
This dissertation has been 64-9269
microfilmed exactly as received

EHIDA, Haruhisa, 1936-
A GENERALIZED LEARNING NETWORK USING
ADAPTIVE THRESHOLD ELEMENTS.

Iowa State University of Science and Technology
Ph.D., 1964
Engineering, electrical

University Microfilms, Inc., Ann Arbor, Michigan

A GENERALIZED LEARNING NETWORK

USING ADAPTIVE THRESHOLD ELEMENTS

by

Haruhisa Ishida

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject : Electrical Engineering

Approved:

Head of Major Department

Dean Graduate G

Iowa State University
Of Science and Technology

Ames, Iowa

196k

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

ii

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. PROPERTIES OF A THRESHOLD ELEMENT 7

III. LEARNING IN A SINGLE THRESHOLD ELEMENT 18

A. Learning Procedure 18

B. Computer Simulation 25

IV. MULTI-ELEMENT UNIVERSAL NETWORKS 33

V. LEARNING IN UNIVERSAL NETWORKS h2

A. Learning Procedure k2

3. Computer Simulation . 49

VI. LEARNING IN A MULTI-OUTPUT NETWORK 55

VII. CONCLUSIONS 59

VIII. LITERATURE CITED 62

IX. ACKNOWLEDGEMENTS 63

1

I. INTRODUCTION

In the course of years since the advent of the first electronic

computer, ENIAC, in 19^6, the computer has acquired greater capabilities

due to its higher operation speed, larger memory capacity and increased

versatility of its organization. Yet as originally intended, the computer

is still primarily suited for handling computational problems. It is not

always as effective for non-arithmetical jobs such as language transla

tion, pattern recognition, etc., because such tasks demand very tedious

programming efforts from a human programmer. This disadvantage stems from

the fact that the present computer is entirely lacking a learning capa

bility which is based upon its own experiences. Hence the human program

mer must specify every detail of his instruction to the computer without

any single error. Of course it is possible to make the computer look as

if it has a learning capability by proper programming but again such pro

gramming will be very troublesome for the human programmer. On the other

hand, if a learning capability could be incorporated in a computer-like

machine, the machine would be able to solve non-arithmetical problems

quite efficiently and it could be called a "real" artificial brain. A

first step toward such a learning machine is the study of a learning net

work, namely, a logical network with a learning capability.

A learning network is defined as a variable-parameter network with

n binary inputs and m binary outputs, which, given a truth table of n

inputs and m "desired" outputs, can by itself adjust its internal para

meters so as to eventually produce the desired outputs for any input

combinations after the truth table has repeatedly been presented to the

2

network. A generalized network to be considered in this thesis is shown

in Figure 1. It consists of three parts, namely, a variable-parameter

circuit, a control circuit and a comparator circuit. When, a set of

inputs (+1) and the corresponding desired outputs (+l) are presented to

the network, the variable-parameter circuit produces outputs based upon

its existing parameters. The comparator circuit then compares the out

puts with the desired outputs. If there is no discrepancy among them,

no change occurs and the network is ready to accept the next set of inputs.

If, however, they do not agree, Error indication signals (E) are sent from

the comparator circuit to the control circuit. This portion of the net

work constitutes a feedback path. Upon receiving E-signals, the control

circuit determines which parameters should be adjusted using Reference

signals (R) and sends out Adaptation signals (A). The parameters which

received A-signals are varied in such a manner that the outputs become

equal to the desired outputs. This process is repeated for the other

sets of inputs. Eventually when for all sets of inputs the desired out

puts are obtained as the actual outputs, a completion signal (C) is dis

patched and the whole process is complete. Mow the network is ready to

serve as the prescribed function. The iterative process of parameter

adjustment may be called a learning process.

The central part of the learning network is the variable-parameter

circuit. It has many properties not found in conventional digital cir

cuits. Since it contains the internal parameters as a kind of distributed

memory, it is a sequential circuit rather than a combinational circuit.

Also it is a hybrid system of digital and analog circuits, because the

parameter is an analog quantity. The values of the parameters will be

3

M INPUTS

V

VAHL0,R! -

r

TRUTH

TABLE

L _

M DESIRED
OUTPUTS

r-

L-

cincuiT

ï i

.r

I !

COMPARATOR ̂
Uc!

CIRCUIT

Y M OUTPUTS

• J

A: Adaptation signais
R: Reference signals
E: Error indication signals
C: Completion signal

Figure 1. Generalized learning network

k

the functions of the adaptation currents or voltages not only of the pre

sent but also of the past.

As the basic building block of the circuit, a threshold element was

selected because of its simplicity and versatility. The threshold element

produces a +1 output when the linearly weighted sum of inputs exceeds a

certain threshold and otherwise, a -1 output. The weights associated with

the inputs and the threshold are variable-parameters. Since they are in

ternally adjustable, the element may be called adaptive.

Historically, the first significant study of the learning network

using threshold elements began with the perceptron by F. Rosenblatt (l)

in 1957. The perceptron may be regarded essentially as a single threshold

element with a very large number (500 to 1000) of inputs which are connect

ed to almost the same number of sensory units through random connections.

One of the most important contributions of the perceptron is the proof that

there exist certain rules in adjusting the weights which guarantee the con

vergence of the learning process. Since the number of inputs is large and

random connections are involved, a statistical approach was used to inves

tigate the gross behavior of the element. No interest was shown in the

macroscopic details of the learning process. In 1961, J. K. Hawkins (2)

considered how an arbitrary Boolean function could be realized by learning

with a network of cascaded threshold elements and he pointed out some dif

ficulties of the problem. The first learning network which could realize

any Boolean functions was shown by R. C. Ridgway III (3) in 1962. In his

network, the outputs from several threshold elements in parallel are fed

into an OR or a Majority element and its output is taken as the final out

put. A very important element of Ridgway*s work was his development of

5

the weighted sum criterion as the method of element selection for adapta

tion. It is noted that there is only a single layer of adaptive elements

in his network. A multi-layer learning network where there is more than

one layer of adaptive elements has not been studied.

So far only single-output networks were mentioned. Some multi-output

networks have also been studied (1,3). But in all cases none of the out

puts have any variable parameters in common. A change in a parameter in

such networks can affect only one output. All the other outputs are

immune to the change. For analysis these multi-output networks can be

divided into and considered as single-output networks in parallel. Non-

separable multi-output networks are yet to be studied.

In this thesis, some properties of a threshold element will be dis

cussed first in terms of the Hamming distance between input sets. Then

the learning process in a single adaptive element will be considered in

some detail. As for the networks of threshold elements, attention will be

directed to the learning networks which have a small number of inputs and

outputs but can realize all possible functions of the inputs. Such net

works are called universal. They are quite different from the so-called

pattern recognition networks such as the perceptron where the number of

inputs may be large (hence a statistical approach is necessary for the

analysis) but only a fraction of all possible functions need be recognized.

On the other hand, an n-input m-output universal learning network must be

2n m
able to realize all (2) * functions, which are a tremendous number of

functions. For example, a small network of 4 inputs and a single output,

2^ or of 3 inputs and 2 outputs should be able to establish 2 or

2^ 2 16
(2) = 2 = 6 5 , 5 3 6 d i f f e r e n t f u n c t i o n s . I n a s e n s e , s u c h a l e a r n i n g

6

network is equivalent to a group of 65,536 conventional logical circuits.

Inevitably such a network tends to be complicated but some complication

may be offset by its tremendous versatility.

Since only a fraction of all Boolean functions is realizable with a

single threshold element, several elements must be combined together to

make a universal network. The central problem is to determine which

elements are responsible for an error when the final outputs are incorrect,

especially when there is more than one layer of adaptive elements. Some

criterion is necessary to establish the validity of the intermediate out

puts. In a non-separable multi-output network, a change in a single

parameter can affect more than one output and as a consequence there can

be a conflict if the change is favorable to one output but it is unde

sirable for another output. A learning procedure must then be developed

which will avoid non-resolvable conflicts.

The analysis and design problems will be considered in terms of

theoretical models with the aid of computer simulation. Hardware models

will be excluded. Because of the small size of the model networks, how

ever, the models have physical realizability and the results obtained by

this study will be useful in checking experimental data from those physi

cal networks. Little attention will be paid to a biological analogy with

natural neurons. As some physiologists have been warning, the analogy

tends to lead to over-simplification and misunderstanding. Enough factual

knowledge of the behavior of natural neurons has not been accumulated to

permit meaningful analogies to be drawn.

7

II. PROPERTIES OF A THRESHOLD ELEMENT

A threshold element with n inputs is defined as an element whose out

put value z is:
n

z = +1 if E w.x. > T
i=l 1 1 =

n
z = -1 if Z w.x. < T

i=l 1 1

where x^ is the i-th input variable and takes the value of +1 or -1, w^ is

the weight associated with the input x^ and is a real number, and T is the

threshold of the element and is also a real number. A set of n weights

and a threshold (w ,w ,...,w ;T) is called the structure of a threshold

element and the set specifies an n-variable Boolean function f(x^,x2,...,x^).

A threshold function is defined as a Boolean function which is realizable

with a single threshold element. The properties of a threshold element can

be considered in terms of the properties of a threshold function.

Since the number of Boolean functions is quite large, it is convenient

to classify them according to their properties. A class of Boolean func

tions is defined as a group of such functions that could be made identical

to each other by any or all of the following transformations :

a. permutation of the variables

b. complementation of the variables

c. complementation of the function.

For example, a two-variable AND function f^(x^,x2) = X^'X^ and a two-vari

able OR function f^(x^,x^) = X^+Xg belong to the same class, since

f2(Xi,X2) = x1+x2 = x1'x2 = f1(x1,x2).

The following properties of threshold functions will be used in the

8

discussions to follow. The details are referred to in the paper by

S. Muroga (4) and others.

(i) If a Boolean function is a threshold function, then all the func

tions belonging to the same class as that function are also threshold func

tions . It is useful to define a representative function from each class

of threshold functions as well as from each class of Boolean functions,

(ii) All classes of Boolean functions are not threshold functions.

Actually the ratio of the number of threshold functions to the number of

all Boolean functions becomes very much smaller as the number n of inputs

increases, as seen from Table 1.

Table 1. The ratio of the number of threshold functions (and their classes)
to the number of all Boolean functions (and their classes)

n 1 2 3 4 5 6

Functions
2
2

c
o

l
o

|
H
 72

218
1536
64594

86080

4xl09

lxlO7

lxlO19

(%) (100) (80) (33) (2. 4) (2xl0~3)

O

H
 O

H

Classes 1
1

1
2

3
10

9
208

48

6x10^

504

2xl014

The number does not include those functions having redundant variables

whose removal does not affect the values of the functions. The number in

parenthesis is the percentage ratio. The table also shows the ratio of the

number of classes of threshold functions to the number of classes of

Boolean functions. By discounting functions having redundant variables,

the latter number of Boolean classes was obtained from Harrison's table (5).

(iii) The set of weights and a threshold which realize a threshold

function is not unique. To introduce uniqueness, the "optimum" structure

9

of a threshold element is defined as a set of such weights and a threshold

that makes the sum of the absolute values of weights and a threshold mini

mum, or

n
E Iw. I + 111 = minimum.
i=l 1

The optimum structures of all classes of threshold functions of up to 6

variables have been determined by S. Muroga {b) and others using a linear

programming technique.

For compact notation and easy visualization, a vector representation

is useful. Let W be the weight vector and X be the input vector. They

are defined as :

W = (w0,w'1,w2,...,wn) where wQ = -T

X = (x0,x1,x2,...,x) where xQ = +1 .

Then by definition, the output z of a threshold element or the value f(X) of

a threshold function is:

z = f(x) = +1 if W-X _> 0

z = f(X) = -1 if W*X < 0

The following geometrical interpretation is due to W. C. Ridgway III (3).

(a) All sets of weights including the threshold generate a n+1 dimen

sional space called the weight space. The vectors W and X are vectors in

this space.

(b) The equation W«X=0 represents a plane called an input plane. The

vector X is normal to the plane. All input planes pass through the origin

of the coordinate system describing the weight space„

10

(c) One side of an input plane W•X=0 can be considered to represent

a +1 output for the input X and the other side a -1 output.

(d) Since there are 2n different input planes, the weight space is

divided by those 2n planes (each corresponds to each of 2n input combina

tions) into disjoint subspaces.

(e) Each subspace corresponds to a threshold function. Any set of

weights in a subspace can be used to represent the threshold function.

Thus the set is not unique.

As an illustrative example, consider all Boolean functions of two

variables (n=2). Out of 16 possible functions, lk functions are threshold

functions. Let x^ and be two input variables. The equation

¥*x=w^x^+w2x2+wo=0 represents input planes in the 3-dimensional weight

space (wq*W1,W2^ • Let wQ=t, w^=u and w^=v. The h input planes are

described by the equations :

-u-v+t=0 for (x^,xg)=(-l,-l)

-u+v+t=0 for (x^,xg)=(-l,+l)

a-v+t=0 for (x1,x2)=(+l,-l)

u+v+t=0 for (x1,x2)=(+l,+i)

The 14 subspaces made by these 4 planes are shown in Figure 2. The shaded

side of each plane represents a +1 output and the other side a -1 output

for the corresponding inputs. For example, the output is +1 for (-l,+l),

(+1,-1), (+l,+l) inputs but it is -1 for (-1,-1) input in the subspace (7)•

The label of each subspace corresponds to one of the following functions:

Figure 2. Subspaces corresponding to ik two-variable
threshold functions

lit

(0) GROTS SECTION

(b) CROSS SECTION f t, T

12

Labels 0 1 2 3 b 5 7 8 10 11 12 13 I k 15 6* 9*

X1X2
(0) (AND) (xx) (Xg) (OR) (x2) < * ! > (1)

«• mm — — — — — — — + + + + + + + — +

— + - — — - + + + - - - + + + + + -

+ - - + + — — + - + + — - + + + -

+ + + + - + + _ + + + _ +

Only the signs of binary values are shown. The names of some functions

are written in the parentheses. The functions (6*) and (9*) are not

threshold functions and there are no subspaces corresponding to these

two functions.

In the rest of this chapter it will be shown that the Hamming distance

defined between input terms can be used to see whether or not a Boolean

function is a threshold function. So far the value of each input variable

x^ has been assumed to be either +1 or -1 instead of 0 and 1, to distin

guish a state where x^ does not exist from a state where x^ is zero. But

it is sometimes convenient to use 0 and 1. A new variable y^ will be used

for this purpose = The conversion, is y^ = (l-x_)/2, or y. = 0 when

x^ = +1 and y^ = 1 when x^ = -1. This is contrary to the normal convention

of taking y^ = 0 for = -1 but the above conversion is more convenient

for reference to other tables as will be shown later. A threshold func

tion is still a threshold function under this conversion (4).

Let Y = (ylty2,...,y) be called an input term. The component yQ = 0

corresponding to the threshold is excluded since it is not an input. For

brevity the notation f(Y) = +1 may be used interchangeably with f(X) = +1

without fear of confusion. Y is called a true term of a Boolean function

if f(Y) = +1. Any Boolean function can be specified by listing all its

true terms, each expressed by an integer I, where I is:

13

I = yn+yn^l2+yn-222+,-*+yl2n"1 (I = 0,1,2,-,2^-1) •

For example, if f(Y) = +1 only for Y = (0,0,0,0), (0,0,0,1) and (0,0,1,1),

then f(Y) may be written as f(Y) = f(0,1,3).

Now the Hamming distance between two input terms Y^ and Y^ is defined

as:
n

d(Yi,Y2) = Z = the number of different components of
i=l

the two vectors Y^ and Yg .

An input term Y^ is called an isolated true term if d(Y^,Y^) > 2 for all

the true terms Y. other than Y..
k J

Theorem 1: The Hamming distance between any two input terms is invariant

under; l) permutation of the input variables, or 2) complementation of

the input variables.
n

Proof; l) The summation in d(Y^,Y^) = E |y^ - y^.| does not depend on
i=l

the ordering of i. Hence it is invariant for the permutation of the

variables. 2) When the i-th variable is complemented, the term |y]|_i-y2i^

becomes |^i~y2i ̂ " Bu-t: ̂ °^h cases are 1 when y^sfy,^ and both are 0 when

yli=y2i' Hence lyli~y2iI = Iyii~y2iI in either case. Thus the Hamming

distance is invariant for the complementation of the variables. Q.E.D.

The input terms Y can be grouped into n+1 sets according to the number

of l's in each Y. Let A(m) = {Y} be the set of input terms where m compo

nents of Y are 1. For example, there are 5 sets in the case of n=4.

A(0) A(l) A(2) A(3) A(4)

(0000) (0001) (0011),(1001) (0111) (1111)
(0010) (0101),(1010) (1011)
(0100) (0110),(1100) (1101)
(1000) (1110)

lh

Theorem 2: (a) For Y^ and Yg e A(m),

d(Yn ,Yg) = 2p, or an even integer.

(b) For Y^ e A(m) and Yg e A(m+l),

d(Y^,Yg) = 2p+l, or an odd integer.

Proof: (a) Consider only those components which are different between

Y^ and Yg. If there are p components which are 0 in but 1 in Yg, then

there must also be p components which are 1 in Y^ but 0 in Yg, becuase

the number of l's must be the same in Y^ and Yg. Thus the number of

'different components is p+p = 2p and hence d(Y^,Yg) = 2p.

(b) Suppose that there are p components which are 1 in Y but are

0 in Yg. Then there must be p+1 components which are 0 in Y^ but are 1

in Yg, because the number of l's in Yg must be greater than in Y^ by one.

Thus the number of components which are different between Y^ and Yg is

p+(p+l) = 2p+l and hence d(Y ,Yn) = 2p+l. Q.E.D.

How with the aid of the above theorems, the following theorem is

obtained, which will help to determine whether or not a Boolean function

is a threshold function.

Theorem 3: (a) All Boolean functions which have only one true term or

2n-l true terms are threshold functions.

(b) A necessary condition for a Boolean function having more

than one true term to be a threshold function is that there be no isolated

true term in the function.

(c) The above condition is not a sufficient condition.

Proof: (a) Consider a Boolean function f(x) whose value is +1 for only

one input term X = (+1,+1,...,+1). This function can be realized with a

single threshold element by taking w^=wg=.... =wn=l and w^= -T=n, because

15

n n
¥»X = Z w.x. = Z x.-n=0 for X = (+1,+1,...,+l)

i=0 11 i=l 1

n n
W.X = Z w.x. = Z x.-n<0 for X ^ (+1,+1,...,+l).

1=0 1 1 i=l 1

Since all Boolean functions having only one true term and their complements

which have 2n-l true terms constitute a Boolean class of which the above

function is a member, they are all threshold functions.

(b) One can assume that all weights of a threshold function are

non-negative without loss of generality, because, if some weights are nega

tive , they can be made positive by complementing the variables associated

with those negative weights and the Hamming distance is invariant under

the variable complementation by Theorem 1. An isolated true term remains

isolated as long as the distance is invariant. Therefore it is sufficient

to show that a threshold function with non-negative weights can not have

an isolated true term.

Now consider two input terms Y^ e A(m) and Y e A(m+l) such that

d(Y^,Yg) = 1. The proof process of Theorem 2 shows that there is only one

component which is 0 in Y^ and is 1 in Yg for p=0. Let it be the j-th

component. Then y^ f y^. All the other components are equal, namely,

yli = y2i* Since each weight is assumed to be non-negative, namely,

w^ ̂ 0 for i=l,2,...,n, one obtains the relation:

n n

T0 - ,E, Vli iw0 - i$l "i>2i
1=1

for the above Y_, and Y.. This is equivalent to the relation f(Yn) < f(Y0),
l d l — c.

This relation holds for any m.

Next suppose that there is an isolated true term in the function and

16

let it be e A(m). Then f(Y^) = 1. Since Y^ is isolated, none of Y^

e A(m+l) such that d(Y^,Y^) = 1 can be true terms, namely, f(Y^) = 0 for

all Yg. This leads to f(Y) = 1 > 0 = f(Y^). Since this contradicts the

previously obtained relation f(Y^) <_ f(Y^) which hold for any m, it must

be concluded that there is no isolated true term in a threshold function

with non-negative weights.

(c) A counter-example will suffice to show that the condition is

not sufficient. It is known from Minnick's table (6) that a 3-variable

function f(0,l,2,5) is not a threshold function, but none of the true

terms 0=(000), l=(00l), 2=(010), 5=(l0l) is isolated. Q.E.D.

To use the theorem it is convenient to plot 2n input terms as points

according to Hamming distances among them as shown in Figure 3. The plot

is made so that each point has n neighboring points at the Hamming dis

tance of 1 in a symmetric position. If the true terms of a Boolean func

tion are marked with heavy dots, it will be easy to see if there is an

isolated true term. For example, it will be seen from Figure 3(b) that

f(0,l,2,3,5) might be a threshold function, since there is no isolated

true term. From Figure 3(c) one can see that f(0,l,5,6) is definitely not

a threshold function, because the true term 6 is isolated.

17

0 !
(a) n = 2

(4 TERMS)

(b) n = 5

(S TERMS)

O —r

14

c f

10
o o

II! 15 1
1
i

O
i

Z O 7

À

1 4

!
i

CT ; r 5V

12 c; s

i
1

15

(c) n = 4

(16 TERMS)

15 14 IC ii i;

Figure 3. Plot of 2 input terms

18

III. LEARNING IN A SINGLE THRESHOLD ELEMENT

A. Learning Procedure

An n-input single-output variable-parameter network consisting of a

single threshold element is considered in this chapter. The element is

shown in Figure 4. When a set of n inputs and the desired output are

given, it is quite easy to adjust the weights (including the threshold)

so that the output becomes equal to the desired output. But this set of

weights may not be adequate for another set of inputs and the weights may

have to be changed again. This in turn may result that the changed

weights no longer produce the desired output for the former or other sets

of inputs. For a complete learning there must be a guarantee that the

iterative process of weight changes makes the weights converge in a finite

length sequence into a set of weights which produces the desired outputs

for all sets of inputs.

A learning procedure with such guarantee of convergence was used by

F. Rosenblatt (l) in the perceptron system and later by others (2,3). A

similar procedure will be adopted in this paper. Since a single threshold

element is to be used, only threshold functions will be considered in this

chapter.

Now define z to be the output of a threshold element and z* to be the

desired output for an input X .= (xq,x^,...,x).

Learning procedure (i) for a single element

1. Initially the values of weights w^ are arbitrary.

2. Each of 2n possible input combinations X and the corresponding

desired output z* is presented in an arbitrary (ordered or random) sequence

W1
T'
Z

" A
R

0

Figure k.

Xn: Inputs
Wn: Weights

Threshold
Output
Adaptation signal
Reference signal
Logical product

Adaptive threshold element

19b

cv ro c

20

as many times as necessary for convergence.

3. Whenever z=z* for an X, the network proceeds to receive the next

input combination. No weight change occurs.

4. When z#z*, all the weights are changed "by the amount AW, where

AW=z*X or Aw^=z*x^, i=0,l,2, ,n. The weight change is repeated until

z=z* is obtained. Then the network is ready to receive the next input

combination.

5. When z=z* is obtained for all possible X's, the learning process

is complete and no further change occurs.

A proof of convergence for this process is discussed by Rosenblatt (l)

and others (2,3)• The most lucid exposition may be the proof from a geomet

rical point of view by W. C. Ridgway III (3). It is shown that :

(a) In the n+1 dimensional weight space, there is. a subspace where

any point or a set of weights in the subspace can realize a given threshold

function. An example has been shown in Chapter II.

(b) The weight point or vector W moves from one side of an input plane

(for which it is adapted) to the other side along a normal to the plane,

because AW=z*X=+X and the input vector X is normal to the plane as noted

in Chapter II.

(c) As a result of a weight change, the distance between the weight

point and a certain ideal weight point in the subspace is reduced. This

will be seen from the fact that the distance is smaller after adaptation

when the weight point is in the same side of the plane as the ideal point

than before adaptation when the two points are in the opposite sides of

the plane, as long as the point moves normal to the plane and the ideal

point is not too close to the plane.

21

(d) The distance decreases until the actual weight point falls in the

subspace of weights that give correct response and at this point the learn

ing is complete.

It is assumed in the above procedure that each weight w^ is changed

by a unit amount or Aw.=z*x.=+1 since z*=+l and x.=+1. Actually Aw. may
l l — — l — l

be +d, where d is a constant, but since w. is the sum of each such Aw.,
— ' l l '

the constant d is merely a scale factor if initially w^=0. So long as

w^=0 is used as the initial condition, no generality is lost by assuming

d=l. Mow that d=l, each w^ takes on only integer values. It is not a

continuous quantity. However it is also possible to take d arbitrarily

small and make the weight function behave as though it were continuous.

Henceforth it will be treated as a continuous quantity.

Let the entire step in step It be called an adaptation. The follow

ing notation is useful in describing the learning process.

s ; the number of adaptations

t; the number of weight changes. Since more than one weight

change may be necessary during an adaptation, t is greater

than s in general, or t >_ s

n; the number of inputs

X(s)=(xg(s),x^(s),...,x (s)); the input vector at s-th adapta

tion. The set X(l),X(2),... does not include such X's for

which adaptation does not occur.

z*(s); the desired output for X(s).

W(t)=(wQ(t) ,w.j (t),... »wn(t)) ; the weight vector after t-th

weight change. W(t-l) is the weight vector before t-th

weight change. W(0) is the initial value of W(t).

22

L(t) = | W(t) | = JW(t) 'W(t) = J T. the length of a
i=0

weight vector after t-th weight change.

AW(s)=z*(s)x(s); the correction vector during s-th adaptation.

R(s,t)=W(t)»X(s); the reference level (or signal) for X(s)

after t-th weight change.

z(s,t); the output for X(s) after t-th weight change.

z(s,t)=+l when R(s,t) _> 0 and z(s,t)=-l when R(s,t) < 0.

Now before t-th weight change takes place for X(s), the following

condition must exist.

z(t-l)=-l or W(t-l)«X(s) < 0 when z*(s)=+l (l)

z(t-l)=+l or W(t-l)«X(s) >_ 0 when z*(s)=-l (2)

In either case,

z*(s)W(t-l).X(s) < 0 . (3)

After t-th weight change,

¥(t)=W(t-l)+AW(s) (4)

where

AW(s)=z*(s)x(s) (5)

Next suppose that k weight changes have been made for the same X(s),

then ¥(t+k-l)=W(t-1)+k AW(s)

and W(t+k-l)»X(s) = ¥(t-l)»X(s)+kAW(s)*X(s)

= W(t-l)*x(s)+kz*(s)|x(s)|2

= W(t-l)*X(s)+k(n+l)z*(s)

p ^ p
Here the relation |X(s)| =X(s)»X(s) = I x. =n+l is used.

i=0 1

Ifhen z*(s)=+l and if k >_ -(VJ(t-l) »X(s))/(n+l), then VJ(t+k-l) «X(s) j> 0

- - or z(t+k-l)=+l.

23

When z*(s)=-l and if k > (W(t-l)*X(s))/(n+l), then W(t+k-l)*X(s) < 0

or z(t+k-l)=-l.

In either case, z(t+k-l)=z*(s) is obtained and

z*(s)W(t+k-l)*X(s) >_ 0. (6)

Thus the desired output is obtained as a result of k weight changes if k

is sufficiently large. Actually k is taken as the minimum integer satisfy

ing. the above condition. When learning is complete at t=N after M adapta

tions 9 then from Equation 6,

z*(s)W(N)«X(s) ̂ 0 for all X(s), s=l,2,3,... ,M. (7)

Theorem U: l) The reference level R(s,t) increases or decreases by the

amount n+1 as a result of a weight change. Let AR(s,t)=W(t)»X(s)-W(t-l)-X(s),

then

AR(s,t)=+(n+l) (t >_ s)

2) The magnitude of R(s,t) does not exceed n+1, or

-(n+l) <_ R(s,t) < n+1 (t _> s)

Proof: l) Since AF;(s ,t)=W(t) »X(s)-W(t-l) *X(s)=AW(s) »X(s), it follows from

Equation 5 that AR(s ,t)=z*(s) |X(s) | 2=(n+l)z*(s)=j^(n+l).

2) Multiplying both sides of Equation 4 by X(s), one obtains

W(t)*X(s)=W(t-l)»X(s)+z*(s)|x(s)|2

=W(t-l)'X(s)+(n+l)z*(s).

When z*(s)=+l, then W(t-l)*X(s) < 0 by Equation 1 and

R(s,t)=VJ(t) *X(s) < n+1

When z*(s)=-l, then W(t-l)*X(s) >_ 0 by Equation 2 and

R(S ,t)=W(t) *X(s) _> -(n+l).

Putting the two cases together gives

-(n+l) < R(s,t) < n+1 Q.E.D.

2b

Theorem 5: If initially L(0)=0, then

L(t)=|w(t)|^ j n+1 J t~
Further, if learning is complete at t=N, then

J a(H)" JT< L(K) <. Jîî+Ï /IT,

where a(N)=min z*(s)X(s) »W(u).

Proof: Consider the difference |¥(t)|2 - |w(t-l)|2.

If Equation 4 is substituted into W(t),

|w(t)|2 - |W(t-l)|2 = |w(t-l)+A¥(s)|2 - |W(t-l)|2

= 2¥(t-l) • A¥(s) + | A¥(s) I 2

= 2z*(s)W(t-l)«X(s)+|AW(s)[2

The first term is non-positive by Equation 3 and |AW(s)|2 = |z*(s)|2|x(s)|2

=n+l. Therefore |¥(t) | 2 - |V/(t-l) |2 <_ n+1

The summation in both sides over t from 1 to t yields

L(t)2-L(0)2 = 1W(t)|2 - |¥(0)|2 ̂ (n+l)t

Since L(0) = 0, L(t) <_ J n+1 J t

Now suppose that ¥(N) is obtained after M adaptations. Let kg weight

changes be made during the s-th adaptation, s=l,2,...,M. Then

M M
¥(N) = E k AW(s) = E k z*(s)X(s)

s=l S s=l S

and

P M
¥(ïï)'¥(N)=|w(N)| = L(N) = E k z*(s)X(s)-W(N)

s=l 5

Let a(N)=min z*(s)x(s)*W(N)=min Z*(S)R(S,N). By Equation 7, a(ïï) ̂ 0.

Since N is the total number of weight changes, it is the sum of the numbers
M

of weight changes made during each adaptation, namely, N = E k . Then
? M I s=l 5

I W(N) | > a(H) E k =a(N)ieN or L(ll) < J a(N) IN.
s=l S s

25

Together with the previous result,

J&w /IT< L(ïï) <_ J n+1 JIT. Q.E.D.

B. Computer Simulation

The learning process of a threshold element with up to five inputs

was simulated on the Cyclone Digital Computer with the purpose of a

further analysis and a comparison with the theory. The simulation program

was written under the assumptions :

1. The truth table, a set of 2n input combinations and the corres

ponding desired outputs, of a threshold function is repeatedly given.

2. Each time it is given, the inputs are presented in the same fixed

order; 0,1,2,3,...,2n-l. Thus when the truth table has been given m times,

each input combination has been presented exactly m times.

3. All weights are zero at the start, or w^=0, i=0,l,2,,..,n.

The flow diagram of the simulation program is shown on the next page.

All representative functions of up to five variables were tested and con

firmed as being realizable after a reasonable number of weight changes.

As Table 1 shows, there are 3 representative functions of three variables,

9 such functions of four variables and 48 functions of five variables.

The optimum structures of these functions have been calculated by S. Muroga

(4) and others as noted in Chapter II. The structures obtained by learning

are compared with the optimum structures in Table 2 for all 9 four-variable

functions. Four variables are shown as A,B,C and D. The true terms are

listed as integers as defined in the previous chapter. The first number

in a structure is the weight for A and the second for 3, etc. The last

number is the threshold T, which is -w^. The N is the total number of

26

2n X's and z*s are given

All

o
 n •

H >

\ '
t=l, S=l

Take X(s) and z*(s)<

I
91 Calculate W(t-l).X(s)

I
If W(t-l)«X(s) >_ 0, then
z(s%t-l)=+l, otherwise -1

I

AW(s)+W(t-l)—»W(t-l)

s+1 >s

no

If z(s,t-l)=z*(s) ? M
yes

no

t
Calculate AW(s)=z*(s)X(s)

z=z* for all X ? —I

\

yes
(completed)

r
Print the result

End or next function

Diagram 1. Flow diagram of the simulation program

weight changes and M is the total number of truth table presentations. For

example, IT weight changes were necessary while the truth table was shown

4 times in order for the element to learn the function f4. Somewhat dif

ferent figures may have been obtained if a different initial condition and

a different input sequence were used.

It is interesting to note that optimum structures were obtained by

learning for some functions in spite of the fact that no restriction was

imposed on the size of the weight. This implies that at least for these

examples the learning procedure has an optimizing tendency.

For 3 threshold functions of three variables which are realizable

27

Table 2. Comparison of structures produced by learning with optimum
structures

Functions True
terms

Optimum
structures

Learned
structures

N M

fl=ABCD 0 1 1 1 i;3 the same
as optimum

3 1

f2=AB (C+D) 012 2 2 1 i;3 3 3 1 1; 5 13 5

f3=A(BC+CD+DB) 0124 2 1 1 1;2 3 1 1 1; 1 5 2

f4=A(B+CD) 01234 3 2 1 1;2 5 3 1 1; 3 17 4

f5=A(BC+CD+D3)+BCD 01248 1 1 1 111 . the same 1 l

f6=A(B+CD)+BCD 012348 2 2 1 1—
1

H
 as optimum

4 4 2 2; 2a 12 4

f7=A(B+C+D) 0123456 3 1 1 the same 7 2

f8=A(B+C)+BCD 0123458 3 2 2 1;1
as optimum
5 3 3 1; 1 13 4

f9=A(B+C+D)+BCD 01234568 2 1 1 i;o 4 2 2 2; 0a 8 4

aAlso optimum except for a scale factor

with a 3-input element, 5 weight changes were enough and the truth table

was necessary to be shown only once even in the most difficult case.

In the case of 48 five-variable functions which were realized with

a 5-input element, the most difficult function required 70 weight changes

with 22 presentations of the truth table. Optimum structures were ob

tained in 20 functions. The maximum weight was 10.

An example of how each weight changes as learning goes on will be

seen in Figure 5. Three of six weights (one of which is the threshold)

of a 5-variable function f(0,1,2,3,4,5,6,7,8,9,10,16,17) are shown. The

function is the most difficult function in the sense that it required the

most weight changes. It is very interesting to observe that each weight

W:

FINAL VALUE V.', =10

FINAL VALUE W0 = 8

A

A A A A A/ ^ A A'
V V V \ / V V V v v

'INAL VALUE W3 = 6

IhlAL VALUE T -4 (= W4)

NAL VALUE W,-= 2

V 40 4j 50 05 CO 05 70 |

ro
00

Figure 5. Values of the weights W_, ¥ and T at each step of weight change
for the most difficult ^-variable threshold function

29

seems to steadily proceed to its goal, the final weight value, in a

zigzag way, repeating "increase", "no too much, decrease", "no too much,

increase" and so on. In Figure 6, the change of the length of a weight

vector for the same function is shown along with the theoretical upper

bound obtained from Theorem 5. Since n=5, the upper bound is In+1
'i

J~t= [~6~J~t=2.kT J~t~. As it turned out, L(t)=1.8U J~t is a very good approx

imation in this case. The second part of the same theorem gives /a(ll)

JIT < L(l'0 <_ J~6~JIT. It turned out that a(H)=min z*(s)X(s) *W(N)=2 with

N=70. L(N)= J~2x70 is shown as a point in the figure. The curve shorn

by a dotted line was drawn according, to L(t)= as if this were a

theoretical lower bound, though it is not except for t=!I. On the other

hand, from Ja(N) J~!F < L(N) <_ J~6~J~N~, one can obtain the relation

L(N)2/6 £ N < L(N)2/a(N)

Then it is possible to plot the final length of weight vectors versus the

total number of weight changes required to complete learning and to compare

it with the above theoretical limits. Such a plot is shown in Figure 7 for

all 48 threshold functions of five variables. The upper limit is shown as

1 2
N = — L(N) assuming a(N)=2 for all the functions.

So far the initial condition is assumed to be zero for all the weights.

But actually one may assume any initial condition. ' Generally a favorable

initial condition quickens the learning process considerably. In particu

lar if the initial values of weights happen to be such that the function

is already realizable, then there is no need of adaptation. On the other

hand it was found that even an adverse initial condition is rapidly

improved during first few adaptations. An example follows. The function

Figure 6. Change of the length of the weight vector of the
most difficult 5-variable threshold function

30b

i-O

O

s:

CO

"OJ

-O

CD

100-

90-

80-

THE MOST DIFFICULT FUNCTION

TO

GO

50-

40- TH E EASIEST

FUNCTION /
30-

2 0 -

10-

20 40

Figure 7. Relation between N and L (N) 2 (= £ W . ^)

for 5-variable threshold functions

32

in question is the 5-variable function termed the most difficult.

(1) Standard initial condition; all w=0.

Learned structure=(10,8,6,4,2;4) N=70, M=l8

(2) Favorable initial condition; all w=10.

Learned structured 15,13,9,7,3;5) N=15, M=2

(3) Adverse initial condition; all w=-10.

Learned structure=(l0,8,6,4,2;4) N=82, M=l6

Of 82 weight changes in the case 3), 7,4,2 and 5 changes occurred during

the first, second, third and fourth adaptations, respectively, and hence

less presentations (M) of the truth table were required than in the case 1).

33

IV. MULTI-ELEMENT UNIVERSAL NETWORKS

À binary network with n inputs and a single output is said to be

universal, if any of 2n possible Boolean functions of n inputs is realiz

able with the network. As noted earlier, not all Boolean functions are

realizable with a single threshold element. But it is possible to build

a universal network with a number of threshold elements in cascade. In

addition, if an adequate learning procedure is established, the network

can become a universal learning network. There are several factors to be

considered in building such a network.

1. Whether or not exactly identical elements should be used in all

locations.

2. Whether or not fixed weight elements may be used together with

adaptive threshold elements,

3. Whether or not the inputs to the network are to be restricted to

the first stage or permitted as inputs to later stages.

4. How the interconnection of elements should be made.

The choice of a particular network depends on two generally conflict

ing factors. For economy a network with fewer elements and with fewer

adjustable parameters is desirable. For high learning efficiency, however,

some redundancy is indispensable. In this chapter various universal net

works with varying degrees of redundancy will be considered and compared.

First, the minimum number of threshold elements required in a uni

versal network is considered. In general the number H(n) of n-variable
2

threshold functions is known to be less than 2n /n! (?), or
2

N(n) < 2n /n! for n=2,3,4... . When p identical elements, each with

34

n inputs, are combined, the number of all possible functions realizable

with the combination is at most H(n)^. For such a p-element network to

2n
be universal, this number must be equal to or greater than 2 , or

N(n)^ _> 22 . Combining the two relations, one obtains (2n +̂ /n!)'P >_ 22

or p > 2n/(n2+l-log0n!). The values of minimum p which satisfies this

relation are shown in Table 3 for small n. This lower bound of the number

of elements is better than those obtained elsewhere (3,7)• As n becomes

larger, the lower bound increases very rapidly, indicating that really

very many elements are necessary to make a universal network. For example,

min. p=60 for n=13 and min. p=308 for n=l6.

To get an upper bound of p, one must be able to show that a synthesis

is possible with a certain number of elements. An available general syn

thesis is a network whose output is an OR function of outputs of a number

of threshold elements. It can be easily shown (4) that such a network can

be built with 2n ^ threshold elements connected in parallel to an OR

element having 2^~^ inputs. Thus the number 2n ^ +1 shown as max. p in

Table 3 may be considered as an upper bound of the number of elements

necessary for a universal network. Obviously this is one of the most

primitive synthesis procedures. The number of elements could be consider

ably reduced by more efficient synthesis procedures.

Table 3. The minimum and maximum numbers of threshold elements required
in a universal network

n 2 3 4 5 . 6 7 8 9 1 0

min. p 1

max. p 3

2

5

2 2 3 4 6 9 13

9 17 33 65 129 257 513

A simple way of making a universal network is to employ 2n elements

each with n inputs, assigning each of 2n input terms to each element and

then to make a final output by an OR element from the outputs of those

elements. An example of such a 3-input universal network is shown in

Figure 8. It consists of 8 identical threshold elements with weights all

equal to +1 or -1 and an OR element. When a set of inputs (+l) is given,

the weighted sum of inputs exceeds a common threshold of 3 (shown in a

circle) only in one element. Then its output is +1 but all the other out

puts are -1. If the input set is a true term, a weight of +1 is assigned

to the +1 output but otherwise a weight of 0 is assigned to the +1 output.

The network may be called a .truth-table-type network, since it is a direct

realization of a truth table. If the network is to be a learning network,

the learning procedure will simply consist of assigning a +1 or 0 value to

each of 8 parameters. This is an example of simplified learning at the

cost of a large number of elements. The fact that learning is trivially

simple may deserve attention for some applications.

Another example of a. 3-input universal network is shown in Figure 9»

It consists of 4 AMD elements and a threshold element. By assigning appro

priate values to the weights and the threshold of the last element, any

3-variable function is realizable with this network. The assignment can

be done also by learning in exactly the same way as in a single element.

It is interesting to note that the final output z is:

z-ti if + »2x2 • v3x3 + w12V2 + w23x2x3 + »31X3Xl

* W123X1X2X3 - 1

z=-l if the sum is less than T.

Figure 8. Truth-table-type network
(1-^=0 or +l)

Figure 9. Nonlinear threshold element

36b

INVERSION

X

V
• \ ,

x.

X,

Xg

\z
/x3

AND

AND

J

37

Compared with a threshold element, the defining equation has additional

"nonlinear" terms. If the entire network is regarded as a single element,

it may he called a "nonlinear" threshold element. A generalization leads

to the following theorem, where binary values of 0 and 1 are used in place

of +1 and -1 for simplicity.

Theorem 6 : Any arbitrary Boolean function is realizable with a single

nonlinear threshold element whose output z is defined by the following

nonlinear equation.

2=1 *en + »2y2 Vn + W2 +-"t Wly2y3

"••"+ Wft-'o i T

z=0 when the sum is less than T.

Moreover a set of such weights w\'s and a threshold T can be calculated in

a straightforward way.

Proof: A Boolean function can be written as a logical sum of true terms

with each term being expressed as a logical product of variables or their

complements. If the complement of a variable y^ is written as 1-y^, a

function can be rewritten as an algebraic equation (8). A true term has a

form like y^y^...y^...y^. Substituting y^ by 1-y^, one can rewrite the

term as (l-y^y^... (l-y^)., .y^. The sum of such terms has the form of the

above defining equation and it has a value of +1 for true terms and a value

of 0 for other terms, or

"o + Yl +""+ V. + "l2yly2 +---+ w123yly2y3 +-"+ v12-nyly2 —V1
for true terms and the sum is 0 for other input terms.

Thus it is always possible to determine a set of w^'s and a T by rewriting

the logical sum of true terms with the notation 1-y^ for the complement of

a variable Q.E.D.

38

As an example, consider a 3-variable function

f (0,3,5) = 71y2~3 + 'y1J273 + yiy2y3 *

Substituting y^ with l-y\, one obtains :

f(0,3,5)=(l-y1)(1-y2)(l-y^)+(l-y1)y2y3+yly3 1̂-y2 ̂

=l-yl-y2-y3 + rfg + ^2y3 + Sy^i - 3y^y^ .

Thus wQ=l or T=1-WQ=0, W^=w^=w^=-l, w12=1' V23=W31=2 and W123=

The question why a threshold element is not universal may be answered

by the fact that nonlinear terms are missing from the defining equation of

a threshold element. In this sense a threshold element should be called a

"linear" threshold element. While a linear threshold element has n+1 para

meters , a nonlinear threshold element has 2n parameters. Though a non

linear threshold element has a complicated structure as an element, the

number 2n of its parameters is small compared with those of other universal

networks at least for small n as will be shown later in this chapter.

Moreover learning can be simply done as in a single threshold element, the

only difference being the number of the parameters. The convergence of

the learning process is guaranteed because a set of weights and a threshold

is known to exist by Theorem 6. If the construction of a nonlinear

threshold element is physically feasible with a reasonable effort, the

element will deserve serious attention because of its tremendous versatility

and high learning efficiency due to a small number of parameters and simple

learning.

A standard way of synthesizing a universal network is to combine a

number of elements. Four multi-element networks of threshold elements as

shown in Figure 10 are considered in the rest of this chapter and in the

Figure 10. Universal networks of threshold elements
(The number in a circle shows the number
of parameters)

o o o o O O O O o o o o

o o o o o o o o 5 6 6 6 6 o o o o

40

next chapter. Let the elements in the first stages be called input elements

and those in the second stages be called output elements.

(a) OR network The output element is an OR element. The configura

tion is the simplest. The total number of elements is 2n ^"+1 and the number

of parameters is 2n x (n+l). Both are very large.

(b) Majority network The output element is a Majority element whose

output is determined by the majority of its inputs. Less elements are re

quired than in (a). If there are p elements in the network, the number of

parameters is (p-l) x (n+l), where p includes the output element.

(c) Symmetric network.....All elements including the output element

are identical and adjustable. Thus adaptive elements are distributed in

two layers, while in (a) and (b) they are only in a single layer. If there

are p elements, the number of parameters is p(n+l).

(d) Asymmetric network The output element is also adaptive but it

has some extra inputs. Thus all elements are not exactly identical. More

over it is assumed that all inputs are available not only in the first

stage but also in the second stage. Unless the inputs are slow in varia

tion, delay elements may be needed for the inputs to the output element.

If the network has p elements in 2 layers, the number of parameters is

p(n+l)+(p-l). It is smaller than those of the other three networks at

least for small n.

Though Figure 10 shows 1+-input networks, the extension to networks

with more than 1+ inputs would be obvious. In (a) and (b), the networks

would be extended only "vertically" as n increases. They would be

expanded both "vertically" and "horizontally" in (c) and (d).

Table 1+ compares the numbers of parameters of a threshold element,

4l

of a nonlinear threshold element and of the four networks. The number in

parenthesis shows the number of elements in a network. The numbers of

necessary elements in (b) and (c) are obtained as a result of a computer

simulation as will be explained later. The number of necessary elements

in (d) is due to R. C. Minnick (6) but it was also confirmed by the

computer simulation. The figures for n=5 in (b), (c) and (d) are those

estimated and not confirmed. The figures in the last column show the

lower bound of the number of necessary elements taken from Table 3. The

lower bound of the number of parameters is shown as p(n+l) where p is the

lower bound of the number of necessary elements.

Table 4. Comparison of the number of parameters (and the number of
elements) in an element and various universal networks with
n inputs.

n Single
Element

Nonlinear
Element

(a) (b) (c) (d) Lower
bound

1 2 2 2 (1) 2 (1) 2 (1) 2 (1) 2 (1)

2 3 4 6 (3) 6 (3) 9 (3) T (2) 6 (2)

3 4 8 16 (5) 12 (4) 16 (4) 9 (2) 8 (2)

4 5 16 4o (9) 20 (5) 25 (5) IT (3) 10 (2)

5 6 32 96 (IT) 30 (6)? 36 (6)? 20 (3)? 12 (2)

V. LEARNING IN UNIVERSAL NETWORKS

A. Learning Procedure

Learning in multi-element networks having n inputs and a single output

as shown in Figure 10 is considered in this chapter. Each element has n+1

or more weights including the threshold. As in a single-element network

the learning process is an iterative process of changing the weights so

that a given function is realized with the network. Arbitrary Boolean

functions, not necessarily threshold functions, are considered in this

chapter. Since the network contains more than one element, the problem

is in deciding in which element the weights should be changed first when

there is a need of weight change. A reference level criterion was used to

select an element for weight change by W. C. Ridgway III (3) in his OR and

Majority networks similar to (a) and (b) in Figure 10. It will be shown

that the similar criterion can be used also in the networks (c) and (d)

in Figure 10, where adaptive elements are distributed in more than one

layer and there are intermediate outputs which constitute inputs to the

other adaptive elements.

Suppose that the desired output is z*(s) = +1 for an input X(s) at

s-th adaptation but the actual output is z(s, t-l) = -1 before t-th weight

change. It may be reasonable to assume that the elements producing -1

outputs are responsible for the error. This is obvious in the networks

(a) and (b). But even in (c) and (d) the assumption is useful because it

gives a directionality to a weight change. Under this assumption, the

weights associated with an output element in (c) or (d) tend to become

positive. Now that the output is in error, k weight changes should be

made in at least one of such elements so that its output is reversed to

become +1. For efficient learning it is desirable to make k as small as

possible. If the element which has the smallest reference level with a

minus sign (the sign opposite to that of the desired output) or

R(s,t-l)=W(t-l).X(s) < 0 is taken, then the level will be reversed or

R(S,t+k-l)=W(t+k-l).X(s)=R(S,t-l)+k(n+l) >_ 0 with the smallest k. Simi

larly when z*(s) = -1 but z(s,t-l) = +1, the element which has zero or

the smallest reference level with a plus sign (the sign opposite to that of

the desired output) is to be selected. Since the least weight change will

be made, its effect will be the least for those input combinations that

the network has learned to correctly respond to.

A limiting requirement will be imposed on the number of elements in a

learning network. If it is known that a network of p elements can realize

a particular Boolean function but any network of p-1 elements can not

realize that function, then the requirement is that the function must

be realizable by learning in a network of just p elements as well as in a

network of more elements. Such a p-element learning network has the mini

mum redundancy in terms of the number of elements. But it has redundancy

in the form of weight values. Generally learning would be easier in a net

work of more than p-elements than in a network of just p elements because

of greater redundancy.

As it turned out, the following learning procedure which employs the

reference level criterion is effective for all three types of networks

(a), (b) and (d) with the minimum number of necessary elements as consider

ed in the previous chapter.

Uk

Learning procedure (ii) for (a), ("b) and (d)

1. Initially the values of weights are all zero.

2. Each of 2n possible input combinations X's and corresponding

desired output z* is presented in a random or non-cyclic sequence as

many times as necessary for convergence.

3. When the output z is z=z* for an X, no change occurs and the

network takes the next input combination.

4. When zfz*, the element which has the smallest reference level

with the sign opposite to that of z* (zero is regarded as having a plus

sign) is selected, and its weights are changed by the amount AW, where

AW=z*X or Av^=z*x^, for i=0,1,2,...,n. The weight change is repeated

until the output of that element is reversed. As a result, if z=z* is

obtained, the network proceeds to take the next inputs. But if still

z^z*, then the entire step is repeated for the other elements.

5. In step 4 above, if two or more elements have the same smallest

reference level, one of them must be selected. It affects the learning

process how the selection is made in such a case.

6. When z=z* is obtained for all X's, the learning process is

complete and no further change of weights occurs.

A modification is necessary for a symmetric network like (a), where

there is more than one layer of adaptive elements. If the above procedure

is followed as it is, convergence cannot always be guaranteed for the fol

lowing reason. Consider two different inputs X^ and X^. Suppose that

z* = -1 for X^ and z* = +1 for X^ and all intermediate outputs happen to

be -1 for both X^ and Xg. Now if z = +1 for X^, then the weights of the

output element must be changed because all intermediate outputs are -1

and have the same sign as z*. Next if z = -1 for and the reference

level of the output element happens to be the smallest, then again the

weights of the output element must be changed. If both sets of weights

make correct outputs for all the other input combinations, then the out

puts of the input elements become immune to inputs and they will not have

a chance to be adapted and the same weight change will be repeated for

the output element. This can be avoided by establishing a hierarchy for

element selection. The following modified learning procedure is used for

the network with multi-layers of adaptive elements like (c).

Learning procedure (iii) for (c)

1. When z^z*, one of the input elements which has the smallest

reference level with the sign opposite to z* is selected and its weights

are changed so that the output of that element is reversed. As a result,

if z=z* is obtained, the network proceeds to receive the next inputs.

But if still zfz*, then the weights of the output element are modified

so that z=z* is obtained.

2. Other details are the same as in Learning Procedure (ii). In

case there are more layers, the change is to be made first in the first

layer, next in the second layer, then in the third layer and so on.

The initial condition for weight values was arbitrary in the single

element case but it cannot be so in a multi-element network in general.

For example, if the threshold of an element in a p-element network is

very large in the beginning, its reference level will never be the small

est of all the elements. Its weights including the threshold will never

k6

have a chance to be changed. Thus in effect the network has only p-1

elements which cannot realize the function. In general, a zero initial

condition will be the best since the reference level is discriminated at

zero. Depending upon the function in question, one may assume other

initial conditions.

The input sequence was also arbitrary in a single element network.

It may be cyclic as 0,1,2,...,2n-l; 0,1,2,...,2n-l; 0,... . But if inputs

are given in such a sequence to a multi-element network, it is probable

that the same sequence of weight changes covering several elements

repeats itself and the learning process never converges. Therefore the

inputs must be given in such a sequence that never invokes any cyclic

weight changes. Of course, inputs may be given in a cyclic sequence for

some functions,

When two or more elements have the same reference level, one of them

may be selected at random or in some deterministic way. As will be dis

cussed later, the total number of weight changes and the structure of

elements obtained by learning will depend on this selection. This problem,

however, will not be so significant in actual electronic circuits, because

two elements will never have exactly the same reference level due to the

presence of noise and the selection will in effect be made at random. In

a computer simulation it must be taken into account.

A rigorous mathematical proof of convergence of these learning pro

cesses is not established in this thesis, though it is conjectured that a

finite length convergence process exists, if cyclic weight changes do not

occur. The requirement of a zero initial condition and a random input

sequence is a necessary condition for convergence. One resort of the

47

proof is to show by a computer simulation that the process does converge.

The result of such a computer simulation will be discussed later in this

chapter.

Now consider a p-element network and a Boolean function realizable

with it. One can imagine p weight vectors associated with p elements in

the weight space. One can also imagine that there are p "ideal" weight

vectors (though they are not unique) whose combination can realize the

function. The combination depends on the configuration of elements in

the network. Each ideal weight vector W* lies in a subspace corresponding

to a threshold function. As learning goes on, each weight vector W start

ing from the origin moves gradually toward a subspace where an ideal

weight vector lies.

As an example, consider a 2-variable function f(0,3) which is +1 for

(+l,+l) and (-1,-1) inputs but -1 for (+1,-1) and (-l,+l) inputs. The

function is realizable with a network of two adaptive threshold elements

connected to an OR output element. Let two weight vectors be and

Suppose that the inputs are given in the sequence; 2,1,3,0,1,2,..., where

0=(+l,+l), l=(+l,-l), 2=(-l,+l) and 3=(-l,-l). The movement of W and W

can be considered in a 3-dimensional space as shown in Figure 11, where a

projection to a 2-dimensional W^-W^ plane was made. The four input planes

are schematically shown. It will be seen that W and \1 coincided with

and Wg* after 6 adaptations. At points a, b and c, and had the

same reference level as a simple calculation would reveal, and one of them

was chosen at random in each case. If a different input sequence ; 0,3,...,

had been used instead, then learning would have been complete after only

two weight changes. In both cases the final structures of the two vectors

U8

- I)

(-1,-1)

V

Figure 11. Movement of two weight vectors

are equal and they are W.j=(wq,w ,w) = (-1,-1,-1) and Wg=(-l,+l,+l).

Actually the total number of weight changes as well as the final values

of the weights may depend on three factors; l) initial condition, if a

condition other than zero is used, 2) input sequence, and 3) choice of

an element, when two or more elements have the same reference level. As

the above example suggests, there will be some optimum conditions, or

best strategies, of the three factors which make the number of total

weight changes minimum.

B. Computer Simulation

To study the convergence property of this learning process, all

representative functions of Boolean classes of three and four variables

were tested for convergence by a computer simulation.

As seen from Table 1 there are 10 representative functions (one from

each class) of 3 variables, of which only 3 are realizable with a single

threshold element and the other J require more than one element. As for

4-variable functions, there are 208 representative functions, of which

only 9 are realizable with a single element and the other 199 require more

than one element, When there are 5 or more variables, the number of the

representative functions is quite large (of the order of 10^ for 5 inputs).

It requires an unreasonable amount of computer time to simulate the learn

ing process of all of them.

Ordinarily it is not easy to find appropriate weight values which

realize a particular function by a computational method. The computer

simulation provides a method of determining such weights, though the set

of weights might not be optimum in the sense that the absolute sum of

50

weights should he minimum.

The flow diagram of the program used for the network (d) is shown in

Diagram 2 as an example.

2n X's and 2n z*'s
are given

All w=0

I

(1) depends on the input sequence

(2) depends on element choice when
two or more R's are equal

t=i. s=i|

I
T a . k e X f s l a n d s (l)

i
Calculate R(s,t~l)=W(t~l)*X(s)
in all elements and determine
z(s,t-l)

js+1

yes
llf z(s,t-l)=z*(s) I ? I

•^no
If z*(s)=+l ?1 no (z*(s)=-l)

no

?If z=z* for all X

yes

Compare all R(s,t-l) <0
and select the smallest
R.(s.t-l)
J

yes

Completed

Compare all R(s,t-l) > 0

and select the smallest
R.(s,t-1)

Calculate AW (s) = z*(s)X(s)^_

W (t-1)+AW. (s) >W (t-l)
v J

1 * 1
It—^ t-l I

Diagram 2. Flow diagram of the simulation program for the universal
learning network (d)

Four programs corresponding to the four networks in Figure 10 were

written under the assumptions :

1. The truth table of a Boolean function, which is a set of 2n input

combinations and the corresponding desired outputs, is repeatedly given.

51

2. Each time it is given, the input combinations are presented in a

different order so that the whole sequence is not cyclic. But when the

truth table has been presented m times, each input combination has been

given exactly m times. An example is: 0,1,2,3,4,5,6,7;0,2,4,5,1,3,5>7;

1,4,7,2,5,0,3,6;... etc. in a 3-input case. For some functions a different

input sequence was used for comparison.

3. All weights are zero at the start.

The computer simulation confirmed that the learning process does con

verge in a reasonable number of steps for all the representative functions.

The results are summarized in Table 5. The table shows the maximum, mini

mum and average total numbers of weight changes (M) and those of truth

table presentations (M). The maximum value of weights assumed by elements

is also shown. • The average was taken over all 10 representative functions

of 3-variables or over all 208 representative functions of 4 variables.

When different input sequences or different choice of elements were tested,

the smallest values of N and M were taken. The four-input OR network was

not tested because it consists of 9 elements with a total of 40 parameters

and it is considered too redundant.

The total number of weight changes may be considered to be a measure

of learning efficiency and the number of parameters to be a measure of

redundancy. Table 5 suggests :

1= When there is too much redundancy as in the OR network or in the

symmetric network, learning efficiency is low.

2. When there is too little redundancy as in the Asymmetric network,

learning efficiency is also low.

3. There is some optimum balance between the two factors as in the

52

Table 5. Results of computer simulation

(a) OR (b) Majority (c) Symmetric (d) Asymmetric
M M N M N M N M

3-input 5 elb
k el k el 2 el

networks 16 pa 12 pa 16 pa 9 pa

Maximum 52 7 18 U bl 8 52 10

Minimum 5 2 9 1 8 2 7 1

Average 18 5 12 2 21 6 22 h

Max. w k k k k

U-input 9 el 5 el 5 el 3 el
networks hO pa 20 pa 25 pa 17 pa

Maximum — 99 17 198 2k • 135 22
Minimum — 13 2 25 h 11 2

Average — 37 7 92 12 55 10

Max. w -— 7 6 10

ael = The number of elements

^pa = The number of parameters

Majority network.

In the actual choice of a network, other factors such as economy and

availability of inputs must be taken into account, A trade-off may have

to be made somewhere. The symmetric network seems to have no advantage

over the Majority network but it is of interest as an example of a network

with multi-layers of exactly identical adaptive elements.

As for the Asymmetric network, its structure obtained as a result of

learning is directly comparable with the structure listed in the table of

R. C. Minnick (6), which was obtained by a linear programming technique.

The table shows the optimum structures of all 221 representative functions

of up to four variables. As an example, consider f90(0,1,2,5,14,15) which

is realizable with a 4-input network as shown in Figure 10(d). Two dif

ferent structures were obtained by learning with a random and a determinis

tic choices of elements when two or more elements had the same reference

level. The deterministic choice means a selection of an element with the

lowest number among those elements, assuming that all elements in the net

work are numbered in some fashion. The two structures l) and 2) obtained

by learning are compared with the optimum structure (Opt.) taken from

R. C. Minnick's table.

(wn'v12'v13,wlli!Tl' (w31,w32,w33,w3liiT3;wl,ï2)

Opt. (~1, -1, «1, 0;+2) (0, -1, 0, -l;+l) (+2, +2, +1, +l;-2;+U,+2)

(1) (+2, 0, -6, -2;-2) (-2, -2, -2, 0;+6) (+2, +2, +U, +2; 0;+4,+6)

(2) (-2, +4, -2, 0;-2) (-1, -5, -1, -3;+3) (+5, +1, +3, +l;+3;+7,+7)

The first two sets of weights are those of two input elements. The third

set of weights is those of the output element. Its last two weights are

those associated with the outputs from the two input elements. For some

functions the choice made in the equal reference level case has a signifi

cant effect also on both the total number of weight changes and the number

of truth table presentations as well as on the final values of weights.

Sometimes a purely random choice may lead to more rapid convergence or a

more optimum representation. For example,

Random Choice

f8l=f(0,1,2,5,6,12) N= 39, M= 6

fl59=f(0,1,2,7,11,12,15) N=150, M=19

Deterministic Choice

N=6l, M=9

N=50, M=8

54

This suggests that there are many cases when two or more elements come to

have the same reference level in the course of learning and the choice of

an element in such cases can greatly affect the entire learning process.

55

VI. LEARNING IN A MULTI-OUTPUT NETWORK

It may be expected that a learning procedure similar to that for a

single-output network can be applied for a multi-output network. If a

multi-output network has no adjustable parameters which are shared in

common by more than one output element, the network can be divided into

single-output networks in parallel. In this case, the network is a com

bination of essentially single-output networks and the learning procedure

used in a single-output network is readily applicable. All multi-output

learning networks so far used primarily for pattern recognition are this

type of networks (1,3).

On the other hand, if a multi-output network has common adjustable

parameters shared by more than one output element, the network may be

called non-separable in the sense that it is not possible to divide the

network into single-output networks in parallel. A new problem in such a

non-separable network is the fact that a weight change made to alter only

certain outputs can affect the other outputs. A weight change favorable

to one output element may not be so for the other output elements.

Actually it can be undesirable for them in some cases. The learning

procedure must provide means to avoid this conflict of interest.

Though any complicated learning procedure is conceivable, a simple

procedure is desirable. The following learning procedure can be applied

for a 3-input 2-output network as shown in Figure 12(a). It is based on

hierarchy among elements. All five elements in the network are assumed

to be adaptive.

Figure 12. Two full adders

56b

Za

-INPUT 2-OUTPUT LEARNING NETWORK

INVERSION

CARRY

CONVENTIONAL MAJORITY ELEMENT NETWORK

51

Learning Procedure (iv) for a multi-output network

1. When one or both outputs are in error, first an input element

having the smallest absolute reference level is selected and its weights

are changed so that the output of that element is reversed. As a result,

if both outputs become correct, the network proceeds to take the next

inputs.

2. If one or both outputs are still in error, then the weights of

the output elements in error are changed so that both outputs become

correct.

3. Other details are the same as in Learning Procedure (ii).

It is convenient to consider the learning procedure in terms of an

error state transition chart. Such a chart is shown below, where

(Ea,Eb)=(l,l) is the state where both Za
and z, are in error,

b

=(1,0) is the state where only 2
a
is in error.

=(0,1) is the state where only zb is in error.

=(0,0) is the state where both z
a
and z, are correct,

b

(1,1)

A solid line shows a transition due to step 1 and a dotted line shows a

transition due to step 2, The transitions causing no state changes, which

are probable under step 1, are not shown. By the above learning procedure,

all error states finally settle to the (0,0) state. The conflict of

58

interest is automatically avoided.

The convergence of this learning process in the 3-input 2-output

network as shewn in Figure 12(a) was tested by a computer simulation

similar to those used in Chapter V. For comparison, consider a conven

tional full adder using Majoriy elements as shown in Figure 12(b) and a

Boolean function combination f(1,2,4,7) for the sum function and f(3,5»6»7)

for the carry function. The numbers in Figure 12(a) show the weight values

obtained by learning for the function combination. The number in a circle

(element) shows the threshold of that element, The full adder was realized

after 101 weight changes and 12 truth table presentations. Other function

combinations were also tested and were observed to be realizable after

similar weight changes.

The learning process in this 2-output network is more lengthy, or

requires more weight changes than in those single-output networks studied

in the previous chapters. The mathematical proof of convergence in this

process has not been established but it is conjectured that the process

converges in a finite number of steps provided that no cyclic changes of

weights occur. When the network becomes larger, the learning process

will become more lengthy. It should be noted, however, that learning

takes place automatically as long as a truth table is repeatedly given.

It may be expected that a prescribed function combination will eventually

be established by learning if a sufficient time is allowed for learning.

59

VII. CONCLUSIONS

In dealing with networks of threshold elements, the following con

clusions are established.

1. A necessary condition for a Boolean function to be realizable

with a single threshold element is that there be no isolated true term

in the function.

2. A lower bound of the number of threshold elements necessary for

a universal network was obtained in terms of the number of inputs.

3. Various types of universal networks consisting of threshold

elements were compared in terms of the number of parameters.

4. The computer .simulation of learning process in a network gives

a method of determining appropriate weight values to realize a function.

The analysis of the learning process has led to the following

conclusions.

5. The length of a weight vector changes approximately proportion

ally to /t", where t is. the number of weight changes.

6. A nonlinear threshold element was proposed as a new element.

Though the element may have a complicated structure, it has merits of

tremendous versatility and easy training.

7. Simple learning procedures suitable for multi-element networks

were established. Necessary conditions for convergence were pointed out.

The convergence property was confirmed by a computer simulation for net

works with small number of inputs.

8. A hierarchy consideration is useful in a network with more than

one layer of adaptive elements.

6o

9. It was demonstrated that, though redundancy is necessary for

learning, too much redundancy tends to lower learning efficiency.

A 5-input threshold element, 4-input universal networks and a 3-input

2-output network were tested for the convergence of their learning process.

All these networks are considered physically realizable with a reasonable

effort. The results obtained by the computer simulation of these networks

will be useful in checking experimental data on those physical networks.

In this thesis, universal networks were mainly considered. It was

assumed that a complete truth table was given during learning. These are

very severe requirements for a learning network. It is clear that, if the

requirement of universality is dropped, the network will become simpler or

the number of inputs may easily be increased. If a separable multi-output

network is considered, the number of outputs may also easily be increased.

Such a network can serve as a pattern recognition system and the same learn

ing procedure as developed in this thesis may be used. When only an incom

plete truth table is to be given, that is, particular input combinations

never occur, the network will exhibit a generalizing property, because the

network can respond in some way to the input combinations which were not

given during learning period. It is also possible to investigate ternary

logic networks by treating such absent input combinations as don't-care

conditions.

The fact that the initial condition cannot be arbitrary in a multi

element learning network suggests that a decay factor in each weight may

be effective in permitting arbitrary initial conditions and also possibly

cyclic input sequences, because the weights will never change cyclically

for a cyclic input sequence due to the decay factor.

6l

Though, in principle, the learning procedures are applicable to much

larger networks than the networks considered in this thesis, the learning

process will become very complicated and lengthy in such large networks.

It may be necessary to break such a network into sub-networks and to

supply some information concerning the intermediate states between the

sub-networks.

The learning networks having a small number of inputs will find great

practical applications when they may be connected to conventional logical

networks. There may be many situations where a large number of input sig

nals could be processed first by a prewired logical network and reduced to

a small number of signals. Those signals could then be fed into a uni

versal learning network which could be trained to respond to a changing

demand.

62

VIII. LITERATURE CITED

Rosenblatt, F. Principles of neurodynamics. Washington, D.C.,
Spartan Books, Inc. 1961.

Learning by threshold elements in cascade. Newport Beach,
California, Aeroneutronic, Ford Motor Co. 1961.

Ridgway, W. C., III. An adaptive logic system with generalizing
properties. Stanford University Electronics Laboratory
Technical Report Ho. I556-I. 19o2.

Muroga, S. , Todâ, I. and Takasu, S. Theory of majority decision
functions. Franklin Institute Journal 271: 376-418. 1961,

Harrison, M. A. The number of equivalence classes of Boolean
functions under groups containing negation. Institute of
Electrical and Electronics Engineers Transactions on
Electronic Computers EC-12: 559-561. 1963.

Minnick, R. C. Linear input logic. Institute of Radio Engineers
Transactions on Electronic Computers EC-10: 6-l6. 1961.

Winder, R. 0. Bounds on threshold gate realizability. Institute
of Electrical and Electronics Engineers Transactions on
Electronic Computers EC-12: 561-564. 1963.

Takahasi, H. Computing machines. In Iwanami modern applied
mathematics series. (In Japanese) Vol. B-l4-a. pp. 57-58.
Tokyo, Japan, Iwanami Books, Inc. 1958.

63

IX. ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks to his major

professor, Dr. Robert M. Stewart, Jr. for many enlightning suggestions.

He also wishes to thank the staff members of the Cyclone Computer

Laboratory for keeping the Cyc-lone Digital Computer in an excellent

operating condition while it was in his use. Thanks are also due to

Mr. Karl H. G. Sera for helping the author prepare the manuscript, to

Mrs. Natalie T. Skola for typewriting the final manuscript, and to

Mr. William D. Thomas for doing the drawings.

