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1. INTRODUCTION 

Smart home technology is an application of ubiquitous computing that equips living environments with 

different types of sensors, actuators, and appliances under computer control to improve the quality of life for 

inhabitants. Services such as health and behavior monitoring, personalized customization of home operation, 

control and automation of the environment, and assistance with physical or mental tasks enable inhabitants to 

live safer, more comfortable, and more independent lives. Many commercial and research efforts are 

investigating the vast potential that smart homes and related products provide to assist the activities of daily 

living. However, the resulting efforts frequently suffer from two main limitations that hinder their widespread 

use. First, resulting products are usually proprietary, offering closed services that are tailored to specific 

applications and cannot be easily reused or extended by other services in the smart home. Second, the 

invasiveness of the technology and use of personal information may allow the privacy of the inhabitants to be 

violated. 

We have previously addressed the privacy issue by calling for a privacy policy-based framework [1] [2] 

to control the collection, storage, use and dissemination of personal information in smart home environments. 

This framework supports several high level goals, including promoting inhabitant awareness of the abilities of 

devices/services contained in the smart home space, using privacy policies that express the contextual nature of 

privacy, providing mechanisms and tool support for the authoring, deployment, enforcement, and auditing of 

privacy policies, as well as creating and verifying policy models to detect conflicts and incorrect specification 

of privacy policies. In this thesis, we focus on the modeling and verification of policies by proposing a 

combination of the service-oriented computing and privacy policy paradigms to create a preliminary privacy 

model for smart homes. We then offer an example scenario and discuss how we employ model checking 

techniques to verily various aspects of our proposed policy model. The major contributions of this work are 

four-fold: 

• We extend the notion of personal privacy to include the control of how household objects are used by 

smart home services. 

• We introduce the use of service-oriented computing to bind resources to the policy space. 

• We define a novel service-oriented privacy policy model that authorizes both the flow of personally 

sensitive data and the control of environment objects based on inhabitant preferences and various 

system contexts. 

• We introduce the use of model checking techniques to verify correctness properties of privacy policy 

models and their enforcement. 

The rest of the paper is organized as follows: section 2 gives background information about smart 

homes, information privacy, policy-based management in distributed systems, and model checking, section 3 

presents existing privacy analyses and policy models, section 4 presents our novel privacy model, section 5 

illustrates with an example scenario how model checking can be used to verify our privacy model, and section 6 
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concludes with discussion and future work. Appendix A contains model implementation files, and Appendix B 

contains property specification files. 
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2. BACKGROUND 

This section offers background information about smart homes, service oriented architectures, 

information privacy, policy-based management concepts in distributed systems, and model checking. 

2.1 Smart Homes 

As mentioned previously, smart homes and related products are meant to improve the quality of life for 

inhabitants by incorporating different types of computer controlled sensors, actuators, and appliances in a 

regular living environment and coordinating these devices in ways beneficial to inhabitants. Sensors in the 

home read information about objects and individuals in the smart home space, and actuators affect changes to 

objects in the smart home. If the services that use information from sensors are remotely managed or monitored, 

then there is the possibility for uninvited or unknown leakage of personal information to these external systems. 

These consequences are more severe if data are exchanged among these third party systems or released to the 

public, such as happened with five million customer travel records in the JetBlue Airways incident of 2002 [4], 

On the other hand, if the services that invoke the actuators are remotely managed, there is a possibility for 

external entities to manipulate devices and services in a manner that may disturb the inhabitant or place the 

home in an undesired state. Any of these situations presents possible privacy vulnerabilities in the smart home. 

There are other challenges to managing privacy in smart homes as well. Since many different academic 

and industry projects are developing smart home products and applications, various hardware and software 

technologies are being used, making smart home environments quite heterogeneous, not only in terms of the 

types of devices and services present, but also in terms of the platforms used to support them. Also, as devices 

and services evolve and new ones come to market, new components will be added to the home, and old ones 

will be removed or reconfigured. Thus, smart homes will thus also be dynamic in nature. In order to achieve 

scalable, extensible, and interoperable privacy solutions under these conditions, some sort of open software 

framework built on existing and emerging standards must be employed [3], Several smart home efforts 

[5] [6] [7] [8] attempt to address these problems in various ways. The Gator Tech Smart House [5], in particular, 

is an open, interoperable infrastructure that uses the service-oriented computing paradigm to manage devices 

and services. In our opinion this framework, though still at the conceptual stages of development, represents the 

best existing approach to manage the complexity inherent to smart homes. We therefore use it as a reference 

point for our privacy policy model by focusing on the type of service-oriented environment that the Gator Tech 

Smart House uses. 

2.2 Service-Oriented Computing 

The service oriented paradigm focuses on encapsulating computational resources into service objects, 

which are "self-describing, open components that support rapid, low-cost composition of distributed 

applications." [9] The service descriptions are used to encode the capabilities and characteristics of the services 
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so the basic operations of publication, discovery, selection, binding, and invocation can occur in a loosely-

coupled fashion. Service-oriented architectures (SOA) are frameworks that facilitate the life cycle management, 

composition, and change management of services including monitoring, coordination, and conformance of 

services [10]. Some of these frameworks are centralized, like OSGi [11], and others are decentralized, like the 

web services suite (SOAP [12], WSDL [13], and UDDI [14]), UPnP [15], and Jini [16]. The service-oriented 

paradigm, particularly web services, has been widely adopted to achieve interoperability in enterprises and, as 

evidenced by the Gator Tech Smart House, is also showing promise for managing the complexity of smart home 

environments. We investigate the use of service-oriented computing to bind smart home device and service 

resources to the privacy policy space by utilizing service descriptions that include terms pertinent to privacy. 

2.3 Information Privacy 

When attempting to understand privacy, it must be noted that it is an inherently complex concept 

involving relationships between society, technology, the individual, and the law [17]. As new technologies 

emerge to collect, process, and disseminate (personal) information, laws are created to regulate or standardize 

intended and unintended uses of the technology to limit harmful effects on societies and individuals. This, in 

turn, influences which technologies are developed, and the cycle continues in a similar feedback loop, becoming 

even more complex when considering the differing attitudes about privacy across cultural or legal boundaries 

[18]. 

2.3.1 Privacy and Social Science 

Though privacy can be a somewhat vague notion, Margulis [19] cites two definitions of privacy that 

have made a significant impact in western nations in the late 20th century. These theories are the contributions 

of social scientists Alan Westin and Irwin Altman. We now briefly highlight these theories to show that our 

personal policy-based approach aligns with contemporary social science views of privacy. 

Westin's defines privacy as "the right of individuals, groups, or organizations to determine when, how, 

and to what extent information about them is communicated to others" which is realized by freeing oneself from 

observation by others, promoting close relationships, avoiding identification or surveillance, and limiting 

disclosure to others [19] [20]. To Westin, privacy is a dynamic process of "voluntary and temporary withdrawal 

of a person from general society" that enables personal autonomy, release from social pressures, self evaluation, 

and protected communication [19] [20]. Similarly, Altman defines privacy as "the selective control of access to 

the self' [19] [21]. To him, privacy is comprised of five dimensions: the change of interpersonal information 

boundaries over time, the disparity between desired and actual levels of privacy, the existence of a privacy 

spectrum that ranges from social isolation (when actual privacy is greater than desired privacy) to crowding 

(when desired privacy is greater than actual privacy), dependence upon inputs from others and outputs to others, 

and a hierarchical nature of privacy at individual and group levels [19]. 
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Though Westin focuses more on the end results and internal motivations of privacy and Altman 

focuses on the environmental and external motivations of privacy, together these theories involve processes of 

controlling information communicated to others and information received from others. This motivates the use of 

personal privacy policies in the smart home to manage both personal information flow (i.e. access to self) and 

control the effects outside entities can have on the smart home (i.e. boundaries to keep out external influences). 

2.3.2 Privacy and Regulation 

In recent decades, regulatory bodies, particularly in Western nations, have sought to investigate and 

codify the principles that should regulate systems that collect and use personal information. The results are 

aggregately known as the Fair Information Practices (FIP) and are widely accepted as a basis for any privacy 

aware or enabling technology. We have previously categorized various FIP representations from the 

Organization for Economic Cooperation and Development (OECD) [22], the U.S. Federal Trade Commission 

(FTC) [23], and the Canadian Standards Association (CSA) [24] into four general themes: data practice 

specification, personal consents, enforcement/safeguards, and accountability/audit [1]. In the following 

discussion "data ownef ' refers to the person about whom data is collected, "data collector" refers to the entity 

that collects and stores the data, and "data user" refers to any entity that accesses data from the collector. 

According to the FIP, data practice specification requires data collectors and data users be transparent 

about their procedures using personal data, including such information as who is making the request, what data 

is needed, who can access the data (including the data owner), for what purposes the data will be used, and how 

long the data will be stored, as well as the security precautions taken during collection and storage. Also, the 

FIP deem that changes made to a policy affecting information previously collected should be made apparent to 

the original data owners as well. In short, a data practice specification should allow a data owner to have a high 

level comprehensive knowledge about what happens to personal data so that a well-informed decision can be 

made whether or not to allow its collection. To make this decision efficiently, individuals create a list of privacy 

preferences regarding their personal data and related data practices. After this list is created, a representative 

software agent can give consent on behalf of the data owner by evaluating the data practice specification 

associated with an access request against those preferences. If they match, the information exchange is allowed 

and results in an agreement between data owners and data collectors/users about acceptable use and 

management of personal data. Enforcing these agreements then requires upholding the data practices presented 

when consent was obtained from the data owner during collection. This includes restricting access to 

appropriately authorized individuals, restricting information use to the purposes for which it was collected, 

fulfilling any obligations incurred during this process, and ensuring the proper security and accuracy of data 

during its transportation, storage, and use. Lastly, data collectors and users should be held accountable for their 

specification and enforcement of data practices. This is done in four ways: 1) giving data owners the chance to 

verify the accuracy of data practice policies, 2) allowing data owners to verify the quality and accuracy of 

personal information and correct it if need be, 3) auditing data collectors and users for compliant enforcement of 
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data practices, and 4) providing mechanisms for data owners to challenge compliance to data practice 

specifications and get complaints resolved. 

2.4 Policy-Based Management 

Policy-based management techniques have been useful for a number of distributed system domains 

including network resource management [25] and security [26]. As such, we now review common policy-

related terms, types of policies, and issue of conflicts in policies. Definitions and concepts are taken in part from 

[27] [28] [29]. A policy is a collection of rules that govern the operation of a system. These rules are created by 

one or more policy authorities and contain associations of rulings, or possible access decisions, to sets of 

subjects, entities the policy applies to, targets, the resources which are being governed, and actions, the 

operations taken by subjects on targets. Additionally, rule applicability to a request may be limited by requiring 

some set of constraints or conditions about states or attributes of the system to be true before using a rule, and 

obligations may be mandated to be carried out by the subject before, during, or after the access is granted. 

Lastly, policy terms are frequently organized into hierarchies in order to reduce the complexity in specifying 

rules. These hierarchies usually form a directory-style tree in which parent elements generalize and classify 

their children elements according to similar function, purpose, properties, or management. Using hierarchies 

reduces the complexity of specifying rules by allowing terms to be specified at higher levels of granularity, but 

may introduce an overhead as rulings may need to be distributed up or down the hierarchy as abstract rules are 

"unfolded" into concrete ones. 

One major concern in policy-based systems is that of preventing, detecting, and resolving conflicts 

within a policy or between separate policies. There are two main types of conflicts: modality conflicts and 

application specific conflicts. Modality conflicts occur when opposite rulings (i.e. allow and deny or obligate 

and refrain) are allowed for the same request which occurs because of overlapping terms (subject, objects, and 

actions). The conflicts may be a result of errors in policy specification and thus produce ambiguous or 

undefined behavior during evaluation. Application specific conflicts, on the other hand, result from incomplete 

knowledge of the system being managed (i.e. unknown or unplanned dependencies between objects, subjects, or 

actions out of the scope of the policy model). Standard examples of application specific contexts include 

conflicts of duties, resource/priority conflicts, multiple policy managers, self management, and conflicts of 

interests [30]. We discuss later how to use model checking to detect various types of conflicts in our policy 

model. 

2.5 Model Checking 

Model checking is a discipline within the field of formal methods used to verify the absence of logical 

errors in a system [32]. First, a logical model of the system behavior is created. The specification of this model 

may be symbolic, mimicking high level programming language constructs or state based, viewing a system as a 

set of states and transitions between them. In either case, the specification is converted to a state graph of the 
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system that may have an infinite number of paths or states. Next, some sort of property about the system 

behavior is specified and checked against the model's execution. There are two basic types of properties: safety 

properties, which specify that an unwanted state is never reached, and liveness properties, which specify that 

eventually a desired state is reached. When the model is executed, its state graph is traversed and compared with 

the property being checked. If the property is ever violated, the verification fails, possible resulting in an error 

trace that can be used to refine either the model or the property. The failure of a property may result from errors 

in the logic of the physical system but can also be attributed to incorrect specification or abstraction of the 

model or the property. Reducing the complexity of the model by including only the necessary system behavior 

decreases the size of the model, expedites verification, and can help this debugging process. In this work, we 

use model checking to verify the absence of modality conflicts and the correctness of policy evaluation. This 

process is described in section 5. 



8 

3. RELATED WORK 

Some work has been done in recent years to analyze privacy in ubiquitous environments and create 

privacy policy models for various aspects of the data life cycle. Two policy model paradigms that have been 

well-studied are data collection policies, specifically for the Internet, and data usage policies, specifically in 

enterprise systems. We now discuss this related work. 

3.1 Privacy Analyses in Ubiquitous Computing 

Privacy theories and FIP have been incorporated by researchers in many variations into design goals 

for privacy management. Bellotti and Sellen [33] proposed an analysis centered on feedback and control for 

collaborative media spaces. Langheinrich [34] analyzed privacy based on such implications of pervasive 

computing as ubiquity, invisibility, sensing, and memory amplification. His analysis augmented the FIPs with 

principles of anonymity and pseudonymity of personally identifiable information and device operation based on 

the proximity of data owners and users to devices. Jiang [35] suggested a privacy model that seeks to minimize 

asymmetric information flow between data owners and data collectors/users over physical, social, activity-based 

boundaries. Palen and Douhsh [36] take a similar approach based on Altman's privacy theory by viewing 

privacy as ongoing boundary negotiations between the public and private and the self and others over time. 

Hong et al. [37] suggest a privacy risk analysis approach to handling privacy that has social, organizational, and 

technical focuses. Price et al. [38] propose a high level privacy framework that allows for various types of 

uncertainty to be introduced to data and is composed of a four layer analysis: the regulatory regime users are in, 

the type of service they require, the type of data being disclosed, and their personal privacy policy. 

In contrast to these analyses, we have previously outlined an approach to privacy management based 

on controlling data at all states in its lifecycle and emphasizing privacy related internal, external, and 

environmental contexts [2], Data context concerns the subject matter of data, its accuracy, its precision, and its 

freshness. Inhabitant context refers to various states or properties of the inhabitant such as location, activity, 

financial situation, health, and personal preferences. Environment context denotes the states of the smart home 

that may influence privacy such as time, safety and security concerns, and various operational details of devices 

and services. Lastly, request context assumes most of the content of the Fair Information Practices such as who 

is using data, what is done with it, how long it is kept, etc. In [2] we suggest using separate policies for major 

states in the data lifecycle, concentrating on data collection, storage, and access. In [1], we raise issues 

associated with privacy policies and requirements for privacy in smart home systems and give a case study 

illustrating many of these issues. 

In addition to these analyses, various privacy models have been suggested in the literature, particularly 

in the areas of data collection and data usage. We now discuss the most prominent example of data collection 

privacy, W3C's Platform for Privacy Preferences, and several examples of data access models and their 

applicability to smart homes. 
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3.2 Privacy Policies for Data Collection 

The Platform for Privacy Preferences (P3P) [39] is a W3C standard for enabling protection of 

consumer information over the Internet. A P3P privacy policy is an XML-based collection of statements 

containing a list of data types being collected, the purpose for their collection, the length of data retention, a list 

of parties that have access to the data, and a high-level description of the consequences of this data collection. 

To be useful though, a P3P policy must be used in conjunction with a privacy preference specification language 

such as APPEL [40] or XPref [41]. At the client side, a P3P-enabled browser, configured with user preferences, 

requests a webpage and examines any P3P privacy policies associated with it to decide if personal information 

should be transferred via the webpage. The main contribution of P3P is its emphasis on creating machine-

readable policies that can be retrieved and viewed when a data request occurs. However, P3P suffers from 

commonly known problems of being domain specific to the Internet, lacking clear definitions of terms, not 

defining formal policy semantics, and not being linked to an enforcement mechanism. These problems result in 

not being able to specify acceptable behavior, rejecting good policies, and accepting incorrect policies [41] [42]. 

Despite these shortcomings, P3P has been suggested for ubiquitous systems by Langheinrich [43] with 

the introduction of a Privacy Awareness System in which the data practices of devices and services are 

collected and evaluated against user preferences. Though this work addresses some key issues of privacy in 

ubiquitous environments such as the energy conservation of devices and different policy announcement 

techniques, the system still suffers from the major drawbacks of P3P and associated preferences languages. 

Toward this end, Ackerman [44] identifies the need to augment P3P with context awareness for social and 

organizational environments, support for more varied data types, and assistance mechanisms to aid users in 

mediating the complexity of privacy preferences. Hong et al. [45] contribute to this goal by extending P3P with 

three new data elements: time, location, and data owner, and two new data categories: application groups and 

user groups. These works are major improvements for adopting P3P into ubiquitous and smart home 

technologies, but more research needs to be done to create a formal semantics for P3P, extend its syntax, and 

link it to enforcement mechanisms to achieve successful privacy management in smart home environments. 

3.3 Enforcing Privacy during Data Usage 

P3P can only be used to describe the data practices of websites. It does not guarantee that these 

practices are followed or that policies are enforced. Therefore, in addition to P3P, some sort of enforcement 

mechanism must be used. Several such privacy models already exist [46] [47] [48] [49] [50] [51] [56], but they are 

only logical specifications that neglect to address the binding of resources to the policy space, often lack proper 

support for contextual needs of smart home privacy, and have not been formally verified in any way. 

The InfoPriv model [46] [47] is an early privacy model for analyzing information flow within an 

organization. It is a graphical model in which vertices represent data users as well as data objects, and edges 

represent some type of information flow or information flow constraint. Graph analysis can then be used to 
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determine whether information is allowed or prohibited between vertices and to isolate and resolve conflicts. 

The model has the advantage of being very simple to understand, but does not include multiple information 

flows, purpose, or contexts and is restricted to an intra-organization analysis. 

A formal task-based privacy model is proposed in [48] that focuses on the FIP notions of purpose 

binding between collection and access and restricting data processing to necessary tasks. In this model, data 

objects and system tasks are both associated with purposes, and a user accesses data by way of a system subject 

(process) that has a set of authorized tasks. An access is allowed if it is necessary to the user's current task, if 

the user is authorized to perform the current task, and the data object's purpose and the task's purpose agree. 

This model yields a promising formalization of purpose binding, but it does not include provisions for 

contextual factors during access, and its notions of tasks and subjects are vague. The Privacy-Aware Role-

Based Access Control model [49] extends the task-based model in [48] including purpose hierarchies, 

obligations, and conditions in its model, however, it still lacks a robust notion of environment and occupant 

contexts. 

The Purpose-Based Role Access Control model [50] organizes users, purposes, and data types into 

hierarchies. Users may assume conditional roles based on attributes specified during role assignment, and data 

types/objects are associated with a both a list of allowed purposes and a list of prohibited purposes. These sets 

of purposes are then inherited in various ways along the data hierarchy. In order to solve conflicts caused by this 

inheritance of purpose over data types, the authors suggest separating purposes into strong purposes, which 

cannot be overridden by data subtypes, and weak purposes, which can be overridden by data subtypes. Though 

the concept of conditional roles is useful, purpose overriding does not appear to be a very intuitive solution to 

conflict management. Also, this access control model does not include notions of contextual rules or control of 

environment objects. 

IBM's Enterprise Privacy Authorization Language (EPAL) [51] and the Enterprise Platform for 

Privacy Preferences (E-P3P) [52] are high level languages for the internal enforcement of a company's privacy 

policies. Each enterprise defines its own data users, data types, actions, purposes, conditions, and obligations, 

with users, data types, and purposes arranged in hierarchies. Subsets of these policies have been shown to 

support operations such as combination, union, intersection, refinement, and equivalence [53] [54], but the 

model lacks some flexibility in request specification [55]. The advantages of this model are the hierarchical 

grouping of elements, well-defined processing/access logic, and a supporting policy algebra. However, this 

model also does not include a robust notion of context, and its self-definition of terms is a limiting factor for 

enterprise cooperation. 

The InfoSpace model in [56] [57] that approaches privacy from a social science perspective. Authors 

Jiang et al. introduce a principle called minimum asymmetric information flow, which seeks to balance the 

information that flows between data owners and data collectors/users. Central to this model are repositories of 

personal data called "information spaces" which are physical or logical collection of data objects delineated by 

location, social, or activity boundaries. In this model, all data objects are also described according to their 
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accuracy, confidence, and precision (collectively called data sensitivity) and are assigned authorized spaces by 

their owner(s). The access policy is called a privacy tag, and as data objects are moved from space to space, 

their privacy tags move with them, allowing a trusted infrastructure to detect and correct unauthorized boundary 

crossings. This model portrays a very advanced notion of context, including data sensitivity, location, activity, 

and social settings, but does not clearly include any notion of purpose bindings. Also, it is not clear how to 

integrate information spaces beyond a single organizational unit. 
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4. SMART HOME PRIVACY POLICY MODEL 

The privacy models discussed in the previous section regulate access to resources by using abstract 

policy concepts such as objects, purposes, users, roles, conditions, and obligations. This level of abstraction, 

though useful for reasoning about policies, makes instantiating and verifying these policies difficult in real 

world situations and applications. Also, with the exception of the InfoSpace model, these models do not 

incorporate robust notions of contextual information or address the control of actuator effects on environment 

objects and devices. Lastly, none of these models explain how to bind physical resources to the abstract policy 

space, which is necessary to implement the policy models in a real system. To address these issues, we propose 

a privacy model based on the service-oriented computing paradigm, where services are software artifacts that 

control zero or more devices, interact with each other via invocations, and may be remotely monitored or 

operated. As previously noted, some approaches [48] [49] do model software operations by using the concepts 

of subjects and tasks, where subject is a software entity that performs an operation, and a task is the goal of the 

actual operation performed. However, these approaches do not explain any procedure to establish the mapping 

between software executables and the subject and task sets. We now show how our service-oriented privacy 

model addresses these limitations. We first discuss several environment assumptions we have made and the 

high-level architectural components necessary to support our policy evaluation process. Then, we present the 

privacy policies in our model and their evaluation and discuss possible conflicts that may occur in the policy 

specifications. 

4.1 Assumptions 

We make several assumptions to reduce the scope of our privacy model. First, we base our model on a 

centralized service-oriented architecture, which we define as one in which service invocation, authorization, and 

execution are controlled by a central authority. Modeling a centralized SOA reduces the complexity of our 

privacy policy model by allowing a single trusted central set of components to make all service invocation 

decisions instead of having separate evaluation points and needing to distribute and coordinate policies among 

them. Though centralization is common to privacy policy literature discussed earlier, there are obvious 

scalability and reliability risks as more devices are managed, more data is produced, more services are used, and 

larger policies are created. Second, we assume a fault-free, closed, secure environment in which there are no 

covert channels. That is, all devices and services are known to the system, and all service descriptions have 

been authenticated and verified for accuracy. Though this may be an unrealistic assumption, it currently affords 

us the ability to trust all services and their invocations which greatly simplifies our model. Third, we assume 

that service invocation request, evaluation, and execution, happen as (near) instantaneous time periods. Having 

instantaneous service invocation and evaluation means that the context under which a request enters the system 

is very likely to be the same context in which the evaluation and service execution occur. Therefore, we know 

that a context-based rule applies the same way throughout a service execution. On the other hand, continuous 
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operations (like media streaming for example) occur over periods of time in which the system context may 

change. This makes contextually authorized accesses difficult to evaluate because there is no single system 

context that can be decisively associated with an operation or evaluation. It may be possible, however, to 

approximate continuous operations as a set of repeated discrete invocations (i.e. a sequence of image requests 

versus streaming), but this means that each individual request needs to be evaluated, which would increase 

system overhead. Some sort of caching-style optimization schemes may reduce this overhead. We plan to 

address the extension of our model to non-constant service executions, as well as the porting of our privacy 

model to a decentralized environment and addition of security considerations in future work. 

4.2 Privacy Policy Model Architecture 

To introduce our privacy management system, we briefly present a high level architecture that helps 

conceptualize our policy model. The components are described in terms of the features they provide that are 

used by the privacy management system. A summary of these components can be found in figure 1. 

Service Registry Policy Store Context Manager Privacy Manager 

-stores service 
descriptions and binding 
information 

-returns this information 
to the Privacy Manager 
when requested 

-stores the privacy 
policies in the system 

-returns a set of rules 
applicable to a given 
request when queried by 
the Privacy Manager 

-retrieves context data 
from appropriate services 
and supplies it to the 
Privacy Manager 

-receives service 
invocation requests 

-coordinates other 
components to 
evaluate a request 

-returns the access 
decision 

Figure 1 Major components of our policy architecture 

4.2.1 Privacy Manager 

In assuming a centralized SO A, we acknowledge the existence of a core component or set of core 

components that intercept and authorize service invocations. We refer to this set collectively as the Privacy 

Manager. In our architecture, the Privacy Manager is the coordinator of the evaluation process. It receives 

service invocation requests, calls other components, and makes the final decision whether the access will occur. 

The specific request evaluation algorithm we use will be described in greater detail in section 4.5. 

4.2.2 Service Registry 

The Service Registry is a standard component of any SOA that stores the description and binding 

information for installed services. This information is published in the Service Registry so applications and 

other service objects can query for services against some criteria, bind to them, and invoke them. We need such 

a component to store the publicly available methods of a smart home service. When one service wants to invoke 
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an operation of another service, the request is passed to the Privacy Manager. The Privacy Manager may then 

retrieve any supporting information related to service descriptions from the Registry. The specific structure of 

service descriptions in our model is discussed in section 4.3.5. 

4.2.3 Policy Store 

Once policies are created, they must be stored in the system to evaluate future service invocations. The 

Policy Store component is responsible for this. Though this component would be in charge of keeping current 

versions of policies as well as past versions for policy traceability, for our current work, we assume that once a 

privacy policy is created, it is static and does not change. We plan to address the modeling of changing polices 

in future work. When the Privacy Manager needs the sections of a policy that pertain to a service request, it 

queries the Policy Store for that information. Because the system is assumed to be fault-free and secure, we trust 

the results retrieved. 

4.2.4 Context Manager 

The final architectural piece, the Context Manager bridges the gap between the dynamic nature of 

system execution and the policy evaluation. When run-time information is needed from the system to evaluate a 

context, it is the Context Manager's responsibility to retrieve this information from the appropriate 

component/service. In this work, we assume that the system allows the Context Manager total and reliable 

access to data and that the time cost of gathering of this data is negligible. 

4.3 Privacy Policy Model Terms 

Before describing the policies in our model, we describe and define the terms that are present in the 

policies. We first discuss the two main resources over which privacy rules are written: data items and 

environment objects. Then we discuss data users (i.e. individuals, organizations, or enterprises) and their access 

purpose. After that, we describe how these entities are represented in service descriptions, and finally, we define 

the policies in our privacy model. The dependencies between basic model entities and services are shown in 

figure 2. 
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Methods 

Figure 2 Dependencies of terms and services. 

4.3.1 Data Items and Data Types 

The first basic resource controlled by our privacy system is data. Sensors observe information about 

the home environment or inhabitants, and corresponding services allow this information to be recorded by the 

system and accessed by other services. A data item is the physical quantity being measured. Data items have 

values that are produced by the sensors. These values must fall inside a numerical or symbolic domain and may 

vaty in accuracy and precision. Data items also have types that are an abstract classification of the data item. 

Having access to data values give software systems and their corresponding users knowledge about the state of 

the home or inhabitant. Though this information is needed to customize the operation of the services in the 

home, its access by certain users could violate an inhabitant's privacy wishes. Therefore, a data item or a data 

type is privacy sensitive if, for any value of that data type under any circumstance, the inhabitant wishes to 

restrict its possession by any party. Examples of data types that individuals usually consider privacy sensitive 

are identity /contact information, location, activity, health, financial status, and personal preferences. Existing 

literature [39] [48] [51] [49] [50] arranges datatypes into hierarchies in which parent data elements generalize 

their children. Data items are then mapped to a leaf node of the hierarchy. We follow this approach. 

Definition 1: A Data Type Hierarchy is a 4-tuple <T, T', TH, T'H>, where 

1. T is the set data items possible to be sensed by any smart home. 

2. T is the set of all abstract data types that organize data items in T. 

3. TH: T —>T ' is a function that associates a data item to its type. 

4. T'H: T'—> T' is a function that maps a child data type to one parent data type. 
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4.3.2 Environment Objects and Object Types 

The second basic resource used by smart homes, which is not addressed in current privacy policy 

literature, are the environment objects controlled by the house, like doors, windows, appliances, etc. Actuators 

control these objects, and services control the actuators. Thus, other services (and their corresponding users) can 

act upon objects in the smart home space by invoking those services that control objects and exert some 

measure of external control over the internals of the smart home. This loss of control of the home may result in 

situations that violate inhabitant privacy, either by increasing the sensitivity of data collected or by exploiting a 

conflict of interest for illicit gain. For example, invoking service that turns a light on next to a video camera 

increases the clarity of the image and the resulting sensitivity of the video, and invoking a service to open a 

window in the winter profits the electrical company because the heater must run more. Thus, a given 

environment object is privacy sensitive if, under any circumstance, the inhabitant wishes to restrict its control by 

any party. 

In terms of restricting control of environment objects, there are several options of granularity to choose 

from. First, we could attempt to model the states of an object and create privacy policies based on these states. 

However, this option would require policy authors to familiarize themselves with all the states of all objects 

before writing knowledgeable policies. This would be too much work for inhabitants. Second, we could model 

the notion of any control of an object. Then, only the fact that an environment object transitions to some state 

needs to be known, the actual state space of the object would be irrelevant. This would make specification 

simpler and requires less knowledge of objects but would give less accurate control of the home. We opt to 

model the second option for the ease of specification and define an Object Type Hierarchy as follows: 

Definition 2: An Object Type Hierarchy is a 4-tuple <0, O 0H, O . where 

1. O is the set of all environment objects available to be controlled by any smart home. 

2. () ' is the set of all the object types that categorize object in (). 

3. ()\\: O —>0 ' is a function that maps an environment object to its type. 

4. O 'H: O > O ' is a function that maps a child object type to one parent object type. 

4.3.3 Data Users and Domains 

Services may be deployed and used inside the smart home on behalf of various organizations, 

enterprises, or individuals. For example, a location tracking system in the house may be monitored by the police 

department (an organization), a private security company (an enterprise), a caregiver, or a family member 

(individuals). We refer an entity that receives data from a smart home service as a data user. We let each data 

user be logically classified into a domain. Existing work [48] [49] [50] [51] models data users with hierarchies, so 

we follow this convention as well. However, our scope of a data user is larger than that of existing works. 

Whereas existing works focus only on modeling data users as roles inside an enterprise, we choose to model the 

enterprise itself us a single data user, along with other organizations and important individuals, because these 
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groups are the entities which will create and access services. Thus, our notion of data users is more inclusive 

than that of other works. We define a domain hierarchy as follows: 

Definition 3 : A Domain Hierarchy is a four-tuple <D, D DH, D 'H> 

1. D is the set of all data users of any smart home. 

2. I) ' is the set of all the domains of the data users. 

3. DH: D —> D ' is a function that maps a data user to its domain. 

4. I) I) » /J ' is a function that maps a child domain to one parent domain. 

Note that the set of data users of any particular smart home consists of two sets of users. Organizations 

and enterprises will commonly deploy and use services in multiple smart homes on the basis of a professional 

relationship with the inhabitant, usually defined by compensation for some service. However, most users that 

interact with the smart home share some sort of personal relationship with an inhabitant, such as being a family 

member or a trusted friend. We note that the a single hierarchy can be maintained for the first set of users but 

that each inhabitant must maintain the portion of the data user hierarchy corresponding to the second set. We 

plan to further address the management of domain and other hierarchies in future work. 

4.3.4 Purposes 

As mentioned in Fair Information Practices, purpose refers to the reason or goal of a data access and 

purpose binding refers to ensuring the purpose of the use of data agrees with the purpose of its collection. 

Current privacy literature [39] [43] [48] [49] [50] [51] only applies purpose binding to data; however, since we also 

desire to regulate accesses to environment objects we must apply a purpose binding to them as well. Since we 

are using a service-oriented environment and services are placed in smart homes to address some particular 

need, the purposes of data items and environment objects are defined relative to the goals of service that 

uses/controls them. Some lower level services may have a single guiding purpose, for example the sensing of a 

data item, but some higher level services may have multiple purposes, such as the sensing and processing of a 

data item and the automated control of an environment object. Unfortunately, there is no standard mapping for 

purpose to a software service. We do note, though, that this purpose-service mapping is dependent upon how 

modular a service is. A cohesive, well-defined service will have fewer purposes than a non-modular service. 

Also, it is unclear how a method of a service helps accomplish a purpose. Do all methods contribute to a single 

main service purpose, or do methods themselves correspond to different purposes? In our current model, we 

assume that services are created modularly with a small number of purposes and that all methods of a service 

fulfill the service purposes. We plan to investigate purpose relationships between services and methods in future 

work, and, like existing approaches, model purposes with a hierarchy. 

Definition 4: A Purpose Hierarchy is a 4-tuple <P, P PHi P 'H>, where 
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1. P is the set of specific purposes of smart home services. 

2. P' is the set of general purposes of smart home services. 

3. PH: P —> P ' is a function that maps a specific purpose to a general purpose. 

4. P 'H: P ' P ' is a function that maps a child general purpose to a parent general purpose. 

4.3.5 Services 

Services are the software artifacts placed in the smart home on behalf of some data user(s) to address 

some sort of need. When they are installed in the smart home, descriptions of their publicly available methods 

are stored in the Service Registry so they can be searched for and invoked by other services. Since each method 

may access some set of data items and some set of environment objects, it is service/method invocations that 

cause data flow among data users and manipulations of environment objects to occur. In order to govern service 

invocations, we must know what service's purpose is, what data is given as input to the method invoked, what 

data is returned as output, and what environment objects are accessed by this method. Therefore, we assume 

that service descriptions are annotated in the following manner. 

Definition 5: A method description m is a 4-tuple <mid, TIN, TOUT, 0CON>, where 

1. mid is an unique identifier, relative to a service, for the method. 

2. T,y CI T is the set of input data items to the method. 

3. TOUT ç Tis the set of data items that are returned by the method. 

4. OCON ç O is set of the environment objects that are controlled by the method. 

Additionally, we require every service to have at least one data user, and assume that once the service 

is installed, the data users and purposes for that service remain static. 

Definition 6: A service description s is a 4-tuple <sid, DBND, PBND, M >, where 

1. sic/ is a globally unique identifier for this service. 

2. DBND ç D is the set of data users bound to this service. 

3. PBND c Pis the set of specific purposes bound to the service. 

4. Mis a set of method descriptions of the service. 

Notation 1: We may also want to refer to a component of a service or a method of that service. Given a 

service description s and a method description m: 

1. domains(s) denotes the set of data users of service s. 

2. methods(s) denotes the set of methods of service s. 

3. purposes(s) denotes the set of purposes bound to service s. 

4. data_in(s, m) denotes the set of input data items to method m of a service s. 
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5. data out (s, m) denotes the set of output data items of method m of a service s. 

6. objects(s, m) denotes the set of environment objects controlled by method m of service s. 

4.4. Privacy Policy Model Definition 

In the previous section we explained how services are described in our privacy model. In this section, 

we investigate how to construct privacy policies that control the flow of data and control the usage of 

environment objects with respect to the contextual conditions inherent to each. In our model, we use 

authorization policies that take rulings from the set {allow, deny} and have a default ruling from the same set 

that is used if no rule applies to a request. We first address how the presence of services influences the 

availability of policy terms and the contexts available for privacy rules. We then describe two privacy policies, 

a data privacy policy and an object privacy policy, that together specify inhabitant privacy in a smart home. 

Figure 3 shows the dependencies of terms in policies. 

Context 
Condition 

Rulings 

Object 
Privacy Rules 

Data Privacy 
Rule 

Object 
Privacy 
Policv 

Data Privacy 
Policy 

Data Type 
Hierarchy 

Domain 
Hierarchy 

Purpose 
Hierarchy 

Object Type 
Hierarchy 

Figure 3 Dependencies of terms and policies. 

4.4.1 Availability 

Before discussing policy structure, we want to note that the services inside the smart home dictate what 

data types are in use in the smart home as well as what environment objects are controllable in the home. As 

more services are added, more data types become available to be used by the system and more environment 

objects can be controlled. Conversely, when a service is removed, it is possible that a data type or object type 

may no longer be available to the smart home. This means that the services inside the smart home dictate what 

policies can be created, and what policy rules are valid for a given smart home. We call this service-term 
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coupling availability and relate several definitions to it. Let S be a set of service descriptions of all services 

installed in a smart home. 

Definition 7: We define the set of available domains in the smart home DAV = |^J domains(s) . 
SGS 

Definition 8: We define the set of available purposes in the smart home PAV = purposes(s) . 
SGS 

Definition 9: We define the set of available data items in the smart home 

7> = U Udata_out(s,m) . 
SGS mGmethods(s) 

Definition 10: We define the set of available objects in the smart home 

0AV = (J (J objects(s,m). 
SGS mGmethods(s) 

4.4.2 Contextual Conditions 

Both data and object privacy policies contain contextual conditions, which are mechanisms to make 

rules apply to certain situations. Context conditions are expressed as a finite prepositional logic formula of 

clauses containing conjunctions and disjunctions of predicates over variables representing available data items. 

The fact that these clauses are constructed over data types has three important implications. First, the system 

requires there to be a sensing service for the variable in question. Second, the system and inhabitant needs to 

know the possible values of these quantities so that meaningful conditions can be made. And, lastly, the system 

needs reliable access to these variables to be able to determine if the context holds at the time of an access 

request, which is acceptable since the Privacy Manager is a trusted component. 

Definition 11: A contextual clause, <I>. is defined as a predicate <x op literal> where 

1. x is a variable over some data item in the set of available data items in TAV, 

2. op is a binaiy operator in the set {=, <>,<>}, and 

3. literal is some constant in the numerical domain of t. 

Definition 12: A contextual condition, c , a finite prepositional formula over contextual clauses, is 

defined as c := <I> | c , AND c 21 c \ OR c 2, where c \ and c 2 are also contextual conditions 

4.4.3 Data Privacy Rules and Policy 

A data privacy policy is a collection of rules that govern the use of privacy sensitive data by allowing 

inhabitants to authorize who, how, and under what conditions their data is used. The information necessary for 

this decision to be specified and enforced is given in service descriptions. However, enumerating over a list of 
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services and creating a set of rules for each individual service would be a very tedious task. Therefore, we 

specify data privacy policies over the domain, data, and purpose hierarchies. A default ruling is applied to a data 

request if no policy rules have been explicitly created. 

Definition 13: A data privacy policy, PDATA, is a 5-tuple <DAV, PAV, TAV, RD, dr > where 

1. is the set of all available domains in the smart home. 

2. PAV is the set of all available purposes in the smart home. 

3. TAV is the set of all available data types in the smart home. 

4. RD is a non-empty set of data privacy rules. 

5. dr is a default ruling from the set {allow, deny}. 

Definition 14: A data privacy rule is a 5-tuple <r, d, t, p, c > where 

1. r is a ruling from the set {allow, deny}. 

2. d is an available domain in DAV. 

3. t is an available data item in TAV. 

4. p is an available purpose in PAV. 

5. c is a contextual condition over data items in TAV. 

The meaning of a rule <r, d, t, p, c > is "ruling r is applied when services on behalf of domain d 

attempt to access data type t for purpose p and the context c evaluates to true." A small example of a data 

privacy rule is "Deny video data to all domains for monitoring purposes when I am in the bathroom". Thus, if 

any service requests for monitoring video data when the occupant's location is in the bathroom, the request is 

denied. The aggregate meaning of the rules in a data privacy policy depends on the evaluation algorithm used. 

We discuss ours in Section 4.4. 

4.4.4 Object Privacy Rules and Policy 

Similarly to a data privacy policy, an environment object usage policy is a collection of rules is also an 

authorization policy governing how, why, and under what conditions domains use objects. Rules are written 

over domain, purpose, and object hierarchies, and a default ruling is also applied to a request if no other object 

policy rule can be. 

Definition 15 : We define an environment object privacy policy, P0BJ, as a 5-tuiple <DAV, PAV, 0AV, R0, 

dr> where, 

1. is the set of all available domains in the smart home. 

2. PAV is the set of all available purposes in the smart home. 

3 .  ( )„•  i s  the  se t  of  a l l  avai lable  object  types  in  the  smar t  home.  
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4. R0 is a non-empty set of data privacy rules. 

5. dr is a default ruling from the set {allow, deny}. 

Definition 16: An object privacy rule is a 5-tuple <r, d, p, o, c > where 

1. r is a ruling from the set { allow, deny}. 

2. d is an available domain in DAV. 

3. p is an available purpose in PAV. 

4. o is an available object type in 0AV. 

5. c is a contextual condition over data items in TAV. 

The meaning of an environment object rule <r, d, o, p, c > is "apply ruling r when services from 

domain d access object o with purpose p and the context c holds." An example of an object privacy rule is 

"allow my family members to call me (use my phone) for communication after 8 p.m.". Again, the meaning of 

an object privacy policy depends on the evaluation algorithm used. Ours is discussed in the next section. 

4.5 Request Evaluation 

A service request comes in the form of one service method invoking another service method. We call 

the service that initiated the request the source service, the method that initiated the request the source method, 

the service that received the request the target service, and the method to be invoked as the target method. We 

similarly define source and target data users, source and target purposes, etc. After receiving an invocation 

request, the authorization process is divided into four phases: decomposing the service request to atomic 

requests, determining the various privacy rules that apply to each atomic request, evaluating the contextual 

conditions of applicable rules, and making a global evaluation decision based on these rules. The overview of 

this process is shown in figure 4. 
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Figure 4 Request evaluation process 

4.5.1 Service Request Decomposition 

When a service request is received by the Privacy Manager, it contains the source service and method 

and target service and method. 

Definition 17: We define a service invocation request as a four-tuple <sidb midh sid2, mid2> where 

1. sid, is the source service id 

2. mid] is the source method id. 

3. sid2 is the target service id. 

4. mid2 is the target method id. 

In keeping with our goals of controlling the data flow and restricting object usage, we have four 

separate checks to make for a given request: 

Check #1 (Data-to-Target): Are the data types in the target method arguments allowed to flow to 

the target service's domains under the current system context? 

Check #2 (Data-to-Source): Are the data types in the return parameter of the target service 

allowed to flow to the source service's domains under the current system context? 
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Check #3 (Object-by-Target) : Are the object types manipulated by the target method allowed to be 

controlled by the target service's domains under the current system context? 

Check #4 (Object-by-Source): Are the object types manipulated by the target method allowed to 

be controlled by the source service's domains under the current system context? 

Note that the objects controlled directly by the source service are excluded from this evaluation 

process. This is because for the source method to be executing, it must have passed a previous evaluation. First, 

the Privacy Manager contacts the Service Registry to obtain the descriptions for sid, and sid2. Then the Privacy 

Manager decomposes the descriptions into data access requests, corresponding to Check #1 and Check #2, and 

object access requests, corresponding to Check #3 and Check #4. Since the service description notation uses 

sets that may contain multiple elements of each term, we call these access requests a request set. An element of 

a request set has only one term of each type and is called an atomic request. From a service invocation request, 

<sidb midb sid2, mid2> and associated service/method descriptions <Si, in,>. and <s2, m2> we formally 

decompose to four request sets and four types of atomic requests. 

Definition 18: The Data-to-Target request set, RSDT, corresponding to check #1, authorizes the data 

flow to the target service, so its request set contains domains and purposes of the target service as well 

as the set of input data types of the target method. RSDT = D x P x T . where 

1. D = domains(s2) is the set of data users of the target service 

2. P purposes(s2) is the set of purposes of the target service 

3. T = data_in(s2, m2) is the set of input data items to the target method. 

Definition 19: The Data-to-Source request set, RSm, corresponding to check #2, authorizes data flow 

back to the source service, so its request set requires the domains and purposes of the source service as 

well as the set of data types returned by the target method. RSDS = D x P x T where 

1. D domains!s,) in this case is the set of data users of the source service. 

2. P = purposes(si) in this case is the set of bound purposes of the source service. 

3. T = data out(s2, m2) in this case is the set of output data items of target method. 

Definition 20: An atomic data request is therefore a triple <d, p, I where, depending on the request 

set it was derived from, 

1. d G D is either a single data user of the target service or a single data user of the source 

service. 
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2. p G I' is either a single purpose bound to the target service or a single purpose bound to 

the target service. 

3. i e T is either a single input data item of the target method or single output data item of 

the target method. 

Definition 21: The Object-by-Target request set, RS0T, corresponding to check #3, authorizes object 

control by the target service, so its request set contains domains and purposes of the target service as 

well as the set of controllable objects of the target method. RS0T = DXP XO where 

1. D = domains(s2) is the set of data users of the target service. 

2. P purposes(s2> is the set of purposes bound to the target service. 

3. O = objects(s2, m2j is the set of objects controlled by the target method. 

Definition 22: The Object-by-Source request set, RSos authorizes object control by the source service, 

so its request set requires the domains and purposes of the source service as well the set of controllable 

objects returned by the target method. RSos =DxP xO where 

1. D domains!s,) is the set of data users of the source service. 

2. P = purposes(si) is the set of purposes bound to the source service. 

3. O = objects(s2, m^ is the set of objects controlled by the target method. 

Definition 23 : An atomic object request is a triple <d, p, o> where, depending on the request set it was 

derived from, 

1. d G D is a single data user of the target service or a single data user of the source service. 

2. p G P is a single purpose bound to the target method or a single purpose bound to the 

source method. 

3. o G 0 is a single object invoked by the target method. 

4.5.2 Determining Applicable Rules 

After the service request is decomposed into the four sets of atomic requests, the Privacy Manager 

must retrieve the privacy rules that apply to each atomic request. A privacy rule applies to an atomic request if 

all the terms in the rule are hierarchically equivalent to or ancestors of the corresponding terms in the atomic 

request. That is, an atomic data request <d, p, t> has the applicable rules which are specified with d or an 

ancestor domain of d, p or an ancestor purpose of p, and tor an ancestor data type of t. Similarly, for an atomic 

object request <d, p, o>, the applicable rules set are the rules in the object policy that are specified with d or an 

ancestor domain, p or an ancestor purpose of p, and o or an ancestor object type of o. 
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Notation 2: For a given hierarchy H, and an element h G H, the set of ancestors of h denoted 

ancestors (H, h) = { h ' \ h ' is an element on the path from the root of H to h, inclusive}. 

Definition 24: For a given atomic data request rq = <d, p, t and a data policy PDATA we define the 

r u / e  s e f  f o r  d e n o t e d  f > ,  a s  {  < r ,  d f c  >  |  ( < r ,  

( f , f ,  c  >  G  A  ( ( 7 '  G  a n c e s t o r s ' ^  A  ( p '  E  a / z c a s f o r s ' ^  A  ( f  G  } .  

Definition 25: Similarly, for a given atomic object request rq = d, p, o> and corresponding data 

policy PQBJ we define the applicable rule set for rq in P, denoted AR(rq, P0BJ) as { <r, d', p', o', c > 

( <r, (fo', c > G A E amcasforsY^) A (p' G A (b' G 

4.5.3 Evaluating Contexts 

After the Privacy Manager retrieves the applicable rules for each atomic request, it must determine 

which of these rules have contexts that are enabled in the system. To do this, the Privacy Manager must make 

requests to the Context Manager for current values of all the context variables contained in the conditions of the 

applicable rules. If when the quantities are received, the context condition evaluates to true, the rule is 

considered contextually enabled. Otherwise, the clause evaluates to false and the rule is considered contextually 

disabled. 

Definition 26: Let r be a privacy rule, and let c be a contextual condition for rule r. 

Also, let assign(c ) be an assignment to the context variables retrieved for c from the Context 

Manager. Then, 

1. Enabled(r) <-> (assign(c) = true) 

2. Disabled(r) <-> (!Enabled(r)) 

Definition 27: Let rq be an atomic request and P its corresponding policy, the enabled rule set, denoted 

ENABLED(rq, P) is the subset of applicable rules for rq in P which have contextual conditions that are 

evaluated to true, and the disabled rule set, denoted DISABLED(rq, P), is the subset of applicable rules 

for rq in P which have contextual conditions that are evaluated to false. Then, 

1. ENABLED (rq, P) = {r \ rG AR(rq, P) A Enabled(r)} 

2. DISABLED (rq, P) = {r \ rG AR(rq, P) A Disabled(r)} 

4.5.4 Making a Decision 

After determining the enabled and disabled rule sets for atomic requests, the Privacy Manager must 

map the information to a global decision. First, it evaluates each atomic request. 
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Definition 28: Let rq be an atomic request and P be the corresponding policy, an atomic authorization 

decision is a function 

TATOMIC: <rq, ENABLED(rq, P), DISABLED(rq, P)> —> {allow, deny}. 

Next, the Privacy Manager collects all the rulings for atomic requests and evaluates them to reach a 

global decision. 

Definition 29: Let {allow, deny}11 be the set of local rulings returned from evaluating all atomic 

requests, where n = |RSDT|+ |RSDS| + |RS0T| + |RSOS|- Then the global authorization decision is a 

function 

TGLOBAL: {allow, deny}11 {allow, deny}. 

In our Privacy Manager, the authorization semantics we employ is that the allow decision implies that 

all applicable allow rules for all atomic requests are enabled and all applicable deny rules for all atomic requests 

are disabled. That means a deny decision implies either some applicable allow rule for some atomic request is 

not enabled or some applicable deny rule for some atomic request is enabled. A default ruling is only used when 

evaluating an atomic request with no applicable rules or applicable rules with only disabled deny rules. 

Other semantics we could have chosen could be the first-available rule method, which makes a 

decision based on the ruling of the first enabled rule. However, the meaning of a policy would then depend on 

the order the applicable rules are written, sorted, or contextually evaluated. On the other hand, our semantics 

addresses the presence of multiple applicable rules by essentially conjoining all context conditions. This ensures 

that any sort of rule ordering does not change the meaning of the policy. Figure 5 shows our algorithm for 

evaluating a service invocation. 
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EVAL_ATOMIC (Request r, Policy p) 
{ 

//Determine applicable rules (obtain from Policy Store) 
1. Let AR = set of rules applicable to r in P 

//Obtain and evaluate contexts from Context Manager 

//Allow if all allow applicable rules are enabled and all 
//applicable deny rulings are disabled 
2 . If ( (F0RA1L(i in AR) 

((ruling[i] == "ALLOW") AMD enabled(i)) OR 
((ruling[i] == "DENY") AMD ! enabled(i)))) 

return ALLOW 

//Deny if there is an allow rule disabled or a deny rule enabled 
3. Else if ( (EXISTS (i in AR) such that 

((ruling[i] == "ALLOW") AMD ! enabled(i) ) OR 
((ruling[i] == "DENY") AMD enabled(i))) 

return DENY 

//Otherwise, apply the default ruling (which is ALLOW or DENY) 
4. Else if ((AR is empty) OR 

(FORALL(i in AR) (rulingfi] == "DENY" AMD ! enabled(i) )) ) 
return DEFAULT RULING from P 

EVAL_SERVICE_INVOCATION(ServiceInvocation s, DataPolicy dp, Obj ectPolicy op) 
{ 

// Resolve service/method descriptions (from Service Registry) 

//Store local evaluations in a set 
1. Let Results = {} 
2. Let RSdt = set of atomic requests for Check 1 
3. Let RSds = set of atomic requests for Check 2 
4. Let RSot = set of atomic requests for Check 3 
5. Let RSos = set of atomic requests for Check 4 

(Data-to-Target) 
(Data-to-Source) 
(Obj ect-by-Target) 
(Obj ect-by-Source) 

//Evaluate each atomic request and collect results 
6. FORALL (atomic request r in RSD T)  

Results = Results U EVAL_ATOMIC(r, dp) 
7. FORALL (atomic request r in RSD S)  

Results = Results U EVAL_AT OMIC(r, dp) 
8. FORALL (atomic request r in RS0 T)  

Results = Results U EVAL_AT OMIC(r, op) 
9. FORALL (atomic request r in RSO S)  

Results = Results U EVAL_ATOMIC(r, op); 

//Deny if any atomic request is denied 
10. If DENYE Results 

Return DENY 
11. Else Return ALLOW 

Figure 5 Evaluation procedure for a service request invocation 
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4.6 Possible Policy Conflicts 

As with most policy-based systems, it is possible to have conflicts within or between policies. 

Conflicts may arise from a specification error and introduce inconsistencies or inadvertent side effects on 

system operations. Therefore conflicts need to be detected and resolved. We have identified several types of 

possible conflicts that may be present in our policy model: rule unsatisfiability, modality conflicts at the atomic 

request level, modality conflicts at the request set level, and modality conflicts at the service invocation level. 

We now discuss how these conflicts manifest themselves and their effects on policy evaluation. 

4.6.1 Conflict #1: Unsatisfiability of Rule Contexts 

Remember that rule contexts are clauses of predicates over various properties of the inhabitant or 

environment intended to restrict the manner in which a privacy rule is applied. It is conceivable that a context 

could be erroneously specified in such a way that it can never be evaluated to true. For example, the condition 

((day = Friday) AND (day = Saturday)) is not a satisfiable context. If the context can never be satisfied, then the 

associated privacy rule can never be enabled. Such a rule not only misleads an unaware policy author, but also 

creates processing overhead because it may be returned in queries and cause context variables to be retrieved 

and expressions evaluated. Also, using our evaluation semantics, if the unsatisfiable rule is an allow rule, it 

could result in the unwarranted denial of any request that matches the rule. 

4.6.2 Conflict #2: Modality Conflicts in an Atomic Request 

Modality conflicts as explained earlier arise from having the same subjects, targets, and actions in the 

same policy with different rulings. However, in our system these conflicts are a slightly different because we 

include purpose, contextual conditions, and hierarchies of terms. Given two rules in the same policy that apply 

to an atomic request, a modality conflict is possible if three conditions are met. First, the two rules must have 

opposing rulings. Second, the rules must be applicable at the same time, which only occurs if all corresponding 

basic terms (i.e. not rulings or contexts) have a common descendant leaf node in their respective hierarchies. 

Third, the context of one rule must be a subset of the context of the other. Whenever the "smaller" context is 

enabled the "larger" one will be enabled as well causing these rules to always cancel each other out. This type 

of conflict thus results in the perpetual denial of the atomic request, as well as any service invocation that 

contains that request, when the stricter context is satisfied. 

4.6.3 Conflict #3: Modality Conflicts in a Request Set 

Similarly, service descriptions can contain multiple data users, purposes, data types, or objects. When 

this happens, service invocations are decomposed into request sets which consist of more than one atomic 

request. It may be possible that, within the scope of this request set, a rule applied to one atomic request is 

always evaluated at the same time as an opposing rule in another atomic request. The conditions for this type of 

modality conflict are slightly different than before. Again, the rulings must be opposite, and the context of one 
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rule must be a subset of a context of the other rule. However, instead of the rules having to be applicable to the 

same atomic request, they can be applicable to any atomic request generated from the same request set. 

Whereas modality conflicts at the atomic request level can be detected by comparing all rules within a single 

policy, this type of conflict depends upon relationships between a policy, the available service descriptions, and 

the set of possible service invocations. What the exact nature of this relationship is will be explored in future 

work. 

4.6.4 Conflict #4: Modality Conflicts between Request Sets 

Lastly, because service invocations are decomposed into multiple request sets, it may also be possible 

for rules applicable to different request sets to create modality conflicts. This type of modality conflict is more 

interesting because it involves rules spanning both data and object policies. If a service description contains 

both data types and object types, its subsequent evaluation requires retrieving both data and object privacy rules. 

It may therefore be possible that some data privacy rule and some object privacy rule produce a modality 

conflict for a given service invocation. Like the previous type of conflict, this happens when rules are opposing, 

and contexts share the subset relationship as described above. Now, however, the relationship determining this 

type of conflict generalizes to include both data and object policies as well as the set of service descriptions and 

possible invocations. Again, defining this relationship is left to future work. 
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5. MODEL CHECKING PRIVACY POLICIES AND THEIR EVALUATION 

In this section, we explain how we use the SPIN model checker [32] [58] to specify and verify a 

preliminary version of the privacy policy model and request semantics described in the previous section. SPIN 

is a Linux-based verification tool capable of the simulation and verification of software systems that we chose 

to use because of its process-centric syntax and our previous experience using the tool. Systems are specified 

using a symbolic language called Promela (the Process Meta Language). A system in Promela is treated as a 

collection of processes, where each process contains a sequence of deterministic and non-deterministic 

statements. Variables may be defined locally within a process or globally for all processes, and inter-process 

communication occurs either via some global variable or via message passing using shared message channels. 

Properties are specified using a Linear Temporal Logic (LTL) formula, which is further discussed in section 

5.4.1. During a verification run, the property is also translated to a state machine as well and executed in 

lockstep with other system processes. First, the property executes to check the initial system state. Then some 

non-deterministically chosen process executes a step, which may itself be either deterministic or non-

deterministic. Then the property steps again, etc. If the property is ever violated, SPIN produces an error trail 

that can be played back in a simulation for analysis. We first introduce an example scenario concerning video 

privacy, derive the necessary model information (terms, services, and policies), and finish with overviews of the 

Promela implementation and LTL property specifications. Model source files are contained in appendix A, and 

property source files are contained in appendix B. We assume that the meaning of SPIN syntax in our code 

examples is self-explanatory, but [58] contains further information if needed. 

5.1. Example Scenario 

Consider an elderly individual named Bob who has a balance impairment and lives alone at home. 

With Bob's consent, his children paid a company to install and supervise a video monitoring system to be able 

to periodically check that he has not fallen. Bob's house has four rooms, the living room, kitchen, bedroom, and 

bathroom, and each room has a video camera in it. Using a regular web browser, authorized employees of the 

company and authorized family members can use video to monitor Bob. The installed system consists of six 

services. A location tracking service provides Bob's current room. A time service provides the current time of 

the system in hours. A video service provides a method to retrieve video from a given room. A camera actuator 

service provides a method to pan or tilt a camera in a given room. Lastly, there are two high level monitoring 

services, one for the company and one for his family. These services each provide a method to view Bob's 

current location. This is done by periodically querying the location service to know where Bob is to be able to 

select an appropriate camera. Then, they repeatedly invoke the first camera service to retrieve the video of 

Bob's current location. This video is pre-processed using the system time to track Bob's movement. Using the 

second camera service, the monitor services automatically adjust the camera in Bob's current room the so Bob 
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always stays in frame. Thus, the monitor services invoke all other services. The possible invocations of the 

system are shown in below in figure 6. 

Time 
Service 

Company Location 
Service 

Monitor 
Services 

Camera 
Video 

Service 

Family 
Members 

Camera 
Actuator 
Service 

Figure 6 Possible invocations in the example scenario 

Though Bob is glad to have someone observe if he falls, he is not comfortable with idea of being 

watched while he in the bathroom. He also does not want to be watched while he changes his clothes in the 

bedroom, which happens in the morning between 6 a.m. - 7 a.m. and in the evening between 9 p.m. - 10 p.m. 

Luckily, the monitoring system is privacy enabled using our privacy model, so Bob has created the following 

rules to govern the operation of the video monitoring system: 

1. Anyone can see his location at any time to for any reason. 

2. Video may not be seen nor the camera moved by anyone for any purpose while he is in the 

bathroom. 

3. Video may not be seen nor the camera moved by anyone for any purpose while he is in the 

bedroom between the hours of 6:00-7:00 a.m. or 9:00-10:00 p.m. 

4. Otherwise, everything else is allowed. 

5.2. Model Entities 

We now derive the terms, services descriptions, and policy specifications for our example scenario. 
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5.2.1 Terms and Hierarchies 

There are two obvious data users in our scenario. Family members and the company can both view 

video of Bob. However, the time, location, and camera services are not operated by family members or 

company employees. We therefore assign to them to a default system domain. All of the services in this 

scenario can be grouped into one of three purposes: providing information, moving a camera, or monitoring 

Bob, so we label the three purposes in our system are sense, move, and monitor. Location, time, and video are 

the data types available in the system, and lastly, the only environment objects controlled under control by the 

system are the cameras. The following table summarizes the terms derived in this example. Note that since 

location, time, and video are the only data items in the system, they are also the only possible context variables. 

Terms Values 

Domains {System, Family, Company} 

Purposes {Sense, Move, Monitor} 

Data Types {Location, Video, Time} 

Object Types {Camera} 

Table 1 Basic terms derived from the example scenario 

We create simple hierarchies for these terms by letting each term in table 1 be a leaf in its respective 

hierarchy and adding a universal parent node for each tree. The resulting hierarchies are shown in figure 7. 

All Domains 

System Company 

Family 

All Purposes 

Sense Monitor 

Move 

All Data 

Location Time 

Video 

All Objects 

Camera 

Figure 7 Hierarchies derived from the example scenario 

5.2.2 Service Descriptions 

In discerning service descriptions for our example scenario, we observe that each service need only 

contain one method. The time, location, and video service can only be invoked to provide their respective 

information. The camera actuator service can only be invoked to move a camera. Both camera services require 

the room of the target camera in order to internally access the appropriate camera. When either monitor 

service's method is invoked, it makes corresponding method calls to the camera and location services to obtain 
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information and releases video information as output. The following table summarizes the combined service-

method descriptions that entail our smart home space. An "X" indicates the absence of a particular term in a 

service description. 

Service Domain Purpose In Data Type Out Data Type Object 

Camera Video Service System Sense Location Video X 

Camera Actuator Service System Move Location X Camera 

Time Service/Hour System Sense X Time/hour X 

Location Service System Sense X Location/Room X 

Company Monitor Service Company Monitor X Video X 

Family Monitor Service Family Monitor X Video X 

Table 2 Service descriptions derived from the example scenario 

5.2.3 Privacy Policies 

Bob's set of constraints on the operation of services was colloquially specified in three rules, with a 

fourth specifying default behavior. The first three of Bob's rules concern the flow of information, but only the 

second two refer to controlling objects. Thus, there are three data privacy rules and two object privacy rules. 

The results are shown in tables 3 and 4, respectively. In both tables, the left column displays Bob's original rule, 

and the right column contains the policy rule as needed by the system. An allow ruling is shown with a plus 

sign, and a deny ruling is shown with a minus sign, and an "X" again implies the absence of needing a rule. 

Context conditions are written with an semi-formal notation. 

Original Privacy Rule Derived Data Privacy Rules <r, d, p, t, c> 
Rule #1: Allow location data.... <+,all domains, all purposes, location, true> 
Rule #2: Deny video.. bathroom. <-, all domains, sense, video, (location == bathroom) 
Rule #3: Deny video...changes clothes. <-, all domains, sense, video, ((location == bedroom) 

AND ((6 a m. < time < 7 a.m.) OR (9 p.m. < time < 
10 p.m.))) 

Table 3 Data privacy rules derived from the example scenario 

Original Privacy Rule Derived Object Privacy Rule <r, d, p, o, c> 
Rule #1: Allow location data.... X 
Rule #2: Deny control of camera.. bathroom. <-, company, move, camera, (location == bathroom) 
Rule #3: Deny control of camera.. .changes 
clothes. 

<-, company, move, camera, ((location == bedroom) 
AND ((6 a m. < time < 7 a.m.) OR (9 p.m. < time < 
10 p.m.))) 

Table 4 Object privacy rules derived from the example scenario 
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5.3 Model Implementation 

Though our logical privacy model contains separate entities for the Service Registry, Context 

Manager, the Policy Store, and the Privacy Manager, more processes in a system results in higher complexity in 

the model. So, for the sake of optimizing our model description and policy evaluation, we reorganize and 

serialize the behavior of our architectural components whenever possible. The result is a system that contains 

two processes: a modified Privacy Manager and a Context Generator. The modified Privacy Manager 

assimilates the roles of the Service Registry, the Policy Store, the Context Manager, and Privacy Manager by 

storing service descriptions, storing privacy policies, and retrieving context information, generating service 

invocation requests, and applying authorization logic. The Context Generator controls the dynamic system 

behavior that causes contextual factors to change. Each data type is assumed to have a pre-defined range, and 

the Context Generator simulates changes in system context by randomly assigning a value to each context 

variables from within its range. We do not include states or transitions of either environment objects or services 

in the model implementation because they are irrelevant to the correctness properties we are trying to verily. 

Whenever possible, statements in a process are grouped inside atomi c or d_s tep constructs in Promela. 

Statements inside these constructs are executed without being interleaved with other processes, which limits 

possible executions and thus reduces the state space of the model. The full source Promela source code files for 

global data structures, the Privacy Manager process, and the Context Generator process are in Appendices A. 1, 

A.2, and A.3, respectively. 

5.3.1 Terms and Hierarchies 

Hierarchies are specified in two parts. First, symbolic values for all nodes are created. This is done 

using the Promela "mtype" declaration, which maps a string literal to an integer value from 1 - 255. SPIN 

concatenates all mtype declarations into a single system-defined enumeration, so there can be at most 255 

different mtype elements. The value 0 is reserved as a special NULL constant. 

mtype = {ALL_DATA, LOCATION, TIME, VIDEO}; /* data items & types */ 
mtype = {ALL_DOMAINS, SYSTEM, FAMILY, COMPANY}; /* data users & domains */ 
mtype = {ALL_OBJECTS, CAMERA}; /* objects & object types*/ 
mtype = {ALL_PURPOSES, MONITOR, SENSE, MOVE}; /* purposes */ 

Next, we define a data structure to represent the hierarchies. Each hierarchy is viewed as a collection of 

leaf nodes, with each leaf node storing the values of all its ancestors. Since Promela does not allow dynamic 

memory allocation, this requires 0(n *lgn) space for a hierarchy of n nodes (because at most n/2 leaves store at 

most lg n ancestors). Another option would have been to treat a hierarchy as a collection of internal nodes with 

each node storing the values all the leaves under it. However, this would have produced a 0(n2) complexity (as 

at most n/2 nodes store at most n/2 leaves). Clearly, the first option scales better. In our scenario, there are at 

most three leaves in any hierarchy, and the maximum depth of any node is one. Thus, each leaf needs only to 

store the value of one ancestor. The constants MAX_DEPTH and MAX_LEAVES represent these values. For making 
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property specification easier to read, we group the four hierarchies together into an array called terms. The 

constants DOMMN_INDEX, PURPOSE_INDEX, DATA_INDEX, and OBJECT_INDEX define the offsets of their 

respective hierarchies. 

#define MAX_DEPTH 1 
#define MAX_LEAVE S 3 

/* A leaf stores a list of its ancestors */ 
typedef leaf{ 

byte value; 
byte ancestors[MAX_DEPTH]; 

} ; 

/* A hierarchy is a collection of leaves */ 
typedef hierarchy! 

leaf leaves[MAX_LEAVE S] ; 
} ; 

/* The 4 hierarchies form the set of terms */ 
typedef terms_t{ 

hierararchy h[4]; 
} ; 

/* Indices of hierarchies */ 
#define DOMAIN_INDEX 0 
#define PURPOSE_INDEX 1 
#define DATA_INDEX 2 
#define OBJECT INDEX 3 

5.3.2 Services 

Additionally, we must define a data structure for service definitions. As mentioned previously, the 

service definition we use in the model is slightly simplified from the definition given in section 4. Namely, 

since each service has only one method and there is at most one of any service component, we create a data 

structure in which ach service consists of up to one domain, one purpose, one in data item, one out data item, 

and one object. In fact, since Promela data structures are allocated statically, we always have exactly four 

atomic requests to check. If a service description does not contain a data in, data out, or object parameter, then 

the corresponding vacancy in the data structure is given the Promela NULL value. This is acceptable because all 

terms have a non-zero value. 

/* */ 
/* Service descriptions */ 
/* */ 

typedef service{ 
mtype data_in; 
mtype data_out; 
mtype object; 
mtype domain; 
mtype purpose; 

}; 
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service services[NUM_SERVICES]; 

5.3.3 Privacy Policies 

We implement a data privacy policy as an array of rules, where each rule has a ruling, a data type, a 

domain, a purpose, and a context condition. Similarly, an object privacy policy is an array of rules, where each 

rule has a ruling, object, domain, and purpose and a context condition. Valid rulings are ALLOW and DENY, and 

there is a default ruling for each policy: DATA_DEFAULT for the data policy and OBJ_DEFAULT for the object 

policy. Both of these default rulings are also either ALLOW or DENY. Data user, purpose, data item, and object are 

all mtypes, and because Promela does have the expressiveness to store a condition expression directly, contexts 

are implemented as globally defined macros. The macros are evaluated at run-time and their value is assigned to 

the context field in the corresponding rule. The three data rule contexts are #def ine dcO through #def ine 

dc2, and the two object rule contexts are #def ine ocO and #define ocl. 

/* Constants for rulings */ 
#define NIL 0 
#define ALLOW 1 
#define DENY 2 

/* Global decision variable */ 
byte RULING; 

/* Default policy rulings */ 
#define DATA_DEFAULT ALLOW 
#define OBJ_DEFAULT ALLOW 

/* */ 
/* Data Privacy Policy */ 
/* */ 

typedef data_rule{ 
byte ruling; 
mtype data; 
mtype domain; 
mtype purpose; 
bit context; 

} ; 

data_rule data_policy[NUM_D_RULES]; 

/* DATA RULE 0 */ 
#define dcO true 

/* DATA RULE 1 */ 
#define del (room == bathroom) 

/* DATA RULE 2 */ 
#define dc2 ((room == bedroom) && (((hour >= 6) && (hour <= 7)) | | 

((hour >= 21) && (hour <= 22)))) 

/* */ 
/* Object Privacy Policy */ 
/* */ 
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typedef obj_rule{ 
byte ruling; 
mtype object; 
mtype domain; 
mtype purpose; 
bit context; 

obj_rule obj_policy[NUM_0_RULES] ; 

/* OBJECT RULE 0 */ 
#define ocO (room == bathroom) 

/* OBJECT RULE 1 */ 
#define ocl ((room == bedroom) && (((hour >= 6) && (hour <= 7)) || \ 

((hour >= 21) && (hour <= 22)))) 

5.3.4 Context Variables 

Context variables are global variables so the Context Generator can assign to them and the Privacy 

Manager can retrieve their values without worrying about the semantics and complexity of communication 

channels. In our example scenario we have two context variables associated with the context conditions of 

privacy rules. 

/* Environment context variables */ 
byte hour /* values from 0 to 23 */ 

/* Occupant context variables */ 
mtype = {living, bath, bed, kitchen}; 
byte room; 

5.3.4 The Privacy Manager Process 

The Privacy Manager implementation executes in four phases. The first phase initializes the system by 

setting the privacy policy rules and service descriptions to the appropriate values as decided by our example 

scenario. Again, if some field of a method or service is not present, then that field is assigned a null value. This 

phase occurs only once at the beginning of the execution. The last three phases occur in a loop until the model 

has been verified. Earlier, we described an algorithm that received a request and then contacted separate 

components to retrieve service descriptions, retrieve applicable rules, and context values. We optimize the 

model's performance by reorganizing this algorithm slightly. Our model implementation first non-

deterministically generates a service invocation request by generating an allowable request from indices from 

the services array. Then, with global access to context variables, the Privacy Manager evaluates the all the 

contextual conditions for both policies by assigning the truth value of their macros to the appropriate rule 

contexts. 

/* "Evaluate" data rule contexts */ 
data_policy[0].context = dcO; 
data_policy[1].context = del; 
data_policy[2].context = dc2; 
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/* "Evaluate" object rule contexts */ 
object_policy[0].context = ocO; 
object_policy[1].context = ocl; 

The Privacy Manager then generates the four atomic requests from the descriptions in the service 

array and iterates over all policy rules to determine the appropriate rules for each atomic request. This is done 

sequentially in two loops. One loop iterates through the data policy and checks for applicability to the atomic 

data requests (check #1 and check #2). The other loop iterates through the object policy to check for rules 

applicable to the atomic object requests (check #3 and check #4). Intermediate rulings are stored incrementally 

by keeping a separate Boolean tally for allow and deny decisions for each request. 

/* rql - data-to-target request */ 
/* rq2 - data-to-source request */ 
/* rq3 - object-by-target request */ 
/* rq4 - object-by-source request */ 
bool allow_rql, deny_rql, allow_rq2, deny_rq2; 
bool allow_rq3, deny_rq3, allow_rq4, deny_rq4; 

If an atomic request contains a null term (either a null data item or null object), the applicability testing 

is skipped (via the unless construct in Promela) and the request is allowed. Otherwise, applicability of a rule 

to an atomic request is determined by checking if the terms in the rule are ancestors of corresponding terms in 

the request. This hierarchical relationship is tested with the following macros: 

/* Stores the index of the leaf with value x in hierarchy of index z in i 
and 255 if x is not in z */ 
INDEX(x, z, i); 

/* 'res' is true if value y is in the ancestor list of leaf index x in 
hierarchy with index z, and false otherwise */ 
IS_ANCESTOR(x, y, z, res); 

The evaluation logic concatenates each rule evaluation on all previous rules' evaluations. The 

evaluation logic for the Data-to-Target check is shown below. First, the current rule is obtained. Then, if the 

data item in the request is null allow_rql is set to 1 (by the unless clause). Otherwise, variables testl, 

test2, and test3 hold the results of the ancestor checking. Next, the rule is checked for its ruling and its 

enabled status. If it is an enabled allow, then the allow rql variable is set to 1, otherwise it retains its previous 

value. Similarly, if the rule is a disabled allow or an enabled deny deny rql is set to 1, otherwise it retains its 

previous value. 

/* Data-to-Target Check ... */ 
do 
: : (index < NUM_D_RULES) -> 

{ /* Start of unless statement */ 
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/* Get current data rule */ 
drl.ruling = data_policy[index].ruling; 
drl.data = data_policy[index].data; 
drl.domain = data_policy[index].domain; 
drl.purpose = data_policy[index].purpose; 

/* Reset ancestor test variables */ 
testl = 0; test2 = 0; test3 = 0; 

/* Does current rule apply to target domain? */ 
INDEX(services[tgt].domain, DOMAIN_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, drl.domain, DOMAIN_INDEX, testl); 

/* Does current rule apply to target purpose? */ 
INDEX(services[tgt].purpose, PURPOSE_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, drl.purpose, PURPOSE_INDEX, test2) 

/* Does current rule apply to target in data? */ 
INDEX(services[tgt].data_in, DATA_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, drl.data, DATA_INDEX, test3); 

/* Set value for allowed request (enabled ALLOW) */ 
allow_rql = allow_rql || 

((drl.ruling == ALLOW) && 
testl & & test2 && test3 & & 
data_policy[index].context); 

/* Set value for a denied request (disabled ALLOW) */ 
deny_rql = deny_rql || 

((drl.ruling == ALLOW) && 
testl & & test2 && test3 & & 
!data_policy[index].context); 

/* Set value for a denied request (enabled DENY) */ 
deny_rql = deny_rql || 

((drl.ruling == DENY) && 
testl & & test2 && test3 & & 
data_policy[index].context); 

/* Data-to-Source Check performed here, but omitted */ 

unless 

/* Non-existent request */ 
services[tgt] .data_in == 0 ; 
allow_rql = 1; 

/* 

/* 

*/ 

*/ 

/* for space considerations 
/* 
/* 

*/ 

*/ 

*/ 

index++; 

finished with policy */ 
else -> break; 
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The other data request check is performed where alluded to in the code. The object request checks are 

performed in a similar manner in a separate loop. Then, after all request sets have been checked, each pair of 

allow/deny variables is examined to see if the default ruling should be applied to that request, which is 

necessary if both variables are zero (i.e. no policy rule was appied). The logic for only one pair of variables is 

shown below. Then, the global decision is reached and assigned to the global variable RULING as is expressed 

in the following code fragment. (NOTE: the expression (x -> y : z) is a conditional expression in Promela. If x 

is true, y happens, otherwise z happens.) 

/* Apply default ruling to data request if needed */ 
allow_rql = ((!allow_rql && !deny_rql) -> 

((DATA_DEFAULT == ALLOW) ->1:0) : allow_rql); 
deny_rql = ((!allow_rql && !deny_rql) -> 

((DATA_DEFAULT == ALLOW) ->0:1) : deny_rql); 

/* */ 

/* */ 
/* More default ruling code here for allow_rq2 - deny_rq4 */ 
/* */ 
/* */ 

/* Global decision 
-allow if all atomic requests were allowed and none 
were denied. 
-deny if any atomic request was denied */ 

RULING = ((allow_rql && allow_rq2 & & allow_rq3 && allow_rq4 & & 
!deny_rql && !deny_rq2 && !deny_rq3 && !deny_rq4) -> 
ALLOW : DENY); 

After the decision is made, the procedure starts over again. A new request is generated, contexts are re­

evaluated, and authorization logic is applied. Each iteration of the main loop is constrained to happen atomically 

to minimize the transition space of possible executions. It also ensures that contexts do not change during the 

evaluation process. 

5.3.5 The Context Generator Process 

The Context Generator implementation simulates dynamic system behavior by non-deterministically 

assigning to context variables. There are only two context variables used in Bob's rules: time and location. The 

passage of time is simulated by incrementing the variable hour a random number of times. Occupant movement 

is simulated by randomly assigning to the variable room from its domain of {living, kitchen, bath, 

bed}. This process is implemented in such a way that at least one context variable changes with every 

execution of this process. Both the Context Generator and the Privacy Manager are infinite loops so that all 

possible combinations of contexts and service invocations are checked by the verifier. 
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5.4 Property Specification 

We have previously described some conflicts that can occur in our policy model and that these 

conflicts can represent errors in policy specification. We now explain how we verify the absence of these 

conflicts our privacy model. We also explain how we verify the correctness of our authorization semantics and 

possible service invocations. All property files are in Appendix B. 

5.4.1 LTL Syntax 

Properties in SPIN are specified using a Linear Temporal Logic (LTL) formula. Remember that each 

process is translated to a state machine and that execution is simulated by non-deterministically taking a 

transition from one of the process state machine. Temporal logic in general is used to determine if some 

execution path or set of execution paths fulfill a particular property. LTL specifically quantifies over the set of 

all (infinite) linear paths in the execution branch resulting from a given start state. In the properties we have 

specified, we only make use of two LTL temporal operators, EVENTUALLY (<>) and ALWAYS ([ ]). 

Definition 30: Semantics of EVENTUALLY (<>). An LTL formula, <>(p) is satisfied for an infinite 

computational path if and only if p becomes true in some state in the path. 

Definition 31 : Semantics of ALWAYS ([ ]): An LTL formula, [ ](p) is satisfied for an infinite 

computational path if and only if p is true for all states in the path. 

We use these temporal operators, as well as some additional macros to specify our desired correctness 

properties. Specifically, we check the model implementation generated from our scenario for the satisfiability of 

rule contexts, the correctness of all allow decisions, the correctness of all deny decisions, the correctness of all 

allowed method invocations, and for modality conflicts within each policy. We leave the specification of inter-

policy modality conflicts to future work. In this section, we discuss the specification of these properties. When 

appropriate, we use macro definitions or abstract descriptions to facilitate the presentation of properties. Table 5 

shows some common macro titles and their meanings. 
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MACRO TITLE MACRO MEANING 

ALLO WD AT A(i) 
True if and only if the i"1 rule of the Data 
Policy has an allow ruling. 

DENY DATA (i) 
True if and only if the ilh rule of the Data 
Policy has a deny ruling 

ALLO W_OB J (i) 
True if and only if the ilh rule of the Object 
Policy has an allow ruling. 

DENY OBJ (i) 
True if and only if the ilh rule of the Object 
Policy has a deny ruling 

ENABLED DATA (i) 
True if and only if the ilh rule of the Data 
Policy has an enabled contextual condition 

ENABLED OBJ (i) 
True if and only if the ilh rule of the Object 
Policy has an enabled contextual condition 

APPD ATATGT (i) 
True if and only if the i"1 rule of the Data 
Policy is applicable for Check #1 

APPDATASRC(i) 
True if and only if the i"1 rule of the Data 
Policy is applicable for Check #2 

APPOBJTGT(i) 
True if and only if the i"1 rule of the Object 
Policy is applicable for Check #3 

APPOBJSRC(i) 
True if and only if the i"1 rule of the Object 
Policy is applicable for Check #4 

Table 5 Common macros for properties 

5.4.2 Satisfiability of Rule Contexts 

In order to be sure that each rule context is satisfied infinitely often, we check that 

rule of each policy can "ALWAYS EVENTUALLY become enabled". This is simply done 

over all of the rule contexts, making sure that each context can become true infinitely often 

EVENTUALLY). Since dc0-dc2, ocO, and ocl are the rule contexts, the specification is 

([] (odcO && odd && <>dc2 && oocO && oocl)) 

Note that [] denotes temporal operator ALWAYS, <> denotes temporal operator EVENTUALLY, && denotes 

logical operator AND, and || denotes logical operator OR. 

5.4.3 Allow Correctness 

When checking for the correctness of an allow decision, we want to make sure that if the global 

decision variable RULING == ALLOW, then all four of the request set checks are allowed. A single request is 

allowed in one of three ways: 1) the request does not actually exist because either a data item or an environment 

object is null, 2) all allow rules applicable to that request are enabled with all applicable denies disabled, or 3) 

each context of each 

by enumerating 

(i.e. ALWAYS 
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there is no applicable rule and the default for the policy is ALLOW. We define macros to check if each atomic 

request is not valid. 

#define NULL_DATA_TGT (services[tgt].data_in == 0) 
#define NULL_DATA_SRC (services[tgt] .data_out == 0) 
#define NULL_OBJ_TGT (services[tgt].object == 0) 
#define NULL_OBJ_SRC (services[tgt].object == 0) 

If Pdata is the data policy, here is an abstract example specification for the Data-to-Target check. 

FORALL (Rules i *= PDATA) 

((RULING == ALLOW) -
((NULL_DATA_TGT) 

I I 
((ALLOW_DATA(i) && APP_DATA_TGT(i)) - ENABLED_DATA(i)) && 
( (DENY_DATA(i) & & APP_DATA_TGT(i) ) - !ENABLED_DATA(i) ) 

I I 
( (DEFAULT_DATA == ALLOW) && !AP P_DATA_T GT(i) ) ) ) 

Using the disjunctive form for implication, we obtain 

FORALL(Rules iG PDATA) 
(! (RULING == ALLOW) || ( 

(NULL_DATA_TGT) 
I I 
((!(ALLOW_DATA(i) && APP_DATA_TGT(i)) || ENABLED_DATA(i)) && 
(!(DENY_DATA(i) && APP_DATA_TGT(i)) || !ENABLED_DATA(i))) 

I I 
( (DE FAULT_DATA == ALLOW) && !AP P_DATA_T GT(i) ) ) ) 

The other request checks are given similar properties but are specific to their request sets. The macros are then 

combined with conjunctions into one global safety property all allow logic. Conjunctions are used 

because all  requests must allow. If  the macro definit ions for the request sets are allowdatatgt, 

allow_data_src, allow_obj_tgt, and allow_obj_src, then all_allow_logic is defined as 

#define all_allow_logic (allow_data_tgt & & allow_data_src & & allow_obj_tgt 
&& allow_obj_src) 

The final specification for allow correctness becomes 

([] (all_allow_logic) ) 

Note that the property vacuously holds if the global decision does not equal ALLOW. 
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5.4.4 Deny Correctness 

When checking for the correctness of a deny decision, we want to make sure that if the global decision 

variable RULING == DENY, then at least one of the request set checks has been denied. This means that, for 

some request set, either some applicable allow rule is disabled or some applicable deny rule is enabled. If PDATA 

again is the data policy, here is an abstract example of the deny correctness property for the Data-to-Target 

check. 

FORALL (Rules i G PDATA) 
((RULING == DENY) - ( 

((ALLOW_DATA(i) && APP_DATA_TGT(i))- !ENABLED_DATA(i)) || 
( (DENY_DATA(i) & & APP_DATA_TGT(i) ) - ENABLED_DATA(i) ) || 
( (DATA_DEFAULT == DENY) && !AP P_DATA_T GT(i) ) ) ) 

Using the disjunctive form for implication again, we get 

FORALL (Rules i G PDATA) 
(! (RULING == DENY) | | ( 

(!(ALLOW_DATA(i) && APP_DATA_TGT(i))|| !ENABLED_DATA(i)) || 
(! (DENY_DATA(i) & & APP_DATA_TGT(i) ) || ENABLED_DATA(i) ) || 
((DATA_DEFAULT == DENY) && !APP_DATA_TGT(i)))) 

The property again is broken into four macros. This time, in keeping with our semantics, the macros are 

combined with disjunctions because only one atomic request needs to be denied. If the macro definitions for the 

request sets are deny_data_tgt, deny_data_src, deny_obj_tgt, and deny_obj_src, and they are 

combined into macro all_deny_logic, in the following way, 

#define all_deny_logic (deny_data_tgt || deny_data_src || deny_obj_tgt || 
deny_obj_src) 

The final specification for deny correctness becomes 

([] (all_deny_logic) ) 

Note again that the property vacuously holds if the global decision does not equal DENY. 

5.4.5 Correctness of Service Invocations 

Earlier we listed several possible invocations in our example scenario. We seek to show that if these 

service invocations occur, then they occur within the boundaries of our authorization semantics. This in effect 

shows the correctness of our system execution. We define the following macros for each possible service 

i n v o c a t i o n  w h e r e  a n  i n t e g e r  r e p r e s e n t s  t h e  i n d e x  o f  a  s e r v i c e  i n  t h e  s e r v i c e s  d a t a  s t r u c t u r e .  T h e  i n d i c e s  0 - 5  

are mapped to table 2 from top to bottom. 
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#define src4tgt0 ((RULING == ALLOW) && (src == 4) && (tgt == 0)) 
#define src4tgtl ((RULING == ALLOW) && (src == 4) && (tgt == 1)) 

... /* Other #defines omitted */ 

#define src5tgt2 ((RULING == ALLOW) && (src == 5) && (tgt == 2)) 
#define src5tgt3 ((RULING == ALLOW) && (src == 5) && (tgt == 3)) 

We reuse the allow and deny correctness properties to compose a new property that states that "it is ALWAYS 

the case that allow and deny correctness are true and each desired service invocation EVENTUALLY happens.' 

The final specification of this property is 

([](all_allow_logic && all_deny_logic && 
Osrc4tgt0 && <>src4tgtl && <>src4tgt2 && <>src4tgt3 && 
osrcStgtO && osrcStgtl && <>src5tgt2 && <>src5tgt3 &&)) 

5.4.6 Modality Conflicts in Atomic Requests 

To show the absence of modality conflicts for atomic requests, we must show that if two rules within a 

policy have opposing rulings, and one rule has terms that are ancestors of corresponding terms in the other rule, 

then the context of one rule is not a subset of the context of the other rule. We define macros to check for 

opposing rules and ancestor relationships between rules, and the context relationship is handled in the property 

itself. 

MODAL_DATA_PAIR (i, j ) is true if the 1th data rule has an opposite ruling than the jlh data rule but 

their domain, purpose, and data fields are hierarchically related. 

MODAL_OB J_PAI R (m, n) is true if the m1'1 object rule has an opposite ruling than the nlh object rule 

but their domain, purpose, and object fields are hierarchically related. 

Furthermore, two contexts are not subsets of one another if each is true at some point when the other is false, 

which, if /' and j are indices of policy rules, can be stated abstractly as 

(<>(ENABLED(i) && ! ENABLED(j) ) && (<>!ENABLED(i) && ENABLED(]))). 

The entire abstract specification for this property is then 

FORALL (Rules i, j G PDATA AMD Rules m,n G P0Bj such that i != j and m != n) 
((MODAL_DATA_PAIR(i,j) -> 

(<>(ENABLED_DATA(i) & & !ENABLED_DATA(j) ) & & 
<>(!ENABLED_DATA(i) & & ENABLED_DATA(j) ) ) & & 

((MODAL_OBJ_PAIR(m,n) -> 
(<>(ENABLED_DATA(m) && !ENABLED_DATA(n)) && 
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<> ( !ENABLED_DATA(m) && ENABLED_DATA(n))) && 

The actual specification explicitly enumerates all possible combinations of rules. 
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6. CONCLUSIONS AND FUTURE WORK 

In this thesis, we present a novel service-oriented privacy policy model for smart home environments 

that incorporates the selective control of both personal information and environment object usage. We then 

show how the SPIN model checker can be used to verily certain aspects of a simple example scenario of our 

privacy model, including the absence of certain conflicts, and the correctness of service invocations and 

evaluation decisions. The main contributions of this work are 

• The extension of personal privacy to include the control of how household objects are used by smart 

home services. 

• The introduction of service-oriented computing to help bind system resources to the policy space. 

• The formal definition of privacy model that authorizes both the flow of personally sensitive data and 

the control of environment objects based on inhabitant preferences and system contexts. 

• The introduction of model checking to verily privacy policy models and their enforcement. 

We use a service-oriented approach because the service-oriented architecture addresses the heterogeneity 

and dynamicity that smart home environments provide. Furthermore, because the functionality of a smart home 

is defined by the abilities of the services within the smart home, we use service descriptions to bind resources to 

the policy space. Another feature of our model is the heavy use of logical hierarchies to order physical 

resources. Using hierarchies allows for simpler rule specification because rules are implicitly inherited down the 

hierarchy, requiring fewer rules to be specified in total. However, evaluating a request can become more costly 

because the hierarchical relationships between terms need to be explored to achieve a ruling. Some works, such 

as EPAL/E-P3P expand applicable rules on the fly during the request. This can be a very expensive process and 

can result in conflicting rulings. We avoid this extra cost by requiring service descriptions to map to leaf entities 

in hierarchies and storing hierarchy path information. This optimization could be used in a real system 

implementation as well. 

Despite its novelty, our privacy model does have some limitations that should be addressed in future 

work. First, assuming instantaneous evaluation and service execution is not very realistic, so we need to extend 

our privacy model to include continuous methods and non-instantaneous evaluation. This could possibly be 

addressed with some sort of context subscription mechanism in which component subscribes to a particular 

context and receive notifications when the context changes. These notifications could then somehow be used to 

halt a previously authorized service execution that now violates the privacy model. However, support for such a 

mechanism will require effort at both the policy model and the SOA implementation levels. Second, we need to 

investigate the application of our model to a decentralized environment. Some SOAs, such as web services, do 

not use centralized invocation, so our current privacy model is not usable for these architectures. Also, 

centralized evaluation may degrade system performance, especially as the number of requests and the number 

of applicable rules to a request increases. We will look into the possibility of distributing the storage and 

evaluation of policies, but then deployment and synchronization issues become increasingly important. Other 
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future work can also include distinguishing between data collection, storage, and data usage policies; 

investigating alternative views for object control; extending the model to include multiple inhabitants, service 

dynamics, and policy changes; formally defining conflicts in our model; and investigating the relationship of 

purposes and services. We also plan to investigate the use of other model checkers and hope to ultimately 

provide tool support for the specification and automatic implementation and verification of our privacy model. 
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APPENDIX A: MODEL SOURCE CODE 

The files in this appendix are for the Promela implementation of our privacy policy model. The file 
global. pml contains the definitions of the data structures and terms used by the Privacy Manager and Context 
Generator processes. The file privacy-manager. pml contains the implementation of the Privacy Manager 
process. The file context-generator. pml contains the implementation of the Context Generator process. 

A. 1 global.pml 

/* */ 

AUTHOR: Ryan Babbitt, Iowa State University 
FILE: global.pml 
DATE: November 26, 2006 

DESCRIPTION: 
This file defines all of the global variables used by the 

privacy model. It defines the structures, privacy rules, and 
service invocation requests, as well as context variables. 

*/ 

/* Constants for rulings */ 
#define NIL 0 
#define ALLOW 1 
#define DENY 2 

/* Global decision variable */ 
byte RULING; 

/* Default policy rulings */ 
#define DATA_DEFAULT ALLOW 
#define OBJ DEFAULT ALLOW 

/* */ 
/* Terms */ 
/* */ 

mtype = {ALL_DATA, LOCATION, TIME, VIDEO}; /* data items & types */ 
mtype = {ALL_DOMAINS, SYSTEM, FAMILY, COMPANY}; /* data users & domains */ 
mtype = {ALL_OBJECTS, CAMERA}; /* objects & object types */ 
mtype = {ALL_PURPOSES, MONITOR, SENSE, MOVE}; /* purposes */ 

/* */ 
/* Hierarchies */ 
/* */ 

/* properties */ 
#define MAX_DEPTH 1 /* longest depth in any hierarchy */ 
#define MAX_LEAVES 3 /* Most leaves of any hierarcy */ 

/* A leaf stores a list of its ancestors */ 
typedef leaf{ 

byte value; 
byte ancestors[MAX_DEPTH]; 

} ; 

/* A hierarchy is a collection of leaves */ 
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typedef hierarchy! 
leaf leaves[MAX_LEAVE S] ; 

} ; 

/* The 4 hierarchies form the set of terms */ 
typedef terms_t{ 

hierarchy h[4]; 
} ; 

terms_t terms; 

/* Indices of hierarchies */ 
#define DOMAIN_INDEX 0 
#define PURPOSE_INDEX 1 
#define DATA_INDEX 2 
#define OBJECT_INDEX 3 

/* */ 

/* Privacy policy rule structures */ 
/* */ 

typedef data_rule{ 
byte ruling; 
mtype data; 
mtype domain; 
mtype purpose; 
bit context; 

} ; 

typedef obj_rule{ 
byte ruling; 
mtype object; 
mtype domain; 
mtype purpose; 
bit context; 

} ; 

/* */ 

/* The privacy policies */ 
/* */ 

#define NUM_D_RULES 3 
#define NUM_0_RULES 2 

data_rule data_policy[NUM_D_RULES]; 
obj_rule obj_policy[NUM_0_RULES]; 

/* */ 

/* Contexts for rules */ 
/* */ 

/* DATA RULE 0 */ 
#define dcO true 

/* DATA RULE 1 */ 
#define del (room == bathroom) 

/* DATA RULE 2 */ 
#define dc2 ((room == bedroom) && (((hour >= 6) && (hour <= 7)) || \ 

((hour >= 21) && (hour <= 22)))) 
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/* OBJECT RULE 0 */ 
#define ocO (room == bathroom) 

/* OBJECT RULE 1 */ 
#define ocl ((room == bedroom) && (((hour >= 6) && (hour <= 7)) || \ 

( (hour >= 21) && (hour <= 22)))) 

/* */ 
/* Service descriptions */ 
/* */ 

typedef service{ 
mtype data_in; 
mtype data_out; 
mtype object; 
mtype domain; 
mtype purpose; 

} ; 

#define NUM_SERVICES 6 
service services[NUM_SERVICES]; 

byte tgt; /* target index for requests */ 
byte src; /* source index for requests */ 

/* */ 
/* Environment context variables */ 
/* */ 

byte hour = 0; /* values from 0 - 23 */ 

/* */ 
/* Occupant context variables */ 
/* */ 

mtype = {living, bathroom, kitchen, bedroom}; /* values for room */ 
mtype room; 

A.2 privacy-manager.pml 

/* 
File: privacy-manager.pml 
Author: Ryan Babbitt, Iowa State University 
Date : November 30, 2006 

Description: This process models the privacy management system in a 
smart home. Its execution occurs in 4 phases: 

1) Populate the hierarchies, privacy policies, and service registry 
2) Randomly generate a request 
3) Evaluate all the context conditions (atomically) 
4) Evaluate request sets/atomic requests 

a) Data-to-Target check 
b) Data-to-Source check 
c) Object-by-Target check 
d) Object-by-Source check 

Note: Steps 2-4 are then repeated ad infinitum. 
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V 

/* What is the index of value x in hierchy z? The answer is stored in i. 
inline INDEX(x, z, i) 
{ 

((terms ,h[(z)] .leaves[0] .value == ( x )  )  -> 0 
((terms ,h[(z)] .leaves[1] .value == ( x )  )  -> 1 
((terms ,h[(z)] .leaves[2] .value == ( x )  )  -> 2 2 5 5 ) ) )  

} 

/* Is the value y an ancestor of the leaf at index x in hierarchy z? 
The response is stored in r */ 
inline IS_ANCESTOR(x, y, z, res) 
{ 

((x != 255) && terms.h[(z)].leaves[(x)].value == (y)) || 
((x != 255) && terms.h[(z)].leaves[(x)].ancestors[0] == (y)) 

/* Privacy Manger Process */ 

active proctype pms() 
{ 

byte index; /* rule iterator */ 
data_rule drl; /* data rule container */ 
obj_rule orl; /* object rule container */ 

/* variables for intermediate decision logic of atomic requests */ 
/* rql - data-to-target, rq2 - data-to-source */ 
/* rq3 - objecy-by-target, rq4 - object-by-source */ 
bool allow_rql, deny_rql, allow_rq2, deny_rq2; 
bool allow_rq3, deny_rq3, allow_rq4, deny_rq4; 

/* stores results of applicability testing */ 
bool testl, test2, test3; 

/* stores the index of a leaf */ 
byte leaf_index; 

d_step 
{ 

/* Domain Hierarchy */ 
terms.h[DOMAIN_INDEX].leaves[0].value = SYSTEM; 
terms.h[DOMAIN_INDEX] .leaves[0] .ancestors[0 ] = ALL_DOMAINS; 
terms.h[DOMAIN_INDEX].leaves[1].value = FAMILY; 
terms.h[DOMAIN_INDEX].leaves[1].ancestors[0] = ALL_DOMAINS; 
terms.h[DOMAIN_INDEX].leaves[2].value = COMPANY; 
terms.h[DOMAIN_INDEX].leaves[2].ancestors[0] = ALL_DOMAINS; 

/* Purpose Hierarchy */ 
terms.h[PURPOSE_INDEX] .leaves[0] .value = MOVE ; 
terms.h[PURPOSE_INDEX].leaves[0].ancestors[0] = ALL_PURPOSES 
terms.h[PURPOSE_INDEX].leaves[1].value = MONITOR; 
terms.h[PURPOSE_INDEX].leaves[1].ancestors[0] = ALL_PURPOSES 
terms.h[PURPOSE_INDEX].leaves[2].value = SENSE; 
terms.h[PURPOSE INDEX].leaves[2].ancestors[0] = ALL PURPOSES 

/* Data Type Hierarchy */ 
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terms.h[DATA_INDEX].leaves[0].value = LOCATION; 
terms.h[DATA_INDEX].leaves[0].ancestors[0] = ALL_DATA; 
terms.h[DATA_INDEX].leaves[1].value = TIME; 
terms.h[DATA_INDEX].leaves[1].ancestors[0] = ALL_DATA; 
terms.h[DATA_INDEX].leaves[2].value = VIDEO; 
terms.h[DATA INDEX].leaves[2].ancestors[0] = ALL DATA; 

/* Object Type Hierarchy */ 
terms.h[OBJECT_INDEX].leaves[0].value = CAMERA; 
terms.h[OBJECT_INDEX].leaves[0].ancestors[0] = ALL_OBJECTS; 

/* Data Privacy Policy */ 
data_policy[0].ruling = ALLOW; 
data_policy[0].domain = ALL_DOMAINS; 
data_policy[0].purpose = ALL_PURPOSES; 
data_policy[0].data = LOCATION; 

data_policy[1].ruling = DENY; 
data_policy[1].domain = ALL_DOMAINS; 
data_policy[1].purpose = SENSE; 
data_policy[1].data = VIDEO; 

data_policy[2].ruling = DENY; 
data_policy[2].domain = ALL_DOMAINS; 
data_policy[2].purpose = SENSE; 
data_policy[2].data = VIDEO; 

/* Object Privacy Policy */ 
obj_policy[0].ruling = DENY; 
obj_policy[0].domain = ALL_DOMAINS; 
obj_policy[0].purpose = MOVE; 
obj_policy[0].object = CAMERA; 

obj_policy[1].ruling = DENY; 
obj_policy[1].domain = ALL_DOMAINS; 
obj_policy[1].purpose = MOVE; 
obj_policy[1].object = CAMERA; 

/* Camera Video Service */ 
services[0].domain = SYSTEM; 
services[0].purpose = SENSE; 
services[0].data_in = LOCATION; 
services[0].data_out = VIDEO; 
services[0].object = 0; 

/* Camera Actuator Service */ 
services[1].domain = FAMILY; 
services[1].purpose = MOVE; 
services[1].data_in = LOCATION; 
services[1].data_out = 0; 
services[1].object = CAMERA; 

/* Time Service/hour */ 
services[2].domain = SYSTEM; 
services[2].purpose = SENSE; 
services[2] .data_in = 0 ; 
services[2].data_out = TIME; 
services[2].object = 0; 

/* Location Service */ 
services[3].domain = SYSTEM; 
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services[3] 
services[3] 
services[3] 
services[3] 

.purpose = SENSE; 

.data_in = 0 ; 

.data_out = LOCATION; 

.object = 0; 

/* Monitor Service/Company */ 
services[4].domain = COMPANY; 
services[4].purpose = MONITOR; 
services[4] .data_in = 0 ; 
services[4].data_out = VIDEO; 
services[4].object = 0; 

/* Monitor Service/Family */ 
services[5].domain = FAMILY; 
services[5].purpose = MONITOR; 
services[5] .data_in = 0 ; 
services[5].data_out = VIDEO; 
services[5].object = 0; 

/* Request generation and evaluation loop */ 
do 

atomic 
{ 

/* select source service/method */ 
do 
: : src=4; 

break; 
: : src=5; 

break; 
od; 

/* select a target service/method different 
from the source service/method */ 
do 
: : tgt=0; 

break; 
: : tgt=l; 

break; 
: : tgt=2; 

break; 
: : tgt=3; 

break; 
od; 

/* Evaluate the contextual conditions */ 
data_policy[0].context = dcO; 
data_policy[1].context = del; 
data_policy[2].context = dc2 ; 

obj_policy[0].context = ocO; 
obj_policy[1] .context = ocl ; 

/* Evaluate the request */ 

/* reset evaluation logic variables */ 
index = 0 ; 
allow_rql = 0 ; 
deny_rql = 0; 
allow_rq2 = 0; 
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deny_rq2 = 0 ; 
allow_rq3 = 0 ; 
deny_rq3 = 0 ; 
allow_rq4 = 0 ; 
deny_rq4 = 0; 

/* Data-to-Target Check and Data-to-Source Check */ 
do 
: : (index < NUM_D_RULES) -> 

{/* Check for null data item */ 

/* Current data_rule */ 
drl.ruling = data_policy[index].ruling; 
drl.data = data_policy[index].data; 
drl.domain = data_policy[index].domain; 
drl.purpose = data_policy[index].purpose; 

testl = 0; test2 = 0; test3 = 0; 

/* Does current rule apply to target domain? */ 
INDEX(services[tgt].domain, DOMAIN_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, drl.domain, DOMAIN_INDEX, testl); 

/* Does current rule apply to target purpose? */ 
INDEX(services[tgt].purpose, PURPOSE_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, drl.purpose, PURPOSE_INDEX, test2); 

/* Does current rule apply to target in data? */ 
INDEX(services[tgt].data_in, DATA_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, drl.data, DATA_INDEX, test3); 

/* Applicable and enabled allow rule */ 
allow_rql = allow_rql || 
((drl.ruling == ALLOW) && 
testl & & test2 && test3 & & 
data_policy[index].context); 

/* Applicable and disabled allow data_rule */ 
deny_rql = deny_rql || 
((drl.ruling == ALLOW) && 
testl & & test2 && test3 & & 
!data_policy[index].context); 

/* Applicable and enabled deny data_rule */ 
deny_rql = deny_rql || 
((drl.ruling == DENY) && 
testl & & test2 && test3 & & 
data_policy[index].context); 

} unless { 
(services[tgt].data_in == 0); 
allow_rql = 1; 

} ; 

{ /* Check null return data */ 

testl = 0; test2 = 0; test3 = 0; 

/* Does current rule apply to source domain? */ 
INDEX(services[src].domain, DOMAIN_INDEX, leaf_index); 
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IS_ANCESTOR(leaf_index, drl.domain, DOMAIN_INDEX, testl); 

/* Does current rule apply to source purpose? */ 
INDEX(services[src].purpose, PURPOSE_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, drl.purpose, PURPOSE_INDEX, test2); 

/* Does current rule apply to target out data? */ 
INDEX(services[tgt].data_out, DATA_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, drl.data, DATA_INDEX, test3); */ 

/* Applicable and enabled allow rule */ 
allow_rq2 = allow_rq2 || 
((drl.ruling == ALLOW) && 
testl & & test2 && test3 & & 
data_policy[index].context); 

/* Applicable and disabled allow data_rule */ 
deny_rq2 = deny_rq2 || 
((drl.ruling == ALLOW) && 
testl & & test2 && test3 & & 
!data_policy[index].context); 

/* Applicable and enabled deny data_rule */ 
deny_rq2 = deny_rq2 || 
((drl.ruling == DENY) && 
testl & & test2 && test3 & & 
data_policy[index].context); 

} unless 
{ 

(services[tgt].data_out == 0); 
allow_rq2 = 1; 

} ; 

index++; 

: : else -> break; 
od; 

/* Object-by-Target and Obj ect-by-Source Checks */ 
index = 0 ; 
do 
: : (index < NUM_0_RULES) -> 

{/* Check for null object */ 

/* Current obj_rule */ 
orl.ruling = obj_policy[index].ruling; 
orl.object = obj_policy[index].object; 
orl.domain = obj_policy[index].domain; 
orl.purpose = obj_policy[index] .purpose ; 

testl = 0; test2 = 0; test3 = 0; 

/* Does current rule apply to target domain? */ 
INDEX(services[tgt].domain, DOMAIN_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, orl.domain, DOMAIN_INDEX, testl); 

/* Does current rule apply to target purpose? */ 
INDEX(services[tgt].purpose, PURPOSE_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, orl.purpose, PURPOSE_INDEX, test2); 
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/* Does current rule apply to target object? */ 
INDEX(services[tgt].object, OBJECT_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, orl.object, OBJECT_INDEX, test3); 

/* applicable and enabled allow obj_rule */ 
allow_rq3 = allow_rq3 || 
((orl.object == ALLOW) && 
testl & & test2 && test3 & & 
obj_policy[index].context); 

/* Applicable and disabled allow obj_rule */ 
deny_rq3 = deny_rq3 || 
((orl.ruling == ALLOW) && 
testl & & test2 && test3 & & 
!obj_policy[index].context); 

/* Applicable and enabled deny obj_rule */ 
deny_rq3 = deny_rq3 || 
((orl.ruling == DENY) && 
testl & & test2 && test3 & & 
obj_policy[index].context); 

testl = 0; test2 = 0; test3 = 0; 

/* Does current rule apply to source domain? */ 
INDEX(services[src].domain, DOMAIN_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, orl.domain, DOMAIN_INDEX, testl); 

/* Does current rule apply to source purpose? */ 
INDEX(services[src].purpose, PURPOSE_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, orl.purpose, PURPOSE_INDEX, test2) 

/* Does current rule apply to target object? */ 
INDEX(services[tgt].object, OBJECT_INDEX, leaf_index); 
IS_ANCESTOR(leaf_index, orl.object, OBJECT_INDEX, test3); 

/* Check object of response domain */ 
/* applicable and enabled allow obj_rule */ 
allow_rq4 = allow_rq4 || 
((orl.object == ALLOW) && 
testl & & test2 && test3 & & 
obj_policy[index].context); 

/* Applicable and disabled allow obj_rule */ 
deny_rq4 = deny_rq4 || 
((orl.ruling == ALLOW) && 
testl & & test2 && test3 & & 
!obj_policy[index].context); 

/* Applicable and enabled deny obj_rule */ 
deny_rq4 = deny_rq4 || 
((orl.ruling == DENY) && 
testl & & test2 && test3 & & 
obj_policy[index].context); 

} unless 
{ 

(services[tgt].object == 0); 
allow_rq3 = 1; 
allow_rq4 = 1; 
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} ; 

index++; 

: : else -> break; 
od; 

/* */ 
/* Decide ruling using default if necessary */ 
/* */ 

/* Apply default ruling to data request if needed */ 
allow_rql = ((!allow_rql && !deny_rql) -> 

((DATA_DEFAULT == ALLOW) ->1:0) : allow_rql); 
deny_rql = ((!allow_rql && !deny_rql) -> 

((DATA_DEFAULT == ALLOW) ->0:1) : deny_rql); 

/* Apply default ruling to data response if needed */ 
allow_rq2 = ((!allow_rq2 && !deny_rq2) -> 

((DATA_DEFAULT == ALLOW) ->1:0) : allow_rq2); 
deny_rq2 = ((!allow_rq2 && !deny_rq2) -> 

((DATA_DEFAULT == ALLOW) ->0:1) : deny_rq2); 

/* Apply default ruling to object request if needed */ 
allow_rq3 = ((!allow_rq3 && !deny_rq3) -> 

((OBJ_DEFAULT == ALLOW) ->1:0) : allow_rq3); 
deny_rq3 = ((!allow_rq3 && !deny_rq3) -> 

((OBJ_DEFAULT == ALLOW) ->0:1) : deny_rq3); 

/* Apply default ruling to data response if needed */ 
allow_rq4 = ((!allow_rq4 && !deny_rq4) -> 

((OBJ_DEFAULT == ALLOW) ->1:0) : allow_rq4); 
deny_rq4 = ((!allow_rq4 && !deny_rq4) -> 

((OBJ_DEFAULT == ALLOW) ->0:1) : deny_rq4); 

/* Global decision 
- allow if all atomic requests were allowed. 
- deny if any atomic request was denied */ 

RULING = ((allow_rql && allow_rq2 & & allow_rq3 && allow_rq4 & & 
!deny_rql && !deny_rq2 && !deny_rq3 && !deny_rq4) -> 
ALLOW : DENY); 

/* Reset DECISION */ 
RULING = NIL; 

} /* end atomic */ 
od 

} 

A.2 context-generator.pml 

File: context-generator.pml 
Author: Ryan Babbitt, Iowa State University 
Date : November 26, 2006 

Description: 
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This process creates the dynamic aspects of the system, which 
happen to be the context variables that are contained in the privacy 
policy rules. There are two such variables. 

*/ 

active proctype eg() 
{ 

do 
: : /* cause time to elapse */ 

atomic{ 
hour++; 

if 
: : (hour < 24) -> 

skip 
: : (hour ==24) -> 

hour=0; 
fi; 

} 

/* move inhabitant to a room */ 

room = living; 

room = kitchen; 

room = bathroom; 

room = bedroom; 
od; 

} 
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APPENDIX B: MACROS AND PROPERTY FILES 

This appendix contains the files used for the specification of our various correctness properties. The 
file coitimon macros contains definitions of macros used by multiple properties. The file sat. txt contains the 
property specification for the satisfiability of rule contexts. The file allow macros contains definitions used in 
the property for correctness of allow decisions. The file allow, txt contains the actual property specification 
for allow correctness. The file deny_macros contains definitions used in the property for deny correctness. The 
file deny. txt contains the actual property specification for deny correctness. The file invocation_macros 
contains definitions used in the property for service invocation correctness. The file invocation. txt contains 
the actual property specification for invocation correctness. The file modality macros contains definitions 
used in the property for the absence of modality conflicts. The file modality, txt contains the actual property 
specification for the absence of modality conflicts. 

B.l common macros 

/* 
File: c ommon_ma c r o s 
Author: Ryan Babbitt, Iowa State University 
Date : November 26, 2006 

Description: 
This file defines macros used in other macros. See comments 

below for more details. 
*/ 

/* Finds the index with value x in hierarchy z. 255 is returned if the 
index is not found */ 
#define INDEX_OF(x, z) ( \ 

((terms.h[(z)].leaves[0].value == (x)) -> 0 : \ 
((terms.h[(z)].leaves[1].value == (x)) -> 1 : \ 
((terms.h[(z)].leaves[2].value == (x)) -> 2 : 255)))) 

/* Determines if the value x has ancestor value y in hierarchy z */ 
#define HAS_ANCESTOR(x, y, z) ( \ 

(terms.h[(z)].leaves[INDEX_OF((y), (z))].value == (x)) || \ 
(terms.h[(z)].leaves[INDEX_OF((y), (z))].ancestors[0] == (x))) 

/* Determine the ruling of a particular rule */ 
#define ALLOW_DATA(i) (data_policy[(i)].ruling == ALLOW) 
#define DENY_DATA(i) (data_policy[(i)].ruling == DENY) 
#define ALLOW_OBJ(i) (obj_policy[(i)].ruling == ALLOW) 
#define DENY_OBJ(i) (obj_policy[(i)].ruling == DENY) 

/* Is a particular rule contextually enabled? */ 
#define ENABLED_DATA(i) (data_policy[(i)].context) 
#define ENABLED_OBJ(i) (obj_policy[(i)].context) 

/* Determines if data policy rule i is applicable to the current 
Data-to-Target request */ 
#define APP_DATA_TGT(i) ( \ 

HAS_AMCESTOR(data_policy[(i)].domain, services[tgt].domain, \ 
DOMAIN_INDEX) && \ 

HAS_ANCESTOR(data_policy[(i)].purpose, services[tgt].purpose, \ 
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PURPOSE_INDEX) && \ 
HAS_ANCESTOR(data_policy[(i)].data, services[tgt].data_in, \ 

DATA_INDEX)) 

/* Determines if data policy rule i is applicable to the current 
Data-to-Source request */ 
#define APP_DATA_SRC(i) ( \ 

HAS_ANCESTOR(data_policy[(i)].domain, services[src].domain, \ 
DOMAIN_INDEX) && \ 

HAS_ANCESTOR(data_policy[(i)].purpose, services[src].purpose, \ 
PURPOSE_INDEX) && \ 

HAS_AMCESTOR(data_policy[(i)].data, services[tgt].data_out, \ 
DATA_INDEX)) 

/* Determines if object policy rule i is applicable to the current 
Object-by-Target request */ 
#define APP_OBJ_TGT(i) ( \ 

HAS_AMCESTOR(obj_policy[(i)].domain, services[tgt].domain, \ 
DOMAIN_INDEX) && \ 

HAS_ANCESTOR(obj_policy[(i)].purpose, services[tgt].purpose, \ 
PURPOSE_INDEX) && \ 

HAS_ANCESTOR(obj_policy[(i)].object, services[tgt].object, \ 
OBJECT_INDEX)) 

/* Determines if object policy rule i is applicable to the current 
Obj ect-by-Source request */ 
#define APP_OBJ_SRC(i) ( \ 

HAS_AMCESTOR(obj_policy[(i)].domain, services[src].domain, \ 
DOMAIN_INDEX) && \ 

HAS_AMCESTOR(obj_policy[(i)].purpose, services[src].purpose, \ 
PURPOSE_INDEX) && \ 

HAS_ANCESTOR(obj_policy[(i)].object, services[tgt].object, \ 
OBJECT_INDEX)) 

B.2 sat.txt 

! ( [ ] (<>dcO && odd && <>dc2 && oocO && oocl))  

/* "Every rule context is satisfied infinitely often". 

Macros dc<i> and oc<j> defined in "src/global.pml" */ 

B.3 allow macros 

/* 
File: allow_macros 
Author: Ryan Babbitt, Iowa State University 
Date : November 26, 2006 
Description: 

According to our evaluation logic, for a service invocation 
request to be allowed, all 4 atomic checks must be allowed. This 
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means that, for each check, 1) a data item or object is null (i.e. 
the request doesn't exist, 2) all applicable allow rules in the 
corresponding policy are enabled and all applicable deny rules in 
the corresponding policy are disabled, or 3) no rule applies and 
the corresponding default ruling is allow. 

#define NULL_DATA_TGT (services[tgt].data_in == 0) 
#define NULL_DATA_SRC (services[tgt] .data_out == 0) 
#define NULL_OBJ_TGT (services[tgt].object == 0) 
#define NULL_OBJ_SRC (services[tgt].object == 0) 

/* Check #1: Data-to-Target */ 
#define allow_data_tgt (!(RULING == ALLOW) || (\ 

\ 
(NULL_DATA_TGT) \ 
\ 

I I \ 
\ 
!(ALLOW DATA(0) && APP DATA TGT(0)) I| ENABLED DATA(0) ) && 
(ALLOW_DATA(1) && APP DATA TGT(1)) | I ENABLED _DATA ( 1 ) ) && \ 
(ALLOW DATA(2) && APP DATA TGT(2)) | I ENABLED _DATA(2) ) && \ 

(DENY DATA(0) && APP DATA TGT(0)) || ! ENABLED DATA(0)) && \ 
(DENY_DATA(1) && APP_DATA_TGT(1)) || ! ENABLED _DATA ( 1 ) ) && \ 
(DENY_DATA(2) && APP DATA TGT(2)) || ! ENABLED DATA(2) ) ) \ 

\ 
I I \ 
\ 
( (DATA_DE FAULT == ALLOW) && \ 
!AP P_DATA_TGT(0) & & \ 
!APP_DATA_TGT(1) & & \ 
! AP P_DAT A_T GT (2) ) ) ) 

/* Check #2: Data-to-Source */ 
#define allow_data_src (!(RULING == ALLOW) || (\ 

\ 
(NULL_DATA_SRC) \ 
\ 

I I \ 
\ 
!(ALLOW DATA(0) && APP DATA SRC(0)) I| ENABLED DATA(0) ) && 
(ALLOW_DATA(1) && APP DATA SRC(1)) | I ENABLED DATA(1)) && \ 
(ALLOW DATA(2) && APP_DATA_SRC(2)) | I ENABLED _DATA(2) ) && \ 

(DENY DATA(0) && APP_DATA_SRC(0) ) | | ! ENABLED _DATA ( 0 ) ) && \ 
(DENY DATA(1) && APP DATA SRC(1)) || ! ENABLED DATA(1)) && \ 
(DENY_DATA(2) && APP DATA SRC(2) ) | | ! ENABLED DATA(2)) ) \ 

\ 
I I \ 
\ 
( (DATA_DE FAULT == ALLOW) && \ 
!APP_DATA_SRC(0) & & \ 
!APP_DATA_SRC(1) & & \ 
!AP P_DATA_S RC(2) ) ) ) 

/* Check #3: Object-by-Target */ 
#define allow_obj_tgt (!(RULING == ALLOW) || ( \ 

\ 
(NULL OBJ TGT) \ 
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\ 
I I \ 
\ 
((!(ALLOW_OBJ(0) && APP_OBJ_TGT(0)) || ENABLED_OBJ(0)) && \ 
(!(ALLOW_OBJ(l) && APP_OBJ_TGT(1)) || ENABLED_OBJ(1)) && \ 
\ 
(!(DENY_OBJ(0) && APP_OBJ_TGT(0)) || !ENABLED_OBJ(0)) && \ 
(!(DENY_OBJ(1) && APP_OBJ_TGT(1)) || !ENABLED_OBJ(1))) \ 
\ 

I I \ 
\ 
((OBJ_DEFAULT == ALLOW) && \ 
!APP_DATA_TGT(0) & & \ 
! AP P_DATA_T GT (1) ) ) ) 

/* Check #4: Obj ect-by-Source */ 
#define allow_obj_src (!(RULING == ALLOW) || ( \ 

\ 
(NULL_OBJ_SRC) \ 
\ 

I I \ 
\ 
((!(ALLOW_OBJ(0) && APP_OBJ_SRC(0) 
(!(ALLOW_OBJ(1) && APP_OBJ_SRC(1)) 
\ 
(!(DENY_OBJ(0) && APP_OBJ_SRC(0)) 
(!(DENY_OBJ(1) && APP_OBJ_SRC(1)) 
\ 

I I \ 
\ 
((OBJ_DEFAULT == ALLOW) && \ 
!APP_DATA_SRC(0) & & \ 
!AP P_DATA_S RC(1) ) ) ) 

/* Aggregated allow logic */ 
#define all_allow_logic (allow_data_tgt 

allow_obj_tgt & & allow_obj_src) 

B.4 allow.txt 

!([] (all_allow_logic)) 

/* Macro "all allow logic" is defined in "macros/allow macros" */ 

) || ENABLED_OBJ(0)) && \ 
I I ENABLED_OBJ(1) ) & & \ 

I | !ENABLED_OBJ(0) ) & & \ 
I | ! ENABLED OBJ(1) ) ) \ 

& & allow data src & & \ 

B.5 deny macros 

File: deny_macros 
Author: Ryan Babbitt, Iowa State University 
Date : November 26, 2006 
Description: 

According to our evaluation logic, for a service invocation 
request to be denied, at least one of the 4 atomic checks must be 
denied. This means that, for some check, 1) some applicable deny 
rule in the corresponding policy is disabled, or 2) no rule 
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applies and the corresponding default ruling is deny. 

/* Check #1: Data-to-Target */ 
#define deny_data_tgt (!(RULING == DENY) || ( \ 

\ 
((!(DENY_DATA(0) && APP_DATA_TGT(0)) || ENABLED_DATA(0)) || \ 
( ! (DENY_DATA(1) && APP_DATA_TGT(1) ) I I ENABLED_DATA(1) ) I I \ 
(!(DENY_DATA(2) && APP_DATA_TGT(2)) || ENABLED_DATA(2)) || \ 
\ 
(!(ALLOW_DATA(0) && APP_DATA_TGT(0)) || !ENABLED_DATA(0)) || \ 
( ! (ALLOW_DATA(1) && APP_DATA_TGT(1) ) || !ENABLED_DATA(1) ) I I \ 
(!(ALLOW_DATA(2) && APP_DATA_TGT(2)) || !ENABLED_DATA(2)) || \ 
\ 
((DATA_DEFAULT == DENY) && \ 
!APP_DATA_TGT(0) & & \ 
!APP_DATA_TGT(1) & & \ 
!APP_DATA_TGT(2))))) 

/* Check #2: Data-to-Source */ 
#define deny_data_src (!(RULING == DENY) || ( \ 

\ 
((!(DENY_DATA(0) && APP_DATA_SRC(0)) || ENABLED_DATA(0)) || \ 
( ! (DENY_DATA(1) & & APP_DATA_SRC(1) ) || ENABLED_DATA(1) ) I I \ 
( ! (DENY_DATA(2) & & APP_DATA_SRC(2) ) || ENABLED_DATA(2) ) || \ 
\ 
(!(ALLOW_DATA(0) && APP_DATA_SRC(0)) || !ENABLED_DATA(0)) || \ 
( ! (ALLOW_DATA(1) && APP_DATA_SRC(1) ) || !ENABLED_DATA(1) ) I I \ 
(!(ALLOW_DATA(2) && APP_DATA_SRC(2)) || !ENABLED_DATA(2)) || \ 
\ 
((DATA_DEFAULT == DENY) && \ 
!APP_DATA_SRC(0) & & \ 
!APP_DATA_SRC(1) & & \ 
!APP_DATA_SRC(2) ) ) ) ) 

/* Check #3: Object-by-Target */ 
#define deny_obj_tgt (!(RULING == DENY) || ( \ 

\ 
( (! (DENY_OBJ(0) & & APP_OBJ_TGT(0) ) || ENABLED_OBJ(0) ) || \ 
( ! (DENY_OBJ(1) && APP_OBJ_TGT(1) ) || ENABLED_OBJ(1) ) I I \ 
\ 
( ! (ALLOW_OBJ(0) & & APP_OBJ_TGT(0) ) || !ENABLED_OBJ(0) ) || \ 
( ! (ALL0W_0BJ(1) && APP_OBJ_TGT(1) ) || !ENABLED_OBJ(1) ) I I \ 
\ 
((OBJ_DEFAULT == DENY) && \ 
!APP_OBJ_TGT(0) && \ 
!APP_OBJ_TGT(1))))) 

/* Check #4: Obj ect-by-Source */ 
#define deny_obj_src (!(RULING == DENY) || ( \ 

\ 
( (! (DENY_OBJ(0) & & APP_OBJ_SRC(0) ) || ENABLED_OBJ(0) ) || \ 
( ! (DENY_OBJ(1) && APP_OBJ_SRC(1) ) || ENABLED_OBJ(1) ) I I \ 
\ 
( ! (ALLOW_OBJ(0) & & APP_OBJ_SRC(0) ) || !ENABLED_OBJ(0) ) || \ 
( ! (ALLOW_OBJ(l) && APP_OBJ_SRC(1) ) || !ENABLED_OBJ(1) ) I I \ 
\ 
((OBJ_DEFAULT == DENY) && \ 
!APP_OBJ_SRC(0) && \ 
! APP OBJ SRC(1) ) ) ) ) 
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/* Aggregated deny logic */ 
#define all_deny_logic (deny_data_tgt || deny_data_src || \ 

deny_obj_tgt || deny_obj_src) 

B.6 deny .txt 

! ([] (all_deny_logi c)) 

/* Macro "all_deny_logic" is defined in "macros/deny_macros" */ 

B.7 invocation macros 

/* 
File: invocation_macros 
Author : Ryan Babbitt, Iowa State University 
Date : November 26, 2006 

Description: 
This file defines macros for allowable service invocations. 

These can be used to make sure that the allowable service invocations 
happen in conjunction with correct evlaution logic (defined in 
allow_macros and deny_macros). All macros are of the form src"i"tgt"j", 
where i is the source service/method index and j is the target 
service/method index. Basically, in our example scenario, the two 
monitoring services can invoke all other services. 

*/ 

#define src4tgt0 ( (RULING == ALLOW) && (src == 4) && (tgt == 0) ) 
#define src4tgtl ( (RULING == ALLOW) && (src == 4) && (tgt == 1) ) 
#define src4tgt2 ( (RULING == ALLOW) && (src == 4) && (tgt == 2) ) 
#define src4tgt3 ( (RULING == ALLOW) && (src == 4) && (tgt == 3) ) 
#define srcStgtO ( (RULING == ALLOW) && (src == 5) && (tgt == 0) ) 
#define srcStgtl ( (RULING == ALLOW) && (src == 5) && (tgt == 1) ) 
#define src5tgt2 ((RULING == ALLOW) && (src == 5) && (tgt == 2) ) 
#define src5tgt3 ((RULING == ALLOW) && (src == 5) && (tgt == 3) ) 

B.8 inv.txt 

!([](all_allow_logic && all_deny_logic && Osrc4tgt0 && <>src4tgtl && <>src4tgt2 && 
<>src4tgt3 && osrcStgtO && osrcStgtl && <>src5tgt2 && <>src5tgt3)) 

/* Macro "all_allow_logic" defined in "macros/allow_macros". 
Macro "all_deny_logic" defined in "macros/deny_macros". 
Macros src<i>tgt<j > defined in "macros/invocation_macros". */ 

B.9 modality macros 

/* 
File : modality_macros 



70 

Author: Ryan Babbittt, Iowa State University 
Date : November 30, 2006 

Description: 
This file defines a test for atomic request modality conflicts. 

Three conditions need to be satisfied: 
1) The rulings are opposite 
2) All three terms have a common leaf descendant 
3) The context of one is the subset of the context of the other. 

(not specified here) 
*/ 

/* Do data rules i and i create a modality conflict? */ 
#define MODAL_DATA_PAIR(i,j) ( \ 

((ALLOW_DATA((i)) && DENY_DATA((j))) || \ 
(DENY_DATA( (i) ) && ALLOW_DATA( (])))) \ 
\ 
&& \ 

\ 
(HAS_AMCESTOR(data_policy[(i)].domain, data_policy[(])].domain, \ 

DOMAIN_INDEX) || \ 
HAS_ANCESTOR(data_policy[(j)].domain, data_policy[(i)].domain, \ 

DOMAIN_INDEX)) \ 
\ 
&& \ 

\ 
(HAS_ANCESTOR(data_policy[(i)].purpose, data_policy[(])].purpose, \ 

PURPOSE_INDEX) || \ 
HAS_AMCESTOR(data_policy[(j)].purpose, data_policy[(i)].purpose, \ 

PURPOSE_INDEX)) \ 
\ 
&& \ 

\ 
(HAS_ANCESTOR(data_policy[(i)].data, data_policy[(j)].data, \ 

DATA_INDEX) || \ 
HAS_AMCESTOR(data_policy[(j)].data, data_policy[(i)].data, \ 

DATA_INDEX))) 

/* All possible pairs of data rules */ 
#define mdpOl (MODAL_DATA_PAIR(0,1)) 
#define mdp02 (MODAL_DATA_PAIR(0,2)) 
#define mdpl2 (MODAL_DATA_PAIR(1,2)) 

/* Do object rules i and i create a modality conflict? */ 
#define MODAL_OBJ_PAIR(i,j) ( \ 

((ALLOW_OBJ((i)) && DENY_OBJ((j))) || \ 
(DENY_OBJ((i)) && ALLOW_OBJ((j)))) \ 
\ 
&& \ 

\ 
(HAS_AMCESTOR(obj_policy[(i)].domain, obj_policy[(j)].domain, \ 

DOMAIN_INDEX) || \ 
HAS_ANCESTOR(obj_policy[(j)].domain, obj_policy[(i)].domain, \ 

DOMAIN_INDEX)) \ 
\ 
&& \ 

\ 
(HAS_ANCESTOR(obj_policy[(i)].purpose, obj_policy[(j)].purpose, \ 

PURPOSE_INDEX) || \ 
HAS_AMCESTOR(obj_policy[(j)].purpose, obj_policy[(i)].purpose, \ 
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PURPOSE_INDEX)) \ 
\ 
&& \ 

\ 
(HAS_ANCESTOR(obj_policy[(i)].object, obj_policy[(j)].object, \ 

OBJECT_INDEX) || \ 
HAS_ANCESTOR(obj_policy[(j)] .obj ect, obj_policy[(i)] .obj ect, \ 

OBJECT_INDEX))) 

/* All possible pairs of object rules */ 
#define mop01 (M0DAL_0BJ_PAIR(0,1)) 

B.10 modality.txt 

! ((mdpOl -> (<>(!dcO && del) && <>(dcO && ! del))) && (mdp02 -> (<>(!dcO && dc2) && 
<>(dcO && !dc2))) && (mdpl2 -> (<>(! del && dc2) && <>(del && !dc2))) && (mopOl -> 
(<> ( !ocO && ocl) && <>(ocO && !ocl)))) 

/* Three parts to a modality conflict 
1) Rules are opposing 
2) All corresponding terms have a common leaf 
2) The context of one rule is a subset of the context of the other 

rule. 

Macros mdp<i><j> defined in "macros/modality_macros". 
Macros dc<k> defined in "src/global.pml" 

*/ 


