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INTRODUCTION 

Gas transmission pipelines are routinely inspected using a magnetizer-sensor 
assemblage, called a pig, which employs magnetic flux leakage (MFL) principles to 
generate defect signals that can be used for characterizing defects in the pipeline[l]. 
Previously reported work[2] demonstrated that radial basis function(RBF) 
networks[3-5] can be employed to characterize MFL signals in terms of defect 
geometry. Further development of this research work, related to three dimensional 
defect characterization are reported elsewhere in these proceedings. This paper 
presents an alternate neural network approach based on wavelet functions to predict 
three dimensional defect profiles from MFL indications. Wavelet basis function neural 
networks are comprised of a hierarchical architecture and are capable of 
multiresolution functional approximation. They offer a powerful alternative to RBF 
based signal-defect mapping techniques, in that the level of output prediction 
accuracy can be controlled by the number of resolutions in the network architecture. 
Consequently, the network itself can be employed to generate measures of confidence 
for its prediction. Such confidence factors may prove to be extremely useful in 
pipeline inspection procedures since they can form a basis for subsequent remedial 
measures. The feasibility of employing a wavelet basis function network for 
characterizing defects in pipelines is demonstrated by predicting defect profiles from 
experimental magnetic flux leakage signals. 

DEFECT CHARACTERIZATION PARADIGM 

Artificial neural networks(ANNs) have been used extensively for solving inverse 
problems in nondestructive evaluation(NDE). Theinverse problern is recast as a 
problern in multidimensional interpolation, which consists of finding the unknown 
nonlinear relationship between inputs, x and outputs, F, in a space spanned by the 
activation functions associated with the neural network nodes. The input space, x, 
corresponds to the NDE signal generated by a pig and the output corresponds to the 
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Figure 1: Architecture of a wavelet network. 

defect characteristics such as length, width, depth and profile. Prior work has shown 
that RBF type neural networks[6] can be employed for characterizing defects. In 
situations where defect related features occur at multiple resolutions in the NDE 
signal, single functional mapping schemes are not necessarily optimal. This calls for 
the use of multiresolution functional approximation techniques such as those as using 
wavelet basis functions. A brief introduction to wavelet basis function(WBF) neural 
networks follows. 

WAVELET BASIS FUNCTION NEURAL NETWORKS 

Bakshi and Stephanopoulos[7] introduced Wavelet Networks whose basis 
functions are drawn from a family of orthogonal wavelets. Wavelet networks are 
similar to RBF ANNs. Both networks have a single hidden layer. In cantrast to the 
RBF, a wavelet network has sets of nodes depending on the number of resolutions. 
The two types of nodes are called the scaling function nodes, and the wavelet function 
nodes. The architecture of a typical wavelet network is shown in Fig. 1. 

Wavelet networks are developed based on the following principles. By using 
multiresolution decomposition[8], a signal, f, can be represented by 

f L:J < J, c/J; > c/J; 
I:J < f, c/J;-1 > c/J;-1 + L:J < f, 1/J;-1 > 1/J;-1 

= L1 < f, c/J~ > <P~ + L:k~l LJ < J, 'lf; > 7/J; 
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Figure 2: Mapping from an MFL signature to a defect profile. 

(1) 

where <, > represents the inner product, </> is known as the scaling function, 'lj; is the 
wavelet function and j and k represent the translation and dilation parameters 
respectively. From equation (1), the unknown function F can be approximated using 
a limited number of multiresolution basis functions. 

where L is the number of resolutions, and Nk is the number of dilations at each 
resolution. The wavelets 'lj;; are generated through translation and dilation of the 

mother wavelet, given by 'lj;; (x) = 2kf2 '1j; (2k x - i) . 

(2) 

For function approximation problems, Gaussian functions are chosen typically as 
the basis functions, since they possess good approximation properties. In order to 
satisfy the wavelet basis admissibility conditions, the scaling function consists of a 
Gaussian and the wavelet function is composed of its first derivative. The function 
approximation equation (2) can be written as 

(3) 

where the s's and d's are the coefficients and c, the centers of the basis functions and 
the scaling and wavelet functions are respectively: 

</> exp [llx~:~ l l2 ] 
,/, llx- c,l\ [llx- c,ll2 ] 
'I/ a2 exp 2a2 

In this application, x corresponds to the defect signature generated by the 
sensors in the inspection tool. and F represents the corresponding three dimensional 
defect profile. The mapping is illustrated in Fig. 2. 

NETWORK TRAINING 

Network t raining essentially consists of determining (a) the basis function centers 
(b) the support of the basis functions and ( c) the network weights. The basis function 
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Figure 3: Illustration of the dyadic expansion (a) A typical covariance matrix of 50% depth 
MFL signal. (b) A typical covariance matrix of 80% depth MFL signal. ( c) Expansion of the 
covariance matrix (a). 

centers are obtained typically by means of a K-means dustering algorithm or one of 
its several variants. Previous studies have shown that the performance of the network 
is highly dependent on the location and number of centers. Conventional methods to 
determine the optimallocation and support of the centers are computationally 
intensive[2] . To overcome this disadvantage, this paper proposes a dyadic expansion 
scheme to select the location of the centers which is based on the following principle. 
The covariance matrices of MFL signals associated with defects which have the same 
width and length, are similar. This feature is exploited to construct a dyadic 
expansion scheme. 

The dyadic expansion scheme consists of the following steps: 

1. Obtain the covariance matrix, C 

2. Calculate eigenvalue matrix(V) and eigenvector matrix(D) of C given by 

C·V=V·D (4) 

where D = diag{ >.1)2, · · · , >.n}, V = { v1, Vz, · · · , vn} and v, are the column vectors of 
V. 

3. C is then decomposed as follows 

C V· D · v-1 

2:~=1 >., · v, · v'! 
L:~=1 >.,. P, 

where P, is a projection onto a eigenspace for >.,. 

4. A expanded covariance matrix can be obtained by the equation 

(5) 

(6) 

Fig. 3 illustrates the dyadic expansion of the MFL signal obtained from a 50% depth 
defect. 

This scheme is combined with K -means algorithm to calculate the location of all 
the centers. The complete network training procedure is summarized in Fig. 4. A 
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Figure 4: Training procedure. 
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Figure 5: Geometry of defect profile. 

hybrid learning method which includes a gradient descent procedure as a supervised 
method, is used to adjust the location and support of centers. Gradient values at t he 
coarsest resolution are calculated as follows 

(7) 

where d is the desired network output value, y is the predicted value, w is the weight 
coefficient and 0' is the support of the basis function . 

RESULTS 

The wavelet basis function network was employed for characterizing defects in 
gas pipelines. A section of pipe was machined with cup cake shape defects, shown in 
Fig. 5. The input data to the network consists of covariance matrices of MFL 
signatures that were captured by an experimental test facility. The desired output is 
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Figure 6: Comparison of true and predicted defect profiles (depth:50%,length:3in ,width:3in). 
(a) True defect profile. (b) Predicted defect profile. (c) Effect of changing the number of 
resolutions (true profile: -·-, predicted profile: - ). 

a matrix that indicates the degree of metalloss in the pipe wall and corresponds to 
the defect profile. 

The network was trained using 41 data sets, generated by defects which differed 

in depth(50%,80%), width(1,2,3,4.5,6 inches) , length(1,2,3,4.5,6 inches) and surface 

angle(23°, 45°, 90°). 

Subsequently, the network was used to predict the profile of a defect whose signal 

was not contained in the training data. Fig. 6 displays the true defect profile(a), its 

predicted profile(b) and line scans along the width and length with changing number 

of network resolutions( c). Results indicate that the profile predicted in the case of a 
3" ( l) x 3" ( w) defect is very close to the true profile. Also, results obtained by using a 

network of multiple resolutions, showed that the Ievel of output accuracy could be 

increased in a controlled manner by increasing the number of resolutions. 
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CONCLUSIONS 

The results of this study demonstrate that wavelet basis function neural 
networks with dyadically expanded centers can successfully map MFL signatures to 3 
dimensional defect profiles. Furthermore, the accuracy of the output can be controlled 
by systematically varying the number of network resolutions. However, in order to 
obtain accurate defect profile predictions, a consistent and comprehensive set of 
training data is necessary. 
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