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Abstract –Using Monte Carlo and analytic techniques, we study a minimal dynamic network
involving two populations of nodes, characterized by different preferred degrees. Reminiscent of
introverts and extroverts in a population, one set of nodes, labeled introverts (I), prefers fewer
contacts (a lower degree) than the other, labeled extroverts (E). As a starting point, we consider
an extreme case, in which an I simply cuts one of its links at random when chosen for updating,
while an E adds a link to a random unconnected individual (node). The model has only two
control parameters, namely, the number of nodes in each group, NI and NE). In the steady state,
only the number of crosslinks between the two groups fluctuates, with remarkable properties:
Its average (X) remains very close to 0 for all NI > NE or near its maximum (N ≡ NINE) if
NI < NE . At the transition (NI = NE), the fraction X/N wanders across a substantial part
of [0, 1], much like a pure random walk. Mapping this system to an Ising model with spin-flip
dynamics and unusual long-range interactions, we note that such fluctuations are far greater than
those displayed in either first or second order transitions of the latter. Thus, we refer to the
case here as an ‘extraordinary transition.’ Thanks to the restoration of detailed balance and the
existence of a ‘Hamiltonian,’ several qualitative aspects of these remarkable phenomena can be
understood analytically.

Introduction. – Though their significance may not
be understood at first glance, network structures can of-
ten be easily recognized in nature, from microscopic neu-
rons to galactic filaments [1–5]. While these natural phe-
nomena existed for ages and eons, more recently humans
started building artificial counterparts in widely distinct
arenas, e.g., in social [6, 7], infrastructural [8, 9], eco-
nomic [10], and political [11] contexts. Their importance
for modern societies cannot be understated. Meanwhile,
quantitative efforts to characterize and model networks
emerged even more recently, involving developments in
many branches of science and engineering, including graph
theory, statistical physics, neuroscience, computer science,
etc. While these efforts led to much progress, many as-
pects of networks remain to be explored and/or modeled.
For example, much of the literature focuses on static char-
acteristics. While many situations may be well-served by
a static model of networks (e.g., highways on timescales
of days or months), there are many others for which a dy-

namic network description would be more appropriate. In
particular, social contacts are generally in a state of flux,
as new friendships or alliances are formed or existing links
are severed. Our goal here is to study such evolving net-
works, to seek steady states (if any) and characterize their
statistical properties. Are they like random Erdös-Rényi
graphs [12], with Gaussian degree distributions? Are there
strong or weak clustering and/or modularity characteris-
tics? To make the network model easier to understand,
we use the language of social network, so that nodes and
links represent individuals and contacts (between pairs of
persons), respectively. We will model the interactions be-
tween nodes stochastically and dynamically, i.e., through
probabilistic evolution rules for adding/cutting links. In
the language of graphs, the degree of each node will typi-
cally change, with a set of prescribed rates.

Inspired by the facts that an individual tends to prefer a
certain number of contacts in social networks, and that as
individuals adapt to changing circumstances, the network
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structure will fluctuate and drift [13], we have in mind a
dynamically evolving network with preferred degree(s). Of
course, the preferred number of contacts will typically dif-
fer from person to person and will change with time. How-
ever, our goal here is not to model any type of real social
networks, but attempt to explore general statistical prop-
erties of evolving networks from a highly simplified model
of social network. Therefore, let us begin with a homoge-
neous population of N individuals, all preferring the same
degree, κ, and describe the rules for how individuals add
or cut connections, in an attempt to reach their preferred
degree from some other initial value. It is easy to imagine
that this system will reach a steady state, in which every-
one is mostly satisfied, with statistically ‘normal’ fluctu-
ations around some ‘happy medium.’ Reminiscent of the
presence of extroverts and introverts in the general pop-
ulation, we consider a system with two such groups (or
communities), characterized by κ1,2. One group of nodes
prefers lower degree than the other. If κ1 � κ2, it is
natural to adopt the psychological/sociological terminol-
ogy and to refer to these two groups as introverts (I) and
extroverts (E) [14, 15]. Of course, the number of individ-
uals in these groups can differ, denoted here by NI and
NE respectively (with N ≡ NI + NE). For example, it
was widely believed that NI/NE ∼ 1/3 in the US popula-
tion, though a more recent survey [16] suggests it is closer
to 1/1. Our focus here will not be an attempt to pre-
dict complex human behavior. Instead, we are interested
in general properties of stochastic, far-from-equilibrium
systems which one might glean from investigating simple
mathematical models of complex settings such as social
interactions. A few preliminary results of this study were
already reported in [15].

In the next section, we present the specifications of our
model and surprising results from Monte Carlo simula-
tions. In particular, we discover an extraordinarily sharp
transition as the ratio NI/NE crosses unity, as well as
O
(
N2
)

fluctuations and slow dynamics when NI = NE .
Section 3 is devoted to theoretical approaches which offer
some insight into these remarkable properties. Setting up
the associated master equation, we find that the rates obey
detailed balance and provide the exact stationary distribu-
tion. As will be shown, this system can be regarded as an
equilibrium Ising model in two dimensions with (highly
unusual) long-range interactions, evolving with Glauber
spin-flip dynamics. Since an exact solution of such a
model is beyond reach, we introduce several approximate
approaches, with which much of the system’s behavior can
be reasonably well understood. The main challenge is the
NI = NE system, which displays many characteristics of
critical phenomena. We end with a summary and outlook
for future research.

Model specifications and simulation results. –
Though our primary interest here will be a system with
two different types of individuals, let us first consider a ho-
mogeneous population, which facilitates the description of

the rules of evolution for a network with a preferred degree:
κ [17]. While the number of nodes is fixed, the links do
change: In a discrete time step (an attempt), a random
node is chosen and its degree, k, is noted. For simplic-
ity, we restrict ourselves to undirected links, i.e., identical
in/out degrees. If k > κ, the node cuts a randomly chosen
existing link. If k < κ, it adds a link to a random node to
which it is not already connected. To avoid possible am-
biguity, we can let κ be a half integer. With these simple
rules, it is clear how κ plays the roles of a preferred de-
gree. Obviously, this dynamics is not realistic; chosen for
simplicity, it can be generalized to account for a variety
of human preferences through, e.g., suitably chosen rate
functions w± (k|κ) for adding/cutting links [17].

The standard description of a network is to specify the
(symmetric) adjacency matrix A, with elements Aij = 0/1
representing the absence/presence of the link between
nodes i and j. Since there are L ≡ N (N − 1) /2 links,
the configuration space spans the 2L vertices of a unit
cube in L dimensions, while adding/cutting a link corre-
sponds to traversing along an edge of this L-cube. Since
the action on the links is random, this dynamics is ergodic.
Thus, a finite system will settle into a unique stationary
state. However, despite the simplicity, the transition rates
do not satisfy detailed balance. Though straightforward,
the proof is tedious and will be provided elsewhere [18].
As a result, the stationary state will be a non-equilibrium
steady state (NESS), in the sense that persistent probabil-
ity currents will prevail [19]. Though the network in the
NESS resembles a random one [12], the (average) degree
distribution is not a Gaussian, but instead, a Laplacian:
∝ e−µ|k−κ| [17]. This behavior can be understood from a
simple argument [18], but let us turn to the more inter-
esting problem of inhomogeneous populations.

The above picture becomes considerably more complex
if we allow some diversity, e.g., a distribution of κ’s. In-
deed, even for a system with just two groups (i.e., I’s
and E’s, with κI < κE), several new and puzzling fea-
tures emerge [18]. Needless to say, an introvert/extrovert
will typically find himself (herself) with more/less contacts
than the preferred degree and so, tends to cut/add links.
Such activities may be characterized quantitatively and
regarded as a form of ‘frustration,’ a concept we will not
discuss here. A systematic study requires scanning much
of the κI -κE plane, a serious task which we initiate here
by considering the minimal case. This serves as a base-
line study, with an unexpected bonus of providing some
exact analytic results. In this spirit, we consider a pop-
ulation with extreme preferences: κI = 0 and κE = ∞.
In other words, if possible, the I’s/E’s always cut/add
links. We coin this ‘maximally frustrated’ case the XIE
(eXtreme Introverts/Extroverts) model and show that it
provides some insight into the puzzles discovered in the
general case of moderate I’s and E’s.

One significant simplification associated with this model
is immediately apparent: Since the I’s/E’s always cut/add
links, our system quickly evolves into a state where all I-
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I/E-E links are absent/present. Only the crosslinks (I-
E) are dynamic, changing according to which one of its
associated nodes is chosen for update. Thus, instead of
having to account for L links, we need to consider only
N ≡ NINE crosslinks and focus on N, the appropriate
rectangular sector of A. Let us denote the elements of
this NI × NE matrix by nij . Note that the first/second
index is associated with an introvert/extrovert, so that
i ∈ [1, NI ] , j ∈ [1, NE ].

To re-emphasize, there are no degrees of freedom as-
sociated with our nodes. Each keeps its preassigned κ
for the run, and only its links are cut or created. Note
also that there are no spatial structures or built-in corre-
lations – other aspects of realistic social networks which
should be incorporated in future studies. Given the fixed
preferences and rules of evolution, there are only two con-
trol parameters, (NI , NE), in our model. Furthermore, we
can regard it as an Ising model on a square lattice of size
NI×NE with ‘spin’ σij = ±1. Clearly, the correspondence
is nij = (1 + σij) /2. Of course, the dynamics of XIE is
not governed by the Hamiltonian of the standard Ising
model, −JΣσijσi′j′ . Indeed, there is no a priori reason to
believe that the stationary state of the XIE model can be
characterized as an equilibrium system with a Boltzmann
distribution. However, detailed balance is restored in this
limit, a property we will exploit in our analysis.

For simulations, we start our runs mostly with an empty
network. After about N Monte Carlo steps (MCS, with
1 MCS defined as N update attempts), we find that the
E-E links are mostly filled. Thus we believe it is ade-
quate to discard just the first 104 MCS before taking data.
Our runs are mostly 106 - 107 MCS long, as we measure
quantities of interest every 100 MCS. At first sight, this
model appears to be entirely trivial, with random connec-
tions and no spatial structure. For example, we may ex-
pect more or fewer crosslinks, distributed homogeneously
among the nodes, as the difference H ≡ NE − NI is var-
ied with fixed N . While some of these expectations are
indeed confirmed qualitatively, many quantitative aspects
are quite surprising. Here, we report findings from sim-
ulating a system with N = 200 and various H. We will
comment briefly on preliminary results for other N ’s in
the last section.

Despite the minimal structure of the XIE model, inter-
esting quantities can be measured, e.g., degree distribu-
tions, correlations, and time dependence. The most imme-
diate and natural quantity to consider is just X, the total
number number of crosslinks. Since X = Σi,jnij , it plays
precisely the same role as the total magnetization, M =
Σi,jσij , in the Ising model. As X is a time-dependent,
stochastic variable, it corresponds toM in the kinetic Ising
model [20]. Thus, questions about how M behaves as a
function of the control parameters (temperature, magnetic
field, system size, ...) can be immediately translated into
ones for X. While we do not have a temperature, it is clear
that our H plays a role similar to the magnetic field in the
Ising model. Certainly, the average 〈X〉 in a stationary

state should be a monotonically increasing function of H.
Pursuing this analogy, let us define a magnetization-like
quantity, m ≡ 2 〈X〉 /N − 1 ∈ [−1, 1]. Similarly, we define
h ≡ H/N = (NE −NI)/(NE +NI) ∈ [−1, 1], which plays
the role of (say, the hyperbolic tangent of) the magnetic
field. It is now natural to ask: How does m (h) compare
to the Ising equation of state?

Before presenting our findings, let us discuss what might
be expected. Starting with a population with no links, the
extroverts quickly fill all E-E links, while also making E-I
contacts. Of course, when chosen to update, an introvert
will cut one of its (necessarily I-E) links. Since every
node is equally likely to be chosen, we may näıvely expect
the ratio of link creations to deletions to be just NE/NI ,
leading to NE/NI = 〈X〉 / (N − 〈X〉), i.e., m = h. This
expectation is shown as the dashed line in Fig. 1.

Our simulation data (red diamonds in Fig. 1) paint an
entirely different picture: For XIE, m (h) is reminiscent
of the equation of state in a ferromagnet at temperatures
far below criticality. In particular, when just two intro-
verts ‘change sides’ (from 101/200 to 99/200), the frac-
tion 〈X〉 /N jumps from ∼ 15% to ∼ 85%. A jump of
70% (i.e., m jumping from −0.7 to +0.7) is extraordinary
indeed! What causes such a sharp transition? and how
is 〈X〉 = N/2 realized in the NE = NI case? To an-
swer these questions, we probe beyond simple averages,
by studying the time traces, X (t). In Fig. 2, the data for
NI − NE = ±2 (green and blue lines) show that X hov-

ers around 〈X〉 with fluctuations of O (100) (i.e., O
(√
N
)

here), as one would expect for a ‘non-critical’ system. By
contrast, in the NI = NE case (red line), X wanders over
a major portion of the allowed range, [0,N ], evolving ex-
ceedingly slowly. Large fluctuations and slow dynamics
are typical of ordinary equilibrium systems at a second-
order phase transition. For example, in a standard Ising
model at criticality, we have ∆M2 ∝ Nχ ∼ O

(
N 1+γ/dν

)
[21]. Here, the fluctuations appear to be even larger:
∆X2 ∼ O

(
N 2
)
. Of course, a firm conclusion can only

be drawn after a detailed finite-size scaling analysis is car-
ried out.

From the time traces in the stationary state, we compile
histograms for the full distribution of X: P (X). Shown
in Fig. 3, these reveal the expected (Gaussian-like for
H 6= 0) and the unexpected – an essentially flat distribu-
tion over most of the full range (for H = 0). We should
remind the reader that the standard Ising model does not
exhibit such ‘extreme’ variability in P (M). In particu-
lar, if we study very long runs of a finite system with
T � TOnsager and zero magnetic field, then we expect
M (t) to hover around one of two values, ±mspN (msp

being the spontaneous magnetization), for extremely long
periods, with infrequent yet very rapid transits from one
to the other. Consequently, P (M) will display two sharp
(Gaussian, width O

(
N 1/2

)
) peaks, with a deep valley in

between. Returning to the XIE model, we recall that a
flat stationary distribution is related to an unbiased sim-
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Fig. 1: The behavior of the average number of crosslinks
for various NI and NE , displayed in terms of m (h). Data
points (red diamonds) are associated with (NI , NE) =
(125, 75) , (110, 90) , (101, 99) , (100, 100), etc. The dashed line
is the prediction from an ‘intuitively reasonable’ argument. A
mean field approach leads to the solid (blue) line.

ple random walk. To confirm this expectation, we con-
structed the power spectrum from X (t) and found that it
is entirely consistent with 1/f2 (for 1/f . 106 MCS, the
time for X to traverse the observed range). This behavior
can be roughly understood as X increasing or decreasing
by unity (with equal probability, due to NI = NE) at
each update attempt. Since X wanders over O (N ), the
time scale associated with a traverse is O

(
N 2
)

attempts,

i.e., O
(
N 2/N

)
= O

(
N3
)

MCS, consistent with the ∼ 106

MCS observed. While all of these arguments need to be
tightened quantitatively, they do paint a plausible picture,
namely, that X performs an unbiased random walk in case
of a 50-50 split between introverts and extroverts.

Although a sizable jump in 〈X〉 suggests a first order
phase transition, the standard associated characteristics
are absent here. For example, in an Ising system at T �
Tc, these include a well-separated bimodal P (M), limited
fluctuations, phase coexistence, hysteresis, metastability,
etc. In addition to observing the flat P (X) and O (N )
fluctuations, we tested for hysteresis and metastability.
Starting a system in steady state with NE/NI = 99/101,
we suddenly set NE/NI = 101/99. Preliminary data for
X (t) show that it promptly embarks on a biased random
walk, with average velocity 2/MCS, until it reaches the
appropriate 〈X〉. We are not aware of any other system,
except for the Poland-Sheraga model [22], displaying such
extraordinary behavior at a ‘first order transition.’ In the
next section, we will present some analytic approaches for
understanding these phenomena.

Analytic approaches. – A complete analytical de-
scription of the discrete-time stochastic XIE model is given
by P (N, t |N0, 0), the probability of finding configuration
N, t steps after some initial configuration N0. Writing
down the rates which dictate the evolution for P is an
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Fig. 2: Time traces of X for three cases: NI = 101 (green,
bottom), 100 (red, middle), and 99 (blue, top).

easy first step. Solving it, even for the stationary P∗ (N),
is not so facile. In this section, we will present the master
equation and the rates, as well as an explicit P∗. From
here, finding averages such as 〈X〉 is challenging enough,
let alone computing full distributions such as P (X). To
make some progress, we exploit a mean field approach and
gain some insights into the phenomena described above.

Master equation and stationary P∗. Suppressing the
reference to N0, the master equation provides the change
over one time step (one attempt), P (N, t+ 1) − P (N, t),
as
∑
{N′} [W (N,N′)P (N′, t)−W (N′,N)P (N, t)]. where

W (N′,N) specifies the rate for N to change to N′. As noted
above, a link being added/cut corresponds to a simple spin
flip in Ising language. However, the rates for XIE are more
involved, especially since we have no a priori knowledge
of either a Hamiltonian or detailed balance. Here, letting
n̄ ≡ 1− n, we define

ki ≡ Σjnij ; p̄j ≡ Σin̄ij (1)

which are, respectively, the degree of node i and the com-
plement of the degree of node j. Note that ki ∈ [0, NE ]
and p̄j ∈ [0, NI ]. In the lattice gas language of the Ising
model, ki and p̄j are the number of particles in row i and
holes in column j, respectively. Similar to the Ising case, a
key symmetry here is nij ⇔ n̄ji⊕NI ⇔ NE , which we will
refer to as ‘particle-hole symmetry.’ Using (1), W (N′,N)
can be easily written:∑

i,j

∆

N

[
Θ (ki)

ki
n̄′ijnij +

Θ (p̄j)

p̄j
n′ij n̄ij

]
(2)

where Θ (x) is the Heavyside function (i.e., 1 if x > 0 and
0 if x ≤ 0) and ∆ ≡ Πk` 6=ijδ (n′k`, nk`) insures that only
nij may change.

Besides a reduction of the configuration space (to the
vertices of an N -cube), the XIE model enjoys another
major simplification: the restoration of detailed balance.
Our proof invokes the Kolmogorov criterion [23]: Detailed
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Fig. 3: Histograms of X for three cases: NI = 101 (green, left),
100 (red, middle), and 99 (blue, right).

balance holds if the product of transition rates around
every closed loop in configuration space is independent
of the direction in which the loop is traversed. It is
straightforward to show this for every face of our N -cube,
and so around all closed loops. As a consequence, in
the t → ∞ limit, P approaches the stationary distri-
bution P∗ (N) with no probability currents, just like a
system in thermal equilibrium. Further, P∗ can be ob-
tained from repeated use of the detailed balance condition
P∗ (N) = P∗ (N′)W (N,N′) / W (N′,N). Imposing nor-
malization, we find explicitly

P∗ (N) =
1

Ω

NI∏
i=1

(ki!)

NE∏
j=1

(p̄j !) (3)

where Ω = Σ{N}Π (ki!) Π (p̄j !) is a ‘partition function.’
Note that the particle-hole symmetry is manifest here.

Mean-field approximation. Although having an ex-
plicit P∗ is a major step in understanding a stochastic
process, we are still quite far from being able to com-
pute macroscopic quantities of interest analytically. In
analogy, the explicit P∗ for the ordinary Ising model was
proposed by Lenz in the 1920’s, but nontrivial analytic
results first appeared in 1944. Indeed, few such results
exist for the 3D case, while even in 2D, the exact equation
of state, m (h, T ), remains unknown. Our system poses
much more serious challenges: Defining a ‘Hamiltonian’
by H ≡ − lnP, we see that, being −

∑NI

i=1 ln (Σjnij)! −∑NE

j=1 ln (Σin̄ij)! (apart from a constant), it contains pe-
culiarly anisotropic, long-ranged, multispin interactions,
in which a ‘spin’ is coupled to all others in its row and
column.

To make progress, we invoke a mean-field approach and
find an approximate expression for

P (X) ≡
∑
{N}

δ (X,Σijnij)P∗ (N) . (4)

In other words, we replace nij by X/N and attempt

to perform the sums. Thus, Σjnij → NE (X/N ) and
Σin̄ij → NI (1−X/N ), while∑

{N}

δ (X,Σijnij) =

(
N
X

)
. (5)

Exploiting Stirling’s formula, we can compute the mean-
field approximate PMF (X). In this spirit, it is natural to
label

F (ρ) ≡ (− lnPMF (X)) /N (6)

as a ‘Landau free energy density’ for ρ ≡ X/N . Remark-
ably, contributions from H cancel most of the entropic
terms from (5), so that, to leading order in the thermo-
dynamic limit (X,N → ∞ at fixed ρ), F is linear in ρ
with slope ln (NI/NE). In other words, there is noth-
ing to stabilize ρ to non-trivial values. Its behavior fol-
lows an ‘all or nothing’ maxim: As long as NI 6= NE ,
ρ can assume only the boundary values: 0 or 1. For
NI = NE , F is flat over the entire interval. This pic-
ture fits the simulation data qualitatively and provides
insight into the extraordinary transition observed. To
avoid the extremes, we find nonlinear contributions at

the next order: −
(

ln ρ
NE

+ ln[1−ρ]
NI

)/
2. Thus, ρ settles

within O (1/N ln [NI/NE ]) of the boundaries for generic
(NI , NE). In the language of magnetism, them-dependent
part of F (m;h) reads

m

2
ln

1 + h

1− h
− 1

N

[
ln (1 +m)

1 + h
+

ln (1−m)

1− h

]
. (7)

From here, we can find the minimum of F and plot it
as m (h) for the specific case of N = 200. The resultant
(solid blue curve in Fig. 1) is remarkably respectable.
We should caution the reader, however, that such good
agreement does not extend to the entire distribution, i.e.,
PMF (X) deviates considerably from the histograms of X.
If the N → ∞ limit is taken first, this approach will pro-
vide us with a highly singular m (h) = sign (h). Such an
‘extreme’ equation of state occurs only at T = 0 in the
Ising model! Of course, such predictions should be tested
against simulations with other N ’s, along with finite-size
scaling plots.

Before ending, let us call attention to another salient
feature of this F . For h � 1, it is simply −mh −
ln
(
1−m2

)
/N . Unlike the standard Landau form, −mh−

τm2 + gm4, our F has just one minimum, consistent with
the absence of metastability. Instead of displaying hys-
teresis, our system will immediately begin, when started
in equilibrium state with h < 0 and suddenly set with
h > 0, a constant (for N → ∞) average velocity jour-
ney to the stable state. Clearly, this mean-field approach
captures some key features of the XIE model.

Summary and outlook. – In this article, we con-
sidered a simple model of two groups (‘extreme’ intro-
verts/extroverts) interacting via a dynamic network of
links. Using Monte Carlo simulations, we discovered an

p-5



Wenjia Liu et al.

extraordinarily sharp transition, as the mix of the two
groups crosses 50-50. The nature of this transition is puz-
zling. While the large jump in 〈X〉 suggests a first-order
transition, the system displays none of the standard char-
acteristics: metastability, hysteresis, phase co-existence,
etc. Instead the extensive fluctuations and slow dynam-
ics at 50-50 remind us of those in a system at a second-
order transition (but with δ = ∞ to ‘fit’ m = sign (h)).
Although similar features are displayed elsewhere [22],
the XIE model is unique, as the transition is driven by
a change in the system geometry (in the language of a
2D Ising model), rather than tuning the temperature or
magnetic field. Starting with a master equation for this
stochastic process, we find an explicit expression for the
stationary distribution P∗, which plays the role of the
Boltzmann factor for systems in thermal equilibrium. A
mean-field approach provides some insight into much of
the surprising behavior through a Landau-like F (m;h).
The long-ranged, multispin interactions in our ‘Hamilto-
nian’ are reminiscent of the Kac potential [25] (for which
the mean-field treatment is exact). However, there are
clearly substantial differences, which are beyond the scope
of this letter and will be discussed elsewhere.

These initial findings serve as an excellent starting point
for pursuing many other interesting issues associated with
this model. Most immediate is a finite-size scaling analy-
sis of the critical region of the ‘extraordinary’ transition.
Fluctuations of X , which can be related to various 〈nn′〉
correlations, as well as details of the power spectrum (asso-
ciated with X (t)) should be explored. Some preliminary
data for Q (k), the degree distributions of both I’s and
E’s, hint at a rich variety of behavior and promise a cor-
nucopia of novel phenomena. Apart from these standard
concepts from statistical mechanics, we may venture to
quantify the notion of ‘frustration’ – φ. The simplest pos-
sibility is to start with Qi, the degree distribution of an
individual i, and define φi ≡ [Σk>κ − Σk<κ]Qi (k). Thus,
φ vanishes if the node has as many links above its pre-
ferred κ as below. In XIE, φ assumes the extremal values
±1 for every nodes and so, the system deserves the term
‘maximally frustrated.’

Beyond this simple model, there are many avenues to ex-
plore other dynamic networks with preferred degrees, such
as having generic κI,E ’s or a realistic distribution of κ’s.
‘Frustration’ should be less extreme, as we expect |φi| < 1
in general. To assess how ‘frustrated’ the entire popula-
tion is, we may consider, say, Φ ≡ Σiφ

2
i /N . Perhaps such

a mathematical concept will be useful for sociologists and
psychologists. There are also multiple ways to model in-
teractions between the various groups. Looking further,
we should overlay node variables on our dynamic network,
e.g., the opinion, the wealth, the state of health, etc., as-
sociated with each individual. Of course, it would be in-
teresting to see whether the features discovered in simple
models are robust and appear in more realistic models of
social networks. While considerations of models like ours
are unlikely to predict the swing of public opinion, the

widening gap between rich and poor, or the spread of epi-
demics in our society, they may provide some insight into
certain universal aspects of collective, stochastic behavior.
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