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ABSTRACT

This thesis applies techniques from fractional graph theory to develop fractional ver-

sions of graph parameters related to minimum rank and zero forcing. Projective rank,

a graph parameter with applications to quantum information, is formally related to r-

fold generalizations of orthogonal representations for graphs. Using similar techniques,

fractional minimum positive semidefinite rank is defined via r-fold generalizations of

faithful orthogonal representations and r-fold minimum positive semidefinite rank, and

it is shown that the fractional minimum positive semidefinite rank of any graph equals

the projective rank of the complement of the graph. An alternate characterization of

r-fold minimum positive semidefinite rank that considers the ranks of certain Hermitian

matrices is also presented. Motivated by the connections between zero forcing games

and minimum rank problems, an r-fold analogue of the positive semidefinite zero forcing

process is introduced and used to define the fractional positive semidefinite forcing num-

ber of a graph. An analysis of the r-fold positive semidefinite forcing game leads to a

three-color forcing game that allows computation of fractional positive semidefinite forc-

ing number without appealing to the r-fold game. The three-color approach is applied

to the standard zero forcing game and it is shown that the skew zero forcing number of

a graph is exactly the parameter obtained by applying the fractionalization technique to

the standard zero forcing game. Graphs whose skew zero forcing number equals zero are

characterized via the three-color approach and an algorithm.
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CHAPTER 1. INTRODUCTION

This thesis applies techniques from fractional graph theory [4] to develop fractional

versions of graph parameters related to minimum rank and zero forcing. While the over-

all theme of introducing and analyzing fractional versions of previously-studied graph

parameters is graph theoretic in nature, linear algebra also plays a key role in the de-

velopment of these new parameters. The underlying theory related to this work has

connections to quantum information, control of quantum systems, and modeling the

spread of disease in a network, as described in Chapters 2 and 3.

Briefly, the “fractionalization” process that we implement begins by defining an “r-

fold” version of a graph parameter. The r-fold parameter should be an extension of the

regular parameter to some “higher dimension;” for example, if the regular parameter is

related to single objects, then the r-fold version may consider sets of r objects. Creating

a “reasonable” definition for the r-fold parameter is an important and challenging aspect

of this process; there may be many ways to define an r-fold parameter, so a definition

that imparts properties similar to those of the regular graph parameter is desirable.

The fractional graph parameter is then defined to be the infimum (or, if appropriate,

supremum) over the natural numbers of the ratio of the r-fold parameter to r. Depending

on the properties of the r-fold parameter, there may be equivalent ways to express or

define the fractional parameter.

As described in Section 1.1, defining fractional minimum positive semidefinite rank

and exploring its connection with projective rank were our initial motivations. Since zero

forcing processes are related to minimum rank problems, a natural application of some
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of the theory developed to derive fractional minimum positive semidefinite rank was to

define r-fold and fractional zero forcing processes.

As a final note, we emphasize that the term “fractional graph parameter” is a nod

to the method with which our new parameters are developed, and not a claim that any

particular parameter is rational-valued. Indeed, we will see that proving rationality of

one parameter is an open problem in quantum information, and the other parameters

considered turn out to be integer-valued.

1.1 Overview

In Chapter 2, a fractional analogue of minimum positive semidefinite rank is devel-

oped. This investigation was motivated by a desire to develop more theory related to

projective rank, a parameter that was introduced in 2012 and has connections to prob-

lems arising in quantum information (see, for example, [3]). There are numerous open

questions related to projective rank, most notably whether there exists a graph whose

projective rank is irrational; if so, then the infamous Tsirelson’s problem can be an-

swered in the negative, thus solving an important open problem in the realm of quantum

information (see Chapter 2 for more information and references).

Given a graph G = (V,E) with V (G) = {1, 2, . . . , n}, a symmetric matrix A =

[aij] ∈ Cn×n is said to fit G if aij = 0 if and only if ij /∈ E(G). The minimum rank

of a symmetric matrix that fits G is the minimum rank of the graph G, denoted here

by mr(G). By further restricting to positive semidefinite matrices that fit G, we can

similarly define the minimum positive semidefinite rank of G, denoted here by mr+(G).

It is also possible to define minimum rank problems using matrices over fields other

than C (specifically, R is more often considered in the literature); more information on

minimum rank problems and an extensive bibliography can be found in [1]. Our use of
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C is necessitated by connections to existing parameters arising from problems based in

quantum physics.

An equivalent definition of minimum positive semidefinite rank is based on faithful

orthogonal representations for a graph. A faithful orthogonal representation for a graph

G is a set of vectors {xu}u∈V (G) ⊂ Cd (for some d) such that x∗uxv = 0 if and only if

uv /∈ E(G). It can be shown that the minimum d such that G has a faithful orthogonal

representation in Cd is equal to mr+(G).

Though their names are similar, faithful orthogonal representations are complemen-

tary to a different type of vector representation for a graph known as an orthogonal repre-

sentation. An orthogonal representation for a graph G is a set of vectors {xu}u∈V (G) ⊂ Cd

(for some d) such that if uv ∈ E(G), then x∗uxv = 0. Note that, in contrast to the defini-

tion of a faithful orthogonal representation, the vectors in an orthogonal representation

are orthogonal when they correspond to edges in the graph, and the orthogonality condi-

tion is not an “if and only if.” The orthogonal rank of G, denoted ξ(G), is the minimum

d such that G has an orthogonal representation in Cd. Because a faithful orthogonal

representation for a graph G is an orthogonal representation for the graph’s complement

G, it is clear that ξ(G) ≤ mr+(G) for any graph G.

The projective rank of a graph is a parameter of interest to those working in quantum

information (see Section 2.1.3 for a mathematical definition of projective rank). Previ-

ously, it was informally conjectured and assumed to be true that projective rank can be

considered through the lens of fractional graph theory as “fractional orthogonal rank.”

In Sections 2.2.1 and 2.2.2, we develop the necessary machinery to establish this claim

(Theorem 2.2.13).

Due to the relationship between orthogonal rank and minimum positive semidefinite

rank, it was also conjectured that projective rank would be related to “fractional min-

imum positive semidefinite rank,” should definition of such a parameter be feasible. In

Section 2.3, we define fractional minimum positive semidefinite rank and use this new
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parameter to investigate the conjecture. A main and somewhat unexpected result in that

section, Theorem 2.3.21, is that the projective rank of a graph equals the fractional mini-

mum positive semidefinite rank of its complement. This connection, as well as the theory

developed in Chapter 2, should provide an avenue through which results pertaining to

minimum rank can be extended and adapted to inform new developments pertaining to

projective rank.

The focus of Chapter 3 is developing fractional analogues of zero forcing parameters.

The zero forcing number (positive semidefinite zero forcing number) of a graphG, denoted

here by Z(G) (Z+(G)), can be obtained by playing a vertex coloring game on the graph.

By coloring some vertices of G blue and the rest white and repeatedly applying a forcing

rule (by which white vertices can be turned blue), the player seeks to color the entire

graph blue; if this is possible, the initial set of blue vertices is a forcing set. Zero forcing

numbers are of interest because of their applications to control of quantum systems and

maximum nullity problems (see Chapter 3 for more information and references).

As noted in Section 3.1.2, the material in Chapter 3 was initially motivated by analysis

of matrices that r-fit a graph, introduced in Section 2.3.3. Note that any graph G is the

graph associated with a matrix that fits G, and zero forcing processes take place on G.

Our r-fold zero forcing process considers application of zero forcing rules to the graph of

a matrix that r-fits G; while there can be many such matrices, Proposition 3.1.1 allows

us to focus on matrices that are associated with the (independent) r-blowup of G. With

an r-fold parameter established, we are able to define a fractional version of the positive

semidefinite zero forcing number.

An examination of the forcing game played on the graph blowup reveals that r-fold

forcing sets with certain structure must always exist (Theorem 3.2.6). This result leads

to the alternate definition of fractional positive semidefinite forcing number presented in

Theorem 3.2.17. Section 3.2.3 builds on these results by introducing a new forcing game

that uses three colors – dark blue, light blue, and white. It is then shown that this new
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game allows direct computation of the fractional positive semidefinite forcing number of

a graph without appealing to the r-fold game, a main result of Chapter 3.

Section 3.3 applies the three-color approach considered for fractional positive semidef-

inite forcing to (standard) zero forcing, providing an alternate characterization of the

skew zero forcing game, a specific type of zero forcing game that was previously con-

sidered in [2]. This interpretation is used throughout the chapter to gain new insight

into the skew zero forcing game and to prove new results about skew zero forcing. In

Section 3.3.3, we apply the fractionalization process to the standard zero forcing game,

and Theorem 3.3.18 shows that the “fractional forcing number” of a graph is actually the

skew zero forcing number of the graph. The three-color approach also shows its use in

Section 3.3.4, where an algorithm is used to completely characterize graphs whose skew

zero forcing number equals zero (Theorem 3.3.22); this is another main result of Chapter

3.

1.2 Organization of the thesis

This thesis is a collection of research papers submitted to journals. Chapter 1 provides

an overview of the topics discussed in the remaining chapters and serves to elucidate the

common themes of this work. Note that all papers follow the mathematical convention

of alphabetizing the authors’ names.

Chapter 2 contains the paper “Orthogonal Representations, Projective Rank, and

Fractional Minimum Positive Semidefinite Rank: Connections and New Directions,”

which is joint work of Kevin F. Palmowski with Leslie Hogben, David E. Roberson, and

Simone Severini. Kevin Palmowski was responsible for most of the research and almost all

of the writing for this paper. A version of this paper was submitted to Electronic Journal

of Linear Algebra; the differences between the submitted version and that presented in

this thesis are minor, non-mathematical editorial changes.
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Chapter 3 contains the paper “Fractional Zero Forcing via Three-color Forcing

Games,” which is joint work of Kevin F. Palmowski with Leslie Hogben, David E.

Roberson, and Michael Young. The preliminary research for this paper was conducted

jointly by all authors over the course of one week during a visit of David E. Rober-

son to Iowa State University. Results were subsequently refined and proof details were

filled in by Kevin Palmowski, who was responsible for almost all of the writing of this

paper. A version of this paper was submitted to Discrete Applied Mathematics ; the

differences between the submitted version and that presented in this thesis are minor,

non-mathematical editorial changes.

Concluding remarks and a discussion of future avenues for research are presented in

Chapter 4.
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CHAPTER 2. ORTHOGONAL REPRESENTATIONS,

PROJECTIVE RANK, AND FRACTIONAL MINIMUM

POSITIVE SEMIDEFINITE RANK: CONNECTIONS AND

NEW DIRECTIONS

Modified from a paper submitted to Electronic Journal of Linear Algebra

Leslie Hogben∗†, Kevin F. Palmowski†, David E. Roberson‡, and Simone Severini§

Abstract

Fractional minimum positive semidefinite rank is defined from r-fold faithful orthog-

onal representations and it is shown that the projective rank of any graph equals the

fractional minimum positive semidefinite rank of its complement. An r-fold version of the

traditional definition of minimum positive semidefinite rank of a graph using Hermitian

matrices that fit the graph is also presented. This paper also introduces r-fold orthog-

onal representations for graphs and formalizes the understanding of projective rank as

fractional orthogonal rank. Connections of these concepts to quantum theory, including

Tsirelson’s problem, are discussed.
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§Department of Computer Science, University College London, Gower Street, London WC1E 6BT,
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2.1 Introduction

This paper deals with fractional versions of graph parameters defined by orthogonal

representations, including minimum positive semidefinite rank. In Section 2.2, we extend

the existing idea of an orthogonal representation for a graph via a “higher-dimensional”

construction. With this, we introduce a new parameter, r-fold orthogonal rank, that

is to orthogonal rank as b-fold chromatic number is to chromatic number (see Section

2.1.2 for the definition of b-fold chromatic number and other terms related to fractional

chromatic number). This allows us to formally characterize projective rank as “fractional

orthogonal rank,” a concept that was previously understood (e.g., in [14, 15]) but not

rigorously presented (formal definitions of projective rank and other parameters are given

in Section 2.1.3).

In Section 2.3, we apply this “fractionalization” process to the minimum positive

semidefinite rank problem (viewed via faithful orthogonal representations) and develop

two new graph parameters, namely, r-fold and fractional minimum positive semidefinite

rank. We also provide an alternate definition of r-fold minimum positive semidefinite

rank that is based on the minimum rank of a matrix that “r-fits” a graph, allowing us to

view the “higher-dimensional” problem through either of the two viewpoints traditionally

associated with the classical minimum positive semidefinite rank problem.

Our final result, found in Section 2.3.5, shows that the fractional minimum positive

semidefinite rank of a graph is equal to the projective rank of the complement of the

graph. This result serves to connect the two seemingly different problems; moving for-

ward, this will allow the extensive existing literature on minimum positive semidefinite

rank to be used to inform new developments in the more recently introduced area of

projective rank.

In the remainder of this introduction we discuss applications of the fractional pa-

rameters discussed (Section 2.1.1), give a brief introduction to the fractional approach
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to chromatic number to motivate our definitions (Section 2.1.2), and provide necessary

notation and terminology (Section 2.1.3).

2.1.1 Applications

Linear algebraic structures and associated graph theoretic frameworks have recently

become more important tools to study the fundamental differences that characterize

theories of nature, like classical mechanics, quantum mechanics, and general probabilis-

tic theories. Matrices, graphs, and their related combinatorial optimization techniques

turn out to provide a surprisingly general language with which to approach questions

connected with foundational ideas, such as the analysis of contextual inequalities and

non-local games [2, 3], and with concrete aspects, such as quantifying various capacities

of entanglement-assisted channels [6, 10], and the overhead needed to classically simulate

quantum computation [9].

A point of strength of such frameworks is their ability to reformulate mathematical

questions in a coarser manner that is nonetheless effective, in some cases, to single out

specific facts. Tsirelson’s problem [17] provides a remarkable example: deciding whether

the mathematical models of non-relativistic quantum mechanics, where observers have

linear operators acting on a finite dimensional tensor product space, and algebraic quan-

tum field theory, where observers have commuting linear operators on a single (possi-

bly infinite dimensional) space, produce the same set of correlations. We know that if

Tsirelson’s problem has a positive answer then the notorious Connes’ Embedding conjec-

ture [4, 11], originally concerned with an approximation property for finite von Neumann

algebras, is true.

Tsirelson’s problem can be seen from a combinatorial matrix point of view by working

with graphs and their associated algebraic structures [12]. Roughly speaking, instead of

constructing sets of correlation matrices, we can try looking for various patterns of zeroes

in the sets, as in the spirit of combinatorial matrix theory. The projective rank, denoted
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ξf , is a recently introduced graph parameter with the potential for settling the above

discussion. Indeed, it has been shown that if there exists a graph whose projective rank

is irrational, then Tsirelson’s problem has a negative answer [13].

Projective representations and projective rank were originally defined in [15] as a tool

for studying quantum colorings and quantum homomorphisms of graphs. Quantum col-

orings and the quantum chromatic number give quantitative measures of the advantage

that quantum entanglement provides in performing distributed tasks and in distinguish-

ing scenarios related to classical and quantum physics, respectively. In fact, the existence

of a quantum n-coloring for a given graph is equivalent to the existence of a projective

representation of value n for the Cartesian product of the graph with a complete graph

on n vertices.

It was also shown in [15] that projective rank is monotone with respect to quantum

homomorphisms, i.e., if there exists a quantum homomorphism from a graph G to a

graph H, then ξf (G) ≤ ξf (H). This shows that projective rank is a lower bound for

quantum chromatic number, and more generally provides a method for forbidding the

existence of quantum homomorphisms. Indeed, this approach was used to determine the

quantum odd girth of the Kneser graphs in [14]. Projective rank has also been studied

from a purely graph theoretic point of view, and in [5] it was shown that this parameter

is multiplicative with respect to the lexicographic and disjunctive graph products. Using

this fact the authors were able to find a separation between quantum chromatic number

and a recently defined semidefinite relaxation of this parameter, answering a question

posed in [12].

This paper takes a linear algebraic approach to these questions, building connections

between recent graph theoretical approaches to quantum questions and existing literature

on orthogonal representations and minimum positive semidefinite rank.
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2.1.2 A fractional approach

To demonstrate the fractional approach that we use with orthogonal representations

and minimum positive semidefinite rank, consider the following derivation of the frac-

tional chromatic number as found in [16]. The chromatic number χ(G) of a graph G is

the least number c such that G can be colored with c colors; that is, we can assign to

each vertex of G one of c colors in such a way that adjacent vertices receive different

colors. A coloring with c colors can be generalized to a b-fold coloring with c colors, or

a c:b-coloring: from a palette of c colors, assign b colors to each vertex of G such that

adjacent vertices receive disjoint sets of colors. For a fixed b, the b-fold chromatic number

of G, χb(G), is the smallest c such that G has a c:b-coloring. With this, we can define

the fractional chromatic number of G as

χf (G) = inf
b

χb(G)

b
.

While it is not obvious, it can be shown that χf (G) is always a rational number, as there

is an alternative linear programming formulation for the parameter for which strong

duality holds. For further information on fractional coloring, including a time-scheduling

interpretation of the problem, see the discussions in the Preface and Chapter 3 of [16].

The process of assigning objects to the vertices of a graph, subject to certain con-

straints, is a key element common to the problems we examine in this work, and the

procedure of generalizing from assigning one object to assigning b-many objects (or, in

our case, b-dimensional or rank-b objects) is an underlying theme. At each stage of the

process, we are interested in graph parameters that give information about the “most

efficient” set of objects we can use, with the end goal of developing fractional versions

of existing parameters (in the spirit of [16]) and connecting the more recent work on

projective rank with existing ideas from the realm of minimum positive semidefinite

rank.
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Rather than the colors used for coloring problems, the objects that we assign to

the vertices of a graph are vectors and matrices, which adds a distinctly linear algebraic

flavor to both the problems and the constraints: the idea of “different colors” translates to

orthogonality conditions on our objects. As such, our results often see linear algebra and

graph theory working hand-in-hand, with structure found in one discipline influencing

results that are based in the other.

2.1.3 Background, definitions, and notation

The natural numbers, N, start at 1. We use the notation [a : b] to denote the set

of integers {a, a + 1, . . . , b − 1, b}. Throughout, d and r are used to represent natural

numbers. Vectors are denoted by boldface font, typically x, and matrices are capital

letters, typically A, B, P , or X, depending on context. The symbol 0 denotes either

the scalar zero or a zero matrix, and an identity matrix is denoted by I; any of these

may be subscripted to clarify their sizes. We follow the usual convention of denoting the

jth standard basis vector in Cd (for some d) as ej. Rows and columns of matrices may

be indexed either by natural numbers or by vertices of a graph, depending on context.

The elements of a matrix A are denoted aij; if A is a block matrix, then its blocks are

denoted Aij. Graphs are usually denoted by G or H, vertices by u, v or i, j, and edges

by uv or ij.

If A ∈ Cp×p and B ∈ Cq×q, then the direct sum of A and B, denoted A ⊕ B, is the

block diagonal matrix  A 0

0 B

 ∈ C(p+q)×(p+q).

We denote the conjugate transpose of A by A∗. A Hermitian matrix satisfies A = A∗.

A Hermitian matrix A ∈ Cn×n is positive semidefinite, denoted A � 0, if x∗Ax ≥ 0 for

all x ∈ Cn, or equivalently, if all of its eigenvalues are nonnegative.



14

Typically, G = (V,E) will denote a simple undirected graph on n vertices, where

V = V (G) is the set of vertices of G and E = E(G) is the set of edges of G. An isolated

vertex is a vertex that is not adjacent to any other vertex of G. A subgraph of a graph

G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). An induced subgraph of

a graph G, denoted G[W ] for some set W ⊆ V (G), is a subgraph with vertex set W

such that if u, v ∈ W and uv ∈ E(G), then uv ∈ E(G[W ]). The union of graphs G and

H, denoted G ∪ H, is the graph with vertex set V (G ∪ H) = V (G) ∪ V (H) and edge

set E(G ∪ H) = E(G) ∪ E(H). If V (G) ∩ V (H) = ∅, then this union is disjoint and

denoted G
·
∪H. The complement of G, denoted G, is the graph with V (G) = V (G) and

E(G) = {uv : u 6= v, uv /∈ E(G)}. An independent set in G is a set W ⊆ V (G) such

that if u, v ∈ W , then uv /∈ E(G). The independence number of G, denoted α(G), is

the largest possible cardinality of an independent set in G. A clique in G is an induced

subgraph H that is a complete graph, i.e., uv ∈ E(H) for every u, v ∈ V (H). The clique

number of G, denoted ω(G), is the largest possible order of a clique in G. A clique-sum

of graphs G and H on Kt, i.e., the graph G ∪ H where G ∩ H = Kt, is denoted by

G 〈Kt〉H; this is also called a t-clique-sum of G and H. A chordal graph is a graph that

does not have any induced cycles of length greater than 3; any chordal graph can be

constructed as clique-sum(s) of complete graphs. A perfect graph is a graph G for which

every induced subgraph H of G satisfies ω(H) = χ(H). A cut-vertex of a connected

graph G is a vertex whose deletion disconnects G. A graph with a cut-vertex can be

viewed as a 1-clique-sum.

We work in the vector space Cd for some d ∈ N. We use S to denote a subspace of a

vector space. A basis matrix for an r-dimensional subspace S of Cd is a matrix X ∈ Cd×r

that has orthonormal columns and satisfies S = range(X). We say that two subspaces

S1 and S2 of Cd are orthogonal, denoted S1 ⊥ S2, if u∗1u2 = 0 for all u1 ∈ S1 and all

u2 ∈ S2; an equivalent condition is that X∗1X2 = 0, where X1 and X2 are basis matrices

for S1 and S2, respectively.
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Given some graph G and d ∈ N, an orthogonal representation in Cd for G is a set of

unit vectors {xu}u∈V (G) ⊂ Cd such that x∗uxv = 0 if uv ∈ E(G). It is clear that such a

representation always exists for d = |V (G)|. Provided that G has at least one edge, it

is clear that such a representation cannot be made for d = 1. We define the orthogonal

rank of G to be

ξ(G) = min
{
d : G has an orthogonal representation in Cd

}
.

Let d, r ∈ N with r ≤ d. A d/r-projective representation, or d/r-representation, is an

assignment of matrices {Pu}u∈V (G) to the vertices of G such that

• for each u ∈ V (G), Pu ∈ Cd×d, rankPu = r, P ∗u = Pu, and P 2
u = Pu; and

• if uv ∈ E(G), then PuPv = 0.

In words, a d/r-representation is an assignment of rank-r (d× d) orthogonal projection

matrices (projectors) to the vertices of G such that adjacent vertices receive projectors

that are orthogonal. The projective rank of G is defined as

ξf (G) = inf
d,r

{
d

r
: G has a d/r-representation

}
.

Projective rank was first introduced in 2012 by Roberson and Mančinska, where it is

noted that ξf (G) ≤ ξ(G); see [14] and [15] for additional information, properties, and

applications.

Complementary to the idea of an orthogonal representation is that of a faithful or-

thogonal representation (here we follow the complementary usage in the minimum rank

literature). In order for the definitions given next to coincide with those in the minimum

rank literature, we must assume that the graph G has no isolated vertices. A faithful or-

thogonal representation in Cd for a graph G is a set of unit vectors {xu}u∈V (G) ⊂ Cd such

that x∗uxv = 0 if and only if uv /∈ E(G). We define the minimum positive semidefinite

rank of G as

mr+(G) = min
{
d : G has a faithful orthogonal representation in Cd

}
. (2.1)
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We say that a matrix A ∈ Cn×n fits the order-n graph G if aii = 1 for all i ∈

[1 : n], and for all i 6= j, we have aij = 0 if and only if ij /∈ E(G). Let H+(G) =

{A ∈ Cn×n : A � 0 and A fits G}. A faithful orthogonal representation in Cd for G cor-

responds to a matrix A ∈ H+(G) with rankA ≤ d, and a matrix A ∈ H+(G) with rank

d can be factored as A = B∗B for some B ∈ Cd×n. Thus an alternate characterization

(see, e.g., [7]) of mr+(G) is

mr+(G) = min{rankA : A ∈ H+(G)},

(and in fact, this is the customary definition of this parameter).

The definitions and explanation given here coincide with those in the literature pro-

vided that the graph G has no isolated vertices. The most common definition of H+(G)

in the literature does not contain the assumption that aii = 1. If vertex i is adjacent

to at least one other vertex, then properties of positive semidefinite matrices require

aii > 0, and so A can be scaled by a positive diagonal congruence to a matrix of the

same rank and nonzero pattern that has all diagonal entries equal to one. However,

consider the case where G consists of n isolated vertices (no edges): then as defined in

[1, 7], etc., mr+(G) = 0, whereas with our definition mr+(G) = n. The two definitions of

minimum positive semidefinite rank coincide precisely when G has no isolated vertices.

Our definition facilitates connections to the use of orthogonal rank in the study of quan-

tum issues, and the assumption of no isolated vertices is needed only when connecting

to the minimum rank literature, so we omit it except when discussing connections to

such work (where we state either this assumption or one that implies it, such as the

graph being connected and of order at least two). We also note that for any graph the

values of the parameters studied can be computed from their values on the connected

components of the graph (see Section 2.3), which facilitates handling cases with isolated

vertices separately.
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2.2 Orthogonal subspace representations and projective rank

In this section, we introduce and discuss (d; r) orthogonal subspace representations for

a graph G, which are extensions of orthogonal representations in the spirit of fractional

graph theory [16]. The r-fold orthogonal rank of a graph, ξ[r](G), is defined and some

properties of this quantity are examined. We then relate these representations to d/r-

projective representations and tie projective rank into the new theory, formalizing the

existing understanding that projective rank and “fractional orthogonal rank” are one

and the same.

Unless otherwise specified, all matrices and vectors in this section are assumed to be

complex-valued.

2.2.1 Orthogonal subspace representations and r-fold orthogonal rank

Let G be a graph and let d, r ∈ N with d ≥ r. A (d; r) orthogonal subspace represen-

tation, or (d; r)-OSR, for G is a set of subspaces {Su}u∈V (G) such that

• for each u ∈ V (G), Su is an r-dimensional subspace of Cd; and

• if uv ∈ E(G), then Su ⊥ Sv.

The r-fold orthogonal rank of a graph G is defined by

ξ[r](G) = min {d : G has a (d; r) orthogonal subspace representation} .

An orthogonal representation in Cd naturally generates a (d; 1) orthogonal subspace

representation, and vice versa, so ξ(G) = ξ[1](G).

We now explore some properties of ξ[r](G).
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Lemma 2.2.1. ξ[r] is a subadditive function of r, i.e., for every graph G and all r, s ∈ N,

ξ[r+s](G) ≤ ξ[r](G) + ξ[s](G).

Proof. Let dr = ξ[r](G) and ds = ξ[s](G). Then G has a (dr; r) orthogonal subspace repre-

sentation containing r-dimensional subspaces of Cdr , say {Sru}u∈V (G), and a (ds; s) orthog-

onal subspace representation containing s-dimensional subspaces of Cds , say {Ssu}u∈V (G).

We show by construction that there exists an orthogonal subspace representation for G

containing (r + s)-dimensional subspaces of Cdr+ds .

For each u ∈ V (G), let Xr
u ∈ Cdr×r and Xs

u ∈ Cds×s be basis matrices for Sru and Ssu,

respectively. Define

Xu =

 Xr
u 0dr×s

0ds×r Xs
u

 ∈ C(dr+ds)×(r+s)

and let Su = range(Xu). We immediately see that Su is a subspace of Cdr+ds , Xu is a

basis matrix for Su, and dim(Su) = rankXu = rankXr
u + rankXs

u = r + s.

Suppose u, v ∈ V (G) and let Xr
u, Xr

v , Xs
u, X

s
v , Xu, and Xv be as above; then

X∗uXv =

 (Xr
u)∗(Xr

v ) 0

0 (Xs
u)
∗(Xs

v)

 .
Suppose uv ∈ E(G). Since {Sru} is an orthogonal subspace representation, we have

(Xr
u)∗(Xr

v ) = 0; similarly, (Xs
u)
∗(Xs

v) = 0, so X∗uXv = 0. Since Xu and Xv are basis

matrices for Su and Sv, respectively, we conclude that if uv ∈ E(G), then Su ⊥ Sv.

Thus {Su}u∈V (G) is a (dr + ds; r + s) orthogonal subspace representation for G, so

ξ[r+s](G) ≤ dr + ds = ξ[r](G) + ξ[s](G).

Corollary 2.2.2. For every graph G and all r ∈ N,
ξ[r](G)

r
≤ ξ(G).

Proof. Since ξ[1](G) = ξ(G), we have

ξ[r](G) ≤ ξ[r−1](G) + ξ(G) ≤ . . . ≤ r · ξ(G).
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Observation 2.2.3. For every graph G and all r ∈ N, ξ[r](G) ≥ r · ω(G).

Proposition 2.2.4. Let r ∈ N and let H be a subgraph of G. Then ξ[r](H) ≤ ξ[r](G).

Proof. Since every edge of H is an edge of G, any (d; r) orthogonal subspace representa-

tion for G provides a (d; r) orthogonal subspace representation for H, and the result is

immediate.

Proposition 2.2.5. Suppose r ∈ N and G =
⋃̇

t
i=1Gi for some graphs {Gi}ti=1. Then

ξ[r](G) = maxi
{
ξ[r](Gi)

}
.

Proof. Since each Gi is an induced subgraph of G, we have ξ[r](Gi) ≤ ξ[r](G) for each i,

so maxi
{
ξ[r](Gi)

}
≤ ξ[r](G).

For each i ∈ [1 : t], let di = ξ[r](Gi) and let d = maxi{di}. Let {Siu}u∈V (Gi) be a (di; r)

orthogonal subspace representation for Gi and for each vertex u ∈ V (Gi) let X i
u ∈ Cdi×r

be a basis matrix for Siu. For each u ∈ V (G), we have u ∈ V (Gi) for some i; define

Su = range

 X i
u

0(d−di)×r

 .
Each Su is an r-dimensional subspace of Cd, and if uv ∈ E(G), then uv ∈ E(Gk) for

some k, so Sku ⊥ Skv , which implies that Su ⊥ Sv (by construction). Therefore, {Su}u∈V (G)

is a (d; r)-OSR for G, so ξ[r](G) ≤ d = maxi{ξ[r](Gi)} and equality follows.

This result does not hold for arbitrary graph unions, as the following example for the

r = 1 case shows.

Example 2.2.6. Let G = C5 with V (G) = {1, 2, 3, 4, 5} and E(G) = {12, 23, 34, 45, 51}.

Define G1 = P4 with V (G1) = {1, 2, 3, 4} and E(G1) = {12, 23, 34} and define G2 = P3

with V (G2) = {4, 5, 1} and E(G2) = {45, 51}. We see that G = G1 ∪ G2, but since

ξ(P3) = ξ(P4) = 2 and ξ(C5) = 3, it is not true that ξ(G) = max{ξ(G1), ξ(G2)}.
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While the maximum property observed in Proposition 2.2.5 may not carry over to

the case when G is a nondisjoint union of graphs, we are still able to obtain a weaker

result, which follows.

Proposition 2.2.7. Suppose r ∈ N and G =
⋃t
i=1Gi, where Gi is an induced subgraph

of G for each i. Then ξ[r](G) ≤
∑t

i=1 ξ[r](Gi).

Proof. We prove the result for the case where t = 2 and note that recursive application

of this case will prove the more general one.

For each i ∈ {1, 2}, let di = ξ[r](Gi) and {Siu}u∈V (Gi) be a (di; r)-OSR for Gi, and for

each u ∈ V (Gi), let X i
u ∈ Cdi×r be a basis matrix for Siu.

We partition V (G) = V (G1)∪ V (G2) into three disjoint sets and consider vertices in

each set. If u ∈ V (G1) \ V (G2), let

Xu =

 X1
u

0d2×r

 ;

if u ∈ V (G2) \ V (G1), let

Xu =

 0d1×r

X2
u

 ;

and if u ∈ V (G1) ∩ V (G2), let

Xu =

 X1
u

X2
u

 .
For each u ∈ V (G), let Su = range(Xu). Each Su is an r-dimensional subspace of Cd1+d2 .

We consider multiple cases to show that if uv ∈ E(G), then X∗uXv = 0, so Su ⊥ Sv.

Throughout, we assume that uv ∈ E(G).

First, suppose that u ∈ V (G1) \ V (G2); then either v ∈ V (G1) \ V (G2) or v ∈

V (G1)∩V (G2). In either case, uv ∈ E(G1) (since G1 is an induced subgraph), and block

multiplication yields X∗uXv = (X1
u)∗X1

v . Since S1
u ⊥ S1

v , this quantity equals the zero

matrix, so Su ⊥ Sv. The case where u ∈ V (G2) \ V (G1) is similar.
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If u, v ∈ V (G1) ∩ V (G2), then uv ∈ E(G1) ∩ E(G2) since G1 and G2 are induced

subgraphs. Then X∗uXv = (X1
u)∗X1

v + (X2
u)∗X2

v . Since S1
u ⊥ S1

v and S2
u ⊥ S2

v , this

quantity is again the zero matrix, so Su ⊥ Sv.

Therefore, {Su}u∈V (G) is a (d1 + d2; r)-OSR for G, so ξ[r](G) ≤ d1 + d2 = ξ[r](G1) +

ξ[r](G2).

Lemma 2.2.8. Suppose that the complete graph Kt is a subgraph of G with V (Kt) =

[1 : t] and G has a (d; r) orthogonal subspace representation. Then d ≥ rt and G has a

(d; r) orthogonal subspace representation in which the vertex i ∈ V (Kt) is represented by

span
{
e(i−1)r+1, . . . , e(i−1)r+r−1, eir

}
.

Proof. By Observation 2.2.3, d ≥ r · ω(G) ≥ rt.

If M ∈ Cd×` for some ` ≤ d and the columns of M are orthonormal, then by a change

of orthonormal basis there exists a unitary matrix U ∈ Cd×d such that UM = [e1, . . . , e`].

Let {Su}u∈V (G) be a (d; r) orthogonal subspace representation for G and for each

u ∈ V (G) let Xu be a basis matrix for Su. Define M = [X1, . . . , Xt] and choose U

so that UM = [e1, . . . , etr]. Define S ′u = range(UXu). Then {S ′u}u∈V (G) is a (d; r)

orthogonal subspace representation for G with the desired property.

Theorem 2.2.9. If G = G1 〈Kt〉G2 and r ∈ N, then ξ[r](G) = max
{
ξ[r](G1), ξ[r](G2)

}
.

Proof. Without loss of generality, let d1 = ξ[r](G1) ≥ d2 = ξ[r](G2) and V (Kt) = [1 : t].

Then by Lemma 2.2.8, for i = 1, 2, each Gi has a (d1; r) orthogonal subspace represen-

tation, {Siu}u∈V (G), in which vertex v ≤ t is represented by Siv = span
{
e(v−1)r+1, . . . ,

e(v−1)r+r−1, evr
}

. Thus for v ∈ [1 : t], S1
v = S2

v ; denote this common subspace by Sv.

For vertices u ∈ V (Gi) \ [1 : t], define Su = Siu (observe that u > t is in only one of

V (G1) or V (G2)). Then {Su}u∈V (G) is a (d1; r) orthogonal subspace representation for

G.
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Proposition 2.2.10. If G is a graph with ω(G) = χ(G), then ξ[r](G) = r · ω(G) for

every r ∈ N.

Proof. It is well-known that ξ(G) ≤ χ(G) (see, e.g., [14]). Therefore,

r · ω(G) ≤ ξ[r](G) ≤ r · ξ(G) ≤ r · χ(G) = r · ω(G)

and thus equality holds throughout.

We note that perfect graphs and chordal graphs are among those that satisfy ω(G) =

χ(G), and so Proposition 2.2.10 applies to these classes.

Remark 2.2.11. Since ξ[1](G) = ξ(G) for every graph G, the previous properties of

r-fold orthogonal rank also apply to orthogonal rank, where appropriate.

2.2.2 Projective rank as fractional orthogonal rank

It is easy to see that (d; r) orthogonal subspace representations are closely related to

d/r-representations; in fact, they are in one-to-one correspondence.

Proposition 2.2.12. A graph G has a (d; r) orthogonal subspace representation if and

only if G has a d/r-representation.

Proof. Suppose that G has a (d; r) orthogonal subspace representation {Su}u∈V (G), so

each Su is an r-dimensional subspace of Cd. For each u ∈ V (G), define Pu = XuX
∗
u,

where Xu ∈ Cd×r is a basis matrix for Su. It is then easy to verify that Pu ∈ Cd×d,

rankPu = rankXu = r, P ∗u = Pu, and P 2
u = Pu.

Let uv ∈ E(G), so Su ⊥ Sv. We see that

Su ⊥ Sv ⇐⇒ X∗uXv = 0 ⇐⇒ XuX
∗
uXvX

∗
v = 0 ⇐⇒ PuPv = 0.

Thus if uv ∈ E(G), then PuPv = 0. We conclude that {Pu}u∈V (G) is a d/r-representation

for G.
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For the converse, suppose that {Pu}u∈V (G) is a d/r-representation for G. For each

u ∈ V (G), let Pu = XuIrX
∗
u be a reduced singular value decomposition of the projec-

tor Pu (where Xu ∈ Cd×r) and define Su = range(Pu) = range(Xu). Clearly Su is an

r-dimensional subspace of Cd. If uv ∈ E(G), then PuPv = 0, so by the above chain of

equivalences Su ⊥ Sv. Therefore, {Su}u∈V (G) is a (d; r) orthogonal subspace representa-

tion for G.

With this in mind, we obtain the following “fractional” definition of projective rank.

Theorem 2.2.13. For every graph G,

ξf (G) = inf
r

{
ξ[r](G)

r

}
.

Proof.

inf
r

{
ξ[r](G)

r

}
= inf

r

{
min{d : G has a (d; r)-OSR}

r

}
= inf

r

{
min
d

{
d

r
: G has a (d; r)-OSR

}}
= inf

d,r

{
d

r
: G has a (d; r)-OSR

}
= inf

d,r

{
d

r
: G has a d/r-representation

}
= ξf (G).

Given that this expression of ξf (G) is similar to that of χf (G) given in [16], it is not

unreasonable to hope that this could shed some light on the question of the rationality

of ξf (G) for all graphs.1 Unfortunately, finding a b-fold coloring with c colors for G is

ultimately a far different problem from finding a (d; r) orthogonal subspace representation

for G. In the b-fold coloring problem, we have a restriction on the number of available

colors, which adds a certain finiteness to the problem: each vertex is assigned a subset

of the available c < ∞ colors. In contrast, restricting the subspaces to lie in Cd in the

1Recall that χf (G) is rational for any graph G.
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orthogonal subspace representation problem does not impose this same type of finiteness:

each vertex is assigned a finite dimensional subspace of Cd, and d < ∞, but there are

infinitely many subspaces that can be assigned to each vertex.

We provide one additional equivalent definition of projective rank, for which we need

the following utility result from [16], also commonly known as Fekete’s Lemma.

Lemma 2.2.14 ([16], Lemma A.4.1). Suppose g : N → R is subadditive and g(n) ≥ 0

for all n. Then the limit

lim
n→∞

g(n)

n

exists and is equal to the infimum of g(n)/n (n ∈ N).

Since ξ[r] is subadditive, this yields the following corollary to the previous theorem.

Corollary 2.2.15. For every graph G,

ξf (G) = inf
r

{
ξ[r](G)

r

}
= lim

r→∞

ξ[r](G)

r
,

and this limit exists.

With this result, we see that many of the properties of ξ[r](G) also apply to ξf (G).

Theorem 2.2.16. For every graph G:

i) [14, 15] ξf (G) ≥ ω(G).

ii) If H is a subgraph of G, then ξf (H) ≤ ξf (G).

iii) If G =
⋃̇

t
i=1Gi for some graphs {Gi}ti=1, then ξf (G) = maxi {ξf (Gi)}.

iv) If G =
⋃t
i=1Gi for some induced subgraphs {Gi}ti=1, then ξf (G) ≤

∑t
i=1 ξf (Gi).

v) If G = G1 〈Kt〉G2, then ξf (G) = max {ξf (G1), ξf (G2)}.

vi) If G satisfies ω(G) = ξ(G), then ξf (G) = ω(G).
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Proof. Consider the second claim. By Proposition 2.2.4, for any r ∈ N, ξ[r](H) ≤ ξ[r](G),

so
ξ[r](H)

r
≤ ξ[r](G)

r
. Taking the limit as r approaches ∞ and applying Corollary 2.2.15,

we have ξf (H) ≤ ξf (G).

The remaining claims follow by applying similar arguments to the corresponding

r-fold results.

2.3 Fractional minimum positive semidefinite rank

In this section, we introduce (d; r) faithful orthogonal subspace representations, r-fold

minimum positive semidefinite rank, and fractional minimum positive semidefinite rank,

extending the definitions of faithful orthogonal representations and minimum positive

semidefinite rank. We then introduce faithful d/r-projective representations and connect

everything to projective rank. A connection to positive semidefinite matrices is explored,

and properties of our new quantities are proven.

Unless otherwise specified, all matrices and vectors in this section are assumed to

be complex-valued (the literature on minimum positive semidefinite rank is mixed, with

both real and complex cases studied).

2.3.1 Faithful orthogonal subspace representations and fractional minimum

positive semidefinite rank

Given a graph G and d, r ∈ N with r ≤ d, a (d; r) faithful orthogonal subspace

representation, or (d; r)-FOSR, for G is a set of subspaces {Su}u∈V (G) where

• for each u ∈ V (G), Su is an r-dimensional subspace of Cd; and

• Su ⊥ Sv if and only if uv /∈ E(G).

A faithful orthogonal representation (as defined in Section 2.1.3) generates a (d; 1) faithful

orthogonal subspace representation, and vice versa. Further, a (d; r)-FOSR for a graph

G is a (d; r)-OSR for its complement G, but the reverse statement is not true in general.
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Now that we have defined an r-fold analogue of a faithful orthogonal representation,

it is natural to consider a corresponding version of mr+(G). The r-fold minimum positive

semidefinite rank of G is

mr+[r](G) = min{d : G has a (d; r) faithful orthogonal subspace representation}.

In particular, we have mr+[1](G) = mr+(G), using definition (2.1) of mr+; we caution the

reader that this coincides with the definitions of faithful orthogonal representation and

minimum positive semidefinite rank in the literature (e.g. [1, 7]) if and only if G has no

isolated vertices.

We note that mr+[r](G) is subadditive. The proof is analogous to the proof of Lemma

2.2.1 and is omitted, as are the proofs for other results in this section that parallel those

for the non-faithful case (i.e., the ξ-family of parameters).

Lemma 2.3.1. mr+[r] is a subadditive function of r, i.e., for every graph G and all

r, s ∈ N,

mr+[r+s](G) ≤ mr+[r](G) + mr+[s](G).

As in the non-faithful case, an immediate corollary relates mr+[r] to mr+.

Corollary 2.3.2. For every graph G and all r ∈ N,

mr+[r](G)

r
≤ mr+(G).

For any graph G, we define the fractional minimum positive semidefinite rank of G

as

mr+f (G) = inf
r

{
mr+[r](G)

r

}
.

Notice that if G has a (d; r) faithful orthogonal subspace representation, then mr+[r](G) ≤

d, so mr+f (G) ≤ d
r
.

We can upper bound fractional minimum positive semidefinite rank by the non-

fractional version by using Corollary 2.3.2. Again, recall that this coincides with the

literature if and only if the graph G has no isolated vertices.
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Corollary 2.3.3. For every graph G,

mr+f (G) ≤ mr+(G).

Since mr+[r](G) is subadditive, we have the following corollary, which follows from

Lemma 2.2.14 ([16], Lemma A.4.1).

Corollary 2.3.4. For every graph G,

mr+f (G) = lim
r→∞

mr+[r](G)

r
,

and this limit exists.

We conclude this section with an example that gives further insight into these new

parameters.

Example 2.3.5. Let r ∈ N and consider the graph G = P4 with V (P4) = {1, 2, 3, 4} and

E(P4) = {12, 23, 34}. With ei as the ith standard basis vector in C2r+1, we can verify

that the following is a valid (2r + 1; r)-FOSR for P4: S1 = range([e1, e2, . . . , er]), S2 =

range([e2, e3, . . . , er+1]), S3 = range([er+1, er+2, . . . , e2r]), S4 = range([er+2, er+3, . . . ,

e2r+1]). Therefore, mr+[r](P4) ≤ 2r + 1. Suppose that {Qu}u∈V (P4) is a (2r; r)-FOSR for

P4; we show that such a representation cannot exist. Since 13, 14 /∈ E(P4), Q1 ⊥ Q3

and Q1 ⊥ Q4. The underlying space is C2r and each subspace Qi is r-dimensional, so

we must therefore have Q3 = Q4 = Q⊥1 . Now, 23 ∈ E(P4), so Q2 6⊥ Q3, but 24 /∈ E(P4),

so it also follows that Q2 ⊥ Q4. Since Q3 = Q4, this is a contradiction; thus there is no

(2r; r)-FOSR for P4, and so mr+[r](P4) = 2r+ 1. Using the limit characterization of mr+f ,

it follows that mr+f (P4) = limr→∞
2r+1
r

= 2.

This example demonstrates that the infimum in the definition of the fractional min-

imum positive semidefinite rank cannot be replaced with a minimum, even when mr+f

is a rational number. Additionally, since mr+(P4) = 3, the graph G = P4 satisfies

mr+f (G) < mr+(G).
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2.3.2 Faithful d/r-projective representations

Let G be a graph and d, r ∈ N with r ≤ d. A faithful d/r-projective representation,

or faithful d/r-representation for short, is an assignment of matrices {Pu}u∈V (G) to the

vertices of G such that

• for each u ∈ V (G), Pu ∈ Cd×d, rankPu = r, P ∗u = Pu, and P 2
u = Pu; and

• PuPv = 0 if and only if uv /∈ E(G).

A faithful d/r-representation for G is a d/r-representation for G, but the reverse is not

necessarily true.

It is convenient to note that a (d; r) faithful orthogonal subspace representation for

G is equivalent to a faithful d/r-representation. The proof is analogous to that of Propo-

sition 2.2.12; as before, we will omit such parallel proofs.

Proposition 2.3.6. A graph G has a (d; r) faithful orthogonal subspace representation

if and only if G has a faithful d/r-representation.

An immediate corollary gives an alternate definition for mr+f (G).

Corollary 2.3.7. For every graph G,

mr+f (G) = inf
d,r

{
d

r
: G has a faithful d/r-representation

}
.

Corollary 2.3.8. For any graph G with complement G,

ξf (G) ≤ mr+f (G) ≤ mr+(G).

Proof. This follows from the fact that any faithful d/r-representation for G is also a d/r-

representation for G, as well as from Corollary 2.3.3.
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2.3.3 Relation to positive semidefinite matrices

In this section, we connect (d; r) faithful orthogonal subspace representations to pos-

itive semidefinite matrices, thus generalizing the known results for the r = 1 case (when

the graph in question has no isolated vertices) and connecting mr+[r](G) to the rank of a

positive semidefinite matrix.

We begin with some definitions. Let G be a graph on n vertices and suppose that

V (G) = [1 : n]. For some r ∈ N, let A ∈ Cnr×nr be partitioned into an n × n block

matrix [Aij], where Aij is the r × r submatrix in (block) row i and (block) column j of

A. We say that the matrix A r-fits G if Aii = Ir for each i ∈ V (G) and Aij = 0 if and

only if ij /∈ E(G), and define the set

H+
[r](G) =

{
A ∈ Cnr×nr : A � 0 and A r-fits G

}
.

Example 2.3.9. We provide a simple example for the r = 2 case. Let G = P3,

the path on 3 vertices, with V (G) = {1, 2, 3} and E(G) = {12, 23}. Choosing X =

[e1 e2 | e1 e4 | e3 e4], where ej is the jth standard basis vector in C4, we can verify that

A = X∗X =



1 0 1 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 1 0 1


∈ H+

[2](P3).

This constructive example gives an intuitive feel for one direction of the proof of the

main result of this section.
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Theorem 2.3.10. For every graph G on n vertices and any r ∈ N,

mr+[r](G) = min
{

rankA : A ∈ H+
[r](G)

}
.

Proof. Let d = mr+[r](G) and let ` = min
{

rankA : A ∈ H+
[r](G)

}
.

First, assume that {Si} is a (d; r) faithful orthogonal subspace representation for

G and for each i ∈ V (G) let Xi ∈ Cd×r be a basis matrix for Si. Define X =

[X1 |X2 | · · · |Xn] ∈ Cd×nr and let B = X∗X ∈ Cnr×nr. We see immediately that B � 0

and rankB = rankX ≤ d. Partitioning B into an n× n block matrix with blocks [Bij]

of size r × r, we have Bij = X∗iXj. Since Si ⊥ Sj if and only if X∗iXj = 0, we have

Bij = 0 if and only if Si ⊥ Sj, which occurs if and only if ij /∈ E(G). Additionally, since

Xi has orthonormal columns, we have Bii = Ir for each i. Therefore, B ∈ H+
[r](G), so

min
{

rankA : A ∈ H+
[r](G)

}
≤ rankB ≤ d = mr+[r](G).

For the reverse inequality, suppose that B ∈ H+
[r](G) and rankB = `. Then there

exists a matrix X ∈ C`×nr such that B = X∗X. Partition B into r × r blocks [Bij]

and partition X into ` × r blocks as X = [X1 |X2 | · · · |Xn]. For each vertex i ∈ V (G),

let Si = range(Xi) ⊆ C`. Since X∗iXi = Ir, we have rankXi = r, so each Si is an

r-dimensional subspace of C`. Additionally, X∗iXj = Bij = 0 if and only if ij /∈ E(G), so

Si ⊥ Sj if and only if ij /∈ E(G). Therefore, {Si} is an (`; r) faithful orthogonal subspace

representation for G, so mr+[r](G) ≤ ` = min
{

rankA : A ∈ H+
[r](G)

}
and thus equality

holds.

This matrix-based representation is a powerful theoretical tool that allows us to

simplify the proofs of some properties of r-fold minimum positive semidefinite rank, as

well as to more clearly draw parallels to the existing and well-established r = 1 case

(although again, the connection to the literature requires that the graph in question has

no isolated vertices).

The condition that Aii = Ir if A r-fits a graph G is a strong one, so we conclude

this section with a weaker condition that will be used to further simplify proofs without
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sacrificing utility. We say that A weakly r-fits G if Aii is a diagonal matrix with strictly

positive diagonal entries for each i ∈ V (G) and Aij = 0 if and only if ij /∈ E(G). Clearly,

any matrix that r-fits G also weakly r-fits G.

Remark 2.3.11. Suppose that A weakly r-fits a graph G and let D = D1 ⊕ · · · ⊕Dn,

where each Di is the inverse of the positive square root of Aii, i.e., Di = A
− 1

2
ii . Then

the matrix B = DAD r-fits G, since D is a diagonal matrix with strictly positive

diagonal entries, so multiplication by D does not change the zero pattern of A. Further,

rankB = rankA, since D has full rank.

This remark yields an immediate corollary to the previous theorem.

Corollary 2.3.12. For every graph G on n vertices and any r ∈ N,

mr+[r](G) = min
{

rankA : A ∈ Cnr×nr, A � 0 and A weakly r-fits G
}
.

2.3.4 Properties of mr+[r](G) and mr+f (G)

In this section, we prove numerous results regarding properties of r-fold and fractional

minimum positive semidefinite rank, many of which extend known properties of mr+ to

the new parameters.

Observation 2.3.13. For every graph G and all r ∈ N, mr+[r](G) ≥ r · α(G).

Proposition 2.3.14. Let r ∈ N and let H be an induced subgraph of G. Then mr+[r](H) ≤

mr+[r](G).

Proof. For any u, v ∈ V (H), uv ∈ E(H) if and only if uv ∈ E(G), since H is induced.

Therefore any (d; r) faithful orthogonal subspace representation for G provides a (d; r)

faithful orthogonal subspace representation forH, and the result follows immediately.
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Proposition 2.3.15. If G =
⋃̇

t
i=1Gi for some graphs {Gi}ti=1, then mr+[r](G) =∑t

i=1 mr+[r](Gi) for each r ∈ N.

Proof. Suppose that V (G) = [1 : n] and that |V (Gi)| = ni for i = 1, 2, . . . , t. Further

assume that V (Gi) =
[
1 +

∑i−1
j=1 nj :

∑i
j=1 nj

]
, so that if A ∈ H+

[r](G), then A = A1 ⊕

A2 ⊕ · · · ⊕ At, where Ai ∈ H+
[r](Gi) for each i. Note that rankA =

∑t
i=1 rankAi. We

therefore have

mr+[r](G) = min
{

rankA : A ∈ H+
[r](G)

}
= min

{
t∑
i=1

rankAi : Ai ∈ H+
[r](Gi) for each i

}

=
t∑
i=1

min
{

rankAi : Ai ∈ H+
[r](Gi)

}
=

t∑
i=1

mr+[r](Gi).

Theorem 2.3.16. If G =
⋃t
i=1Gi for some graphs {Gi}ti=1, then mr+[r](G) ≤∑t

i=1 mr+[r](Gi) for each r ∈ N.

Proof. We prove the result for the case where t = 2 and note that recursive application

of this case will prove the more general one.

Let V (G) = [1 : n] where n > 0 and assume that V (G1) \ V (G2) = [1 : n1], V (G1) ∩

V (G2) = [n1 + 1 : n1 + c], and V (G2) \ V (G1) = [n1 + c+ 1 : n1 + c+ n2], where n1, n2,

c ≥ 0 (it is not assumed that each of these is strictly nonzero). Note that n = n1+c+n2,

and this ordering asserts that the first n1 vertices (enumerating in the natural order) lie

exclusively in G1, the next c are common to both graphs, and the last n2 lie exclusively

in G2.

For i = 1, 2, let mr+[r](Gi) = di and let Ai ∈ H+
[r](Gi) be chosen so that rankAi =

di. Notice that A1 ∈ C(n1+c)r×(n1+c)r has its rows and columns indexed by V (G1) =

[1 : n1 + c] and A2 ∈ C(n2+c)r×(n2+c)r has its rows and columns indexed by V (G2) =

[n1 + 1 : n].
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Let

Â1 =

 A1 0

0 0

 ∈ Cnr×nr, Â2 =

 0 0

0 A2

 ∈ Cnr×nr

and define A = Â1 + βÂ2 ∈ Cnr×nr, where β > 0 is chosen so that if A, Â1, and Â2 are

partitioned into n × n block matrices with block size r × r, then Aij = 0 if and only if

(Â1)ij = 0 and (Â2)ij = 0 (i.e., no cancellation of an entire block occurs).

Since A is a positive linear combination of positive semidefinite matrices, A � 0, and

by our choice of β we see that A weakly r-fits G. Therefore,

mr+[r](G) ≤ rankA ≤ rank Â1 + rank Â2 = d1 + d2 = mr+[r](G1) + mr+[r](G2).

All of the results we have proven for r-fold minimum positive semidefinite rank can

be extended to results for fractional minimum positive semidefinite rank. The proof is

analogous to that of Theorem 2.2.16 and is omitted.

Theorem 2.3.17. For every graph G:

i) mr+f (G) ≥ α(G).

ii) If H is an induced subgraph of G, then mr+f (H) ≤ mr+f (G).

iii) If G =
⋃̇

t
i=1Gi for some graphs {Gi}ti=1, then mr+f (G) =

∑t
i=1 mr+f (Gi).

iv) If G =
⋃t
i=1Gi for some graphs {Gi}ti=1, then mr+f (G) ≤

∑t
i=1 mr+f (Gi).

Let G be a connected graph of order at least two. A standard technique for computing

the minimum positive semidefinite rank of G is cut-vertex reduction [1, 7, 18]: Suppose

that v ∈ V (G) is a cut-vertex and (G− v) has connected components {Hi}ti=1. For each

i, let Gi be the subgraph of G induced by the union of the vertices of Hi with v, that

is, Gi = G[V (Hi) ∪ {v}]. Then mr+(G) =
∑t

i=1 mr+(Gi). Unfortunately, this technique

does not carry over to the r-fold case when r > 1, as the following example shows.
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Example 2.3.18. Consider the graph G = P4, the path on 4 vertices, with V (G) =

{x, y, v, z} in path order; recall from Example 2.3.5 that mr+[r](G) = 2r+1 for any r ∈ N.

Taking v as a cut-vertex, we have G1 = P3 with V (G1) = {x, y, v} and G2 = P2 with

V (G2) = {v, z}. Fix r > 1. Since α(G1) = 2, any valid (d; r)-FOSR for G1 must have

d ≥ 2r. Further, it is easy to see that mr+(G1) = 2, so 4 ≤ mr+[r](G1) ≤ 2 ·mr+(G1) = 2r.

Hence equality holds and mr+[r](G1) = 2r. Next, since mr+(G2) = 1 and d ≥ r for any

valid (d; r)-FOSR, we have r ≤ mr+[r](G2) ≤ r ·mr+(G2) = r, so mr+[r](G2) = r. Hence if

r > 1, then mr+[r](G) = 2r + 1 < 2r + r = mr+[r](G1) + mr+[r](G2), so cut-vertex reduction

does not apply.

2.3.5 Fractional minimum positive semidefinite rank and projective rank

Recall that any (d; r)-FOSR for G is a (d; r)-OSR for G, but the reverse statement

does not apply in general. It thus follows that ξ[r](G) ≤ mr+[r](G) for any graph G and

r ∈ N, and the next example demonstrates that this inequality can be strict.

Example 2.3.19. Consider the graph G = P4 with V (P4) = {1, 2, 3, 4} and E(P4) =

{12, 23, 34} and fix r ∈ N. Since ω(P4) = 2, we have ξ[r](P4) ≥ 2r. With ei as the

ith standard basis vector for C2r, it is easy to verify that the following is a (2r; r)-

OSR for P4: S1 = S3 = range([e1, e2, . . . , er]), S2 = S4 = range([er+1, er+2, . . . , e2r]).

Therefore, ξ[r](P4) = 2r. Since P4 = P4 and mr+[r](P4) = 2r+ 1 (Example 2.3.5), we have

2r = ξ[r](P4) < mr+[r](P4) = 2r + 1.

Recall from Corollary 2.3.8 that ξf (G) ≤ mr+f (G) for any graph G. While strict

inequality may hold in the r-fold case for an arbitrary graph G, we now demonstrate

that equality always holds in the “fractional case” for any graph G. For this result, we

require the following lemma.
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Lemma 2.3.20. Let G be a graph with complement G. Let {Pu}u∈V (G) be a d/r-

representation for G and let {Ru}u∈V (G) be a faithful b/1-representation for G. Then

for any k ∈ N, G has a faithful (kd + b)/(kr + 1)-representation {Qu}u∈V (G). Further,

given any ε > 0, k can be chosen such that
∣∣d
r
− kd+b

kr+1

∣∣ < ε, i.e., the value of the faithful

representation {Qu} for G is within ε of the value of the (non-faithful) representation

{Pu} for G.

Proof. Since {Pu} is a d/r-representation for G, we have Pu ∈ Cd×d with rankPu = r for

each u ∈ V (G) = V (G), and PuPv = 0 if uv ∈ E(G), so PuPv = 0 if uv /∈ E(G).

Let ε > 0 be arbitrary and choose k >
(
|d−rb|
r2ε
− 1

r

)
.

For each vertex u ∈ V (G), let Qu ∈ C(kd+b)×(kd+b) be the block diagonal matrix

constructed from k copies of Pu and one copy of Ru, i.e.,

Qu =

(
k⊕
i=1

Pu

)
⊕Ru.

We see immediately that rankQu = kr + 1, and since Pu and Ru are projectors, so

is Qu. Since PuPv = 0 if uv /∈ E(G) and RuRv = 0 if and only if uv /∈ E(G), we

conclude that QuQv = 0 if and only if uv /∈ E(G). Therefore, {Qu}u∈V (G) is a faithful

(kd+ b)/(kr + 1)-representation for G, which verifies the first claim.

By choice of k, we have kr + 1 > |d−rb|
rε

. Consider∣∣∣∣dr − kd+ b

kr + 1

∣∣∣∣ =

∣∣∣∣d(kr + 1)− r(kd+ b)

r(kr + 1)

∣∣∣∣
=
|d− rb|

r
· 1

kr + 1

<
|d− rb|

r
· rε

|d− rb|

= ε,

which verifies the second claim.

It was previously noted that any faithful d/r-representation for G is also d/r-represen-

tation for G. Lemma 2.3.20 is a partial converse in the sense that, given any d/r-
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representation for G, we can construct a faithful d1/r1-representation for G such that

the two representations have essentially the same value. This yields the next result.

Theorem 2.3.21. For every graph G with complement G,

ξf (G) = mr+f (G).

Proof. Let

R =

{
d

r
: G has a d/r-representation

}
,

F =

{
d

r
: G has a faithful d/r-representation

}
.

For any d
r
∈ R and ε > 0, Lemma 2.3.20 asserts that there exists some d1

r1
∈ F such that∣∣∣dr − d1

r1

∣∣∣ < ε. It follows that inf R = inf F , i.e., ξf (G) = mr+f (G).
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CHAPTER 3. FRACTIONAL ZERO FORCING VIA

THREE-COLOR FORCING GAMES

A paper submitted to Discrete Applied Mathematics

Leslie Hogben∗†, Kevin F. Palmowski†, David E. Roberson‡, and Michael Young†

Abstract

An r-fold analogue of the positive semidefinite zero forcing process that is carried

out on the r-blowup of a graph is introduced and used to define the fractional posi-

tive semidefinite forcing number. Properties of the graph blowup when colored with a

fractional positive semidefinite forcing set are examined and used to define a three-color

forcing game that directly computes the fractional positive semidefinite forcing number

of a graph. We develop a fractional parameter based on the standard zero forcing pro-

cess and it is shown that this parameter is exactly the skew zero forcing number with a

three-color approach. This approach and an algorithm are used to characterize graphs

whose skew zero forcing number equals zero.
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3.1 Introduction

This paper studies fractional versions (in the spirit of [12]) of the standard and positive

semidefinite zero forcing numbers and introduces three-color forcing games to compute

these parameters. The three-color approach allows simpler proofs of some results and

yields new results about existing parameters (see, e.g., Section 3.3.4).

The zero forcing process was introduced independently in [1] as a method of forcing

zeros in a null vector of a symmetric matrix described by a graph, which yields an upper

bound to the nullity of the matrix, and in [6] for control of quantum systems. There

are potential applications to the spread of rumors or diseases (see, e.g., [5]); one of the

original names of zero forcing was “graph infection.” Despite the fact that when studied

as a graph parameter there are no zeros involved, the name “zero forcing number” has

become the standard term in the literature. The original zero forcing number has since

spawned numerous variants (see, e.g., [3, 4, 11]). The speed with which the zero forcing

process colors all vertices has also been studied (see, e.g., [9, 14]).

3.1.1 Zero forcing games

In this section, we introduce zero forcing, which can be described as a coloring game

[4], and the terminology used. Abstractly, a forcing game is a type of coloring game that

is played on a simple graph G. First, a “target color,” typically blue or dark blue, is

designated. Each vertex of the graph is then colored the target color, white, or possibly

some other color (in prior work, only white and the target color have been used). A

forcing rule is chosen: this is a rule that describes the conditions under which some

vertex can cause another vertex to change to the target color. If vertex u causes a

neighboring vertex w to change color, we say that u forces w and write u → w. The

forcing rule is repeatedly applied until no more forces can be performed, at which point

the game ends; the coloring at the end is called the final coloring. An ordered list of the
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forces performed is referred to as a chronological list of forces. Note that there is usually

some choice as to which forces are performed, as well as the order in which these forces

occur. As such, a single forcing set may generate many different chronological lists of

forces; however, the final coloring is unique for all of the games discussed herein. If the

graph is totally colored with the target color at the end of the game, then we say that G

has been forced. The goal of the game is to force G. If this is possible, then the initial

set of non-white vertices is called a forcing set.

The (standard) zero forcing game uses only the colors blue (the target color) and

white. The (standard) zero forcing rule is as follows:

If w is the only white neighbor of a blue vertex u, then u can force w.

A (standard) zero forcing set is an initial set of blue vertices that can force G using

this rule. The (standard) zero forcing number of G, denoted Z(G), is the minimum

cardinality of a zero forcing set for G. We present an illustrative example in Figure 3.1.
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(d) Final forces

Figure 3.1: Standard zero forcing game example

From this point forward, we will omit the word “standard” when referring to the

standard zero forcing game, its forcing rule, or zero forcing sets whenever there is no risk

of ambiguity.

The positive semidefinite zero forcing game is a modification of the zero forcing game

used to force zeros in a null vector of a positive semidefinite matrix described by a graph

[3]. Like the zero forcing game, positive semidefinite zero forcing uses only the colors
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blue (target) and white. The positive semidefinite zero forcing rule is the same as the

standard zero forcing rule, except that this rule also features a disconnect rule:

Remove all blue vertices from the graph, leaving a set of connected compo-

nents. To each connected component (of white vertices) in turn, add the blue

vertices, the edges among the blue vertices, and any edges between the blue

vertices and that component, and perform forces via the standard rule: If w

is the only white neighbor of a blue vertex u in this induced subgraph, then

u can force w.

It is not assumed that disconnection occurs; if there is only one component, then we

simply force via the standard forcing rule. If disconnection does occur, then after the

force the graph is “reassembled” prior to applying the rule again. As one would expect,

a positive semidefinite zero forcing set is an initial set of blue vertices that can force G

using this rule, and the positive semidefinite zero forcing number of G, denoted Z+(G),

is the minimum cardinality of a positive semidefinite zero forcing set for G. In Figure

3.2 we illustrate the positive semidefinite zero forcing process on the graph from Figure

3.1a.
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(c) Reassembled graph

Figure 3.2: Positive semidefinite zero forcing game example (first steps)

The skew zero forcing game, another variant on zero forcing that uses the colors white

and blue (target), was first considered in [11] to force zeros in a null vector of a skew

symmetric matrix described by a graph. The skew zero forcing rule is as follows:
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If w is the only white neighbor of any vertex u, then u can force w.

Skew zero forcing removes the standard requirement that the forcing vertex u be blue;

as a result, skew zero forcing allows white vertex forcing, i.e., a white vertex is allowed

to force its only white neighbor. A skew zero forcing set is an initial set of blue vertices

that can force G using this rule, and the skew zero forcing number of G, denoted Z−(G),

is the minimum cardinality of a skew zero forcing set for G. Figure 3.3 demonstrates

skew zero forcing; notice that the initial forcing set contains no blue vertices.
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Figure 3.3: Skew zero forcing game example

3.1.2 Motivation and method

This paper focuses on fractional versions of the standard and positive semidefinite

zero forcing numbers. We first present the construction of fractional chromatic number

found in [12] as an example of the method used to define a fractional graph parameter.

A proper coloring of a graph G is an assignment of colors to the vertices of G such that

adjacent vertices receive different colors. The chromatic number of G, denoted χ(G),

is the least number of colors required to properly color G. We can generalize a proper

coloring of G using c colors to a proper r-fold coloring with c colors, or a c:r-coloring:

from a total of c colors, we assign r colors to each vertex of G such that adjacent vertices

receive disjoint sets of colors. The r-fold chromatic number of G, denoted χr(G), is the

smallest value of c such that G has a c:r-coloring; we emphasize that to compute χr(G)

we fix r and minimize the value of c. The fractional chromatic number of G is then
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defined as

χf (G) = inf
r∈N

{
χr(G)

r

}
.

The interested reader is referred to [12] for an in-depth treatment of fractional chromatic

number, as well as other fractional graph parameters. For this paper, defining an r-fold

version of a graph parameter and then defining the fractional parameter as the infimum

of the ratios of the r-fold parameter to r are key ideas.

Suppose that G is a simple graph on n vertices with V (G) = [n]. We say that a

symmetric matrix A ∈ Cnr×nr r-fits G if, after partitioning A as a block n × n matrix,

block Aii = Ir for each i and for all i, j with i 6= j, block Aij = 0r×r if and only if

ij /∈ E(G) [10]. While there may be many such matrices for a given graph, the following

result shows that certain structure can be chosen.

Proposition 3.1.1. Suppose that A ∈ Cnr×nr r-fits a graph G on n vertices. We can

construct a unitary matrix U such that U∗AU r-fits G and if ij ∈ E(G), then every entry

of block (U∗AU)ij is nonzero.

Proof. Assume that V (G) = [n] and partition A = [Aij] as an n × n block matrix with

Aij ∈ Cr×r. By definition, we have Aii = Ir for each i ∈ [n], and for i, j ∈ [n] with i 6= j

we have Aij = 0r×r if and only if ij /∈ E(G).

For each i ∈ [n], let Ui ∈ Cr×r be a random unitary matrix with Ui and Uj chosen

independently if i 6= j. Define U = blockdiag(U1, . . . , Un) and let C = U∗AU . Partition-

ing C conformally with A, we have Cij = U∗i AijUj. Notice that Cii = U∗i IrUi = Ir and

if ij /∈ E(G) (for i 6= j), then Cij = U∗i 0r×rUj = 0r×r.

Suppose ij ∈ E(G) and consider the product AijUj. Since Uj is random, with high

probability no column of Uj lies in kerAij, so no column of AijUj is a zero vector. Let

z be any column of AijUj (so with high probability z 6= 0) and consider (U∗i z)k. If

(U∗i z)k = 0, then z is orthogonal to the kth column of Ui. Since Ui is a random unitary

matrix, with high probability this does not happen. We conclude that if ij ∈ E(G), then
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with high probability no entry of Cij is zero. Thus there exists a matrix that r-fits G

and has the desired structure.

Let G be a graph and choose r ∈ N. The r-blowup of G is the graph G(r) constructed

by replacing each vertex of u ∈ V (G) with an independent set of r vertices, denoted

Ru, and replacing each edge uw ∈ E(G) by the edges of a complete bipartite graph on

partite sets Ru and Rw.1 We call the set Ru a cluster. Note that V (G(r)) =
⋃
u∈V (G)Ru

and if uw ∈ E(G) then every vertex of Ru is adjacent to every vertex of Rw in G(r).

Suppose that A ∈ Cnr×nr is positive semidefinite and r-fits a graph G on n vertices

with V (G) = [n]. As a result of Proposition 3.1.1 (by replacing A with U∗AU), we can

assume that if ij ∈ E(G), then block Aij has no zero entries. Consider the graph of such

a matrix A, namely, the simple graph with vertex set [nr] and with an edge between

vertices k and ` if k 6= ` and the entry in row k and column ` of A is nonzero. Since

Aii = Ir, the vertices of G will map to independent sets (clusters) of size r; let Ri denote

the cluster associated with vertex i ∈ V (G). Since each entry of Aij is nonzero, every

vertex in Ri will be adjacent to every vertex in Rj, and vice versa. Hence the graph of

A is exactly G(r), the r-blowup of G.

The positive semidefinite zero forcing number of a graph is an upper bound on the

maximum positive semidefinite nullity of the graph, which equals the order of the graph

minus its minimum positive semidefinite rank [3, 7]. The authors of [10] define an r-fold

analogue of minimum positive semidefinite rank and use this new parameter to define

fractional minimum positive semidefinite rank. A key element of this treatment is that

the r-fold minimum positive semidefinite rank of a graph can be expressed as the rank

of a positive semidefinite matrix that r-fits the graph [10, Theorem 3.10]. Our previous

discussion allows us to assume that the graph of such a matrix is G(r).

1Given graphs G and H, the lexicographic product of G with H, denoted G×L H, is the graph with
V (G×L H) = V (G)× V (H) and (g, h)(i, j) ∈ E(G×L H) if gi ∈ E(G) or if g = i and hj ∈ E(H). We
can also define the r-blowup of G as G(r) = G×LKr, where Kr denotes the empty graph on r vertices.
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As mentioned in Section 3.1.1, playing the positive semidefinite zero forcing game

can be interpreted as forcing zeros in a null vector of a positive semidefinite matrix

whose graph is G, hence the connection to maximum positive semidefinite nullity and

minimum positive semidefinite rank. Since the r-fold minimum positive semidefinite rank

is defined in terms of matrices that r-fit the original graph, an r-fold analogue of positive

semidefinite zero forcing number would naturally be associated with a game played on

the graph of a positive semidefinite matrix that r-fits G. To this end, our r-fold forcing

parameters will be defined in terms of forcing games played on G(r).

3.1.3 Definitions and notation

Throughout this paper, all graphs are simple. We use |G| to denote the order of a

graph G, i.e., |G| = |V (G)|. If G is a graph and S ⊆ V (G), then G[S] denotes the

subgraph of G induced by S, namely, the graph with V (G[S]) = S and E(G[S]) = {uv ∈

E(G) : u, v ∈ S}. We use G − S as shorthand for the induced subgraph G[V (G) \ S].

The neighborhood of a vertex u ∈ V (G), denoted N(u), is the set of vertices adjacent

to u. The degree of a vertex u, deg(u), is the number of neighbors of u, i.e., |N(u)|. A

leaf is a vertex of degree one. We use δ(G) to denote the minimum of the degrees of the

vertices of G. We write S
·
∪ T to denote the union of disjoint sets S and T .

Throughout, B will be used to denote a set of blue vertices associated with a two-

color forcing game. We emphasize that in a two-color forcing game the target color is

blue. For three-color forcing games, we use two non-white colors: dark blue, which is our

target color, and light blue. A set of colored vertices associated with a three-color forcing

game with be denoted by B. Given such a set B, we let D be the set of dark blue vertices

and L be the set of light blue vertices. Since D ∩ L = ∅, we have B = D
·
∪ L. While B

is a set, we will abuse notation and write B = (D,L) to emphasize the decomposition of

B into its component sets.
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3.1.4 Contribution and organization of the paper

In Section 3.2 we introduce and examine the fractional positive semidefinite forcing

number of a graph. An r-fold extension of the positive semidefinite zero forcing number,

based on graph blowups, is introduced and used to define the fractional positive semidef-

inite forcing number of a graph G, denoted Z+
f (G). We also introduce a three-color

forcing game played on G called the fractional positive semidefinite forcing game and

prove a main result of that section:

Theorem (Theorem 3.2.19). For any graph G, Z+
f (G) is the minimum number of dark

blue vertices in a (three-color) fractional positive semidefinite forcing set for G.

This result allows us to determine the fractional positive semidefinite forcing number

of a graph by playing the fractional positive semidefinite forcing game, as opposed to

computation via the r-fold approach. We prove numerous results pertaining to frac-

tional positive semidefinite forcing number and the structure of optimal fractional posi-

tive semidefinite forcing sets and apply these results to compute the fractional positive

semidefinite forcing number for some common graph families. We also prove that any

graph has an ordinary (two-color) minimum positive semidefinite zero forcing set such

that the first force in the forcing process can be done without using the disconnect rule.

In Section 3.3 we introduce a three-color forcing game that is equivalent to the skew

zero forcing game. The three-color approach is used to prove numerous results pertaining

to skew zero forcing. We define an r-fold analogue of the (standard) zero forcing game

and using this to define the fractional forcing number of a graph, denoted Zf (G). A main

result of that section shows that skew zero forcing number and fractional zero forcing

number of a graph are the same:

Theorem (Theorem 3.3.18). For any graph G, Zf (G) = Z−(G).

We conclude the section by introducing an algorithm that is used to characterize

graphs that satisfy Z−(G) = 0.
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3.2 Fractional positive semidefinite forcing

In this section, we introduce the r-fold and fractional positive semidefinite forcing

numbers of a graph, as well as a three-color forcing game that relates to the fractional

parameter.

3.2.1 The r-fold positive semidefinite forcing game and fractional positive

semidefinite forcing number

Let G be a graph and for r ∈ N consider the following r-fold positive semidefinite

forcing game, which is a two-color forcing game played on G(r). As in any forcing game,

we initially color some set B ⊆ V (G(r)) blue and then try to force G(r) through repeated

application of the following r-fold positive semidefinite forcing rule:

Definition 3.2.1 (r-fold positive semidefinite forcing rule). Let Bt denote the set of

blue vertices of G(r) at some step t of the r-fold positive semidefinite forcing process2

and let W1, . . . ,Wh denote the sets of vertices of the connected components of G(r)−Bt.

If u ∈ Bt and |N(u)∩Wi| ≤ r, then u can force N(u)∩Wi, i.e., all white neighbors of u

in G(r)[Bt ∪Wi] can be simultaneously colored blue.

The r-fold positive semidefinite forcing game can be thought of as a generalization

of the positive semidefinite zero forcing game: instead of forcing one white neighbor in a

component after applying the disconnect rule, a vertex forces up to r white neighbors in

a component. This is a positive semidefinite analogue of the r-forcing process described

in [2], but we apply this process only to the blowup of the graph.

If G(r) can be forced, then the initial set of blue vertices is called an r-fold positive

semidefinite (PSD) forcing set for G. An r-fold PSD forcing set B is minimum if there

is no r-fold PSD forcing set of smaller cardinality than B. The cardinality of a minimum

2We caution the reader that a chronological list of forces is not a propagating process and Bt here
has different meaning than that used in the study of propagation.
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r-fold PSD forcing set is called the r-fold positive semidefinite forcing number of G and

is denoted Z+
[r](G). We define the fractional positive semidefinite forcing number of a

graph G as

Z+
f (G) = inf

r∈N

{
Z+

[r](G)

r

}
.

Note that G(1) = G and a 1-fold PSD forcing set is exactly a positive semidefinite

zero forcing set, so Z+
[1](G) = Z+(G). Any positive semidefinite zero forcing set B can

be converted into an r-fold PSD forcing set (for r ≥ 2) by the following rule: If u ∈ B,

then color every vertex in Ru ∈ V (G(r)) blue. This creates an r-fold PSD forcing set

that contains r · Z+(G) blue vertices, so Z+
[r](G) ≤ r · Z+(G) = r · Z+

[1](G). We conclude

that Z+
f (G) ≤ Z+(G) and that

Z+
f (G) = inf

r≥2

{
Z+

[r](G)

r

}
.

3.2.2 Global interpretation of r-fold positive semidefinite forcing

In this section, we assume that r ≥ 2 and utilize the global structure of a graph r-

blowup, namely, clusters joined by edges. Three specific types of cluster are of particular

interest. An All cluster is a cluster in which all vertices are colored blue. A One cluster

is a cluster in which exactly one vertex is colored blue and the rest are colored white.

A None cluster is a cluster in which all vertices are colored white. We define a All-

One-None (minimum) r-fold positive semidefinite forcing set B for a graph G to be a

(minimum) r-fold PSD forcing set in which each cluster of G(r) is either an All, One,

or None cluster when G(r) is colored with B. For the sake of brevity, we will hereafter

shorten All-One-None to AON.

We say that a cluster Ru is forced into when any vertex in Ru is forced. Once a cluster

changes from a non-All to an All cluster, we say that the cluster has been forced. Any

cluster that is forced into becomes an All cluster after the forcing operation, so forcing

into a cluster and forcing the cluster are equivalent.
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Remark 3.2.2. At some stage of the r-fold positive semidefinite forcing process using

a particular chronological list of forces, let Bt denote the set of blue vertices in G(r).

Assume that Ru 6⊆ Bt for some u ∈ V (G). Suppose that the next force in the process is

done by x ∈ Ru, so x has at most r white neighbors. Since Ru 6⊆ Bt, there exists at least

one white vertex w ∈ Ru. Because x and w have the same neighbors and w is white, all

white neighbors of x are connected through w and lie in the same connected component.

Hence, after x forces, all neighbors of every vertex in Ru must be blue, so without loss

of generality Ru can be forced in the next step of the forcing process.

Definition 3.2.3. If at any stage of the r-fold positive semidefinite forcing process a

vertex in any partially-filled cluster performs a force, then that cluster can itself be forced

at the next forcing step. We refer to this process as backforcing.

Remark 3.2.2 asserts that requiring backforcing does not affect whether or not a set

is an r-fold PSD forcing set, so we will always assume that backforcing is used when

performing the r-fold positive semidefinite forcing process.

Definition 3.2.4. Let Ru1 , Ru2 , . . . , Rum be “partially-filled” clusters (i.e., no cluster is

an All or a None) in G(r) that together contain pr + q blue vertices for some 0 ≤ p < m

and 0 ≤ q < r. We define the process of consolidation as follows: Use pr of the blue

vertices to convert Ru1 , . . . , Rup into All clusters and move the remaining q blue vertices

into Rup+1 .

Our goal for the remainder of this section is to use these tools and definitions to

develop an equivalent characterization of the r-fold positive semidefinite forcing game

that relies only upon a particular type of AON r-fold PSD forcing set.

Remark 3.2.5. Suppose that r ≥ 3. If B is an AON r-fold PSD forcing set, then from a

global perspective exactly one cluster in G(r) is forced at each step of the forcing process.

This is because the vertex that performs the force can only force into One or None
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clusters, and if this vertex were adjacent to more than one of these (in any combination),

then it would have more than r white neighbors and could not actually perform a force.

The case when r = 2 is slightly different. In this case, it is possible for a vertex to

force two One clusters at the same forcing step (see Example 3.2.10 below). Every 2-fold

PSD forcing set is automatically an AON set, so we cannot claim that if G(r) has a global

AON structure, then exactly one cluster will be forced at each forcing step. However,

Theorem 3.2.6 uses consolidation to show that even though every AON PSD forcing set

need not have this property, there always exist an AON minimum PSD forcing set and

forcing process that do.

Theorem 3.2.6. Let G be a graph and suppose r ≥ 2. Then there exists an AON

minimum r-fold PSD forcing set for G. For all r ≥ 3, exactly one cluster of G(r) will

be forced at each step of any forcing process that begins with any such set. For r = 2,

there exists a forcing process for the set constructed such that exactly one cluster of G(r)

is forced at each step.

Proof. We first consider the case where r ≥ 3. Let B be a minimum r-fold PSD forcing

set for G and assume that B is not AON. Write a chronological list of the forces performed

using the forcing set B, assuming the use of backforcing, and let Bt, t ≥ 0, denote the

set of blue vertices after step t of this forcing process, where B0 = B.

Suppose that a vertex x ∈ Ru performs a force at step ` ≥ 1 of the forcing process

and Ru 6⊆ B`−1, implying that Ru was not forced into at any step prior to step `. Since

we assume backforcing and Ru contains at least one white vertex, Ru was not used to

force any other cluster prior to step `, and Ru will be forced in step `+ 1. Thus if Ru is

not a One cluster, we can uncolor every blue vertex in Ru except for x without changing

the ability of x to force or the ability of Ru to be backforced at step ` + 1; since Ru is

not involved in any forces prior to step `, we can make this change in the original set B

and obtain a forcing set with fewer blue vertices, contradicting the assumption that B
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was a minimum forcing set. We conclude that every cluster in a minimum r-fold PSD

forcing set that is not an All cluster and contains a vertex that performs a force must be

a One cluster.

Now, suppose that at step ` ≥ 1 we have x→ W ⊆ (Ru1 ∪Ru2 ∪ · · · ∪Rum) for some

m ≥ 2, where each Ruj contains at least one white vertex. Since x is performing a force,

it has at most r white neighbors in the component containing
⋃m
j=1Ruj , so there are at

least r(m− 1) blue vertices in
⋃m
j=1Ruj . Each cluster Ruj is an All cluster after step `,

and no Ruj was forced into prior to step `. Since we assume backforcing and each of the

Ruj clusters contains at least one white vertex, none of the Ruj clusters contains a vertex

that was used to force at a step prior to step `. Analogous to Remark 3.2.2, removing blue

vertices from any of the Ruj will not affect the application of the disconnect property, as

each Ruj contains at least one white vertex. Similarly, adding blue vertices to convert

an Ruj into an All cluster may make available additional disconnects (which we do not

use), but these would not affect any previous forces. Therefore, we can consolidate the

(at least r(m− 1)) blue vertices in
⋃m
j=1Ruj without affecting the ability to perform any

previous force.

Without loss of generality, suppose that Ru1 , . . . , Rum−1 become All clusters after the

consolidation and any remaining blue vertices are left in Rum . After consolidation, the

new force at step ` will be x → Rum ; after this point, the state of the system is the

same as it would have been had we not consolidated (i.e., every Ruj is an All cluster), so

future forces are unaffected by consolidation. Furthermore, after consolidation, exactly

one cluster (Rum) is forced at step `. Since the consolidation process does not affect any

of the forces before or after the force at step `, we are free to perform the consolidation on

the original set B to obtain a new minimum r-fold PSD forcing set B̃ and the sequence

of vertices that perform forces remains unchanged. Note that since B̃ is minimum, Rum

must necessarily be a None cluster.
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By repeated application of the consolidation process, we are able to convert every

non-One cluster into an All cluster or a None cluster. By Remark 3.2.5, any AON forcing

process for r ≥ 3 must necessarily consist of forcing only one cluster at each step, which

proves the claim for r ≥ 3.

Now, suppose that r = 2. Every minimum 2-fold PSD forcing set for G is automat-

ically an AON set. Suppose that, at step ` ≥ 1 of the forcing process, more than one

cluster must be forced. Since any vertex can force at most 2 of its neighbors, it must be

the case that two One clusters are forced at this step. For the reasons described in the

r ≥ 3 case, we can consolidate these two One clusters into one All cluster and one None

cluster without affecting any previous or future forces; after this consolidation, only one

cluster is forced at step `. As before, we can modify our original minimum forcing set

and the result follows for the r = 2 case (using the forcing process to which consolidation

was applied).

We call the type of AON minimum r-fold PSD forcing set guaranteed to exist by

Theorem 3.2.6 an optimal AON r-fold PSD forcing set. We emphasize that an optimal

AON r-fold PSD forcing set is minimum by definition, and given an optimal AON r-fold

PSD forcing set there is a corresponding forcing process in which exactly one cluster is

forced at each step. Further, the set of blue vertices at each step of the forcing process

associated with an optimal AON r-fold PSD forcing set will always create a global AON

structure in G(r).

Suppose that B is an AON r-fold PSD forcing set for a graph G and color G(r) with

B. We use a(B) to denote the number of All clusters in G(r) and `(B) to denote the

number of One clusters in G(r), so |B| = r · a(B) + `(B). This new terminology yields a

corollary to Theorem 3.2.6.

Corollary 3.2.7. For every graph G and r ≥ 2, there exists an optimal AON r-fold PSD

forcing set for G, and for any such set B, we have Z+
[r](G) = |B| = r · a(B) + `(B).
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Definition 3.2.8. Let r, s ≥ 2 with s 6= r and suppose that B is an AON r-fold PSD

forcing set for G. Copy the AON structure of G(r) when colored with B onto G(s) to

create a new AON set of blue vertices of cardinality s · a(B) + `(B). This process is

called replication.

Remark 3.2.9. Let B be a 2-fold PSD forcing set for G and suppose that two One

clusters are forced simultaneously at some step of the forcing process on G(2). In this

case, replicating B onto G(s) for s > 2 will not yield a valid forcing set (see Example

3.2.10, next). However, if B is an optimal AON 2-fold PSD forcing set, then Theorem

3.2.6 guarantees that there is a forcing process in which exactly one force occurs at each

step, so replication will yield a valid forcing set. As we see in Example 3.2.11, however,

the replicated set may not be minimum and hence not optimal.

(a) (Minimum) AON 2-fold PSD forcing set (b) Optimal AON 2-fold PSD forcing set

Figure 3.4: AON 2-fold PSD forcing sets for K3

Example 3.2.10. Consider the (minimum) 2-fold PSD forcing sets for K3 shown in

Figure 3.4. For simplicity, the edges in the figure represent the complete bipartite graphs

between the clusters at their endpoints. The first forcing step in Figure 3.4a would

consist of forcing two of the One clusters simultaneously. This set is no longer a forcing

set when replicated onto K
(s)
3 for s ≥ 3, as each of the blue vertices will have too many

white neighbors to perform a force. The optimal AON PSD forcing set shown in Figure

3.4b, however, can be replicated successfully, as only one cluster must be forced at any

step of the forcing process.
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(a) Graph G (b) r = 2 (c) r = 3

Figure 3.5: Optimal AON r-fold PSD forcing sets

Example 3.2.11. Suppose that we have the complete bipartite graph K5,2 and let G be

the graph formed by attaching one leaf to each of the vertices in the partite set containing

five vertices (Figure 3.5a). Consider the (unique) optimal AON r-fold PSD forcing sets

for G shown in Figures 3.5b and 3.5c. When r = 2, the forcing set has two All clusters,

so Z+
[2](G) = 4. When r = 3, the forcing set has five One clusters, so Z+

[3](G) = 5.

Replicating either optimal forcing set onto the other blowup will generate a forcing set

that is not minimum, hence not optimal.

We now prove further properties of AON r-fold PSD forcing sets and use these results

to provide an alternate definition of the fractional PSD forcing number.

Lemma 3.2.12. Let G be a graph on n vertices and fix r ≥ n. Let B be an optimal

AON r-fold PSD forcing set for G and let B′ be an AON r-fold PSD forcing set for G.

Then a(B) ≤ a(B′).

Proof. Assume first that `(B′) < n. Since B is optimal, it is minimum, so r·a(B)+`(B) =

|B| ≤ |B′| = r · a(B′) + `(B′). Dividing through by r and manipulating this inequality

yields

a(B)− a(B′) ≤ `(B′)− `(B)

r
<
n

r
≤ 1.

Since a(B)−a(B′) is an integer, we must have a(B)−a(B′) ≤ 0, which proves the claim

when `(B′) < n. Now suppose that `(B′) = n, so a(B′) = 0. Since r ≥ n, at most

one force happens at each step, so we can replace the first cluster forced with a None
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cluster to obtain a new AON r-fold PSD forcing set B′′ with a(B′′) = a(B′) = 0 and

`(B′′) = n− 1 < n.

Corollary 3.2.13. Let G be a graph on n vertices and fix r ≥ n. If B and B′ are optimal

AON r-fold PSD forcing sets for G, then a(B) = a(B′).

Thus for a fixed “large enough” r, every optimal AON r-fold PSD forcing set for

G must contain the same number of All clusters (and, consequently, One clusters). Of

particular interest is the case r = n = |G|. We define a+? (G) to be the unique number

of All clusters created in G(n) by any optimal AON n-fold PSD forcing set for G, and

define `+? (G) to be the (unique) number of One clusters created in this manner.

Proposition 3.2.14. Let G be a graph on n vertices. For all r ≥ n, if B is an optimal

AON r-fold PSD forcing set for G, then a(B) = a+? (G).

Proof. Let B̃ be the AON n-fold PSD forcing set formed by replicating B onto G(n). By

Lemma 3.2.12, a+? (G) ≤ a(B̃) = a(B). Similarly, let B′ be the AON r-fold PSD forcing

set formed by replicating any optimal AON n-fold PSD forcing set onto G(r). By Lemma

3.2.12, a(B) ≤ a(B′) = a+? (G), and thus equality holds.

Corollary 3.2.15. Let G be a graph on n vertices. For all r ≥ n, Z+
[r](G) = r · a+? (G) +

`+? (G). Additionally,

lim
r→∞

Z+
[r](G)

r
= a+? (G).

Before we can prove the final result of this section, which ties the fractional positive

semidefinite forcing number into the machinery just developed, we require one final utility

result.
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Lemma 3.2.16. Let G be a graph on n vertices and choose r ≥ 2. Then for any optimal

AON r-fold PSD forcing set B, |B|
r
≥ a+? (G).

Proof. First, suppose that 2 ≤ r < n. Let B̃ be the AON n-fold PSD forcing set obtained

by replicating B onto G(n). Then a(B) = a(B̃) and `(B) = `(B̃), so

|B|
r

= a(B) +
`(B)

r
= a(B̃) +

`(B̃)

r
≥ a(B̃) +

`(B̃)

n
=
|B̃|
n
.

Let B′ be any optimal AON n-fold PSD forcing set for G. Since B′ is optimal, it is

minimum, hence |B̃| ≥ |B′|. Therefore,

|B|
r
≥ |B̃|

n
≥ |B

′|
n

= a+? (G) +
`+? (G)

n
≥ a+? (G),

which proves the claim when r < n.

If r ≥ n, then Proposition 3.2.14 shows that |B| = r·a+? (G)+`+? (G) and the conclusion

follows.

We conclude this section with an alternate characterization of fractional positive

semidefinite forcing number.

Theorem 3.2.17. For every graph G,

Z+
f (G) = a+? (G).

Proof. Recall that Z+
f = infr≥2

{
Z+
[r]

(G)

r

}
. By Corollary 3.2.15, Z+

f (G) ≤ a+? (G). Let B

be an optimal AON r-fold PSD forcing set for G for some r ≥ 2. Then by Corollary

3.2.7 and Lemma 3.2.16,
Z+
[r]

(G)

r
= |B|

r
≥ a+? (G), and thus equality holds.

This shows that the fractional positive semidefinite forcing number of a graph is

always a nonnegative integer, an interesting result in light of its fractional construction.
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3.2.3 Three-color interpretation of fractional positive semidefinite forcing

Motivated by the AON interpretation of the r-fold positive semidefinite forcing game,

we consider a three-color forcing game that allows us to compute the fractional positive

semidefinite forcing number for any graph without playing the r-fold game.

Let G be a graph and consider the following fractional positive semidefinite forcing

game, which is a three-color forcing game that uses the colors dark blue (target), light

blue, and white. Assign to each vertex of G one of these colors and let B = (D,L), where

D denotes the set of dark blue vertices and L denotes the set of light blue vertices.3 We

repeatedly apply the following fractional positive semidefinite forcing rule:

Definition 3.2.18 (fractional positive semidefinite forcing rule). Let Bt = (Dt,Lt) de-

note the set of colored vertices of a graph G at some step of the fractional positive

semidefinite forcing process and let W1, . . . ,Wh denote the sets of vertices of the con-

nected components of G−Dt. If u ∈
(
Dt

·
∪ (Lt ∩Wi)

)
and w ∈ Wi is the only light blue

or white neighbor of u in G[Dt ∪Wi], then u can force w, i.e., w can be colored dark

blue.

Loosely speaking, we apply the disconnect rule from positive semidefinite zero forcing

using the dark blue vertices of G, and then in each augmented component any dark or

light blue vertex can force its only light blue or white neighbor. As usual, the goal of this

forcing game is to choose the initial set B in such a way that by repeated application of

this rule the entire graph can be forced (i.e., turned dark blue). If G can be forced, then

we say that the initial set B is a fractional positive semidefinite (PSD) forcing set for G.

The (three-color) fractional positive semidefinite forcing number of G, denoted Ẑ+
f (G),

is then defined as

Ẑ+
f (G) = min {|D| : (D,L) is a fractional PSD forcing set for G, for some L} .

3Recall from Section 3.1.3 that this is equivalent to writing B = D
·
∪ L.
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We say that a fractional PSD forcing set B = (D,L) for G is optimal if |D| = Ẑ+
f (G)

and no fractional PSD forcing set for G with |D| = Ẑ+
f (G) has fewer than |L| light

blue vertices. We use ˆ̀+
? (G) to denote the number of light blue vertices in any optimal

fractional PSD forcing set for G, i.e., ˆ̀+
? (G) = |L|.

The process of backforcing described for the r-fold positive semidefinite forcing game

applies to the fractional positive semidefinite forcing game, albeit with a three-color

modification. After a light blue vertex u performs a force, all of its neighbors must

necessarily be dark blue, and so we can backforce u at the next forcing step.

The observant reader will notice that we have defined “fractional positive semidefinite

forcing number” twice: here, and in Section 3.2.1. The final result of this section shows

that this is not an error: the parameter Z+
f , defined via an r-fold two-color game, is

equal to the parameter Ẑ+
f , defined via a three-color game.

Theorem 3.2.19. For any graph G, Z+
f (G) = Ẑ+

f (G).

Proof. Let |G| = n and let B be an optimal AON n-fold PSD forcing set for G. By

Theorem 3.2.17, we have a(B) = a+? (G) = Z+
f (G). Color G(n) with B and color G

with B̃ = (D̃, L̃), defined as follows: Let D̃ = {u : Ru is an All cluster in G(n)} and let

L̃ = {u : Ru is a One cluster in G(n)}. Since B is an optimal AON n-fold PSD forcing

set, exactly one cluster is forced at each step of the forcing process using B, and G(n)

can be forced. Further, backforcing is applied to One clusters in G(n), and One clusters

correspond to light blue vertices, to which backforcing can also be applied. Therefore,

the forcing process used on G(n) can be used to force G, so B̃ is a fractional PSD forcing

set for G and Ẑ+
f (G) ≤ |D̃| = a(B) = Z+

f (G).

Let B = (D,L) be an optimal fractional PSD forcing set for G. The reverse inequality

easily follows by associating elements of D with All clusters in G(n) and elements of L

with One clusters and applying Lemma 3.2.12 and arguments similar to those above.

Corollary 3.2.20. For any graph G, `+? (G) = ˆ̀+
? (G).
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As a consequence of these results, the Ẑ+
f and ˆ̀+

? notations will be suppressed in favor

of the simpler Z+
f and `+? .

In contrast to the process of computing the values of fractional versions of general

graph parameters, computing the fractional positive semidefinite forcing number of a

graph does not require any explicit knowledge of the r-fold analogue. If knowledge of Z+
f

is all that is of interest, one can bypass the r-fold game and opt to play the fractional

positive semidefinite forcing game instead. The benefit of taking a three-color approach

is also demonstrated in Section 3.3, where a three-color interpretation is used to obtain

new results pertaining to skew zero forcing.

3.2.4 Results for fractional positive semidefinite forcing number

The fractional positive semidefinite forcing game allows us to easily prove many in-

teresting properties of the fractional positive semidefinite forcing number.

Remark 3.2.21. Any isolated vertex in a graph G must be colored dark blue. Thus if

δ(G) = 0, then Z+
f (G) ≥ |{u ∈ V (G) : deg(u) = 0}| ≥ 1.

Observation 3.2.22. If a graph G has connected components {Gi}mi=1, then Z+
f (G) =∑m

i=1 Z
+
f (Gi) and `+? (G) =

∑m
i=1 `

+
? (Gi).

Thus we are able to focus on connected graphs (as is customary for zero forcing).

Remark 3.2.23. Let G be a graph and let B = (D,L) be a fractional PSD forcing

set for G. The set B = D
·
∪ L is a positive semidefinite zero forcing set for G, so

Z+(G) ≤ |B| = |D|+ |L|. If B is optimal, then this shows that Z+(G) ≤ Z+
f (G)+`+? (G).

A natural question in light of this remark is whether Z+(G) = Z+
f (G) + `+? (G). By

taking a minimum positive semidefinite zero forcing set for G and changing some vertices

to light blue, it may be possible to obtain an optimal fractional PSD forcing set for G.

Even though this works for some graphs, the next example provides a graph for which

this technique fails.
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Example 3.2.24. Let G be the graph shown in Example 3.2.11, a K5,2 with one leaf

appended to each vertex in the partite set on 5 vertices. By coloring each of the leaves

light blue, we can force each of their neighbors, and using the disconnect rule we can

subsequently backforce the leaves and force all of G. Thus Z+
f (G) = 0 and `+? (G) = 5,

but it is known that Z+(G) = 2 < 0 + 5 = Z+
f (G) + `+? (G). The key to this example is

that the set B = L is a minimal positive semidefinite zero forcing set for G, but it is not

a minimum positive semidefinite zero forcing set.

Remark 3.2.25. If B = (D,L) is an optimal fractional PSD forcing set for a connected

graph G, then any vertex that is colored light blue must perform a force before it is itself

forced; if not, then that vertex can be colored white to obtain a fractional PSD forcing set

with the same number of dark blue vertices and fewer light blue vertices, contradicting

the optimality of B. Additionally, no two light blue vertices in an optimal fractional PSD

forcing set can be adjacent, as one would have to force the other before the other has

performed a force. Therefore, L is an independent set in G, so `+? (G) ≤ α(G).

The following result pertains to the (two-color) positive semidefinite zero forcing

game.

Lemma 3.2.26 ([13], Lemma 2.1.1). Let G be a graph and let B be a positive semidefinite

zero forcing set of G. If v ∈ B is the vertex that performs the first force, v → w, where

w is a white neighbor of v, then (B \ {v}) ∪ {w} is a positive semidefinite zero forcing

set of G.

We now present a three-color version of Lemma 3.2.26. The proof is similar to the

proof of the two-color version found in [13] and is omitted.

Lemma 3.2.27. Let G be a graph and let B = (D,L) be a fractional PSD forcing set

for G. Suppose that the first force, v → w, is performed by some v ∈ D on some w /∈ L.

Let D̃ = (D \ {v}) ∪ {w}. Then B̃ = (D̃,L) is also a fractional PSD forcing set for G.
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Theorem 3.2.28. If G is a graph with at least one edge, then G has an optimal fractional

PSD forcing set with which the first force can be performed by a light blue vertex.

Proof. Suppose for the sake of contradiction that G does not have an optimal fractional

PSD forcing set with which the first force can be performed by a light blue vertex. Note

that if the first force with an optimal set can be done without using the disconnect rule,

then this force must be done by a light blue vertex (else the set is not optimal), so our

assumption implies that the disconnect rule must be applied to perform the first force

with any optimal fractional PSD forcing set. Let B = (D,L) be an optimal fractional

PSD forcing set such that |W1| is minimum, where W1,W2, . . . ,Wh are the sets of vertices

of the connected components of G − D and |W1| ≤ |W2| ≤ · · · ≤ |Wh|. As noted in

Remark 1.14 of [14], we can assume that the first vertex forced lies in W1. Let v → w

denote the first force, where v ∈ D and w ∈ W1.

By Lemma 3.2.27, the set B̃ = (D̃,L) with D̃ = (D \ {v}) ∪ {w} is also an optimal

fractional PSD forcing set for G. Since w must be the only non-dark-blue neighbor

of v in W1, it must be the case that v joins a component other than W1 in G − D̃;

further, in G− D̃, the component W1 will not contain the vertex w, and may split into

multiple smaller components. If W1 6= {w}, then this argument shows that there must

be a component with fewer than |W1| vertices in G− D̃, which contradicts the choice of

B; thus we must have W1 = {w}. However, the first force in G using B̃ can therefore

be chosen as w → v, which can be done without applying the disconnect rule; by the

comments above, w can thus be light blue, contradicting optimality of B. Therefore,

G must have an optimal fractional PSD forcing set with which the first force can be

performed by a light blue vertex.

Theorem 3.2.28 yields a lower bound on Z+
f (G) as a corollary.
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Corollary 3.2.29. For any graph G, δ(G)− 1 ≤ Z+
f (G).

Proof. The result is trivial for δ(G) ≤ 1. If δ(G) ≥ 2, then G has an edge, so by

Theorem 3.2.28 there exists some optimal fractional PSD forcing set B = (D,L) such

that the first force in G can be done by some u ∈ L. Remark 3.2.25 asserts that u has

no light blue neighbors, and all white neighbors of u must be in the same component

of G − D. Since u can force, all but one of its neighbors must be dark blue. Thus

|D| ≥ |N(u)| − 1 ≥ δ(G)− 1.

An additional corollary to Theorem 3.2.28 gives a lower bound on `+? (G) in the case

where G has at least one edge.

Corollary 3.2.30. If G is a graph with at least one edge, then `+? (G) ≥ 1.

The following result is a two-color analogue of Theorem 3.2.28 that applies to the

positive semidefinite zero forcing game. The proof is similar to that of Theorem 3.2.28

and is omitted.

Theorem 3.2.31. If G is a graph with at least one edge, then there exists a minimum

positive semidefinite zero forcing set for G such the first force can be done without using

the disconnect rule.

With Theorem 3.2.31, we can obtain an improved upper bound on Z+
f (G).

Corollary 3.2.32. For any graph G with at least one edge, Z+
f (G) ≤ Z+(G)− 1.

Proof. Theorem 3.2.31 ensures that there is some minimum positive semidefinite zero

forcing set B such that the first force using B can be done without using the disconnect

rule. If B is obtained by coloring the vertex that performs this first force light blue

and all of the other vertices in B dark blue, then B is a fractional PSD forcing set with

Z+(G)− 1 dark blue vertices.
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3.2.5 Fractional positive semidefinite forcing numbers for graph families

In this section, we determine the fractional PSD forcing numbers for certain graph

families, illustrating the utility of some of the results in Section 3.2.4.

Example 3.2.33. Let n ≥ 2 and let V (Kn) = {v1, v2, . . . , vn}. Note that Z+(Kn) = n−1

[7, Example 46.4.2]. Applying Corollaries 3.2.29 and 3.2.32, n − 2 = δ(Kn) − 1 ≤

Z+
f (Kn) ≤ Z+(Kn)−1 = n−2 and thus equality holds. By Corollary 3.2.30, `+? (Kn) ≥ 1.

The set B = ({v1, v2, . . . , vn−2}, {vn−1}) is an optimal fractional PSD forcing set for Kn,

so Z+
f (Kn) = n− 2 and `+? (Kn) = 1.

In each of the next four examples, optimality of the exhibited fractional PSD forcing

sets is obtained by application of Corollaries 3.2.29 and 3.2.30.

Example 3.2.34. For any n ≥ 2, the set B = (∅, {v1}) is an optimal fractional PSD

forcing set for Pn, where V (Pn) = {v1, v2, . . . , vn} in path order, so Z+
f (Pn) = 0 and

`+? (Pn) = 1.

Example 3.2.35. For any n ≥ 3, the set B = ({v1}, {v2}) is an optimal fractional PSD

forcing set for Cn, where V (Cn) = {v1, v2, . . . , vn} in cycle order, so Z+
f (Cn) = 1 and

`+? (Cn) = 1.

Example 3.2.36. Let n ≥ 4 and consider the wheel on n vertices, Wn, which is obtained

by adding a vertex w adjacent to every vertex of Cn−1. If B = (D,L) is any optimal

fractional PSD forcing set for Cn−1, then B̃ = (D∪{w},L) is an optimal fractional PSD

forcing set for Wn, so Z+
f (Wn) = 2 and `+? (Wn) = 1.

Example 3.2.37. Let p ≥ q ≥ 1 and consider Kp,q, the complete bipartite graph on

partite sets P and Q with |P | = p and |Q| = q. Let D be a set containing any (q − 1)

elements of Q and let L be a set containing any one element of P ; then B = (D,L) is an

optimal fractional PSD forcing set for Kp,q, so Z+
f (Kp,q) = q − 1 and `+? (Kp,q) = 1.
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As a final example, we consider the fractional PSD forcing number of a tree.

Example 3.2.38. Suppose that T is a tree of order at least 2. We have Z+(T ) = 1 [7,

Example 46.4.3], so Corollary 3.2.32 implies that 0 ≤ Z+
f (T ) ≤ Z+(T )−1 = 0 and hence

equality holds. If we let L be any leaf of T , then B = (∅,L) is an optimal fractional PSD

forcing set, so Z+
f (T ) = 0 and `+? (T ) = 1.

3.3 Three-color interpretation of skew zero forcing

In this section, we introduce a three-color interpretation of the skew zero forcing game

and use this to show that the skew zero forcing number and “fractional (zero) forcing

number” of a graph are equal. Using the three-color interpretation, we derive new results

pertaining to skew zero forcing number and the associated coloring process.

3.3.1 The three-color skew zero forcing game

Consider the following three-color forcing game played on a graph G. Choose an

initial set of dark blue vertices, D, and a set of light blue vertices, L, and let B = (D,L);

color all other vertices of G white. The forcing rule is as follows:

Definition 3.3.1 (three-color skew zero forcing rule). If w is the only non-dark-blue

neighbor of a dark blue or light blue vertex u, then u can force w.

The set B is a three-color skew zero forcing set if G can be forced after repeated

application of the three-color skew zero forcing rule. We define

Ẑ−(G) = min {|D| : (D,L) is a three-color skew zero forcing set for G, for some L} .

A three-color skew zero forcing set B = (D,L) is optimal if |D| = Ẑ−(G) and no such

forcing set for G has fewer light blue vertices than B. Let `−? (G) denote the number of

light blue vertices in any optimal three-color skew zero forcing set for G, i.e., `−? (G) = |L|.
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The inclusion of the word “skew” in the development of Ẑ−(G) is not an accident.

It is easy to see that the three-color skew zero forcing game is equivalent to the (two-

color) skew zero forcing game described in Section 3.1.1: dark blue vertices correspond

to (regular) blue vertices in two-color skew zero forcing, light blue vertices correspond to

white vertices that perform white vertex forcing, and white vertices that do not perform

a white vertex force are the same in both cases. Therefore, Ẑ−(G) = Z−(G), and we are

free to use the more familiar notation Z−(G) when discussing the three-color game.

Remark 3.3.2. Notice that any three-color skew zero forcing set for a graph G is also

a fractional PSD forcing set for G: playing the three-color skew zero forcing game is

equivalent to playing the fractional PSD zero forcing game without using the disconnect

rule. Therefore, Z+
f (G) ≤ Z−(G).

From this point forward, since they give more information than their two-color coun-

terparts, we will focus on three-color skew zero forcing sets, and usually omit the “three-

color” descriptor for the sake of brevity.

3.3.2 General results for skew zero forcing

The three-color interpretation easily lends itself to making observations about skew

zero forcing number of a graph. The next two results are well-known for Z−(G) using

the two-color approach, where we interpret `−? (G) as the number of vertices that perform

white vertex forces in that case.

Remark 3.3.3. Any isolated vertex in a graph G must be colored dark blue, so if

δ(G) = 0, then Z−(G) ≥ |{u ∈ V (G) : deg(u) = 0}| ≥ 1.

Observation 3.3.4. If a graph G has connected components {Gi}mi=1, then Z−(G) =∑m
i=1 Z

−(Gi) and `−? (G) =
∑m

i=1 `
−
? (Gi).

As is customary, we are able to focus our attention on connected graphs.
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Remark 3.3.5. For every connected graph G, δ(G) − 1 ≤ Z−(G). This is because if

a candidate skew zero forcing set does not contain at least δ(G) − 1 dark blue vertices,

then every dark blue or light blue vertex has at least two white or light blue neighbors,

so the forcing process cannot start.

Remark 3.3.6. Suppose that G is a connected graph on 2 or more vertices and color

each of its vertices dark blue. Any one adjacent pair can then be re-colored white and

light blue (in either order), so Z−(G) ≤ |G| − 2.

Remark 3.3.7. For every connected graph G, we have Z−(G) ≤ Z(G) ≤ Z−(G)+`−? (G).

The first inequality follows because every zero forcing set for a graph G is also a skew

zero forcing set for G. For the second, note that if B = (D,L) is an optimal skew zero

forcing set, then B = D
·
∪ L is a (standard) zero forcing set.

The justification for the next observation is the same as that given in Remark 3.2.25.

Observation 3.3.8. If B = (D,L) is an optimal skew zero forcing set for a connected

graph G, then any vertex that is colored light blue must perform a force before it is itself

forced. No two light blue vertices in an optimal skew zero forcing set can be adjacent.

The set L is an independent set in G, and `−? (G) ≤ α(G).

Remark 3.3.9. For a graph G, the quantity |G| − Z−(G) is the number of non-dark-

blue vertices in an optimal skew zero forcing set. In the worst case, half of these vertices

would need to be colored light blue to force their white neighbors, so 0 ≤ `−? (G) ≤⌊
|G|−Z−(G)

2

⌋
≤
⌊
|G|
2

⌋
< |G|.

3.3.3 Skew zero forcing as fractional zero forcing

In this section, we develop an r-fold version of the standard zero forcing game and

use it to prove that the “fractional (zero) forcing number” of a graph is equal to the skew

zero forcing number of the graph. This treatment is similar to the positive semidefinite

case discussed in Sections 3.2.1 and 3.2.2.
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Let G be a graph and for some r ∈ N consider the following r-fold forcing game,

which is a two-color forcing game played on G(r), the r-blowup of G. As in any zero

forcing game, we initially color some set B ⊆ V (G(r)) blue and then try to force G(r)

through repeated application of the following r-fold forcing rule:

Definition 3.3.10 (r-fold forcing rule). At some step t of the forcing process, let Bt

denote the set of blue vertices in G(r). If u ∈ Bt and |N(u) \ Bt| ≤ r, then u can force

N(u) \Bt, i.e., all white neighbors of u can be colored blue simultaneously.

The r-fold forcing rule is exactly the r-forcing rule found in [2], although applied to

G(r) instead of G. The r-fold forcing game was developed in the spirit of fractional graph

theory [12], while the r-forcing process described in [2] is more general. We have chosen

to use different terminology with our treatment to emphasize this key difference.

If G(r) can be forced, then the initial set of blue vertices is called an r-fold forcing

set for G. A minimum r-fold forcing set is an r-fold forcing set of minimum cardinality.

The r-fold forcing number of G, Z[r](G), is the cardinality of a minimum r-fold forcing

set.4 We define the fractional forcing number of G as

Zf (G) = inf
r∈N

{
Z[r](G)

r

}
.

Clearly, Z[1](G) = Z(G). By an argument similar to that used in Section 3.2.1, it is

easy to see that Z[r](G) ≤ r · Z(G) for r ≥ 2, so we can equivalently define fractional

forcing number as

Zf (G) = inf
r≥2

{
Z[r](G)

r

}
.

Our goal in this section is to prove that Zf (G) = Z−(G) for any graph G. In order to

do this, we will follow an approach similar to that used in Section 3.2.2, with the noted

difference that we have a three-color interpretation of skew zero forcing that can be used

to simplify some of our arguments.

4Note that Z[r](G) = Fr(G(r)), where Fk(H) is the k-forcing number of a graph H; see [2].
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The global view of the r-fold forcing game, analogous to that of the r-fold positive

semidefinite forcing game, will also be considered. Since backforcing does not apply to

this game, in addition to All, One, and None clusters in G(r), we consider one other type

of cluster: a Most cluster is a cluster in which all but one vertex is colored blue. We

consider Most clusters only for r ≥ 3, as when r = 2 a Most cluster is equivalent to

a One cluster. An All-Most-One-None (AMON) r-fold forcing set is an r-fold forcing

set for G that creates All, Most, One, and None clusters in G(r). As before, we let

a(B) denote the number of All clusters and `(B) denote the number of One clusters

created in G(r) by an AMON r-fold forcing set B; we introduce m(B) to denote the

number of Most clusters created by B. If B is an AMON r-fold forcing set, then |B| =

r · a(B) + (r − 1) ·m(B) + `(B) = r (a(B) +m(B)) + `(B)−m(B).

Many of the remarks and observations from Section 3.2.2 apply to the global inter-

pretation of the r-fold forcing game and we omit or reduce their proofs. As before, we

note that forcing into a cluster Ru is equivalent to forcing Ru and a cluster that is forced

becomes an All cluster. Each cluster performs at most one force.

Theorem 3.3.11. For any graph G and any r ≥ 2, an AMON minimum r-fold forcing

set for G exists, as does a forcing process in which at each step either exactly one cluster

is forced or a One cluster and a Most cluster (or, when r = 2, two One clusters) are

forced simultaneously.

Proof. The result is trivially true for r = 2, so assume that r ≥ 3. Let B be a minimum

r-fold forcing set for G and suppose that B is not AMON. Create a chronological list of

forces in G(r) and suppose that at step ` ≥ 1 we have x → Ru for some u, and Ru is

the only cluster forced at this step. If Ru is not a One or a None cluster, then consider

the set B′ obtained by replacing Ru with a One cluster. Since B′ is a forcing set with

fewer blue vertices than B, this contradicts that B is minimum. Thus if a single cluster

is forced at some step of the forcing process, then it is either a One or a None cluster.
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Now, suppose that at step ` ≥ 1 we have x → W ⊆ (Ru1 ∪Ru2 ∪ · · · ∪Rum) for

some m ≥ 2, where each Ruj contains at least one white vertex. Since x is performing

a force, it has at most r white neighbors. Thus we can perform a partial consolidation

on the blue vertices spread among the Ruj as follows: Convert Ru1 , Ru2 , . . . , Rum−2 into

All clusters, convert Rum−1 into a Most cluster, and leave the remaining blue vertices in

Rum . If we let B̃ be the set obtained by performing this particular partial consolidation

on B, then B̃ is also a minimum r-fold forcing set for G. Notice that after partial

consolidation, minimality of B implies that Rum must be a One cluster. Therefore, after

partial consolidation, x will force exactly two clusters, simultaneously – a Most cluster

and a One cluster.

By performing partial consolidation, each cluster will become an All, Most, One, or

None cluster, and a forcing process exists with which at each step either a single One or

None cluster will be forced, or a Most and a One cluster will be forced simultaneously.

The type of AMON minimum r-fold forcing set guaranteed by Theorem 3.3.11 is

called an optimal AMON r-fold forcing set for G. We emphasize that optimal AMON

forcing sets are minimum, so Z[r](G) is the size of such a set, and there is a corresponding

forcing process in which at most two clusters are forced simultaneously. Using such a

set and the associated forcing process, G(r) will have a global AMON structure at each

forcing step.

Corollary 3.3.12. For every graph G and r ≥ 2, there exists an optimal AMON r-fold

forcing set for G. If B is any such set, then `(B) ≥ m(B).

Proof. For each Most cluster in an optimal AMON r-fold forcing set there exists a corre-

sponding One cluster that is forced simultaneously using the forcing process guaranteed

by Theorem 3.3.11, so the number of Most clusters cannot exceed the number of One

clusters.
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To obtain our main results of this section, we require a way to convert an AMON

r-fold forcing set for G into a (three-color) skew zero forcing set for G, and vice-versa.

Remark 3.3.13. For r ≥ 2, let B be an optimal AMON r-fold forcing set for a graph

G. Color G(r) with B and let B̃ = (D̃, L̃), where D̃ = {u : Ru is an All or Most cluster}

and L̃ = {u : Ru is a One cluster}. It is easy to see that B̃ is a skew zero forcing set

for G. Similarly, let B = (D,L) be a skew zero forcing set for G. Color G(r) according

to the following rule: If u ∈ D, then make Ru an All cluster, and if u ∈ L, then make

Ru a One cluster. The set B̃ of blue vertices is an AMON r-fold forcing set for G (with

m(B̃) = 0).

Definition 3.3.14. Regardless of whether we transform an r-fold forcing set into a three-

color skew zero forcing set or a three-color skew zero forcing set into an r-fold forcing

set, we call the process described in Remark 3.3.13 conversion.

When performing conversion, we will always specify which type of set is being con-

verted.

Proposition 3.3.15. Let G be a graph on n vertices. If r ≥ n and B is an optimal

AMON r-fold forcing set, then a(B) +m(B) = Z−(G).

Proof. Assume the hypotheses. Converting B into a skew zero forcing set B̃ = (D̃, L̃)

yields Z−(G) ≤ |D̃| = a(B) +m(B).

Now, let B = (D,L) be an optimal skew zero forcing set for G and convert B into an

AMON r-fold forcing set B̃. Since B is optimal, it is minimum, so |B| ≤ |B̃|. Thus

a(B) +m(B) +
`(B)−m(B)

r
=
|B|
r
≤ |B̃|

r
= |D|+ |L|

r
= Z−(G) +

`−? (G)

r
.

Since 0 ≤ `(B) − m(B) ≤ `(B) by Corollary 3.3.12, `−? (G) < n by Remark 3.3.9, and

n ≤ r by assumption, applying the floor function through the above inequality yields

a(B) + m(B) ≤ Z−(G), provided that `(B) < n. This must be the case, because if
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`(B) = n then B cannot be minimum (r ≥ n implies that the first cluster forced could

be a None).

Corollary 3.3.16. If G is a graph on n vertices, then

lim
r→∞

Z[r](G)

r
= Z−(G).

Proposition 3.3.17. For any r ≥ 2 and any graph G,
Z[r](G)

r
≥ Z−(G).

Proof. LetB be an optimal AMON r-fold forcing set forG and let B = (D,L) be obtained

by converting B into a skew zero forcing set. By Corollary 3.3.12, `(B) ≥ m(B), so

Z[r](G)

r
=
|B|
r

= a(B) +m(B) +
`(B)−m(B)

r
≥ a(B) +m(B) = |D| ≥ Z−(G).

Theorem 3.3.18. For any graph G,

Zf (G) = Z−(G).

3.3.4 Leaf-stripping and skew zero forcing number

In this section, we prove results about graphs with leaves and show that skew zero

forcing number is unchanged by removing leaves and their neighbors. A leaf-stripping

algorithm is presented and used to characterize graphs G that have Z−(G) = 0. For

convenience, we define Z−(∅) = 0.

Lemma 3.3.19. Let G be a graph with leaf u ∈ V (G) and let v ∈ V (G) be the neighbor

of u. Let B = (D,L) be an optimal skew zero forcing set for G. i) If u is either light or

dark blue, then v is white. ii) If u is white, then v is not dark blue.

Proof. For the first claim, since u ∈ B and v is the only neighbor of u, we can choose

u → v as the first step in the forcing process. In this case v must be white because B

is optimal. For the second claim, if v ∈ D, then the set B̃ = (D \ {v},L ∪ {u}) has

fewer dark blue vertices than B but is a skew zero forcing set for G, contradicting the

optimality of B.
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Theorem 3.3.20. If G is a graph with leaf u ∈ V (G) and v ∈ V (G) is the neighbor of

u, then Z−(G− {u, v}) = Z−(G).

Proof. Suppose that B̃ = (D̃, L̃) is an optimal skew zero forcing set for G̃ = G− {u, v}

and let D = D̃, L = L̃∪{u}, and B = (D,L). Carry out the forcing process on G using B

for the initial coloring, starting with u→ v. Since v is then dark blue, it does not affect

the ability of its neighbors to force. Thus the forcing process on G can be continued

until G̃ is forced, since B̃ = B \ {u} is a skew zero forcing set for G̃. The final force can

then be v → u, which forces G, so B is a skew zero forcing set for G with Z−(G̃) dark

blue vertices. Thus Z−(G) ≤ Z−(G̃).

Now suppose that B = (D,L) is an optimal skew zero forcing set for G; we consider

three cases. As before, G̃ will denote G− {u, v}.

First, if u ∈ L, then v is white by Lemma 3.3.19 and u → v can be taken as the

first step of the forcing process. Without loss of generality, we can assume that v → u

is the last step of the forcing process. By continuing the forcing process, we will color

G̃ completely dark blue, since B is a skew zero forcing set for G and v cannot force any

vertex in G̃; thus B \ {u} is a skew zero forcing set for G̃ with Z−(G) dark blue vertices,

so Z−(G̃) ≤ Z−(G).

Next, suppose that u ∈ D; again, by Lemma 3.3.19, v is white and u → v can be

chosen as the first step of the forcing process. If v never subsequently forces any of its

other neighbors, then B is not optimal, since u could have been chosen as a light blue

vertex instead of a dark blue vertex (and then v → u could be the final step in the new

forcing process). Thus v must eventually force one of its neighbors, say w. It must be

the case that at that stage all neighbors of v (except w) are colored dark blue, and since

v is itself dark blue it did not affect any of the forces that led to this state. Therefore, if

we let D̃ = (D \ {u}) ∪ {w} and B̃ = (D̃,L), we will have a set containing Z−(G) dark

blue vertices that can color all of G̃ dark blue. We see that Z−(G̃) ≤ Z−(G).
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Lastly, suppose that u is white, so v is not dark blue by Lemma 3.3.19. There is a

point in time after which v will be dark blue; all forces prior to this time (except possibly

v → u in the case where v is light blue) do not involve v in any way, and all forces after

this time (except possibly v → u) can be performed regardless of the presence of v, as it

is dark blue. Let B̃ = (D, L̃), where L̃ = L \ {v} if v ∈ L and L̃ = L otherwise. Then B̃

can completely force G̃, so Z−(G̃) ≤ Z−(G).

Motivated by this result, we present a leaf-stripping algorithm that can be used to

reduce a graph G to a smaller graph with the same skew zero forcing number. This

algorithm is a modification of Algorithm 3.16 in [8].

Algorithm 3.3.20: Leaf-stripping algorithm

Input: Graph G

Output: Graph Ĝ with δ(Ĝ) 6= 1, or Ĝ = ∅

Ĝ := G

while Ĝ has a leaf u with neighbor v do

Ĝ := Ĝ− {u, v}

end

return Ĝ

Theorem 3.3.22. Let G be a graph and let Ĝ be the graph returned by Algorithm 3.3.20.

Then

i. Z−(G) = Z−(Ĝ); and

ii. Z−(G) = 0 if and only if Ĝ = ∅.

Proof. The first claim follows by repeated application of Theorem 3.3.20. As a result, if

Ĝ = ∅, then Z−(G) = 0, which proves one direction of the second claim. For the other

direction, suppose that Algorithm 3.3.20 does not return the empty set. If δ(Ĝ) = 0,
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then 1 ≤ Z−(Ĝ). If δ(Ĝ) ≥ 2, then 1 ≤ δ(Ĝ)− 1 ≤ Z−(Ĝ). In either case, 1 ≤ Z−(Ĝ) =

Z−(G), which completes the proof.

We immediately see that if G is a graph on an odd number of vertices, then Z−(G) >

0. Additionally, if G is a graph with Z−(G) = 0, then G has a unique perfect matching;

if the leaf-stripping algorithm is applied to G, then each removed leaf and its neighbor

contribute an edge to this perfect matching. Note that having a unique perfect matching

is not sufficient to guarantee that Z−(G) = 0, as the next example shows.

Example 3.3.23. Consider the graph G shown in Figure 3.6. The thick edges in the

figure show the unique perfect matching for G, but since δ(G) = 2, we have Z−(G) ≥

2− 1 = 1. In fact, Z−(G) = 1, and the forcing set B shown in Figure 3.6 is optimal.

Figure 3.6: Graph G with unique perfect matching and Z−(G) > 0

Remark 3.3.24. If G is a graph on n vertices, then Algorithm 3.3.20 returns the graph

Ĝ in at most
⌊
n
2

⌋
leaf-stripping steps. Theorem 3.3.22 asserts that if Z−(Ĝ) is known,

then the algorithm has computed Z−(G) = Z−(Ĝ). In particular, if G = T is a tree,

then necessarily Ĝ = pK1 for some p ≥ 0 and Z−(T ) = p.

A natural question is whether we can prove a version of Theorem 3.3.22 that applies

to the fractional positive semidefinite forcing game. If Algorithm 3.3.20 returns the

empty set when applied to a graph G, then by Remark 3.3.2 and Theorem 3.3.22 we

have 0 ≤ Z+
f (G) ≤ Z−(G) = 0, and so equality holds for one direction. The converse

may fail, however: the graph G in Examples 3.2.11 and 3.2.24 satisfies Z+
f (G) = 0, but

applying the algorithm to G would return the nonempty partite set on 2 vertices. While

we cannot generate a positive semidefinite analogue of Theorem 3.3.22, the result can

still be a useful tool when Algorithm 3.3.20 returns the empty set.
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CHAPTER 4. CONCLUSIONS

4.1 General conclusions

In Chapter 2, r-fold orthogonal representations and r-fold orthogonal rank were intro-

duced and used to formally define projective rank as “fractional orthogonal rank.” The

techniques used were applied to faithful orthogonal representations to generalize min-

imum positive semidefinite rank to an r-fold version and develop fractional minimum

positive semidefinite rank. A main result of that chapter showed that the fractional

minimum positive semidefinite rank of any graph equals the projective rank of the com-

plement of the graph.

In Chapter 3, a fractionalization process was applied to the positive semidefinite zero

forcing game and the resulting forcing game was analyzed. A three-color fractional posi-

tive semidefinite forcing game was introduced and used to prove various results about the

fractional positive semidefinite forcing number. The three-color approach was applied

to the existing zero forcing game and gave new insight to skew zero forcing number. In

particular, graphs whose skew zero forcing number equals zero were completely charac-

terized.

4.2 Recommendations for future research

There are numerous open questions related to projective rank and, by association,

fractional minimum positive semidefinite rank. It was shown in Example 2.3.5 that

fractional minimum positive semidefinite rank is truly an infimum rather than a min-
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imum, i.e., there exist graphs G for which there is no r-fold representation such that

mr+f (G) =
mr+

[r]
(G)

r
. A natural question is whether this is also true for projective rank.

Related to this is the question of rationality of projective rank: is there a graph whose

projective rank is irrational? Note that if the infimum in the definition of projective rank

is actually minimum, then the answer to this question is obviously “no.”

The disjunctive product of two graphsG andH, denoted here byG∗H, is a graph with

V (G ∗H) = V (G)× V (H) and (g1, h1)(g2, h2) ∈ E(G ∗H) if and only if g1g2 ∈ E(G) or

h1h2 ∈ E(H). Let G∗r denote r-many copies of a graph G joined by disjunctive products

and consider the asymptotic orthogonal rank of G, defined by

ξ∞(G) = inf
r∈N

r
√
ξ(G∗r).

An open question is whether ξf (G) = ξ∞(G) for every graph G; an analogous equality

holds, for example, for fractional chromatic number [2]. It is shown in [1] that ξf (G∗H) =

ξf (G)ξf (H) for any graphs G and H, so it is easy to verify that ξf (G) ≤ ξ∞(G) for any

graph G, but it is unknown whether the reverse inequality also holds. The definitions of

projective rank in terms of r-fold orthogonal rank seen in Chapter 2 may be useful for

approaching this problem; alternately, an approach using fractional minimum positive

semidefinite rank may be possible.

The characterization of r-fold minimum positive semidefinite rank in terms of pos-

itive semidefinite matrices that r-fit a graph was motivated by connections to (d; r)

faithful orthogonal subspace representations. The standard minimum rank problem is

not connected to faithful orthogonal representations, but it is described via a matrix rank

minimization. Is there a way to meaningfully define r-fold (standard) minimum rank via

a matrix characterization similar to that used for r-fold minimum positive semidefinite

rank?

Regarding the results in Chapter 3, an open question is whether every graph has a

minimum r-fold (standard) forcing set that induces a global AON structure (i.e., whether

the Most clusters used to prove the results of Section 3.3.3 are required beyond their
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theoretical use in that section). Finding applications of fractional positive semidefinite

forcing number and the associated forcing game, as well as further applications of skew

zero forcing – perhaps motivated by the new three-color interpretation – is also of interest.
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