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A B S T R A C T

Accurate estimation of nitrogen (N) balance (a measure of potential N losses) in producer fields requires in-
formation on grain N concentration (GNC) to estimate grain-N removal, which is rarely measured by producers.
The objectives of this study were to (i) examine the degree to which variation in GNC can affect estimation of
grain-N removal, (ii) identify major factors influencing GNC, and (iii) develop a predictive model to estimate
GNC, analyzing the uncertainty in predicted grain-N removal at field and regional levels. We compiled GNC data
from published literature and unpublished databases using explicit criteria to only include experiments that
portray the environments and dominant management practices where maize is grown in the US North Central
region, which accounts for one-third of global maize production. We assessed GNC variation using regression
tree analysis and evaluated the ability of the resulting model to estimate grain-N removal relative to the current
approach using a fixed GNC. Across all site-year-treatment cases, GNC averaged 1.15%, ranging from 0.76 to
1.66%. At any given grain yield, GNC varied substantially and resulted in large variation in estimated grain-N
removal and N balance. However, compared with GNC, yield differences explained much more variability in
grain-N removal. Our regression tree model accounted for 35% of the variation in GNC, and returned physio-
logically meaningful associations with mean air temperature and water balance in July (i.e., silking) and August
(i.e., grain filling), and with N fertilizer rate. The predictive model has a slight advantage over the typical
approach based on a fixed GNC for estimating grain-N removal for individual site-years (root mean square error:
17 versus 21 kg N ha−1, respectively). Estimates of grain-N removal with both approaches were more reliable
when aggregated at climate-soil domain level relative to estimates for individual site-years.
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1. Introduction

Nitrogen (N) fertilizer is an essential input to sustain high cereal
yields (Cassman et al., 2002). However, mismatches between N inputs
and crop N demand could result in N losses to the environment
(Erisman et al., 2013). As a result, there is growing interest in devel-
oping cost-effective indicators to evaluate the degree to which N ferti-
lizer inputs are congruent with crop N requirements (Zhang et al.,
2015). A simplified N balance, calculated as the difference between N
inputs (including fertilizer, manure, symbiotic N2 fixation, deposition)
and grain-N removal, can be used to assess potential for N losses in
producer fields (McLellan et al., 2018 and references cited therein).
However, estimating N balance depends on the calculation of grain-N
removal, and while maize producers usually know the grain yield
achieved on each of their fields, they rarely measure grain nitrogen
concentration (GNC). Lack of GNC measurements reflects that most
maize grain produced in the US is used for livestock feed, and its value
derives from its energy rather than its protein content. Some maize crop
models (e.g., CERES-Maize; Jones and Kiniry, 1986) can simulate grain-
N removal, but they require calibration and copious amounts of data
inputs (i.e., daily weather, soil properties, cultivar coefficients, and
management practices) to be useful for predicting grain-N removal in
individual fields. Additionally, previous studies have shown that these
models performed relatively poor at reproducing measured GNC in
field-grown maize (e.g., Liu et al., 2010; Yakoub et al., 2017). Hence, at
issue is how reliable the estimation of grain-N removal can be in the
absence of measured GNC.

Average maize GNC has declined over time as an unintended con-
sequence of breeders’ selection for higher yields (Duvick and Cassman,
1999; Ciampitti and Vyn, 2012; DeBruin et al., 2017), and a number of
published studies have aimed to understand the associated physiolo-
gical drivers (Chen and Vyn, 2017 and references cited therein). Early
in the 1970s, Welch (1971) used an average GNC of 1.61% to estimate
grain-N removal. Later, Boone et al. (1984) reported a mean of 1.33%
based on measured data across commercial maize hybrids grown in the
Midwestern US at different plant densities. A review paper by Ciampitti
and Vyn (2012) reported the same mean GNC of 1.33% for maize hy-
brids released between 1940 to 1990, with mean GNC decreasing to
1.20% for hybrids released between 1991 and 2011. The GNC values
reported here are all expressed at a standard 15.5% moisture content.
Besides the long-term decline in GNC, prior studies on maize have re-
ported substantial variation in GNC due to climate and management
practices (Viets and Domingo, 1948; Zuber et al., 1954; Genter et al.,
1956; Lang et al., 1956; Boone et al., 1984; Feil et al., 1990; Liang et al.,
1996). In the absence of measured GNC data, the typical approach is to
assume a fixed GNC from the literature. For example, the International
Plant Nutrition Institute (IPNI) recommended using an average GNC of
1.2% for estimating grain-N removal in absence of measured data
(http://www.ipni.net/article/IPNI-3296). However, the degree to
which variation in GNC would affect the estimation of grain-N removal
and N balance in individual field has not been explicitly evaluated.

There are many studies aiming to model sources of variation in GNC
for winter cereals such as wheat and barley (Correll et al., 1994; Smith
and Gooding, 1999; Hansen et al., 2002; Zhao et al., 2005). For in-
stance, Correll et al. (1994) developed a predictive model based on
seasonal air temperature and precipitation to explain variation in GNC
for wheat and barley in South Australia. Later, Smith and Gooding
(1999) reported a model showing that cultivar and N fertilizer rate were
also important factors influencing GNC in wheat. Although both en-
vironmental and management factors have been reported to influence
GNC in maize, no attempt has been made to synthesize and analyze
existing GNC data to generate a predictive model for maize GNC. Such a
model would be useful for estimating grain-N removal and N balance in
producer fields in the absence of directly measured GNC data.

In the present study, we collected existing maize GNC data from
experiments conducted across the US North Central region (Fig. 1),

which is an area that accounts for ca. 33% of global maize production.
Only data that portray the range of dominant on-farm management
practices and hybrids were used for the analysis. The specific objectives
were to (i) examine the degree to which variation in GNC can affect
estimation of grain-N removal in maize, (ii) identify major factors in-
fluencing GNC and model these sources of variation, and (iii) evaluate
an approach to estimate GNC as an alternative to a fixed GNC, ana-
lyzing the uncertainty in predicted grain-N removal at field as opposed
to regional level.

2. Materials and methods

2.1. Database description and criteria

Published articles and online databases were screened to compile
experimental data on GNC from field-grown maize across the US North
Central region. Major climate, soil, and management features of maize-
based agroecosystems in the US North Central region are described
elsewhere (Grassini et al., 2014). The search was restricted to experi-
ments conducted during the 1999–2016 period to represent recent
hybrids and management practices. Our database included observations
from nine states: Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS),
Minnesota (MN), Nebraska (NE), Ohio (OH), South Dakota (SD), and
Wisconsin (WI) (Fig. 1; Supplementary Table S1). Only data from re-
plicated experiments that meet two criteria were included: (i) field-
grown grain maize crops managed with current crop and soil man-
agement practices in the region, and (ii) reported data on grain yield,
GNC, N fertilizer rate, and water regime (irrigated or rainfed). We thus
excluded experiments sown for silage or hybrid seed production, with
experimental hybrids, with outdated practices (e.g., moldboard plow),
or with unrealistic treatments (e.g., N omission plots). Likewise, we
excluded experiments in which maize was grown after alfalfa because
only a very small fraction of US maize follows alfalfa and potential soil
N supply following this perennial legume crop can be large and difficult
to calculate. Experiments receiving manure were also excluded given
the difficulties to quantify N inputs from the manure. A total of 1307
site-year-treatment cases met our criteria, which were used for the
subsequent analyses. The database included rainfed and irrigated crops
(43 and 57% of total cases, respectively).

Since GNC and grain yield were reported across studies either at
oven-dry or standard moisture content, all grain yield and GNC data
were standardized to 15.5% moisture content for analysis. Reported
oven-dry moisture content was assumed to be zero. GNC was measured
using combustion and near infrared (NIR) in 70% and 30% of total
observations, respectively. Although we did not have side-by-side data
to rigorously compare GNC measured with different methods (NIR
versus combustion), we did not find strong evidence that this would bias
the analysis because average GNC (± standard deviation) differed little
among experiments using NIR (1.19 ± 0.16%) versus combustion
(1.13 ± 0.16%) to determine GNC. Additionally, results from the sta-
tistical analyses using the database with NIR- versus combustion-mea-
sured GNC were almost identical; hence, we showed the results using
the pooled database (see Section 2.2). For half of the sites, geographic
coordinates were available; county or nearby city were reported for the
remaining sites. Other variables were available for a reasonable number
of experiments (> 40%), including plant density, previous crop, arti-
ficial drainage, tillage method, N fertilizer source, N split application
(yes/no), and N application timing (spring only or fall and spring).
Analytical methods that can handle missing values, such as the re-
gression tree analysis followed in this study, allowed inclusion of the
full suite of data (see Section 2.2).

Daily maximum (Tmax) and minimum (Tmin) air temperature and
precipitation were retrieved for each field from DAYMET (https://
daymet.ornl.gov/) while incident solar radiation was retrieved from the
Prediction of Worldwide Energy Resources (NASA POWER, https://
power.larc.nasa.gov/) based on the coordinates or approximate site
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reported for each experiment. Both DAYMET and NASA POWER pro-
vide gridded weather data (resolution: 1 km2 and 12,000 km2, respec-
tively). The DAYMET weather has shown good agreement with mea-
sured data for average temperature and total precipitation when
summed over several months or an entire growing season (Mourtzinis
et al., 2017), while NASA POWER incident solar radiation has shown
strong agreement with measured records in agricultural areas with flat
terrain, as in the US North Central region (van Wart et al., 2013). In-
formed by physiological principles (Cantarero et al., 1999; Cicchino
et al., 2010; Lobell et al., 2013), key weather variables influencing crop
growth and grain yield were investigated in relation to their influence
on GNC. For July, which roughly coincides with silking, and for August,
corresponding to grain filling in the target region, we calculated mean
air temperature (Tmean), number of days with Tmax ≥32 °C, number of
days with Tmin ≥22 °C, mean incident solar radiation, and total water
balance, calculated as the difference between total precipitation and
reference grass-based evapotranspiration (ETo; Allen et al., 1998).
Thresholds of 22 °C (Tmin) and 32 °C (Tmax) were chosen for stressful
high air temperatures for maize (Herrero and Johnson, 1980; Prasad
et al., 2006a; Cicchino et al., 2010; Lobell et al., 2013). Unfortunately,
dates of silking and physiological maturity were not recorded in most
experiments; hence it was not possible to derive means of weather
variables for specific crop phases rather than on a calendar basis. For
irrigated crops, water balance was assumed to be zero as irrigation
ensures adequate water supply during the entire crop season. Because
coordinates were not available for ca. half of the experiments, and given
the large spatial variability in soil properties, we did not attempt to
retrieve site-specific soil parameters.

Experiments were assigned to technology extrapolation domains
(TEDs; Rattalino Edreira et al., 2018). Each TED corresponds to a cli-
mate-soil domain, within which crop growth and nutrient cycling are
expected to be similar. In those cases in which field coordinates were
not available, experiments were assigned to the prevalent TED in the
area around/within the near town/county where the study was con-
ducted. Experiments used for the analysis were located within TEDs
that account for 58% of the total US maize harvested area (Fig. 1).
Because of data imbalance among states, with higher number of ex-
periments in NE and MN, the regression tree was repeated 20 times
using resampling of 50 observations in these two states, to obtain a
balanced experimental design. The test indicated that using either a
balanced versus unbalanced number of observations or different subsets
of randomly selected fields had little impact on the results. Hence, in
the present study, we reported only the results derived from the

regression trees using the entire database.

2.2. Data analysis

Nitrogen removed with harvested grain was estimated based on
reported grain yield and GNC. To evaluate sensitivity of grain-N re-
moval to variation in GNC at a given yield level, we plotted grain-N
removal versus grain yield and fitted boundary functions using quantile
regression for the 5th and 95th percentiles (Koenker and Basset, 1978)
via the “quantreg” package (Koenker, 2017) in R (Fig. 2). Additionally,
analysis of variance (ANOVA) was performed to determine the per-
centage of total variance in grain-N removal explained by grain yield
and GNC.

Whereas GNC varies with hybrid (Genter et al., 1956; Boone et al.,
1984; Uribelarrea et al., 2004), the large number of hybrids available in
the market and their fast turn over precluded adding hybrid as an ex-
planatory factor for prediction purposes. Here we used ANOVA to

Fig. 1. Map of US North Central region showing the sites of the experiments used in the analysis (circles). Each color represents a climate-soil combination
(Technology Extrapolation Domain [TED], Rattalino Edreira et al., 2018). Experiments were located in TEDs that account for 58% of total US maize harvested area.
Acronyms are: Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS), Minnesota (MN), Nebraska (NE), Ohio (OH), South Dakota (SD), and Wisconsin (WI).

Fig. 2. Relationship between grain-nitrogen (N) removal and grain yield based
on data collected from field-grown maize across the US North Central region.
Slopes of the linear regression (solid line) and boundary functions fitted for the
5th and 95th percentiles are shown (dashed lines). Fitted regressions were forced
through the origin. Grain yields were reported at 15.5% moisture content. Inset
shows proportion of grain-N removal variation explained by grain yield and
grain N concentration (GNC).
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discern the degree to which hybrid explains variation in GNC relative to
other factors, using a subset of data that contained 12 hybrids grown
consistently across 3 sites and 2 years in IL. All hybrids were grown
under rainfed conditions, with N fertilizer rate of 252 kg N ha−1, and
plant density of 7.9 plant m-2. Relative maturity ranged between
109–114 d among hybrids and GNC was measured using near infrared.
Likewise, previous studies have attributed differences in GNC to a ‘di-
lution effect’, suggesting a trade-off between GNC and grain yield (e.g.,
Gupta et al., 1975; Dudley et al., 1977; Boone et al., 1984; Simmonds,
1995). To assess the degree to which GNC could be explained by grain
yield, linear regression models between GNC and grain yield were fitted
separately for the entire database, each study, and each study-site-year.

Regression tree analysis was used to quantify the influence of
weather and management variables on GNC using the “rpart” package
in R (Hothorn et al., 2006). Regression tree analysis is a non-parametric
method which recursively partitions the data into successively smaller
groups with binary splits based on a single continuous predictor vari-
able (Breiman et al., 1984; Verbyla, 1987; Clark and Pregibon, 1992;
Prasad et al., 2006b). Regression tree analysis produces a tree-diagram
output, with branches determined by splitting rules and a series of
terminal nodes that contain the mean response (i.e., GNC) and the
number of observations that fall within each terminal node. The pro-
cedure initially grew maximal trees and then used a cross-validation
technique (i.e., maxdepth) to prune the over-fitted tree to an optimal
size (Therneau and Atkinson, 1997). A “caret" package in R was used to
split the dataset into training (80%) and testing (20%) datasets. The
training dataset was used to run the regression tree analysis, while the
testing dataset was utilized to estimate the mean square error (MSE)
between observed and predicted GNC (Supplementary Table S1). The
regression tree analysis handled missing values in the explanatory
factors (na.rpart function), excluding cases only if the response variable
(i.e., GNC) or all explanatory factors were missing. When missing values
were encountered in considering a split, they were ignored and pre-
dictions are calculated from the non-missing values of that factor
(Venables and Ripley, 2002). For the regression tree analysis, we ex-
cluded some variables due to high collinearity. For example, high
correlation (Pearson r= 0.87, P < 0.001) was found between number
of days in July with Tmax≥32 °C and July Tmean, so we only included the
latter variable (Supplementary Table S2). Likewise, incident solar ra-
diation in July was correlated with water balance (Pearson r = 0.31;
P < 0.001) and Tmean (Pearson r = 0.44, P < 0.001). Additionally,
source of N applied was highly associated with geographical site (am-
monium nitrate was only used in MN, while urea and urea ammonium
nitrate were the dominant sources in other experiments); hence, we did
not include it in the analysis. Initially, previous crop (i.e., maize and
soybean) was included as an explanatory factor and showed to influ-
ence GNC. However, in the regression tree, previous crop only differ-
entiated between maize or soybean versus no previous crop reported,
hence, it was excluded as an explanatory factor. After accounting for
these issues, 10 variables remained as potential explanatory factors for
variation in GNC (Tables 1 and 2). This same set of explanatory factors

was used to generate a regression tree for grain yield to help differ-
entiate drivers for GNC versus grain yield variation (Supplementary Fig.
S1).

Relationships between GNC and weather and agronomic factors that
were identified as the most important at explaining GNC variation by
the regression tree were further explored using linear regression. These
factors included July Tmean and N fertilizer rate. Mean GNC and stan-
dard error were calculated for different intervals of July Tmean and N
fertilizer rate. Duncan’s multiple range test was used to determine
significant differences (α=0.05) between means.

We compared the grain-N removal prediction ability of the regres-
sion tree GNC estimates with a fixed 1.2% GNC value (as recommended
by IPNI in absence of measured GNC) at two spatial levels: field and
climate-soil domain (i.e., TED). Agreement between observed and pre-
dicted grain-N removal was evaluated using the root mean square error
(RMSE) and absolute mean error (ME). Regression analysis was used to
explore biases in the relationship between predicted and observed
grain-N removal. Frequency distributions were used to estimate the
percentage of fields with differences in observed versus predicted grain-
N removal ≥ |20| kg N ha−1. At the TED scale, grain-N removal was
estimated by averaging the values across all fields located within the
same TED (Fig. 1). The objective of this evaluation was two-fold: (i) to
discern any advantage of estimating GNC using a predictive model in-
stead of using a fixed GNC value and (ii) to analyze the uncertainty in
predicted grain-N removal at field as opposed to regional level.

3. Results

3.1. Variation in grain nitrogen concentration

The database included variation in GNC, weather, and management
practices that is typical of conditions across producer fields in the US
North Central region (Tables 1 and 2). The GNC ranged from 0.76 to

Table 1
Summary statistics for maize grain nitrogen concentration and continuous variables (N fertilizer rate, weather variables, and plant density) collected from maize
experiments across the US North Central region. The 25th (P25) and 75th (P75) percentiles of the distributions are also shown.

Variables n Minimum P25 Median Mean P75 Maximum

Grain N concentration (g kg−1) 1307 0.76 1.03 1.14 1.15 1.26 1.66
Continuous variables
N fertilizer rate (kg N ha−1) 1307 45 134 196 186 224 381
Total water balance (mm) 1300

July −314 −227 −125 −120 0 0
August −325 −220 −122 −115 0 25

Mean air temperature (ºC) 1300
July 18.9 21.9 23.8 23.6 25.7 27.9
August 17.8 20.9 21.6 22.1 23.7 28.2

Plant density at harvest (m−2) 1096 4.4 7.4 8.0 7.9 8.2 11.9

Table 2
Summary statistics for categorical factors used in the analysis.

Categorical variables % observations

N application time (n = 589)
spring only 89
fall and spring 11

N split application (n=1307)
yes 25
no 75

Tile drainage (n = 1030)
yes 30
no 70

Tillage method (n = 715)
conventionala 81
no-till 19

a Conventional tillage includes chisel plow, disk, field cultivator,
strip till, and vertical till.
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1.66%, averaging 1.15% across all observations. Average GNC derived
here was slightly, though statistically significant (t-test; P < 0.001),
lower than the 1.2% reference reported by IPNI. On average, grain-N
removal increased at a rate of 11.5 kg N per Mg of grain yield (Fig. 2),
although there was substantial variation in grain-N removal at a given
grain yield level due to variation in GNC. Slopes of the quantile re-
gression in Fig. 2 indicate that GNC can vary from 0.89% to 1.41% for a
given grain yield. Hence, using the recent (2013–2017) US average
grain yield of 10.6Mg ha−1 (https://www.nass.usda.gov), grain-N re-
moval can vary from 94 to 150 kg N ha−1, corresponding to a difference
of 56 kg N ha−1 in the associated N balance. On the other hand, the
proportion of variation in grain-N removal explained by grain yield was
ca. three times larger than the variance accounted for by GNC (73 versus
25%) (Fig. 2, inset).

3.2. Environment versus hybrid influence on grain nitrogen concentration

At issue is the degree to which GNC is influenced by hybrid. An
ANOVA, using a subset with a uniform set of hybrids grown across
multiple site-years in IL, showed that hybrid influenced GNC more than
it affected grain yield (% of sum of squares [%SS]= 32 versus 6%, re-
spectively). The portion of variation explained by year, site, and their
interaction (i.e., environmental effects) on GNC was higher, but of same
order of magnitude, compared with the variation explained by hybrid
alone (%SS=49 versus 32). Site effect on GNC was 4-fold larger than
year effect, which may reflect the importance of site-specific average
weather and/or soil properties (Table 3).

3.3. Relationship between grain yield and grain nitrogen concentration

If variation in GNC is associated with a ‘N dilution’ effect, one would
a priori expect a strong negative relationship between GNC and grain
yield. In constrast with this expectation, we found a statisitically sig-
nificant, though weak, positive relationship between GNC and grain
yield when the entire dataset was used (p<0.001; r2 = 0.02) (Fig. 3a).
The linear regression analysis using the entire database may have been
biased by differences in the environmental and/or management back-
ground across site-years. To account for this potential confounding ef-
fect, we fitted separate regressions to the data compiled from each
study (Fig. 3b) and from each study-site-year (Fig. 3c), which indicated
that there was a statistically significant negative relationship
(p<0.001) in only 11 and 3% of the cases, respectively. We concluded
that, for our dataset, observed variation in GNC cannot be attributed to
‘N dilution’ effect due to yield. Hence, our subsequent analysis did not
consider grain yield as an explanatory factor for variation in GNC.

3.4. Environmental factors influencing variation in grain nitrogen
concentration

The regression tree explained 35% of variation in maize GNC using
five variables, including July and August Tmean, July and August total
water balance, and N fertilizer rate (Fig. 4). July Tmean was the most
important variable associated with GNC, with crops exposed under
warm conditions during July (Tmean ≥22.5 °C) exhibiting higher GNC in
relation with their counterparts with lower Tmean (1.17 versus 1.09%).
The influence of high air temperature during July on GNC was ampli-
fied in fields that were also exposed to unfavorable water balance (i.e.,
water shortage) and high air temperature in August. In contrast, N
fertilizer rate was the most important factor influencing GNC in fields
exposed to lower July Tmean (< 22.5 °C). In these fields, highest GNC
was observed with large N fertilizer input and unfavorable water bal-
ance, while fields with lowest GNC were associated with small N fer-
tilizer inputs (Fig. 4). Fields with lowest GNC corresponded to those
exposed to the same conditions as fields with highest GNC, but with
lower Tmean during August (< 21.6 °C). Finally, the explanatory power
of the regression tree for GNC was about one-half of that for grain yield
(R2=0.35 versus 0.65; Fig. 4, Supplementary Fig. S1) and different in
relation to the driving variables.

We further investigated the relationships between GNC and two
variables identified in the regression tree: July Tmean and N fertilizer
rate (Fig. 5). GNC increased with increasing July Tmean and N fertilizer
rates (Fig. 5a, b). Across the entire range of N fertilizer rates, GNC was
higher in warmer environments; however, this difference was larger for
small and moderate N fertilizer rates (Fig. 5c). At high N rates
(300–400 kg N ha−1), there was no significant difference in GNC be-
tween fields exposed to high versus low July Tmean.

3.5. Comparison of grain-N removal with fixed and modelled GNC

We evaluated two methods (regression tree’s estimates versus fixed
1.2% GNC value) on their performance to reproduce the observed
grain-N removal (Fig. 6). Predicted grain-N removal based on reported
grain yield and GNC estimated from the regression tree had a slightly
better fit to observed values compared with the approach based on a
fixed value, with RMSE representing 12% versus 15% of the mean ob-
served grain-N removal, respectively (Fig. 6a, b). Consistent with this
finding, the percentage of site-years with large differences (≥ |20| kg N
ha−1) between predicted and observed grain-N removal was smaller
using regression tree versus fixed GNC values (25 versus 36% of total
fields) (Fig. 6a, b, insets). However, both approaches underestimated
grain-N removal in the upper range of observed values (> 200 kg N
ha−1), which was consistent with the statistically significant quadratic
term revealed by our regression analysis (P < 0.001). Agreement be-
tween predicted and observed values at the TED level was improved
compared to agreement of field-level data (average RMSE% = 9 versus
13%), with very little difference in accuracy between estimates based
on the fixed GNC versus regression-tree (RMSE%: 10 versus 9% of ob-
served mean) (Fig. 6c, d).

4. Discussion

The influence of environmental and management factors on maize
GNC were assessed using data collected from multiple sites and years
across the US North Central region to include field experiments that are
representative of dominant management practices in producer fields.
Average maize GNC calculated for the entire database was 1.15%,
which was slightly lower than the commonly used GNC of 1.2%, and
corresponds with a continuing decline in GNC over time (Welch, 1971;
Boone et al., 1984; Duvick and Cassman, 1999; Ciampitti and Vyn,
2012). Overall, the regression tree explained 35% of variation in GNC
across the US North Central region, with air temperature and water
balance during July and August and N fertilizer rate identified as the

Table 3
Analysis of variance (ANOVA) for the effects of year, site, hybrid, and their
interactions on maize grain nitrogen concentration (GNC) and grain yield, in a
factorial combination of 6 site-years by 12 commercial hybrids.

Variables d.f. F-valuea % SS (%)b

GNC (%) Grain yield GNC (%) Grain yield

Year (Y) 1 40*** 88*** 7 23
Site (S) 2 95*** 64*** 32 34
Hybrid (H) 11 17*** 2* 32 6
Y x S 2 30*** 33*** 10 17
Y x H 11 3*** 1 5 4
S x H 22 2** 1 8 8
Y x S x H 22 2 1 6 8

a F-test significant at
* P < 0.05.
** P < 0.01.
*** P < 0.001.
b Proportion (in %) of total sum of squares (SS) excluding the error.
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most important factors explaining variation in GNC. We recognize that
part of the unexplained variation could be attributed to hybrid, which
could account for ca. one third of GNC variation as indicated by our
analysis using a subset of site-years where the same set of hybrids were
grown. Nonetheless, accounting for hybrid effect for predictive purpose
is very difficult given the large number of hybrids available in the
market and their rapid turnover. Soil factors may also account for part
of the unaccounted variation in GNC. Our ANOVA indicated a much

larger influence of site rather than year on GNC, which could reflect
differences in soil properties, although it is difficult to separate this
effect from weather variation across sites. This finding highlights the
importance of collecting in situ key soil and topography data (e.g.,
available-water holding capacity, soil texture, landscape position, etc.)
or, at least, reporting of exact experiment coordinates so that these
attributes can be retrieved from existing databases such as SSURGO
(www.websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx).

Fig. 3. Relationships between grain nitrogen concentration (GNC) and grain yield for the entire dataset (a), each study (b), and each study-site-year (c). Data points
were removed and only the fitted linear regressions are shown in (b) and (c) and percentage of cases with statistically significant positive and negative relationships
are shown (p < 0.001).

Fig. 4. Regression tree model showing sources of variation in grain nitrogen concentration (GNC) due to weather and management factors (overall R2= 0.35;
MSE=0.02%). Boxes are splitting nodes (SN), with bottom boxes representing terminal nodes (TN). Values within each TN indicate average GNC at a 15.5%
moisture content basis and the number of observations (n) in each terminal node.

Fig. 5. Relationships between average grain nitrogen concentration (GNC, 15.5% moisture content basis) and July mean air temperature (A) and N fertilizer rate (B).
Relationship between GNC and N fertilizer rate, for fields with contrasting July mean air temperature (greater or lower than 22.5 °C based on Fig. 4), is shown in (C).
Fitted linear regressions and their parameters are shown. Each data point represents average GNC for fields that fall within each July mean air temperature and/or N
fertilizer rate interval. Vertical bars indicate the standard error of the mean. Different letters indicate statistically significant differences (Duncan’s test; alpha=
0.05).
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Unfortunately, soil parameters and/or field coordinates were not col-
lected and/or missing for most of the observations in our database, so
we could not include these factors in our evaluation.

Results from the regression tree analysis are consistent with current
understanding of factors influencing GNC. In general, stressful weather
conditions during July and August, such as high air temperature and
unfavorable water balance (i.e., water shortage), and high N fertilizer
rates led towards high GNC, which is consistent with previous studies
(Genter et al., 1956; Mayer et al., 2016). High temperature and un-
favorable water balance during the kernel setting phase reduces kernel
number (Hall et al., 1981; Otegui et al., 1995; Rattalino Edreira et al.,
2011). Our study also suggested that unfavorable (favorable) weather
conditions during August seem to amplify (ameliorate) the effect of
stressful conditions during July. In relation to N supply, our analysis
revealed an interactive effect of air temperature and N fertilizer rate on
GNC, with largest differences in GNC between fields exposed to con-
trasting temperature in low N fertilizer rate conditions, which are
consistent with published results for wheat (Altenbach et al., 2003).

Previous studies have reported that maize GNC tends to increase
with decreasing grain yield as a result of ‘N dilution’ effect (Zuber et al.,
1954; Simmonds, 1995; Uribelarrea et al., 2004). However, in the
current study, GNC and yield were related weakly and inconsistently.
Further, the fitted regression tree for grain yield was substantially dif-
ferent from the one for GNC (Fig. 4; Supplementary Fig. S1). A possible
explanation for the discrepancy between our study and previous reports
is that our database did not include extreme conditions such as severe
drought, N omission plots or very high or low plant densities as in
previous studies (Zuber et al., 1954; Lang et al., 1956) because these
conditions are not common in producer fields. Instead, our objective
was to understand GNC variation within the range of environment and
management practices typically found in producer fields. Another ex-
planation is that most studies used for our analysis included treatments
with varying N fertilizer amounts which caused, in most cases, a

simultaneous increase in grain yield and GNC with increasing N ferti-
lizer input. In contrast, previous studies reporting a trade-off between
GNC and grain yields for maize were based on experiments in which
yield differences were a consequence of using different hybrids and/or
plant densities across treatments, without changing N fertilizer amounts
(e.g., Gupta et al., 1975; Dudley et al., 1977; Boone et al., 1984;
Simmonds, 1995). In other words, the trade-off between grain yield and
GNC is not apparent when variation in yield is due to differences in N
fertilizer input. In agreement with this hypothesis, a number of studies
(Zuber et al., 1954; Chen and Vyn, 2017; DeBruin et al., 2017) reported
decreasing GNC with increasing yield due to improved hybrids and/or
higher plant density, but the same authors reported that both GNC and
grain yield increased with increasing N fertilizer rate.

The predictive model developed for estimating GNC is more accu-
rate, relative to the approach using a fixed GNC value, at estimating
grain-N removal and N balance for individual site-years. Hence, the
predictive model can help obtain more accurate estimates of grain-N
removal and N balance in producer maize fields, in absence of GNC
data, although this advantage needs to be weighed against the extra
data needed (weather, N fertilizer) to use the model. The predictive
model underestimated grain-N removal in the upper range of observed
values (> 200 kg N ha−1). An implication of this finding is that grain-N
removal may be underestimated in high-yield environments that favor
large N uptake. Indeed, 96% of the observations with grain-N re-
moval> 200 kg N ha−1 corresponded to irrigated maize in NE—a
production environment where producers routinely attain yields that
correspond to 80–90% of their yield potential as determined by climate
and current genetics (Grassini et al., 2011). Predictions of grain-N re-
moval using both approaches were more accurate at climate-soil do-
main level compared with estimates for individual site-year cases. This
suggests that comparisons for these parameters (i.e., grain-N removal
and N balance) among climate-soil domains using aggregated values are
more reliable compared with assessments for individual fields. In

Fig. 6. Predicted versus observed grain-N removal in maize
for each site-year-treatment case (a, b) and for climate-soil
domains (c, d). Predicted grain-N removal was calculated
based on a fixed (1.2%) grain nitrogen concentration (a, c)
or based on concentration estimated from the regression
tree model (b, d). Root mean square error (RMSE) and
mean error (ME) are indicated and y= x (black) and
quadratic or linear regression (red) lines are shown. Insets
show frequency distributions for the difference between
observed and predicted grain-N removal; fields with dif-
ferences ≥ |20| kg N ha−1 are shown in blue. (For inter-
pretation of the references to colour in this figure legend,
the reader is referred to the web version of this article).
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addition, result from this study indicates that using the fixed GNC value
of 1.2% would work reasonably well for estimating grain-N removal at
climate-soil domain level. Hence, in absence of measured GNC data, the
N balance approach would still provide reasonable estimates of po-
tential N losses for major climate-soil domains where maize is grown in
the US North Central region. In contrast, estimates for individual fields
will be subjected to greater uncertainty and, ultimately, GNC should be
measured for accurate quantification of N balance. New technologies,
such as combines equipped with NIR to map protein at the same level of
yield maps, may allow direct measurement of N-grain removal at field
and intra-field scales in the future (Montes et al., 2006; https://grdc.com.
au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-
papers/2017/07/on-the-go-protein-sensors-using-real-time-protein-data-for-
more-profitable-marketing-aggregations-and-nitrogen-decisions). The metho-
dology described in this paper for understanding sources of variation in GNC
estimation could potentially be applied to other regions or crops depending
upon availability of data on GNC and ancillary variables.

5. Conclusions

Variation in GNC causes uncertainty in estimates of grain-N removal
and N balance. Our results identified N fertilizer rate and air tem-
perature and water balance in July and August as the most important
factors explaining variation in GNC. We did not find evidence of a
negative correlation between GNC and grain yield. In absence of mea-
sured GNC data, the predictive model developed here can help refine
estimates of grain-N removal and N balance for specific site-years, al-
though its advantage needs to be balanced out against the extra data
requirements. Estimates of N balance seem to be more accurate when
aggregated to climate-soil domains compared with individual fields; in
that case, using a fixed GNC value to estimate grain-N removal would
work reasonably well.
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