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I. INTRODUCTION 

In the course of years since the advent of the first electronic 

computer, ENIAC, in 19^6, the computer has acquired greater capabilities 

due to its higher operation speed, larger memory capacity and increased 

versatility of its organization. Yet as originally intended, the computer 

is still primarily suited for handling computational problems. It is not 

always as effective for non-arithmetical jobs such as language transla

tion, pattern recognition, etc., because such tasks demand very tedious 

programming efforts from a human programmer. This disadvantage stems from 

the fact that the present computer is entirely lacking a learning capa

bility which is based upon its own experiences. Hence the human program

mer must specify every detail of his instruction to the computer without 

any single error. Of course it is possible to make the computer look as 

if it has a learning capability by proper programming but again such pro

gramming will be very troublesome for the human programmer. On the other 

hand, if a learning capability could be incorporated in a computer-like 

machine, the machine would be able to solve non-arithmetical problems 

quite efficiently and it could be called a "real" artificial brain. A 

first step toward such a learning machine is the study of a learning net

work, namely, a logical network with a learning capability. 

A learning network is defined as a variable-parameter network with 

n binary inputs and m binary outputs, which, given a truth table of n 

inputs and m "desired" outputs, can by itself adjust its internal para

meters so as to eventually produce the desired outputs for any input 

combinations after the truth table has repeatedly been presented to the 
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network. A generalized network to be considered in this thesis is shown 

in Figure 1. It consists of three parts, namely, a variable-parameter 

circuit, a control circuit and a comparator circuit. When, a set of 

inputs (+1) and the corresponding desired outputs (+l) are presented to 

the network, the variable-parameter circuit produces outputs based upon 

its existing parameters. The comparator circuit then compares the out

puts with the desired outputs. If there is no discrepancy among them, 

no change occurs and the network is ready to accept the next set of inputs. 

If, however, they do not agree, Error indication signals (E) are sent from 

the comparator circuit to the control circuit. This portion of the net

work constitutes a feedback path. Upon receiving E-signals, the control 

circuit determines which parameters should be adjusted using Reference 

signals (R) and sends out Adaptation signals (A). The parameters which 

received A-signals are varied in such a manner that the outputs become 

equal to the desired outputs. This process is repeated for the other 

sets of inputs. Eventually when for all sets of inputs the desired out

puts are obtained as the actual outputs, a completion signal (C) is dis

patched and the whole process is complete. Mow the network is ready to 

serve as the prescribed function. The iterative process of parameter 

adjustment may be called a learning process. 

The central part of the learning network is the variable-parameter 

circuit. It has many properties not found in conventional digital cir

cuits. Since it contains the internal parameters as a kind of distributed 

memory, it is a sequential circuit rather than a combinational circuit. 

Also it is a hybrid system of digital and analog circuits, because the 

parameter is an analog quantity. The values of the parameters will be 
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the functions of the adaptation currents or voltages not only of the pre

sent but also of the past. 

As the basic building block of the circuit, a threshold element was 

selected because of its simplicity and versatility. The threshold element 

produces a +1 output when the linearly weighted sum of inputs exceeds a 

certain threshold and otherwise, a -1 output. The weights associated with 

the inputs and the threshold are variable-parameters. Since they are in

ternally adjustable, the element may be called adaptive. 

Historically, the first significant study of the learning network 

using threshold elements began with the perceptron by F. Rosenblatt (l) 

in 1957. The perceptron may be regarded essentially as a single threshold 

element with a very large number (500 to 1000) of inputs which are connect

ed to almost the same number of sensory units through random connections. 

One of the most important contributions of the perceptron is the proof that 

there exist certain rules in adjusting the weights which guarantee the con

vergence of the learning process. Since the number of inputs is large and 

random connections are involved, a statistical approach was used to inves

tigate the gross behavior of the element. No interest was shown in the 

macroscopic details of the learning process. In 1961, J. K. Hawkins (2) 

considered how an arbitrary Boolean function could be realized by learning 

with a network of cascaded threshold elements and he pointed out some dif

ficulties of the problem. The first learning network which could realize 

any Boolean functions was shown by R. C. Ridgway III (3) in 1962. In his 

network, the outputs from several threshold elements in parallel are fed 

into an OR or a Majority element and its output is taken as the final out

put. A very important element of Ridgway*s work was his development of 
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the weighted sum criterion as the method of element selection for adapta

tion. It is noted that there is only a single layer of adaptive elements 

in his network. A multi-layer learning network where there is more than 

one layer of adaptive elements has not been studied. 

So far only single-output networks were mentioned. Some multi-output 

networks have also been studied (1,3). But in all cases none of the out

puts have any variable parameters in common. A change in a parameter in 

such networks can affect only one output. All the other outputs are 

immune to the change. For analysis these multi-output networks can be 

divided into and considered as single-output networks in parallel. Non-

separable multi-output networks are yet to be studied. 

In this thesis, some properties of a threshold element will be dis

cussed first in terms of the Hamming distance between input sets. Then 

the learning process in a single adaptive element will be considered in 

some detail. As for the networks of threshold elements, attention will be 

directed to the learning networks which have a small number of inputs and 

outputs but can realize all possible functions of the inputs. Such net

works are called universal. They are quite different from the so-called 

pattern recognition networks such as the perceptron where the number of 

inputs may be large (hence a statistical approach is necessary for the 

analysis) but only a fraction of all possible functions need be recognized. 

On the other hand, an n-input m-output universal learning network must be 

2n m 
able to realize all (2 ) * functions, which are a tremendous number of 

functions. For example, a small network of 4 inputs and a single output, 

2^ or of 3 inputs and 2 outputs should be able to establish 2 or 

2^ 2 16 
( 2  )  = 2  =  6 5 , 5 3 6  d i f f e r e n t  f u n c t i o n s .  I n  a  s e n s e ,  s u c h  a  l e a r n i n g  
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network is equivalent to a group of 65,536 conventional logical circuits. 

Inevitably such a network tends to be complicated but some complication 

may be offset by its tremendous versatility. 

Since only a fraction of all Boolean functions is realizable with a 

single threshold element, several elements must be combined together to 

make a universal network. The central problem is to determine which 

elements are responsible for an error when the final outputs are incorrect, 

especially when there is more than one layer of adaptive elements. Some 

criterion is necessary to establish the validity of the intermediate out

puts. In a non-separable multi-output network, a change in a single 

parameter can affect more than one output and as a consequence there can 

be a conflict if the change is favorable to one output but it is unde

sirable for another output. A learning procedure must then be developed 

which will avoid non-resolvable conflicts. 

The analysis and design problems will be considered in terms of 

theoretical models with the aid of computer simulation. Hardware models 

will be excluded. Because of the small size of the model networks, how

ever, the models have physical realizability and the results obtained by 

this study will be useful in checking experimental data from those physi

cal networks. Little attention will be paid to a biological analogy with 

natural neurons. As some physiologists have been warning, the analogy 

tends to lead to over-simplification and misunderstanding. Enough factual 

knowledge of the behavior of natural neurons has not been accumulated to 

permit meaningful analogies to be drawn. 
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II. PROPERTIES OF A THRESHOLD ELEMENT 

A threshold element with n inputs is defined as an element whose out

put value z is: 
n 

z = +1 if E w.x. > T 
i=l 1 1 = 

n 
z = -1 if Z w.x. < T 

i=l 1 1 

where x^ is the i-th input variable and takes the value of +1 or -1, w^ is 

the weight associated with the input x^ and is a real number, and T is the 

threshold of the element and is also a real number. A set of n weights 

and a threshold (w ,w ,...,w ;T) is called the structure of a threshold 

element and the set specifies an n-variable Boolean function f(x^,x2,...,x^). 

A threshold function is defined as a Boolean function which is realizable 

with a single threshold element. The properties of a threshold element can 

be considered in terms of the properties of a threshold function. 

Since the number of Boolean functions is quite large, it is convenient 

to classify them according to their properties. A class of Boolean func

tions is defined as a group of such functions that could be made identical 

to each other by any or all of the following transformations : 

a. permutation of the variables 

b. complementation of the variables 

c. complementation of the function. 

For example, a two-variable AND function f^(x^,x2) = X^'X^ and a two-vari

able OR function f^(x^,x^) = X^+Xg belong to the same class, since 

f2(Xi,X2) = x1+x2 = x1'x2 = f1(x1,x2). 

The following properties of threshold functions will be used in the 
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discussions to follow. The details are referred to in the paper by 

S. Muroga (4) and others. 

(i) If a Boolean function is a threshold function, then all the func

tions belonging to the same class as that function are also threshold func

tions . It is useful to define a representative function from each class 

of threshold functions as well as from each class of Boolean functions, 

(ii) All classes of Boolean functions are not threshold functions. 

Actually the ratio of the number of threshold functions to the number of 

all Boolean functions becomes very much smaller as the number n of inputs 

increases, as seen from Table 1. 

Table 1. The ratio of the number of threshold functions (and their classes) 
to the number of all Boolean functions (and their classes) 

n 1 2 3 4 5 6 

Functions 
2 
2 

c
o

l
o
 

|
H
 72 

218 
1536 
64594 

86080 

4xl09 

lxlO7 

lxlO19 

( % )  (100) (80) (33) (2. 4 )  (2xl0~3) 

O
 
H
 O
 
H
 

Classes 1 
1 

1 
2 

3 
10 

9 
208 

48 

6x10^ 

504 

2xl014 

The number does not include those functions having redundant variables 

whose removal does not affect the values of the functions. The number in 

parenthesis is the percentage ratio. The table also shows the ratio of the 

number of classes of threshold functions to the number of classes of 

Boolean functions. By discounting functions having redundant variables, 

the latter number of Boolean classes was obtained from Harrison's table (5). 

(iii) The set of weights and a threshold which realize a threshold 

function is not unique. To introduce uniqueness, the "optimum" structure 
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of a threshold element is defined as a set of such weights and a threshold 

that makes the sum of the absolute values of weights and a threshold mini

mum, or 

n 
E Iw. I + 111 = minimum. 
i=l 1 

The optimum structures of all classes of threshold functions of up to 6 

variables have been determined by S. Muroga {b) and others using a linear 

programming technique. 

For compact notation and easy visualization, a vector representation 

is useful. Let W be the weight vector and X be the input vector. They 

are defined as : 

W = (w0,w'1,w2,...,wn) where wQ = -T 

X = (x0,x1,x2,...,x ) where xQ = +1 . 

Then by definition, the output z of a threshold element or the value f(X) of 

a threshold function is: 

z = f(x) = +1 if W-X _> 0 

z = f(X) = -1 if W*X < 0 

The following geometrical interpretation is due to W. C. Ridgway III (3). 

(a) All sets of weights including the threshold generate a n+1 dimen

sional space called the weight space. The vectors W and X are vectors in 

this space. 

(b) The equation W«X=0 represents a plane called an input plane. The 

vector X is normal to the plane. All input planes pass through the origin 

of the coordinate system describing the weight space„ 
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(c) One side of an input plane W•X=0 can be considered to represent 

a +1 output for the input X and the other side a -1 output. 

(d) Since there are 2n different input planes, the weight space is 

divided by those 2n planes (each corresponds to each of 2n input combina

tions) into disjoint subspaces. 

(e) Each subspace corresponds to a threshold function. Any set of 

weights in a subspace can be used to represent the threshold function. 

Thus the set is not unique. 

As an illustrative example, consider all Boolean functions of two 

variables (n=2). Out of 16 possible functions, lk functions are threshold 

functions. Let x^ and be two input variables. The equation 

¥*x=w^x^+w2x2+wo=0 represents input planes in the 3-dimensional weight 

space (wq*W1,W2^ • Let wQ=t, w^=u and w^=v. The h input planes are 

described by the equations : 

-u-v+t=0 for (x^,xg)=(-l,-l) 

-u+v+t=0 for (x^,xg)=(-l,+l) 

a-v+t=0 for (x1,x2)=(+l,-l) 

u+v+t=0 for (x1,x2)=(+l,+i) 

The 14 subspaces made by these 4 planes are shown in Figure 2. The shaded 

side of each plane represents a +1 output and the other side a -1 output 

for the corresponding inputs. For example, the output is +1 for (-l,+l), 

(+1,-1), (+l,+l) inputs but it is -1 for (-1,-1) input in the subspace (7)• 

The label of each subspace corresponds to one of the following functions: 



Figure 2. Subspaces corresponding to ik two-variable 
threshold functions 
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Labels 0 1 2 3 b  5 7 8 10 11 12 13 I k  15 6* 9* 

X1X2 
(0) (AND) (xx) (Xg) (OR) (x2) < * ! >  (1) 

«• mm — — — — — — — + + + + + + + — + 

— + - — — - + + + - - - + + + + + -

+ - - + + — — + - + + — - + + + -

+ + + + - + + _ + + + _ + 

Only the signs of binary values are shown. The names of some functions 

are written in the parentheses. The functions (6*) and (9*) are not 

threshold functions and there are no subspaces corresponding to these 

two functions. 

In the rest of this chapter it will be shown that the Hamming distance 

defined between input terms can be used to see whether or not a Boolean 

function is a threshold function. So far the value of each input variable 

x^ has been assumed to be either +1 or -1 instead of 0 and 1, to distin

guish a state where x^ does not exist from a state where x^ is zero. But 

it is sometimes convenient to use 0 and 1. A new variable y^ will be used 

for this purpose = The conversion, is y^ = (l-x_)/2, or y. = 0 when 

x^ = +1 and y^ = 1 when x^ = -1. This is contrary to the normal convention 

of taking y^ = 0 for = -1 but the above conversion is more convenient 

for reference to other tables as will be shown later. A threshold func

tion is still a threshold function under this conversion (4). 

Let Y = (ylty2,...,y ) be called an input term. The component yQ = 0 

corresponding to the threshold is excluded since it is not an input. For 

brevity the notation f(Y) = +1 may be used interchangeably with f(X) = +1 

without fear of confusion. Y is called a true term of a Boolean function 

if f(Y) = +1. Any Boolean function can be specified by listing all its 

true terms, each expressed by an integer I, where I is: 
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I = yn+yn^l2+yn-222+,-*+yl2n"1 (I = 0,1,2,-,2^-1) • 

For example, if f(Y) = +1 only for Y = (0,0,0,0), (0,0,0,1) and (0,0,1,1), 

then f(Y) may be written as f(Y) = f(0,1,3). 

Now the Hamming distance between two input terms Y^ and Y^ is defined 

as: 
n 

d(Yi,Y2) = Z = the number of different components of 
i=l 

the two vectors Y^ and Yg . 

An input term Y^ is called an isolated true term if d(Y^,Y^) > 2 for all 

the true terms Y. other than Y.. 
k J 

Theorem 1: The Hamming distance between any two input terms is invariant 

under; l) permutation of the input variables, or 2) complementation of 

the input variables. 
n 

Proof; l) The summation in d(Y^,Y^) = E |y^ - y^.| does not depend on 
i=l 

the ordering of i. Hence it is invariant for the permutation of the 

variables. 2) When the i-th variable is complemented, the term |y]|_i-y2i^ 

becomes |^i~y2i ̂ " Bu-t: ̂ °^h cases are 1 when y^sfy,^ and both are 0 when 

yli=y2i' Hence lyli~y2iI = Iyii~y2iI in either case. Thus the Hamming 

distance is invariant for the complementation of the variables. Q.E.D. 

The input terms Y can be grouped into n+1 sets according to the number 

of l's in each Y. Let A(m) = {Y} be the set of input terms where m compo

nents of Y are 1. For example, there are 5 sets in the case of n=4. 

A(0) A(l) A(2) A(3) A(4) 

(0000) (0001) (0011),(1001) (0111) (1111) 
(0010) (0101),(1010) (1011) 
(0100) (0110),(1100) (1101) 
(1000) (1110) 
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Theorem 2: (a) For Y^ and Yg e A(m), 

d(Yn ,Yg) = 2p, or an even integer. 

(b) For Y^ e A(m) and Yg e A(m+l), 

d(Y^,Yg) = 2p+l, or an odd integer. 

Proof: (a) Consider only those components which are different between 

Y^ and Yg. If there are p components which are 0 in but 1 in Yg, then 

there must also be p components which are 1 in Y^ but 0 in Yg, becuase 

the number of l's must be the same in Y^ and Yg. Thus the number of 

'different components is p+p = 2p and hence d(Y^,Yg) = 2p. 

(b) Suppose that there are p components which are 1 in Y but are 

0 in Yg. Then there must be p+1 components which are 0 in Y^ but are 1 

in Yg, because the number of l's in Yg must be greater than in Y^ by one. 

Thus the number of components which are different between Y^ and Yg is 

p+(p+l) = 2p+l and hence d(Y ,Yn) = 2p+l. Q.E.D. 

How with the aid of the above theorems, the following theorem is 

obtained, which will help to determine whether or not a Boolean function 

is a threshold function. 

Theorem 3: (a) All Boolean functions which have only one true term or 

2n-l true terms are threshold functions. 

(b) A necessary condition for a Boolean function having more 

than one true term to be a threshold function is that there be no isolated 

true term in the function. 

(c) The above condition is not a sufficient condition. 

Proof: (a) Consider a Boolean function f(x) whose value is +1 for only 

one input term X = (+1,+1,...,+1). This function can be realized with a 

single threshold element by taking w^=wg=.... =wn=l and w^= -T=n, because 
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n n 
¥»X = Z w.x. = Z x.-n=0 for X = (+1,+1,...,+l) 

i=0 11 i=l 1 

n n 
W.X = Z w.x. = Z x.-n<0 for X ^ (+1,+1,...,+l). 

1=0 1 1 i=l 1 

Since all Boolean functions having only one true term and their complements 

which have 2n-l true terms constitute a Boolean class of which the above 

function is a member, they are all threshold functions. 

(b) One can assume that all weights of a threshold function are 

non-negative without loss of generality, because, if some weights are nega

tive , they can be made positive by complementing the variables associated 

with those negative weights and the Hamming distance is invariant under 

the variable complementation by Theorem 1. An isolated true term remains 

isolated as long as the distance is invariant. Therefore it is sufficient 

to show that a threshold function with non-negative weights can not have 

an isolated true term. 

Now consider two input terms Y^ e A(m) and Y e A(m+l) such that 

d(Y^,Yg) = 1. The proof process of Theorem 2 shows that there is only one 

component which is 0 in Y^ and is 1 in Yg for p=0. Let it be the j-th 

component. Then y^ f y^. All the other components are equal, namely, 

yli = y2i* Since each weight is assumed to be non-negative, namely, 

w^ ̂  0 for i=l,2,...,n, one obtains the relation: 

n n 

T0 - ,E, Vli iw0 - i$l "i>2i 
1=1 

for the above Y_, and Y.. This is equivalent to the relation f(Yn ) < f(Y0), 
l d  l — c. 

This relation holds for any m. 

Next suppose that there is an isolated true term in the function and 
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let it be e A(m). Then f(Y^) = 1. Since Y^ is isolated, none of Y^ 

e A(m+l) such that d(Y^,Y^) = 1 can be true terms, namely, f(Y^) = 0 for 

all Yg. This leads to f(Y ) = 1 > 0 = f(Y^). Since this contradicts the 

previously obtained relation f(Y^) <_ f(Y^) which hold for any m, it must 

be concluded that there is no isolated true term in a threshold function 

with non-negative weights. 

(c) A counter-example will suffice to show that the condition is 

not sufficient. It is known from Minnick's table (6) that a 3-variable 

function f(0,l,2,5) is not a threshold function, but none of the true 

terms 0=(000), l=(00l), 2=(010), 5=(l0l) is isolated. Q.E.D. 

To use the theorem it is convenient to plot 2n input terms as points 

according to Hamming distances among them as shown in Figure 3. The plot 

is made so that each point has n neighboring points at the Hamming dis

tance of 1 in a symmetric position. If the true terms of a Boolean func

tion are marked with heavy dots, it will be easy to see if there is an 

isolated true term. For example, it will be seen from Figure 3(b) that 

f(0,l,2,3,5) might be a threshold function, since there is no isolated 

true term. From Figure 3(c) one can see that f(0,l,5,6) is definitely not 

a threshold function, because the true term 6 is isolated. 
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III. LEARNING IN A SINGLE THRESHOLD ELEMENT 

A. Learning Procedure 

An n-input single-output variable-parameter network consisting of a 

single threshold element is considered in this chapter. The element is 

shown in Figure 4. When a set of n inputs and the desired output are 

given, it is quite easy to adjust the weights (including the threshold) 

so that the output becomes equal to the desired output. But this set of 

weights may not be adequate for another set of inputs and the weights may 

have to be changed again. This in turn may result that the changed 

weights no longer produce the desired output for the former or other sets 

of inputs. For a complete learning there must be a guarantee that the 

iterative process of weight changes makes the weights converge in a finite 

length sequence into a set of weights which produces the desired outputs 

for all sets of inputs. 

A learning procedure with such guarantee of convergence was used by 

F. Rosenblatt (l) in the perceptron system and later by others (2,3). A 

similar procedure will be adopted in this paper. Since a single threshold 

element is to be used, only threshold functions will be considered in this 

chapter. 

Now define z to be the output of a threshold element and z* to be the 

desired output for an input X .= (xq,x^,...,x ). 

Learning procedure (i) for a single element 

1. Initially the values of weights w^ are arbitrary. 

2. Each of 2n possible input combinations X and the corresponding 

desired output z* is presented in an arbitrary (ordered or random) sequence 
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as many times as necessary for convergence. 

3. Whenever z=z* for an X, the network proceeds to receive the next 

input combination. No weight change occurs. 

4. When z#z*, all the weights are changed "by the amount AW, where 

AW=z*X or Aw^=z*x^, i=0,l,2, ,n. The weight change is repeated until 

z=z* is obtained. Then the network is ready to receive the next input 

combination. 

5. When z=z* is obtained for all possible X's, the learning process 

is complete and no further change occurs. 

A proof of convergence for this process is discussed by Rosenblatt (l) 

and others (2,3)• The most lucid exposition may be the proof from a geomet

rical point of view by W. C. Ridgway III (3). It is shown that : 

(a) In the n+1 dimensional weight space, there is. a subspace where 

any point or a set of weights in the subspace can realize a given threshold 

function. An example has been shown in Chapter II. 

(b) The weight point or vector W moves from one side of an input plane 

(for which it is adapted) to the other side along a normal to the plane, 

because AW=z*X=+X and the input vector X is normal to the plane as noted 

in Chapter II. 

(c) As a result of a weight change, the distance between the weight 

point and a certain ideal weight point in the subspace is reduced. This 

will be seen from the fact that the distance is smaller after adaptation 

when the weight point is in the same side of the plane as the ideal point 

than before adaptation when the two points are in the opposite sides of 

the plane, as long as the point moves normal to the plane and the ideal 

point is not too close to the plane. 
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( d) The distance decreases until the actual weight point falls in the 

subspace of weights that give correct response and at this point the learn

ing is complete. 

It is assumed in the above procedure that each weight w^ is changed 

by a unit amount or Aw.=z*x.=+1 since z*=+l and x.=+1. Actually Aw. may 
l l — — l — l 

be +d, where d is a constant, but since w. is the sum of each such Aw., 
— ' l l ' 

the constant d is merely a scale factor if initially w^=0. So long as 

w^=0 is used as the initial condition, no generality is lost by assuming 

d=l. Mow that d=l, each w^ takes on only integer values. It is not a 

continuous quantity. However it is also possible to take d arbitrarily 

small and make the weight function behave as though it were continuous. 

Henceforth it will be treated as a continuous quantity. 

Let the entire step in step It be called an adaptation. The follow

ing notation is useful in describing the learning process. 

s ; the number of adaptations 

t; the number of weight changes. Since more than one weight 

change may be necessary during an adaptation, t is greater 

than s in general, or t >_ s 

n; the number of inputs 

X(s)=(xg(s),x^(s),...,x (s)); the input vector at s-th adapta

tion. The set X(l),X(2),... does not include such X's for 

which adaptation does not occur. 

z*(s); the desired output for X(s). 

W(t)=(wQ(t) ,w.j (t ),... »wn(t ) ) ; the weight vector after t-th 

weight change. W(t-l) is the weight vector before t-th 

weight change. W(0) is the initial value of W(t). 
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L(t) = | W(t) | = JW(t) 'W(t) = J T. the length of a 
i=0 

weight vector after t-th weight change. 

AW(s)=z*(s)x(s); the correction vector during s-th adaptation. 

R(s,t)=W(t)»X( s); the reference level (or signal) for X(s) 

after t-th weight change. 

z(s,t); the output for X(s) after t-th weight change. 

z(s,t)=+l when R(s,t) _> 0 and z(s,t)=-l when R(s,t) < 0. 

Now before t-th weight change takes place for X(s), the following 

condition must exist. 

z(t-l)=-l or W(t-l)«X(s) < 0 when z*(s)=+l (l) 

z(t-l)=+l or W(t-l)«X(s) >_ 0 when z*(s)=-l (2) 

In either case, 

z*(s)W(t-l).X(s) < 0 . (3) 

After t-th weight change, 

¥(t)=W(t-l)+AW(s) (4) 

where 

AW(s)=z*( s)x(s) (5) 

Next suppose that k weight changes have been made for the same X(s), 

then ¥(t+k-l)=W(t-1)+k AW(s) 

and W(t+k-l)»X(s) = ¥(t-l)»X(s)+kAW(s)*X(s) 

= W(t-l)*x(s)+kz*(s)|x(s)|2 

= W(t-l)*X(s)+k(n+l)z*(s) 

p ^ p 
Here the relation |X(s)| =X(s)»X(s) = I x. =n+l is used. 

i=0 1 

Ifhen z*(s)=+l and if k >_ -(VJ(t-l) »X(s) )/(n+l), then VJ(t+k-l) «X( s ) j> 0 

- - or z(t+k-l)=+l. 
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When z*(s)=-l and if k > (W(t-l)*X(s) )/(n+l), then W( t+k-l)*X(s) < 0 

or z(t+k-l)=-l. 

In either case, z(t+k-l)=z*(s) is obtained and 

z*(s)W(t+k-l)*X(s) >_ 0. (6) 

Thus the desired output is obtained as a result of k weight changes if k 

is sufficiently large. Actually k is taken as the minimum integer satisfy

ing. the above condition. When learning is complete at t=N after M adapta

tions 9 then from Equation 6, 

z*(s)W(N)«X(s) ̂  0 for all X(s), s=l,2,3,... ,M. (7) 

Theorem U: l) The reference level R(s,t) increases or decreases by the 

amount n+1 as a result of a weight change. Let AR(s,t)=W(t)»X(s)-W(t-l)-X(s), 

then 

AR(s,t)=+(n+l) (t >_ s) 

2) The magnitude of R(s,t) does not exceed n+1, or 

-(n+l) <_ R(s,t) < n+1 (t _> s) 

Proof: l) Since AF;( s ,t )=W(t ) »X(s )-W( t-l) *X( s)=AW( s ) »X( s), it follows from 

Equation 5 that AR(s ,t)=z*(s ) |X(s ) | 2=(n+l)z*(s )=j^(n+l). 

2) Multiplying both sides of Equation 4 by X(s), one obtains 

W(t)*X(s)=W(t-l)»X(s)+z*(s)|x(s)|2 

=W(t-l)'X(s)+(n+l)z*(s). 

When z*(s)=+l, then W(t-l)*X(s) < 0 by Equation 1 and 

R( s,t)=VJ(t) *X(s) < n+1 

When z*(s)=-l, then W(t-l)*X(s) >_ 0 by Equation 2 and 

R( S ,t)=W(t ) *X(s ) _> -(n+l). 

Putting the two cases together gives 

-(n+l) < R(s,t) < n+1 Q.E.D. 
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Theorem 5: If initially L(0)=0, then 

L(t)=|w(t)|^ j n+1 J t~ 
Further, if learning is complete at t=N, then 

J a(H)" JT< L(K) <. Jîî+Ï /IT, 

where a(N)=min z*(s )X(s ) »W(u). 

Proof: Consider the difference |¥(t)|2 - |w(t-l)|2. 

If Equation 4 is substituted into W(t), 

|w(t)|2 - |W(t-l)|2 = |w(t-l)+A¥(s)|2 - |W(t-l)|2 

= 2¥(t-l) • A¥( s ) + | A¥( s ) I 2 

= 2z*(s)W(t-l)«X(s)+|AW(s)[2 

The first term is non-positive by Equation 3 and |AW(s)|2 = |z*(s)|2|x(s)|2 

=n+l. Therefore |¥( t ) | 2 - |V/(t-l) |2 <_ n+1 

The summation in both sides over t from 1 to t yields 

L(t)2-L(0)2 = 1W(t)|2 - |¥(0)|2 ̂  (n+l)t 

Since L(0) = 0, L(t) <_ J n+1 J t 

Now suppose that ¥(N) is obtained after M adaptations. Let kg weight 

changes be made during the s-th adaptation, s=l,2,...,M. Then 

M M 
¥(N) = E k AW(s) = E k z*(s)X(s) 

s=l S s=l S 

and 

P M 
¥(ïï)'¥(N)=|w(N)| = L(N) = E k z*(s)X(s)-W(N) 

s=l 5 

Let a(N)=min z*(s)x(s)*W(N)=min Z*(S)R(S,N). By Equation 7, a(ïï) ̂  0. 

Since N is the total number of weight changes, it is the sum of the numbers 
M 

of weight changes made during each adaptation, namely, N = E k . Then 
? M I s=l 5 

I W(N) | > a(H) E k =a(N)ieN or L(ll) < J a(N) IN. 
s=l S s 
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Together with the previous result, 

J&w /IT< L(ïï) <_ J n+1 JIT. Q.E.D. 

B. Computer Simulation 

The learning process of a threshold element with up to five inputs 

was simulated on the Cyclone Digital Computer with the purpose of a 

further analysis and a comparison with the theory. The simulation program 

was written under the assumptions : 

1. The truth table, a set of 2n input combinations and the corres

ponding desired outputs, of a threshold function is repeatedly given. 

2. Each time it is given, the inputs are presented in the same fixed 

order; 0,1,2,3,...,2n-l. Thus when the truth table has been given m times, 

each input combination has been presented exactly m times. 

3. All weights are zero at the start, or w^=0, i=0,l,2,,..,n. 

The flow diagram of the simulation program is shown on the next page. 

All representative functions of up to five variables were tested and con

firmed as being realizable after a reasonable number of weight changes. 

As Table 1 shows, there are 3 representative functions of three variables, 

9 such functions of four variables and 48 functions of five variables. 

The optimum structures of these functions have been calculated by S. Muroga 

(4) and others as noted in Chapter II. The structures obtained by learning 

are compared with the optimum structures in Table 2 for all 9 four-variable 

functions. Four variables are shown as A,B,C and D. The true terms are 

listed as integers as defined in the previous chapter. The first number 

in a structure is the weight for A and the second for 3, etc. The last 

number is the threshold T, which is -w^. The N is the total number of 



26 

2n X's and z*s are given 

All 

o
 n •

H > 

\ ' 
t=l, S=l 

Take X(s) and z*( s)< 

I 
91 Calculate W(t-l).X(s) 

I 
If W(t-l)«X(s) >_ 0, then 
z(s%t-l)=+l, otherwise -1 

I 

AW( s )+W(t-l)—»W(t-l) 

s+1 >s 

no 

If z(s,t-l)=z*(s) ? M 
yes 

no 

t 
Calculate AW(s)=z*(s)X(s) 

z=z* for all X ? —I 

\ 

yes 
(completed) 

r 
Print the result 

End or next function 

Diagram 1. Flow diagram of the simulation program 

weight changes and M is the total number of truth table presentations. For 

example, IT weight changes were necessary while the truth table was shown 

4 times in order for the element to learn the function f4. Somewhat dif

ferent figures may have been obtained if a different initial condition and 

a different input sequence were used. 

It is interesting to note that optimum structures were obtained by 

learning for some functions in spite of the fact that no restriction was 

imposed on the size of the weight. This implies that at least for these 

examples the learning procedure has an optimizing tendency. 

For 3 threshold functions of three variables which are realizable 
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Table 2. Comparison of structures produced by learning with optimum 
structures 

Functions True 
terms 

Optimum 
structures 

Learned 
structures 

N M 

fl=ABCD 0 1 1 1 i;3 the same 
as optimum 

3 1 

f2=AB (C+D) 012 2 2 1 i;3 3 3 1 1; 5 13 5 

f3=A(BC+CD+DB) 0124 2 1 1 1;2 3 1 1 1; 1 5 2 

f4=A(B+CD) 01234 3 2 1 1;2 5 3 1 1; 3 17 4 

f5=A(BC+CD+D3)+BCD 01248 1 1 1 111 . the same 1 l 

f6=A(B+CD)+BCD 012348 2 2 1 1—
1 

H
 as optimum 

4 4 2 2; 2a 12 4 

f7=A(B+C+D) 0123456 3 1 1 the same 7 2 

f8=A(B+C)+BCD 0123458 3 2 2 1;1 
as optimum 
5 3 3 1; 1 13 4 

f9=A(B+C+D)+BCD 01234568 2 1 1 i;o 4 2 2 2; 0a 8 4 

aAlso optimum except for a scale factor 

with a 3-input element, 5 weight changes were enough and the truth table 

was necessary to be shown only once even in the most difficult case. 

In the case of 48 five-variable functions which were realized with 

a 5-input element, the most difficult function required 70 weight changes 

with 22 presentations of the truth table. Optimum structures were ob

tained in 20 functions. The maximum weight was 10. 

An example of how each weight changes as learning goes on will be 

seen in Figure 5. Three of six weights (one of which is the threshold) 

of a 5-variable function f(0,1,2,3,4,5,6,7,8,9,10,16,17) are shown. The 

function is the most difficult function in the sense that it required the 

most weight changes. It is very interesting to observe that each weight 
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seems to steadily proceed to its goal, the final weight value, in a 

zigzag way, repeating "increase", "no too much, decrease", "no too much, 

increase" and so on. In Figure 6, the change of the length of a weight 

vector for the same function is shown along with the theoretical upper 

bound obtained from Theorem 5. Since n=5, the upper bound is In+1 
'i 

J~t= [~6~J~t=2.kT J~t~. As it turned out, L(t)=1.8U J~t is a very good approx

imation in this case. The second part of the same theorem gives /a(ll) 

JIT < L(l'0 <_ J~6~JIT. It turned out that a(H)=min z*( s )X( s) *W(N)=2 with 

N=70. L(N)= J~2x70 is shown as a point in the figure. The curve shorn 

by a dotted line was drawn according, to L(t )= as if this were a 

theoretical lower bound, though it is not except for t=!I. On the other 

hand, from Ja(N) J~!F < L(N) <_ J~6~J~N~, one can obtain the relation 

L(N)2/6 £ N < L(N)2/a(N) 

Then it is possible to plot the final length of weight vectors versus the 

total number of weight changes required to complete learning and to compare 

it with the above theoretical limits. Such a plot is shown in Figure 7 for 

all 48 threshold functions of five variables. The upper limit is shown as 

1 2 
N = — L(N) assuming a(N)=2 for all the functions. 

So far the initial condition is assumed to be zero for all the weights. 

But actually one may assume any initial condition. ' Generally a favorable 

initial condition quickens the learning process considerably. In particu

lar if the initial values of weights happen to be such that the function 

is already realizable, then there is no need of adaptation. On the other 

hand it was found that even an adverse initial condition is rapidly 

improved during first few adaptations. An example follows. The function 



Figure 6. Change of the length of the weight vector of the 
most difficult 5-variable threshold function 
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in question is the 5-variable function termed the most difficult. 

(1) Standard initial condition; all w=0. 

Learned structure=(10,8,6,4,2;4) N=70, M=l8 

(2) Favorable initial condition; all w=10. 

Learned structured 15,13,9,7,3;5) N=15, M=2 

(3) Adverse initial condition; all w=-10. 

Learned structure=(l0,8,6,4,2;4) N=82, M=l6 

Of 82 weight changes in the case 3), 7,4,2 and 5 changes occurred during 

the first, second, third and fourth adaptations, respectively, and hence 

less presentations (M) of the truth table were required than in the case 1). 
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IV. MULTI-ELEMENT UNIVERSAL NETWORKS 

À binary network with n inputs and a single output is said to be 

universal, if any of 2n possible Boolean functions of n inputs is realiz

able with the network. As noted earlier, not all Boolean functions are 

realizable with a single threshold element. But it is possible to build 

a universal network with a number of threshold elements in cascade. In 

addition, if an adequate learning procedure is established, the network 

can become a universal learning network. There are several factors to be 

considered in building such a network. 

1. Whether or not exactly identical elements should be used in all 

locations. 

2. Whether or not fixed weight elements may be used together with 

adaptive threshold elements, 

3. Whether or not the inputs to the network are to be restricted to 

the first stage or permitted as inputs to later stages. 

4. How the interconnection of elements should be made. 

The choice of a particular network depends on two generally conflict

ing factors. For economy a network with fewer elements and with fewer 

adjustable parameters is desirable. For high learning efficiency, however, 

some redundancy is indispensable. In this chapter various universal net

works with varying degrees of redundancy will be considered and compared. 

First, the minimum number of threshold elements required in a uni

versal network is considered. In general the number H(n) of n-variable 
2 

threshold functions is known to be less than 2n /n! (?), or 
2 

N(n) < 2n /n! for n=2,3,4... . When p identical elements, each with 
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n inputs, are combined, the number of all possible functions realizable 

with the combination is at most H(n)^. For such a p-element network to 

2n 
be universal, this number must be equal to or greater than 2 , or 

N(n)^ _> 22 . Combining the two relations, one obtains (2n +̂ /n!)'P >_ 22 

or p > 2n/(n2+l-log0n!). The values of minimum p which satisfies this 

relation are shown in Table 3 for small n. This lower bound of the number 

of elements is better than those obtained elsewhere (3,7)• As n becomes 

larger, the lower bound increases very rapidly, indicating that really 

very many elements are necessary to make a universal network. For example, 

min. p=60 for n=13 and min. p=308 for n=l6. 

To get an upper bound of p, one must be able to show that a synthesis 

is possible with a certain number of elements. An available general syn

thesis is a network whose output is an OR function of outputs of a number 

of threshold elements. It can be easily shown (4) that such a network can 

be built with 2n ^ threshold elements connected in parallel to an OR 

element having 2^~^ inputs. Thus the number 2n ^ +1 shown as max. p in 

Table 3 may be considered as an upper bound of the number of elements 

necessary for a universal network. Obviously this is one of the most 

primitive synthesis procedures. The number of elements could be consider

ably reduced by more efficient synthesis procedures. 

Table 3. The minimum and maximum numbers of threshold elements required 
in a universal network 

n 2  3  4 5 . 6  7  8  9  1 0  

min. p 1 

max. p 3 

2 

5 

2 2 3 4 6 9 13 

9 17 33 65 129 257 513 



A simple way of making a universal network is to employ 2n elements 

each with n inputs, assigning each of 2n input terms to each element and 

then to make a final output by an OR element from the outputs of those 

elements. An example of such a 3-input universal network is shown in 

Figure 8. It consists of 8 identical threshold elements with weights all 

equal to +1 or -1 and an OR element. When a set of inputs (+l) is given, 

the weighted sum of inputs exceeds a common threshold of 3 (shown in a 

circle) only in one element. Then its output is +1 but all the other out

puts are -1. If the input set is a true term, a weight of +1 is assigned 

to the +1 output but otherwise a weight of 0 is assigned to the +1 output. 

The network may be called a .truth-table-type network, since it is a direct 

realization of a truth table. If the network is to be a learning network, 

the learning procedure will simply consist of assigning a +1 or 0 value to 

each of 8 parameters. This is an example of simplified learning at the 

cost of a large number of elements. The fact that learning is trivially 

simple may deserve attention for some applications. 

Another example of a. 3-input universal network is shown in Figure 9» 

It consists of 4 AMD elements and a threshold element. By assigning appro

priate values to the weights and the threshold of the last element, any 

3-variable function is realizable with this network. The assignment can 

be done also by learning in exactly the same way as in a single element. 

It is interesting to note that the final output z is: 

z-ti if + »2x2 • v3x3 + w12V2 + w23x2x3 + »31X3Xl 

* W123X1X2X3 - 1 

z=-l if the sum is less than T. 



Figure 8. Truth-table-type network 
( 1-^=0 or +l) 

Figure 9. Nonlinear threshold element 
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Compared with a threshold element, the defining equation has additional 

"nonlinear" terms. If the entire network is regarded as a single element, 

it may he called a "nonlinear" threshold element. A generalization leads 

to the following theorem, where binary values of 0 and 1 are used in place 

of +1 and -1 for simplicity. 

Theorem 6 : Any arbitrary Boolean function is realizable with a single 

nonlinear threshold element whose output z is defined by the following 

nonlinear equation. 

2=1 *en + »2y2 Vn + W2 +-"t Wly2y3 

"••"+ Wft-'o i T 

z=0 when the sum is less than T. 

Moreover a set of such weights w\'s and a threshold T can be calculated in 

a straightforward way. 

Proof: A Boolean function can be written as a logical sum of true terms 

with each term being expressed as a logical product of variables or their 

complements. If the complement of a variable y^ is written as 1-y^, a 

function can be rewritten as an algebraic equation (8). A true term has a 

form like y^y^...y^...y^. Substituting y^ by 1-y^, one can rewrite the 

term as (l-y^y^... (l-y^)., .y^. The sum of such terms has the form of the 

above defining equation and it has a value of +1 for true terms and a value 

of 0 for other terms, or 

"o + Yl +""+ V. + "l2yly2 +---+ w123yly2y3 +-"+ v12-nyly2 —V1 
for true terms and the sum is 0 for other input terms. 

Thus it is always possible to determine a set of w^'s and a T by rewriting 

the logical sum of true terms with the notation 1-y^ for the complement of 

a variable Q.E.D. 
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As an example, consider a 3-variable function 

f (0,3,5) = 71y2~3 + 'y1J273 + yiy2y3 * 

Substituting y^ with l-y\, one obtains : 

f(0,3,5)=(l-y1)(1-y2)(l-y^)+(l-y1)y2y3+yly3 1̂-y2 ̂ 

=l-yl-y2-y3 + rfg + ^2y3 + Sy^i - 3y^y^ . 

Thus wQ=l or T=1-WQ=0, W^=w^=w^=-l, w12=1' V23=W31=2 and W123= 

The question why a threshold element is not universal may be answered 

by the fact that nonlinear terms are missing from the defining equation of 

a threshold element. In this sense a threshold element should be called a 

"linear" threshold element. While a linear threshold element has n+1 para

meters , a nonlinear threshold element has 2n parameters. Though a non

linear threshold element has a complicated structure as an element, the 

number 2n of its parameters is small compared with those of other universal 

networks at least for small n as will be shown later in this chapter. 

Moreover learning can be simply done as in a single threshold element, the 

only difference being the number of the parameters. The convergence of 

the learning process is guaranteed because a set of weights and a threshold 

is known to exist by Theorem 6. If the construction of a nonlinear 

threshold element is physically feasible with a reasonable effort, the 

element will deserve serious attention because of its tremendous versatility 

and high learning efficiency due to a small number of parameters and simple 

learning. 

A standard way of synthesizing a universal network is to combine a 

number of elements. Four multi-element networks of threshold elements as 

shown in Figure 10 are considered in the rest of this chapter and in the 



Figure 10. Universal networks of threshold elements 
(The number in a circle shows the number 
of parameters) 
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next chapter. Let the elements in the first stages be called input elements 

and those in the second stages be called output elements. 

(a) OR network The output element is an OR element. The configura

tion is the simplest. The total number of elements is 2n ^"+1 and the number 

of parameters is 2n x (n+l). Both are very large. 

(b) Majority network The output element is a Majority element whose 

output is determined by the majority of its inputs. Less elements are re

quired than in (a). If there are p elements in the network, the number of 

parameters is (p-l) x (n+l), where p includes the output element. 

(c) Symmetric network.....All elements including the output element 

are identical and adjustable. Thus adaptive elements are distributed in 

two layers, while in (a) and (b) they are only in a single layer. If there 

are p elements, the number of parameters is p(n+l). 

(d) Asymmetric network The output element is also adaptive but it 

has some extra inputs. Thus all elements are not exactly identical. More

over it is assumed that all inputs are available not only in the first 

stage but also in the second stage. Unless the inputs are slow in varia

tion, delay elements may be needed for the inputs to the output element. 

If the network has p elements in 2 layers, the number of parameters is 

p(n+l)+(p-l). It is smaller than those of the other three networks at 

least for small n. 

Though Figure 10 shows 1+-input networks, the extension to networks 

with more than 1+ inputs would be obvious. In (a) and (b), the networks 

would be extended only "vertically" as n increases. They would be 

expanded both "vertically" and "horizontally" in (c) and (d). 

Table 1+ compares the numbers of parameters of a threshold element, 
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of a nonlinear threshold element and of the four networks. The number in 

parenthesis shows the number of elements in a network. The numbers of 

necessary elements in (b) and (c) are obtained as a result of a computer 

simulation as will be explained later. The number of necessary elements 

in (d) is due to R. C. Minnick (6) but it was also confirmed by the 

computer simulation. The figures for n=5 in (b), (c) and (d) are those 

estimated and not confirmed. The figures in the last column show the 

lower bound of the number of necessary elements taken from Table 3. The 

lower bound of the number of parameters is shown as p(n+l) where p is the 

lower bound of the number of necessary elements. 

Table 4. Comparison of the number of parameters (and the number of 
elements) in an element and various universal networks with 
n inputs. 

n Single 
Element 

Nonlinear 
Element 

( a) (b) (c) (d) Lower 
bound 

1 2 2 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 

2 3 4 6 (3) 6 (3) 9 (3) T (2) 6 (2) 

3 4 8 16 (5) 12 (4) 16 (4) 9 (2) 8 (2) 

4 5 16 4o (9) 20 (5) 25 (5) IT (3) 10 (2) 

5 6 32 96 (IT) 30 (6)? 36 (6)? 20 (3)? 12 (2) 



V. LEARNING IN UNIVERSAL NETWORKS 

A. Learning Procedure 

Learning in multi-element networks having n inputs and a single output 

as shown in Figure 10 is considered in this chapter. Each element has n+1 

or more weights including the threshold. As in a single-element network 

the learning process is an iterative process of changing the weights so 

that a given function is realized with the network. Arbitrary Boolean 

functions, not necessarily threshold functions, are considered in this 

chapter. Since the network contains more than one element, the problem 

is in deciding in which element the weights should be changed first when 

there is a need of weight change. A reference level criterion was used to 

select an element for weight change by W. C. Ridgway III (3) in his OR and 

Majority networks similar to (a) and (b) in Figure 10. It will be shown 

that the similar criterion can be used also in the networks (c) and (d) 

in Figure 10, where adaptive elements are distributed in more than one 

layer and there are intermediate outputs which constitute inputs to the 

other adaptive elements. 

Suppose that the desired output is z*(s) = +1 for an input X(s) at 

s-th adaptation but the actual output is z(s, t-l) = -1 before t-th weight 

change. It may be reasonable to assume that the elements producing -1 

outputs are responsible for the error. This is obvious in the networks 

(a) and (b). But even in (c) and (d) the assumption is useful because it 

gives a directionality to a weight change. Under this assumption, the 

weights associated with an output element in (c) or (d) tend to become 

positive. Now that the output is in error, k weight changes should be 



made in at least one of such elements so that its output is reversed to 

become +1. For efficient learning it is desirable to make k as small as 

possible. If the element which has the smallest reference level with a 

minus sign (the sign opposite to that of the desired output) or 

R(s,t-l)=W(t-l).X(s) < 0 is taken, then the level will be reversed or 

R( S,t+k-l)=W(t+k-l).X(s)=R(S,t-l)+k(n+l) >_ 0 with the smallest k. Simi

larly when z*(s) = -1 but z(s,t-l) = +1, the element which has zero or 

the smallest reference level with a plus sign (the sign opposite to that of 

the desired output) is to be selected. Since the least weight change will 

be made, its effect will be the least for those input combinations that 

the network has learned to correctly respond to. 

A limiting requirement will be imposed on the number of elements in a 

learning network. If it is known that a network of p elements can realize 

a particular Boolean function but any network of p-1 elements can not 

realize that function, then the requirement is that the function must 

be realizable by learning in a network of just p elements as well as in a 

network of more elements. Such a p-element learning network has the mini

mum redundancy in terms of the number of elements. But it has redundancy 

in the form of weight values. Generally learning would be easier in a net

work of more than p-elements than in a network of just p elements because 

of greater redundancy. 

As it turned out, the following learning procedure which employs the 

reference level criterion is effective for all three types of networks 

(a), (b) and (d) with the minimum number of necessary elements as consider

ed in the previous chapter. 
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Learning procedure (ii) for (a), ("b) and (d) 

1. Initially the values of weights are all zero. 

2. Each of 2n possible input combinations X's and corresponding 

desired output z* is presented in a random or non-cyclic sequence as 

many times as necessary for convergence. 

3. When the output z is z=z* for an X, no change occurs and the 

network takes the next input combination. 

4. When zfz*, the element which has the smallest reference level 

with the sign opposite to that of z* (zero is regarded as having a plus 

sign) is selected, and its weights are changed by the amount AW, where 

AW=z*X or Av^=z*x^, for i=0,1,2,...,n. The weight change is repeated 

until the output of that element is reversed. As a result, if z=z* is 

obtained, the network proceeds to take the next inputs. But if still 

z^z*, then the entire step is repeated for the other elements. 

5. In step 4 above, if two or more elements have the same smallest 

reference level, one of them must be selected. It affects the learning 

process how the selection is made in such a case. 

6. When z=z* is obtained for all X's, the learning process is 

complete and no further change of weights occurs. 

A modification is necessary for a symmetric network like (a), where 

there is more than one layer of adaptive elements. If the above procedure 

is followed as it is, convergence cannot always be guaranteed for the fol

lowing reason. Consider two different inputs X^ and X^. Suppose that 

z* = -1 for X^ and z* = +1 for X^ and all intermediate outputs happen to 

be -1 for both X^ and Xg. Now if z = +1 for X^, then the weights of the 



output element must be changed because all intermediate outputs are -1 

and have the same sign as z*. Next if z = -1 for and the reference 

level of the output element happens to be the smallest, then again the 

weights of the output element must be changed. If both sets of weights 

make correct outputs for all the other input combinations, then the out

puts of the input elements become immune to inputs and they will not have 

a chance to be adapted and the same weight change will be repeated for 

the output element. This can be avoided by establishing a hierarchy for 

element selection. The following modified learning procedure is used for 

the network with multi-layers of adaptive elements like (c). 

Learning procedure (iii) for (c) 

1. When z^z*, one of the input elements which has the smallest 

reference level with the sign opposite to z* is selected and its weights 

are changed so that the output of that element is reversed. As a result, 

if z=z* is obtained, the network proceeds to receive the next inputs. 

But if still zfz*, then the weights of the output element are modified 

so that z=z* is obtained. 

2. Other details are the same as in Learning Procedure (ii). In 

case there are more layers, the change is to be made first in the first 

layer, next in the second layer, then in the third layer and so on. 

The initial condition for weight values was arbitrary in the single 

element case but it cannot be so in a multi-element network in general. 

For example, if the threshold of an element in a p-element network is 

very large in the beginning, its reference level will never be the small

est of all the elements. Its weights including the threshold will never 
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have a chance to be changed. Thus in effect the network has only p-1 

elements which cannot realize the function. In general, a zero initial 

condition will be the best since the reference level is discriminated at 

zero. Depending upon the function in question, one may assume other 

initial conditions. 

The input sequence was also arbitrary in a single element network. 

It may be cyclic as 0,1,2,...,2n-l; 0,1,2,...,2n-l; 0,... . But if inputs 

are given in such a sequence to a multi-element network, it is probable 

that the same sequence of weight changes covering several elements 

repeats itself and the learning process never converges. Therefore the 

inputs must be given in such a sequence that never invokes any cyclic 

weight changes. Of course, inputs may be given in a cyclic sequence for 

some functions, 

When two or more elements have the same reference level, one of them 

may be selected at random or in some deterministic way. As will be dis

cussed later, the total number of weight changes and the structure of 

elements obtained by learning will depend on this selection. This problem, 

however, will not be so significant in actual electronic circuits, because 

two elements will never have exactly the same reference level due to the 

presence of noise and the selection will in effect be made at random. In 

a computer simulation it must be taken into account. 

A rigorous mathematical proof of convergence of these learning pro

cesses is not established in this thesis, though it is conjectured that a 

finite length convergence process exists, if cyclic weight changes do not 

occur. The requirement of a zero initial condition and a random input 

sequence is a necessary condition for convergence. One resort of the 
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proof is to show by a computer simulation that the process does converge. 

The result of such a computer simulation will be discussed later in this 

chapter. 

Now consider a p-element network and a Boolean function realizable 

with it. One can imagine p weight vectors associated with p elements in 

the weight space. One can also imagine that there are p "ideal" weight 

vectors (though they are not unique) whose combination can realize the 

function. The combination depends on the configuration of elements in 

the network. Each ideal weight vector W* lies in a subspace corresponding 

to a threshold function. As learning goes on, each weight vector W start

ing from the origin moves gradually toward a subspace where an ideal 

weight vector lies. 

As an example, consider a 2-variable function f(0,3) which is +1 for 

(+l,+l) and (-1,-1) inputs but -1 for (+1,-1) and (-l,+l) inputs. The 

function is realizable with a network of two adaptive threshold elements 

connected to an OR output element. Let two weight vectors be and 

Suppose that the inputs are given in the sequence; 2,1,3,0,1,2,..., where 

0=(+l,+l), l=(+l,-l), 2=(-l,+l) and 3=(-l,-l). The movement of W and W 

can be considered in a 3-dimensional space as shown in Figure 11, where a 

projection to a 2-dimensional W^-W^ plane was made. The four input planes 

are schematically shown. It will be seen that W and \1 coincided with 

and Wg* after 6 adaptations. At points a, b and c, and had the 

same reference level as a simple calculation would reveal, and one of them 

was chosen at random in each case. If a different input sequence ; 0,3,..., 

had been used instead, then learning would have been complete after only 

two weight changes. In both cases the final structures of the two vectors 
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Figure 11. Movement of two weight vectors 



are equal and they are W.j=(wq,w ,w ) = (-1,-1,-1) and Wg=(-l,+l,+l). 

Actually the total number of weight changes as well as the final values 

of the weights may depend on three factors; l) initial condition, if a 

condition other than zero is used, 2) input sequence, and 3) choice of 

an element, when two or more elements have the same reference level. As 

the above example suggests, there will be some optimum conditions, or 

best strategies, of the three factors which make the number of total 

weight changes minimum. 

B. Computer Simulation 

To study the convergence property of this learning process, all 

representative functions of Boolean classes of three and four variables 

were tested for convergence by a computer simulation. 

As seen from Table 1 there are 10 representative functions (one from 

each class) of 3 variables, of which only 3 are realizable with a single 

threshold element and the other J require more than one element. As for 

4-variable functions, there are 208 representative functions, of which 

only 9 are realizable with a single element and the other 199 require more 

than one element, When there are 5 or more variables, the number of the 

representative functions is quite large (of the order of 10^ for 5 inputs). 

It requires an unreasonable amount of computer time to simulate the learn

ing process of all of them. 

Ordinarily it is not easy to find appropriate weight values which 

realize a particular function by a computational method. The computer 

simulation provides a method of determining such weights, though the set 

of weights might not be optimum in the sense that the absolute sum of 
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weights should he minimum. 

The flow diagram of the program used for the network (d) is shown in 

Diagram 2 as an example. 

2n X's and 2n z*'s 
are given 

All w=0 

I 

(1) depends on the input sequence 

(2) depends on element choice when 
two or more R's are equal 

t=i. s=i| 

I 
T a . k e X f s l  a n d  s  ( l )  

i 
Calculate R(s,t~l)=W(t~l)*X(s) 
in all elements and determine 
z(s,t-l) 

js+1 

yes 
llf z(s,t-l)=z*(s) I ? I 

•^no 
If z*(s)=+l ?1 no (z*(s)=-l) 

no 

?If z=z* for all X 

yes 

Compare all R(s,t-l) <0 
and select the smallest 
R.(s.t-l) 
J 

yes 

Completed 

Compare all R(s,t-l) > 0 

and select the smallest 
R.(s,t-1) 

Calculate AW (s) = z*(s)X(s)^_ 

W ( t-1 )+AW. ( s ) >W ( t-l ) 
v J 

1 * 1 
It—^ t-l I 

Diagram 2. Flow diagram of the simulation program for the universal 
learning network (d) 

Four programs corresponding to the four networks in Figure 10 were 

written under the assumptions : 

1. The truth table of a Boolean function, which is a set of 2n input 

combinations and the corresponding desired outputs, is repeatedly given. 
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2. Each time it is given, the input combinations are presented in a 

different order so that the whole sequence is not cyclic. But when the 

truth table has been presented m times, each input combination has been 

given exactly m times. An example is: 0,1,2,3,4,5,6,7;0,2,4,5,1,3,5>7; 

1,4,7,2,5,0,3,6;... etc. in a 3-input case. For some functions a different 

input sequence was used for comparison. 

3. All weights are zero at the start. 

The computer simulation confirmed that the learning process does con

verge in a reasonable number of steps for all the representative functions. 

The results are summarized in Table 5. The table shows the maximum, mini

mum and average total numbers of weight changes (M) and those of truth 

table presentations (M). The maximum value of weights assumed by elements 

is also shown. • The average was taken over all 10 representative functions 

of 3-variables or over all 208 representative functions of 4 variables. 

When different input sequences or different choice of elements were tested, 

the smallest values of N and M were taken. The four-input OR network was 

not tested because it consists of 9 elements with a total of 40 parameters 

and it is considered too redundant. 

The total number of weight changes may be considered to be a measure 

of learning efficiency and the number of parameters to be a measure of 

redundancy. Table 5 suggests : 

1= When there is too much redundancy as in the OR network or in the 

symmetric network, learning efficiency is low. 

2. When there is too little redundancy as in the Asymmetric network, 

learning efficiency is also low. 

3. There is some optimum balance between the two factors as in the 
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Table 5. Results of computer simulation 

(a) OR (b) Majority (c) Symmetric (d) Asymmetric 
M M N M N M N M 

3-input 5 elb 
k el k el 2 el 

networks 16 pa 12 pa 16 pa 9 pa 

Maximum 52 7 18 U bl 8 52 10 

Minimum 5 2 9 1 8 2 7 1 

Average 18 5 12 2 21 6 22 h 

Max. w k k k k 

U-input 9 el 5 el 5 el 3 el 
networks hO pa 20 pa 25 pa 17 pa 

Maximum — 99 17 198 2k • 135 22 
Minimum — 13 2 25 h 11 2 

Average — 37 7 92 12 55 10 

Max. w -— 7 6 10 

ael = The number of elements 

^pa = The number of parameters 

Majority network. 

In the actual choice of a network, other factors such as economy and 

availability of inputs must be taken into account, A trade-off may have 

to be made somewhere. The symmetric network seems to have no advantage 

over the Majority network but it is of interest as an example of a network 

with multi-layers of exactly identical adaptive elements. 

As for the Asymmetric network, its structure obtained as a result of 

learning is directly comparable with the structure listed in the table of 

R. C. Minnick (6), which was obtained by a linear programming technique. 



The table shows the optimum structures of all 221 representative functions 

of up to four variables. As an example, consider f90(0,1,2,5,14,15) which 

is realizable with a 4-input network as shown in Figure 10(d). Two dif

ferent structures were obtained by learning with a random and a determinis

tic choices of elements when two or more elements had the same reference 

level. The deterministic choice means a selection of an element with the 

lowest number among those elements, assuming that all elements in the net

work are numbered in some fashion. The two structures l) and 2) obtained 

by learning are compared with the optimum structure (Opt.) taken from 

R. C. Minnick's table. 

(wn'v12'v13,wlli!Tl' (w31,w32,w33,w3liiT3;wl,ï2) 

Opt. ( ~1, -1, «1, 0;+2) ( 0, -1, 0, -l;+l) ( +2, +2, +1, +l;-2;+U,+2) 

(1) ( +2, 0, -6, -2;-2) ( -2, -2, -2, 0;+6) ( +2, +2, +U, +2; 0;+4,+6) 

(2) ( -2, +4, -2, 0;-2) ( -1, -5, -1, -3;+3) ( +5, +1, +3, +l;+3;+7,+7) 

The first two sets of weights are those of two input elements. The third 

set of weights is those of the output element. Its last two weights are 

those associated with the outputs from the two input elements. For some 

functions the choice made in the equal reference level case has a signifi

cant effect also on both the total number of weight changes and the number 

of truth table presentations as well as on the final values of weights. 

Sometimes a purely random choice may lead to more rapid convergence or a 

more optimum representation. For example, 

Random Choice 

f8l=f(0,1,2,5,6,12) N= 39, M= 6 

fl59=f(0,1,2,7,11,12,15) N=150, M=19 

Deterministic Choice 

N=6l, M=9 

N=50, M=8 
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This suggests that there are many cases when two or more elements come to 

have the same reference level in the course of learning and the choice of 

an element in such cases can greatly affect the entire learning process. 
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VI. LEARNING IN A MULTI-OUTPUT NETWORK 

It may be expected that a learning procedure similar to that for a 

single-output network can be applied for a multi-output network. If a 

multi-output network has no adjustable parameters which are shared in 

common by more than one output element, the network can be divided into 

single-output networks in parallel. In this case, the network is a com

bination of essentially single-output networks and the learning procedure 

used in a single-output network is readily applicable. All multi-output 

learning networks so far used primarily for pattern recognition are this 

type of networks (1,3). 

On the other hand, if a multi-output network has common adjustable 

parameters shared by more than one output element, the network may be 

called non-separable in the sense that it is not possible to divide the 

network into single-output networks in parallel. A new problem in such a 

non-separable network is the fact that a weight change made to alter only 

certain outputs can affect the other outputs. A weight change favorable 

to one output element may not be so for the other output elements. 

Actually it can be undesirable for them in some cases. The learning 

procedure must provide means to avoid this conflict of interest. 

Though any complicated learning procedure is conceivable, a simple 

procedure is desirable. The following learning procedure can be applied 

for a 3-input 2-output network as shown in Figure 12(a). It is based on 

hierarchy among elements. All five elements in the network are assumed 

to be adaptive. 



Figure 12. Two full adders 
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Learning Procedure (iv) for a multi-output network 

1. When one or both outputs are in error, first an input element 

having the smallest absolute reference level is selected and its weights 

are changed so that the output of that element is reversed. As a result, 

if both outputs become correct, the network proceeds to take the next 

inputs. 

2. If one or both outputs are still in error, then the weights of 

the output elements in error are changed so that both outputs become 

correct. 

3. Other details are the same as in Learning Procedure (ii). 

It is convenient to consider the learning procedure in terms of an 

error state transition chart. Such a chart is shown below, where 

(Ea,Eb)=(l,l) is the state where both Za 
and z, are in error, 

b 

=(1,0) is the state where only 2 
a 
is in error. 

=(0,1) is the state where only zb is in error. 

=(0,0) is the state where both z 
a 
and z, are correct, 

b 

(1,1) 

A solid line shows a transition due to step 1 and a dotted line shows a 

transition due to step 2, The transitions causing no state changes, which 

are probable under step 1, are not shown. By the above learning procedure, 

all error states finally settle to the (0,0) state. The conflict of 
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interest is automatically avoided. 

The convergence of this learning process in the 3-input 2-output 

network as shewn in Figure 12(a) was tested by a computer simulation 

similar to those used in Chapter V. For comparison, consider a conven

tional full adder using Majoriy elements as shown in Figure 12(b) and a 

Boolean function combination f(1,2,4,7) for the sum function and f(3,5»6»7) 

for the carry function. The numbers in Figure 12(a) show the weight values 

obtained by learning for the function combination. The number in a circle 

( element) shows the threshold of that element, The full adder was realized 

after 101 weight changes and 12 truth table presentations. Other function 

combinations were also tested and were observed to be realizable after 

similar weight changes. 

The learning process in this 2-output network is more lengthy, or 

requires more weight changes than in those single-output networks studied 

in the previous chapters. The mathematical proof of convergence in this 

process has not been established but it is conjectured that the process 

converges in a finite number of steps provided that no cyclic changes of 

weights occur. When the network becomes larger, the learning process 

will become more lengthy. It should be noted, however, that learning 

takes place automatically as long as a truth table is repeatedly given. 

It may be expected that a prescribed function combination will eventually 

be established by learning if a sufficient time is allowed for learning. 
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VII. CONCLUSIONS 

In dealing with networks of threshold elements, the following con

clusions are established. 

1. A necessary condition for a Boolean function to be realizable 

with a single threshold element is that there be no isolated true term 

in the function. 

2. A lower bound of the number of threshold elements necessary for 

a universal network was obtained in terms of the number of inputs. 

3. Various types of universal networks consisting of threshold 

elements were compared in terms of the number of parameters. 

4. The computer .simulation of learning process in a network gives 

a method of determining appropriate weight values to realize a function. 

The analysis of the learning process has led to the following 

conclusions. 

5. The length of a weight vector changes approximately proportion

ally to /t", where t is. the number of weight changes. 

6. A nonlinear threshold element was proposed as a new element. 

Though the element may have a complicated structure, it has merits of 

tremendous versatility and easy training. 

7. Simple learning procedures suitable for multi-element networks 

were established. Necessary conditions for convergence were pointed out. 

The convergence property was confirmed by a computer simulation for net

works with small number of inputs. 

8. A hierarchy consideration is useful in a network with more than 

one layer of adaptive elements. 
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9. It was demonstrated that, though redundancy is necessary for 

learning, too much redundancy tends to lower learning efficiency. 

A 5-input threshold element, 4-input universal networks and a 3-input 

2-output network were tested for the convergence of their learning process. 

All these networks are considered physically realizable with a reasonable 

effort. The results obtained by the computer simulation of these networks 

will be useful in checking experimental data on those physical networks. 

In this thesis, universal networks were mainly considered. It was 

assumed that a complete truth table was given during learning. These are 

very severe requirements for a learning network. It is clear that, if the 

requirement of universality is dropped, the network will become simpler or 

the number of inputs may easily be increased. If a separable multi-output 

network is considered, the number of outputs may also easily be increased. 

Such a network can serve as a pattern recognition system and the same learn

ing procedure as developed in this thesis may be used. When only an incom

plete truth table is to be given, that is, particular input combinations 

never occur, the network will exhibit a generalizing property, because the 

network can respond in some way to the input combinations which were not 

given during learning period. It is also possible to investigate ternary 

logic networks by treating such absent input combinations as don't-care 

conditions. 

The fact that the initial condition cannot be arbitrary in a multi

element learning network suggests that a decay factor in each weight may 

be effective in permitting arbitrary initial conditions and also possibly 

cyclic input sequences, because the weights will never change cyclically 

for a cyclic input sequence due to the decay factor. 
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Though, in principle, the learning procedures are applicable to much 

larger networks than the networks considered in this thesis, the learning 

process will become very complicated and lengthy in such large networks. 

It may be necessary to break such a network into sub-networks and to 

supply some information concerning the intermediate states between the 

sub-networks. 

The learning networks having a small number of inputs will find great 

practical applications when they may be connected to conventional logical 

networks. There may be many situations where a large number of input sig

nals could be processed first by a prewired logical network and reduced to 

a small number of signals. Those signals could then be fed into a uni

versal learning network which could be trained to respond to a changing 

demand. 
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