consisting of a centralized service array and a set of decentralized storage

units using the entries in the service array as index.

• We apply counting Bloom filter to design storage unit and develop the related

service discovery process using the structural properties of counting Bloom

filter.

• We come up an analytically solvable metrics to predict the performance of

the service discovery process on this system.

4. The business relationship between different market players are framed by SLAs.

• We identify several SLA design patterns in accordance with different business

scenarios that can occur in the life cycle of the market.
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• We develop SLA design methodology with respect to each identified SLA

design pattern.

• We investigate the application of Bayes estimator in the bilateral negotiation-

based multi-attributes SLA design.

• We investigate the target-oriented SLA design in the sequential auction using

Bayes estimator.

• We build a Markov chain model to study the dynamic business relationships

framed by coexisting SLA design protocols. The constructed model will help

different market players make both strategic and operational decisions.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2, we discuss the

modeling approaches in accordance with the hierarchical structure of the competitive

service market. We not only address the modeling issues at the atomic service level

but also investigate how to model the market as a whole against a specific performance

metrics. In Chapter 3, we propose a scalable storage architecture design, and investigate

the associated service discovery protocol. In Chapter 4, we identify different SLA design

patterns in terms of their respective business scenarios, and develop the corresponding

design methodologies. We conclude this dissertation with summary and future work in

Chapter 5.
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CHAPTER 2. A Systematic View of Service Market

2.1 Introduction

Within the competitive service market, each market player needs to make various

types of strategic and operational decisions. Strategic decisions tend to cover the long

and intermediate time horizon, such as the service infrastructure investment and the

placements of service resources. On the other hand, the operational decisions focus on

each single operation instance, such as the service selection and composition. Making

these decisions requires the modeling efforts at both the localized level,i.e., atomic service

provider itself, and the global level, i.e., composite service provider spanning across

the enterprise boundaries. The constructed model and related performance analysis

guide the allocation, pricing and management of various types of service resources. The

first part of this chapter presents a queuing modeling framework for the atomic service

provider. The introduction of queuing theory enables the quantitative analysis of a

variety of service parameters, which are usually used as the inputs to other modeling

problems. The second part of this chapter is going to discuss a modeling formulation at

the global level of the competitive service market. The contents of this chapter are the

extension of our previous work published in [9].



13

2.2 Queuing Model for Atomic Service Provider

Atomic service provider performs as the building block for the service market, and the

stochastic modeling of which forms the basis for understanding the competitive service

market as a whole.

Figure 2.1 Queuing model of atomic service provider

Figure.2.1 illustrates a queuing model for an atomic service provider. The jobs will

accumulate in the wait queue once the arriving rate of incoming requests overwhelms the

service capacity. Interarrival times, service rate and buffer capacity are three essential

metrics to characterize a queue. In this research, the following assumptions are made.

• The interarrival times follows an exponential distribution.

• The service processing time does not fit into any specific probabilistic models.

The statistical analysis against the historical record can provide the cumulative

distribution function.

• The system can have no more than K service requests at one time. In other words,

the capacity of the wait queue is K − 1.

A large portion of queuing-based studies tends to assume the Poisson distribution for

both service arriving and processing processes. Due to the heterogeneous service in-

frastructure, which can be hardware, software or even the human being, we relax the

service processing model to the general probability distributions. In terms of the queu-

ing modeling framework, this type of stochastic system can be modeled as a M/G/1/K
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queue. From the perspective of theoretical study on the queuing modeling formalism,

more complicated queuing models can be created to allow higher degree of relaxations.

However, a large portion of these queuing models cannot be solved analytically and only

the numerical simulations are available for the investigation. In the following, we discuss

how some essential performance metrics can be derived based on the queuing model.

Response time is an essential metric that is required by the composite service provider

to plan the service composition process and estimate the system performance beforehand.

Moreover, response time also functions as a basic element for deriving other performance

metrics, e.g., reliability. The expected response time for the atomic service provider aspi

to deliver service ASj is denoted as T i
j . The event density of aspi is characterized by

fηi
(t), a probability density function to describe a random variable representing the

functioning time before the failure [10]. Hence, we have

Ri,j = 1 −
∫ T i

j

0

fηi
(t) dt, (2.1)

where Ri,j represents the reliability for the service delivery process of aspi over service

ASj.

The system dynamics of the M/G/1/K queue is characterized by the number of

jobs staying in the system. Let Pi : i = 1, ..., K denote the probability with which an

admitted request sees i requests in the wait queue and service facility as a whole. PK

thus stands for the blocking probability. According to the queuing theory,

Pi =
μπi

λ + μπ0

i = 0, ..., K − 1 and PK = 1 − Po

π0

(2.2)

In Equation.2.2, πi is the stationary probability distribution of the embedded Markov

chain underlying the M/G/1/K queuing system. Please refer to [11][12] for more details.

Here, we just want to stress the fact that Pi is analytically solvable and depends only on

the system parameters: λ, μ and K. Based on Eq.2.2, the expected number of requests



15

residing in the queue is calculated as

M =
K∑

i=0

iPi. (2.3)

According to the Little’s law [12], i.e., the average number of customers in the system

equals to the product of the average response time and the average effective arrival rate.

Hence, the mean service response time for an atomic service provider can be computed

by

T =
M

λ(1 − PK)
(2.4)

In Equation.2.4, (1 −PK) is the admission probability and hence λ(1 −PK) represents

the effective arrival rate. Submitting the computed T into Equation.2.1 leads to the

queuing-based reliability metric. The analysis presented in this section is to provide

a building block for the further system analysis of the service market. Based on the

queuing framework, we can compute a variety of performance metrics which are used as

the input parameters for the decision making processes of different market players.

2.3 Recursive Procedure for Computing End-to-End

Response Time in the Competitive Services Market

Instead of focusing on a single atomic service provider, in this section, we consider

the performance analysis at the composite service level, which is the calculation of the

end-to-end response time for a composite service. We generalize the studied model from

the trivial scenario of a single service provider to the scenario involving the existence of

multiple candidate service providers, and finally we take into account the time-dependent

behavior of the involved atomic service providers.

Algorithm.2.1 lists a recursive procedure for computing the end-to-end response time

for the composite service, like the one shown in Figure.2.2. T i denotes the response

time for service ASi. Since this algorithm does not consider the existence of multiple
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Algorithm 2.1 FTA1(ASi):Recursive procedure for calculating the response time for
a composite service

1: if N (ASi) = ∅ then
2: T i = Q(aspj);
3: else
4: T i = Q(aspj) + MAX(FTA1(ASj) : ∀ASj ∈ N (ASi));
5: end if
6: return T i;

candidates for a single service, we just assume that ASi is delivered by aspi and use

Q(aspi) to denote the expected service time computed from the queuing model of aspi.

N (ASi) represents the atomic service next to ASi in the business logic. For instance,

AS2 ∈ N (AS1) and AS3 ∈ N (AS1) in Figure.2.2.

Figure 2.2 An example for illustrating the computation procedure

The procedure is launched by calling the initialization service of the studied compos-

ite service. To compute the response time for the composite service shown in Figure.2.2,

we call FTA1(AS1). In accordance with the business logic shown in Figure.2.2,

FTA1(AS1) = T 1 = Q(asp1) + MAX(FTA1(AS2),FTA1(AS3)) (2.5)

And

FTA1(AS2) = Q(asp2) + FTA1(AS4)

FTA1(AS3) = Q(asp3) + MAX(FTA1(AS4),FTA1(AS5)) (2.6)
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Since no service node is next to the AS6,

FTA1(AS4) = Q(asp4) + Q(asp6)

FTA1(AS5) = Q(asp5) + Q(asp6) (2.7)

The results given by Equation.2.7 will be returned back to Equation.2.6 and finally

to Equation.2.5 to get FTA1(AS1) = T 1 according to the invoking sequence in this

recursive procedure.

The setting of competitive service market allows the existence of multiple atomic

service provider candidates for a single service. The procedure of FTA1 does not consider

this kind of possibility. Therefore, we design a refined procedure identified as FTA2.

Algorithm 2.2 FTA2(ASi):Recursive procedure for calculating the composite service
response time in the services market

1: if N (ASi) = ∅ then
2: T i = MIN(Q(aspj) : ∀aspj ∈ CGi

o);
3: else
4: T i = MIN(Q(aspj) : ∀aspj ∈ CGi

o) + MAX(FTA2(ASj) : ∀ASj ∈ N (ASi));
5: end if
6: return T i;

Algorithm.2.2 differs with Algorithm.2.1 at lines 2 and 4, where the former has to take

into account the existence of multiple candidates. Both FTA1(ASi) and FTA2(ASi) as-

sume that performance metrics of the atomic service provider aspi does not vary with

time. In practice, the life cycle of a composite service and the one of an atomic service

may have different time scales. Consider the example shown in Figure.2.3, AS1 and AS2

can take multiple days, and AS4 only needs multiple minutes for fulfilling its function-

ality. This is a system consisting of components which differ in their time scales. If the

atomic service providers available for delivering AS4 are un-stationary systems whose

performance metrics are generally time-dependent functions, the difference between the

starting time of the composite service and the starting time of AS4 should be tracked
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in order to compute the end-to-end response time by using the accurate response time

of AS4, which depends on when AS4 will be invoked.

Figure 2.3 An example illustrating the time difference

A refined end-to-end response time computation procedure is listed in Algorithm.2.3.

Algorithm 2.3 FTA3(ASi, t):Recursive procedure for calculating the composite service
response time considering queuing factor

1: if N (ASi) = ∅ then
2: T i = MIN(QT(aspj, t) : ∀aspj ∈ CGi

o);
3: else
4: t1 = MIN(QT(aspj, t) : ∀aspj ∈ CGi

o);
5: T i = t + t1 + MAX(FTA3(ASj, t + t1) : ∀ASj ∈ N (ASi));
6: end if
7: return T i;

Following similar procedures, the end-to-end response time for a given composite

service can be calculated by calling FTA3(AS1, 0), where AS1 is the initialization service

node and thus the elapsed time to AS1 is 0. FTA3(ASi, t) differs with FTA1(ASi) and

FTA2(ASi) in terms of the following two points:

• The service time computation procedure, invoked at line 2, is identified as QT,

which takes two parameters, aspi and t. t is the elapsed time inherited from

the recursive call at line 5. Based on this information, each aspi can track the

elapsed time between the starting time of the composite service and the starting

time of this specific atomic service to be delivered by itself in accordance with the

business logic. Therefore, more accurate service information, such as the blocking

probability or service time, can be supplied to the composite service provider to

help the service selection process. On the other hand, FTA1(ASi) and FTA2(ASi)

do not consider this type of time information.
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• The recursive call at line 5 monitors the elapsed time from the initialization point

to its finishing point. The resulting sum, t + t1 is used as the parameter of the

recursive call for the next service node in the business logic.

Starting from a trivial procedure of computing the end-to-end response time for compos-

ite service, we step-by-step refine this procedure by taking into account two important

factors in the practical competitive service market modeling: multiple candidates for a

single atomic service and the time-dependent behavior of the atomic service providers.

2.4 Market-based Availability Modeling

Section 2.2 focuses on the system performance modeling at the atomic service level,

and section 2.3 considers an important performance metrics at the composite service

level. In this section, we are going to discuss the stochastic analysis of a performance

metrics at the market level using Markov chain which is a random process well suited

to model the stochastic systems.

2.4.1 Discrete-Time Markov Chains

Markov chain is a particular type of random process, and is characterized by the

memoryless property, i.e., the state in the future only depends on the current state [13].

The Markov chain is represented as {X(t), t ∈ T}, where X(t) is a numerical value, and

its domain is referred to as the state space. In the Markov chain theory, the state space

is always discrete. T is the parameter space and it can be either discrete or continuous.

In the discrete parameter space, t is usually called as step. In the continuous parameter

space, t is usually called as time. A Markov chain with discrete parameter space is

referred to as discrete-time Markov chain (DTMC). The DTMC dynamics is controlled

by the one-step transition probability Pt[i, j]. It stands for the probability of reaching
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state j from i in one step and is given in Equation.2.8.

Pt[i, j] = Pr{X(t + 1) = j|X(t) = i} (2.8)

The value of Pt[i, j] is controlled by three factors: t, i and j. The homogeneous DTMC

removes the effect of t, which is

Pt1 = Pt2 ∀ t1 ∈ T and t2 ∈ T (2.9)

For the homogeneous Markov chain, we can just remove t from the transition prob-

ability for simplicity. Figure.2.4 shows a DTMC example composed of nine states,

{A,B,C,D,E, F,G, H, I}. The value associated with each transition represents the

one-step transition probability.

Figure 2.4 A discrete-time Markov chain

With respect to the DTMC shown in Figure.2.4, we number the states {A,B, C,D, E,

F, G,H, I} as {1, 2, 3, 4, 5, 6, 7, 8, 9} respectively. The corresponding matrix representa-
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tion is given in the following.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.4 0 0.6 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0.5 0.5 0 0 0

0 0 0 0 0.5 0 0.5 0 0

0 0.6 0 0 0 0 0 0.4 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The Markov chain dynamics at each step can be captured by a probability vector:

Pt = [Pt[1], ..., Pt[m]] and Pt[i] = Pr{X(t) = i} (2.10)

In the above equation, m represents the number of states in the Markov chain model. The

initial probability vector P0 at step 0 describes the system dynamics at the very begin-

ning, which is usually given as an assumption by the system modeler. The combination

of initial probability vector and the probability transition matrix uniquely determines

the probability vector Pt for every t [14]. This relationship is implemented through a

series of matrix multiplication.

Pt = Pt−1 × P =⇒ Pt = (Pt−2 × P) × P =⇒ Pt = P0 × Pt (2.11)

2.4.2 Market-Based Availability Modeling Using Markov Chains

Market-based availability is an important performance metrics for evaluating the

service market as a whole. With respect to a request,S = {AS1, . . . , ASi, . . . , ASn},
its market-based availability is measured as the probability for the request service to be

able to be fulfilled by at least one composite service provider in the market.
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Figure 2.5 A requested composite service with sequential pattern

Figure 2.5 shows a composite service example of S = {AS1, AS2, AS3}, which has

a sequential workflow pattern. With respect to this service request, we are going to

compute the availability for a market consisting of two composite service providers:

csp1 and csp2.

We model the system dynamics by defining the state as A = “a1a2a3”. a1 represents

the atomic service that is being processed and it can have value 1, 2 or 3. a2 represents

whether csp1 is able to deliver service Sa1 from its controlled atomic service providers.

If csp1 is able to fulfill the task, than a2 = 1; otherwise, a2 = 0. Similarly, a3 represent

whether csp2 is able to deliver service ASa1 from its controlled atomic service providers.

For instance, state 100 represents that both csp1 and csp2 fail to fulfill AS1 from their

respective controlled atomic service providers; state 311 indicates that both csp1 and

csp2 can fulfill AS3.

Figure.2.6 displays the constructed Markov chain model consisting of 12 states:{100,

101, 110, 111, 200, 201, 210, 211, 300, 301, 310, 311}. The constructed Markov model has

a layered topological structure which has following features:

• State i01 can only reach the states (i + 1)01 and (i + 1)00;

• State i10 can only reach the states (i + 1)10 and (i + 1)00;

• State i11 can reach all of the states in the next layer which is composed of the

states represented as (i + 1)a2a3.

Forming this type of layered topological structure comes from the following facts:
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Figure 2.6 The Markov chain model of the market-level availability for ser-
vice request S = {AS1, AS2, AS3}

• If a composite service provider fails to fulfill the i-th atomic service, then it is

meaningless for it to fulfill the (i+1)-th atomic service.

• If a composite service provider successfully finishes the i-th atomic service, it can

either successfully fulfill or fail to deliver the (i+1)-th atomic service.

After fixing the topological structure of a Markov chain model, we still need to obtain

its one-step transition probabilities which are obtained by analyzing the probabilistic

behaviors of the studied system.

The fact that state (i+1)01 is reachable from state i01 indicates that csp2 can deliver

the service ASi+1. Let Prf (CGi+1
2 ) denotes the probability that none of the atomic service

providers belonging to CGi+1
2 is available to serve ASi+1. In chapter 1, CGi+1

2 stands for

the set of atomic service providers controlled by csp2 for providing ASi+1. Prf (CGi+1
2 )

can be calculated as follows.

Prf (CGj
i ) =

∏
Prf (aspl) ∀aspl ∈ CGj

i (2.12)
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In Equation.2.12, Prf (aspl) denotes the probability of failure for aspl. Hence, we have

P[i01, (i + 1)01)] = 1 − Prf (CGi+1
2 ). (2.13)

From Equation.2.13, the transition probability of P[i01, (i + 1)00)] is computed as

P[i01, (i + 1)00)] = 1 − P[i01, (i + 1)01)] = Prf (CGi+1
2 ) (2.14)

Similarly, we have

P[i10, (i + 1)10)] = 1 − Prf (CGi+1
1 ) (2.15)

P[i10, (i + 1)00)] = Prf (CGi+1
1 ) (2.16)

The fact that state (i+1)11 is reachable indicates that at least one of the atomic service

providers in CGi+1
1 and at least one of the atomic service providers in CGi+1

2 are able to

serve ASi+1. Therefore,

P(i11, (i + 1)11) = (1 − Prf (CGi+1
1 ))(1 − Prf (CGi+1

2 )) (2.17)

The fact that (i+1)00 is reachable indicates that none of the atomic service providers in

CGi+1
1 and none of the atomic service providers in CGi+1

2 is able to serve ASi+1. Therefore,

P(i11, (i + 1)00) = Prf (CGi+1
1 )Prf (CGi+1

2 ) (2.18)

The similar analysis leads to the other remaining transition probabilities:

P(i11, (i + 1)01) = Prf (CGi+1
1 )(1 − Prf (CGi+1

2 )) (2.19)

P(i11, (i + 1)10) = (1 − Prf (CGi+1
1 ))Prf (CGi+1

2 ) (2.20)

Among the twelve states shown in Figure.2.6, states {100, 200, 300, 301, 310, 311} are

absorbing states. Once reaching an absorbing state, the system will not leave. With

respect to these six absorbing states, the states {100, 200, 300} represent the scenarios

where the market fail to meet the request of S = {AS1, AS2, AS3}; and the states
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{301, 310, 311} represent the scenarios where the market is able to meet the request

of S = {AS1, AS2, AS3}. The Markov chain model shown in Figure.2.6 belongs to a

special type of Markov chain, which is called as absorbing Markov chain [13]. We use

π[i, j] to denote the probability of being absorbed in an absorbing state j once starting

from the transient state j.

φ = πa(“301”) + πa(“310”) + πa(“311”) (2.21)

In Equation.2.21, φ represents the market-based availability; πa(“301”), πa(“310”) and

πa(“311”) represent the aggregation absorption probability for states “301”, “310” and

“311” respectively. Their computations are given as follows:

πa(“301”) = π(“101”, “301”)P0[“101”] + π(“110”, “301”)P0[“110”]

+π(“111”, “301”)P0[“111”] + π(“100”, “301”)P0[“100”]

(2.22)

In Equation.2.22, π(“101”, “301”) represents the absorption probability of state “301”

given a start state of “101”. P0[“101”] represents the initial probability of state “101”,

which is an input parameter given by the system modeler. For the Markov chain model

shown in Figure.2.6, only states “101”, “110”“111” and “101” can have nonzero val-

ues in the initial probability vector. This is why we only consider four starting states

in Equation.2.22. The computation of π(“101”, “301”) can use the standard proce-

dures based on fundamental matrix [15]. The physical meanings for other terms in

Equation.2.22 and the computation of πa(“310”) and πa(“311”) are similar.

2.5 Summary and Discussion

Competitive service market is proposed to study the interactions and competitive

natures among customers, atomic service providers and composite service providers. The
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research reported in this chapter aims to understand this relationship from the system

analysis perspective. We structure our modeling efforts at two levels in accordance

with the inherent hierarchy in the service market, which has the atomic service at the

bottom level and the composite service at the upper level. We investigate different

modeling approaches for each level. The queuing modeling at the atomic service level

functions as the building block for other analyses, while the market-based availability

analysis using DTMC provides an illustrative yet operational example for the stochastic

analysis at the market level. Performing this availability analysis aims to illustrate how

a generic service system is modeled and analyzed. Detailed probabilistic analysis has

been made to construct the transition matrix for the Markov chain model. Based on the

constructed Markov chain, we investigate how a performance metric, like availability,

can be analyzed over the service market. In practice, the concrete Markov model varies

with the studied system and the requested service. We can project that the size of

the state space can become quite large when the composite service involves a lot of

atomic services. The next step research along with this direction is to investigate the

applications of high-level modeling formalisms on the performance analysis of service

market [16]. The end-to-end response time computation procedure demonstrates how

the inherent complexities in the composite service can be taken into account. Modeling

the time-dependent behavior for a service system represents another challenge that has

to be meet in our future research [17].
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CHAPTER 3. A Scalable Storage Architecture to Support

Service Storage and Service Discovery

In the service market, a centralized service registry maintains a record for each reg-

istered service, which contains various types of pertinent information such as the corre-

sponding service provider and QoS attributes. Such information enables the published

service to be able to be discovered and invoked by a service composition protocol. How-

ever, the proliferation of services and their diverse realizations require the service registry

to be able to store a large amount of service-related information. The related service

discovery process also becomes a challenging task due to the existence of many candi-

dates for a single service request. These issue has not been fully explored in the current

service registry design [18][19]. In our previous work [7], we characterize the services

through quantifiable features, and classify services into separate clusters based on pat-

tern recognition algorithms [20]. This service clustering approach leads to a hierarchical

service management scheme to support the large scale service solution design. Based

on feature-based service characterization, we can encode both the registered services

and incoming service requests as bit strings, and thus transform the service discovery

problem into the string matching problem. This transformation enables us to use well-

established algorithms in this field [21][22]. Furthermore, we propose a service storage

architecture based on efficient yet widely-applicable data structures to support the stor-

age and service discovery process. The main contents of this chapter have been published

in [8].
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3.1 Quantifying Services With Features

Each service is characterized by a collection of features with a wide range of attributes

spanning from business oriented ones to system centric ones. These features belong to

two basic categories:

Functional features: these features are used to describe the basic functionalities of

the related service, e.g., shipping service;

Non-functional features: these features are related to a variety of constraints that

have to be satisfied while meeting the functional requirements.

Based on the practical service design experiences, we tend to take into account the

following service features which usually play critical roles in characterizing services [23].

Service availability quantifies the probability of being able to serve a request by one

or more service providers.

Service cost represents the price tag that is asked by the service provider for delivering

the related service. It usually is equivalent to the sum of the operation cost of

rendering the service and the net profit expected by the service provider.

Service interface defines the gateway for communicating with service consumers and

other service providers, it stipulates the rules for the service functionality to be

explored.

Service reliability measures the ability of a service provider to satisfactorily deliver

service in compliance with the enlisted functional and non-functional requirements

in a given time period.

Service response time is computed as the elapsed time between the time point of

receiving a service request and the time point of fulfilling the service functionality.
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Service security evaluates how the privacy of various participants are protected during

the life cycle of the service provisioning process.

Every selected feature is assigned with a numerical range over which we can score a

particular service. In the following example, we quantify the response time (T ) in the

scale of “1-5”. A service with smaller response time is assigned a higher score.

Table 3.1 Quantification procedure of service response time (T )

Quantitative range of T T score
T ≤ 25s 5

25s < T ≤ 50s 4
50s < T ≤ 75s 3
75s < T ≤ 100s 2

T > 100s 1

Based on the binary notation scheme,the numerically scored service feature can be

represented as a bit string. For instance, the l-th feature of ASi,j, an atomic service of

identity j and delivered by atomic service provider aspi, is the service response time and

gets a numerical score of 5 in the above quantification procedure. It is thus encoded as

a binary bit string of 0101. Hereafter, we use bsi,j
l to denote the bit string corresponding

to the l-th feature of ASi,j. By considering all of the related features, the service is also

represented as a bit string, the congregation of a collection of bit strings, each of which

corresponds to a single feature.

ASi,j ↔ bsi,j
1 . . . bsi,j

l . . . bsi,j
n (3.1)

In Equation.3.1, the whole string bsi,j
1 . . . bsi,j

l . . . bsi,j
n is referred to as a service param-

eter configuration, which encodes every related performance metrics for service ASi,j.

Every realizable service parameter configuration is published to the service registry as a

candidate for the service discovery process.

This feature-based bit string representation scheme works not only for the registry

services, but also for the service requests. The customers’ various requirements are rep-
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resented as the target score for the corresponding features used to characterize services.

The service discovery process is hereby transformed into a classical string matching prob-

lem which has been studied extensively [22]. The string matching-based service discovery

solution requires comparing every candidate service against the request. Accordingly,

the total computational cost depends on both the number of comparison operations and

the performance of each string matching operation. The algorithm design for the string

matching problem is beyond the research scope of this thesis. Our research focuses on

the storage architecture design for the service registry that can reduce the number of

comparison operations.

3.2 Feature-guided Architecture Design

In the competitive service market, the number of services in terms of offered func-

tionalities are limited. However,the number of potential service realizations in terms of

their respective service parameter configurations can be very large. This is a reasonable

hypothesis because a service provider is able to provide the same type of service with dif-

ferent parameter configurations. For instance, a server can serve requests with different

response time values. Consider a service characterized by 6 features, and each feature is

scored on a scale of “1-5”. Potentially, there exist 56 service parameter configurations

for this single service. Formally, we use φ = {AS1, . . . , ASm} to denote the set of atomic

services in a competitive service market. With respect to service ASi, the set of its

corresponding service parameter configurations is referred to as a service group and is

denoted as Si. The union of Si, i.e., ∪i=m
i=1 Si, is denoted as G.

In a storage architecture, φ and G are stored separately, and the storage requirement

for φ is less demanding than the one for G. The mapping relationship between ASi ∈ φ

and Si ⊆ G suggests that the former can be used to index the latter. In the storage

architecture design, keeping track of the mapping relationship between service and the
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corresponding service group aims to support the service discovery process, which will be

discussed later. Our design is a hybrid storage architecture (HSA) that is able to store

both φ and G while supporting an efficient service discovery process. HSA, illustrated

in Figure 3.1, is composed of an service array used to store the set φ, and a collection

of storage units used to store the set G.

Figure 3.1 Hybrid storage architecture for service registry

Due to the limited number of services, the service array is based on the normal data

structure,like array. The i-th entry of the service array stores the identity of a service,

e.g., ASi, and maintains a pointer to the storage unit i, which stores the service group Si.

Since the size of a storage unit is usually very large due to the combinatorial parameter

configurations, the focus of this section centers around the design of these storage units.

In our research, we propose to use counting Bloom filter, a probabilistic data structure,

to build the storage unit.

3.2.1 Standard Bloom Filters and Counting Bloom Filters

A standard Bloom filter (BF) is a hashing-based data structure representing a set

of elements [24]. Compared to the hash table, BF can reduce the space requirement

further and allows using simpler hash functions, which saves computational cost for

lookup-intensive operations [25]. A BF is composed of a bit array denoted as B and

g independent hash functions Fh = {h1( ), . . . , hg( )}. The bit array B is of length q

and is initialized as 0 for all of the entries. Each hash function maps an element in
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A = {a1, a2, . . . , an} to an array entry. Hereafter, we use BFA to denote the BF for set

A, and use BA to denote the related bit array. Algorithm 3.1 lists the procedures of

constructing a Bloom filter representing a given set, and Figure 3.2 shows the constructed

BFA for set A.

Algorithm 3.1 Constructing Bloom filter for set A(‖A‖ = n)

1: for i = 0 to q do
2: BA[i] = 0;
3: end for
4: for i = 0 to n do
5: for j = 0 to g do
6: p = hj(ai);
7: if BA[p] = 0 then
8: BA[p] = 1;
9: end if

10: end for
11: end for

Figure 3.2 A Bloom filter example

A BF has two structural properties resulting from its construction scheme.

Property 1 : If a ∈ A, then the construction process should mark every hashed po-

sition in the bit array with 1. Hence, for a given query a, if any of the hashed

positions in BA for a is found to be 0, then a /∈ A.

Property 2 : Given a query a /∈ A, it is possible to find that every hashed position of

a having been marked with 1 in BA.

Given an element a and a set A, determining whether a ∈ A is referred to as set

membership evaluation which is used in a lot of applications [26]. A trivial approach
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for the set membership evaluation is to compare each element belonging to A with a

until we find a match, which involves a computational complexity of O(‖A‖), where

‖A‖ represents the size of set A. Instead of comparing each element of A with a, the

BF-based set membership evaluation computes every hashed position of a and checks

whether it has been marked with 1. According to Property 1, an all negative answer

can be used to remove the possibility of a ∈ A with certainty. On the other hand,

implied by Property 2, an all positive answer cannot ensure that a ∈ A due to the

possible overlaps in the hashed positions among different elements belonging to A. This

issue is known as false positive yielded by BF-based set membership evaluation [25]. The

false positive probability will decrease exponentially when g increases, which makes the

influences of false positives negligible in real applications [27].

The overlaps in the hashed positions among different elements make it unable to

support BF-based deleting operation on a set. For instance, deleting ai from A requires

the BF to reset every hashed position BA[hl(ai)] : ∀l = 1, . . . , g to zero. If hl(aj) =

1 for j = i, then the deleting operation of ai will affect the associated hashed position

of another element aj. This will result in an incorrect BF representation for aj, whose

g hashed positions should always be marked as “1”. To address this issue, counting

Bloom filter (CBF), an extension of the BF, is developed by setting the entry attribute

as a counter value rather than a bit as in BF [28]. During the construction of a CBF,

every hashed position for an element is increased by “1” rather than marked as “1”. A

counterpart of Figure 3.2 is shown in Figure 3.3, which illustrates the CBF representation

for set A. The value of each array entry equals the number of input arcs, i.e., the number

of elements hashed into this entry. Besides the capability of supporting the deleting

operation, the introduction of counter values also enables the CBF to keep track of

the number of elements having been hashed into a given position. This property will be

used in the latter for the CBF-based storage unit design. The set membership evaluation

based on a CBF is similar to the BF: if any of the g hashed position of query a is found
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to be 0 in BA, then a /∈ A.

Figure 3.3 A counting Bloom filter example

3.2.2 Storage Unit Design Using Counting Bloom Filters

In this section, we will discuss the storage unit design for the service groups. Each

unit stores a service group for a given service, and consists of two parts: CBF-based

counter value array and a collection of linked lists. Each linked list is indexed by an

array entry of CBF. Compared to the normal CBF, each entry not only stores the counter

value, but also contains a pointer to the associated linked list. This storage design is

based on the concept proposed in [29], which is referred to as pruned fast Hash table

in the original paper. The major structural property of this design is the placement

of element: with respect to an element and the set of corresponding hashed positions,

the element is stored in the linked list whose length is the smallest according to the

counter values of these hashed positions. In order to fulfill the functionality of service

discovery, the HSA needs to keep track of the chaining relationships connecting service,

service parameter configuration, and service provider. This motivates our extension of

the classical CBF configuration: as shown in Figure. 3.4, each node in the attached list

stores the bit string representing a service parameter configuration and its associated

service provider. Figure. 3.4 uses the storage unit structure for service group S1 as an

illustrative example.

S1 is composed of four service parameter configurations, which are denoted as AS1
1 ,

AS1
2 , AS1

3 and AS1
4 respectively. AS1

2 is provided by SP3, AS1
3 is provided by SP1. SP2
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Figure 3.4 CBF-based storage unit for service group S1

is able to deliver two different service parameter configurations, AS1
1 and AS1

4 . Here,

with respect to ASi
j, the superscript i is used to identify the service and corresponding

service group; the subscript j denotes the j-th service parameter configuration for this

service. SPj stands for the j-th atomic service provider being able to deliver the service

ASi corresponding to Si. Note that we use aspl to represent the l-th atomic service

provider in Chapter 1 and 2, where l works as a global index. Here, the subscript l of

SPl can be thought of as a local index within the scope of Si. To avoid the confusion,

we also use SP rather than asp here. In the example, there are three hashed positions

for AS1
3 , which are 3, 7 and 10. The associated counter values are B[3] = 2,B[7] = 3

and B[10] = 2 respectively. The smallest counter value among the hashed positions of

AS1
3 is B[3], and thus the element is placed in the linked list pointed by B[3]. Note that

the counter value stored in an array entry does not necessarily reflect the true length

of its attached linked list. For instance, B[5] = 3, but its attached linked list is empty.

Algorithm 3.2 illustrates the operation of inserting a service instance into the storage

unit for its corresponding service group.

In Algorithm 3.2, i is the identity of the target storage unit for the service group Si
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Algorithm 3.2 insertCBF(Si, ASi
j): Inserting a service parameter configuration into

the CBF-based storage unit

1: Initialize D as a zero array of size gi;
2: for y = 1 to gi do
3: D[y] = hi

y(ASi
j);

4: Bi[D[y]] = Bi[p[y]] + 1;
5: end for
6: m = argmin(Bi[D[y]]), ∀y = 1, . . . , gi;
7: Attach a node consisting of ASi

j and SP (ASi
j) to listm of BF i;

corresponding to ASi. The CBFs corresponding to different service groups are heteroge-

neous in their respective parameter settings. Hence, we use gi to represent the number

of hash functions used by BF i and hi
y to represent its y-th hash function. The operation

of line 6 is to locate the linked list with the smallest counter value among gi hashed

positions for service parameter configuration ASi
j. At line 7, listm represents the linked

list pointed by the m-th array entry, and SP (ASi
j) stands for the service provider for

ASi
j, which also needs to be stored. Algorithm 3.3 lists the HSA-based service discovery

protocol. In accordance with the service requirements analysis, the service discovery

protocol can be separated into two steps. First, the service discovery process needs to

find the service that can fulfill the functional requirements; secondly, the service discov-

ery process needs to pinpoint the candidate service parameter configuration which can

fulfill the non-functional requirements affiliated with this service request. Therefore, the

HSA-based service discovery process is separated into two stages:

1. Determine the storage unit for the service group that can fulfill the functional

requirements of a service request.

2. Discover the service parameter configuration that can fulfill the non-functional

requirements of a service request from the storage unit obtained in the first stage.

In Algorithm 3.3, RSf denotes the service request represented by its functional re-

quirements. RSnf denotes the bit string representing the non-functional requirements
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Algorithm 3.3 hsaServiceDiscovery(RSf , RSnf ): HSA-based service discovery

1: i = FindIndex(RSf );
2: if i = null then
3: print “There is no match to the service request in terms of the functional re-

quirement.”
4: return
5: else
6: Initialize D as a zero array of size gi;
7: for y = 1 to gi do
8: D[i] = hi

y(RSnf );
9: end for

10: m = argmin(Bi[D[y]]),∀y = 1, . . . , gi;
11: if D[m] = 0 then
12: print “There is no match to the service request in terms of the non-functional

requirements.”
13: return
14: else
15: d ← LinkedListSearch(listm, RSnf );
16: if d = null then
17: print “d.sp is the service provider.”
18: return
19: else
20: print “There is no match to the service request in terms of the non-functional

requirements.”
21: return
22: end if
23: end if
24: end if

of the service request. The operations listed between line 1 and line 5 belong to the first

stage of the HSA-based service discovery protocol. As we discussed above, the i-th entry

of the service array stores the identity of a service. The operation of FindIndex iterates

over the service array and returns the service identity that can satisfy the functional re-

quirement of the request. A returned null value of i indicates that there does not have a

service group being able to meet the functional requirements of the request. The array

of D stores the hashed positions for the request. In accordance with the set membership

evaluation criterion of CBF, we check whether RSnf can find a match in the service
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group based on the smallest counter values in array D. These are the operations listed

at lines 10 and 11. A positive answer indicates that it is possible to have a candidate

service parameter configuration matching the request. This operation is a fast lookup

without 100% guarantee due to the false positives of CBF. A nonzero value of D[m]

leads to the searching operation by traversing the associated linked list. Note that the

smallest element of D not only works for evaluating the element membership but also

helps selecting the linked list to be searched. LinkedListSearch represents a standard

searching operation over a linked list [26]. The returned node is denoted as d, and d.sp

stands for the service provider identity stored in d. A returned null node indicates that

there is no match to the request and the original positive feedback is caused by false

positives.

Algorithm 3.3 is composed of three major operations: (1) the operation of FindIn-

dex determines the particular service for fulfilling the requested functional requirement,

the computational cost of which depends on the number of registered services; (2) the

operations at lines 6−10 perform the set membership evaluation and chooses the linked

list to be searched, the computational cost of which depends on the number of hash

functions, i.e., gi; (3) the computational cost of searching operation of LinkedList-

Search depends on the length of the linked list bounded by Bi[D[y]]. Among these

three operations, LinkedListSearch contributes the most to the total computational

cost because neither the number of registered services nor the number of hash functions

will be a big value.

3.2.3 Performance Analysis of the HSA-based Service Discovery Process

As discussed previously, the bit string-based service discovery process requires com-

paring a service request with every candidate service parameter configuration. The

performance of this type of service discovery process is affected by two factors: the

computational cost of each string matching operation and the number of comparison
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operations. Our design motivation is to reduce the number of these comparison oper-

ations. The focus of this section is to quantitatively analyze the performance of the

HSA-based service discovery process in terms of the expected number of comparison

operations.

An inherent structural feature of the CBF-based storage unit is to distribute the

candidate service parameter configurations into a set of linked lists. Moreover, the con-

struction of each linked list is guided by the counter value stored in the array. Therefore,

the second stage of the HSA-based service discovery process, which consists of a number

of comparison operations, is conducted over these distributed linked lists. Let Cd denote

the number of comparison operations required for the CBF-based storage unit design,

then we have

E[Cd] = 0.5 × Ld

2
+ 0.5 × γ × Ld = (0.25 + 0.5γ)Ld (3.2)

In Equation.3.2, Ld represents the expected length of the linked list for the CBF-based

storage unit design and γ represents the false positive probability for the CBF-based set

membership evaluation. With respect to a given service request, we assume that the

probability of being able to find a match is 0.5. If a request does not have a match in

the set of the candidate service parameter configurations, the CBF-based set member-

ship evaluation should be able to block the request at the very beginning without even

initializing the search operation on the linked list. However, due to the false positives of

the CBF, a search operation which is certainly to fail may still be launched. This failed

operation cannot find match after traversing the whole linked list. If a request does

have a match in the set of the candidate service parameter configurations, an average

Ld/2 comparison operations have to be performed. This is due to the assumption that

the position of that particular match in the linked list follows the uniform distribution.

This analysis leads to Equation.3.2. On the other hand, without the help of CBF-guided

distributed architecture design, a normal storage unit design puts all of the candidate
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service parameter configurations in a single linked list. Let Cn denote the number of

comparison operations required for the normal storage unit design, then we have

E[Cn] = 0.5 × n

2
+ 0.5 × n = 0.75n (3.3)

The analysis for the normal storage unit design is similar to the above. Here, the length of

the linked list is n, the number of candidate service parameter configurations. Moreover,

without the help of the CBF-based set membership evaluation, all of the requests which

do not have a match in the set of the candidate service parameter configurations, have

to traverse the whole linked list before being able to find that there does not exist a

match. Equation.3.2 differs with Equation.3.3 on two parts: Ld versus n; and 0.5γ

versus 0.5. The first part comes from the fact that the CBF-based storage unit provides

a distributed structure. The second part comes from the CBF-based set membership

evaluation. Both parts contribute to make E[Cd] being smaller than E[Cn].

3.2.4 An Analytical Performance Metrics to Evaluate the HSA-based Ser-

vice Discovery Process

In the above, we discuss the difference between E[Cd] and E[Cn], which directly de-

pends on the expected length of the linked list to be searched, Ld. However, this variable

cannot be analytically formulated and requires numerical simulation when adopting it to

evaluate the system performance. In this section, we will investigate an analytically solv-

able metrics, which can enable the system performance to be predicted without running

experimental simulations.

As shown in Algorithm 3.3, if every hashed position is discovered to be nonempty,

then we will search the linked list pointed by the entry whose counter value is the

smallest among all of the hashed positions. Accordingly, the number of comparison

operations invoked in our approach is bounded by the counter values. Hence, we use the

expected counter value as the evaluation metrics. In the following, we illustrate how to
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get an analytically solvable formula for the expected counter value based on probabilistic

analysis. Let V denote the counter value, we have

E[V ] = E[E[V |g̃ = i]]. (3.4)

Equation.3.4 computes E[V ] using iterated expectation. E[V |g̃ = i] represents the con-

ditional expectation of E[V ] when there have i different hashed positions. It is computed

as ng/i. Here, n represents the number of candidate service parameter configurations.

We use g̃ to denote the number of different hashed positions in order to differentiate it

with g, i.e., the number of hash functions to be used. Therefore, E[V ] is computed as

follows:

E[V ] = E[E[V |g̃ = i]]

=

g∑
i=1

E[V |g̃ = i]Pr(g̃ = i)

=

g∑
i=1

ng

i
Pr(g̃ = i) (3.5)

In Equation.3.5, Pr(g̃ = i) represents the probability that g hashed functions produce

i different positions, which is computed in Equation.3.6.

Pr(g̃ = i) =

(
q

i

)∑i
a=0(−1)a

(
i
a

)
(i − a)g

qg
(3.6)

In Equation.3.6, the item of
(

q
i

)
represents the number of combinations of choosing i po-

sitions from q available entries; the item of
∑i

a=0(−1)a
(

i
a

)
(i − a)g represents the number

of permutations of putting g hashed results into i positions and none of these i posi-

tions is empty, which is derived based on the generating function for permutation [30];

the item of qg represents the number of combinations of g hashed positions. In [29],

Pr(g̃ = i) is derived based on the method of induction. In this research, we derive

Pr(g̃ = i) from a different perspective and obtain a more compact analytical formula

shown in Equation.3.6. Substituting Equation.3.6 into Equation.3.5, we have

E[V ] =

g∑
i=1

ng

i

(
q

i

)∑i
a=0(−1)a

(
i
a

)
(i − a)g

qg
(3.7)
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Equation.3.7 indicates that E[V ] is a function of n and g which are the system parameters

of the CBF. Hence,E[V ] functions as an performance metrics that can be computed

beforehand and is well suited to predict the system performance. In the following, we

conduct a simulation-based experimental study to compare the expected counter value

with the expected length of the linked list, which is directly related to the number of

comparison operations.

3.2.5 Experimental Study

In this section, we will investigate the relationship between the expected counter

value and the expected length of the linked list to be searched. In the experiment, we

consider a variety of parameter settings for the CBF along with two different numbers of

service parameter configurations. For illustration purposes, we report both the expected

counter value and the expected length of the linked list to be searched.

Table 3.2 20000 candidate service parameter configurations

Expected counter value
q = 90 q = 95 q = 100 q=105 q=110

g = 4 848 794 761 729 695
g = 6 1269 1211 1120 1099 1036
g = 8 1688 1603 1515 1427 1367
Expected length of the linked list to be traversed

q = 90 q = 95 q = 100 q=105 q=110
g = 4 493 459 442 438 431
g = 6 672 673 583 563 558
g = 8 887 851 804 806 740

Table.3.2 reports a case where there have 20000 candidate service parameter config-

urations. The upper part of the table reports the expected counter value computed by

Equation.3.7 for different parameter settings. The lower part of the table reports the

expected length of the linked list to be searched. In Table.3.3, we report a case where

there have 40000 candidate service parameter configurations, and the applied parameter
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settings are the same as in Table.3.2.

Table 3.3 40000 candidate service parameter configurations

Expected counter value
q = 90 q = 95 q = 100 q=105 q=110

g = 4 1725 1598 1540 1471 1407
g = 6 2562 2449 2303 2204 2109
g = 8 3352 3229 3092 2867 2776
Expected length of the linked list to be traversed

q = 90 q = 95 q = 100 q=105 q=110
g = 4 997 968 842 873 825
g = 6 1343 1323 1285 1105 1064
g = 8 1707 1704 1653 1587 1437

As shown in Table 3.2 and Table 3.3, the expected length of the linked list for

every system parameter setting is much smaller than n, i.e., Ld � n. This fact helps

supporting the claim that E[Cd] � E[Cn]. The experimental results also show that every

expected length of the linked list is smaller than the corresponding expected counter

value. In some cases, the difference is large. Therefore, the expected counter value

should be treated as a conservative yet applicable approach to estimate the expected

length of the linked list to be searched, which directly controls the number of comparison

operations. Moreover, although the expected counter value is larger than the expect

length of the linked list, it is still smaller than n. Therefore, the analytical formula for

predicting the system performance, which is based on the expected counter value, keeps

track of the difference between the two storage designs in terms of the expected number

of comparison operations.

Based on the results reported in Table 3.2 and Table 3.3, a larger size of counter

array for the CBF, i.e., q, reduces both the expected counter value and the expected

length of the linked list to be searched. This is due to the fact that a larger counter

array allows more linked lists to be built, which leads to a more distributed storage

configuration. Although the total storage requirement is still the same, the expected
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number of comparison operations can be reduced accordingly. In practice, the counter

array of CBF can be maintained in a high-bandwidth and small on-chip memory [29].

This makes the computation of hash functions very fast, which enables the composite

service provider to block the request very quickly if it gets a negative answer from the

CBF-based set membership evaluation. This feature also helps the customer to decide

whether to modify the request or just quit the market in a very short time period, which

is a desirable characteristic in a competitive business environment. On the other hand,

the size of on-chip memory limits the size of counter array that we can use. Therefore,

it is not feasible to keep increasing the size of counter array for CBF without limitation.

The construction scheme of CBF results in the increments of the counter values

when we use more hash functions. This fact is reflected by the results shown in both

tables. Nevertheless, Bloom filter theory suggests that the false positive probability

decreases exponentially when we increase the number of hash functions. According to

Algorithm 3.3, the HSA-based service discovery protocol decides whether to block the

request based on the CBF-based set membership evaluation. A small false positive

probability is always desirable for this kind of functionality. Therefore, choosing the

number of hash functions should be treated as a design trade-off that balances different

factors.

3.3 Summary and Discussion

From the perspective of service science and engineering, our contributions in this

chapter are threefold. First, after discussing our previous work on feature-based ser-

vice quantification, we distinguish between the concept of service and the concept of

service parameter configuration in terms of functional requirements and non-functional

requirements. Further, we design a hybrid storage architecture using counting Bloom

filter. Rather than focusing on the storage solution only, we also formalize the service



45

discovery protocol based on the proposed architecture.

The proposed storage architecture still has several limitations that need to be lifted

in the future research. Regarding the HSA, the counter values and the associated linked

lists for each storage unit are configured during the CBF building process based on

the existing service group. If a service parameter configuration is newly created and is

required to be added into the related storage unit, then the CBF and its related linked

lists may have to be rebuilt in order to allow the service discovery protocol perform

correctly. This rebuilding operation will cost a lot of computational resources if there

are frequent service insertions. An incremental insertion algorithm, proposed by Song

et.al [31], can be applied to support dynamic element insertion. Another approach

is to design storage unit based on dynamic Bloom filter, which supports the dynamic

set management and aims to control the false positive probability even the set size

increases [32].

In [7], we develop a pattern recognition-based service clustering scheme to organize

the services in a hierarchical structure to accelerate the service discovery process. This

technique can be used to refine the HSA design. Instead of using a single CBF-based

storage unit to store the whole service group corresponding to a given service, we can

build a set of storage units with each of which storing a service cluster decomposed

from the service group. Hence, the service discovery process will be performed on a

smaller sized storage unit. This increased granularity can improve the performance of

service discovery by reducing the number of comparison operations further. The core

idea underlying this service clustering-based HSA design is to build a more distributed

storage structure compared with the current HSA. However, the chaining relationships

connecting service, service group and service cluster need to be carefully maintained in

order to support the indexing and discovery operations.
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CHAPTER 4. Design Service Level Agreement for

Competitive Service Market

In the competitive service market, the business relationships between a composite

service provider and its controlled atomic service providers are framed in terms of the

service level agreements (SLAs). Every composite service provider signs a SLA with each

of its controlled atomic service provider. Without signing SLA with an atomic service

provider, the composite service provider cannot include the related atomic service in the

service composition process.

From the system management perspective, a SLA provides parameters that a sys-

tem manager can use to discover, invoke and monitor various types of resources during

the service provisioning process. In a variety of application domains, such as wireless

network management and multimedia content delivery, SLA has been used to deliver

services that both meet the customer’s QoS requirements and satisfy the system re-

source constraints [33][34][35]. In the field of services computing, a SLA-based resource

management system for the enterprise information architecture is investigated in [36].

In this research, the authors propose a queuing-based performance prediction scheme

to support the service selection while ensuring that the realized QoS metrics match the

pre-determined SLA specifications.

Our research focus is on the SLA design in the context of competitive service market.

To the best of our knowledge, most of the existing works on the SLA design is to model

the SLA establishment as a negotiation process [37][38][39]. Due to the complex business
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dynamics of a competitive service market, the negotiation-based SLA design protocol

cannot capture every possible scenario during the life-cycle of a service market. We

will address this issue by identifying different SLA design patterns and investigate their

respective design methodologies.

We start this chapter by introducing the constituent components of the SLA. Sec-

ondly, we identify two essential SLA design patterns in the context of competitive service

market and discuss their respective design methodologies. Thirdly, we build a stochastic

model for the dynamic business relationships framed by coexisting SLA design protocols

and derive a set of performance metrics that can help market players to make strategic

and operational decisions.

4.1 Service Level Agreement: the Constituent Components

and the Basic Design Patterns

A generic SLA structure is specified in terms of three components: service identity,

QoS metrics and service cost [40][41][42]. In the current research, we focus on the SLA

design issues between a composite service provider and its controlled atomic service

providers. Hence, the service identity,e.g., ASi stands for the atomic service delivered

by the related atomic service provider. Each service is associated with a QoS metrics

set developed from various evaluation perspectives, such as availability, response time

and security level,etc. The QoS metrics set for a given service ASi is denoted as Qi =

{Q1, . . . , Qn}, where n represents the number of QoS metrics to be considered and

Qj denotes the j-th QoS metrics. In the competitive service market, each service can

have multiple providers, which are heterogeneous in terms of the realization of each

QoS metrics. A particular service provider aspt of ASi assigns a specific value to each

metrics, e.g., Qj. This assignment is based on the capability of service provider itself

and its coordination with the service purchaser. For instance, a data center determines
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its average response time based on the combined hardware software capability and the

predicted incoming rates of the requests. We use QV t
i = {QV t

i,1, . . . , QV t
i,n} to store these

values, where QV t
i,j is the value for the j-th QoS metrics, Qj assigned by aspt with respect

to service ASi. QV t
i is referred to as QoS value set. A signed SLA instance is therefore

formulated as a triple SLA = (ASi,QV t
i,Pi), where ASi indicates the service to be

delivered. The signed SLA obligates the involved atomic service provider to deliver the

service in accordance with the stipulated QoS value set, i.e., QV t
i, while the composite

service provider pays the listed service charge, i.e., Pi. Naturally, the service charge

should cover the operation cost of atomic service provider while generating a certain

amount of profit to itself.

4.1.1 The SLA Design Patterns

Bilateral negotiation is one of the most commonly used decision making processes in

the business world and fits to the SLA design scenario where there only have one service

seller and one service purchaser [43]. Figure.4.1 displays the bilateral negotiation pattern

for the SLA design. The arrows at both ends reflect the dynamics of offer and counter

offer throughout the bilateral negotiation process.

Figure 4.1 Bilateral negotiation pattern of SLA design

Figure.4.2 is the activity diagram of the bilateral negotiation process [44]. Besides

the essential decision making processes made on both the seller side and the purchaser

side, we also factor in the negotiation deadline. This is due to the reason that the

negotiation will not continue forever in practice. When implementing a negotiation
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protocol, this type of negotiation deadline is instantiated as the maximal number of

negotiation iterations.

Figure 4.2 Activity diagram for the bilateral negotiation-based SLA design

A basic characteristic of bilateral negotiation process is that the reached agreement

only reflects a compromised result after several rounds of bargaining. It is ad-hoc and

very hard to be predicted. In terms of the SLA design in the competitive service market,

this type of uncertainty indicates that the service cost or the QoS value set cannot

be determined beforehand. Under some scenarios, it is necessary for the composite

service provider to reach a target for a specific QoS metrics over a particular service.

For instance, composite service provider cspo needs to ensure that at least one of its

controlled atomic service providers is able to deliver an atomic service with the mean

time between failure (MTBF) being longer than two hours. We term the related design

problem as target-oriented SLA design, which is the second type of SLA design pattern
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to be discussed in this research. In order to ensure signing a SLA with a predetermined

target, having more than one candidate service providers is preferable. Comparing with

the bilateral negotiation-based SLA design featured as a one-to-one business relationship,

the target-oriented SLA design tends to involve multiple service providers. The auction

process fits naturally to this type of business scenario with twofold features: one-to-many

relationship and a predetermined target need to be reached [45].

Figure 4.3 An example of buyer-dominant auction for the SLA design

Figure.4.3 is a conceptual diagram of the auction process, where we have one service

purchaser which stands for the composite service provider in the competitive service

market, and multiple atomic service providers.

Figure.4.4 is the activity diagram for the auction process. A synchronization transi-

tion is included to ensure every invited seller will be considered in the auction protocol.

Introducing this mechanism is important due to the possible communication delay in

the real service market.

From the viewpoint of economic theory, the difference between the bilateral negotia-

tion and the auction is far from clear [46]. For instance, a one-to-many auction process

can be simulated using multiple one-to-one bilateral negotiation processes. The indus-

trial practices and empirical evidence show that the bilateral negotiation can be used to
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Figure 4.4 Activity diagram for the target-oriented SLA design pattern us-
ing auction

establish very complicated business relationships, which usually involve the bargaining,

estimation and concession. On the other side, the auction process performs well to meet

a well-established business target by exploiting potential competitions.

4.2 Negotiation-based Multi-attributes SLA Design Using

Bayes Estimator

In the practical SLA design, price and quality-of-service (QoS) are two essential

components that need to be considered. As we discussed previously, QoS is composed

of a set of performance metrics. In practice, this set of metrics can be aggregated into

a quality level (L) which is treated as an umbrella QoS index dedicated to capture the

whole set of related performance metrics in a unified way. A typical formulation of



52

quality level is given in Equation.4.1.

L =
i=n∑
i=1

wiqi (4.1)

In Equation.4.1, wi stands for the weight of the corresponding QoS metric qi. The

exact formula of Equation.4.1 and the weight values can vary by the studied system. In

this research, we just assume the existence of aggregated quality level. A SLA design

taking both price tag and quality level into account is referred to as a multi-attributes

SLA design. In this section, we are going to discuss the concrete design issues for the

negotiation-based multi-attributes SLA design using Bayes estimator.

Performing as autonomous agents in the competitive service market, both composite

service providers and atomic service providers hold private knowledge over their respec-

tive business goals, operation costs and even social responsibilities. This knowledge

comes from the understanding of its own system dynamics and the accumulated experi-

ences learned from interacting with other agents. For example, from the profit-oriented

perspective, a higher selling price indicates a larger profit margin to an atomic service

provider. Nevertheless, a higher selling price will also reject the potential service pur-

chasers and cause future losses. Delivering service with higher quality level can attract

the potential service consumer but the associated operation cost may counteract those

positive effects. In the real business world, there always exists a complicated balance

point between increasing and decreasing in terms of both price and quality level. This is

especially true when we not only consider an agent’s own business interest but also take

into account its relationships with other market players. Based on this knowledge, an

agent should be able to make an evaluation about how to maximize its business benefit

from doing business with other agents. In terms of the price and quality level which

characterize the business relationship connecting a composite service provider and an

atomic service provider, this evaluation is represented as an optimal utility pair :

• With respect to a given atomic service, a composite service provider holds a pair
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of quality level and price, which can return itself the maximal business benefit by

purchasing this service from the atomic service provider.

• With respect to a given atomic service, an atomic service provider holds a pair

of quality level and price, which can return itself the maximal business benefit by

selling this service to the composite service provider.

For notation purposes, the optimal utility pair for an atomic service provider, aspi, is

denoted as θi = (θi
p, θ

i
l), where θi

p and θi
l represent the service price and the quality level

in an optimal SLA configuration from the aspi’s perspective. Similarly, the optimal

utility pair for a composite service provider,θo = (θo
p, θ

o
l ), where θo

p and θo
l represent

the service price and the quality level in an optimal SLA configuration from the cspo’s

perspective. In a competitive service market, this type of information tends to be hidden

from other agents.

Naturally, both a composite service provider and an atomic service provider would

like to sign a SLA with specifications being near to their respective optimal utility pairs.

Therefore, in the context of SLA design, the bilateral negotiation process conducted

between a composite service provider and an atomic service provider is characterized by

a process of making concessions from the optimal utility pairs on both sides. From the

viewpoint of a negotiation agent, if the optimal utility pair of the negotiation counterpart

is known, then it can develop a strategy to maximize its utility. From the game theoretic

perspective, this is to transfer a game of incomplete information to a game of complete

information.

In our research, we assume the accessibility of public information resources, which

enables an agent to build a subjective evaluation of its negotiation counterpart. Fur-

thermore, the offer proposed by the negotiation counterpart constitutes additional infor-

mation that can be exploited. The combination of pre-owned subjective evaluation and

updated information can be efficiently utilized under the framework of Bayesian analy-
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sis [47][48]. We formulate the SLA design scheme between cspo and aspi in Algorithm.4.1

which includes a Bayes estimator in each negotiation iteration.

Algorithm 4.1 Bayes estimator-based SLA design

1: l = 1, η = 0;
2: Initialize θ̂o;
3: while (k ≤ K) and (η = 0) do

4: α = calOfferi(θi, θ̂o)
aspi informs cspo of its offer: α;

5: η = evaOffero(θ
o, α);

6: if η = 1 then
7: Return (SLA is signed in terms of α);
8: end if
9: θ̂i = estOUP(α);

10: β = calOffero(θ
o, θ̂i)

cspo informs aspi of its counter offer: β;
11: η = evaOfferi(θ

i, β);
12: if η = 1 then
13: Return (SLA is signed in terms of β);
14: end if
15: θ̂o = estOUP(β);
16: k = k + 1;
17: end while
18: if {η = 0} then
19: aspi does not sign SLA with cspo;
20: end if

In Algorithm 4.1, lines between 4 and 16 represent the negotiation conducted at each

iteration. In reality, the negotiation cannot continue forever. Hence, we let K denote

the maximum acceptable rounds of negotiation. η is a control variable monitoring the

negotiation status. Once an agreement is reached, η will be switched to 1 and the

algorithm will jump out of the while loop. If both agents cannot reach an agreement

within the maximal number of iterations, then no SLA will be signed. At each iteration,

each negotiation agent has two essential operations:

• evaOfferi for aspi and evaOffero for cspo. This set of operations is to evaluate

whether accept the counterpart’s offer or not. For instance, if the counterpart’s



55

offer lies within a certain range, then it will accept the offer. The implementation of

evaOfferi can differ with the implementation of evaOffero due to their respective

utilities.

• estOUPi for aspi and estOUPo for cspo. This set of operations is to estimate

the optimal utility pair of the negotiation counterpart.

• calOfferi for aspi and calOffero for cspo. This set of operations is to calculate

the offer based on a given strategy.

The operations of evaOfferi(o) and calOfferi(o) will be discussed in more details later.

Since Algorithm.4.1 assumes that it is aspi to initialize the negotiation, and thus the

estimation of θo has to be manually setup at the beginning of the first iteration. This is

what line 2 represents and can be calculated using the prior subjective estimation of θo

by aspi. The core of Algorithm.4.1 is the Bayes estimators: estOUPi and estOUPo.

In the following, we discuss how the Bayes estimator is derived in the context of bilateral

negotiation.

Due to the symmetrical format, we just look into the estimation of θi from the

perspective of cspo. The estimation quality is evaluated based on a selected criterion,

like the quadratic loss function, i.e., L(θ̂i, θi) = (θ̂i−θi)2. Here, θ̂i denotes the computed

value based on Bayes estimator. It should be able to minimize the expected value of

L(θ̂i, θi) given updated information: the offer of aspi, i.e., α.

θ̂i = argmin E[L(θ̂i, θi)|α]

= argmin E[(θ̂i − θi)2|α] ∀θ̂i ∈ Φ (4.2)

By re-writing θ̂i − θi as θ̂i + E[θi|α] − E[θi|α] − θi, we have

E[(θ̂i − θi)2|α] = y1 + y2 + y3 (4.3)

where

y1 = E[(θ̂i − E[θi|α])2|α]
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y2 = E[(E[θi|α] − θi)2|α]

y3 = 2E[(E[θi|α] − θi)(θ̂i − E[θi|α])|α]

Note that θ̂i does not have any control over the computation of item y2, and y3 = 0 since

E[(E[θi|α] − θ̂i)(θi − E[θi|α])|α] = 0.

Thus,

θ̂i = argmin E[(θ̂i − θi)2|α]

= argmin E[(θ̂i − E[θi|α])2|α]

= E[θi|α]

=

∫
Φ

θif(θi|α) dθi (4.4)

Equation.4.4 explicitly stipulates how a Bayes estimator of the negotiation counterpart’s

optimal utility pair should be computed at each iteration. In the probability theory, this

formula is also referred to as the conditional expectation [49] In Equation.4.4, f(θi|α) is

the conditional distribution of θi given α, and is referred to as the posterior distribution

in the Bayesian analysis [50]. It depends on the likelihood of α given θi and the prior dis-

tribution of θi. The formula given in Equation.4.4 is defined over a continuous domain,

which can become unsolvable once the related probability distributions become compli-

cated. In the next, we will discuss how to solve it numerically in the two-dimensional

space for a multi-attributes SLA design.

4.2.1 Numerical Scheme for the Two-Dimensional SLA Design Using Bayes

Estimator

The Bayes formula can become unsolvable for high-dimensional parameter space and

complicated probability distributions [50]. Hence, we choose to discretize the original

continuous parameter space. With respect to the two-dimensional domain of {price} ×
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{quality level}, the discretization operation is formally represented as:

(θi,a
p , θi,b

l , a = 1, ..., n1, b = 1, ..., m1) = discreteSpace([θi
p.low, θi

p.high] ⊗ [θi
l.low, θi

l.low])

(θo,a
p , θo,b

l , a = 1, ..., n2, b = 1, ..., m2) = discreteSpace([θo
p.low, θo

p.high] ⊗ [θo
l.low, θo

l.high])

(4.5)

In Equation.4.5, θi
p.low and θi

p.high determine the range of θi
p and are held by cspo as a

prior knowledge over aspi. Similar explanations apply to [θi
l.low, θi

l.high], [θo
p.low, θo

p.high] and

[θo
l.low, θo

l.high] as well. However, the latter two reflect the prior knowledge of aspi over cspo.

The procedure of discreteSpace is to build a two-dimensional grid and use the central

point on each grid cell as one hypothetical optimal utility pair. With respect to this two-

dimensional parameter space, we use nj : j = 1, 2 to represent the number of cells along

the dimension of “price” and use mj : j = 1, 2 to represent the number of cells along the

dimension of “quality level”. Hence, calling Equation.4.5 returns two two-dimensional

arrays: (θi,a
p , θi,b

l , a = 1, ..., n1, b = 1, ...,m1) and (θo,a
p , θo,b

l , a = 1, ..., n2, b = 1, ...,m2).

The focus of this section is to discuss how the Bayes estimator is implemented on this

two-dimensional parameter space and is applied to the multi-attributes SLA design which

takes both price and quality level into account. The concrete design of Algorithm.4.1 in

the context of multi-attributes SLA design over a discrete parameter space is given in

Algorithm.4.2.
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Algorithm 4.2 Two dimensional SLA design using Bayes estimator

1: (θi,a
p , θi,b

l , a = 1...n1, b = 1...m1) = discreteSpace([θi
p.low, θi

p.high] ⊗ [θi
l.low, θi

l.low]);

2: (θo,a
p , θo,b

l , a = 1...n2, b = 1...m2) = discreteSpace([θo
p.low, θo

p.high] ⊗ [θo
l.low, θo

l.high]);

3: fprior(θ
i,a
p , θi,b

l ) = 1
n1∗m1

∀a = 1...n1, b = 1...m1;

4: fprior(θ
o,a
p , θo,b

l ) = 1
n2∗m2

∀a = 1...n2, b = 1...m2;

5: θ̂o = (θ̂o
p, θ̂

o
l ) = (0.5 ∗ (θo

p.low + θo
p.high), 0.5 ∗ (θo

l.low + θo
l.high));

6: k = 1, η = 0;
7: while {k ≤ K) and (η = 0)} do

8: αk = calOfferi(θ
i, θ̂o);

aspi informs cspo of its offer: αk;
9: η = evaOffero(θ

o, αk);
10: if η = 1 then
11: Return (SLA is signed in terms of αk);
12: end if
13: [{fk+1

prior(θ
i,a
p , θi,b

l ) : a = 1...n1, b = 1...m1}, θ̂i] = estOUPo(α
k, {fprior(θ

i,a
p , θi,b

l ) : a =
1...n1, b = 1...m1}, k);

14: βk = calOffero(θ
o, θ̂i);

cspo informs the aspi of its counter offer: βk;
15: η = evaOfferi(θ

i, βk);
16: if η = 1 then
17: Return (SLA is signed in terms of αk);
18: end if
19: [{fk+1

prior(θ
o,a
p , θi,b

l ) : a = 1...n2, b = 1...m2}, θ̂o] = estOUPi(β
k, {fprior(θ

o,a
p , θi,b

l ) : a =
1...n2, b = 1...m2}, k);

20: k = k + 1;
21: end while
22: if η = 0 then
23: aspi does not sign SLA with cspo;
24: end if
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In Algorithm.4.2, the implementation issues of evaOffero and evaOfferi will be

discussed in section.4.2.2. An estimation-based offer proposition approach will be inves-

tigated in section.4.2.3. The Bayes estimator of the counterpart’s optimal utility pair,

e.g., estOUPi, is the core of this algorithm and is given in Algorithm.4.3.

4.2.2 Offer Evaluation Criteria

The operation of offer evaluation is to determine whether to accept or reject the

negotiation counterpart’s offer based on a set of criteria. We use different subscripts, i

and o, in the evaOfferi and evaOffero to stress that the two sides can differ in their

respective evaluation criteria. In this study, we consider two types of evaluation criteria.

One tends to focus on the business interest of one side only and the other one aims to

improve the collaboration of two sides.

Evaluation criterion 1 The agreement will be reached if either of the following two

conditions is satisfied.

1. On the side of cspo :, If the difference between the aspi’s offer and the cspo’s

optimal utility pair is within a given range, then cspo will accept the offer.

Formally, we have

αk
p < r1 × θo

p and αk
l > r2 × θo

l ∃1 ≤ k ≤ K (4.6)

In Equation.4.6, αk
p and αk

l represent the price offer and the quality level

offer respectively which are proposed by aspi at the k-th iteration. r1 and r2

reflect the concession degrees that the cspo would like to make in the reached

agreement. Naturally, r1 > 1 and r2 < 1.

2. On the side of aspi : If the difference between the cspo’s offer and the aspi’s

optimal utility pair is within a given range, then aspi will accept the offer.
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Formally, we have

βk
p > r3 × θi

p and βk
l < r4 × θi

l ∃1 ≤ k ≤ K (4.7)

In Equation.4.7, r3 and r4 reflect the degrees of concession that the seller

would like to make in the reached agreement. Naturally, r3 < 1 and r4 > 1.

Evaluation criterion 2 From the viewpoint of the collaboration, a settled agreement

should consider the utility of both sides at the same time. However, Evaluation

criterion 1 does not take the combined utility into account. An applicable metrics

to consider both sides’ benefits is referred to as the aggregated utility function [37].

U sla
p = wi

p ∗ θi
p + wo

p ∗ θo
p wi

p + wo
p = 1

U sla
l = wi

l ∗ θi
l + wo

l ∗ θo
l wi

l + wo
l = 1 (4.8)

In Equation.4.8, we use U sla
p and U sla

l to represent the price and quality level part of

the utility of signed SLA respectively. The utility pair of a signed SLA, referred to

as combined utility pair, is thus represented as U sla = {U sla
p ,U sla

l }. In Equation.4.8,

wi
p and wo

p capture the respective influences of aspi and cspo on the price part of

the resulting utility; while wi
l and wo

l capture the respective influences of aspi and

cspo on the quality level part of the resulting utility. The definition of Equation.4.8

enables us to quantify the degree of collaboration for a signed SLA, and can be

used as an offer evaluation criterion, which is referred to as Evaluation criterion

2 in our research. The agreement is reached if either one of the following conditions

is satisfied.

1. On the side of cspo : If the difference between the aspi’s offer and the cspo’s

estimated combined utility pair is within a given range, then cspo will accept

the offer. Formally, we have

√
(αk

p − U estSLAo
p )2 + (αk

l − U estSLAo
l )2 < r5 ∃1 ≤ k ≤ K (4.9)
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In Equation.4.9, r5 reflects the concession degree that the cspo would like to

make in the reached agreement.

2. On the side of aspi : If the difference between the cspo’s offer and aspi’s

estimated combined utility pair is within a given range, then aspi will accept

the offer. Formally, we have

√
(βk

p − U estSLAi
p )2 + (βk

l − U estSLAi
l )2 < r6 ∃1 ≤ k ≤ K (4.10)

In Equation.4.10, r6 reflects the degree of concession that the seller would like

to make in the reached agreement.

In the above equations, we use the superscripts {estSLAo} and {estSLAi} to

represented the estimated combined utility from either the side of cspo or the side

of aspi. This is due to the reason that a negotiation agent cannot know exactly the

negotiation counterpart’s optimal utility pair, which is required in Equation.4.8.

Therefore, when implementing the Evaluation criterion 2, we have to use the

estimated counterpart’s optimal utility pair.

4.2.3 Estimation-guided Offer Proposition

An accurate estimation of the counterpart’s optimal utility pair can help a negoti-

ation agent to capture the counterpart’s bargaining position and develop appropriate

offer proposition strategies. For instance, according to the Evaluation criterion 1,

an estimation of the counterpart’s optimal utility pair directly points the direction of

making concession. On the other hand, with respect to the Evaluation criterion 2,

an estimated combined utility pair is used as the target point indicating the direction of

making concessions. These observations lead us to develop the estimation-guided offer

proposition strategy. Figure.4.5 illustrates a snapshot of this type of offer proposition

strategy invoked by cspo when we use Evaluation criterion 1.
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Figure 4.5 Estimation-guided offer proposition

In Figure.4.5, the estimated optimal utility of aspi is marked as A, we add the

superscript est to aspi to stress the fact that it is not the real optimal utility pair. The

real optimal utility pair of cspo is marked as C. When Evaluation criterion 1 is

used, cspo will try to approach the aspi’s optimal utility pair along with the direction of

C → A. The distance of CB stands for the degree of the concession. The projection of

the concession onto the axis of price represents the price update; and the projection onto

the axis of quality level represents the quality level update. In the bilateral negotiation-

based SLA design using Bayes estimator, the estimation of the negotiation counterpart’s

optimal utility pair will be updated at each iteration based on the counterpart’s offer.

This is reflected through the ever-changing position of A in the context of the Figure.4.5.

4.2.4 Implementation of Bayes Estimator for the Optimal Utility Pair

Algorithm.4.3 lists the procedures for implementing the Bayes estimator for the op-

timal utility pair. The objective of Algorithm.4.3 is to compute E[θi|α]. In the two-
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dimensional discrete parameter space of [θi
p.low, θi

p.high] ⊗ [θi
l.low, θi

l.low], we have

E[θi|α] = E[(θi
p, θ

i
l)|α]

=

a=n1∑
a=1

b=m1∑
b=1

(θi,a
p , θi,b

l )fposterior((θ
i,a
p , θi,b

l )|α) (4.11)

According to Bayes formula [50],

fposterior((θ
i,a
p , θi,b

l )|α) =
flikelihood(α|θi,a

p , θi,b
l ) ∗ fprior(θ

i,a
p , θi,b

l )

fmarginal(α)
(4.12)

Therefore,

E[θi|α] =

a=n1∑
a=1

b=m1∑
b=1

(θi,a
p , θi,b

l )
flikelihood(α|θi,a

p , θi,b
l ) ∗ fprior(θ

i,a
p , θi,b

l )

fmarginal(α)
(4.13)

In the above derivations, α represents an offer proposed by aspi. When we consider the

above numerical scheme in the context of a given negotiation iteration, k, α will be re-

placed with αk. In order to get fposterior((θ
i,a
p , θi,b

l )|α), we need three different probability

distributions: fprior(θ
i,a
p , θi,b

l ), flikelihood(α|θi,a
p , θi,b

l ) and fprior(θ
i,a
p , θi,b

l ). The computation

procedure of marginal distribution is given in Algorithm.4.3. The computation of these

three probability distributions are discussed subsequently.

For simplicity, we just focus on the side of cspo, i.e., the Bayes estimator of θi
p and

θi
l from the viewpoint of cspo. The discussion from the other direction is similar.

Prior distribution In accordance with the discretization scheme, the prior distribution

is to be considered for each parameter pair (θi,a
p , θi,b

l ). At the very beginning,

we do not have any knowledge over the distribution model of the negotiation

counterpart’s optimal utility pair. Hence, we can just assume it follows uniform

distribution over the discrete parameter space. At the k-th negotiation iteration,

we treat the counterpart’s offer at the (k-1)-th iteration as the knowledge to derive

the prior distribution. In other words, we use the posterior distribution of (θi,a
p , θi,b

l )

given αk−1 as the prior distribution at the k-th iteration. Therefore, we have

fk
prior(θ

i,a
p , θi,b

l ) = fposterior(θ
i,a
p , θi,b

l |αk−1) (4.14)



64

Algorithm 4.3 estOUPo(α
k, {fk

prior(θ
i,a
p , θi,b

l ) : a = 1...n1, b = 1...m1}, k):Bayes estima-
tor for the optimal utility pair of aspi

1: fmarginal(α
k) = 0;

2: for a = 1 : n1 do
3: for b = 1 : m1 do
4: flikelihood(α

k|θi,a
p , θi,b

l ) = calProb(θi,a
p , θi,b

l , αk, k);

5: fmarginal(α
k) = fmarginal(α

k) + flikelihood(α
k|θi,a

p , θi,b
l ) ∗ fk

prior(θ
i,a
p , θi,b

l );
6: end for
7: end for
8: (θ̂i

p, θ̂
i
l) = 0;

9: for a = 1 : n1 do
10: for b = 1 : m1 do

11: fposterior(θ
i,a
p , θi,b

l |αk) =
flikelihood(αk|θi,a

p ,θi,b
l )∗fk

prior(θi,a
p ,θi,b

l )

fmarginal(αk)
;

12: (θ̂i
p, θ̂

i
l) = (θ̂i

p, θ̂
i
l) + (θi,a

p , θi,b
l ) ∗ fposterior(θ

i,a
p , θi,b

l |αk);
13: end for
14: end for
15: Return : [{fposterior(θ

i,a
p , θi,b

l |αk) : a = 1...n1, b = 1...m1)}, (θ̂i
p, θ̂

i
l)];

In Equation.4.14, αk−1 = (αk−1
p , αk−1

l ) stands for the aspi’s offer at the (k-1)-

th iteration. fposterior(θ
i,a
p , θi,b

l |αk−1) is the posterior distribution, which is to be

computed at (k-1)-th iteration. The superscript k of fk
prior(θ

i,a
p , θi,b

l ) is used to

indicate the fact that it is the prior distribution used at the k-th negotiation

iteration. This relationship is reflected in the output parameters at lines 13 and

19 in Algorithm.4.2, and in the input parameter used by Algorithm.4.3.

Likelihood computation The bilateral negotiation is characterized as a process where

both negotiation partners will make concessions as the negotiation proceeds. In

practice, the starting offer of a negotiation agent tends to enlarge its short term

business benefit instead of focusing on long run collaborations and market stabil-

ities. For instance, the α1
p � θi

p and α1
l � θi

l . This kind of offer initialization

strategy also helps hiding the real optimal utility pair and leave more spaces for

bargaining. If the agreement cannot be reached, then the next-step offer will move

away from the initialization offer by making concessions in the direction of ap-
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proaching the negotiation target. Hence, a theoretically predictable offer at each

iteration can be represented as a function of initialization offer and iteration num-

ber. We refer this offer as round-dependent benchmark offer. For instance, the

price part in the round-dependent benchmark offer of aspi can be computed with

the formula like Equation.4.15 when assuming the linear concession strategy.

αk
p = r ∗ θi

p − ρ ∗ (k − 1) (4.15)

In Eq.4.15, μ stands for the decreasing rate; r ∗ θi
p represents the starting offer

and r > 1. To capture the unaccounted uncertainties, we can assume that the

proposed offer should follow a probabilistic distribution being peak at this round-

dependent benchmark offer. A triangular probabilistic distribution or a Gaussisn

distribution can be used. The likelihood function, denoted as flikelihood(α
k|θi,a

p , θi,b
l )

stands for the conditional probability of the offer αk when the optimal utility pair is

assumed to be equal to (θi,a
p , θi,b

l ). Hence, the variable of θi
p in Equation.4.15 should

be replaced with θi,a
p to compute the corresponding round-dependent benchmark

offer.

Marginal distribution The marginal distribution of offer αk is calculated in Eq.4.16.

The operations between line 2 to line 7 in Algorithm.4.3 implement the corre-

sponding computation.

fmarginal(α
k) =

a=n1∑
a=1

b=m1∑
b=1

flikelihood(α
k|θi,a

p , θi,b
l )fk

prior(θ
i,a
p , θi,b

l ) (4.16)

4.2.5 Experimental Study (1)

In the first experimental setting, we implement evaOffero and evaOfferi based on

Evaluation criterion 1. According to this offer evaluation criterion, the agreement

will only be reached either within a small range near (θi
p, θ

i
l) or within a small range near

(θo
p, θ

o
l ). One of the main reasons of setting up this evaluation criterion is to test the
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ability of estimating the opponent’s optimal utility pair. If neither of the negotiation

agent is able to estimate the opponent’s optimal utility pair accurately, then it will be

very hard for the negotiation to settle on an agreement. In this experiment, we consider

two scenarios:

Scenario 1 Both cspo and aspi employ the Bayes estimator, and hence the SLA design

process follows exactly what Algorithm.4.2 guides. The operations of calOffero

and calOfferi used the estimation-guided offer proposition which is illustrated in

Figure.4.5.

Scenario 2 None of cspo and aspi employs the Bayes estimator, and just uses the central

point of the whole domain as the estimation, e.g., (0.5∗(θi
p.low+θi

p.high), 0.5∗(θi
l.low+

θi
l.high)).

According to Evaluation criterion 1, when r1 increases and r2 decreases, the cri-

terion of accepting the offer will be relaxed on the side of cspo. Similarly, when r3

decreases and r4 increases, the criterion of accepting the offer will be relaxed on the side

of aspi. We design four different combinations of r1, r2, r3 and r4, which are identified

as Case 1, Case 2, Case 3 and Case 4 respectively in Table.4.1.

Table 4.1 Test on the agreement reachability of the negotiation

r1 r2 r3 r4 iterations(scenario 1) iterations(scenario 2)
Case 1 1.15 0.85 0.85 1.15 86 fail
Case 2 1.18 0.82 0.82 1.18 79 fail
Case 3 1.20 0.80 0.80 1.20 75 fail
Case 4 1.22 0.78 0.78 1.22 70 fail

In Table.4.1, the column of iterations(scenario 1) stores the number of iterations

required to reach an agreement for the scenario 1, and the column of iterations(scenario

2) stores the number of iterations required to reach an agreement for the scenario 2. If

the agreement cannot be reached within a pre-determined deadline, we will mark the

corresponding status as fail. The result in Table.4.1 shows two facts:
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1. The number of iterations required for reaching the agreement decreases as we relax

the agreement settling criterion, this matches our expectation.

2. If neither side employs the Bayes estimator, the agreement cannot be reached

within the deadline, which is pre-determined as 200 iterations.

The second observation clearly illustrates the advantage of employing the Bayes

estimator in estimating the negotiation counterpart’s optimal utility pair.

4.2.6 Experimental Study (2)

In the second experimental setting, we implement evaOffero and evaOfferi based

on Evaluation criterion 2. In Equation.4.8, the combination of wi
p, w

o
p, w

i
l and wo

l

reflects how a negotiation agent’s business benefit is taken care of in the settled SLA.

For instance, a combination of wi
p < wo

p and wi
l < wo

l indicates that the signed SLA

tends to treasure the benefit of cspo more; or in other words, cspo has more bargaining

power [51]. This is a typical scenario in the competitive service market, where there

always have multiple service providers for a signal service. In the study, we consider

four different weight combinations:

Combination 1 wo
p > wi

p and wo
l > wi

l , this indicates that in the settling SLA, the

price part and the quality level part of the cspo’s benefit are considered more

important than the corresponding parts of aspi. This weight combination is tested

in Case 1 and Case 2.

Combination 2 wo
p < wi

p and wo
l > wi

l , this indicates that in the settling SLA, the price

part of the aspi’s benefit is considered more important than the corresponding

part of cspo, while the quality level part of the cspo’s benefit is considered more

important than the corresponding part of aspi.This weight combination is tested

in Case 3 and Case 4.
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Combination 3 wo
p > wi

p and wo
l < wi

l , this indicates that in the settling SLA, the price

part of the cspo’s benefit is considered more important than the corresponding

part of aspi, while the quality level part of the aspi’s benefit is considered more

important than the corresponding part of cspo. This weight combination is tested

in Case 5 and Case 6.

Combination 4 wo
p < wi

p and wo
l < wi

l , the price part and the quality level part of the

aspi’s benefit are considered more important than the corresponding parts of cspo.

This weight combination is tested in Case 7 and Case 8.

Table 4.2 Test on the ability of achieving the target utility

{wi
p, w

o
p} {wi

l , w
o
l } {U slaT

p ,U slaT
l } {U sla1

p ,U sla1
l } {U sla2

p ,U sla2
l }

Case 1 {0.30, 0.70} {0.40, 0.60} {870, 71} {864.641, 71.661} {811.612, 76.155}
Case 2 {0.20, 0.80} {0.30, 0.70} {830, 74.5} {830.939, 74.017} {801.414, 77.453}
Case 3 {0.70, 0.30} {0.40, 0.60} {1030, 71} {1035.271, 68.596} {1076.497, 68.280}
Case 4 {0.80, 0.20} {0.30, 0.70} {1070, 74.5} {1070.354, 71.541} {1082.343, 73.884}
Case 5 {0.20, 0.80} {0.70, 0.30} {830, 60.5} {825.402, 60.494} {814.466, 61.215}
Case 6 {0.30, 0.70} {0.60, 0.40} {870, 64} {867.560, 63.953} {808.404, 67.632}
Case 7 {0.80, 0.20} {0.70, 0.30} {1070, 60.5} {1096.221, 55.753} {954.157, 70.005}
Case 8 {0.70, 0.30} {0.60, 0.40} {1030, 64} {1043.559, 61.123} {982.759, 67.939}

In Table.4.2, the second and the third column report the weight combinations. Be-

sides these parameter settings, we also report the following set of results:

1. The fourth column reports the target combined utility pair for the settled SLA,

{U slaT
p ,U slaT

l }. We submitted the real optimal utility pairs of both cspo and aspi

into Equation.4.8. Since an agent’s optimal utility pair is the hidden knowledge

to its counterpart, this target pair only exists theoretically. We use it as the

benchmark in the experimental study.

2. The fifth column reports the result of the SLA designed based on Bayes estimator.

Here, we assume both cspo and aspi employ the Bayes estimator. The achieved

utility pair is represented as {U sla1
p ,U sla1

l }.
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3. The sixth column reports the result of the SLA designed without using Bayes

estimator. The achieved utility pair is represented as {U sla2
p ,U sla2

l }.

In terms of the difference between the reached utility and the target utility, the re-

sults in Table.4.2 clearly demonstrate that the SLA design employing Bayes estimator

outperforms the one without using Bayes estimator in every weight combination.

4.2.7 Related Work and Discussion

Negotiation is an important mechanism to establish business relationships among dif-

ferent market players. Several existing works have been developed focusing on various

facets of the negotiation process design. Li et al.[51] investigate the effect of the outside

options on the reservation price and bargaining power. Zeng et al.[52] propose to use

Bayesian analysis to assist the negotiation process by estimating the negotiation coun-

terpart’s reservation price. Sim et al.[53] further developed the Bayesian learning-based

negotiation process and took into account the negotiation deadline as an estimation vari-

able in order to improve the negotiation performance. Our work can be considered as a

further development on the negotiation process design using Bayesian analysis. More-

over, we extend the existing results and develop the corresponding numerical scheme

in the context of multi-attributes SLA design for the competitive service market. Our

contributions are listed in the following.

• In the context of competitive service market, we clarify the specific SLA design

scenario to which the bilateral negotiation process can be applied.

• In Equation.4.4, we derive the Bayes estimator in the context of the bilateral nego-

tiation based on the statistical inference theory. The mathematical meaning of the

derived formula clearly demonstrates how does the counterpart’s offer determine

the estimation of its optimal utility pair. This type of rigorous derivation is not

given in [52] and [53].
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• Our research focuses on the multi-attributes SLA design which requires us to

consider the negotiation process in a two-dimensional space. We systematically

discuss how to design the numerical scheme for the corresponding Bayes estimator.

• With the help of the information provided by the Bayes estimator, we propose

the estimation-guided offer proposition strategy. Its flexibility is demonstrated in

different offer evaluation criteria.

4.3 Bidding Protocol for Target-Oriented SLA Design

The bilateral negotiation process does not fit well to the target-oriented SLA design

because it does not stipulate any specific metric values beforehand. In this section, we

develop a bidding protocol for the target-oriented SLA design which is composed of the

following procedures.

• Given an atomic service ASt, composite service provider cspo notifies the providers

belonging to CGt
o of its requirements on one or more specific QoS metrics.

• Each related atomic service provider estimates the operation cost with respect

to the received QoS requirements, and proposes a bid rate for signing SLA in

accordance with the received requirements.

• cspo selects the atomic service provider which bids with the smallest rate.

From the standpoint of an atomic service provider which joins the bid, reducing the

proposed bid rate can increase the probability of being selected by the composite service

provider. Nevertheless, charging the buyer with a small rate results in the reduced net

profit for itself. Therefore, achieving the balance between the winning probability and

the net profit is a major concern in the bidding protocol design.

Theoretically, if aspi ∈ CGt
o knows exactly what other competitors will propose, then

the bid rate of ensuring its winning will be MIN(ξj : ∀ aspj ∈ CGt
o and j = i) − δ,



71

where ξj denotes the bid rate of aspj and δ is a very small positive value. Nevertheless,

a market player tends to hide the sensitive information from its competitors, especially

in a competitive bidding process. Consequently, it is infeasible to compute the best

bid rate explicitly, which depends on knowing exactly the bid rate of others. In this

research, we cast the bidding protocol for the target-oriented SLA design in the Bayesian

game theoretic framework and investigate its analysis process. This approach allows

the existence of incomplete information and captures the resulting randomness of the

competition [54].

A Bayesian game for the bidding protocol between cspo and a set of its controlled

atomic service providers is described by a quadruple BG = {N , ξ, Θ,U}.

• N = asp1 × · · · × aspm is the agent space, where n is the number of participating

game players, and aspi denotes the i-th game player which is an atomic service

provider participating in the bidding game.

• ξ = ξ1 × · · · × ξm is the action space, where ξi is the action of game player aspi.

• θ = θ1 × · · · × θm is the type space, where θi is the set of type values of aspi.

• U = U1 × · · · × Um is the utility space, where Ui is the utility function of game

player aspi;

In the above, m ≤= ‖CGt
o‖ since not all of the atomic service providers is necessary

to join the bidding game. The action of each game player is its bid rate. The type

value of a game player reflects its private valuation over delivering the service. In our

case, the real type value of aspi is its operation cost needed to satisfy the target QoS

metric values. In the competitive service market, this exact type value is hidden from

other agents, aspj : j = i. However, the accessibility to the public market information

resources and other bidders’ behaviors enables an agent to derive a probabilistic distri-

bution of either the type values or the bid values of other agents. The existences of these
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different probabilistic models lead to various approaches of bidding protocols, which will

be discussed later in this section.

In the competitive service market, each market player is assumed to behave as a

rational agent, whose action is motivated by maximizing its utility. In the bidding

game, the utility of aspi is computed in Equation.4.17.

U(aspi) = Ii=argmin(ξ1,...,ξm) × (ξi − θi) (4.17)

where

Ii=argmin(ξ1,...,ξm) =

⎧⎪⎨
⎪⎩

1 ξi < ξj ∀ j = i

0 otherwise

Equation.4.17 illustrates that, if ξi, the bid of aspi, is the minimum among all of the

game players, then aspi will be selected as the winner, and thus its payoff is equivalent

to ξi − θi; otherwise, its payoff equals to 0.

In the above, we discuss the tradeoff between the selection probability and the re-

sulting profit. The following analysis will quantify this tradeoff probabilistically. If aspi

bids with rate ξi, then the winning probability will be determined by the possibility

that none of other competitors bids with a rate being smaller than aspi. According

to the bidding game setting, the probabilistic model for the action space is a common

knowledge to the game players. Here, we assume that the real bid rate of every agent

follows the uniform distribution on a shared range, [ω1, ω2]. Thus, the probability of

bidding with ξi is 1
ω2−ω1

; the probability of bidding with value being bigger than ξi is∫ ω2

ξi

1
ω2−ω1

dy. Accordingly, the expected utility is computed as

E[U(aspi)] = E[Ii=argmin(ξ1,...,ξm) × (ξi − θi)]

= Pr(ξi < ξj ∀ j = i) × (ξi − θi)

(4.18)
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since

Pr(ξi < ξj ∀ j = i) = (

∫ ω2

ξi

1

ω2 − ω1

dy)m−1

=
(ω2 − ξi)

m−1

(ω2 − ω1)m−1
(4.19)

so

E[U(aspi)] =
(ω2 − ξi)

m−1

(ω2 − ω1)m−1
× (ξi − θi) (4.20)

The rate ξi that can maximize E[U(aspi)] is obtained by solving

d E[U(Ni)]

d ξi

= 0 (4.21)

After substituting the result of Equation. 4.20 into Equation. 4.21, we get

ξi =
ω2 + (m − 1)θi

m
(4.22)

Equation.4.22 explicitly stipulates the rate that a game player would like to bid in order

to maximize the expected payoff when only incomplete information is ready. Consider

a test case, which is:

• The operation cost of every participating agent is sampled from a uniform dis-

tribution. In Table 4.3, the generated values are listed in the row indexed by

“θi(uniform)”. Moreover, from the viewpoint of a participating atomic service

provider, the bid rate of any competitors is assumed to follow a uniform distribu-

tion on a known range. Therefore, we can use formula given in Equation.4.22 to

compute the bid rate.

Table 4.3 Experimental study of bid rate

The first scenario
asp1 asp2 asp3 asp4 asp5

θi(uniform) 111.5 129.2 142.2 123.8 67.6
ξi of scenario 1 119.2 133.4 143.7 129.1 84.1
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The results in Table.4.3 shows that the proposed bid rate of each atomic service provider

keeps the trend of its type value. asp5 will be chosen as the winner due to its having

the lowest bid rate, which is controlled by its type value, θ5. However, there are several

issues affecting the applicability of this approach. The analytical formula only exists

for some simple probabilistic models, like uniform distribution. Secondly, the net profit

of the winner still has a lot of space to get improved. With respect to this particular

test case, the type value of asp1 is 111.5. Theoretically, asp5 can increase its bid to this

value and can still win the auction. However, this relies on a more accurate estimation

of other competitor’s bid. In the following, we are going to investigate these issues.

4.3.1 Monte Carlo-Based Bidding Protocol Design

The closed-form bidding strategy discussed in the above only works for the scenario

where every competitor’s bid rate is assumed to follow simple probabilistic models, e.g.,

uniform distribution. With respect to the more complicated probabilistic models, such

as normal distribution and exponential distribution, the analytical formula is impossible

or at least very hard to get. Here, we investigate the application of Monte Carlo method

in the bidding protocol design [55].

The difficulty in deriving the analytical bidding strategy is that the integration in

Equation.4.19 will become unsolvable once the adopted probabilistic model is very com-

plicated. To solve this issue, Monte Carlo method is to sample from the underlying prob-

abilistic distribution, and transforms the original computation in a continuous space into

the computation in a discrete space. Algorithm.4.4 is a Monte Carlo-based procedure

for calculating the bid rate

In Algorithm.4.4, ξ−i represents the set used to store the bid rate of the atomic ser-

vice providers which are aspi’s competitors; K is the number of Monte Carlo iterations.

We use B−i to denote the set of aspi’s competitors and use faspj
to denote the probability

distribution of the bid rate for aspj. From the viewpoint of aspi employing mcBid, it
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Algorithm 4.4 mcBid(K, {faspj
: aspj ∈ B−i}):Monte Carlo-based bidding strategy

1: ξ−i = ∅;
2: for k = 1 : K do
3: for aspj ∈ B−i do
4: Sample a bid value bj from the probability distribution, faspj

;
5: ξ−i = ξ−i ∪ bj;
6: end for
7: ξk

i = estCalBid(ξ−i, θi);
8: end for
9: Compute the bid rate of aspi as ξi =

∑k=K
k=1 ξk

i

K ;

has to know the probability distribution of the bid rate of its competitors beforehand.

This is the same prerequisite as the one to derive the analytical formula. But it does not

need analytically solving an equation involving the assumed probabilistic distributions.

The operation of estCalBid is to calculate the bid of aspi. This operation is listed

in Procedure.4.1, whose input parameters are the estimated bid rates of its competi-

tors, which are collected through sampling from the known probability distributions in

Algorithm.4.4.

Procedure 4.1 estCalBid(ξ−i, θi): Procedure of calculating aspi’s bid based on the
bid rates of competitors

1: if θi = MIN(ξ−i ∪ θi) then
2: ξi = MIN(ξ−i) − δ;
3: else
4: ξi = θi + σ;
5: end if

Procedure.4.1 calculates aspi’s bid based on the sampled bid rates of its competitors.

If its type value, θi is lower than any of these bid rates, the bidding strategy of ensuring

its winning is to approach the lowest bid rate of its competitors.This is what line 2 in

Procedure.4.1 represents. δ is a small numerical value introduced in the implementation,

and its introduction is to remove the possibility of having two equivalent lowest bid rates.

If aspi finds that its type value is higher than the lowest bid rate of its competitors, then

it cannot win the auction due to its larger type value. With respect to this scenario, it
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just add a finite increment,σ, to its type value as an approach to hide its real type value

and deceive its competitors.

4.3.1.1 Experimental Study: One-Dimensional Normal Distribution

We will investigate the adoption of Monte Carlo-based bidding strategy in this section

and the following section. Instead of assuming simple uniform probability distribution,

we will consider more general ones: one is the one-dimensional Normal distribution and

the other one is the bivariate normal distribution.

In this experiment, we assume that ξj ∼ Normal(μ, σ). The corresponding proba-

bility density function is given in Equation.4.23.

f(ξj) =
1√
2πσ

exp(−(ξj − μ)2

2σ2
) (4.23)

In Equation.4.23, μ is the mean of the bid rate and σ2 is the variance. This probability

information of aspj is held by aspi.

The experiment is setup as follows:

1. The auction has three participating atomic service providers, i.e., asp1, asp2 and

asp3.

2. The probability distribution of the bid rate is assumed to be the same for the three

atomic service providers. If the mean bid rates vary with different atomic service

providers, then the one with the smallest mean value tends to win the auction

most of the time no matter whether the Monte Carlo-based bidding strategy is

employed or not. In order to validate the effectiveness of the Monte Carlo-based

bidding strategy, we try to filter out any factors that may affect the auction result.

3. Two tests cases are designed for the comparison. In test case 1, none of the partic-

ipating atomic service providers employs the Monte Carlo-based bidding strategy.

The only information that can help an agent to propose its bid is the mean bid rate
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of the competitors. In test case 2, asp1 employs the Monte Carlo-based bidding

strategy, i.e., Algorithm.4.4, while asp2 and asp3 only rely on the mean value in

the bidding process.

The simulation procedure in test case 1 is listed in Procedure.4.2. Since none of the

atomic service providers adopts the Monte Carlo-based bidding strategy, the parameters

used in estCalBid are the mean bid rate of competitors. findWinner is a generic

function of determining the winner based on the proposed bids. bW represent the

auction winner and sP represents the selling price. In this research, the agent proposing

the lowest bid rate is chosen as the winner and its bid is used as the selling price.

Procedure 4.2 testcase1Simulation: Simulation procedure of test case 1

1: for i = 1 : 3 do
2: ξi = estCalBid({μj : aspj ∈ B−i}, θi);
3: end for
4: (bW, sP ) = findWinner(ξ1, ξ2, ξ3);

The simulation procedure in test case 2 is listed in Procedure.4.3 which differs with

Proc.4.2 in the bid computation of asp1. It is assumed to adopt the Monte Carlo-based

bidding strategy, i.e., mcBid. The experimental results are reported in Figure.4.6.

Procedure 4.3 testcase2Simulation: Simulation procedure of test case 2

1: ξ1 = mcBid(K, fasp2 , fasp3);
2: for i = 2 : 3 do
3: ξi = estCalBid({μj : aspj ∈ B−i}, θi);
4: end for
5: (bW, sP ) = findWinner(ξ1, ξ2, ξ3);

In the experiment, we consider 50 independent bid cases. Among these 50 bid cases,

we record every bid case where asp1 is chosen as winner. Let γ1 = sP − θ1 denote the

net profit of asp1 in test case 1; similarly, γ2 denotes the net profit of asp1 in test

case 2. Hence, γ2 − γ1 denotes the improved profit when adopting the Monte Carlo-

based bidding strategy. These improved profits are marked with “square” point in the
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Figure 4.6 Experimental result for normal distribution(var = 1)

lower part of Figure.4.6. The upper part of Figure.4.6 records a collection of bid rates

following the assumed distribution, i.e., Normal(80, 1).

Secondly, we consider a different probability model where the bid rate is assumed

to follow Normal(80, 5) for every atomic service provider. This probability distribution

is to test whether the Monte Carlo-based bidding strategy will still work for a large

variance model. The test result is shown in Figure.4.7.
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Figure 4.7 Experimental result for normal distribution(var = 5)
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For every bid case where asp1 wins the auction, no negative value is observed either

in Figure.4.6 or in Figure.4.7. This observation demonstrates that the employment of

Monte Carlo-based bidding strategy design can improve the profit margin of asp1.

4.3.1.2 Experimental Study:Two-dimensional Bidding Strategy Design

In this section, we investigate the application of Monte Carlo-based bidding strategy

design in the two-dimensional space, where we consider both the price and the quality

level. The proposed bid is thus represented as a pair (ξi
p, ξ

i
l ), where ξi

p represents the

bid rate and ξi
l represents the bid quality level. This study aims to support the multi-

attributes target-oriented SLA design.

In the one-dimensional auction for the target-oriented SLA design, the utility function

of the composite service provider fully depends on the selling price of the auction winner.

In the two-dimensional auction, the utility function of the composite service provider

depends on both the selling price and the quality level, and can be represented as in

Equation.4.24.

Ucsp(P ,L) = −wp ×
P
P

+ wl ×
L
L

(4.24)

In Equation.4.24, wp and wl are the weight factors for the price and quality level re-

spectively. The minus sign before wp indicates that a higher selling price leads to a

smaller utility for the composite service provider. The P and L on the denominator is

to normalize price P and quality level L since their numerical values may have different

scales. In the two-dimensional auction for the target-oriented SLA design, the utility

represented in Equation.4.24 will be used as the criterion to guide the atomic service

provider to calculate its bid rate.

Comparing to the bid calculation procedure in the one-dimensional auction, the bid

calculation procedure in the two-dimensional auction is more complicated due to its

inherent multiple choices resulting from the utility formulation. Figure.4.8 illustrates
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how the bid computation scheme works in the two-dimensional auction.

Figure 4.8 Update the bid in the two-dimensional auction

It is assumed to have three atomic service providers. asp1 bids with (ξ1
p , ξ

1
l ); asp2

bids with (ξ2
p , ξ

2
l ) and asp3 bids with (ξ3

p , ξ
3
l ). The three points corresponding to the bid

pairs are marked in the figure. For each point, we also plot the line sharing the same

utility with it. For instance, the equation of line where (ξ3
p , ξ

3
l ) lies is formulated as

−wp ×
ξx
p

P
+ Wq ×

ξx
l

L
= −Wp ×

ξ3
p

P
+ Wq ×

ξ3
l

L
. (4.25)

Every point locating on this line, e.g., A,B, C and D share the same utility as the

one resulting from the bid (ξ3
p , ξ

3
l ). After substituting these bids into Equation.4.24, we

have Ucsp(ξ
1
p , ξ

1
l ) > Ucsp(ξ

3
p , ξ

3
l ) > Ucsp(ξ

2
p , ξ

2
l ). This relationship is also reflected by three

parallel lines in Figure.4.8. From the viewpoint of asp1, bidding with (ξ1
p , ξ

1
l ) ensures

its being selected as the winner. However, its most preferable result is to guarantee

its winning position while maximizing its own utility by increasing the selling price,

downgrading the quality level or both. The example showing in Figure.4.8 gives three

choices:
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• A, having the same price with point (ξ1
p , ξ

1
l ), represents the target update point if

asp1 plans to downgrade the quality level only.

• D, having the same quality level with point (ξ1
p , ξ

1
l ), represents the target update

point if asp1 plans to increase the selling price only.

• B, C and other points locating between A and D, represent the target update

points if aspi plans to increase the selling price and downgrade the quality level at

the same time.

In the experimental study, we assume that (ξi
p, ξ

i
l ) follows the bivariate normal distribu-

tion, which is N (μ, Σ) [47].

μ = [mean(ξi
p), mean(ξi

l )] Σ =

⎡
⎢⎣ Var(ξi

p) Cov(ξi
p, ξ

i
l )

Cov(ξi
p, ξ

i
l ) Var(ξi

l )

⎤
⎥⎦ (4.26)

In Equation.4.26, mean(x) represents the mean value of x, Var(x) is the variance of x

and Cov(x, y) is the covariance of x and y. In the study, the concrete parameters are

setup as:

[mean(ξi
p), mean(ξi

l )] = [80, 65]⎡
⎢⎣ Var(ξi

p) Corr(ξi
p, ξ

i
l )

Corr(ξi
p, ξ

i
l ) Var(ξi

l )

⎤
⎥⎦ =

⎡
⎢⎣ 3 0.3

0.3 3

⎤
⎥⎦ ∀ i = 1, 2, 3 (4.27)

Figure.4.9 presents the result for this test case. Similar to the above study on the one-

dimension auction, the upper part of the figure is the diagram of the data, and the lower

part marks the improved net profit with the associated bid case. The benchmark case

is that every atomic service provider computes the bid based on the trivial estimation,

i.e., the mean values of the competitors’ bid pairs. The investigated tested case is that

asp1 adopts the Monte Carlo-based bidding strategy while asp2 and asp3 do not. The

results show that nine bid cases see clear improvement on the net profit for the asp1
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Figure 4.9 Experimental result for bivariate normal distribution

when adopting the Monte Carlo-based bidding strategy design. Here, we use the price-

dominant optimal bid computation, e.g., (ξ1
p , ξ

1
l ) → D in Figure.4.8.

4.3.2 Target-Oriented SLA Design in Sequential Auction

With respect to the target-oriented SLA design, the similar auction process can

happen repeatedly involving different service requests arriving sequentially along with

the same set of atomic service providers. This scenario can be framed as a specific SLA

design setting: target-oriented SLA design using sequential auction.

In the previous section, we discuss the auction-based target-oriented SLA design,

which essentially is a one-shot Bayesian game. In practice, just as in the bilateral

negotiation where an agent can learn the negotiation counterpart’s hidden information

from its proposal, a bidding agent can accumulate auction experiences by learning the

competitors’ bidding behaviors and use this experience to guide the bidding process in

the future auction. The existence of this type of learning capability cannot help the one-

shot auction, but will help the decision making process in the sequential auction-based

SLA design. In this section, we are going to investigate the sequential auction using
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Bayes estimator, which is an extension of our previous research in bilateral negotiation.

4.3.2.1 Adaptive Bidding Strategy for the Target-Oriented SLA Design

in Sequential Auction

A common practice for a bidder attending the sequential auction is to start from an

initialization bid, which usually is much higher than its type value, and decrease the bid

in terms of a pre-selected rate if it cannot win the current auction [56]. This common

practice can be further refined and allow the bidder to adapt the bidding strategy in a

more systematic way.

Suppose the bidder does not hold any advanced learning capabilities, like Bayes

estimator, the only information it can exploit is the result of the previous auction. Let

pair {W(n),P(n)} denote the winner and its bid rate in the n-th auction respectively.

The winner’s bid rate is also referred to as closing price hereafter. There have three

different scenarios:

1. Assume aspi wins the n-th auction, then with the same auction environment, aspi

can increase its bid rate to enlarge the net profit in the (n+1)-th auction. The

reason behind this inference is that the bid rate proposed in the n-th auction by

aspi already ensures winning the auction, and there usually exists a gap between

this winning bid and the next smallest bid. aspi can exploit this fact by assuming

that this gap will not totally disappear even the competitor may decrease the bid

rate in the (n+1)-th auction.

2. Assume aspi does not win the n-th auction but the closing price is higher than

the type value of aspi, this fact indicates that there still exists possibility to allow

aspi to win the future auctions. However, it should decrease the bid rate from the

current closing price.
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3. Assume aspi does not win the n-th auction and the closing price is lower than the

type value of aspi, this fact theoretically removes any potential winnings for aspi

because at least one of its competitors already manages to bid with a rate being

lower than its type value. With respect to this scenario, we just let it decrease the

bid with a pre-selected rate and to exploit any possibility of winning the future

auctions. The underlying motivation of this design is that a winning bidder may

increase its bid rate in the next auction. Certainly, this decreasement will use the

type value as the bottom line.

This analysis is formalized in Procedure.4.4.

Procedure 4.4 saCalBid(W(n − 1),P(n − 1), ξi(n − 1), θi):Adaptive procedure of
calculating Bi’s bid for the n-th auction

1: if aspi = W(n − 1) then
2: ξi(n) = P(n − 1) + D1

i ;
3: else if P(n) > θi then
4: ξi(n) = P(n − 1) −D2

i ;
5: else
6: ξi(n) = ξi(n − 1) −D3

i ;
7: end if
8: Return ξi(n);

In Procedure.4.4, W(n − 1) and P(n − 1) are the auction winner and selling price

in the (n-1)-th auction respectively. The calculated ξi(n) will be returned and used by

aspi as the bid in the n-th auction. D1
i , D2

i and D3
i correspond to the three different bid

changement discussed in the above respectively.

4.3.2.2 Bayes Estimator-based Bidding Strategy for the Target-oriented

SLA Design in Sequential Auction

In this section, we study the bidding strategy design for the target-oriented SLA

design in sequential auction. The algorithm is listed in Algorithm.4.5.
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Algorithm 4.5 bayesBid(ξj(n− 1), n,W(n− 2),P(n− 2)):Bayes estimator-based bid-
ding strategy for the n-th auction round

1: for aspj ∈ B−i do
2: for l = 1 : nj do
3: if n = 3 then
4: fprior(θ

l
j) = 1

nj
;

5: else
6: fprior(θ

l
j) = fposterior(θ

l
j|ξj(n − 1));

7: end if
8: flikelihood(ξj(n−1)|θl

j) = compLikelihood(ξj(n−1), ξj(n−2),W(n−2),P(n−
2), θl

j);
9: end for

10: fmarginal(ξj(n − 1)) = 0;
11: for l = 1 : nj do
12: fmarginal(ξj(n − 1)) = fmarginal(ξj(n − 1)) + flikelihood(ξj(n − 1)|θl

j) × fprior(θ
l
j);

13: fposterior(θ
l
j|ξj(n − 1)) =

flikelihood(ξj(n−1)|θl
j)×fprior(θl

j)

fmarginal(ξj(n−1))
;

14: end for
15: θ̃j = 0;
16: for l = 1 : nj do
17: θ̃j = θ̃j + fposterior(θ

l
j|ξj(n − 1)) × θl

j;
18: end for
19: end for
20: ξi(n) = typeCalBid({θ̃j : ∀aspj ∈ B−i}, θi);
21: Return: ξi(n);
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Algorithm.4.5 is assumed to be invoked by aspi to calculate the bid rate to be pro-

posed in the n-th auction. It needs the result of the (n-2)-th auction and the bid rate

of the (n-1)-th auction. On the other hand, Procedure.4.4 only needs the result of the

(n-1)-th auction to compute the bid for the n-th auction. Hence, Algorithm.4.5 starts

to work only after n > 2. Similar to the Bayesian analysis in Algorithm.4.2, a collection

of candidate values for the real θj is constructed by the discretization operation over the

range of θj, which is [θlow
j , θhigh

j ]. θj represents the type value of aspj. We denote the

size of this collection as nj.

(θl
j : l = 1 : nj) = discreteSpace([θlow

j , θhigh
j ]) (4.28)

In Algorithm.4.5, typeCalBid computes the bid based on the estimated type values

of its competitors, and is listed in Procedure.4.5. It differs with Procedure.4.1 in using

type values instead of using the estimated bid rates.

Procedure 4.5 typeCalBid(θ−i, θi): Procedure of calculating aspi’s bid based on the
type values of competitors

1: if θi = MIN(θ−i ∪ θi) then
2: ξi = MIN(θ−i) − δ;
3: else
4: ξi = θi + σ;
5: end if

The segment from “Line 2” to “Line 18” is the core of the Bayes estimator-based

bidding strategy design, which computes the posterior distribution of θl
j given ξj(n− 1),

the observed bid rate of aspj in the (n-1)-th auction. The computation formula of the

posterior distribution is given in Equation.4.29, which requires the likelihood distribution

and prior distribution as the inputs.

fpost(θ
l
j|ξj(n − 1)) =

flikelihood(ξj(n − 1)|θl
j) × fprior(θ

l
j)∑l=nj

l=1 flikelihood(ξj(n − 1)|θl
j) × fprior(θl

j)
(4.29)

In Algorithm.4.5, the function of compLikelihood is used to compute the likelihood
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of ξj(n − 1) given the type value being equal to θl
j. This computation is divided into

two steps:

1. First, we compute the projected bid of aspj in the (n-1)-th auction when its type

value is assumed to be θl
j. This projected bid rate, denoted as ̂ξj(n − 1), can be

obtained by calling the computational procedure of saCalBid(W(n − 2),P(n −
2), ξj(n − 2), θl

j).

2. Secondly, we use a triangular distribution, with peak at the position of ̂ξj(n − 1),

to compute the likelihood of ξj(n − 1). The rhythm underlying this consideration

is that if θl
j is close to the real type value, then the real bid value, ξj(n − 1) will

also be close to the projected bid, ̂ξj(n − 1).

The prior distribution is computed in an updated scheme which is similar to the one

used in computing the Bayes estimator for the bilateral negotiation. The posterior

distribution obtained in the (n-1)-th auction is used as the prior distribution in the n-th

auction. At the very beginning, the prior distribution is assumed to be uniform over the

domain, i.e., fprior(θ
l
j) = 1/nj ∀ l = 1 : nj.

4.3.2.3 Experimental Study

In this section, we conduct the experiments to validate the performance of the Bayes

estimator-based bidding strategy for the target-oriented SLA design in sequential auction

. The test environment is setup as follows:

• There are three participating atomic service providers: asp1, asp2 and asp3. In

test case 1, asp1 is assumed to employ the Bayes estimator and can learn the type

values of asp2 and asp3. This learning capability enables asp1 to propose the bid

using the type value-based bidding strategy, i.e., Procedure.4.5. asp2 and asp3 do

not hold this type of advanced learning capabilities and bid using the self-adaptive
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bidding strategy, i.e., Procedure.4.4. In test case 2, none of the three atomic

service providers holds the capability of Bayes estimator.

• In both test cases, the total number of the sequential auctions is setup as 30.

The type value of asp2 is setup as 1050 and the type value of asp3 is setup as

1100. With respect to asp1, we let its type value increase from 1000 to 1200

with interval of 5. This design is to test how the Bayes estimator affects the

performance under different parameter settings. For instance, let us consider two

parameter configurations of {θasp1 = 1000, θasp2 = 1050, θasp3 = 1100} and {θasp1 =

1200, θasp2 = 1050, θasp3 = 1100}. With the first parameter configuration, asp1

tends to propose a lower bid due to its smaller type value, thus it is usually

chosen as the winner. With the second parameter configuration, asp1 tends to

be always the loser due to its larger type value. This prediction should not be

difficult to get when every bidder has the same bidding strategy, i.e., none of them

employs the Bayes estimator-based bidding strategy or hold any advantages in

the competitive bidding process. This experiment aims to show whether adopting

the Bayes estimator-based bidding strategy will help asp1 even under a hostile

environment, like the second parameter configuration.

In Figure.4.10, the horizontal axis is for the type value of asp1 and the vertical axis

is for the corresponding number of times of winning the auction. We can find that the

number of times of winning the auction generally follows the descending trend when the

type value increases. Even after the type value becomes higher than 1100, it still can

win a certain number of auctions. This is due to the reason that, by employing Bayes

estimator, aspi is able to grasp the opportunity when its competitors propose bids being

higher than the aspi’s type value. On the other hand, the result of test case 2 reported

in Figure.4.11 shows that asp1 cannot win any auction once its type value is higher than

1100.
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Figure 4.10 Number of times of winning the auction for asp1(test case 1)

The results reported in Figure.4.10 and Figure.4.11 combine to show the effectiveness

of employing the Bayes estimator-based bidding strategy for the target-oriented SLA

design in sequential auction.

4.3.3 Related Work and Discussion

The research reported in this section are divided into two parts: one-shot auction and

sequential auction. Both parts fit to the general scope of the target-oriented SLA design.

The one-shot auction can be analyzed using the classical Bayesian game formulation.

But the restrictions on the underlying probabilistic distributions limit its applicabilities.

We discuss the numerical approaches based on Monte Carlo methods, which is similar

to the works reported in [57] and [58]. One of our main contributions lies in the two-

dimensional Bidding strategy design using Monte Carlo method and the discussions on

the utility maximization strategy based on the competitors’ bid pairs.

In the second part of this section, we develop the Bayes estimator-based bidding

strategy by exploiting the relationship between the proposed bid rate and type value.

This approach depends on some knowledge about the competitors, such as the ratio of
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Figure 4.11 Number of times of winning the auction for asp1(test case 2)

the initialization bid to the type value and the descending speed of the bid rate for each

auction. Although this information can be captured through statistical estimation meth-

ods [59], more detailed models are seeked to be built to capture these unknown factors in

an unified framework. We are working on designing strategies to learn the initialization

bid, descending speed and type value of an atomic service provider concurrently from

its bid rate using a hierarchical model [50].

4.4 Stochastic Modeling of Dynamic Business Relationships

In accordance with the previous discussions, the business relationships between a

composite service provider and its controlled atomic service providers can be framed by

either bilateral negotiation protocol or auction protocol. The service price specified in

the settled SLA varies with the protocol that is used to design the SLA. This service

price represents the buying price to the composite service provider and stands for the

selling price to the atomic service provider. From the perspective of a composite service

provider, the buying price plays an essential role when pricing a composite service which

includes that specific atomic service. From the point of view of the atomic service
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provider, the selling price represents the revenue that is generated by delivering the

related service. Therefore, estimating this service price is important to both sides. In

the context of the stochastic performance analysis, the estimation can be represented

by the long run probability of framing the business relationship with either one of the

SLA design protocols. The modeling approach studied in this section will capture the

dynamic interactions of three sides: composite service provider, atomic service provider

and service request. This investigation not only helps the composite service provider to

estimate the price tag but also provides a controllable approach for the atomic service

provider to actively select the SLA design protocol.

4.4.1 Continuous-Time Markov Chains

In Chapter 2, we briefly introduce the discrete-time Markov chains and their appli-

cations in the performance modeling of composite services. In this section, we will use

continuous-time Markov chain (CTMC), the counterpart of DTMC in the continuous

time space, to investigate the performance of the dynamic business relationships framed

through either bilateral negotiation protocol or auction protocol.

Comparing to the definition of DTMC, a Markov process is referred to as a CTMC

when the parameter space is continuous, which is usually associated with time space in

practice. The CTMC dynamics is composed of two types of information: the one-step

transition probability from one state to another state, and the average holding time in

one state. This dynamics is characterized by the infinitesimal generator matrix Q [14],

and each entry Q[i, i] is defined in Equation.4.30.

Q[i, j] = lim
h→0

Pr{X(t + h) = j|X(t) = i}
h

∀ i = j (4.30)

The diagonal entry in the Q is computed through the in-out balance relationship, i.e.,∑j=m
j=1 Q[i, j] = 0. For a homogeneous CTMC, the Q[i, j] does not vary with parameter

t. A CTMC can be transformed into a DTMC through the embedding technique. The
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transformed DTMC is called as the embedded DTMC which only captures the prob-

ability transition information of the original CTMC [14]. The CTMC analysis can be

henceforth conducted on its embedded DTMC. Both a CTMC example and its embedded

DTMC are shown in Figure.4.12.

Figure 4.12 A CTMC and its embedded DTMC

4.4.2 The Dynamics of the Business Relationships Framed Through Differ-

ent SLA Design Protocols

The business relationships connecting a composite service provider and a collection

of its controlled atomic service providers can be characterized by a state defined as

Si = (a1, a2), where a1 represents the number of queued requests for a given type of

atomic service and a2 stands for the number of available atomic service providers. The

requests are queued since there exists an upper limit on the number of atomic service

providers that a composite service provider can control. Once a service request cannot

be immediately served due to the unavailability of atomic service providers, this request

will be put into a wait queue owned by the composite service provider. The number

of available atomic service providers varies with time. An atomic service provider can

identify itself as unavailable when serving a request. After finishing the service provi-
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sioning process, this atomic service provider will join the candidate pool. Throughout

the life cycle of a service market, the reachable business relationships captures by the

states defined this way can be categorized into the following types:

type 1 {a1 > 0 and a2 = 0} corresponds to the scenario where all of the controlled

atomic service providers are involved in providing service to the composite service

provider through some types of SLA while some requests wait in the queue.

type 2 {a1 = 0 and a2 > 0} corresponds to the scenario where a2 atomic service

providers are available to serve the incoming requests while other atomic ser-

vice providers are involved in providing service to the composite service provider

through some types of SLA.

type 3 {a1 = 0 and a2 = 0} corresponds to the scenario where all of the controlled

atomic service providers are involved in providing service to the composite service

provider through some types of SLA while the queue is empty.

Figure.4.13 describes the transition dynamics happening among the states of type

1. An incoming service request will enable system to transit from state (i+1, 0) to (i, 0).

When the system is in state (i+1, 0), a newly available atomic service provider will frame

its relationship with the composite service provider through the bilateral negotiation-

based SLA design protocol. When we choose the first-come-first-serve scheduling pol-

icy [60], the service request lying in the head of the wait queue will be served. State

(1, 0) is a boundary state among the states of type 1. Its transitions with state (2, 0)

are captured in Figure.4.13, while its transitions with another neighboring state (0, 0)

are captured in Figure.4.15.

Figure.4.14 describes the transition dynamics happening among the states of type 2.

A newly available atomic service provider will move the system from state (0, i) to state

(0, i + 1). On the other hand, an incoming service request will trigger the system start
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Figure 4.13 The transitions among states of type 1

the auction protocol to determine the atomic service provider which will provide the

service to this incoming request. This will cause the system to move from state (0, i+1)

to state (0, i). Similar to the case of state (1, 0), state (0, 1) is also a boundary state

among the states of type 2. Its transitions with state (0, 2) are captured in Figure.4.14,

while its transitions with another neighboring state (0, 0) are captured in Figure.4.15.

Figure 4.14 The transitions among states of type 2

The state (0, 0) is a boundary state connecting the states of type 1 and the states

of type 2. Their relationships are reflected in Figure.4.15. An incoming service request

moves the system from state (0, 0) to state (1, 0) of type 1. At state (1, 0), a newly

available atomic service provider will provide the service to this only existing queued

service request after negotiating a SLA with the composite service provider. When

system is in state (0, 1), an incoming service request will trigger the negotiation protocol

between this available atomic service provider and the composite service provider and

move the system to state (0, 0). On the other hand, a newly available atomic service

provider will move the system from state (0, 0) to state (0, 1).

In summation, there are five types of transitions connecting these different types of

states.
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Figure 4.15 The transitions related to state (0, 0)

1. The transition from state (0, i) to state (0, i + 1) is triggered by the event that an

atomic service provider becomes available.

2. The transition from state (i + 1, 0) to state (i, 0) is triggered by the event that

a newly available atomic service provider is assigned to serve the service request

lying in the head of the queue through the bilateral negotiation-based SLA design

protocol. The auction-based SLA design protocol will not be used here since there

only exists a single atomic service provider associated with this type of transition.

3. The transition from state (i, 0) to state (i + 1, 0) is triggered by the event that a

service request enters the wait queue.

4. When i > 1, the transition from state (0, i + 1) to state (0, i) is triggered by the

event that an atomic service provider wins the auction to serve an arriving service

request.

5. The transition from state (0, 1) to state (0, 0) is triggered by the event that the only

available atomic service provider is assigned to serve the arriving service request

through the bilateral negotiation-based SLA design protocol.

The speed of the first type of transition and the speed of the second type of transition are

controlled by the service time of the atomic service providers. The speed of the remaining

types of transitions is controlled by the interarrival times of the service request. These

two facts will be used later to build the CTMC for the dynamic business relationships.
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Comparing to the average service time and the interarrival times for the service

requests, the computational time required for the negotiation protocol and the auc-

tion protocol is considered to be quite small. For instance, at a state of type 2, once

an atomic service provider becomes available, it will immediately be assigned to serve a

queued request after designing the SLA based on bilateral negotiation or auction. Hence,

it is impossible for a state belonging to any of the above three types of states to reach

a state of the form (a1, a2) : a1 ≥ 1 and a2 ≥ 1. The only possible scenario is that

the system starts from the state of (a1, a2) : a1 ≥ 1 and a2 ≥ 1. Once this happens,

depending on the relative difference between a1 and a2, a serious of instantaneous tran-

sitions will be invoked and a set of associated instantaneous states will be constructed.

Therefore, the system can be thought of starting from (0, a2−a1), (0, 0), and (a1−a2, 0)

respectively. The analysis is illustrated in Figure.4.16.

Figure 4.16 Three types of evolving processes consisting of instantaneous
states

4.4.3 CTMC-Based Performance Analysis

In accordance with the state and transition definitions, Figure.4.17 shows the Markov

chain model built for capturing the dynamic business relationships connecting a com-

posite service provider and a set of its controlled atomic service providers, which are
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further affected by incoming service requests. In this example, the size of the service

wait queue and the number of the controlled atomic service providers are assumed to be

five, which determines the size of the constructed Markov chain. The arrival process of

the incoming service request is assumed to follow the Poisson process with the arrival

rate of λ; and the service time for each atomic service provider is assumed to be an

exponential random variable with rate μ. Based on both λ and μ, the rate associated

with each transition is calculated and marked in Figure.4.17. The concrete computation

process are given as follows:

• The transitions from state (0, i) to state (0, i− 1), from state (0, 0) to state (1, 0),

and from state (i, 0) to state (i+1, 0) are triggered by an incoming service request

which has a rate of λ.

• The fact that the system is in state (i, 0) indicates that all of the five atomic

service providers are involved in the service provisioning process. Based on the

property of the superposition of Poisson processes [15], the associated rate for

making transition from (i, 0) to (i − 1, 0) and from (0, 0) to (0, 1) is 5μ.

• The fact that the system is in state (0, i) indicates that 5−i atomic service providers

are involved in the service provisioning process. Therefore, the associated rate for

making transition from (0, i) to (0, i + 1) is (5 − i)μ.

Once a Markov chain model is constructed, the numerical approach or the analytical

approach to get the stationary probability distribution is a standard procedure. Please

refer to [14] and [15] for more details. Our research has two focuses. The first one

is about how to build the Markov chain model based on the analysis of the system

dynamics, and has been studied in the above. The second one aims to investigate which

kind of performance metrics can be derived from the constructed Markov model to help

both the composite service provider and the atomic service provider in their respective

managerial decision making process. This focus will be discussed in the following part.
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Figure 4.17 Markov chain model for the dynamic business relationships
framed through different SLA design protocols

From the viewpoint of a composite service provider, a related performance metric is:

• What is the expected price tag for this type of atomic service which is bought from

its controlled atomic service providers?

The composite service provider needs this information to compute the price charged to

the consumer over a composite service request which involves this specific atomic service.

The estimation of the price can be computed as in Equation.4.31.

E[P ] =
i=5∑
i=1

EPn{(i, 0)}×Pr(i, 0) +
i=5∑
i=2

EPa{(0, i)}×Pr(0, i) + EPn{(0, 1)}×Pr(0, 1)

(4.31)

In Equation.4.31, EPn{(i, 0)} represents the expected price tag specified by the bilat-

eral negotiation-based SLA design initiated at state (i, 0); EPa{(0, i)} represents the
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expected price tag specified by the auction-based SLA design initiated at state (0, i).

Note that the state (0, 1) corresponds to the negotiation protocol rather than the auction

protocol due to the existence of only one atomic service provider. Another issue in using

Equation.4.31 is the computation of Pr(i, 0) and Pr(0, i). The Markov chain analysis

outputs the stationary probability which represents the long run proportion of staying

in a given state. Let π{(i, j)} denote the stationary probability of state (i, j). The

stationary probability of π{(i, j)} is obtained by solving the system of global balance

equations [15], which are just standard procedures once the Markov model has been

built. However, we can not simply use π{(i, j)} to replace Pr{(i, j)}. For instance,

at state (0, i), the system can move to either state (0, i + 1) or state (0, i − 1). Only

the transition leading to state (0, i − 1) corresponds to the event of invoking the auc-

tion protocol. This portion of π{(0, i)} to be allocated to Pr(0, i) is controlled by the

probability of having a service request arriving earlier than a newly available atomic

service provider. Similarly, for a state of (i, 0), the proportion of invoking a bilateral

negotiation protocol is controlled by the relative speed between the arrival of the atomic

service provider and the arrival of another service request. If an atomic service provider

arrives earlier, a negotiation protocol will be invoked and leave the state of (i, 0). In

summation, we have

Pr{(0, i)} =
λ

λ + (5 − i)μ
π{(0, i)} i = 2, 3, 4

Pr{(i, 0)} =
5μ

λ + 5μ
π{(i, 0)} i = 1, 2, 3, 4 (4.32)

There are three exceptional states: (0, 0), (5, 0) and (0, 5). State (0, 0) does not ini-

tiate any SLA design protocols and is not included in Equation.4.31. There exists

only one output transition for both (5, 0) and (0, 5). Hence, Pr(5, 0) = π{(5, 0)}
and Pr(0, 5) = π{(0, 5)}. Besides the probabilities of Pr{(0, i)} and Pr{(i, 0)} in

Equation.4.31, the computation of the expected price EPn{(i, 0)} and EPa{(0, i)} is

another issue to be addressed. In accordance with the previous discussions on the ne-
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gotiation protocol design and auction protocol design, the specified price tags heavily

rely on the concrete implementations. In practice, the general approach of getting this

kind of estimation is to do the density estimation based on the accumulated transac-

tion history records using either nonparametric or parametric method [61][62]. The

estimated density function enables us to compute the expected price tags and other

necessary distribution descriptors, like variance. This type of approach is operational

and performance tunable based on the quality of the accumulated data and the applied

algorithms.

An atomic service provider can have three different types of statuses: in the service

provisioning process, in the candidate pool and off the market. The status of “off the

market” can be due to a variety of reasons, e.g., maintenance, or terminate the business

relationship with the composite service provider,etc. In the current research setting, we

do not consider the “off the market” status and assume that the atomic service provider

is either in the service provisioning process or in the candidate pool waiting to be invoked

by the composite service provider. From the perspective of an atomic service provider,

two related performance metrics are listed as follows:

1. What is the long run probability of landing in a scenario of framing the SLA con-

figuration with the composite service provider through the negotiation protocol?

2. What is the long run probability of landing in a scenario of framing the SLA

configuration with the composite service provider through the auction protocol?

These two performance metrics have managerial meanings to the atomic service provider.

If it is very likely for an atomic service provider to get involved into a bilateral negotiation-

based SLA design protocol, then this atomic service provider do not need to worry too

much about the competition. This can bring more bargaining power into its relationship

with the composite service provider. Moreover, some strategic decisions can be made

based on these two performance metrics. In practice, developing successful strategy for
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either the auction process or the bilateral negotiation process can cost a lot of resources,

both computational ones and social ones. Based on these two performance metrics, an

atomic service provider can decide which strategy should be invested in.

Let Qn denote the probability of landing in a negotiation protocol and Qa denote

the probability of landing in an auction protocol. We have:

Qn =

∑i=5
i=1 Pr{(i, 0)} + Pr{(0, 1)}∑i=5

i=1 π{(i, 0)} + π{(0, 0)} +
∑i=5

i=1 π{(i, 0)} (4.33)

In Equation.4.33, the physical meaning of Pr{(i, 0)} and its computation has been

discussed in the above. The denominator for the right side of the equation is the sum

of the stationary probability vector and equals to 1. Therefore,

Qn =
i=5∑
i=1

Pr{(i, 0)} + Pr{(0, 1)}. (4.34)

Similarly, we have

Qa =
i=5∑
i=2

Pr{(0, i)}. (4.35)

4.4.4 Related Work and Discussion

A Markov chain model is constructed to model an auction-based logistics market [63].

Instead of focusing on a single type of business relationship framing protocol, our research

focuses on multiple business relationship framing protocols, e.g., bilateral negotiation-

based SLA design and the auction-based SLA design. From the performance analysis

perspective, the research presented in [63] aims to analyze the effects of the system

parameters on the profit of different carriers managed by a single type of business re-

lationship. On the other hand, we are interested in developing analytical approaches

to help the decision making processes of both composite service provider and atomic

service providers which are involved in a set of dynamic business relationships.

In the example shown in Figure.4.17, the size of the wait queue and the number

of the maximal available atomic service providers are assumed to be five. Once this
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number is increased for complex systems, the constructed Markov chain will become

very complicated and even cannot be drawn explicitly, which is related to the issue of

state explosion [64]. To meet this challenge, we need research the application of high

level formalism, such as Petri nets [65], to model the dynamic business relationships

in a more abstract way. The current model assumes that every atomic service service

provider shares the same service rate. Taking into account the heterogeneous service

capability of different atomic service providers is another extension that should be made

for the current model construction process.
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CHAPTER 5. Conclusions, Discussion and Future Work

Our research focuses on three facets of competitive service market: modeling, storage

design and SLA-based management. In this chapter, we conclude this dissertation with

a summary of the achieved results and the contributions to establishing a manageable

and economically feasible service market. We also briefly summarize directions of future

work at the end of this chapter.

5.1 Conclusions

We have proposed and formalized the concept of a competitive service market, which

is created to capture the business dynamics generated by various types of service agents

interconnected under the framework of services computing. The structural hierarchy

consisting of atomic service provider and composite service provider clarifies their re-

spective positions held in the market. The supply and demand relationships among

service consumers, composite service providers and atomic service providers frame the

interconnections of the service chain in the service market. These complexities are in-

stantiated through a variety of constraints: functionality constraint, QoS constraint and

profit constraint.

In order to provide quantitative support for the decision making processes of different

market players, we have constructed stochastic models to conduct performance analysis

at different levels spanning vertically on the structural hierarchy of the service market.

The queuing model is used as a unified approach to model the dynamic behaviors at the
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atomic service level. We have demonstrated how the fundamental performance metrics

are used to derive the compound metrics. The end-to-end response time for composite

service is one of the most widely studied performance metrics in services computing.

We have introduced the time-dependent system dynamics and discuss its effect on the

response time computation. We have created a recursive procedure that keeps track of

the time difference between the starting time of the composite service and the starting

time of a participating atomic service. Using market-based availability as an example,

we have investigated the stochastic modeling approach at the market level. This line

of research not only creates a systematic analysis methodology which is multi-level and

metrics-dependent, but also delivers a set of operational solutions to assist various types

of decision makers in the market.

To gain a competitive edge in the service market, a service provider should be able

to deliver its service with diverse quality levels based on the requirements of the ser-

vice purchaser. In the context of service requirements analysis, we capture this fact

and classify the concept of service and the concept of service parameter configuration in

terms of functional and non-functional features. The concept of service focuses on the

functionalities and the concept of service parameter configuration centers around the

non-functional features. Moreover, we have structured the service discovery process into

a two-step procedure: first, to find the candidate that meets the functional requirements

of the customer; secondly, to determine the appropriate service parameter configuration

that fulfills the non-functional requirements. It is required to save both candidate ser-

vices and candidate service parameter configurations in the service registry and keep

track of their chaining relationships.

The combinatorial relationship between a single service and its associated service pa-

rameter configurations leads us to propose a scalable storage architecture that can handle

the large amount of service parameter configurations while supporting the two-stage ser-

vice discovery process. The designed architecture is composed of a set of decentralized
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storage units indexed by a centralized service array. We apply the counting Bloom filter

to design the storage unit and it has two features:

• The counting Bloom filter-based set membership evaluation criterion enables us

to block the service request which cannot find the candidate service parameter

configuration in a very efficient way.

• The collection of candidate service parameter configurations is decomposed into a

set of linked lists, and the length of each linked list is monitored by the counter

value of the counting Bloom filter.

These two features are combined to minimize the number of comparison operations,

which determines the computational cost of this two-stage service discovery process. We

have developed an analytically solvable metrics, expected counter value in the counting

Bloom filter, to predict the performance of this system. Since this metric is a function

of the system parameter settings, the system performance is thus tunable by changing

system parameters. This feature is helpful to build a controllable system that is essential

for the system manageability.

The business relationships of different market players are typically governed by the

service level agreements (SLAs). We systematically investigate the SLA design method-

ologies for every identified SLA design pattern. In order to capture the behavior of either

the negotiation counterpart or the market competitors, we develop Bayes estimator-

based scheme for the SLA design protocols in both the bilateral negotiation pattern and

sequential auction pattern. With the help of the learning capability provided by the

Bayes estimator, we are able to develop flexible offer proposition and bidding strate-

gies in accordance with different SLA settlement criteria. The experimental results

demonstrate its effectiveness. Instead of considering each SLA design instance as an in-

dependent event, we cast the dynamic business relationships framed through coexisting

SLA design protocols into a unified stochastic model based on Markov chain. We study
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a variety of performance metrics that can be analyzed using the constructed Markov

chain model, and how these performance metrics can help different market players to

make both strategic and operational decisions.

In summary, the proposition of the concept of a competitive service market and

the involved interrelations enhance the business dimension of services computing, and

provide a framework to study the business behaviors of various types of service agents.

The modeling approaches not only deliver operational solutions to some important per-

formance metrics but also help to build a multi-level modeling framework. Guided by

the service requirements analysis, we design a scalable service storage architecture to

support the fast service discovery process while being able to keep track of large number

of service parameter configurations. We have systematically investigated the SLA de-

sign methodologies based on diverse business scenarios in the life cycle of a competitive

service market. The CTMC-based modeling approach captures the dynamic business re-

lationships in a unified system that can be quantitatively analyzed. These three facets of

our research are combined to form a foundation towards building a service management

system of the competitive service market.

5.2 Discussion: Service Demand Model in the Competitive

Service Market

In the current research setting, we assume that the payment scheme is “pay-per-

service instance”. Each invocation of an atomic service costs the composite service

provider a fixed payment which is specified in the signed SLA. Once the pair of unit

payment and quality level is fixed, the composite service provider will route the in-

coming atomic service request to this atomic service provider in accordance with a

pre-determined service selection protocol. The estimated number of invocation on an

atomic service provider is modeled as a demand function which takes the retail price
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and quality levels as the input parameters [66]. Here, the retail price is the one that

the composite service provider charges the consumer over this specific atomic service.

Equation.5.1 gives a generic form of demand function.

Mi = Di(P0, Qi) (5.1)

In Equation.5.1, the demand on the service provisioned by aspi is represented as a func-

tion of P0 and Qi. Qi denotes the quality level specified in the SLA signed between aspi

and cspo. P0 stands for the retail price that cspo will ask. Hence, P0 −Pi represents the

net profit for cspo by purchasing this specific atomic service for the scheduled composite

service. Here, Pi denotes the selling price specified in the SLA. In practice, empirical

study and statistical approaches are applied to construct the concrete demand func-

tions [67]. The demand function can be directly used to compute the utility function in

a profit-driven business environment. The utility of an atomic service provider, aspi, is

computed as

Uaspi
= Di(P0, Qi) × Pi − Ci(Qi) (5.2)

On the other hand, the utility function of the composite service provider by purchasing

this atomic service is given as follows.

Ucspo = P0 ×Di(P0, Qi) − Pi ×Di(P0, Qi) (5.3)

In Equation.5.2, C(Qi) represents the service delivery cost required to maintain the

pre-specified quality level of Qi, where the exact formula of Ci(·) depends on a variety

of factors, such as business capability of atomic service provider and the underlying

service infrastructure. For instance, the business operation cost is claimed to be able

to be modeled by the quadratic form of the quality level [68], e.g., 1
2
ςiQ

2
i . Here, ςi is a

constant and referred to as the quality level coefficient.

Explicitly defining the demand function enables us to formulate the utility in a well

structured function like Equation.5.2. However, we need to stress the fact that fulfill-
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ing this task heavily depends on the demand function which needs advanced modeling

approach and accumulated transaction data to get its accurate formula [69].

5.3 Future Work: Sequential SLA Design Using Stackelberg

Game

The SLA design scenarios investigated so far do not explicitly take other existing

SLAs into account. This simplification does not fully expose the complicated business

scenarios that a SLA design process can get involved in. A typical scenario is that an

atomic service provider designs SLA together with the composite service provider. After

observing this signed SLA, another atomic service provider decides how to design its SLA

configuration based on the observed information. These two sequential SLA designs can

be modeled as a Stackelberg game [54]. To differentiate with the SLA design patterns

discussed previously, we refer to this newly proposed pattern as the sequential SLA

design. In the Stackelberg game, the agents are classified as a leader and a follower.

The leader moves first and makes a set of decisions which are observable to the follower

which will make its decision based on this observation. With respect to the sequential

SLA design, the firstly signed SLA functions as the leader while the secondly signed

SLA functions as the follower [54].

As a preliminary modeling effort, we limit the number of involved atomic service

providers as two. The SLA firstly signed between asp1 and cspo is denoted as SLA1.

The other SLA secondly signed between asp2 and cspo is denoted as SLA2. A signed

SLA binds two agents. We can use a weighted sum of participating agents’ utilities as

the utility for a SLA.

U1(P0,1, P1, P2, Q1, Q2) = w1(P0,1 − P1)Dc
1(P0,1, P0,2, Q1, Q2)

+w2(P1Dc
1(P0,1, P0,2, Q1, Q2) − C1(Q1)) (5.4)
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Equation.5.4 computes the utility for the firstly designed SLA, SLA1. It takes the

payoffs of both sides into account. We use w1 and w2 to represent the different weights

held by two counterparts. In Equation.5.4, (P0,1 − P1)Dc
1(P0,1, P0,2, Q1, Q2) represents

the payoff of cspo while (P1Dc
1(P0,1, P0,2, Q1, Q2)−C1(Q1)) represents the payoff of asp1.

Here, P0,1 represents the cspo’s retail price of the service that is purchased from asp1

through SLA1. The specification of SLA1 determines the quality level of the service

and incurs a demand on this particular service parameter configuration. The demand

on the service signed through SLA1 not only depends on its retail price and the specified

quality level, i.e., {P0,1, Q1}, but also depends on the competitive business relationship

framed by SLA2. For instance, a liner demand function to capture the competitor’s

effect is given in Equation.5.5 [70].

Dc
1(P0,1, P0,2, Q1, Q2) = α − θ1 × (P0,1 − P0,2) + θ2 × (Q1 − Q2) (5.5)

In Equation.5.5, a linear factor of θ1 measures the effect of price difference and a linear

factor of θ2 measures the effect of quality level difference, α is a constant. Similar to the

SLA1, the utility of SLA2 is given in Equation.5.6.

U2(P0,2, P1, P2, Q1, Q2) = w1(P0,2 − P2)Dc
2(P0,2, P0,1, Q1, Q2)

+ w2(P2Dc
2(P0,2, P0,1, Q1, Q2) − C(Q2)) (5.6)

Following the backward solution approach for solving Stackelberg game [54], the speci-

fication of SLA2 is solved through

P ∗
0,2 = argmax{U2(P0,2, P

∗
2 , Q∗

2, |P0,1, P1, Q1} ∀P0,2 ∈ P0,2

P ∗
2 = argmax{U2(P

∗
0,2, P2, Q

∗
2, |P0,1, P1, Q1} ∀P2 ∈ P2

Q∗
2 = argmax{U2(P

∗
0,2, P

∗
2 , Q2, |P0,1, P1, Q1} ∀Q2 ∈ Q2 (5.7)

The equilibrium solution for the specification of SLA2 is obtained by assuming the

specification of SLA1, and is solved in Equation.5.7. The results of Equation.5.7 imply
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that P ∗
0,2,P

∗
2 and Q∗

2 are the functions of P ∗
0,1,P

∗
1 and Q∗

1. Hence, we have

P ∗
0,1 = argmax{U1(P0,1, P

∗
1 , Q∗

1} ∀P0,1 ∈ P0,1

P ∗
1 = argmax{U1(P

∗
0,1, P1, Q

∗
1} ∀P1 ∈ P1

Q∗
1 = argmax{U1(P

∗
0,1, P

∗
1 , Q1} ∀Q1 ∈ Q1 (5.8)

In the above equations, P0,2,P2,Q2,P0,1,P1 and Q1 are the domains of the corresponding

variables. The above discussions just provide preliminary analysis of the sequential

SLA design using Stackelberg game formulation. In practice, solving Eq.5.7 and Eq.5.8

presents real challenges since the demand functions, Dc
1 and Dc

2 are not differentiable.

Some researches have been reported to numerically solve the real-world Stackelberg

games and can be applied to solve our problem [71][72].

We have discussed several SLA design patterns in both Chapter 4 and this section.

Future research would also include developing a generic service management console that

is able to instantiate a specific SLA design protocol in accordance with a given business

scenario. This requires a systematic decision making process to help selecting which

SLA design protocol should be used. The SLA design methodologies developed in the

above will constitute the candidate pool for this decision making process.
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