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Microstructure design using graphs

Pengfei Du', Adrian Zebrowski?, Jaroslaw Zola®, Baskar Ganapathysubramanian' and Olga Wodo*

Thin films with tailored microstructures are an emerging class of materials with applications such as battery electrodes, organic
electronics, and biosensors. Such thin film devices typically exhibit a multi-phase microstructure that is confined, and show large
anisotropy. Current approaches to microstructure design focus on optimizing bulk properties, by tuning features that are
statistically averaged over a representative volume. Here, we report a tool for morphogenesis posed as a graph-based optimization
problem that evolves microstructures recognizing confinement and anisotropy constraints. We illustrate the approach by designing
optimized morphologies for photovoltaic applications, and evolve an initial morphology into an optimized morphology exhibiting
substantially improved short circuit current (68% improvement over a conventional bulk-heterojunction morphology). We show
optimized morphologies across a range of thicknesses exhibiting self-similar behavior. Results suggest that thicker films (250 nm)
can be used to harvest more incident energy. Our graph based morphogenesis is broadly applicable to microstructure-sensitive

design of batteries, biosensors and related applications.
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INTRODUCTION

Microstructure design, or morphogenesis, is the decision making
process of determining material distribution to optimize perfor-
mance.'? Since the microstructure critically affects transport of
mass,® charge® as well as reaction rate,’ there has been a
sustained focus on microstructure-sensitive design. The design
goal here is to identify tailored microstructures that result in
maximization of desired properties. Examples include designing
the porous structure of membranes to enhance the filtering
process for water reclamation,® designing the electrode micro-
structure in batteries to improve energy transport,” and control-
ling the microstructure in thin film organic electronics to improve
energy harvesting® or sensing® capabilities.

Morphogenesis can broadly be decomposed into two distinct
stages: the representation stage and the mapping stage. The first
stage (representation stage) is to carefully construct a mathema-
tical framework for representing and, most importantly, synthe-
tically generating microstructures (by ‘synthetically’ we mean
generated in silico). The second stage is to build the mathematical
construct that maps the microstructure to a property. The first
stage allows sampling candidate microstructures and perturbing
them, while the second stage enables evaluating the performance
of a microstructure. These two stages are then wrapped into an
optimization framework to iteratively identify a microstructure
with extreme performance. Current approaches to morphogenesis
are limited in two ways: (a) the use of computationally complex
methods for microstructure representation'®''—field based
(phase field, level set, random fields), or feature based
approaches—which make reconstruction or perturbing micro-
structures non-trivial,'? and (b) the necessity of solving complex,
non-linear partial differential equations based mappers”'* for
evaluating the property of a microstructure. These limitations

bottleneck rapid exploration of the search space, especially for
geometrically constrained (thin films) and anisotropic systems
where the number of constraints make exploration quite non-
trivial.

Here, we show how morphogenesis can be substantially
simplified and generalized by using concepts from graph theory.
Labeled, weighted, undirected graphs can be used to represent
microstructures. They provide a fast, accurate and extensible way
to represent, perturb and generate microstructures. Furthermore,
graph measures (or queries) can be used to construct viable
surrogates for the microstructure-property mappers, which enable
fast and efficient property evaluation. This is especially useful
when considering microstructure-sensitive processes (like trans-
port and reactions) that can be naturally represented in terms of
pathways, connected components and interfaces, which are
foundational concepts in graph theory. Additionally, expert
intuition, available knowledge and data trends can be naturally
fused into these surrogate graph metrics allowing easy integration
of domain knowledge with data.

Finally, a graph based approach merges both stages of
morphogenesis (microstructure representation and structure-
property mapping) in a computationally elegant and efficient
way. We show that one can frame morphogenesis as a graph
optimization problem and illustrate the approach by designing
optimized morphologies for photovoltaic applications.' We
demonstrate how this fast approach allows us to evolve an initial
morphology into an optimized morphology exhibiting substan-
tially improved short circuit current. We show optimized
morphologies for thicker films (~250 nm) than currently prevalent,
which allows harvesting more incident energy. Our graph based
morphogenesis is broadly applicable for microstructure-sensitive
design for batteries, biosensors and filtration.
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Elements of graph-based microstructure design framework. a The concept of representing morphology as an equivalent graph allows

construction of fast graph based surrogates to full-physics based device performance indicators; b Scheme of population based incremental
learning: An initial (or prior) distribution is sampled to generate candidate graphs (i.e.,, microstructures), which are rapidly evaluated and
ranked. This ranked information is used to update the distribution. Iterating this process evolves the distribution towards graphs exhibiting
better performance. Such an approach naturally allows incorporation of expert information into the prior

RESULTS AND DISCUSSION
Graph-based microstructure design framework

Standard approaches for computationally predicting the perfor-
mance of microstructure sensitive systems involve interrogating
the microstructure of interest using computationally intensive
frameworks. Incorporating these strategies into any inverse design
problem becomes computationally intractable. We address this
challenge in two stages. In the first stage, we develop a physics-
based ‘graph surrogate model’ of the performance of the device.
The ‘surrogate model’ extracts the microstructure-aware perfor-
mance measures and is built (a) using the underlying equivalence
between a multi phase morphology and a labeled, weighted,
undirected, graph, (b) using concepts and algorithms from graph
theory, (c) to seamlessly allow incorporating domain expert
knowledge and intuition. In the second stage, this simple and
fast surrogate model is linked with a parallel probabilistic
optimization algorithm that enables the inverse design of
morphologies to maximize certain performance criteria. The
choice of the probabilistic approach again allows seamless
incorporation of domain knowledge in terms of the prior
distribution (see Fig. 1).

The key idea here is to represent microstructure as a graph. A
graph-based representation allows us to leverage well studied
algorithms from graph theory along with their optimized
implementations. We note that graphs have been used in many

material science models ranging from molecular structure''® to
grain boundaries'”""® and porous microstructure.'
Discretized microstructure is represented as a labeled,

weighted, undirected graph G= (V,EW,L) (Fig. 1a). The graph
captures all imperative information inherent to a digitized
morphology. Each pixel (or voxel) in the microstructure becomes
a graph vertex, with V being the set of all vertices in the
microstructure. An associated labeling function, L, assigns a label
to each vertex in V. For instance, considering a two-phase
microstructure, L could associate a color (red) to represent one
phase, and another color (blue) to represent the second phase.
Thus L acts on each vertex in V. It should be noted that the set of
vertex labels can be easily extended to account for multi phase
system or to represent multiple characteristics (like electrical,
thermal and magnetic properties, or crystalline vs amorphous
properties) of each vertex. Each vertex is connected to its
neighboring vertices through edges. The set of all edges in the
graph is denoted as E. Finally, the weight function, W : E — R,
assigns a non-negative real weight to each edge in E. For instance,
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the weight function could simply encode the physical distance
between voxels. Alternate weight functions could encode hop-
ping frequencies of charge/mass/momentum transfer between
vertices or other transport characteristics. This G = (V,E,W,L) based
representation provides a lot of flexibility in representing a variety
of microstructures and associated spatially varying properties. On
top of the versatility of this graph representation of a micro-
structure, we gain the ability to use very efficient graph algorithms
to extensively characterize the graph (morphology). In general,
most transport and reaction characteristics that depend on the
underlying morphology can be recast as graph measures.'??°

Given graph-based representation of the microstructure, a
surrogate model of material properties is constructed directly on
the graph-based representation. Traditionally, there have been a
spectrum of approaches for constructing a mapping from a given
microstructure to its associated device performance indicator. On
one end of the (complexity) spectrum are the full-physics based
approaches that use detailed microstructure-aware property-
structure simulators as the mapping function. These typically
come at a very high computational cost precluding optimization
except on large computing resources. On the other end of the
spectrum are the approaches that use a small set of salient
microstructural features from the microstructural data that is then
mapped to the performance indicator. These features encode
domain knowledge, are intuition driven and/or a result of carefully
designed hypothesis driven structure-property studies. A classic
example of the latter approach is the Hall-Petch relationship,
where the average grain size (salient feature) governs the yield
strength of the material?! We emphasize that representing a
digitized morphology as an equivalent graph allows one to
construct a ‘graph surrogate model’ (based on graph metrics) that
can span this full spectrum of structure-property mappers.

A surrogate model is an approximate (but fast) mapping from
the microstructure to the output, usually constructed with the aid
of statistical and/or data-driven approaches.?? If a small set of full-
physics structure-property simulation results are available, the
surrogate model is created using this limited set of results. The
surrogate model construction (or ‘training’) can be done by
extracting a large set of graph descriptors/measures from the
graph and identifying the best set of features that create a good
regression to the full-physics predictions.?®> Representing the full
microstructure as a graph helps avoid any a priori feature
extraction, and builds the surrogate model on the same graph-
based representation. Additionally, intuition driven or domain

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



Microstructure design using graphs...

npj

P Du et al.
0.4 0.9 1
035 | 08 R 0.95 4
03l G OV 07 @; g 0.9 g
025 | : 3 g'g & 1 . 0'082 i ]
o i 1 = L J
L i W : o .
0-2 0.4 R 075 | R
015 - gﬁ@ 2020 O 7 0.3 20x20 O 07k |
L 40x40 O | a0 40x40 B L i
01r @ 80x80 02 & 80x80 0.65 80x80
0.05 Il Il Il Il Il Il Il Il 0.1 Il Il Il Il Il Il Il 0'6 Il Il Il Il
12345678 910 010203040506070809 1 06 07 08 09 1 11
Jse Ndiss Nout

Fig. 2 Correlations between surrogate model and physics based performance characteristics. (Left) correlation between device performance
metric (short circuit current in mA/cm?) and descriptors (f = fabsfdissfour), (Middle and right) Individual contributions from graph features
describing exciton dissociation and charge transport, respectively. These results are consistent across different graph sizes

knowledge based features can be easily represented as graph
metrics and incorporated into a surrogate mapper.”® Examples
include evaluating the connectivity in porous media as graph
connectivity metrics and graph paths, domain sizes in ceramics
and alloys as graph connected components, among several other
examples that originated from network-based computational
models for characterizing transport properties.?*2¢

To keep the approach generic and allow diverse applications to
a variety of problem specific traits, we separate construction of the
surrogate model into two steps: defining a set of physics relevant
graph descriptors that are generic (i.e., application agnostic), and
weighting functions that encapsulate the specifics of the property
of interest (i.e, application dependent). The generic graph
descriptors include traits such as path lengths (from specific
locations, say, boundaries to all the internal nodes or from one
phase to another), centrality measures (of, say, reactants or
initiators), connectivity measures (of, say, phases in the micro-
structure with the boundary or to each other), domain sizes,
among others.?”?® Next, weighting functions are constructed to
capture the detailed trends (say, kinetics aspects, or material
specific aspects) of the transport. For example, effect of Brownian
motion (or random walks) can be encoded by defining a
weighting function that associates smaller weights with larger
distances that an ion/charge/molecule has to travel on the graph.
This is integrated with the graph path length measures to
construct a viable surrogate for the property of interest. This
generality provides substantial flexibility to creatively construct
reliable surrogate mappers.

Probabilistic graph-based optimization

The graph based surrogate model provides an efficient map from
microstructure to performance. We link this surrogate model with
a probabilistic optimization algorithm. We specifically choose a
probabilistic approach for the following reasons: (a) the outcome
of the optimization is a distribution, i.e, a microstructure class
(rather than specific microstructure), (b) such probabilistic
approaches perform global searches in a gradient free manner
and are embarrassingly parallelizable, (c) it is straightforward to
encode domain knowledge as a prior distribution, and (d) the
optimization is performed directly on graphs, hence eliminating
any conversion steps.

In this work, we use a probabilistic optimizer called population-
based incremental learning (PbIL).*® The basic steps of the
algorithm are outlined in Fig. 1 (b). PbIL is an optimization
algorithm that estimates the explicit distribution of the optimal
solution rather than searching for a specific solution, as in typical
meta-heuristics (e.g., genetic algorithms,*® hill-climbing®' or
simulated annealing®'). The multi variate probability distribution
is stored as a probability vector P of vertex labeling. In particular,
with each vertex in the graph (variable) we associate the
probability of a given phase (or component, or more generally
the label, L) appearing at this location in the morphology. The
probability vector P is updated in each iteration of the
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optimization based on the feedback from the cost functional.
The optimization starts with a given probability vector of vertex
labeling (step S1 in Fig. 1(b)), which is either uniform or reflects
domain expert knowledge (see Fig. 3). In each iteration, n
morphology realizations (i.e., instances of a colored graph) are
sampled from the current probability vector P (step S2 in Fig. 1(b)).
For each realization, j, the graph surrogate model is deployed to
evaluate the performance indicator (cost functional), f(j) (step S3 in
Fig. 1(b)). The n, best samples (n, < n) are identified (step S4 in
Fig. 1(b)). These best samples are used to calculate the update
vector, P, of the probability distribution (step S5 in Fig. 1(b)).
Specifically, the update vector P, represents the maximum
likelihood estimation of vertex labeling from the n, best samples.
An iteration ends by updating the probability vector
P=P-(1—1)+Py-I, where |, is the learning rate (step S6 in
Fig. 1(b)). Intuitively, the update reinforces features present in the
morphology, and dampens those missing, at the constant rate
prescribed by /.. The algorithm iterates until standard termination
criteria are met (iteration limits, improvement bounds). The
resulting method has a small memory footprint with only one
vector of vertex labels being stored and updated at each iteration.
The method is also embarrassingly parallel, since multiple samples
drawn from the evolving distribution vector P can be evaluated
simultaneously. The cost functional f expresses a single objective
to optimize. However, we note that in practical settings, f can
encapsulate multiple criteria, as we demonstrate in the next
section.

Application-specific exploration

We illustrate the power of this approach by optimizing the
morphology of organic solar cells (OSC). OSCs have the potential
for widespread usage due to their low cost-per-watt, mechanical
flexibility, and ease of manufacturability.'* Their widespread use
and commercialization, however, are bottlenecked primarily by
relatively low solar efficiencies. Efficiency can be improved either
by changing the material chemistry (molecular engineering),
microstructure tailoring (microstructure engineering) or architec-
ture (device engineering). It has been argued that most
advantages from tuning material energy levels (i.e., molecular
engineering) have already been achieved,® leaving microstruc-
ture design as a promising avenue for efficiency increase.>***
Traditional approaches to microstructure engineering in OSC
have relied on systematic trial-and-error experiments to generate
diverse microstructures and their device performance (which is
resource intensive), or via using computationally intensive
simulators to virtually interrogate the candidate morphologies to
identify features that an optimal morphology should exhibit.3>>° It
is generally believed that an interdigitated columnar morphology
(Fig. 3) is an optimal morphology. This is because the inter-
digitated morphology exhibits a graceful combination of two
competing requirements—having a large donor-acceptor inter-
face to enable efficient exciton dissociation, while still providing
straight, fully connected domains to enable efficient charge
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transfer and collection. We substantially improve upon this current
state-of-the-art using our graph based morphogenesis (Fig. 3) and
show that a whole class of morphologies exist that not only
exhibit a much higher photovoltaic performance, but which may
also be easier to fabricate.

Following the template for graph based morphogenesis
outlined in subsection 'Graph-based microstructure design frame-
work', we represent a OSC microstructure—consisting of two
phases, electron-donating and electron-accepting—as an labeled,
weighted, undirected graph.?® We then utilize a finite set of full
physics simulations to identify three physically meaningful graph
descriptors that together produce an exceptional surrogate for
device performance (specifically, the short circuit current)®® (see
Supplementary Information for more details). Figure 2 illustrates
the quality of the graph surrogate model. Our surrogate for the
short circuit current produced by a morphology is given as:
F = faps faiss four, Where these three descriptors are:

(i) f.bs weighted fraction of photoactive material. This accounts
for that fraction of the microstructure that absorbs incident
light and produces excitons. This also accounts for decaying
light intensity as light propagates through a semi-
transparent media (light intensity decays with distance
from the top electrode);

fabs = Z Wabs(dH) (M
i=0

where np is the total number of electron donor vertices, dy
is the distance to the top surface, wg, is the weighting
function that encodes the probability of light absorption.
We consider three scenarios here: wg,s =1 homogeneous
light absorption,  wgs =exp(—dy/A) and  Wgps =
Z£=1 ap(dy)’ is the polynomial of order p fitted to the
results of Maxwell equation for varying thickness of the
device and reflection from the bottom surface accounted for
(details provided in Supplementary Information).

(i) fuss : weighted fraction of donor with weighting based on
the distance to the donor-acceptor interface. This feature
accounts for the ability of the microstructure to successfully
dissociate the produced excitons. Excitons generated in the
donor phase diffuse (i.e., via Brownian motion) and are
dissociated only if they reach a boundary. This graph based
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metric accounts for the average (weighted) distance from
any donor vertex to the nearest donor-acceptor interface;

faiss = Z Waiss(d)) (2)

i=0

where d, is the shortest distance from any donor vertex to
the nearest acceptor, wgss = exp(—d;/Lg) is the weighting
function that encodes the probability of exciton reaching
the interface, and Ly is the exitonic diffusion length. Note
how domain knowledge (the exciton dissociation length) is
gracefully incorporated into the surrogate model.

four: fraction of complementary paths to the electrodes. This
graph feature encodes the availability (and length) of charge
transport pathways for the produced electrons and holes to
move through microstructure and reach the electrodes
where they are collected to form useful current:

(iii)

W3 43

four = Z Wtorr(TD) + Z Wrorr(TA) (3)
i=0 i=i

where n§ is the total number of donor vertices that are

connected to anode, n§ is the total number of acceptor
vertices connected to cathode. Both set of vertices are
identified using the connected component algorithm,?”
which is a standard graph algorithm. For each vertex the
shortest path towards the respective electrode is deter-
mined along with the tortuosity. Tortuosity is defined as the
ratio between the shortest path via the appropriate domain
(donor or acceptor) versus the shortest straight path without
any obstacles. A tortuosity of one corresponds to a straight
rising path, where the shortest path is equivalent to the
straight path without any obstacles. The tortuosity is
calculated for each vertex and subsequently weighted by
the function wior = exp(—4(t — 1)). The weighting function
penalizes the curvy pathways where more recombination
can occur and reinforce the straight paths.

To demonstrate the robustness of the surrogate model, Fig. 2
depicts the correlation between graph-based descriptors (surro-
gate model) and performance metrics from exitonic drift diffusion
model (physics-based model).>” We plot three metrics, full
performance evaluation and two major contributions to the
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performance, namely exciton dissociation and charge transport.
The correlation coefficient for three metrics are 96.65%, 96.95%
and 58.81%, respectively. In each subplot, we plot data for three
resolutions of the adaptive exploration: 20 x 20, 40 x 40, and 80 x
80. One data point corresponds to one iteration of the
optimization. This analysis was performed on data collected
during optimization. In particular, for each iteration of the
optimization, we saved the best performing intermediate candi-
date morphology and run the physics-based simulation. Our
correlation studies show that the surrogate model is well
correlated with the physics-based model at all stages of the
optimization.

Figure 3 (top panel) illustrates results for the evolution of the
morphology from an initially uniform random distribution. We
consider a device thickness of 100 nm, which is typical for OSC
devices. We assumed a homogeneous light absorption scenario
(i.e., a non-reflecting bottom surface). The PbIL algorithm identifies
a dendritic type structure, which is uncommon in OSC’s.
Interestingly, this structure exhibits a bicontinuous interpene-
trated network of well balanced donor and acceptor domains with
domain size comparable to the exciton diffusion length (which is
set as Ly=10 nm). This dendritic structure exhibits a graceful
combination of two competing requirements—having a large
donor-acceptor interface to enable efficient exciton dissociation,
while still providing straight, fully connected domains to enable
efficient charge transfer and collection. In fact, the currently
believed optimal morphology—an interdigitated columnar mor-
phology—is though to be optimal for precisely this reason.

We virtually interrogate the dendritic microstructure using a
morphology-aware physics-based device simulator.?” The device
simulator calculates the short circuit current density, Js. by solving
the associated exciton-drift-diffusion equations (see Supplemen-
tary Information). The predicted J;. for the dendritic structure is
8.9 mA cm 2, which is substantially larger than the J,. = 5.28 mA
cm~2 exhibited by the interdigitated columnar morphology. As
anticipated, this is due to enhanced exciton dissociation with
minimal increase in recombination. More specifically, the
increased donor-acceptor interfacial area results in enhanced
exciton dissociation, while the charge transport pathways remain
relatively non-tortuous, resulting in minimal performance degra-
dation due to recombination.

Effect of light absorption scenario and device thickness

| uniform H=100 nm | bottom reflection H=100nm |
8.05 + 0.159 |
1.471+ 0.004

8.87+0.286 |
1.469+0.014 |

Je. (MA cm-?) |

Fractal dimension (d) |
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Incorporating domain knowledge into morphogenesis

We next account for domain knowledge about features of an
optimal microstructure into the graph based optimization. Instead
of starting from a random initial distribution, we repeat the
morphogenesis by initializing the material distribution with the
interdigitated columnar morphology (Fig. 3). The ensuing
optimized microstructure improves upon the initial guess, and
exhibits a J,,=9mAcm % Interestingly, the optimization only
changes the material distribution very slightly (see movie M1 in
Supplementary Information) by creating the secondary dendritic
arms that increase the donor-acceptor interfacial area. We also
used a bad initial guess by using a bilayer morphology (which
exhibits a J,, = 0.8 mA cm™) as the initial distribution. Here, the
optimization produces both primary and secondary dendrites (see
movie M2 in Supplementary Information) as the optimization
proceeds (Fig. 3).

Universal scaling

Searching for a distribution rather than a specific solution seems
to make the framework agnostic to initial distributions, with all
three optima exhibiting similar J;.. We qualitatively check this by
rerunning the optimization five times, with different random
seeds, for each of the three initial distributions considered
(random, bilayer, interdigitated). All 15 morphologies exhibited
very similar J;. with a 3% variability across the optima. While
visually dissimilar, all exhibited similar statistical properties,
especially a fractal dimension around 1.5. This suggests that a
whole class of morphologies could potentially be optimal.
Moreover, we found the fractal dimension to be close to that of
quadratic cross (1.49%%). This is consistent with dendritic structure
where perpendicular side branches mimic quadratic cross
topology. Although morphologies we report in this paper have
columnar dendritic structure, it is interesting to see consistent
fractal dimension with quadratic cross topology.

Effect of changing device architecture

We next explore variations in the optimal morphology when light
reflecting boundary conditions are imposed at the bottom
electrode. As we emphasized earlier, accounting for this new
aspect of physical phenomena is trivial: we simply augment the
graph surrogate with a weighting term that encodes a thickness
dependent light intensity (see Supplementary Information for

bottom reflection H=250 nm

10.09 + 0.71
| 1.515 + 0.006

Fig.4 Effect of changing device architecture: light absorption scenario and device thickness. Two device thicknesses and three light reflection
scenarios evolve towards consistently similar morphologies. Optimized morphologies demonstrate superior properties for a range of device

configurations
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details). Figure 4 depicts the optimized microstructure for this
scenario. Notice that the absorption of the reflected light favors
more donor phase in the middle of the active layer. However, the
morphology still exhibits a dendritic structure with nearly the
same fractal dimensions.

Optimal morphology for thicker devices

We finally explore variations in the optimized microstructure with
increasing device thickness. This is a pressing problem in
commercializing OSCs as increasing the device thickness can
potentially enable absorbing (and converting) more incident
radiation, but usually results in poor performance due to the
concomitant increased recombination resulting from increased
charge transport pathways. Figure 4 compares the optimized
microstructures for thin (100 nm) and thicker devices (250 nm).
The thicker device has 28.9% more incident radiation that is
absorbed. Interestingly, most of this additional incident energy is
converted to collected current, with the short circuit current
improving from J;c = 8.05 mA cm ™ for the 100 nm device to J;,. =
10.09 mA cm 2 for thicker devices. Notice that the morphology for
the thicker device exhibits a similar dendritic structure with similar
fractal dimensions (~1.5). However, we notice two types of
dendrites within the thicker devices. Dendrites with only first
order side branches are promoted close to the top, while higher
order branching is promoted in the bottom of the device. The
fractal dimension of this structure is marginally larger than that
exhibited by the thinner device, due to this complexity. The
heterogeneity of the optimized structure demonstrates the
robustness of the surrogate model in the search of structures
with spatially varying complexity.

In summary, microstructure-sensitive design has become an
indispensable part of the materials discovery paradigm. However,
the identification of optimal microstructures (morphogenesis) has
traditionally been hindered by twin bottlenecks, namely non-
trivial approaches for microstructure perturbations (i.e., searching
the microstructure space), and complex approaches for
microstructure-to-property mappings. Here, we illustrate how
both these issues can be efficiently resolved via a graph-based
strategy. Treating microstructures as graphs allows efficient,
modular, and extensible representation which results in simple
approaches to perturb and explore the microstructure space.
Simultaneously, graph based measures (that can be rapidly, and
efficiently computed) make excellent surrogates  of
microstructure-to-property mapping. This graph based represen-
tation and graph-to-property surrogate mapper can be integrated
with a probabilistic optimization strategy to efficiently identify
optimal microstructures. A graph based approach furthermore
allows natural incorporation of domain knowledge into the design
process. We illustrate a proof-of-concept application by designing
the optimal structure for OSC. This resulted in the identification of
a new class of microstructures that exhibit better performance
than the currently hypothesized optimal microstructure. We
anticipate and look forward to widespread use of this micro-
structure design strategy by the materials community.

METHODS

For the design framework, an in-house C++ code is used that implements
probabilistic graph-based optimization. In each iteration of the optimiza-
tion, n =4000 samples are generated from the current distribution. Each
realization is evaluated according to the cost function, and n, =100 best
microstructures are chosen to compute the update vector P,. The learning
rate is set as 0.1. The search terminates when no improvement in cost is
recorded over 100 consecutive iterations. The cost function is defined
through the surrogate model evaluated directly on the graph as discussed
in the text. The model is constructed to approximate a short circuit current
of the device. Specifically, the full model consists of the exitonic drift
diffusion model and is used to calculate the short circuit current J;.. More
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details can be found in** and Supplementary Information. To determine
statistical similarity, all microstructures are characterized with fractal
dimension. In particular, the Hausdorff (box-counting) fractal dimension
has been computed for binary image using MATLAB function hausDim.
More details are given in Supplementary Information.
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