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1. INTRODUCTION 

Parabolic or forward scattering approximations are often used 
to investigate acoustic or electromagnetic wave propagation in inho
mogeneous media. Recently there has been an intensified interest in 
these approximations traceable in large measure to the work of 
Tappertl and C1aerbout2 • Tappert's work, reviewed in context in 1 
applies the Leontovich-Fock (LF) approximation with considerable 
success to the study of underwater acoustics. Claerbeut has applied 
these approximations in a geophysical context. The LF parabolic 
approximation is very well suited to the study of sound propagation 
in model oceans that have range independent sound speeds. It has 
also been used to study propagation in fiber optics material,3 as well 
as in the study of laser propagation in the atmosphere.4 

Due to these successes there have been several attempts in re
cent years5 ,6 to generalize the LF approximation so as to broaden its 
range of validity. The generic physical situation to which the LF 
approximation and its would-be successors'models is easily specified. 
A pencil of radiation, e.g., a Gaussian beam, is incident on a slab 
of inhomogeneous material whose material properties are such that, at 
least for a limited distance into the material, the major portion of 
the incident beam propagates into the medium along the direction 
defined by the initial beam axis and beam spreading is small. The 
parabolic approximations are first order equations in the variable 
along the initial beam axis. It should be noted that even very weak 
scattering is cumulative and that for this reason a parabolic approx
imation is not uniform in the distance into the medium; that is, even 
very close to the original beam axis the approximation will break 
down at a sufficient distance into the medium. 
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The parabolic approximations that are derived are considerably 
easier to integrate numerically than are the elliptic equations 
which they approximate, particularly in cases where complicated 
inhomogeneities are present or when complicated boundaries are pres
ent, e.g., the ocean and its bottom. Indeed, it is this property 
that makes approximations of this type attractive. 

In the next section a brief discussion will be given a 
recently derived (improved) parabolic approximation.5 This will be 
followed by the presentation and discussion of some numerical 
examples using this approximation. 

2. DERIVATION OF THE PARABOLIC APPROXIMATION 

Consider the reduced wave equation for a homogeneous medium 

The general solution to the equation is given by 

,(~) = J A(12)O(k~-p2)eil2" ~ d312 

The integration over PI can be done to yield 

(1) 

(2) 

. 2 2 1/2 2 2 1/2x l 
,(x) = J {A+/(ko-R) xl + A-e-Hko-R ) }eiB.·~ld2a (3) 

w2ere ! = (P2 ,P3)' R = I!I, xl = (112'~) and the arguments of 
A- have been suppressed. Clearly 

1/2 
+ ±Hk~-R2)x iR.~, ,± (~) = f A-e 1 e .... d2a (4) 

are components of ,(~) with positive (negative) momentum in the xl 
direction. If the operators 

pi: = t {l ± t [k2+~ ]1/2 aXI} (5) 
o I 

are defined, then the i-components of ,(~) can be projected out of 
solutions of (1), 

(6) 

as can easily be verified. It is not difficult to show that if 
,(x) satisfies (1) and ,±(!) are defined by (6) then 

!:I 2 1/2 + 
{ i -..lL- ± (k +ll) } ,- (X) = 0 (7) 

aXI 0 I 

This is a standard result in Fourier optics, often expressed as the 
transverse Fourier transform of (7). 
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If the medium is inhomogeneous so that the governing wave equa
tion is 

(8) 

where k2 (x) = k~(l+n(x» it is still possible to re-express the 
content of (8) in terms of the variables W±(x) defined by (6). 
If the medium is weakly scattering the ±-components will continue 
to be good approximations to the physical fields with positive and 
negative momentum in the ~ direction. However, they will be 
coupled because of the inhomogeneity. Using the notation 

Z 1/2 Z 1/2 . 
S=(ko+~l) ,S(~)=(k (~)+~1) the wave equat10n (8) can be re-

expressed in terms of W±(~) by the pair of equations 

{Zi rlci + S-lSZ(~)+sh +(~) = _s-l{ k~n(~)w(~)} 

(9) 

If it is assumed that the medium is weakly scattering so that 
the reflections terms (the right hand sides of (9» can be neglected 
then the approximation provided by (9) for forward propagating waves 
is 

aw+(~) . + kZ 1 ax = 1SW (X) + (-1 S- n(~)W +(~) 
1 

(0) 

It should be noted that if this general scheme is followed but 
the projection operators in (5) are approximated by projectors that 
are valid only to leading order in R/k~ the parabolic approxima
tion derived is the Leontovich-Fock approximation.5 Further, if the 
formal projector p(~) is defined by 

(11) 

the result of Tappert1 is recovered. The results of this section 
were originally derived in 5 and rederived elsewhere.6 Related 
equations have also be treated.7 

In the next section the numerical method used to integrate (10) 
is sketched. 

3. NUMERICAL APPROACH 

Equation (10) is integrated in two dimensions so that 
Z 

~1 = ~ subject to the "initial" condition W+(x1 ,0) = u(x) and 
axZ 



126 J. CORONES ET AL. 

the boundary conditions u(o,~) = u(x,max,~) = O. The latter con
ditions are imposed for computational convenience. The calculations 
are typically performed using a beam incident on a target or inhomo
geneous region and are terminated before any portion of the beam 
hits the transverse boundary. The boundary conditions of course 
yield spurious reflections back into the computational grid. 

To integrate (10) efficiently it is useful to first define 

1/1 (x) by 1/1 +(~) = eixi 81/1 (IS) (12) 

It easily follows that 

a1/l(~) ik~ -1 -ix18 ix 18 
~ = "'2 8 e n(!)e 1/1(!) 

1 
(3) 

:: F(xl'X2,1/I) 

The initial/boundary conditions 
1/1 + (.!) and are 

on 1/1(.!) follow from those on 

1/I(xl'O) = uo(xl) 
(4) 

1/I(O,x2) = 1/I(xlmax,x2) = 0 

The equation (13) is first discretized taking into account the 
transverse boundary conditions, in this case by using finite Fourier 
sine transforms (FF8T). The resulting set of o.d.e.s are then inte
grated using a fourth order Runge-Kutta method. The discretization 
of (13) in the transverse variable is done by performing the fol
lowing steps: 

a) For any fixed xl>O evaluate 1/1(, ,~) at 
spaced points in the transverse direction; 

b) perform a FF8T and mUltiply by the FF8T 
c) perform an inverse FFST and multiply by 

d) perform a FFST and mUltiply by the FFST 

e) perform an inverse FFST. 

N=2m equally 

ofeixl S; 
n(xl ,. ) ; 

of I s-leixi S· 
2kz ' o 

This sequence of steps yields the discretized form of 
F(x1 ,~,1/1). The resulting equations are then integrated in xl to 
obtain the forward going field. 

In each of the following figures the vertical axis is the x 
axis running from x=O to x-I at the top. The horizontal axis is 
the z axis running left to right from 0 to Zmax. The quantity 
zmax is 1 for Figs. 1 to 3 and 0.5 for Figs. 4 to 6. The wave 
number has been normalized so that ko=2l0.l. The incident field 
is Gaussian of the following form: 

uinc(x,O) = exp[-(x-xo)2/a~ + iko x sinal 
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Figure 1 

Figure 2 
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Figure 3 

Figure 4 
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The quantity Xo is 0.5 for Figs. 1,4-6 and is 0.23 for Figs. 2 
and 3. The angle a is 0° for Figs. I, 4-6 and 30° otherwise. The 
quantity 0 0 is 0.07 for all figures. 

In Fig. 1 we have the field present in the absence of any 
scatterers. In Fig. 2 k(x,z) is given by 

k(x,z) = ko 1 + .5 exp(-(r/.14)2) + .5H(z-.25)H(.75-z) 

where il = (x-.5)2 + (z-.5)2. 

As the beam passes through the interface it is refracted. As 
it continues toward the Gaussian bump, part of the beam is refrac
ted, while part is reflected. As the beam passes through the 
trailing interface, it is again refracted. We note that the inter
ference pattern observed near x=O, z=l is caused by the interaction 
of the field with the artificial reflections due to the horizontal 
boundaries. In Fig. 3 we changed the leading interface from planar 
to curvilinear. The equation of the interface is given by 

z = .25 + (x-. 5)2 • 

We again note the same qualitative behavior as in Fig. 2. 

In Figs. 4-6, we illuminate multiple targets. Each target is 
a Gaussian bump of the form 

k j = .5 * exp[-r~/.0009] 
where 

and 

3 
k(x,z) = koO + 1: KJ.). j=l 

In Fig. 4, the incident beam illuminates three targets at the 
locations 

= (.375, .25) 
(.5, .25) 
(.625, .25) 

We note that the bumps act like a diffraction grating. We 
particularly note that the center bump focuses the Gaussian beam. 
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Figure 5 

Figure 6 
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In Fig. 5, the targets are located at 

(xl' zl ) = (. .375, .375), (lI2'~) = (.5, .25), 
(~ , z3 ) .. (.625, .375) 

In Fig. 6, the targets are located at 

(xl ,zl ) = (.4375, .375) , (lI2'~) = (.5, .25), 
(~ ,z3) = (.5625, .375) 

In this case, the trailing two targets act as a diffraction grating 
for the focused beam of the leading target as well as focusing side 
branches of the main beam. All of the above phenomena are as would 
be expected if one had the full solution to the Helmholtz equation. 

These preliminary numerical results show that the parabolic 
approximation investigated here captures the correct full wave 
behavior of the Helmholtz equation for the targets and boundary 
conditions under study. A fuller qualitative investigation of the 
equation will be presented elsewhere. 
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