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ABSTRACT 
 

 Infectious disease remains a constant threat to the health of man and his animals. 

Vaccination has been declared one of the medical triumphs of the twentieth century. For man 

or animal, vaccination remains the best and most cost effective means for the prevention of 

disease. Many novel vaccine antigens are rationally designed peptides and recombinant 

proteins which require the use of adjuvants or other immune enhancers to increase efficacy. 

Currently, there is a need not only for single dose vaccines (to improve patient compliance 

and improve animal welfare by reducing livestock handling) but also adjuvants that preserve 

the immunogenicity of the protein during encapsulation, storage and release and enhance the 

host’s immune response to the antigen. Biodegradable polyanhydrides have shown many 

characteristics that fulfill these ideals but further study is needed. The studies presented in 

this dissertation were undertaken with the intent to define the interaction(s) between novel 

biodegradable polyanhydride microspheres and the host immune system. In order to address 

the role of polyanhydride chemistry on murine dendritic cells (DCs) in vitro, DC activation 

by polyanhydride microspheres was evaluated by surface marker expression and cytokine 

secretion. Several murine models, including a transgenic T cell transfer model, were used to 

evaluate the induction of antigen-specific immune response by immunizing mice with 

microsphere adjuvanted ovalbumin. The in vivo studies using ovalbumin encapsulated 

microspheres were carried out in three mouse strains to evaluate the memory or recall 

response induced by a single microsphere vaccination and to evaluate strain differences in 

response to the polyanhydride microspheres. Finally, microspheres loaded with the protease 

digested vaccine antigen derived from Brachyspira hyodysenteriae was used to vaccinate 

mice and pigs prior to disease challenge studies designed to evaluate the induction of 

protective immunity. Taken together, this body of work further adds to our knowledge of 

polyanhydride microspheres and their potential use as vaccine carriers.    
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CHAPTER 1 
 

General Introduction and Literature Review 

 
 1.1 Dissertation Organization 

This dissertation follows the new format of thesis organization wherein the 

middle chapters constitute manuscripts to be submitted to peer-reviewed journals. The 

introduction, literature review, general conclusion and all other manuscripts unless stated 

are referenced in the style of the journal Vaccine. The overall objective of this thesis was 

to evaluate novel biodegradable polyanhydrides as vaccine adjuvants. The introduction 

and literature review introduce current topics related to vaccination practices and key 

immune cells targeted by vaccination. Chapter 2 is a modified review article on adjuvants 

published in Journal of Pharmaceutical Research and is in the format of that journal. 

Jennifer Wilson-Welder and Maria Torres contributed equally to the writing of this article 

with Jennifer Wilson-Welder focusing on the introduction, immune response, and 

adjuvants with Maria Torres focusing on polymeric adjuvants and conclusions. Chapter 3 

describes in vitro activation of dendritic cells (DCs) by polyanhydride microspheres (MS) 

and the use of transgenic murine models to elucidate MS-DC-T cell interactions. This 

work was a collaborative effort with Maria Torres fabricating microspheres and assisting 

in flow cytometery experiments, and assisting in manuscript preparation. Jennifer 

Wilson-Welder was responsible for designing, implementing and analyzing the DC 

activation, and in vivo and in vitro immune response of the transgenic T cells to 

ovalbumin and final manuscript preparation. Chapter 4 describes experiments evaluating 

the modulation of in vivo immune response by microspheres. For this series of 

experiments, Brenda Carrillo, Maria Torres, and Senja Lopac fabricated the 

microspheres, evaluated microsphere morphology, preformed protein release studies, and 

assisted with necropsies. Jennifer Wilson-Welder was responsible for experimental 

design, immunizations, blood collection, data collection and analysis and manuscript 

preparation. Chapter 5 is a short study evaluating long term storage of microspheres. Matt 

Kipper fabricated the microspheres. Jennifer Wilson-Welder performed the mouse 

immunizations, blood collections, data collection and analysis and manuscript 
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preparation. Chapter 6 is adapted from the final report of a grant written and executed by 

Jennifer Wilson-Welder funded by the National Pork Board. For these projects, Brenda 

Carrillo prepared the microspheres, preformed protein release analysis, and evaluated 

microsphere morphology where Jennifer Wilson-Welder was responsible for design, 

immunizations, data collection and analysis and manuscript preparation. The entire 

dissertation is tied together in General Discussion presented in Chapter 7.  

 

1.2 Introduction 

Man and his animals will always be challenged with infectious disease and thus 

the need to develop tools to combat infectious disease. A key tool in the fight against 

infectious disease had been the development and use of vaccines. Vaccination has often 

been touted as the most wide-reaching medical advance in the twentieth century. Through 

vaccination the devastating effects of six major human diseases have been controlled 

(diphtheria, tetanus, yellow fever, whooping cough and rabies), one disease had been 

globally eradicated (smallpox) and two diseases are on the verge of global eradication 

(measles and polio) [1]. On the animal side, foot-and-mouth, canine distemper, rabies, 

canine parvovirus, pseudorabies in swine, and furunculosis in fish are but a few examples 

where vaccination has had considerable impact on controlling disease [1, 2]. Despite 

advances in medical technology, development of new antimicrobials and changes in 

animal husbandry practices, it is not possible to cure or prevent every disease. The 

incidences of antibiotic resistant pathogenic bacteria are increasing. An about face in 

consumer acceptance of antimicrobials in food producing animals has curtailed their 

prophylactic use [3]. Thus, vaccination remains the most efficacious and cost effective 

means for the prevention of disease.  

Most vaccines have been developed empirically, through trial and error, over 

time. These early vaccines usually consisted of killed or inactivated organisms. These 

preparations, in most cases provide protective immunity, also have considerable side 

effects. The use of whole cell pertussis vaccines have been discontinued in the United 

States due to swelling at the injection site and the induction of a high fever associated 

with vaccination. These adverse reactions are linked to the presence of bacterial cell 
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components (e.g., lipopolysaccharide, peptidoglycan, flagella) that induce host 

inflammatory responses. Knowledge of the mechanism(s) or basis of immune recognition 

for specific sequences or epitopes jump-started the development of subunit vaccines 

which eliminate the deleterious effects induced by bacterial components non-specifically 

activating pro-inflammatory responses. However, the success of these vaccines has 

proven to be limited. The addition of adjuvants to subunit vaccines has enhanced their 

efficacy [4].  

First described by Ramon in 1925, adjuvants are substances that when added to an 

immunogen, enhance the subsequent immune response that may be measured as an 

increased antibody titer or as cell-mediated immunity [5, 6]. Charles Janeway referred to 

adjuvants as “the immunologist’s dirty little secret” [7]: however, it is the development 

and application of adjuvants that will improve vaccination protocols in the 22nd century. 

They were termed “dirty” because it was known that less-purified vaccine preparations 

worked better and “secret” because the mechanism was unknown [5]. It is now well 

accepted that many of these whole organism vaccines contained pathogen-associated-

molecular patterns (PAMPs) that are recognized by a variety of pattern recognition 

receptors (PRRs) on innate immune cells, including Toll-like receptors (TLRs). 

Activation of dendritic cells (DCs) and other antigen presenting cells (APCs) of the 

innate immune system induces increased MHC I or II expression (necessary for antigen 

presentation), CD40 and CD86 expression (T cell costimulation) and increased secretion 

of cytokines (IL-1α & β, IL-10, IL-12, IL-6 and TNF-α) depending on the TLR pathway 

stimulated [8]. These DC responses all have an effect on activation of antigen-specific T 

and B responses (i.e., adaptive immunity). More and more evidence is published showing 

the need for inclusion of TLR ligands in vaccine adjuvants in order to induce long term 

protective immunity [9, 10]. Indeed, vaccinology and the development of adjuvants have 

come into their own as crucial steps in linking innate and adaptive immunity for long-

term protection.  

While successful vaccines do exist, there is a need to develop vaccines for 

complex polymicrobial diseases, diseases requiring cytotoxic T cells, parasite infections 

(i.e., helminthes or malaria), chronic infections (mycoplasma and mycobacteria), and 
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pathogens that target immune cells (HIV) [11, 12]. By understanding the complex 

interactions between innate and adaptive immunity, improved and efficacious vaccines 

can be developed for these complex disease problems. 

One of the most promising areas in adjuvant technology is the adaptation of 

controlled release from biodegradable polymers. Biodegradable polymers have been 

studied for several decades for use in various therapeutic applications including 

vaccination [13, 14]. Microspheres based on biodegradable polymers offer the advantage 

of replacing traditional multiple dose vaccine regimens resulting in greater patient 

compliance (receiving full regimen), reducing animal handling and stress, reducing 

injection site reactivity, and, in the end, improving not only vaccine efficacy, but in our 

livestock species, producer profits as well [2, 3, 15].  

The studies presented in this dissertation were undertaken with the intent to 

develop an understanding of the interaction between novel biodegradable polyanhydride 

microspheres and the host immune system. Activation of murine DCs in vitro by 

polyanhydride microspheres was evaluated by surface marker expression and cytokine 

secretion in order to understand the role of chemistry in DC activation. Several murine 

models were used to evaluate the induction of antigen-specific immune response by 

immunizing mice with microsphere adjuvanted ovalbumin. The in vivo studies were 

carried out in three mouse strains to evaluate the memory or recall response induced by a 

single microsphere vaccination and to evaluate strain differences in response to the 

polyanhydride microspheres. Finally, microspheres loaded with the protease digested 

vaccine antigen derived from Brachyspira hyodysenteriae whole cells were used to 

vaccinate mice and pigs prior to disease challenge studies designed to evaluate the 

induction of protective immunity. Taken together, this body of work further adds to our 

knowledge of polyanhydride microspheres and their potential use as vaccine carriers.    

 

2 Literature Review 

2.1 Host-Microbe Recognition 

It is estimated that 500 - 1,000 species of microorganisms, numbering up to 1014, 

colonize humans and rodents [16, 17]. Many scientists think this number may be a gross 
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underestimate, as many species are unable to be grown in culture. Most of these 

organisms reside in host niches in a commensal relationship. However, even these helpful 

organisms can become pathogenic if allowed out of defined niches. Thus, multi-cellular 

organisms have defense mechanisms to make their internal environments hostile to would 

be invaders [18]. These mechanisms are generally induced (antimicrobial peptides, 

reactive nitrogen and oxygen free radicals) or exist in a resting state (macrophages, DCs 

and adaptive immunity B and/or T cells) until triggered. Therefore, there must be key 

features in the infection process that triggers immune responses [18]. The key sentinels 

and defenders of the body include neutrophils, mast cells, macrophages and dendritic 

cells [19]. The latter two possess not only phagocytic capability but can also present 

phagocytized antigen to the cells of the adaptive immune system. These cells, along with 

B cells are often termed antigen presenting cells (APCs), are able to internalize antigen 

through cell mediated processes including phagocytosis, receptor mediated endocytosis, 

and macropinocytosis [20].  

Janeway predicted APCs possess germ-line encoded receptors, pathogen 

recognition receptors (PRRs), that are conserved and recognize evolutionarily conserved 

molecules essential for pathogen function [18]. Many different cells aside from innate 

immunity cells express PRRs and produce inflammatory mediator when PRRs are 

triggered (e.g., interferon by virally infected cells and IL-8 from damaged epithelial cells) 

[18]. These receptors recognize “non-self” molecules that represent a “stranger” to the 

APCs. An alternative, but not necessarily contradictory, view to Janeway’s “stranger” 

hypothesis is a model proposed by Polly Matzinger. The Matzinger “danger” hypothesis 

says that PRRs are not necessarily pathogen recognition receptors but pattern recognition 

receptors that bind to self molecules normally sequestered in intracellular compartments 

of healthy cells and are released as “danger” signals when cells are stressed, damaged, or 

die of non-apoptotic means [18]. There is an element of truth to both of these theories. As 

an example, the ligands that will bind to and signal through TLR4 include: 

lipopolysaccharide of Gram negative bacteria (LPS), fusion protein of respiratory 

syncytial virus, heat-shock protein 60, fibronectin, breakdown products of hyaluronan, β-

defensin, taxol, and bacterial fimbrial proteins [21]. PRRs include TLR, nucleotide-



 
 

6

binding oligomerization domain (NOD), CD14, LPS binding protein, lipoprotein 

receptors, and mannose receptors [21, 22]. Expression of mannose receptors, in addition 

to other PRR, provides selectivity in binding of specific ligands and identifying the nature 

of the danger or damage signal [20]. 

 

2.2 Toll-Like Receptors 

TLRs were discovered in 1997 and are the, mammalian homolog of Drosophila 

Toll and 18-wheeler [18]. Currently, there are 11 identified TLR within the human 

genome [23], and their ligands and activities are summarized in Table 1. TLRs bind both 

pathogen associated molecular patterns (PAMPs) and host derived “danger” signals [18]. 

TLRs are transmembrane signaling proteins consisting of lucine rich repeat binding 

domains and an intracellular TIR-domain (Toll-IL-1 receptor) [24]. Signaling is 

controlled through accessory adaptor proteins leading to MAPKK (mitogen activated 

protein kinase kinase) and/or NFκB signaling pathways resulting in NFκB and/or AP-1 

gene transcriptions [24]. The two key adaptor proteins in TLR signaling are MyD88 and 

TRIF. Mice deficient in both MyD88 and TRIF are unable to initiate signal transduction 

through TLRs [25]. Not all TLRs or even TLR ligands are equal in the magnitude of 

intracellular signaling. This differential activation among TLRs provides both specificity 

and discriminatory powers to APC activation. For example, TLR4 but not TLR9 ligands 

are able to signal through NFκB through a MyD88 independent pathway that results in 

costimulatory molecule expression on DCs but not cytokine secretion resulting in a 

skewed Th2 T cell profile (e.g., IL-4 production) [26]. Furthermore, DCs production of 

IL-12 and TNF-α are MyD88 dependent, but DC phenotypic maturation (including CD40 

expression) is not [26]. 

TLRs are also expressed on other cell types such as neutrophils, mast cells, 

basophils, eosinophils, epithelial cells, endothelial cells [27]. Third-party recognition 

(healthy neighbor cells) of TLR-ligands increases non-classical MHC molecules (MICA 

& MICB) which could activate γδ-T cells, natural killer (NK) cell or mast cells, to 

produce cytokines to activate DCs [18]. Signaling through TLRs seems to have 

importance not just in pathogen recognition and vaccine induced immunity [28] but also 
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in upregulating host repair mechanisms [29]. In many animal models of autoimmune 

disease, inclusion of a TLR ligand with the triggering immunogen was needed for 

development of the autoimmune phenotype [27]. 

 

a taken from [21, 24, 27, 30, 31]. 
b LPS, lipopolysaccharide; ds, double stranded; Hsp, heat-shock protein; RSV, respiratory 
syncytial virus; MPLA, monophosphoryl lipid-A; ss, single stranded; Treg, regulatory T 
cell.  
 
2.3 Dendritic Cell Phenotype 

Dendritic cells are not endowed with much of the pathogen destroying machinery 

of macrophages or the antibody producing capability of B cells limiting them to the 

unique role of damage assessor and communicator to T cells [18]. The antigen 

presentation and naïve T cell priming ability of DCs provides a bridge between innate 

immunity and adaptive immunity [32]. Additionally, DCs can uptake and retain antigen 

Table 1: Summary of TLR receptors, ligands and key featuresa 

TLR LIGAND KEY FEATURES 

TLR2 functions as 
a dimer with TLR1 
or TLR6 

peptidoglycan, lipoproteins, 
lipoarabinomannan, LPSb from 
Leptospira, zymosan, necrotic cells 

Induces Th2 & IL-10 

TLR3 dsRNA (viral) Located in phagolysosome 

TLR4 LPS, lipotecholic acids, Hsp60, β-
defensin, fusion protein of RSV, 
hyaluronan, taxol, MPLA 

Induces IL-1β, nitric oxide, 
& TNFα 

TLR5 flagellin Located on the basolateral 
surface of epithelium, 
induces Th1, can override 
Tregs 

TLR7 & TLR8 ssRNA, imidazoquinolines 
(synthetic) 

Intracellular, induces IL-12 
& IFN-γ 

TLR9 Unmethlyated CpG motif containing 
oglionucleotides 

Intracellular, induces Th1 

TLR10 No known ligand On human Treg 

TLR11 profilin on uropathogenic bacteria  



 
 

8

for long periods of time and efficiently present or transfer the antigen to naïve B cells to 

initiate antibody production [33]. 

Dendritic cells do not exist as a homogenous population and can vary greatly in 

phenotypic markers, expression of CD8α, level of mannose receptors, transcription levels 

of IL-12 and IL-10, ability to present antigen in the context of major histocompatability 

complex class I or II (MHC I or MHC II) [34]. First, DCs are characterized as either 

myeloid or plasmacytoid owing to the progenitor cell from which they originated. 

Myeloid DCs in humans have been described as expressing TLR2, TLR3, TLR4, produce 

IL-12, and can trigger Th17 T cells [27]. In contrast, plasmacytoid DCs on the other 

hand, express TLR7 and TLR9, and produce type 1 interferons making them more suited 

for detection of viral pathogens. Secondly, DCs are characterized by expression of 

CD11c and CD8α. In the mouse, two main DC populations have been described. The 

first express CD8α+CD11c+ and are found in the T cell region of the spleen, thymus, skin 

draining and mesenteric lymph nodes and are further characterized by their ability to 

produce high amounts of IL-12 [26]. The second population of DCs are CD8α-CD11c+ 

and are found in the marginal zone of lymph nodes and migrate into the T cell areas only 

after microbial challenge [26]. The literature shows that each of the subsets of DCs 

(CD8α+ or -, plasmacytoid vs. myeloid) and/or the nature of microbial stimuli (regardless 

of subset) can trigger cytokines necessary for naïve T cell induction towards a Th1 or 

Th2 bias showing plasticity in their makeup [18]. 

 

2.4 Dendritic Cell Activation 

The complexities of DC biology as expanded over the years from a simple 

immature-mature paradigm to terminology that not only describes the phenotype of the 

DCs but also the underlying mechanisms associated with effector functions [32]. In 

peripheral tissues, DCs are generally accepted to be immature, actively sampling antigens 

from their environment. Upon encounter with microbial ligands or other stimuli, DCs 

undergo phenotypic changes that allow for rapid uptake of antigen and enhanced 

phagocytic capability followed by a rapid decrease in this ability [32, 35].  Along with 

this phenotypic change, DCs typically increase expression of lymphocyte function 
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associated molecules (LFA1) an integrin used in migration leading to the erroneous belief 

that maturation was equated with migration [32]. In truth, DCs with a mature phenotype 

can be found in the periphery and DCs in immature states can be found resident in 

immune tissues [18]. While the terms maturation and activation are often used somewhat 

interchangeably, the scientists in this field have yet to adopt a single terminology making 

it unclear if maturation and activation describe the same cellular events. The term 

activation can mean simply change in resting state, therefore implying many routes of 

activation with varying consequences [18]. Figure 1 illustrates some of the key features 

of DC maturation/activation. DC maturation/activation include enhanced expression of 

phenotypic markers (CD11a, CD11c), antigen presentation molecules (MHC I and MHC 

II) and costimulatory molecules (CD40, CD80, CD86,CD83) necessary for T cell synapse 

formation [36]. In this context, DC activation as such has been observed after in vivo 

following the injection of LPS, bacterial DNA, double-stranded RNA, or extracts of 

microorganisms; in addition, in vitro DC activation has been demonstrated following the 

addition of inflammatory cytokines, heat-shock proteins (HSP), and other stimuli to cell 

culture medium [18]. The pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 

downregulate DC phagocytic activity, but have been shown to increase expression of 

CD80, CD83, CD86, MHC I, MHC II, CCR-7 and enhance DC sensitivity to chemokines 

such as CCL19 and CCL21 [35]. Acidic extracellular conditions (pH 6.5), as found in 

infected or necrotic tissue, enhance the ability of DCs to increase endocytosis, surface 

marker expression (CD11c, MHC II, CD40, CD86), and present antigen for either CD8 

stimulation or antibody generation [33]. However, not all microbial stimuli or PRR-

ligands induce DC activation. For example, binding of specific microbial ligands to 

mannose receptors, DEC-205, or other DC lectin-receptors by microorganisms enhances 

endocytosis but does not induce activation [18]. Signals secreted by other innate immune 

cells can also effect DC maturation.  
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Signals from 
Environment

Signals from Other 
Immune Cells

z

Mature (Activated) DC
Low endocytosis & Phagocytosis

High MHCII on Surface

High CD80/86, High Cytokine 
Synthesis

Immature DC
High endocytosis & Phagocytosis

MHCII Intracellular

Low CD80/86, Low Cytokines

Signals from 
Environment
Signals from 
Environment

Signals from Other 
Immune Cells

zz

Mature (Activated) DC
Low endocytosis & Phagocytosis

High MHCII on Surface

High CD80/86, High Cytokine 
Synthesis

Immature DC
High endocytosis & Phagocytosis

MHCII Intracellular

Low CD80/86, Low Cytokines

 
Figure 1: Illustration of key differences in immature and mature (activated) dendritic 
cells. Microbial components, products from apoptotic or necrotic cells, and chemokines 
from epithelial cells all constitute environmental stimuli. Activation signals from immune 
cells could include pro-inflammatory cytokines from NK or γδ-T cells and binding of 
CD40 to CD40L/CD154. Activated DCs express MHC II on their surface (black 
trapezoid) along with costimulatory molecules (brown triangles) and secrete cytokines 
(tan circles). 
 

2.4.1 CD40 

CD40 is expressed by monocytes and is up-regulated when DCs migrate from 

periphery to lymph nodes [26]. CD40 is a transmembrane protein and a member of the 

TNF receptor family. Ligation of CD40 on macrophages is responsible for macrophage 

activation for intracellular killing of pathogens and inducible nitric oxide production [19]. 

The ligand for CD40, CD40L or CD154 is expressed on many cells: mast cells, 

basophils, platelets, and activated T cells [18]. CD40 binding can activate DCs but not in 

the absence of other microbial-derived stimuli [18]. This being said, CD11c+ DCs 

expressing high or low levels of CD40 can be found in the lymph nodes which may 

represent a nascent population of DCs that continually migrate to draining lymph nodes 

from the tissue sites in the absence of microbial stimuli [26].  
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CD40 represents a positive feed-back stimulation where ligation of CD40 

upregulates more CD40 surface expression. CD40 expression is regulated by the 

transcription factor NFκB [26]. Signaling through CD40 also increases expression of 

MHC, costimulatory and adhesion molecules, and IL-12 production [26]. IL-12 

production in this instance, is dependent on transcription factor NFκB, which also 

triggers production of interferon-α/β which then favors the development of antigen-

specific CD8+ T cells [37]. Upregulation of CD80/86 upon ligation of CD40 on the DC 

provides necessary threshold stimuli for CTL cross priming [26]. Signaling through 

CD28 (on T cell) is critical for induction of CTL responses as shown by impaired CTL in 

CD80/86- or CD28-/- mice [26]. 

A number of organisms can inhibit CD40 expression, NFκB translocation, and/or 

the ability of APCs to respond to a variety of pathogenic signals including LPS, 

cytomegalovirus, Toxoplasma tachyzoites, or Plasmodium infected erythrocytes each of 

which may contribute to persistence of pathogen within the host [26]. Furthermore, the 

inflammatory inhibitor aspirin prevents CD40 up-regulation and IL-12 production from 

DC in cell culture [26]. Blocking of CD40 and CD40 upregulation may inhibit 

subsequent immune activation. 

 

2.4.2 CD209/DC-SIGN 

Dendritic cell-specific ICAM-grabbing non-integrin (DC-SIGN or CIRE in mice) 

or CD209 is a member of the C-type lectin family of receptors [38-41]. CD209 appears to 

have three main functions: 1) CD209 binds to high mannose oligosaccharides on 

pathogen or parts of pathogen for antigen uptake into MHC II loading compartments; 2) 

CD209 binds to ICAM-2 on vascular endothelium to facilitate DC migration and 

translocation; 3) CD209 binds to ICAM-3 on T cells enhancing and stabilizing the APC-

T cell synapse [39]. Expression of CD209 is enhanced by the cytokine mediators GM-

CSF and IL-4 [39]. 

Binding of CD209 leads to efficient endocytosis of materials, enabling immature 

DCs to bind and internalize a number of pathogen derived antigens [38]. CD209 forms 

clusters in plasma membrane in absence of ligation, and is also concentrated on the 
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leading edge of the migratory DC [38]. In this respect, CD209 may provide a high 

affinity and avidity interaction for the binding of pathogens that have a limited binding 

surface with which to interact with receptors on the DC [38]. For example, HIV binding 

to CD209 leads to non-fusion uptake of virions for later presentation to CD4+ T cell [38]. 

CD209 also expresses a very high affinity for adhesion molecule ICAM-3 which 

is expressed on resting T cells [39]. CD209-ICAM-3 may mediate the initial scanning of 

antigen loaded MHC II by the TCR [39]. 

 
2.5 CD4+ T Cells 

The adaptive immune response involves three main cell types. B cells produce 

antibody upon encounter with antigen and undergo differentiation into plasma cells when 

provided with differentiation signals (IL-4, IL-5, and IL-6) from CD4 cells. CD8+ or 

cytotoxic T cells are responsible for killing virally infected or tumor cells in a cell-cell 

contact manner. CD4+ T cells, or helper T cells, provide activation signals to B cells, 

CD8+ T cells and macrophages. CD4+ T cells consist of four main subpopulations, 

summarized in Table 2, including Th1, Th2, Th17 and Treg cells.  

The Th1-Th2 paradigm has dominated immunological literature for the last 15 

years. It has survived in part because of its simplicity and predictability [42]. Activation 

of either Th1 T cells and secretion of Th1 associated cytokines have been shown to 

inhibit Th2 T cell responses and vice versa [43]. A Th0 response is sometimes described 

as a response in which the CD4+ T cells do not produce a polarized cytokine response. 

These Th0 cells may represent an intermediate state of activation and will complete 

polarization upon further activation and differentiation induced by specific stimuli. 

However, not every immunological outcome was well described by Th1-Th2. A new set 

of CD4+ T cells producing IL-17 was described in 2005, and are referred to as Th17 cells 

[27].  

 

2.5.1 Th1 

Th1 CD4+ T cells are a key component of cell-mediated immunity and these cells 

or their cytokines also contribute to pro-inflammatory pathways. Th1 cells are classically 
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assigned the capacity to activate macrophages via secretion of IFN-γ for enhanced 

intracellular killing, activation of CD8+ T cells, and activation of NK cells. Cytokines 

secreted or induced by Th1 cells include IL-2, IL-3, IFN-γ, TNF-α, TNF-β, GM-CSF and 

these cytokine responses are regulated by the transcription factors STAT-4 and T-bet [19, 

44, 45]. Th1 cells induce class switching to the antibody isotype IgG2(a/c) by 

differentiating B cells. Aberrant Th1 responses have been linked to host-mediated 

pathological lesions as seen in tuberculosis, sarcoidosis, collagen induced arthritis, and 

inflammatory bowel disease [46-49]. 

 

2.5.2 Th2 

Th2 CD4+ T cells are classically associated with the induction of humoral 

immunity as they induce B cell activation, differentiation and antibody class switching to 

IgG1 and IgE isotypes [44]. Th2 cells are necessary for the clearance of extracellular 

bacteria and parasites [50]. Th2 responses are characterized by the production of 

cytokines IL-4, IL-5, IL-6, IL-10, IL-13, TNF-β and these responses are regulated by the 

transcription factor STAT6 and GATA-3 [19, 51, 52]. Dysregulation of Th2 responses 

have been implicated in asthma, atopic dermatitis, and certain cancers (basal cell 

carcinomas and gastric cancers) [53-57].  
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2.5.3 Th17 

Recently, IL-17 secreting CD4+ T cells or Th17 cells have been described and are 

associated with pro-inflammatory responses needed for the clearance of extracellular 

pathogens [58]. The main role of Th17 cells seems to be to induce recruitment of 

neutrophils and other innate immune cells to the site of infections. Thus, Th17 have been 

shown to be necessary for clearance of several extracellular pathogens including 

Bordetella pertussis [59] and Klebsiella pneumoniae [37]. Th17 cells are characterized by 

their production of IL-6 and IL-17, and the responses are regulated by the activation of 

the transcription factor RORγT [19]. Most IL-17-mediated immune responses result in 

the induction of pro-inflammatory cytokines (IL-1β, TNF-α) or neutrophil-attractive 

chemokines [37]. One way in which mouse and human immune systems differ is in the 

induction of Th17 cells. In mice, naïve Th17 cells are triggered by TGF-β and IL-6 

production from APCs [42]. In humans, these same cytokines activated memory but not 

naïve Th17 cells [42]. It was found that IL-6, IL-1, IL-23, and NOD2 activation were all 

necessary to induce the induction of Th17 cells from naïve CD4+ T cells in human 

lymphocyte populations [42]. As a mediator of cellular infiltration and tissue 

inflammation, Th17 cells are often described as a “double-edged sword”. IL-17 is over-

expressed in autoimmune diseases such as inflammatory bowel disease, multiple 

sclerosis, rheumatoid arthritis, and psoriasis, [16, 27, 58], and Th17 cells may contribute 

to the inflammation and arthritis associated with Borrelia burgdorferi (Lyme disease) 

[60].  

 

2.5.4 Treg 

Regulatory T cells have been recognized as a separate effector cell over the past 

10 years, even though a suppressive population was described more than 30 years ago 

[61]. These cells constitutively express the IL-2 receptor alpha chain (CD25) and can be 

induced in the thymus to self antigens or in the periphery to both self (natural Tregs) and 

non-self (pathogen derived) antigens (adaptive Tregs) [62]. The transcription factor, 

FoxP3, is a critical component of Treg development both for natural and adaptive Tregs, 

and is detectable in these cell subsets in both mouse and humans [19]. Tregs can suppress 
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effector cell function by both cell-cell contact dependent and independent mechanisms. 

Tregs inhibit effector cell function by inhibition of IL-2 transcription. This may be 

partially mediated through engaging the glucocorticoid-induced TNF receptor family-

related protein (GITR) [62]. Tregs also secrete cytokines IL-10, TGF-β, and IL-27 which 

all have immuno-regulatory effects. IL-27 is suppressive to macrophages and 

granulocytes, but enhances the proliferation of Th1 CD4+ T cells [37]. Furthermore, 

Tregs have a suppressive effect on the APCs themselves, by enhancing secretion of IL-

10, and by direct killing of APCs mediated by granzyme B [63]. Tregs function to limit 

immune responses to self antigens and prevent immune-mediated pathological changes 

within infected tissues. Elimination of Treg cells may induce wide-spread autoimmunity 

and unregulated, chronic inflammatory responses [62, 63]. 

 
2.6 T Cell Activation by Dendritic Cells  

T cell activation by DCs can best be described by a process involving three 

separate signaling molecules [19]. Illustrated in Figure 2, the first signal is antigen 

derived from host or pathogen presented in the context of MHC class I or class II 

molecules (i.e., pMHC-TCR). The second signal includes co-stimulatory molecules such 

as CD80, CD86 (CD83 in humans, the B7 molecules under older nomenclature), LFA1 

and CD40 that stabilize the T cell synapse and/or provide secondary intracellular 

signaling. The third signal involves the binding of cytokines secreted from DCs and other 

innate immune cells (NK cells) to their receptor on the T cells in order to facilitate the 

polarization of the T cell response into Th1 (IL-12), Th2 (IL-4), Th17 (IL-23) or Treg 

(TGF-β) phenotypes. In vivo, tolerogenic DCs only produce signal 1 resulting in the 

incomplete activation of T cells. In contrast, DCs that are capable of activating effector T 

cells produce signals 1, 2, and polarizing signal 3 [18]. T cell polarization is dependent on 

type and concentration of antigen, costimulatory molecules on DCs, phenotype of DC, 

local cytokine milieu, as well as the frequency of antigen specific T cells and density of 

APCs [64, 65]. For example, CD8α+ DCs induced a Th1 like response whereas CD8α- 

DCs induced a Th0 or Th2 like response [64]. One current hypothesis related to the 

polarization of activated T cell is that the prolonged interaction between T cell and DC 
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polarizes the T cell and creates unequal planes of cell division, giving rise to two slightly 

different daughter cells that may have differing functions (central memory, efffector,Th1, 

Th17 or Th2)[65]. Corthay proposed a 3 cell model of T cell activation. Experimental 

evidence shows that IFN-γ and IL-4 are necessary for the development of CD4+ Th1 or 

Th2 cells respectively, but neither DCs nor naïve T cells make IL-4 or IFN-γ to mediate 

the observed responses [36]. NK, NK-T cells, γδ-T cells, mast cells, eosinophils, and 

basophils all can produce either IL-4 or IFN-γ [36]. Once activated, an autocrine 

feedback loop enhances functional differentiation and the polarization of Th1 or Th2 

responses. Signals provided by a third cell type allows DCs to gather more information 

about the nature of the pathogenic invaders or degree of tissue damage in order to 

properly modulate the desired immune response [36]. 

TCRMHC Antigen

DCDC T cellT cell

Signal 1Signal 1

Signal 2Signal 2

Signal 3Signal 3

CD86/80

CD40

CD28

CD40L

TCRMHC AntigenAntigen

DCDC T cellT cell

Signal 1Signal 1

Signal 2Signal 2

Signal 3Signal 3

CD86/80

CD40

CD28

CD40L

CD86/80

CD40

CD28

CD40L

 
Figure 2: Three signal activation of the T cell by a dendritic cell. Signal 1 is comprised 
of the major histocompatability proteins (MHC) that presents the processed antigen to the 
T cell receptor (TCR). The second signal is derived from the ligation of costimulatory 
molecules CD80/CD86 and CD40 on the DC with CD28 and CD40L/CD154 on the T 
cell respectively. Signal 3 is provided by cytokines released from the DC or surrounding 
cells that initiate separate but complementary signaling cascades that enhance the 
induction and amplification of the antigen specific T cells. 

 



 
 

18

Signal 1 (antigen presented in the context of MHC) is going to cause the antigen 

specific naïve T cell to pause as it scans DC in the T cell zone of the lymphoid tissues. If 

a match of MHC-antigen-T cell receptor (TCR) is made, costimulatory molecules CD86 

binding to CD28, CD209 binding to ICAM-3 and CD40 binding to CD40L/CD154 

stabilize the interaction and the T cell synapse is formed, with more surface molecules 

moving into the synapse formation. The grouping of these molecules allows for the 

intracellular grouping of signaling molecules, providing a threshold-like signal for gene 

activation. The third signal, cytokines present in the milieu, provides the final signal for 

subpopulation polarization. Th1/Th2 polarization is controlled by phosphorylation MAP 

kinases (ERK, c-Fos) and activation of pathway/subpopulation specific transcription 

factors [64]. In vitro studies have led to a model of progressive T cell differentiation 

where T cell fitness and survival is dependent on strength of antigen stimulus to the DC 

and the signals provided to the T cell [19, 66]. 

Cytokines are key regulators in the immune system. Cytokines regulate antigen 

presentation, migration and function of APCs such as DCs [37]. Furthermore, the 

cytokine milieu surrounding the T cell and APC as they interact  significantly contributes 

to the polarizing of the T cell response [37]. Cytokines can be used to functionally 

identify the T cell population being analyzed (e.g., Th1 vs. Th2 vs. Th17) and cytokine 

secretion (e.g., IFN-γ TNF-α and IL-2) along with surface marker expression (CD44 and 

CD62L) can be used to define the memory/effector phenotype of differentiated T cells 

[66]. All of this demonstrates the importance of the role of cytokines during interactions 

between DCs and T cells.  

IL-12, which is secreted by DCs, provides the third signal for induction of Th1 

cells. IL-12p40 forms a dimer with IL-12p35 to form bioactive IL-12p70, which induces 

the active IL-12 receptor on naïve T cells [67]. IL-12p40 can also form a dimer with IL-

12p19 to form IL-23, which triggers the activation of Th17 cells [67]. In contrast, the IL-

12p40 homodimer (IL-12p80), produced in excess by activated DCs, binds to the IL-12 

receptor but does not induce a biological response. This appears to be one mechanism 

that protects mice from septic shock [67]. However, further studies show a role for IL-



 
 

19

12p80 in CD8+ activation and CD4+ dependent responses such as DTH and resistance to 

mycobacterial infection [37, 67]. 

IL-6 has many functions including B cell differentiation in acute phase responses 

[28]. IL-6 is observed often in conjunction with TNF-α and is considered inflammatory 

in nature. Other roles of IL-6 include the need for IL-6 to inhibit the regulatory functions 

of Treg cells [28]. This was shown by an impaired immune response to ovalbumin 

delivered with LPS in IL-6 knockout mice [28]. The response could be recovered by 

depleting Treg cells with anti-CD25, or blocking the function of Treg cells [28]. 

IL-10 produced by other immune cells or by T cells has a suppressive effect on 

DCs, and actually enhances their ability to activate/induce Tregs [26]. This is yet another 

example of slight differences in mouse and human immunology. In human peripheral 

mononuclear cells, the secretion of large amount of IL-10 indicates a regulatory cell 

population whereas in mice, IL-10 is associated with a Th2-type response [64]. 

Not all classes of microbial stimuli result in the same polarization of Th1-Th2 T 

cell responses. Differential activation of the DCs and production of IL-12(p70) can result 

in either a Th1 or Th2 response. Toxoplasma extracts and E. coli LPS stimulate IL-

12(p70) production by CD8+ DCs that primes for a Th1 response [64]. Some viruses 

induce IFN-α from plasmacytoid DCs and stimulate Th1 responses [64]. In contrast, 

schistosome egg antigens, filarial worm antigens, cholera toxin, lipotoxins stimulated by 

Toxoplasma, some forms of Candida albicans, or highly purified preparations of 

Porphyromonas gingivalis LPS, do not stimulate IL-12(p70), and favor Th2-like 

responses [64]. Furthermore, a single pathogen may contain components that induce both 

Th1 and Th2 T cell responses. For example Vibrio cholerae contains unmethylated CpG 

DNA that triggers Th1-like immune responses, while the B subunit of cholera toxin 

elicits a Th2-like immune response [64]. From an evolutionary standpoint, the immune 

bias resulting from microbial infection (i.e., Th1-Th2-Th17-Treg) may represent the 

eternal struggle between immune system and pathogen with the result being the 

development of an immune response that is not totally suited to the host’s needs or 

elimination of the pathogen but may represent a truce between the two [64]. Thus, Th1 

and Th2 immune responses may be polar ends of a continuum of responses that might be 
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induced following a single infection [36]. Responses in vivo may be more or less plastic 

that is proposed by in vitro models. 

 

2.7 Swine Dysentery 

Swine dysentery (SD) is severe diarrheal disease of swine. At any age, pigs can be 

affected; however the most severe economic losses are at the grower/finisher stage where 

sudden death can occur [68]. The etiologic agent is an anaerobic spirochete termed 

Brachyspira hyodysenteriae which colonizes the ceca and colon of infected pigs without 

any systemic spread [69-71]. The disease can be identified by the clinical signs of 

mucohemorrhagic diarrhea, general poor condition, and shedding of spirochetes in the 

stool. The acute phase of the disease appears to be driven by leukocytes responding to the 

translocation of luminal and commensal bacteria into the lamina propria following 

epithelial erosion due pathogenic hemolysin and other factors secreted by B. 

hyodysenteriae [72]. The chronic phase is mediated by the infiltration of CD4+ T cells 

into the colonic mucosa [72]. Histological evaluation of colonic tissue following infection 

reveals colonic crypt elongation, superficial epithelial erosion, submucosal edema, 

inflammatory cell infiltrate and mucosal hyperplasia [73]. The disease is endemic in most 

pig producing countries, where infection prevalence can be as high as 35% of the swine 

herds [74, 75]. Efforts to maintain herds free of SD are difficult, as wild rodents, dogs 

and waterfowl are natural hosts of the bacterium [76, 77]. Control measures include 

antibiotic therapy, however, recently, antibiotic resistant strains have emerged [78]. 

Currently in the United States, there is no available licensed vaccine for SD. Efforts to 

produce both recombinant and whole cell vaccines have met with varying success [79-

82]. Outer membrane preparations and other recombinant vaccines elicit only partial 

protection [79-82]. Using a squalene/pluronic acid adjuvant, protection was conferred by 

a pepsin digest preparation of whole cell B. hyodysenteriae [82-84].  

Exact pathogenic factors of B. hyodysenteriae are poorly defined. B. 

hyodysenteriae produces a hemolysin that induces some of the early morphological 

changes seen in mucosal epithelia in mice [85]. Another key virulence factor appears to 

be a modified lipoogliosaccharide. Butanol/water extracts of endotoxin-like material 
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induced IL-1 and TNF-α from murine peritoneal extrudate cells at 5- to 50- fold higher 

concentrations than was required for E. coli endotoxin but in an LAL assay showed 

similar endotoxic activity [81]. However, it was noted that the number of endotoxin units 

per nanogram of endotoxin possessed similar endotoxic activity. Further tests showed 

that LPS  preparations (phenol-water extraction) of B. hyodysenteriae were non-

mitogenic to murine splenocytes and non-pyrogenic in rabbits [81]. Finally there appears 

to be a synergistic role between B. hyodysenteriae and members of the normal 

microbiota. Previous studies using germ-free piglets or mice do not develop lesions or 

clinical disease despite the fact that B. hyodysenteriae did colonize the cecum and colon 

of the inoculated animals [86-88]. Co-infection with B. hyodysenteriae and Bacteroides 

vulgatus is sufficient to induce clinical disease phenotype in germ-free animals [86-88]. 

Mice are an accepted model for studying the disease caused by B hyodysenteriae 

infection in swine [85, 89-92]. In contrast to pigs, the lesions induced by B. 

hyodysenteriae infection are largely limited to the ceca of infected mice. Previous studies 

published by Wannemuehler et. al., showed that neutrophil infiltration was important for 

the development of the acute inflammation and development of disease [91]. Antibody 

depletion of neutrophils or blocking neurotphil translocation into mucosal tissues 

significantly reduced lesions in the acute phase of disease [91]. Acute colitis, in the 

mouse model, upregulates IL-1β, IL-6, TNF-α, and MIP-2, cytokines that are part of pro-

inflammatory pathway (unpublished data).  
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Abstract: 

For humans, companion animals, and food producing animals, vaccination has 

been touted as the most successful medical intervention for the prevention of disease in 

the twentieth century. However, vaccination is not without problems. With the 

development of new and less reactogenic vaccine antigens, which take advantage of 

molecular recombinant technologies, also comes the need for more effective adjuvants 

that will facilitate the induction of adaptive immune responses. Furthermore, current 

vaccine adjuvants are successful at generating humoral or antibody mediated protection 

but many diseases currently plaguing us, such as tuberculosis and malaria, require cell 

mediated immunity for adequate protection. A comprehensive discussion is presented of 

current vaccine adjuvants, their effects on the induction of immune responses, and 

vaccine adjuvants that have shown promise in recent literature.  
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Introduction 

Over the last 200 years, the use of vaccines has proven to be one of the most 

successful medical interventions in the reduction of disease caused by infectious agents1. 

For example, through vaccination, disease caused by the smallpox virus was eradicated 

worldwide. Europe, the Western Pacific and the United States have been declared free of 

polio and have discontinued using the Sabin (oral-live) vaccine, now including the killed 

version (Salk vaccine) as part of the childhood vaccination schedule2. In veterinary 

medicine, control and eradication of diseases such as swine cholera, parvovirus-induced 

enteritis, distemper virus, and pseudorabies virus have all been achieved through 

intervention strategies employing vaccination programs3. Vaccination has been touted as 

the greatest medical achievement in the 20th century. 

Despite advancements and improvements in vaccine efficacy and implementation 

over the past several decades, infectious disease still remains the largest cause of death 

world-wide. Unfortunately, many of these deaths occur in children and infants caused by 

diseases that are preventable by vaccination 4,5. According to the WHO, 14% of the 

global childhood mortality is caused by vaccine preventable diseases such as measles, 

disease caused by Haemophilus influenzae type b (Hib), pertussis (whooping cough) and 

Tetanus 6. Many challenges still remain with regard to fully realizing the health benefits 

of active immunization programs. Some of these obstacles include the development of 

single-dose vaccines, methods to overcome the poor immunogenicity of recombinant and 

subunit immunogens, and the ability to rapidly and rationally develop vaccines against 

emerging pathogens. One promising strategy for addressing these challenges is the 

development of new vaccine adjuvants, or carriers that enhance the effectiveness of 

vaccines.  
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Current immunization practices often require multiple doses to achieve protective 

immunity. Health care workers have observed that dropout rates in a vaccination 

programs can reach as high as 70% in some developing countries 7. Recent failures of the 

human chicken pox vaccine demonstrated that current recommended single dose is not 

protective in an outbreak situation 8. Many patients whom contracted mumps in Canada 

could only document a single immunization 9. The World Health Organization (WHO) 

listed the development of a single-dose vaccine as number one in their “Grand 

Challenges” for human health in 2005 10. While not receiving the full regimen of a multi-

dose vaccine may have dire consequences in human health, in most livestock systems, it 

is often impractical in terms of cost, labor and stress on the animal to immunize more 

than once 11. Vaccination still remains a cost effective way to combat disease 12. 

Prophylactic administration of an efficacious vaccine can be more cost effective than 

therapeutic treatment, more ecologically friendly than the use of antimicrobial agents 

(i.e., less chance of antibiotic resistant bacteria in the environment) and offers greater 

flexibility in management options. It is estimated that for each $1 spent on vaccines, $5 to 

$10 are saved in what would have been lost to disease 13. It is estimated that 30 to 50% of 

the antibiotics produced are used in agriculture, many at sub-therapeutic levels in feed to 

promote growth by suppressing bacterial growth 14. Emerging antibiotic resistance, 

changes in consumer acceptance of antimicrobial use in food producing animals, and 

high cost of treatment as compared to prevention dictates that novel biologics for disease 

prevention must be developed 15. Vaccination against infectious agents has greatly 

improved the health of humans, companion animals, and livestock species worldwide. A 

single-dose vaccine, whether for humans or animals, would greatly increase patient 

compliance, thus improving the efficacy of many vaccines (i.e., a full dosing regimen 

received at once), and reduce the costs associated with vaccination programs.  

Recent developments in both synthetic and naturally derived adjuvants suggest 

that single-dose vaccines for a variety of pathogens may be realized in the near future. 

However, no single adjuvant will be effective for all vaccine applications. Developing 

new adjuvants for improved immunotherapy requires the development of complementary 

strategies that address all the complex variables involved in immune surveillance 16. 
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Thus, before discussing recent developments in vaccine adjuvants, we briefly discuss 

innate and adaptive immunity and the various types of vaccines currently used to confer 

protective immunity.  

 

Innate and Adaptive Immunity 

Innate and adaptive immune systems work together as a complex integrated 

system 17. When cells from innate defenses recognize foreign structures or pathogens, a 

cascade of events ensues which functions to eliminate or contain the threat. The innate 

immune system is involved in surveillance and detection of foreign invaders and, as such, 

is a key target for activation by vaccine adjuvants. Innate immunity comprised of a 

variety of hematopoietic and cellular factors including the complement system, 

phagocytic cells, NK cells, naturally occurring antibodies, γδ T cells, and antimicrobial 

peptides 18,19. The innate immune system uses relatively few molecules to recognize these 

foreign invaders described by Janeway and Mezhitov as pathogen-associated-molecular-

patterns (PAMPs) 18. Depending on the vigor of the innate immune response, the adaptive 

immune response may or may not be actively engaged. In contrast to innate immunity, 

adaptive immunity recognizes antigen-specific epitopes via specialized cell surface 

receptors (antibody or T cell receptor) resulting in a specific or more directed immune 

response 18. It has been shown that a combination of innate immunity and prolonged 

presence of the pathogen-derived immunogens significantly influence the induction of a 

robust immune response20. To enhance immune activation, adjuvants can be tailored to 

specifically activate the type of immune response needed against a particular disease 

(antibody, cell-mediated, or mucosal immunity) without the need to suffer the 

consequences of an active infection 21.  

A critical innate immune cell that is involved with induction of immune responses 

is the dendritic cell (DC). DCs are found in all body tissues and, as such, are effectively 

distributed to play a central role in stimulation and regulation of adaptive immunity (cell 

mediated and humoral immunity) 22. In the blood and tissues, DCs are in an  “immature” 

state, capable of phagocytosis, and express low levels of costimulatory molecules and 

molecules associated with cellular migration (CCR7, DC-SIGN, and DEC-205) 23. In the 
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basal and suprabasal epidermis, resident DCs or Langerhan’s cells are the first cells to 

encounter microbes or injected immunogens. These cells provide innate immune 

surveillance and are continually replenished form special progenitors that reside in the 

dermis 24. Dendritic-like cells are also resident in the lungs where they discriminate 

between pathogenic and harmless inhaled particles 24. In fact, pulmonary DCs are key 

producers of IL-10 and, as such, are suppressors of airway inflammation. Within the gut 

mucosa, DCs extend their pseudopodia between epithelial barriers to sample luminal 

contents 25. Among the many different PAMPs on DCs, Toll-like receptors (TLRs) allow 

DCs to recognize specific microbial ligands (CpG DNA, lipoteichoic acid. 

Lipopolysaccharide, flagellin) 17. TLRs are type I transmembrane proteins that mediate 

the initial recognition of microbial pathogens and as such are likely targets for 

stimulation by vaccine adjuvants 26,27. Stimulation of TLR and other pattern recognition 

receptors result in the activation of specific intracellular signaling pathways (e.g., 

MyD88-dependent and –independent) leading to activation of transcription factors  

(NFκB and/or AP-1) necessary for cellular migration, maturation and antigen 

presentation. DCs acquire antigen by three main mechanisms: 1) phagocytosis or energy-

dependent engulfment of bacteria, particulate matter or cellular debris; 2) 

macropinocytosis uptake of soluble antigens; 3) receptor mediated uptake triggered by 

mannose receptors, complement receptors or Fc receptors. Upon activation via TLRs 

and/or other environmental cues, such as IL-8, DCs undergo maturation and migration to 

the draining lymph node. Following maturation, DCs lose much of their phagocytic 

capacity while increasing surface expression of migratory and co-stimulatory molecules, 

such as MHC I/II, CD80, CD86, and CD40. This process is accompanied by migration to 

the draining lymph node(s). Within the lymph node, DCs continue maturation and serve 

as potent antigen presenting cells (APC) to naïve CD4+ and CD8+ T cells. 

There are two antigenic processing pathways within DCs that lead to the major 

histocompatibility complex (MHC) molecules, whose function is to bind peptide 

fragments derived from pathogens and display them on the cell surface for T cell 

recognition 28,29. Antigens taken up by DC via phagocytosis are contained within a 

phagosome or early endosome. The phagosome fuses with a lysosome generating a 



 
 

33

phagolysosome. Following changes in the pH of the phagolysosome, proteolytic enzymes 

are activated and the antigen is degraded into small peptide fragments (9-13 amino acids 

in length) in order to facilitate their presentation to T cells and B cells. Antigens 

contained within phagolysosomes representing exogenous antigens are loaded into MHC 

II and then presented on the cellular surface for stimulation of CD4+ T cells. A 

diagrammatic representation of a mature DC presenting antigen via MHC II, the 

exogenous pathway, is shown in Figure 1a.  

 
Figure 1: Exogenous and endogenous antigen presentation. (a) Following engulfment, a 
pathogen or immunogenic protein is contained within a phagosome or endosome. Fusion 
of the phagosome with the lysosome creates a phagolysosome bringing together the 
engulfed antigens and degradative enzymes and MHC II molecules. Following 
proteolytic cleavage, MHC II chaperone protein (CLIP) is displaced by the peptide (9 to 
13 amino acids), which binds within the MHC II cleft. The vesicle containing the 
peptide-MHC II complex (pMHC II) traffics through the cytosol, eventually fusing with 
the cell membrane and the pMHC II is now displayed on the cell surface. (b) For antigens 
gaining access to the cytosol of the cell (self antigens, viruses, or cytosolic bacteria) 
proteins are degraded by cytosolic proteasomes or immune proteasomes. Degraded 
peptides are guided to TAP (transporter protein associated with antigen processing) and 
enter the endoplasmic reticulum. Subsequently, the peptides are loaded into MHC I 
molecules and following intracellular trafficking, are presented on the surface of the cell.  
 



 
 

34

 
Antigens generated within the cytosol of the cell, including viral antigens, antigen 

from bacteria that escape into the cytosol, and many cancer antigens are presented by the 

endogenous pathway. Cytostolic proteins are degraded by proteasomes in the cytosol, 

chaperone proteins (TAP) translocate the peptide fragments into the endoplasmic 

reticulum where it is loaded into MHC I molecules that are subsequently transported to 

the cell surface for presentation to CD8+ T cells as shown in Figure 1b. While all 

nucleated cells in the body express MHC I molecules, only DCs are able to efficiently 

stimulate naïve CD8+ cells 30. Antigen specific CD8+ T cells properly activated by DCs 

can kill infected cells directly, a powerful component of cell-mediated immunity. What 

also makes DC excellent activators of adaptive immunity is that DC regularly present 

antigen from the same source by both MHC I and MHC II pathways by phagocytosing 

necrotic or apoptotic cells thus allowing for cytosolic antigens access to MHC II loading 

compartments 30,31. Thus, DCs are not only involved in immune surveillance, but also act 

as a bridge between innate and adaptive immunity. Both the effector and regulatory 

aspects of CMI and humoral immunity are directly affected by the induction or activation 

of CD4+ T helper cells. These CD4+ T cells can be further classified as Th1, Th17, Th2 or 

Treg 32,3334. A Th2-type immune response is characterized by the production of IL-4, IL-

5, IL-10, and IL-13 and the secretion of IgG1 and IgE antibody isotypes. Th1-type 

responses are characterized by the production of the IFN-γ and TNF-β, IgG2a antibodies 

and are usually associated with cell-mediated immunity including activated macrophages 

and delayed-type hypersensitivity 35. Immune responses of the Th1-type are directed 

more towards intracellular pathogens and are necessary for clearance of many viruses, 

some bacteria (e.g. Mycobacterium tuberculosis) and anti-tumor effects, whereas a Th2-

type response is generally associated with the induction of antibodies that effectively 

neutralize toxins, viruses, and bacterial adhesion 36,37. Th-17 responses are considered 

inflammatory in nature and are characterized by production of IL-17 32. These responses 

appear to provide protection during acute inflammatory reactions but have been 

associated with chronic inflammatory diseases. The role of Th-17 cells in vaccinology or 

infectious disease has yet to be elucidated. 
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Induction of the appropriate immune response (humoral vs. CMI vs. regulatory) is 

essential for vaccine efficacy 37,38. For example, in the BALB/c model of leishmaniasis, 

an immune response dominated by IL-4 and IgG1 (i.e., Th2-biased response), in 

comparison to a protective Th1-biased response (IFN-γ and IgG2a), does not protect nor 

allow these mice to clear the infection 39-41. Furthermore, in regions where tuberculosis is 

endemic, a large portion of the population is infected and possesses a pre-existing 

immune response to Mycobacterium species, usually Th2 dominant 42. It its hypothesized 

that the current tuberculosis vaccine (Bacillus Calmette-Guerin or BCG vaccine) is 

ineffective in preventing disease because the current BCG vaccine is unable to redirect 

the pre-existing immune response (Treg and/or Th2) in to a protective, Th1 dominant 

immune response 42,43. Additionally, the current vaccines used against feline infectious 

peritonitis viruses enhances humoral immunity which has been shown to exacerbate the 

disease, whereas a CMI response would be protective 44.  

In addition to presentation of antigen to T cells, mature DCs help to shape the 

adaptive immune response by secretion of cytokines. Activated DCs produce the 

cytokines tumor necrosis factor alpha (TNF-α), which mediates acute inflammation, and 

a variety of interleukins, such as IL-1β, IL-6, IL-8, IL-12, and IL-10. The specific 

combination of cytokines released by activated DCs can influence the ensuing CD4+ T 

cell response. The bias of the immune response generated after antigen presentation can 

be characterized by measurement of the cytokine profiles induced upon induction of 

antigen-specific recall responses (Figure 2). The production of cytokines by DCs is also a 

critical feature of efficacious immune induction. For example, DC secretion of IL-1β 

induces secretion of IL-2, which facilitates the maturation and proliferation of naïve 

antigen-specific T lymphocytes. Conversely, antigen presentation in the absence of 

effective costimulation (CD80/86, CD40) or cytokine secretion by DCs induces 

ineffective T cell activation that can result in either tolerance or anergy 30.  
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Figure 2: Signals from DCs can influence the differentiation of naïve T cells. Stimulated, 
mature DCs present not only antigen in the context of MHC but also costimulatory 
surface molecules necessary for T cell activation. Furthermore, the type and quantity of 
cytokines secreted by DCs in conjunction with these co-stimulatory molecules can direct 
the naïve T cell into different effectors phenotypes. IL-12 secretion from the DC initiates 
a Th1 type response characterized by secretion of IFN-γ. IL-4 secretion from the DC 
results in a Th2 type response characterized by the secretion of IL-4, IL-5, and IL-10. The 
cytokines secreted by DCs are induced following ligation of cellular receptors (PRRs or 
TLRs) and signals from the surrounding tissues (i.e., IL-8). New evidence is emerging 
regarding the role of DCs in activating Th-17 and Treg cells.  
 
 
Vaccines 

The most potent (i.e., protective) and lasting immune response in a host is induced 

following a natural infection with the pathogenic organism. However, for many diseases, 

the clinical outcome for the individual may not favorable because of a lack of treatment 

for a given disease, untoward morbidity or sequelae, or high mortality. For these reasons, 

vaccines have been designed to mimic the immune response that would otherwise be 
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induced by an active infection, thereby avoiding the undesirable effects of a particular 

disease. To be effective, a vaccine must contain some portion of the disease-causing 

agent (e.g., bacteria, virus, or toxin) and may include an immune-enhancer or adjuvant. 

Vaccine regimens generally employ an initial dose or priming dose followed by two to 

three booster doses. This prime-boost strategy allows for the presentation of high 

quantities of immunogen in the draining lymph node at several time points. The first dose 

initiates immune responses that particularly involve DCs and naïve immune cells. 

Repeated administration of this same immunogen induces activation of not only effector 

cells (e.g., immunoglobulin-committed B cells and T cells) but also memory immune 

cells 29. Upon subsequent exposure to the same immunogen, memory T and B cells 

provide for a secondary immune response characterized by a greater magnitude (e.g., 

high antibody titer) and one that occurs at a faster rate than the induction of a primary 

immune response 29,45. Regardless of the type of immunogen administered in currently 

licensed vaccines (e.g. killed organism, subunit), the primary mechanism of protection is 

mediated by the generation of neutralizing antibodies as opposed to the induction of cell-

mediated immunity 46.  

Vaccines can be classified into three general categories: modified live, 

killed/inactivated, or subunit. Each has its own advantages and disadvantages. A list of 

the current licensed vaccines for use in humans within the United States, is available on 

multiple websites managed by both the Department of Health and Human Services 

(DHHS) and the Centers for Disease Control and Prevention (CDC) 12,47-49. The 

information provided includes the type of immunogen used, the age at which the vaccine 

should be administered, and the immunization schedules as recommended/required for 

the United States as issued by the DHHS. 

Live Vaccines 

Most successful vaccines currently consist of live, attenuated organisms. Other 

than natural infection, vaccines containing modified live organisms, relative to other 

vaccine formulations, induce the most potent and lasting immune response in the host. 

Modified live vaccines generally require the fewest number of inoculations, require no 

adjuvants, often confer lifelong immunity, and can be delivered through the same route as 
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the natural infection would occur 50. The organism is able to replicate in the host, causing 

a mild, limited infection that stimulates the host immune response in a very similar 

fashion to that induced by a natural infection. Furthermore, these vaccines retain many of 

the natural microbial compounds that enhance immunity by activating the innate immune 

system.  

Safe use of live vaccines requires that the organism first be attenuated, that is, the 

virulence capacity of the organism must be reduced. This can be achieved through 

repetitive passages (100s to 1,000 times) in a non-human host or in vitro. Alternatively, 

attenuated organisms can be developed by inducing genetic changes so that critical 

virulence attributes have been deleted or inactivated in the target organism. The Sabin 

oral polio vaccine and Flu-mist are two examples of modified-attenuated, live vaccines 

that are delivered along the same routes as the natural infection 51. A closely related but 

non-pathogenic organism can also be used if the non-pathogen and pathogen share 

immunoprotective epitopes. For example, Jenner observed that cowpox infection 

prevented smallpox, and attenuated Ankara strain of vaccinia virus was used to vaccinate 

against smallpox 4. Likewise, attenuated Mycobacterium bovis used in the BCG vaccine 

is protective against disease caused by virulent M. tuberculosis 50.  

The largest drawback to modified live vaccinations is that they are able to 

replicate in the host and, thus, are capable of persistent infection and reversion to the 

more virulent form. If the host is immunocompromised, the organism may be able to 

persist, and an otherwise non-pathogenic strain may be able to induce disease in the 

absence of a competent immune system. The live organism may also be able to spread 

and induce disease in other non-vaccinated individuals. Through horizontal gene transfer 

and natural random mutation, attenuated organism may acquire virulence factors and 

become able to cause disease. The attenuated strain of poliovirus used in oral vaccines 

has been shown to circulate throughout a region and occasionally revert to virulence 51. 

While modified live vaccines are very effective at inducing both cellular and humoral 

immunity, they can cause severe reactions, ranging from inflammation at the site of 

inoculation to systemic disease. Furthermore, many current diagnostic tests cannot 

distinguish between an individual who is naturally infected and an individual that 
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received a modified live vaccine 52-54. Effectiveness of live vaccines also requires that 

they be properly handled before administration. Keeping attenuated vaccines viable (i.e., 

proper storage) has been problematic in the worldwide effort to eradicate polio 51. 

 

Killed vaccines 

Killed or inactivated vaccines are comprised of the whole organism that has been 

treated with either heat or chemicals. In this way, the organism is not able to replicate in 

the host, yet cellular integrity of the pathogen is preserved. Dependent upon in vitro 

growth conditions, killed vaccines are also potent inducers of the humoral immune 

response because most of the virulence factors and epitopes are present 50. Killed 

vaccines do not carry the same risks as live vaccines; the organism cannot replicate and, 

therefore, cannot establish persistent infection, spread to other individuals, or revert to a 

virulent form 50. These types of vaccines are generally cost effective to produce, possess a 

longer shelf life and are less sensitive to changes in temperature and handling when 

compared to modified live vaccines 55. Some killed vaccines can be administered orally 

(e.g., typhoid and cholera) more closely mimicking natural infection 35. Many injectable 

vaccines that contain killed/inactivated organisms include: polio virus (Salk injectable 

polio vaccine), whole-cell Bordetella pertussis, Hepatitis A virus, Yersinia pestis 

(causative agent of plague), and encephalitis viruses 56.  

The use of killed vaccines often requires multiple doses for the induction of 

protective immunity. The degree of cellular immunity induced following immunization 

with killed vaccines can be weak. Like modified live vaccines, killed vaccines are highly 

reactogenic and are associated with a high incidence of side effects. For example, the 

whole cell killed pertussis vaccine can cause a high fever accompanied by severe pain, 

redness and swelling at the injection site due to the presence of bacterial 

lipopolysaccharide (LPS), a cell wall component and potent immunostimulator, and other 

TLR ligands in the vaccine 57,58  
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Subunit vaccines 

Subunit vaccines contain only a portion of the organism. Toxoids, inactivated 

bacterial toxins, were the first subunit vaccine to be employed for human use. Diphtheria 

and tetanus toxoids are formaldehyde-inactivated forms of the bacterial toxin that induce 

immune protection against the native toxin (i.e., neutralizing antibody). Other subunit 

vaccines currently in use include hemaglutin-binding proteins of influenza virus and 

polysaccharide capsules of bacteria such as the vaccines that include conjugated forms of 

HiB (Hemophilus influenza type B), pneumococcal (Streptococcus pneumoniae), and 

meningococcal (Neisseria meningitides) polysaccharides56,59.  Because of the poor 

immunogenicity of carbohydrate immunogens, these compounds are generally 

conjugated to a protein in order to enhance the immunogenicity; this strategy has been 

specifically used when developing vaccines for infants or the elderly. 

Another type of subunit vaccine being developed does not include protein or other 

structural components of the pathogen but utilizes the DNA of the pathogen. By injecting 

the DNA sequence encoding for a protective epitope, immunity can be induced against a 

specific pathogen that bears the target epitope 56. DNA can be delivered using a viral 

vector with the epitope encoded on a plasmid or DNA-containing particulates that deliver 

the DNA to DCs 60. Host cells then express the epitope, it is presented in the context of 

MHC I or II molecules, subsequently inducing strong cellular immunity 29. While many 

DNA vaccines are still experimental, there are currently several DNA-based human 

vaccines in phase I, II or III human trials, including vaccines against cytomegalovirus, 

Dengue virus, human immunodeficiency virus, herpes simplex virus-2, hepatitis B and 

melanoma (skin cancer) 61. 

Subunit vaccines offer several advantages including targeting the immune 

response to protective epitopes but retaining or deleting epitopes that can be used to 

differentiate ‘vaccinated’ individuals from naturally exposed/infected individuals 62. 

Subunit vaccines may also eliminate many of the side effects and reactivity associated 

with modified live or killed whole organisms as they lack many of the microbial 

components that trigger innate immune recognition. The purified protein or other subunit 

components can be prepared free of LPS, CpG-DNA, or other bacterial TLR ligands that 
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can induce an overt inflammatory response. Thus, subunit vaccines are very safe, and 

using new technologies, can be very cost effective to produce.  

However, subunit vaccines still have many weaknesses. In general, subunit 

vaccines lack strong immunogenicity and require multiple doses for protection 63. Poor 

immunogenicity also generally requires that subunit vaccines be delivered with an 

adjuvant or immunoenhancer (e.g., monophosphoryl lipid A). Many of the bacterial 

components that trigger a more robust immune response also enhance the protective 

response by inducing affinity maturation of the antibody response, increasing serum 

antibody titers, and immunoglobulin class switching 64. While current subunit vaccines 

can be formulated to induce high titer antibody responses, the induction of protective T 

cell responses (CD4+ or CD8+ cell-mediated immunity) are generally lacking.   

Adjuvants enhance the immunogenicity of vaccine components where a live 

attenuated vaccine may not be desirable. Increasing numbers of immunocompromised 

patients, elderly populations and infants represent a special problem to health officials as 

live-attenuated vaccines are not recommended in these groups. Subunit and recombinant 

protein vaccines are easier to produce and are generally considered safer than live 

vaccines, but require adjuvants to be efficacious 65. 

 

Adjuvants 

An adjuvant is an agent that stimulates the immune system, increasing the 

response to a vaccine, while not having any specific antigenic effect. Adjuvants are 

immunoenhancing materials that perform three major functions, i) provide a “depot” for 

the antigen, creating an antigenic reservoir for slow release, ii) facilitate targeting of the 

antigen to immune cells (APCs) and enhance phagocytosis, and iii) modulate and 

enhance the type of immune response induced by the antigen alone (e.g., isotype 

switching induce Th1 vs. Th2 bias) 66-69. Adjuvants may also provide the danger signal 

the immune system needs in order to respond to the antigen as it would to an active 

infection 29. A list of currently licensed adjuvants is listed in Table 1.   
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Table 1: Vaccine adjuvants currently used in licensed vaccines a 
Humans, US Humans, United 

Kingdom & 
European Union 

Livestock, 
Worldwide (general 
categories)b 

Aluminum 
hydroxide, 
Aluminum 
phosphate,  
Potassium aluminum 
sulfate (Alum) 

Aluminum 
hydroxide, 
Aluminum 
phosphate,  
Potassium 
aluminum sulfate 
(Alum) 

Aluminum 
hydroxide, 
Aluminum 
phosphate,  
Potassium 
aluminum sulfate 
(Alum) 

 Calcium 
Phosphate 

Saponin (QS-21) 

 MF-59 
(Squalene, in 
Fluad) 

Oil Emulsions 
paraffin, mineral oil, 
lanolin, squalene, 
ISA-70, Montanide 
IMS) 

 AS04 (liposome 
formulation 
containing 
MPLA and QS-
21) 
(FENDrix, 
Cervaix) 

Glycerin 

aAdapted from: 71,259-261; bMany livestock adjuvant-vaccine formulations are 
proprietary and full composition does not have to be disclosed 

 

The first function, providing a depot for the immunogen, is accomplished by 

entrapping the antigen in a poorly metabolized, non-dissolving or slowly dissolving 

substance, or otherwise sequestering the antigen to allow for the slow clearance of the 

antigen from the body. Some of these types of adjuvants are discussed in more depth in 

other sections of the review. Aluminum phosphate and aluminum hydroxide, commonly 

referred to as alum, are the adjuvants most often used in human vaccines and the gel-like 

matrix of alum creates a slow-release environment for the immunogen. Oil-water 

emulsions also work by sequestering the antigen and slowly releasing it. The classic 

water-in-oil emulsion, incomplete Freund’s adjuvant, is widely used in livestock 
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vaccines, even though it has a tendency to induce granulomas 65. It is not used in vaccine 

formulations for human use because of this tendency. Other mineral oil emulsions, such 

as Drakeol, Marcol, ISA 206, and ISA 25 from Seppic Montanide are carriers also used 

in various livestock vaccines 65. Recently, MF59, a variation of the biodegradable oil 

squalene, has proven to be a potent adjuvant with a satisfactory safety record and, thus, is 

suitable for human use 65,70. Virosomes, virus-like particles, immunostimulatory 

complexes (ISCOMs), and liposomes all allow for the slow clearance of antigen by 

incorporating the antigen into small particles composed of stabilized lipids, 

phospholipids, or proteins. GlaxoSmithKline’s new class of adjuvants (AS02A, ASO1B, 

AS04 and AS15-SB) combine stable mineral oil liposomes containing a squalene 

derivative, and immunostimulating monophosphoryl lipid A 61,71. Furthermore, antigen 

sequestering can be achieved by incorporating the antigen into microspheres composed of 

polymeric units of a biodegradable material. As the microsphere degrades, the antigen is 

released. Thus, many different carrier formulations provide antigen depots once injected. 

The second function of adjuvants is to enhance the immune response by targeting 

the antigen to immune cells, enhancing phagocytosis, and/or activating the APC. This can 

be accomplished by properties of the antigen, by a property of the carrier, or by inclusion 

of immunostimulatory molecules. Pertussis toxin binds with high affinity to epithelial 

cells, enhancing uptake of the vaccine 29. Other toxins, cholera toxin and Escherichia coli 

heat-labile toxin (LT), bind selectively to M cells of the intestinal tract 35. These cells 

translocate the vaccine particle across the epithelial barrier to a region rich in 

lymphocytes 29,65,72. While bacterial toxins such as cholera toxin and E. coli LT augment 

a strong humoral immune response, the response to the anti-toxin may overshadow the 

response to the conjugate antigen 29. LPS, another bacterial-derived immunostimulant, is 

derived from the outer membrane of gram-negative bacteria such as B. pertussis. These 

bacterial products directly interact with the innate immune system via LPS receptors 

CD14 and TLR-4 72. Human TLRs, when triggered by LPS, stimulate the activation of 

NF-κB, a transcriptional activator for the production of pro-inflammatory cytokines 65. 

Because humans are very sensitive to endotoxins, LPS is generally too toxic for inclusion 
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in many human vaccine preparations, and the majority of injectable solutions for medical 

use are pyrogen-free.  

These first two mechanisms of immunity are illustrated in Figure 3. Some 

adjuvants may interact directly with TLRs on APC (Figure 3b), and can be derived from 

pathogens that display highly conserved structures (e.g. PAMPs) 73. As illustrated in 

Figure 3, an adjuvant can interact with the PAMP directly or release antigen as in the 

more traditional depot effect. Many adjuvants exhibit a combination of these 

characteristics.  

 
Figure 3: Recognition of antigen and PRR ligands by immature DCs. An adjuvant may 
act as a depot, releasing both vaccine antigen and stimulatory PRR ligand over time (a) as 
in many alum or mineral oil formulations containing MDP, MLPA or CpG. Conversely, 
the adjuvant may be directly recognized by the PRR (such as mannose receptor or TLRs) 
(b), as may be used in whole cell, killed bacterins vaccines or some polymer adjuvants. 
 
 

Many biologically derived materials exhibit the third mechanism of adjuvanticity, 

modulation of the immune response mechanism. Monophosphoryl lipid A (MPLA) is a 

non-toxic LPS derivative obtained from Salmonella and has been shown to enhance IFN-

γ production and induction of CD4+ T cell-mediated immunity 35,74. MPLA has been 

shown to interact through TLR-4, however it is not fully dependent upon TLR-4 for its 
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effect 75,76. Ligation of TLR-4 and activation of TRIF transcription factors is responsible 

for activating both DCs and intraperitoneal macrophages resulting in T cell stimulation 

without activation of IL-6, IFN-γ and other inflammatory molecules responsible for the 

toxic side-effects associated with LPS 76. A summary of immune modulation by vaccine 

adjuvants is listed in Table 2. 

 Cytokines, when included in a vaccine mixture, can enhance the immune 

response and/or induce immune deviation. In theory, the inclusion of recombinant 

cytokines can enhance the activation of the APC and also selectively direct the immune 

response. Delivery of IL-6 or IL-12 along with antigen induces elevated serum antibody 

titers of both IgG1 and IgG2a isotypes, including increased production of mucosally 

secreted IgA 35,77. Inclusion of a plasmid encoding IL-2 in intranasal vaccines shifted the 

immune response to tetanus toxoid (TT) and cholera toxin (both dominant Th2-type 

antigens) to a Th1-type immune response 35. The antibody response to antigen delivered 

by osmotic pump was greatly enhanced by the inclusion of IL-1β with the antigen 78. The 

immune response to intramuscular plasmid DNA vaccination is enhanced by the 

inclusion of the gene sequence for GM-CSF 29. Inclusion of exogenous cytokines in a 

vaccine mixture acts directly on the APC or T cell providing the secondary signal needed 

to induce immune activation. Many of these properties have led to inclusion of cytokine 

adjuvants in experimental vaccines that are currently in phase I and phase II clinical trials 

(Table 3) 
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Table 2: Antibody isotype bias induced in laboratory animals by administration of 
immunogens in various adjuvants.  
Adjuvant Example Basic 

Characteristics 
Dominant 
Antibody 
Isotype 

Reference 

Inorganic 
Salts 

Aluminum 
Hydroxide, 
Aluminum 
Phosphate, and 
Calcium 
Phosphate 

hydrogel 
emulsion- creates 
depot effect, 
enhance 
macrophages 
maturation 

IgG1, IgE 36,96,97,99 

Oil 
Emulsions 

Mineral Oil (i.e., 
Freunds 
incomplete) 

basic water-in-oil 
emulsion with 
long standing 
record as research 
gold standard. 

IgG1 36,63,108 

 MF59 Blend of muramyl 
tripeptide, 
squalene, 
polyoxyethylene, 
sorbitan 
monooelate, and 
sorbitan trioleate 

IgG2a 36,74 

 QS-21 purified saponin 
from Quillaja 
saponica, used to 
stabilized lipid 
emulsions 

IgG2a 35,110 

 Montamide ISA-
51 & ISA-720 

‘ready to use’ oil 
for water-in-oil 
emulsion 

IgG1 62,66,202 

Isocoms ISCOMATRIX complex of 
saponins and 
lipids 

 IgG1 66,110 

Microbial 
Derived 

Monophosphoryl 
Lipid A (MPLA) 

detoxified TLR-4 
ligand  

IgG1 & IgG2a/c 75,76,107 

 Macrophage 
Activating 
Protien-2 

TLR-2 ligand 
from Mycoplasma 
spp, and purified 
derivatives. 

IgG2a 123,124 
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Table 2: Antibody isotype bias induced in laboratory animals by administration of 
immunogens in various adjuvants.  
 Virosomes stabilized lipid 

complexes 
containing viral 
proteins such as 
influenza 
hemaglutinin 

IgG2a, IgA 36,103,116 

 LT/CT modified bacterial 
toxins for mucosal 
adherence heat-
liable enterotoxin 
and cholera toxin 

LT: IgG1, 
IgG2a, & IgA 
 
CT: IgG1 

36,141 

 CpG non-methylated 
bacterial DNA, a 
TLR-9 ligand 

IgG2a 36,64,129 

Cytokines 
as 
adjuvants 

IL-1 pro-inflammatory 
cytokine 

IgG2a, IgA 35,66 

 IL-2 
 

lymphoproliverati
ve cytokine  

IgG2a 35 

 IL-12 pro-inflammatory 
cytokine  

IgG2a, IgA 144 

 IL-6 anti-inflammatory 
cytokine 

IgG1, IgA 145 

Natural 
Polymers  

Polysaccharides coating or 
emulsified with 
solid antigen 

IgG1 or IgG2a 
depending on 
route 

36 

Synthetic 
polymers 

Polyanhydrides antigen and 
immunostimulator
s emulsified into 
biodegradable 
particles ranging 
from 50 µm to 
20nm 

variable 
depending on 
inclusion of 
immune-
stimulants and 
polymer 
chemistry 

36,148,153 

 Polyesters antigen and 
immunostimulator
s emulsified into 
biodegradable 
particles ranging 
from 50 µm to 
20nm 

variable 
depending on 
immune-
stimulants and 
antigen 
incorporated 

36,68,189,1
97 
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Table 3: Adjuvants currently being tested in U.S. human clinical trials.*  
Adjuvant         Phase Disease 
Aluminum 
Hydroxide 

I 
III 

Influenza, SARS 
Leishmania 

Alhydrogel II Anthrax, Plague, Leishmania 
Montanide ISA I/II Melanoma, solid tumors, Malaria 
QS21 
 

I 
II 

Cancer: breast, prostate, lung, HIV 
Melanoma (skin) 

MF59 I/II Influenza A (H9N2), Bird flu 
(H5N1), HIV 

ISCOMATRIX II Melanoma 
MLPA, MPL & 
other TLR-4 
ligands  

I 
II 

HIV, Visceral Leishmaniasis 
Allergy (Tree Pollen) 

MDP & other 
TLR-2 ligands  

I HIV 

AS15-SB, 
(liposomes with 
MPLA and 
QS21) 

III Lung Cancer 

AS02A, AS01B I/II Malaria, HIV, Melanoma 
CpG (TLR-9 
ligand) 

I 
II 

Malaria, Cancer: breast, melanoma 
Allergy: Ragweed 

Imiquimod 
(TLR-7 ligand) 

I/II Influenza, Melanoma 

Heat Liable 
Toxin (LTK63 
& LT-R192G) 

I HIV, Tuberculosis, E. coli (ETEC) 

Diphtheria 
Toxin 

II Hepatitis B 

IMP321 (Th1 
activating 
peptide)  

I Hepatitis B 

IL-12 I 
II 

HIV, Leishmania, Melanoma 
Prostate Cancer 

IL-15 I HIV 
IL-2 I HIV, Melanoma 
GM-CSF I /II HIV, Cancer: melanoma, lung, 

ovarian, B cell lymphoma, Hepatitis 
B 

Type I 
interferon 

I Influenza 
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Table 3: Adjuvants currently being tested in U.S. human clinical trials.*  
Virus carrier: 
fowlpox, 
vaccina virus, 
canarypox  

I/II Cancer: solid tumors, breast, prostate 

Bacterial carrier: 
Salmonella typhi 
CVD 

I HIV 

PLG 
microparticles 

I HIV 

* Data from http:clinicaltrials.gov. 
 
 

Immune modulation can be influenced by other characteristics of the 

adjuvant/delivery system 79. As mentioned above, an immune response has been 

historically categorized as either Th1- or Th2-like. With the discovery of Th-17 cells and 

the increasing role of antigen derived Treg in controlling disease; the Th1-Th2 paradigm 

may need expansion. Being said, the Th1-Th2 paradigm provides a model and reference 

of understanding of pathogenesis of disease. Many different factors can contribute to 

Th1-Th2 bias of the immune response including route of antigen delivery (intramuscular, 

subcutaneous, intranasal, oral), antigen dose, duration of antigen presentation, number or 

frequency of immunizations and inclusion of co-stimulatory molecules (e.g. LPS, 

exogenous cytokines) with the antigen 80. Adjuvants can affect all of these factors in 

different ways, and hence the role of the vaccinologist is to use the correct adjuvant to 

induce a protective immune response 80. In the mouse model of leishmaniasis, induction 

of Th2-biased immune responses by vaccination does not protect the mouse from 

infection nor does the mouse clear the parasite (i.e., cutaneous lesions develop and 

persist). On the other hand, induction of Th1-biased immunity was shown to prevent 

subsequent infection and lesion development illustrating that the Th1-Th2 bias of the 

immune response is important in the ability to induce active protection 39-41. Furthermore, 

in examining the efficacy of BCG vaccination on the clinical outcome of tuberculosis, 

pre-existing immune responses (usually Th2 dominant) need to be overcome and 

appropriately redirected in order for vaccines to be efficacious 42,43. Current vaccines 

against feline infectious peritonitis viruses enhances humoral immunity which actually 
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exacerbates the disease, whereas a CMI would be protective 44. In laboratory animals, 

Ova-peptide (derived from hen egg ovalbumin, Ova) delivered in alum did not induce a T 

cell response that could be restimulated in vitro 81. Delivery of the same peptide within 

PLGA microspheres induced a significant in vitro proliferative response and production 

of IFN-γ when lymphocytes were restimulated in vitro with Ova 81. Cunningham et al., 

showed that they could alter the Th1-Th2 bias of the immune response to FliC flagellar 

antigen of Salmonella by changing the antigen delivery system 82. Antigen delivered in 

native state, on the surface of whole bacteria, induced predominantly IgG2a antibodies 

(Th1 response) whereas recombinant soluble or polymerized FliC induced primarily IgG1 

and Th2 cytokines (IL-4) 82.  

 

Th1-Th2 immune modulation 

Induction of the appropriate type of immune response is essential for development 

of protective immunity. Once naïve T cells have been primed and a Th1 or Th2 type of 

immune response has been initiated, further immunizations to that antigen using different 

adjuvants cannot shift the initial immune bias 83,84. New or novel antigens are not affected 

by this previous vaccine induced bias 83. However, it is believed that repeated 

immunizations that favor a Th2 immune bias create a situation of immunological memory 

that affects the ability of the immune system as a whole to initiate Th1 immune responses 

to subsequently encountered immunogens85.  

Table 2 summarizes the dominant antibody isotypes induced by some adjuvants, a 

reflection of Th1-Th2 biasing of an adjuvant. As illustrated by these examples, the form 

(e.g. particulate or soluble) of the antigen, delivery system, and route of delivery can all 

affect the Th1-Th2 bias of a subsequent immune response to a vaccine, and the type of 

immune response (cell-mediated or humoral) that will be protective varies with the 

disease in question. Antigen, adjuvants, and delivery systems need to be chosen with care 

to obtain the most protective response. Current licensed vaccines for the most part are 

lacking in their ability to induce Th1 type immune responses without also generating 

undesirable toxic side-effects such as the severe inflammation associated with whole-cell 

pertussis vaccines 36. While traditional alum-based vaccines initiate the Th2 response 
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65,86, a Th1 response may be more effective for preventing some diseases 87. Alum is still 

widely used in veterinary vaccines, but is frequently associated with granulomas in 

tissues and subsequent carcass losses 88. Oil-based liposomes are capable of inducing a 

strong Th1 response, but are also associated with adverse tissue reactivity, granuloma 

formation, and subsequent carcass loss 89,90.  

In the United States, the only adjuvant currently approved for use in humans is 

alum. However, in England and other European Union countries, MF59 is also used. 

MF59 is based on a biodegradable plant oil emulsion containing muramyl tripeptide 91. 

Highly purified muramyl tripeptide (MTP) is a synthetic component similar to that found 

in mycobacterial cell walls and MTP retains immunostimulatory properties while 

eliminating much the toxic effects associated with the whole bacterium 74. MF59 is used 

in the H5N1 bird flu vaccine developed by Novartis. MF59 was chosen for dose-sparing 

effects and is recommended in elderly (65 and older) including those with underlying 

chronic conditions such as diabetes 92,93. 

Vaccine adjuvants straddle a fine line between tissue toxicity and efficacy. 

Multiple studies in livestock species have shown that greater immunogenicity is achieved 

when adjuvants causing severe tissue reactivity were used. Greater antibody titers were 

observed in swine vaccinated with bacterins prepared with a paraffin oil or lecithin 

(>20%) adjuvant; however, these adjuvants are highly irritating leading to severe diffuse 

granulomatous tissue at the injection site with multiple foci of necrosis 94. While 

adjuvants containing lower amounts (5-10%) lecithin-based oil or aluminum hydroxide 

(Al(OH)3) induce less tissue irritation, the corresponding antibody titers were also much 

lower 94. Vaccine adjuvants for veterinary medicine have many of the same concerns as 

adjuvants used for human medicine. Tissue irritation, granuloma formation and abscess 

formation at the injection site are undesirable from an animal welfare viewpoint, but also 

can be costly to the producer due to carcass losses at time of slaughter 94. 

Another consideration for the development of new adjuvants is for the induction 

of mucosal immunity. With few exceptions (C. tetani, rabies virus, and other insect 

vector borne pathogens), most pathogens enter the host via the mucosal surfaces (e.g., 

upper respiratory, gastrointestinal, vaginal, or urinary tracts). Induction of mucosal 
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antibody (i.e., secretory IgA) by appropriate delivery of the antigen to the mucosal 

associated lymphoid tissue (MALT) is the most effective way to neutralize these 

pathogens or their secreted toxins 72. 

 

Alum Adjuvants  

Salts of aluminum hydroxide or aluminum phosphate, commonly referred to as 

alum, have long been used in vaccines and have an extensive safety record. Alum was 

first used as an adjuvant in 1926 95. Until recently, it was the only adjuvant approved for 

use in humans 95,96. Gels of aluminum phosphate are commercially available for clinical 

use and generate consistent, predictable results 97. Alum-based vaccines are prepared by 

suspending the antigen in a phosphate buffered solution and allowing the antigen to 

adsorb to the aluminum hydrogel 97. The amount of antigen that adsorbs onto alum 

depends upon the forces within the antigen, and between the antigen and the alum, 

including hydrophobic interactions, van der Waal forces, ionic charges, and hydrogen 

bonding. The typical quantity of alum in a human vaccine dose is 0.5 mg, the upper 

allowable limit by the U. S Food and Drug Administration (FDA) and WHO is 1.25 mg 

per injection 97. Alum has proven safe for routine use in children, and enhances the 

production of antibody to protein toxoids and polysaccharide vaccines 97. Alum has a 

synergistic effect when combined with other adjuvants and can enhance the adjuvant 

properties of liposomes, QS-21, MPLA, and CpG 97. However, alum is not ideal for small 

peptide vaccines or for use with recombinant proteins due to their inherent low 

immunogenicity 35,80,98.  

Recently, the use of alum in vaccines has come under scrutiny. Alum has been 

occasionally associated with severe tissue reactions such as erythema, subcutaneous 

nodules, granulomas, and has been thought to induce hypersensitivity and macrophagic 

myofasciitis 96,99,100. It is well established that alum-based vaccines induce IgE and IL-4, 

which are associated with allergy and type IV immediate hypersensitivity 96. While alum 

is effective at inducing strong humoral immunity, alum-based vaccines generally fail to 

induce cell-mediated immune responses, such as cytotoxic T cells or delayed type 

hypersensitivity 36. Alum enhances a strongly biased Th2 immune response in animal 
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models 99. Alum-based vaccines have other drawbacks besides the immune bias. Alum, 

because it is a semi-particulate hydrogel, cannot be lyophilized or frozen 101, thus limiting 

shelf life and storage conditions. Because the mode of action of alum includes the 

formation of antigenic deposits at the site of injection, alum is not suitable for oral or 

intranasal immunization 35,80,102. Finally, alum proved to be ineffective when used in 

conjunction with DNA-based vaccines 103.  

The mechanism of adjuvanticity for alum has been traditionally thought of as 

providing an antigenic depot in the tissue. The evidence of the depot effect, or delayed 

antigen release, of alum adjuvants was established by White in 1967 and Harris in 1935, 

by inducing immunity in a second animal by implanting granulomatous tissue that had 

developed as a result  of immunizing the donor animal with an alum-based vaccine 97. 

Alum particles have been observed at the site of injection up to a year after immunization 
97. Alum-precipitated antigens are somewhat particulate, and therefore, more readily 

ingested by phagocytes 104. Macrophages recovered from muscle tissue following 

injection of an alum-based vaccine and macrophages cultured in vitro in the presence of 

alum show persistence of crystalline inclusions 99. Alhydrogel and Adju-phos, 

commercially available prepared alum gels, produce particles roughly 3 to 4.5 µm in size 
97. Excess alum in a vaccine mixture enhances the adjuvant effect, however alum is 

slightly cytotoxic to macrophages 97. Recent studies with cultured macrophages showed 

that aluminum hydroxide induces a distinct maturation pattern characterized by the 

expression of surface markers that resemble those found on mature myeloid DCs (HLA-

DRhigh/CD86high/CD83+/CD1a-/CD14-) endowing them with the ability to enhance 

activation of CD4+ T cells 99. Other recent studies have shown that alum may facilitate 

this DC maturation by inducing the release of uric acid crystals105. Uric acid crystals are 

an endogenous ligand for TLR-243,106. Further evidence for TLR activation was shown by 

a diminished response to antigens in alum injected into MyD88-deficient mice 105.   

 

Adjuvant Activity of Calcium Phosphate  

Calcium phosphate has been used for many years as the adjuvant in childhood 

DTP (diphtheria-tetanus-pertussis) vaccine formulations in France 96,97. Furthermore, 
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calcium phosphate is a normal body constituent and is readily absorbed 96,97. In contrast 

to aluminum phosphate, calcium phosphate does not induce IgE production in animals or 

humans 96,97. Because of this property, the most common use of calcium phosphate is the 

delivery of allergens in desensitization therapy for allergic patients 96,97. In laboratory 

animals (e.g., mice and guinea pigs), calcium phosphate elicits a lower antibody response 

than alum-based preparations, however, the opposite is true in humans 96. Using calcium 

phosphate-based vaccine, children and pregnant women developed higher neutralizing 

antibodies than those receiving an aluminum phosphate-based vaccine 97. The mode of 

action is thought to be the same as for alum compounds, functioning to create a depot for 

the immunogen and facilitating the uptake of the particulate antigen by APCs 97. 

 

Freund’s Complete Adjuvant and Freund’s Incomplete Adjuvant 

Freund’s complete and incomplete adjuvants (CFA and IFA, respectively) are the 

standard classical adjuvants to which all other adjuvants are compared 80. This very 

potent adjuvant system is comprised of a water-in-mineral oil emulsion with the 

emulsifier mannide monooleate 107. Freund’s complete adjuvant also contains heat-killed 

Mycobacterium tuberculosis whereas IFA contains only the mineral oil emulsion and 

emulsifier 29,63,107. Classically, proteinaceous antigens administered in CFA induce a very 

strong immune response, including cell-mediated responses, whereas immunogenic 

proteins administered intraperitoneally in IFA was thought to induce tolerance 83,108. 

Advances in both knowledge of the immune system (induction of tolerance and Th2 

responses) and methodology in measuring immune responses have shown that 

administration of antigens in IFA actually induces a Th2 response. This response is 

characterized by the induction of memory T cells that home on to the spleen, rather than 

the draining lymph nodes 108. In addition, the cytokine response produced by these cells is 

small in quantity (as compared to Th1 cytokines in a lymph node) and may be below the 

limits of detection 83,109. The presence of the mycobacterial products in CFA provide a 

potent danger signal and induces co-stimulatory signals necessary for induction of Th1-

type cytokines. Thus, the resultant immune responses induced by CFA and IFA provide 

the basis for the differential Th1-Th2 skewing of the immune response (i.e., immune 
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deviation) observed when these two similar adjuvants are employed in a vaccine 108. 

Complete Freund’s adjuvant is capable of inducing high antibody titers and long lasting T 

cell responses, but is so reactogenic that its use even in laboratory animals is discouraged 
107. The immune enhancing mechanisms of these adjuvants, the delayed release of 

antigen, slower antigen clearance, and targeting of the antigen to APCs is due to the 

mineral oil emulsion 29. Variations on mineral oil emulsion vaccine adjuvants are 

marketed by Chiron and Norvartis as Montamide ISA-51 and ISA-720 92. 

 

MF59 Oil-emulsion Adjuvants  

Introduced in Europe in 1997, MF59 is an oil-in-water microemulsion that 

includes squalene (derived from biodegradable plant oil), Polysorbate 80, and Span 85 

(stabilizers) and small amount of muramyl tripeptide, a novel synthetic component 

derived from mycobacterial cell walls 63,74. In clinical trials, the muramyl tripeptides 

proved to be still too toxic and are excluded from current formulations 63,70,74. MF59 has 

been shown to stimulate a strong Th2 biased immune response to a large number of 

antigens and may be more suitable for subunit vaccines than alum 36. MF59-based 

vaccines that have incorporated recombinant antigens induce high titer antibody 

responses and T cell proliferative responses 74. Combination of MF59 with influenza 

subunits enhanced the immune response of elderly patients over that obtained using other 

adjuvants and is being evaluated for use in children 36. MF59 does not induce Th1-type 

immunity (e.g., IFN-γ) and, therefore, may not be suitable for vaccines where cell-

mediated immunity is needed for protection 74. The mechanism of adjuvanticity for MF59 

appears to be in directing delivery of the immunogen to APCs 74. Studies with MF59 

have shown that macrophages, but not DCs, are the main cell type involved in clearing 

the oil depot from tissue, and DCs are the key APCs within the T cell zones of the lymph 

node 36. It was proposed that following uptake, adjuvant-induced cell death allowed for 

the transfer of the antigen from the macrophage to the DC for T cell induction (i.e., cross-

presentation) 36. Another observation that arose during the development of MF59 is that 

there is a difference in emulsion particle size and the resulting immune response in 

different animal species. Small laboratory animals (mice, guinea pigs and rabbits) 
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develop high antibody titers following immunization with oil emulsion formulas 

regardless of particle size. However, non-human primates (baboons, chimpanzees) and 

goats require stable, small droplet emulsions for optimal antibody induction 70. The key 

lesson here is that not all animal species respond equally to an adjuvant and testing in 

both large and small animals may be necessary to ensure activity of a novel adjuvant. 

Mineral oil emulsions of various compositions are widely used in veterinary adjuvants, 

and as their safety record is improved, they are also being developed for human use 
61,62,65.   

 

Immunostimulating Complexes (ISCOMs) 

ISCOMs were first described in 1984 by Morein et al. 110. Cholesterol mixed with 

plant-derived saponins under controlled conditions creates 40 nm cage-like particles 

referred to as immunostimulating complexes. These synthetic adjuvants are based on the 

concept of packaging the antigen into micro/nanoparticles or micelles, where the particle 

size is a crucial determinant of efficient uptake. Many different plant-derived saponins 

have been investigated for adjuvant activity including saponins derived from Buplerum 

chinense, Glycyrrhia uralensis, Quillaja brasilensis and Quillaja saponaria 110-114. These 

heterogeneous compounds stabilize the lipid-cholesterol structure while adding 

immunostimulatory properties. However, these compounds are also generally hemolytic 

and their tissue-reactive toxic nature has plagued development. While saponins have been 

used in veterinary vaccines for many years, a balance between potency and adverse 

reactions will need to be achieved for widespread acceptance in human vaccines 64,107. A 

detoxified saponin derivative, QS-21, has exhibited marked decrease in toxicity while 

maintaining the strong immunoenhancing properties 35,110 This adjuvant has been shown 

to induce a strong Th1 immune response (CTL, IL-2, IFN-γ, and IgG2a) because of the 

lipid-cholesterol makeup. Like virosomes, ISCOMs have the ability to fuse with cellular 

membranes and to deliver the immunogen into the cytosol of the target cell. This results 

in the endogenous processing and presentation of the immunogenic peptide via MHC I 
35,64,110. This property also makes ISCOMs good vehicles for intracellular delivery of 

DNA-based vaccines 110. To increase antigenic loading of ISCOMs, affinity tags or 



 
 

57

aliphatic regions can be incorporated into recombinant proteins for higher efficiencies of 

incorporation into ISCOM membranes; alternatively, chelating agents (e.g., Cu2+) can be 

used to increase antigen binding 107. 

 
Virosomes and Virus-Like Particles 

Virosomes are particles of stabilized membrane lipids and functional viral fusion 

proteins that can be used to deliver vaccine antigens 103,115. While theoretically a wide 

number of virus fusion proteins could be used, the majority of virosomes utilize the 

hemaglutinin (HA) and neuraminidase (NA) from influenza virus 103. Virus-like particles 

are the spontaneous assembly of viral coat proteins lacking in viral genetic material 116. 

Virosomes and virus-like particles can be generated by either inserting the viral fusion 

proteins and antigen into pre-formed small phospholipid vesicles (liposomes) or by 

separation and reconstitution of viral envelopes with the vaccine antigen 103. These 

particles retain the receptor binding capacity and mimic infectivity of native viruses 

without the risks associated with attenuated viruses and are capable of delivering vaccine 

antigens directly into the cytosol of the target cell 103. This allows for induction of both 

humoral and cell mediated immunity because some of the virosome-delivered antigens 

have the potential to be presented via MHC II following endosomal processing, and 

virosomes that escape into the cytosol will allow for antigenic presentation via the MHC I 

pathway 103. This type of delivery system has been shown to greatly enhance production 

of serum IgG and IgA at mucosal surfaces 35. A synergistic effect is observed when other 

adjuvants or immunomodulators are included, such as heat-labile toxin of E. coli 35. 

Virosomes and other virus-like particles are proving efficient for delivery of many types 

of proteinaceous antigens (i.e., viral coat proteins) or DNA-based antigens intranasally 

directly to the mucosal surface 35.  

 
Lipopolysaccharide (LPS) 

Many antigenic preparations, particularly recombinantly derived antigens, contain 

residual amounts of bacterial LPS and other TLR ligands that may provide adjuvant 

activity 117. LPS is known to stimulate a variety of cells to produce cytokines and 
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chemokines that control DC movement and maturation 118. An unusual feature of its 

adjuvanticity is that LPS can be delivered at a different site and a different time than the 

antigen and still enhance the immune response to the given antigen. But despite its 

potency, LPS has been used only as an experimental adjuvant due to its toxicity and 

pyrogenicity in humans. Chemically modified forms of its active component such as 

monophosphoryl lipid A (MPLA), have been shown to possess many of the adjuvant 

properties of LPS but without the associated toxicity.  

 

Monophosphoryl Lipid A 

Gram-negative bacterial extracts have strong immuno-potentiating effects, 

however are too toxic for routine use in human vaccines. Most of the immunostimulatory 

or toxic effects are derived from the lipid A portion of LPS, which is located in the outer-

membrane of gram-negative bacteria 107. Further analysis showed that by removing a 

phosphate group, sugar moiety, and the ester-linked fatty acid group the toxicity could be 

reduced 100 to 1000 fold, while still retaining the immunostimulatory function 107. 

MPLA, the resulting molecule, was derived from Salmonella minnesota 35. Similar to 

LPS, MPLA interacts with TLR-4 on APCs, although immune enhancement is observed 

in the absence of TLR-4 75,76. MPLA initiates signaling through TRIF transcriptional 

activation rather than NFκB, which induces many pro-inflammatory cytokines associated 

with the toxic effects of LPS 76. Equivalent T-cell mediated responses were observed in 

mice immunized with Ova adjuvanted with LPS or MPLA indicating that the mechanism 

of TLR-4 signaling (TRIF vs. NFκB), and not the magnitude of the response, was 

responsible for the reduction in toxicity 76. Binding of MPLA to TLR-4 initiates the 

synthesis of IL-1β, IL-12, and IFN-γ, all of which are necessary for DC maturation, 

migration and initiation of the T cell response 35,119. In animal studies, MPLA induced a 

strong systemic Th1 type immune response, including cytotoxic T lymphocytes (CTL) 35. 

Furthermore, MPLA was shown to enhance the production of complement fixing 

antibodies and increased production of secretory IgA 35. While MPLA enhanced the 

resulting immune response to a given antigen in comparison to the immune response to 

the soluble antigen alone, MPLA is more effective when combined with other adjuvants 
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or delivery systems such as Alum, QS-21 (Quil A) and polymeric microspheres, or other 

adjuvants that provide a depot effect 35. Several vaccine formulations using MPLA as an 

adjuvant are in clinical trials for humans and livestock species 61,65. 

 

TLR2 Ligands 

Since the discovery of TLRs as a key sensing and signaling mechanism for APCs, 

efforts have been made to exploit TLRs as receptors for vaccine adjuvants120,121. Many 

different derivatives of gram positive cell wall components have all been found to trigger 

immune activation through TLR2. OspA of Borrelia burgdorferi was used in the vaccine 

against Lyme disease122. Muramyl-dipeptide (MDP) has been synthesized from several 

gram positive bacteria including several Mycobacterium species, Corynebacterium 

granulosum, and Bordetella pertussis. MDP derivatives have been shown to induce 

dichotomous effects on the immune system. When delivered in soluble delivery systems, 

MDP enhances humoral immunity; when delivered in liposomes, MDP enhances CMI116. 

Addition of MDP to a vaccine formulation acts synergistically with mineral oil and alum 

carriers, enhancing the CMI response107. Macrophage activating lipopeptide-2 (MALP-2) 

is another TLR2 targeted ligand showing promise as a vaccine adjuvant. MALP-2 is an 

agonist of the TLR2-TLR6 heterodimer from Mycoplasma fermentans and has been 

shown to activate APCs via MyD88 signaling and activation of NFκB transcription 

factor123. TLR2 and TLR6 are also present on B cells123. Studies in mice lacking either B 

or T cells showed that MALP-2 activated B cells in a T cell-independent manner but 

enhanced T cell function via a B-cell dependent mechanism123. Pam2Cys is a synthetic 

compound with structural similarity to MALP-2 and has been shown to enhance the CMI 

and humoral response in an experimental vaccine for Listeria monocytogenes and an 

intranasal administration of an influenza vaccine in mice124. ESAT-6, a protein derived 

from the cell wall of M. tuberculosis, can also be synthetically produced125,126. ESAT-6 

can act both as a protective antigen against tuberculosis or can non-specifically enhance 

CMI to co-administered antigens52,125-127. 
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CpG Adjuvants  

Prokaryotic DNA contains unmethylated CpG dinucleotides within specific 

nucleic acid motifs that are recognized by the innate immune system of vertebrates 128. 

These immunostimulatory motifs are the ligand for TLR-9 which is found primarily in 

intracellular vesicles of phagocytic cells 128. Signaling through TLR9 CpG-ligands induce 

the production of reactive oxygen species and activation of NFκB 129. These 

immunostimulatory sequences are species specific and unique sequences have been 

described for laboratory animals (mice, rats and rabbits), humans, and non-human 

primates, as well as companion and farm animals 65. For humans, there have been two 

types of CpG motifs described, type K (also known as B-type) and type D (or A-type) 128. 

The type K CpG motifs primarily stimulate B cell and monocyte proliferation, IgM, IL-

10, and IL-6 secretion. Type D CpG motifs primarily activate DCs, a response which is 

characterized by upregulation of CD80, CD86, MHC II, and TNF-α and IL-8 secretion 
128. Regardless, CpG motifs are capable of stimulating enhanced secretion of 

immunoglobulins, and may be capable of modulating pre-existing immune responses 
64,129. Addition of CpG to vaccine formulations has been shown to induce both cellular 

and humoral response to immunogens, inducing a Th1 bias. CpG has been shown to 

induce demonstrable immune responses to weak immunogens such as malarial antigens, 

anti-Haemophilus influenzae glycoconjugates and melanoma antigens 129. When both 

alum and CpG motifs were included in vaccine formulations, the resulting immune 

response was Th1-biased, with no IgE production or eosinphilia 84. Furthermore, addition 

of CpG motifs to intranasal vaccine formulations enhanced the total serum titer to TT and 

influenza (viral) antigens in mice indicating that they may be useful as immune enhancers 

for mucosal delivery of antigens 130. CpG motifs are also used to enhance the response to 

antigens encapsulated in biodegradable polymeric microspheres described in this review 
129,131,132. CpGs have been included in many experimental vaccines demonstrating 

enhanced protection against a variety of pathogens including Ebola virus, Bacillus 

anthracis, Francisella tularensis, Listeria monocytogenes, and Cryptococcus neoformans 

and in models of polymicrobial intra-abdominal sepsis 122,133-136. 
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Bacterial Toxins 

Bacterial toxins have a high degree of immunogenicity and immune enhancing 

capabilities along with a high degree of cellular receptor specificity. These properties 

have led researchers to study the potential of bacterial toxins as vaccine adjuvants. 

Pertussigen, a complex mixture derived from B. pertussis, including pertussis toxin, has 

been used experimentally as an adjuvant 137. Pertussigen enhances levels of IgE and 

hypersensitivity reactions to co-delivered antigens and may help adjuvant the response to 

TT and diphtheria toxoid which are part of the trivalent childhood DPT vaccine 6,137. 

Heat-labile enterotoxin (LT) from E. coli has also been shown to enhance mucosal 

immunity to co-administered antigens 35. LT exhibits adjuvant efficacy for induction of 

mucosal and parenteral immunity in mice. LT was also used as an oral adjuvant for 

Campylobacter killed whole-cell vaccines. In rhesus monkeys, LT was shown to be safe 

and provided superior performance over the Campylobacter killed whole-cell vaccines 

alone 138. Cholera enterotoxin (CT) is another bacterially derived protein that shows high 

immunogenic potential when delivered to mucosal surfaces 139,140. LT is highly 

homologous to CT, but CT stimulates predominantly Th2 responses to conjugated 

antigens while LT stimulates mixed Th1-Th2 response 141. However, cholera-like toxin 

adjuvants delivered by the nasal route have been found to be taken up by the olfactory 

nerve and the central nervous system, leading to potential unwanted side effects 142 and 

CT can induce diarrhea in humans. Not much is known about the cell-mediated immunity 

or delayed hypersensitivity response to CT. The ability of CT to act as a mucosal 

adjuvant has been confirmed by many investigators with a variety of antigens, and 

administering CT by a route different from the antigen is not immunoenhancing 139,140.  

 

Cytokines 

The cytokine network controlling immunity and T cell development is complex 

and much research remains to be done to elucidate these pathways 143. The effect of a few 

cytokines and their relevance to immune activation has been well studied and these 

cytokines have been explored as adjuvants to provide potentially less toxic approaches to 

enhancing vaccine efficacy. For example, granulocyte macrophage-colony stimulating 
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factor (GM-CSF) has been included in experimental vaccines due to its ability to enhance 

APC recruitment and activation 116. In attempts to improve the pneumococcal 

polysaccharide vaccine against Streptococcus pneumoniae, IL-12 was included as a 

mucosal adjuvant 144. The inclusion of IL-12 enhanced mucosal and systemic IgG2a and 

IgA following intranasal vaccination and showed a marked reduction in bacterial nasal 

carriage and prevention of bacterial systemic invasion 144. Inflammatory cytokines in the 

IL-1 family have been shown to enhance the production of serum and mucosal IgG and 

IgA antibodies and cell-mediated responses to co-delivered Ova and tetanus toxoid 35. 

The choice of cytokine included in a vaccine formulation must be chosen with care. In a 

recent study, polylactide microspheres were investigated as intranasal delivery of 

recombinant V antigen (rV) of Yersinia pestis co-encapsulated with IL-6, IFN-γ, or IL-4 
145. While all formulations induced mucosal IgG1 and IgA antibodies, only formulations 

including IL-6 with the rV induced protection from systemic bacterial challenge 145. The 

challenge of cytokine delivery is the rapid utilization of cytokines and their pluripotent 

biological effects. One mechanism to reduce these effects is to deliver a plasmid 

including the sequence of the cytokine 66,116. With DNA based vaccine technologies, this 

has proven very effective for enhancing the response to the DNA-based antigen. 

Inclusion of the sequence for IL-2 or IL-12 with the sequence with HIV antigen enhanced 

the production of a strong Th1 immune response 35. 

 

Polymer Vaccines 

Biodegradable polymers have been studied for many years because they show 

promise for the development of single dose vaccines 146,147. Polymeric compounds have 

the ability to sustain the release of the vaccine antigen by a controlled mechanism over an 

extended period of time, thus eliminating the need of subsequent doses of vaccines. Other 

potential advantages of these materials are that immunomodulatory properties (i.e. 

adjuvanticity) can also be achieved with the proper tailoring of the polymer chemistry 148. 

Studies evaluating the use of controlled-release, single dose polymeric vaccines in both 

laboratory animals and livestock species (i.e., sheep, mini-pigs, cattle, and horses) have 

shown promise when encapsulating protein antigens 149-153. 
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Biodegradable polymers also offer the advantage that MPLA, CpG DNA motifs 

or other immunoenhancing molecules can be incorporated to create a pathogen-

mimicking solid particle 154. Polymeric vaccine particles have been shown to induce 

demonstrable immune responses when administered by several routes including, 

parenteral (e.g. intramuscularly or subcutaneously), intranasal, or orally 35.  

These materials also have the added advantage over stable (non-degradable) 

devices (e.g. pumps) in that after administration, there is no need to remove them, 

therefore eliminating another surgical procedure. Furthermore, most are manufactured 

from synthetic parent compounds, eliminating many potential reactive antigenic or 

allergenic epitopes that can accompany the use of animal or plant derived materials.  

The two most widely studied polymer classes for controlled release vaccines are 

polyesters155-164 and polyanhydrides 87,165-176. Other classes of polymeric compounds have 

been evaluated and shown to successfully deliver antigen to laboratory animals 177-190. 

Key findings of research done with these polymeric systems as vaccines carriers are 

discussed below and some of the chemistries are shown in Table 4.  

 



 
 

64

 
 Table 4: Structure of biodegradable polymers studied for use as vaccine 

adjuvants 
 

Polymer Structure Reference 
Polysaccharides   
Dextran 229 

Chitosan 230 
35 

N-trimethyl chitosan 230 

Polyanhydrides   
Poly(sebacic acid) 
SA 

148,214,219,2
26 
 

1,3-bis(p-
carboxyphenoxy)propa
ne 
CPP 

174,226 

1,6-bis(p-
carboxyphenoxy)hexan
e 
CPH 

148,214,219 
 

1,8-bis(p-
carboxyphenoxy)-3,6-
dioxaoctane  
CPTEG 

217,221,222 
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 Table 4: Structure of biodegradable polymers studied for use as vaccine 
adjuvants 

 

Poly(trimellitylimido-
L-tyrosine) 

226 

Poly(ortho ester)s   
 60 

Poly(ester-amide)s   
Phenylalanine-based 
PEA 

235,236 

Leucine-based PEA 235,236 

Polyesters   
Poly(lactic acid) 
LA 

157,159,203 

Poly(glycolic acid) 
GA 

 
157,159,203 
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 Table 4: Structure of biodegradable polymers studied for use as vaccine 
adjuvants 

 

Poly-caprolactone 225 

Poloxamers   
Poly(ethylene glycol) 
PEG  

237,238 

   
   
Poly(vinyl methyl 
ether-alt-maleic 
anhydride) 
PVM/MA 

224 

 
 
 Table 5. Advantages and disadvantages of polymers used as vaccine 

adjuvants. 
   

Polymer Antigens Advantages Disadvantages Ref
. 

Polysaccharid
es 

    

Dextran Streptococcus bovis 
Lactobacillus spp 
Mycobacterium 
tuberculosis 
Tetanus toxoid (TT) 

Induces strong 
humoral  
responses 

Not desirable for 
some diseases 
(e.g., 
tuberculosis) 

101 

Chitosan  
N-trimethyl 
chitosan 
 

Diphteria toxoid Enhanced 
immune response 
compared to 
alum 
 
Mucoadhesive 
properties 
 

 230 
35 

    230 
Polyanhydrid
es 

TT 
Salmonella 
enteriditis (HE) 
Plasmid DNA 

Biocompatible 
non-mutagenic, 
non-cytotoxic 
degradation 
products  
 
Degradation 
products have 

Processing and 
storage 
 
 
 

214
,21
9,2
261
13, 
90, 
217
,22
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 Table 5. Advantages and disadvantages of polymers used as vaccine 
adjuvants. 

   

low acidity  
 
Enhanced protein 
stability  
 
Immunomodulat
ory 
 
Mucoadhesive 
properties 
 

1,2
22 

Poly(orthoest
er)s 

Plasmid DNA Enhanced 
immune response 
when compared 
to naked DNA 
 

Plasmid DNA 
unsuccessful in 
human clinical 
trials 

60 

Poly(ester-
amide)s 

Melanoma antigen 
derived peptides 
(MART) 
HIVgp120 
MHC II restricted T-
cell epitope from 
influenza A virus 
hemagglutinin (HA) 

Degrades by 
enzymatic 
cleavage  
 
Enhanced cell-
mediated 
immunity 

 235 

Polyesters 
 

TT 
Diphtheria toxoid  
Yersinia pestis 
HIVgp140  
Bordetella pertussis 
Measles virus 
antigen 
Ovalbumin 
Type II collagen 
Malarial antigens 
Cancer cell antigens 
Eschericia coli 
Ricin toxoid 
Vibrio cholerae 
Influenza virus 
antigens 
Hepatitis B viral 
antigens 
Plasmid DNA 

Degradation 
products are 
biocompatible 
and easily 
metabolizable 
 
Antigen-loaded 
microspheres 
enhance uptake 
by APCs 
 
Experiments 
have shown 
increase in both 
humoral and 
cellular immune 
responses  
 
 

 
Acidic 
microenvironmen
ts detrimental to 
antigens 
 
No protective 
immunity in 
humans have 
been reported yet 
 
Poor 
mucoadhesive 
properties 
 
 

99, 
101
, 
101
,57,
159
,16
1 
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 Table 5. Advantages and disadvantages of polymers used as vaccine 
adjuvants. 

   

 
Poly(ethylene 
glycol) 
PEG 

Ova, Hepatitis B 
viral antigen, 
Plasmid DNA 

Can target APCs 
in LNs 

 237
,23
8 

     
     
Poly(vinyl 
methyl ether-
alt-maleic 
anhydride) 
PVM/MA 

Salmonella 
enteriditis (HE) 

Th1/Th2 balance  
 
Non-specific 
protection 
against 
Salmonella 

 224 

 

Polyesters 

Microspheres composed of polyesters have been the most widely studied. 

Polymers of lactic acid and glycolic acid (e.g. poly(lactide-co-glycolide), PLGA) have 

been utilized in biomedical applications such as bone pins and dissolvable sutures for 

many years and recently have proven effective as vaccine delivery vehicles for the 

induction of protective immunity in laboratory animals 155-159. The greatest benefits of 

PLGA in biodegradable materials is that the degradation products, lactic acid and 

glycolic acid, are naturally occurring metabolites and are readily absorbed by neighboring 

cells160,161. However, as the polyester degrades and the acidic monomers are released, an 

acidic microenvironment is created. Prolonged exposure to aqueous or acidic 

environments has been shown to be detrimental to the stability and immunogenicity of 

proteins, especially the proteins used in recombinant and subunit vaccines, e.g., tetanus 

toxoid (TT) and diphtheria toxoid 162,163. Some attempts to minimize this acidity have 

been recently evaluated by incorporating a basic compound like magnesium carbonate 

(MgCO3) into PLGA microspheres164. However, subsequent analysis indicated that while 

MgCO3 did not significantly improve peptide stability, it did enhance the antibody 

production, acting as a potential adjuvant.  

Antigen-loaded PLGA microspheres function as an adjuvant by at least two 

mechanisms: 1) creating a depot for the antigen in vivo, and 2) enhancing phagocytic 
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uptake of the antigen-loaded particle by APCs159. The uptake of PLGA microspheres by 

macrophages or DCs has been demonstrated following administration by intraperitoneal 

or intradermal routes, respectively191. Other immunostimulatory properties of PLGA 

were observed in studies showing an enhanced cytokine production and proliferation 

when cells were incubated in vitro with blank PLGA microspheres161. Similarly, oral 

administration of  

PLGA nanoparticles containing type II collagen promoted the induction of 

tolerogenic immune responses that ameliorated arthritis 192. The prolonged presence of 

the nanoparticles in the Peyer’s patches and the induction of elevated TGF-β suggested 

the differential activation of DCs that modulated the subsequent immune response. 

Vaccine formulations based on PLGA, PLA, or PGA variants have been successful in 

inducing immune responses in laboratory rodents to a large number of antigens including: 

Yersinia pestis antigens, HIV gp140, B. pertussis antigens, measles virus antigen, OVA 

antigen, TT, diphtheria toxin, type II collagen, malarial antigens, cancer cell antigens, E. 

coli adhesion proteins, Vibrio cholerae antigens, influenza virus antigens, hepatitis B 

viral antigens, and ricin toxoid35,161,192,193. These vaccines have been delivered by a 

variety of routes including intradermally, intravaginally, intranasally, orally, or 

parenterally into laboratory animals to induce both serum antibodies, mucosal IgA, cell-

mediated responses and facilitated the induction of secondary immune responses (e.g., 

isotype switching) as determined when individuals were analyzed up to a year after single 

immunization 161,194. Many groups have reported the successful induction of immunity 

following use of a single dose vaccine formulation composed of PLGA microspheres of 

various compositions157,195-198 199,200. Furthermore, encapsulation of antigens in PLGA 

microspheres was shown to enhance antigen presentation via MHC I leading to increased 

activation of antigen specific cytotoxic T cells 147,193,195. However, most of these studies 

were conducted in vitro, and some investigations included MPLA, a known Th1 immune 

response activator, in the microsphere while others used multiple injection regimens in 

vivo. There is no consensus opinion, however, as to whether PLGA-based vaccines are 

more efficacious than current adjuvant systems such as alum. Antibody responses 

induced in mice and guinea pigs following vaccination with TT-loaded PLGA were 



 
 

70

greater than those induced by single injection of soluble TT alone or two doses of alum 

absorbed TT. Additionally, a stronger anamnestic response (higher titer) was observed 

when individuals that had received the TT-loaded PLGA microparticles were boosted one 

year later194. On the other hand, Walker et al. observed that encapsulation of TT in PLGA 

microspheres did not induce serum antibody titers higher than alum-based TT 

vaccines199. Only small amounts of antigenically active TT were released in the first two 

days from PLGA microspheres, even though protein continued to be released for up to 11 

weeks 194. Collectively, evaluation of PLGA studies does not provide strong correlation 

between release of antigenic peptides, length of in vitro release of peptides, and immune 

response to those peptides in vivo. 

Some studies have suggested that immunization with PLGA microspheres effects 

immune deviation. Moore et al. showed the ability of HIV gp120 protein loaded PLGA 

microspheres to shift the T cell response from a dominant Th2 or mixed Th1/Th2 to a 

more dominant Th1 immune response as indicated by the presence of IFN-γ producing 

CD4+ T cells201. In other studies, the Th2-biased hepatitis B core antigen has been 

formulated with the Th1 immune stimulator MPLA in PLGA nanoparticles to develop a 

stronger Th1 response68. More recently, a vaccine formulation prepared against malaria 

and composed of PLGA microspheres and Montanide ISA 720 was shown to induce an 

antibody response (IgG isotype class switching) characteristic of Th1 response202. 

Variations in reported efficacy of PLGA microspheres may be due to dose of 

antigen, method of encapsulation (e.g. spray drying vs. solvent evaporation), route of 

immunization, and/or the size of the microspheres193,203. Following primary 

immunization with small microspheres (10-20 µm), a greater anamnestic response was 

generated one year later following a low dose booster than that observed in animals 

initially receiving larger microspheres (> 60 µm)194; however, nanoparticles (200 - 600 

nm) were less effective at inducing cell-mediated immune response than microspheres193. 

This may be because microspheres < 10µm in diameter are readily phagocytosed by 

macrophages and DCs that would enhance antigen processing and presentation204-209. On 

the other hand, the route of immunization with PLGA microparticles influenced the type 

of immune response generated.  The intraperitoneal route induced Th1 cell-mediated 
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response while the intramuscular route induced a Th2 humoral response193. Despite all 

the extensive research done with PLGA as antigen carriers, some with success in animal 

models, no formulation has been reported to induce a protective immunity in humans210.  

 

Polyanhydrides 

Polyanhydrides are a class of surface erodible, biocompatible polymers that have 

been extensively used as carriers for controlled drug delivery87,165-176. These 

biodegradable polymers are currently approved by the FDA for use in a variety of 

biomedical applications and can also be fabricated into protein-loaded microspheres211. 

Biocompatibility studies have shown that these biomaterials degrade into carboxylic 

acids, which are non-mutagenic and non-cytotoxic products212,213. The surface erosion 

mechanism leads to a controlled release profile with predictable degradation profiles, 

which can range from days to months, depending on the co-polymer composition214,215. In 

addition, studies involving polyanhydride delivery systems for vaccines have shown 

attractive features such as improved adjuvanticity, antigen stabilization, and enhanced 

immune responses165,175,176,216. 

The main advantage of polyanhydrides over polyesters as antigen carriers is 

associated with the enhanced protein stability following encapsulation. Studies have 

shown that polyanhydrides are capable of stabilizing polypeptides and sustaining their 

release without the inclusion of potentially reactive excipients or stabilizers217-220. The 

hydrophobicity and surface erosion characteristics of polyanhydrides prevent water from 

penetrating to the interior of the microsphere thus preserving the encapsulated antigen in 

its native state (i.e., increased stability). Furthermore, the degradation products of 

polyanhydrides are less acidic than those of polyesters, which may further enhance the 

stability of encapsulated antigens and reduce tissue reactions to the polymer217,219. 

Despite these beneficial characteristics, the use of polyanhydrides for vaccine delivery 

has not been extensively evaluated. 

Recently, Kipper et al. performed in vivo studies to evaluate the induction of 

immune responses following immunization with antigen-loaded microspheres based on 

the anhydride monomers sebacic acid (SA) and 1,6-bis(p-carboxyphenoxy)hexane 
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(CPH)148. Microspheres encapsulating TT antigen were injected in C3H/HeOuJ mice. 

These studies demonstrated that TT maintained its immunogenicity and antigenicity 

following encapsulation. The type of immune response generated, Th1 vs. Th2, was 

evaluated by antibody isotypes. It was observed that TT loaded 20:80 CPH:SA 

microspheres enhanced the immune response after a single dose and indicated a Th2 

dominant response. However the 50:50 CPH:SA produced a balanced Th1-Th2 response. 

Total TT-specific IgG titer remained high regardless of dominant isotype. The 

preferential enhancement of the Th1 immune response resulting in more balanced 

immune response (i.e., immune deviation) is a unique and valuable feature of this 

delivery vehicle that makes it a promising adjuvant candidate for vaccines. Currently, the 

groups led by Narasimhan and Wannemuehler are corroborating the immunomodulatory 

properties of the CPH:SA system with other antigens as well as investigating the adjuvant 

properties of novel amphiphilic polyanhydride chemistries. Copolymers of CPH and 1,8-

bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), which contains ethylene glycol 

moieties in the polymer backbone, are promising candidates for the development of 

vaccines as it has been shown to provide a conducive environment for protein 

stabilization217,221-223. 

Anhydride monomers have been copolymerized with other chemistries and their 

potential as adjuvants have been evaluated. An immunogenic subcellular extract obtained 

from Salmonella enteritidis cells (HE) has been encapsulated in nanoparticles of the 

copolymer comprised of methyl vinyl ether and maleic anhydride (PVM/MA), best 

known as Gantrez® polymer 224. In this study, 80% of the Gantrez®-HE immunized mice 

survived even when the nanoparticle formulation was administered 49 days previous the 

lethal challenge. As early as 10 days after immunization, a Th1 immune response was 

demonstrable in these mice as determined by the IgG2a antibody titer in the serum. On 

the other hand, a dominant Th2 immune response was present at 49 days after 

immunization (IgG1>IgG2a). Since it is known that a Th1/Th2 balance is required to 

protect against S. enteretidis infection, this copolymer is a promising candidate for the 

development of future vaccines. In this regard, blank nanoparticles of Gantrez® 

administered subcutaneously four weeks prior to challenge induced a level of protection 
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similar to that induced by antigen-loaded nanoparticles or the Rv6 commercial available 

vaccine against S. entereditis serovar abortusuis 225. While the authors did not 

demonstrate the presence of antigen-specific immunity, this data suggests that the blank 

nanoparticles were able to induce and sustain sufficient innate immunity to provide non-

specific protection against subsequent Salmonella infection. In the same study, 

abortusovis antigen-loaded poly(ε-caprolactone) microparticles did not induce protection.  

In another attempt to design suitable carriers specifically intended for vaccine 

delivery, Hanes et al. synthesized poly(anhydrides-co-imides) with the adjuvant L-

tyrosine incorporated in the polymer backbone 226. In these studies, a predictable and 

controlled protein release was observed from microspheres of poly[trimellitylimido-L-

tyrosine-co-sebacic acid-co-1,3-bis(carboxyphenoxy)propane] and polymeric implants 

were well tolerated after subcutaneous implantation in rats. More recent studies 

demonstrating the suitability of polyanhydrides for use in single dose vaccines involved 

the design of a core-shelled cylindrical device composed of a biodegradable hydrophobic 

coating and laminated core of polyanhydrides and polyphosphazenes 227. Polyanhydrides 

based on SA were used as isolating layers of the cylinder in order to produce a pulsatile 

drug release, a mechanism which would minimize doses of vaccines. Even though these 

polyanhydride systems showed promising characteristics for vaccines design, no further 

in vivo studies evaluating the characteristics of the proposed adjuvant were validated. 

A comparative study between polyanhydrides and polyesters has demonstrated 

the potential capabilities of polyanhydrides for oral vaccination 228. Microspheres (0.1-

10µm) composed of fumaric acid (FA) and SA proved to have strong adhesive 

interactions with the mucosal gastrointestinal lining of rats, as opposed to poly(lactic 

acid) (LA), which showed minimal uptake. The adhesive interactions are ideal to prolong 

the biological activity of the delivered antigen or bioavailability of encapsulated drugs. 

Not surprisingly, plasmid DNA- and anticoagulant drug dicumarol-encapsulated FA:SA 

microspheres enhanced gene activity and plasma drug levels, respectively, when 

compared to the controls. In the same studies, blends of FA and LA were used for insulin 

delivery and groups that received the formulation were able to regulate glucose levels as 

opposed to the groups that received insulin only. Even though the biological activity of 
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insulin was preserved, it was the adhesive characteristic of FA the responsible for the 

efficient delivery. 

 
Other Polymers 

Naturally-derived 

Several naturally derived polymeric materials, such as dextran, chitosan, starch, 

and alginate have been evaluated in laboratory models for use as vaccine adjuvants. In 

the case of dextran, it has been chemically modified or use in conjunction with other 

adjuvants in order to improve its immunogenicity. Immunization of cattle with dextran in 

combination with mineral oil against Streptococcus bovis and Lactobacillus spp. induced 

the highest serum IgG responses when compared with other adjuvants (i.e. FCA, Quil A, 

alum), presumably due to the combined effect of both substances 177. In studies involving 

vaccination of cattle against M. tuberculosis, diethylaminoethyl (DEAE)-dextran induced 

high levels of IL-2 and low levels of IFN-γ, indicating a strong humoral response not 

desirable for this particular disease 178. Interesting results were obtained when a dietary 

supplementation of Lactobacillus casei with dextran enhances humoral immune 

responses, and chickens were able to maintain the growth of the bacteria in their 

intestines and prevent possible infections 179. Vaccines that have been evaluated utilizing 

cross-linked dextran microparticles, containing conjugated TT induced serum antibody to 

TT for long periods, eliminating the need of additional booster doses 229.  

Chitosan, a cationic polysaccharide derived from chitin in the exoskeleton of 

crustaceans, can also be formulated into microparticles capable of encapsulating antigen 
230. Studies with chitosan showed that the immune bias induced by vaccination with 

antigen containing chitosan microparticles was more dependent on the route of delivery 

(e. g., intranasal vs. parenteral) than the nature of this adjuvant 35,180. An intranasal 

delivery of N-trimethyl chitosan chloride (TMC) containing diphtheria toxoid enhanced 

the immune response when compared with the conventional alum adsorbed vaccine 230. 

This enhancement of nasal vaccination is likely a result of the mucoadhesive properties 

of chitosan, which enhance penetration across nasal mucosa 181,182. More recent studies 

with chitosan and TMC establish that chemical variables, such as molecular weight in 
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chitosan and degree of quaternization in TMC influence the magnitude of the immune 

response after nasal administration 183. 

Another natural polymer with potential in vaccines is starch, which also has been 

assessed in mucosal vaccines. Some advantages of starch include its inert properties, 

proven safety, and commercial availability 184. Heritage et al. found that human serum 

albumin delivered on starch microparticles grafted with polydimethylsiloxane stimulated 

systemic and mucosal immune responses 185. Similarly to studies done with chitosan, the 

route of administration of starch influences the immune response 186. Among oral, 

subcutaneous, and intramuscular administrations, the subcutaneous induced stronger 

humoral responses. However, when comparing oral and intramuscular routes, stronger 

humoral response was induced after oral primary administration and a stronger cell-

mediated response after oral booster doses. Although the adjuvant capabilities of starch 

were proved with success in mice studies, a human vaccine trial was not successful 231.  

Alginate microparticles offer several advantages for vaccine applications, 

including good biocompatibility, ease of preparation, and antigen protection during 

fabrication and administration 184,232. Alginate microparticles have been administered to 

several animal species (i.e. mice, rabbits, cattle, and chicken) 232. The enhancement of the 

immune response induced in the animals after oral administration with antigen-loaded 

alginate microparticles shows promise for the development of veterinary vaccines. 

Nevertheless, in vitro studies show that alginate is not the optimum chemistry to activate 

human-derived DCs, as it decreases the expression of co-stimulatory molecules and 

antigen presenting complexes when compared to non-treated cells 233. Other in vitro 

studies that simulated gastric fluid environment showed that alginate microparticles were 

not able to stabilize live rotavirus vaccines 234. 

 

Synthetic polymers 

Other novel polymer chemistries have been researched to overcome the 

limitations of available polymers as vaccine carriers. The novel poly(ester-amide) (PEA) 

copolymers, composed of amino acid residues, diols, and dicarboxylic acids, have been 

shown to enhance cellular immunity 187. Polyamide gives PEA its superior mechanical 
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and thermal properties, while the polyester portion is responsible for its flexibility and 

hydrolytic susceptibility, allowing PEA to degrade within a reasonable period of time. It 

is biodegradable, however, in contrast to polyester and polyanhydrides, PEA degrades by 

enzymatic cleavage within the body 235,236. Thus, shelf life and handling does not affect 

its degradation rate and the polymer remains intact until needed for therapy. PEA has 

been conjugated with several therapeutics peptides, including human melanoma antigen-

derived peptides (MART), a synthetic peptide based on the gp120 protein of HIV, and a 

MHC II-restricted T-cell epitope from the influenza A virus hemaglutinin (HA) protein 
187. In general, the studies evaluating PEA-peptide conjugates demonstrated that cellular 

immunity, encompassing both MHC I- and MHC II-restricted T-cell responses, was 

enhanced. 

More recently, in vivo studies in mice have shown that poly(ethylene glycol)-

stabilized poly(propylene sulfide) nanoparticles target the APCs directly in the lymph 

nodes 237,238. In these studies it was found that particles in the size range of 20 to 45 nm 

enter lymphatic vessels and subsequently target DCs in the lymph nodes. The cross-

linked polymer system used here degrades into a water soluble polymer under oxidative 

conditions.  

 

Polymers in plasmid DNA vaccines 

Plasmid DNA vaccines represent a promising alternative against intracellular 

pathogens. Even though plasmid DNA immunogens have elicited strong cell-mediated 

responses in small laboratory animals, these have not had success in limited human 

clinical trials 188. Ideal adjuvants will improve the magnitude of plasmid DNA 

expression, must protect DNA from enzymatic degradation, and must facilitate the DNA 

plasmid uptake into cells. Several polymer chemistries have been evaluated in 

conjunction with DNA vaccines and a thorough discussion of this topic is beyond the 

scope of this review. In short, microspheres of polyesters, polycarbonates, polystyrene, 

and poly(orthoesters) have been used in DNA vaccination and their administration 

resulted in enhanced immune responses when compared to naked DNA administrations 
60,189,190.   
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The Ideal Vaccine Adjuvant 

Vaccines and their adjuvants interact with the patient’s immune system in a 

variety of ways. Thus, there is no single set of characteristics that would describe an ideal 

vaccine adjuvant for all situations. An adjuvant must be appropriate to the particular 

delivery route (e.g. intramuscular, mucosal, intra-peritoneal, etc.), desired immune 

response (cell-mediated vs. humoral), pathogen, and stage of a disease. Additionally, 

biological traits of the patient may also be important including species, race, age, medical 

history, and genetic makeup. All of these factors may influence the effectiveness of a 

vaccine adjuvant, and the effects of these factors may be unknown. Nonetheless, there are 

certain characteristics that a good vaccine adjuvant must possess. These characteristics 

can be broadly grouped into two categories: biological characteristics and practical or 

economical characteristics.  

Because vaccine adjuvants may enhance the immune response through different 

modes of action, the particular mechanism of adjuvanticity is of paramount importance. 

The mechanisms of adjuvant activity have been classified in different ways by different 

authors 66,119,239. The broadest classification distinguishes among two types of 

mechanisms: immune stimulation and targeting antigens to particular cell or tissue types 
65. Adjuvants which act through the later mechanism target vaccines to DC, through 

interactions with transmembrane TLR proteins or other cell surface receptors 97, or by 

virtue of their size 240,241. Polymer microspheres and liposomes < 10 µm in diameter may 

be readily phagocytosed by macrophages and DCs 97. This specific targeting can reduce 

the quantity of antigen required to induce protective immunity. A good 

immunostimulatory vaccine adjuvant must stimulate the desired immune response 

without toxicity or inducing excessive inflammation. While some immunostimulatory 

adjuvants of bacterial origin have potent adjuvanticity (e.g. LPS), they can also be 

extremely toxic (e.g. induction of tumor necrosis factor) 242. Less toxic adjuvants, such as 

alum, may also be less potent or ineffective at eliciting cell mediated immunity 97,243,244. 

Good immunostimulatory vaccine adjuvants activate DCs to mature into APC and 

migrate to the draining lymph node, coincident with induction of the cytokine profile 



 
 

78

appropriate to the desired immune response mechanism (i.e., IFN-γ, IL-2, and IL-12 for 

the Th1 response and IL-4, IL-5, and IL-6 for the Th2 response). Like adjuvants that 

target DCs, some immunostimulatory vaccine adjuvants also interact with TLR proteins. 

Though these proteins have affinity for a variety of ligands, different subpopulations of 

DCs express different TLR profiles and, thus, have different degrees of sensitivity to 

different antigens and adjuvants 31,245,246. Furthermore, the same TLR may activate 

different intracellular signaling cascades leading to different activated phenotypes in 

different DC subpopulations. Regardless of the mechanism of adjuvanticity, vaccine 

adjuvants must activate this desired adaptive immune response without over stimulating 

innate immune function.  

Economical and practical considerations must also be taken into account when 

selecting an ideal vaccine adjuvant. Singh and O’Hagan 64,74 list biodegradability, ease of 

manufacture, and low cost among important characteristics of vaccines. Other practical 

aspects to be considered include stability over time, ability to provide immunity with a 

single dose, and suitability for mucosal delivery. Such characteristics would enable more 

practical and economical strategies to fight infectious disease in remote areas that lack 

developed public health infrastructure and in communities that do not have access to 

modern medical care 247. Finally, while the “depot” effect (long thought to be the primary 

mechanism of adjuvanticity for alum) is no longer regarded as the essential mechanism 

behind adjuvant effectiveness 97,248, formulations such as degradable polymer 

microspheres may provide sustained exposure to antigens, obviating the need for multiple 

administrations. Practical considerations such as stability and cost may preclude the 

widespread use of some otherwise potent protein adjuvants such as cytokines 64,244. 

Thus, we can summarize the ideal vaccine adjuvant as one which selectively 

targets the antigen to the desired population of APCs, minimizes the amount of antigen 

required, induces the desired adaptive immune response, while minimizing the innate 

immune response, is minimally toxic, low-cost, stable for long-term storage, and provides 

protective immunity in a single dose via a convenient delivery route. 
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New Research Tools to Study Disease Prevention 

New adjuvants are also needed that can be used to precisely tune the nature or 

outcome of the immune response to more effectively protect against particular diseases 

such as cancers and HIV. This may be done by controlling the induction of particular 

cytokine profiles and by more effectively targeting antigens to specific tissues, cells, or 

intracellular compartments (e.g. DNA vaccines to the nucleus of a cell). These new 

adjuvants could also be used as research tools to study the induction or regulation of 

different immune response mechanisms that are associated with autoimmune diseases, 

allergies, or tolerance. Sadly though, many of these new adjuvants are still being 

developed experimentally and much more research is needed to bring them to an 

application. As shown in Table 1, the number of adjuvants in licensed vaccines are very 

few. Even the materials being tested in current clinical trials represent relatively few new 

immunostimulating adjuvants, especially against infectious diseases (Table 2). 

Furthermore, there may be a need for a considerable shift in thinking about how vaccines 

are tested for efficacy. Antibody titer is almost universally used as the test for vaccine 

efficacy but often high antibody titers do not translate into the best protection 249. Many 

times a highly immunogenic antigen does not correlate to a protective immune response. 

This ‘deceptive imprinting’ is a common evasion mechanism by pathogens and partially 

responsible for the slow development of HIV vaccines250. Also there is the caveat that 

laboratory mice are not humans (or other livestock species) and what works in a mouse 

may not translate to other species. Numerous studies have highlighted differences in 

mouse and human immune systems including differences in complement reactivity251, 

induction of Th17 cells 252, or response to a vaccine based on particle size 70.  

In 2006, the National Research Council convened a Workshop on 

Immunomodulation 253, which made several recommendations to improve vaccine design 

including an improved molecular level understanding of the innate immune system, the 

need for effective delivery mechanisms, the identification of potential molecular targets 

to modulate innate immunity without undesirable side effects, and new strategies to target 

DCs and optimize antigen presentation. A key need that was identified by this panel was 

that in order to solve these important problems, it is critical for researchers from multiple 
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disciplines to work together. These fields may include biochemistry, immunology, 

materials science, cell biology, computational biology/materials science, pathology, 

oncology, microbiology, and combinatorial science. It is important to combine expertise 

from antigen biochemistry, cell biology, and immunology to understand the mechanism 

of immunogenicity and how the preservation of various epitopes contributes to 

immunogenicity. As these antigens are combined with adjuvants, it is important for 

materials scientists to work closely with immunologists to understand how protein 

antigens can be stabilized during encapsulation and delivery and how adjuvants interact 

with APCs. As these adjuvanted systems enter the body, they encounter plasma proteins 

that may adsorb on to the surface of the adjuvant. How this affects the release of the 

antigen and how this influences APC activation or antigen processing is of great 

significance to the initiation of the desired immune response. Finally, the use of the 

appropriate animal models to study these phenomena is critical and 

immunohistochemical methods are needed to study how these adjuvants affect the local 

tissue response. 

In this regard, the authors, who belong to chemical engineering and veterinary 

microbiology departments have worked towards providing a highly cross-disciplinary 

research environment for students and postdoctoral researchers in their respective groups. 

The chemical engineering graduate students have the opportunity to take courses on 

immunology and molecular biology techniques, participate in journal clubs, and several 

of them have completed an immunobiology certificate program on their way to a Ph.D. 

Likewise, the microbiology students have the opportunity to take courses on polymeric 

biomaterials and nanotechnology. The two research groups have joint meetings every 

week and the students present the research results in a variety of formats, including tag-

team talks and “storyboarding”. Such an approach has immensely benefited students from 

both disciplinary groups and has prepared them to address diverse research problems with 

new and innovative perspectives. Similar examples of cross-disciplinary research groups 

exist and are much needed as scientists embark on new therapies for diseases such as 

cancer, HIV, and respiratory infections. 
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Over the last 200 years, the use of vaccines has proven to be one of the most 

successful medical interventions in the reduction of disease caused by infectious agents 1. 

However, many challenges still remain with regard to fully realizing the health benefits 

of active immunization programs. Some of these obstacles include the implementation of 

improved adjuvants, development of single dose vaccines, methods to overcome the poor 

immunogenicity of recombinant and subunit immunogens, and the ability to rapidly and 

rationally develop vaccines against emerging pathogens. In this regard, the mechanisms 

underpinning the effective modulation of cellular and molecular events associated with 

adjuvant enhancement of immune responses are still largely unknown. There is growing 

interest in the development of vaccine delivery systems based on micro- and nano-scale 

devices composed of biodegradable polymers, because they have the potential to act as 

effective adjuvants by encompassing all three of the classical adjuvant properties: 

providing an antigenic depot with a tailored and pulsatile release of the antigen over time, 

directing particulate antigens to the APCs and modulating the activation of innate 

immunity by altering polymer chemistry 95. However, the mechanism of adjuvanticity 

and the ability of adjuvant chemistry to selectively modulate the immune response are 

still largely unknown. In order to address these challenges, it is important to perform 

fundamental and systematic studies of the role of polymer chemistry in regulating 

activation of APCs (e.g., DCs), antigen uptake, processing, and presentation, migration to 

the draining lymph node, and modulation of the immune response. 

The mechanisms by which adjuvants enhance and/or redirect the immune 

response (e.g., formation of high titer antibodies, CD4+ helper T lymphocytes and/or 

CD8+ T lymphocytes) in order to establish long term immunologic memory are poorly 

understood. Upon antigen stimulation, T cells differentiate into two distinct populations 

described as Th1 and Th2 type immune responses 254. Furthermore, Th1- and Th2-related 

cytokines (IFN-γ or IL-4/IL-13 respectively) can impact both the quality and magnitude 

of humoral and cell-mediated immunity. Humoral immunity, characterized by the 

activation of B cells that differentiate into antibody  secreting plasma cells, is effective at 

neutralizing toxins, viruses, complement fixation, and opsonization of extracellular 

pathogens whereas the cell-mediated immunity (i.e., activation of cytotoxic T cells and 



 
 

82

macrophages) are crucial for protection against intracellular pathogens 255. The balance of 

humoral and cell-mediated immune responses has been shown to be important in the 

favorable outcome of many disease states. In this regard, vigorous and inappropriate cell-

mediated immune responses have been implicated in the induction of autoimmune 

diseases (multiple sclerosis and Crohn’s disease) while robust humoral immune responses 

are associated with allergic reactions 120. In order to control the induction of appropriate 

immune responses and reduce the risk of autoimmunity or allergic responses, there is an 

urgent need to develop new, well-characterized adjuvants that allow for tailored immune 

activation and deviation. In spite of these implications of immune deviation, the 

mechanisms by which adjuvants influence whether Th1 or Th2 cells dominate an immune 

response are not well understood. Additionally, it is also important to consider the use of 

adjuvants to induce regulatory T cell responses and to avoid the aberrant induction of 

Th17 cells that have been associated with chronic inflammatory diseases. 

Both in vitro and in vivo studies with the adjuvants discussed above indicate that 

adjuvant chemistry and particle size may play an important role in regulating the cellular 

and molecular mechanisms responsible for modulating host immune responses. 

Additionally, in order to understand intra-cellular trafficking at a molecular level, it is 

important to study the use of reporter molecules (e.g., quantum dots (QDs)) embedded 

within the adjuvant. Encapsulating QDs within adjuvants will provide adequate stability 

even in acidic conditions within cells and may be used to effectively track the transport of 

the nanospheres in intracellular compartments. The luminescence properties of QDs are 

expected to persist so long as the integrity of their nanocrystal structure is maintained, 

providing superior performance compared to conventional fluorescent dyes such as FITC, 

whose fluorescence is sensitive to pH 256,257. QDs can also dramatically enhance in vivo 

imaging of APC migration by using red and near-infrared emitting QDs as an alternative 

to Cy5, Cy5.5, or other traditional organic dyes. QDs have substantially larger absorption 

cross-sections than even the best commercial dyes developed specifically for such 

imaging applications 258. This improves the effective brightness of the fluorescence 

emission signal considerably. Additionally, QDs have unrivaled photostability that allows 

continuous long-term excitation without a substantial loss in fluorescence 256.  
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Finally, in order to understand the cellular and molecular mechanisms that 

establish immunologic memory, it is very important to correctly choose appropriate in 

vitro/in vivo models that will promote the induction of cell-mediated as well as humoral 

(i.e., antibody) immune responses. Because there are likely to be subtle immunogenetic 

differences between mouse strains (and eventually individual human subjects), the use of 

combinatorial approaches evaluating cell-adjuvant interactions may provide a robust and 

versatile approach to the development of vaccines that will effectively stimulate 

immunity for different conditions and/or applications. These approaches may be used to 

rapidly screen a large number of adjuvant chemistries for their ability to differentially 

activate APCs, which will aid in the rational use of cocktails of micro- or nano-particles 

in vaccine formulations. These formulations will possess the ability to stimulate the 

appropriate immune response depending upon the disease. The availability of transgenic 

models (e.g., OTI and OTII transgenic mice) provides for the capability to critically 

evaluate the activation of CD4+ and CD8+ pathways while other molecular biology tools 

enable researchers to evaluate the effect of new adjuvants on antigen processing and 

presentation both in vitro and in vivo.  

In summary, an integrated and cross-disciplinary approach is needed that 

combines the development of novel adjuvants with: i) molecular level studies that will 

elucidate the mechanisms of chemistry-mediated cellular activation by adjuvants; ii) 

cellular level studies that will elucidate the uptake mechanisms of antigen-loaded 

adjuvants by immune cells and the activation and migration of these cells; and iii) in vivo 

studies that highlight the underlying mechanisms governing immune modulation. Such an 

integrated approach is essential to solve the important challenge of rationally designing 

vaccine delivery systems that will effectively stimulate the immune system. It can 

provide new insights into the mechanisms of adjuvanticity and on the complex 

relationships between adjuvant chemistry, molecular mechanisms of APC activation, 

antigen uptake, processing/presentation by APCs, migration to the draining lymph node, 

and modulation of the immune response. To carry out such an approach, it is important to 

assemble highly cross-disciplinary teams of researchers with expertise in the areas of 
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molecular and cellular immunology, intra-cellular trafficking, biomaterials chemistry, 

toxicology, nanotechnology, and pathology. 
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Abstract 

Biodegradable polymers have been widely studied for various drug delivery 

applications including vaccines. Work from this laboratory previously showed that 

polyanhydride based materials enhanced protein stability, a quality necessary for vaccine 

antigen delivery. The present studies were designed to evaluate the adjuvant activity of 

polyanhydride microspheres prepared in the absence of additional stabilizers, excipients, 

or immune modulators. The microspheres were composed of varying ratios of either 

CPH:SA or CPTEG:CPH and added to cultured bone marrow-derived dendritic cells 

(DCs) . Upon stimulation with polyanhydride microspheres, DCs increased surface 

marker expression of MHC class II, T cell costimulatory molecules CD86 and CD40, and 

the C-type lectin CD209 in a dose and chemistry dependent manner. It was demonstrated 

that microspheres also induced secretion of IL-12p40 and IL-6, and the amount secreted 

was dependent on polymer chemistry. Using ovalbumin (Ova)-specific OT I and OT II 
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transgenic (Tg) T cells, DC stimulated with polyanhydride microspheres and Ova 

induced antigen-specific proliferation of both CD4+ OT II and CD8+ OT I T cells. In 

vivo, microspheres co-delivered with Ova in a Tg T cell transfer model (DO11.10) 

enhanced antigen-specific CD4+ T cell expansion. These cells produced cytokines 

consistent with activated T cells upon incubation with Ova. Taken together, this work 

demonstrated that polyanhydride microspheres act as classical immunomodulators by 

activating antigen presenting cells and enhancing antigen-specific T cell responses, both 

in vitro and in vivo. 

 
1 Introduction 

The World Health Organization (WHO) estimated that in 2002, 2.1 million deaths 

worldwide were due to diseases that could have been prevented by routine vaccination 

[1]. In an effort to minimize these casualties, the WHO and the United Nations Children’s 

Fund (UNICEF) together with other partners developed a Global Immunization Vision 

and Strategy (GIVS) four years ago. One of the main strategic areas of GIVS is the 

introduction of new and efficacious vaccines and delivery technologies to combat 

diseases for which no treatment currently exists [2]. The rapid development of protein 

based biopharmaceuticals suggests that many future vaccines will involve the delivery of 

peptide or protein subunits. Currently, such vaccines lack a suitable carrier, thus, there is 

an urgent need to develop better adjuvants for delivery of efficacious vaccines that will 

benefit public health [3].  

An adjuvant is a substance which when incorporated into a vaccine will enhance 

the immune response to the antigen. Classically, adjuvants fulfilled one of three roles, 1) 

act as a depot, preventing rapid clearance of the antigen, 2) direct the antigen to antigen 

presenting cells (APC) for phagocytosis, processing, and presentation, and 3) induce co-

stimulatory signals on APCs necessary for activation of naïve T cells [4, 5].  

When designing novel vaccine adjuvants, it is essential to have a detailed 

understanding of the complex interplay between the cells of the innate and adaptive 

immune systems. As the first line of defense, cells of the innate immune system are 

involved in the recognition of foreign invaders by means of pathogen-associated-
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molecular patterns (PAMPs) [6]. Many of these cells are also APCs that express antigenic 

peptides derived from pathogens on their surface in the context of major 

histocompatabilty molecules (MHC) types I and II. Upon encounter with PAMPS, APCs 

become activated undergoing phenotypic changes that allow them to become an effective 

link between pathogen detection and induction of adaptive immunity. Dendritic cells 

(DCs) residing within the skin, most organs, and the lamina propria of mucosal tissues 

are uniquely situated for pathogen detection as well as the most efficient APC for 

activating naïve helper T cells, killer T cells, and B cells [6, 7]. Residing in an immature 

state, DCs sample their surroundings for possible pathogens through pathogen 

recognition receptors (PRRs), including Toll-like receptors (TLRs) and C-type lectins [8, 

9]. After ligation of the PRR, DCs engulf the pathogen and migrate to lymph nodes (LNs) 

where they undergo maturation. Dendritic cell maturation includes increased surface 

expression of co-stimulatory molecules (i.e., CD80, CD86, CD40) and antigen presenting 

complexes (MHC I and MHC II) and secretion of T cell activating cytokines such as 

interlukins (IL-1, IL-6, IL-10 and IL-12) and tumor necrosis factor alpha (TNFα)[10]. 

The specific pattern of DC maturation (surface marker expression and cytokine secretion) 

can polarize the ensuing adaptive immune response. 

While the Th1-Th2 paradigm has dominated immunology for the last 15 years, 

current understanding has expanded this to include Th17 and CD4+ mediated regulatory 

responses (Treg) [11]. Th1-type immune responses are characterized as cell-mediated 

immune responses, associated with the production of IL-12p70 by APCs and interferon-γ 

(IFNγ) from T cells [12]. Th1-type immune responses are often necessary for clearance 

of intracellular viral and bacterial pathogens. Excessive Th1 immune responses have been 

implicated in sarcoidosis, tuberculosis, and collagen-induced arthritis [13-15]. Th2-type 

immune responses are associated with the induction of IgE, eosinophil activation, release 

of IL-4, IL-5, IL-10, and IL-13 from T cells [16] and promote allergic reactions. In 

addition, Th2-type responses are necessary for elimination of parasites and some 

extracellular bacteria [11]. Th2 dominant immune responses may be responsible for 

increases in asthma, atopic dermatitis, and certain cancers (basal cell carcinomas and 

gastric cancers) [17-21]. Recently, IL-17 secreting CD4+ T cells or Th17 cells have been 
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described and are associated with pro-inflammatory responses needed for the clearance of 

extracellular pathogens [22]. The dysregulation or over expression of Th17 responses 

have been linked to inflammatory autoimmune diseases such as inflammatory bowel 

disease, multiple sclerosis, and rheumatoid arthritis [22, 23]. 

Currently, the common adjuvants employed in human vaccines are aluminum-

based (e.g., alum) and often require multiple doses (i.e., booster shots) to achieve 

protective immunity that is primarily an antibody-mediated immune response (i.e., poor 

induction of cell-mediated immunity) [24]. The use of aluminum salts is often associated 

with the induction of adverse reactions at the site of injection. While polyanhydride-

derived polymers have been shown to be tissue compatible [25-28], biodegradable 

polymers have also shown promise as vaccine adjuvants [29]. The use of polymer 

adjuvants provides multiple advantages over other adjuvants including the controlled 

release of antigen which enhances the induction of an immune response, improves patient 

compliance by administering in a single injection, and modulates the ensuing immune 

response in respect to Th1-Th2 bias [29, 30]. The controlled release of antigens following 

parenteral administration of biodegradable polymeric microspheres has been extensively 

studied [3, 31-33]. Microspheres greater than 10 µm provide an antigenic depot at the site 

of injection, while smaller microspheres can be efficiently phagocytosed by APCs and 

carried to lymph nodes [3].  

Polyanhydrides are a class of biodegradable polymers that have shown promise as 

carriers for controlled drug delivery and have been approved by the FDA for use in 

humans [25, 27, 34-44]. Biocompatibility studies have shown the safety of these 

biomaterials as these degrade into non-mutagenic and non-cytotoxic products [45, 46]. 

Another advantage of these polymers is their degradation by a surface erosion mechanism 

resulting in controlled release of the antigen with predictable degradation profiles that can 

vary from days to months depending on the polymer chemistry. The polyanhydride 

chemistries used in this study are based on the aliphatic sebacic acid (SA), the aromatic 

1,6-bis(p-carboxyphenoxy)hexane (CPH), and the amphiphilic 1,8-bis(p-

carboxyphenoxy)-3,6-dioxaoctane  (CPTEG) (Figure 1). The biocompatibility of 

CPH:SA and CPTEG:CPH copolymer libraries has been recently studied using high 
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throughput cell-based screening methods and were found to induce no discernible 

cytotoxic effects at concentrations as high as 2.8 mg/mL which are much higher than that 

expected to be used for in vivo applications [47].  
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Figure 1: Chemical structures of (A) poly(SA), (B) poly(CPH), and (C) poly CPTEG. n 
represents degree of prolimerization. 
 
 

Previous work has shown that polyanhydrides are suitable vaccine carriers with 

enhanced adjuvanticity and possess immunomodulatory capabilities associated with 

polymer chemistry [29]. These studies showed that a single dose of CPH:SA 

microspheres was able to enhance and modulate the antigen-specific immune response, 

depending on the composition of the polymer. Specifically, tetanus toxoid (TT)-loaded 

20:80 CPH:SA microspheres induced a IgG1 dominant response while the 50:50 

CPH:SA formulation induced  a balanced IgG1/IgG2a antibody response. Although no in 

vivo experiments have been published with the CPTEG:CPH system, this system has 

shown excellent characteristics for protein stabilization and release [47, 48].  

The purpose of the current study was to mechanistically evaluate the adjuvanticity 

and immunomodulatory capabilities of CPH:SA and CPTEG:CPH microspheres 

including the inherent stimulatory capacity of these polymers. Because DCs are the most 

potent APCs involved in the induction of an immune response, the in vitro evaluation of 

murine DC activation after incubation with polyanhydride microspheres was evaluated.  

The surface expression of the MHC II, the co-stimulatory molecules CD86 and CD40, 

and the C-type lectin DC specific ICAM-3 grabbing non-integrin DC-SIGN/CIRE 

A) B) 

C) 
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(CD209) was evaluated using flow cytometry. In addition, the ability of polyanhydride 

microspheres to induce the secretion of immune activating cytokines was measured. In 

order to extend the in vitro observations to in vivo applications, two murine models were 

used to evaluate the induction of antigen-specific immune responses following 

immunization with ovalbumin (Ova) in the presence of polyanhydride microspheres. The 

results of the in vitro and in vivo studies demonstrated that the copolymer composition 

has significant impact on the activation of DCs and the induction of an antigen-specific 

immune response.   

 

2 Materials and Methods 

2.1 Materials 

The chemicals needed for the synthesis of CPH and CPTEG monomers include: 

4-p-hydroxybenzoic acid, 1,6-dibromohexane, 1-methyl-2-pyrrolidinone, and tri-ethylene 

glycol, and sebacic acid (99%) were purchased from Sigma Aldrich (St Louis, MO); 4-p-

fluorobenzonitrile was obtained from Apollo Scientific (Cheshire, UK); potassium 

carbonate, dimethyl formamide, toluene, sulfuric acid, acetic acid, acetonitrile, acetic 

anhydride, methylene chloride, and petroleum ether were purchased from Fisher 

Scientific (Fairlawn, NJ).  

 
2.2 Polymer synthesis and characterization 

CPH:SA and CPTEG:CPH copolymers were synthesized by melt 

polycondensation as described previously [44]. The purity and degree of polymerization 

of the polymers was analyzed using 1H NMR spectra obtained from a Varian VXR-300 

MHz NMR spectrometer.  

 
2.3 Microsphere fabrication by cryogenic atomization 

Prior to fabricating microspheres, all glassware and equipment was soaked in 70% 

ethanol to prevent microbial contamination. The procedure used to fabricate 

microspheres was modified from previously reported studies [49, 50]. Briefly, polymer 

dissolved in methylene chloride was pumped through an 8700-1200 MS ultrasonic 
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atomizing nozzle (Sono Tek Corporation, Milton, NY) into 200 mL of ultra cold ethanol 

overlaid with ~100 mL of liquid nitrogen. This procedure was performed at 4ºC for 50:50 

CPH:SA and CPTEG:CPH microspheres in order to maintain the temperature below the 

glass transition temperature of the polymers during microsphere preparation. After 

atomization, the polymerized microspheres were stored at -80°C for three days to allow 

the methylene chloride to be extracted into the ethanol. The microspheres were then 

collected by filtration and dried under vacuum overnight. The microsphere morphology 

was characterized by scanning electron microscopy (SEM). The particle size distribution 

was obtained from SEM images (150-250x) using a soft imaging system software 

(analySIS®, Soft Imaging System Corp, Lakewood, CO). An average of 800 particles per 

image was analyzed.  

 
 2.4 Endotoxin assay 

To ensure that the activation observed was due to the polymers and not endotoxin 

contamination, endotoxin levels of polyanhydride microspheres were tested with Limulus 

Amebocyte Lysate (LAL) QCL-1000 test kit (Cambrex, Walkersville, MD). Solutions of 

CPTEG:CPH and CPH:SA microspheres (5 mg/mL) fabricated as described above were 

prepared using endotoxin-free, sterile water and incubated overnight at 37ºC while 

shaking. After centrifuging the suspension of microspheres, the LAL test was performed 

using the supernatant according to manufacturer’s procedure. All the polyanhydride 

microspheres exhibited an endotoxin content of less than 0.1 EU/mL, which is five times 

lower than the maximum level permitted by the U.S. Food and Drug Administration 

(FDA) for new drugs tested by the LAL test [51].  

Ovalbumin to be used in antigen specific studies was tested for endotoxin levels. 

Two mg/mL solutions of Ova were prepared in endotoxin free water and LAL performed 

according to manufacturer’s instructions. Ovalbumin as purchased contains high levels of 

endotoxin. To remove contaminating endotoxin, AffinityPak Dextoxi-Gel endotoxin 

removing gel columns (Thermo Scientific, Rockford, IL) were used according to 

manufacturer’s instructions. Resulting ovalbumin contained less than 10 EU/mg which 
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equates to roughly 1 ng endotoxin equivalent per mg protein. Endotoxin-free Ova was 

lyophilized and stored at -20ºC until needed. 

  

2.5 Mice  

C3H/HeNHsd (C3H) and C57BL/6 (BL6) mice were purchased from Harlan 

Sprague Dawley. Male and female C57BL/6 Tg(TcraTrab)1100Mjb/J (OT I), C57BL/6 

Tg(TcraTrab)425Cbn/J (OT II) and DO11.10 TCR transgenic mice were purchased from 

Jackson Laboratory (Bar Harbor, Maine). BALB/c mice, at least 6 weeks of age, were 

obtained from the breeding colony maintained by the Hybridoma Facility at Iowa State 

University (Ames, IA). All of the mice were housed under specific pathogen-free 

conditions where all bedding, caging, water, and feed were sterilized prior to use.  

Animal procedures were conducted with the approval of the Iowa State University 

Institutional Animal Care and Use Committee.   

 
 2.6 Culture and stimulation of DCs 

Bone marrow cells were isolated from the femurs and tibia of C3H, BALB/c, or 

BL6 mice and cultured to derive DCs using minor modifications of a previously 

developed method [52]. Briefly, after euthanizing mice and excising the tibia and the 

femur, bone cavities were flushed using a 1 cc syringe fitted with a 25 gauge needle and 

containing cell culture medium; each bone was flushed three times. After washing the 

cells by centrifugation, the cell pellet were suspended in complete culture media (cRPMI) 

(RPMI 1640 supplemented with 2% essential amino acids (Mediatech, Herndon, VA), 25 

mM HEPES buffer (Mediatech), 100 units/mL penicillin, 0.1 mg/mL streptomycin 

(Mediatech), 0.05 mg/mL gentamicin (Sigma), 1% l-glutamine (Mediatech), 5 x 105 M 2-

mercaptoethanol (Sigma), 10% heat inactivated fetal bovine serum (FBS) (Valley 

Biomedical, Winchester, VA)) with 10 ng/mL granulocyte macrophage colony 

stimulating factor (GM-CSF) (PeproTech, Rocky Hill, NJ).  Then cells were placed in 

bacteriological petri dishes (4 x 105 cells/mL) and incubated at 37ºC under 5% CO2 

atmosphere. On day 3, 10 mL of fresh media was added to each plate. After day 6, veiled 

projections were visible in the cell cultures, which are the characteristic dendrites of DCs. 
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Flow cytometric evaluation of the population of non-adherent and loosely adherent cells 

indicated that 75 to 90% of the DCs expressed CD11c. On day 6, DCs were removed 

from the plates, washed, resuspended in fresh media, and transferred to 24-well plates 

(2.5 x 106 cells/well). On day 9, DCs were incubated with the different stimulation 

treatments. Non-stimulated (background, Bkgd) DCs and LPS (200 ng) stimulated DCs 

were used as negative and positive controls, respectively. After suspending 

polyanhydride microspheres in complete culture medium, microspheres were sonicated 

briefly to create an evenly dispersed suspension. Microspheres were added to the DC 

cultures at concentrations of 60, 125, or 250 µg/mL. These concentrations corresponded 

to ratios of 1:3, 1:6, and 1:12 microsphere to DC, respectively. The stimulated cultures 

were incubated for 48 h (37°C, 5% CO2). Cultures were routinely observed with an 

inverted microscope. 

 

2.7 Surface marker staining  

The surface expression of cell surface markers, co-stimulatory molecules, and 

antigen presenting complexes was analyzed with flow cytometry. After 48 h of 

incubation with stimulation treatments, DCs were harvested and placed in polystyrene 

tubes (BD FALCONTM, Franklin Lakes, NJ). After centrifuging (1200 rpm, 7min), DCs 

were resuspended in Fc blocking solution containing unlabeled CD36/16 FcγR (10 

μg/mL)(eBioscience, San Diego, CA), homologous mouse serum (0.5%), and unlabeled 

rat IgG (50μg/mL) (Sigma). After blocking DCs for 1 h on ice, cells were stained for the 

presence of specific cell surface markers using Alexa Fluor® 700 anti-mouse CD11c 

(clone N418)(eBioscience), FITC conjugated anti-mouse/rat MHC Class II (I-Ek) (clone 

14-4-4S)(eBioscience), PE/Cy7 anti-mouse CD86 (clone GL-1) (Pharmingen, Becton 

Dickinson, Franklin Lakes, NJ), allophycocyanin (APC) anti-mouse CD40 (clone 

1C10)(eBioscience), and PE conjugated anti-mouse CIRE (CD209) (clone 

5H10)(eBioscience) antibodies. Respective isotype-specific control antibodies (Alexa 

Fluor® 700 conjugated Armenian hamster IgG (clone eBio299Arm), FITC IgG2a κ 

(clone eBM2a), PE/Cy7 conjugated rat IgG2b (clone KLH/G2b-1-2), APC rat IgG2a κ 

(clone eBR2a), and PE-conjugated rat IgG2a (clone eBR2a)) (all from eBioscience), 
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single color, and unstained controls were also included in the analytical panel. Propidium 

iodide (PI) was used to establish the live/dead cell gate. Flow cytometric analysis was 

performed using a FACScantoTM (Becton-Dickinson) and results were analyzed using 

FloJo (Tree Star, Inc., San Carlos, CA).  

 

2.8 OT I and OT II stimulation 

DCs were cultured as described above. On day 10 of culture, non-adherent and 

DCs were collected and incubated with 250 µg/mL polymer microspheres, and 100 

µg/mL Ova for 8-12 h. Lymph nodes were removed from either OT I or OT II mice and 

single cell suspensions were prepared. Cells were washed by centrifugation and 

resuspended in complete culture medium. To assess in vitro immune stimulation, 2.5 x 

105 lymphocytes from OT I or OT II mice were combined with 0.5 x 105 DCs in 96-well 

round bottom culture plates. Plates were incubated at 37°C in humidified 5% CO2. On 

day 3, 0.5 μCi of methyl-[3H]-thymidine (specific activity 6.7 Ci mmole-1, Amersham 

Life Science, Arlington Heights, IL) was added to each well and incubated for additional 

18 h. Well contents were harvested onto glass fiber filters and the incorporated 

radioactivity was measured using liquid scintillation counter. The assays were performed 

in triplicate and data are presented as mean counts per minute of triplicate wells. 

 

2.9 T cell isolation and immunizations 

T cells were purified from lymph nodes and spleens of DO11.10 mice using a 

CD4+ T cell isolation kit (Miltenyi Biotec, Auburn, CA). Purity of isolated cells (89.3% 

CD4+) was confirmed by flow cytometry. Approximately, 1x106 DO11.10 T cells were 

injected intravenously into the tail vein of BALB/c recipients. Recipient BALB/c were 

then immunized subcutaneously at the nape of the neck with saline alone, Ova (100 µg), 

Ova + LPS (25 µg), Ova + PLGA microspheres (0.5 mg), Ova + 20:80 CPTEG:CPH 

microspheres (0.5 mg), or Ova + 20:80 CPH:SA microspheres (0.5 mg) in a volume of 

100 µL. Serum from each animal was collected from the saphenous vein prior to cell 

transfer and immunizations. 
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2.10 Cell surface marker staining of lymphocytes 

Five days following cellular transfer and immunization, draining lymph nodes 

were removed and single cell suspensions prepared as described above. Approximately 

2.5 x 106 lymph nodes cells were placed into four mL snap-cap tubes and incubated with 

the Fc blocking solution for 30 minutes on ice. Cells were then stained with anti-CD4 

PE/Cy7(eBioscience), Biotin-labeled anti-KJ1.26 (Caltag Laboratories, Burlingame, CA), 

anti-CD62L-PE (eBioscience), and anti-CD44-AF700 (eBioscience). Tubes of cells 

pooled from all animals were incubated with the corresponding isotype antibody controls 

as described above. Cells were incubated on ice for 1 h, 1 mL of FACS buffer was added, 

and the tubes were centrifuged. After respending the cells, streptavidin-FITC (0.5 µg/mL) 

was added and the cells were incubated on ice for an additional 30 minutes. Cells were 

washed twice with FACS buffer and then fixed with 0.25 mL BD Stabilizing Fixative 

(BD Bioscience, San Jose, CA). Flow cytometry was performed using FACScantoTM 

(Becton-Dickinson) and results were analyzed using FloJo (Tree Star, Inc., San Carlos, 

CA). 

 
2.11 Culture and in vitro restimulation of lymphocytes  

Five days following cell transfer/immunization, lymph nodes draining the 

immunization site (axillary and brachial) were excised and single cell suspensions 

prepared. Separate wells containing LN cells were incubated with either anti-mouse CD3 

plus anti-mouse CD28 monoclonal antibodies (1.5 µg/mL and 0.5 µg per mL, 

respectively, eBioscience) or Ova (100 µg/mL). Non-stimulated cells were incubated in 

cRPMI alone (i.e., no stimulation). Cells were incubated at 37°C in 5% CO2 in air and 

culture supernatants were collected at 72 h and frozen for later cytokine analysis. 

 

2.12 Cytokine assay 

Cytokines (TNF-α, IL-4, IL-6, IL-10, and IL-12p40) were assayed from cell free 

supernatants collected from DCs cultured for 48 h in the presence of microspheres. 

Supernatants were collected and stored at -20°C until analysis. Cytokines were assayed 

using Luminex® Multiplex assay (Austin, TX).  
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Cytokines IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p40, and IFN-γ were assayed from 

cell free supernatants collected from lymphocytes collected from BALB/c mice that 

received Tg DO11.10 T cells. Supernatants were collected at 72 h after in vitro re-

stimulation with antigen and stored at -20°C until assayed using Luminex Multiplex 

assay. Multiple experiments were analyzed individually.  

 

2.13 Enzyme-linked immunosorbent assay (ELISA) 

Serum samples collected from mice 21 days post-transfer and immunization were 

tested for Ova-specific antibodies. Costar brand high binding ELISA plates (EIA/RIA 

high binding, catalog # 3590) were coated overnight with 5 µg/mL Ova. Plates were 

washed with phosphate buffered saline (PBS, pH 7.4) containing 0.5% Tween 20 (PBST) 

and blocked for two hours with PBST+ 2% gelatin (Difco, catalog # 214340). Plates were 

washed and individual serum samples were serially diluted in PBST plus 2 % gelatin and 

incubated overnight at 4°C. On the third day, plates were washed again with PBST and 

alkaline phosphatase-conjugated goat anti-mouse IgG1 or IgG2a (Jackson 

ImmunoResearch Laboratories, West Grove, PA) (1:1000 dilution) was added. After 

incubating for two hours, plates were washed and p-nitrophenyl phosphate (Sigma 104) 

substrate (1 mg/mL) in carbonate buffer (pH 9.3) was added to each well. Changes in 

optical density (OD) were spectrophotometrically measured at 405 nm. 

 
2.14 Statistical analysis 

Multivariate analysis, linear regression analysis and non-linear regression analysis 

was performed on DC activation data using the statistical analysis software JMP® 7 

(Cary, NC). Linear and non-linear regression models were fit to describe the effect of 

dose response on marker expression. One-way analysis of variance (ANOVA) was 

performed on individual surface markers, with Tukey pair-wise comparison post-tests 

with GraphPad Prisim 4.0 for Macintosh (GraphPad Software, La Jolla, CA). Where 

appropriate, ANOVA and Tukey post-tests were performed on T cell activation data.  
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3 Results 

3.1 Microsphere fabrication 

After microsphere fabrication by cryogenic atomization, the surface morphology 

was analyzed with SEM. The  electron photomicrographs show that poly(CPTEG) and 

poly(SA) microspheres had a smoother surface than the other compositions which is 

attributed to processing conditions and differences in polymer properties (e.g., glass-

transition temperature)(data not shown). When the size distribution was analyzed, the 

majority of the polyanhydride particles, regardless of chemistry, were below 10 µm in 

diameter. Most of the microspheres were in a size range that is reported to be readily 

phagocytosed by DCs [53].  

 

3.2 Induction of cell surface marker expression by microspheres 

After stimulation for 48 h with polymer microspheres, non-adherent and semi-

adherent DCs were harvested and stained for the surface markers CD11c, MHC II, CD40, 

CD86 and CD209 (CIRE). Multivariate analysis was performed to identify experimental 

days where microsphere treated DC were different from non-stimulated DC. Linear 

correlation analysis showed this correlation between surface marker expression and 

concentration or dose of microspheres incubated with DCs (Table 1). While the slope of 

the linear correlation line was positive and in most cases was significant (P < 0.1), the R2 

values were low. Based on these analyses, it was determined that dose accounts for 

roughly 10 to 20 percent of the variability observed between treatment groups. Linear 

correlation analysis for the effect of polymer composition (i.e., % of SA or % CPTEG in 

CPH:SA or CPTEG:CPH) showed a positive correlation with significant values for some 

polymer composition-surface marker combinations, namely, CD86 and CD209 (Table 2). 

Again, the R2 values when they were significant, were low. Thus, less than 10% of the 

differences between treatment groups were attributable to composition (% SA or % 

CPTEG). Majority of the differences between treatment groups was attributable to the 

individual day that the experiments were performed (the sum variation of DC batch 

variation, staining intensity, antibody age variation, machine settings, etc.).  
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As shown in Figure 2A, the percentage of cells expressing MHC II does not differ 

between non-stimulated, LPS- or polymer-stimulated DCs (P > 0.1). As shown in Figure 

2B, there is a significant difference between LPS stimulated group and non-stimulated 

(Bkgd) DC (P ≤ 0.01) but no differences between polymer groups at 250 µg/ml dose. 

Linear fit of dose is shown in Table 1 and linear fit of composition is summarized in 

Table 2.  

CD86 is part of the B7 family of co-stimulatory molecules and binds to CD28 on 

T cells. CD86 is up-regulated following activation of DC by microbial stimuli [54]. 

Incubation with increasing concentrations of polyanhydride microspheres increased both 

the number of DCs expressing CD86 (% CD86) and CD86 MFI (Figure 3A-B, Table 1). 

There is a significant trend toward increasing CD86 MFI with increasing CPH content in 

the CPH:SA copolymers (i.e., 50:50 > 20:80 > pSA) and for % CD86 for CPTEG:CPH 

copolymers (Table 2). 

Costimulatory molecule CD40 binds with CD40L on T cells as well as CD154 

expressed on a variety of cell types [55]. As shown in Figure 4A, stimulation of DCs with 

LPS induces increased expression of CD40 as indicated by increases in both percentage 

of positive cells and MFI. Polyanhydride microspheres also induced increased expression 

of CD40 in a dose dependent manner (Table 1). The effect of dose is more significant for 

50:50 CPH:SA and 20:80 CPH:SA than pSA, although polymer composition was not 

significant (Table 2, Figure 4B). For CPTEG:CPH microspheres, there was an interesting 

observation for 10:90 CPTEG:CPH and pCPTEG in that there was greater stimulation of 

CD40 expression by microspheres of copolymers that have the highest concentration of 

CPH (i.e., more hydrophobic) and the highest concentration of CPTEG (i.e., more 

hydrophilic).  

CD209 plays a role in pathogen uptake, DC migration, and the initial interactions 

with T cells [56]. The data shown in Figure 5A demonstrates that only a low percentage 

of cells express CD209. Expression of CD209 was very dependent on chemistry and dose 

(Table 1 and 2). The greatest surface of CD209 was observed with the bulk-eroding 

hydrophilic or aliphatic polymers (pCPTEG, PLGA and pSA) as compared to 

background or CPH:SA containing copolymers.  
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Similar experiments were performed with DCs derived from C3H, BALB/c, and 

BL6 mice with respect to induction of cell surface marker expression. In addition, there 

were no observable differences in the robustness or magnitude of responses between the 

different mouse strains in response to polymer stimulation. 

 

Table 1: Statistical summary of linear model fit to DC activation data by polymer 
composition to assess the effect of dose on surface marker expression.  
Polymer Surface Marker R2 P value 

50:50 CPH:SA % MHC II+ 0.13 0.074a 
MFI MHC II 0.34 0.002 
% CD86+ 0.07 0.114 
MFI CD86+ 0.13 0.033 
% CD40 + 0.16 0.022 
MFI CD40 0.10 0.073 
% CD209+ 0.09 0.246 
MFI CD209 0.01 0.734 

20:80CPH:SA % MHC II+ 0.27 0.371 
MFI MHC II 0.28 0.362 
% CD86+ 0.05 0.604 
MFI CD86+ 0.03 0.686 
% CD40 + 0.09 0.518 
MFI CD40 0.02 0.769 
% CD209+ Nab Na 
MFI CD209 Na Na 

pSA % MHC II+ 0.28 0.116 
MFI MHC II 0.28 0.114 
% CD86+ 0.03 0.597 
MFI CD86 0.10 0.355 
% CD40 + 0.13 0.299 
MFI CD40 0.19 0.202 
% CD209+ 0.13 0.635 
MFI CD209 0.15 0.619 

10:90 CPTEG:CPH % MHC II+ 0.00 0.864 
MFI MHC II 0.04 0.254 
% CD86+ 0.04 0.199 
MFI CD86 0.08 0.071 
% CD40 + 0.09 0.035 
MFI CD40 0.06 0.144 
% CD209+ 0.00 0.948 
MFI CD209 0.00 0.857 

20:80 CPTEG:CPH % MHC II+ 0.04 0.162 
MFI MHC II 0.03 0.228 
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Table 1: Statistical summary of linear model fit to DC activation data by polymer 
composition to assess the effect of dose on surface marker expression.  

% CD86+ 0.11 0.026 
MFI CD86 0.00 0.929 
% CD40 + 0.00 0.932 
MFI CD40 0.13 0.008 
% CD209+ 0.04 0.390 
MFI CD209 0.01 0.763 

50:50 CPTEG:CPH % MHC II+ 0.02 0.424 
MFI MHC II 0.00 0.989 
% CD86+ 0.30 <0.001 
MFI CD86 0.04 0.133 
% CD40 + 0.16 0.004 
MFI CD40 0.04 0.165 
% CD209+ 0.03 0.418 
MFI CD209 0.02 0.530 

pCPTEG % MHC II+ 0.06 0.271 
 MFI MHC II 0.01 0.683 
 % CD86+ 0.18 0.041 
 MFI CD86 0.03 0.396 
 % CD40 + 0.25 0.019 
 MFI CD40 0.09 0.181 
 % CD209+ 0.59 0.043 
 MFI CD209 0.11 0.476 
aSignificant values P ≤ 0.05 are shown bold, P ≤ 0.1 italics. bNa, no analysis available. 
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Table 2: Statistical summary of linear correlation analysis for surface marker 
expression as a function of polymer composition (% SA in CPH:SA or % CPTEG in 
CPTEG:CPH).  
Polymer Surface Marker R2 P value 

CPH:SA % MHC II+ 0.010 0.2677 
MFI MHC II 0.034 0.0365 
% CD86+ 0.096 0.0002 
MFI CD86 0.073 0.0014 
% CD40 + 0.014 0.1657 
MFI CD40 0.007 0.3333 
% CD209+ 0.092 0.0234 
MFI CD209 0.029 0.2126 

CPTEG:CPH % MHC II+ 0.012 0.1873 
MFI MHC II 0.000 0.8682 
% CD86+ 0.034 0.0188 
MFI CD86 0.001 0.7604 
% CD40 + 0.036 0.0142 
MFI CD40 <0.0001 0.9725 
% CD209+ 0.235 <0.0001 
MFI CD209 0.005 0.5812 

Significant values P ≤ 0.05 are shown bold. 
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Figure 2: Induction of MHC II surface expression by polyer microspheres. A) MHC II 
Histograms of DCs incubated with different concentrations and compositions of 
microspheres. DC was gated on live cells by PI exclusion and forward scatter-side 
scatter. DC was then sorted on CD11c expression. DCs expressing MHC II (open 
histograms) are superimposed over isotype controls (solid gray histograms). 
Concentration of polyanhydride microspheres was 60, 125, and 250 µg/mL 
corresponding to 1:3, 1:6, and 1:12 microsphere:DC ratios, respectively. One 
representative experiment out of three independent experiments shown. 
B) Mean MFI of MHC II of three independent experiments (error bars = SEM) at 250 
µg/ml concentration. Linked bars are significantly different from each other, * indicates P 
≤ 0.05; **, P ≤ 0.01. 
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Figure 3: Expression of costimulatory molecule CD86 on the surface of DCs activated 
with polymer microsopheres. A) CD86 Histograms of DCs incubated with different 
concentrations and compositions of microspheres. DC was gated on live cells by PI 
exclusion and forward scatter-side scatter. DC was then sorted on CD11c expression. 
DCs expressing CD86 (open histograms) are superimposed over isotype controls (solid 
gray histograms). Concentration of polyanhydride microspheres was 60, 125, and 250 
µg/mL corresponding to 1:3, 1:6, and 1:12 microsphere:DC ratios, respectively. One 
representative experiment out of three independent experiments shown. 
B) Mean MFI of CD86 of three independat experiments (error bars = SEM) at 250 µg/ml 
concentration. Linked bars are significantly different from each other, * indicates P ≤ 
0.05; **, P ≤ 0.01; #, P ≤ 0.001. 
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Figure 4: Induction of CD40 expression by DCs stimulated with polymer microspheres. 
A) Histogram of flow cytometric analysis performed as described in the Materials and 
Methods. DCs expressing CD40 (open histograms) are superimposed over isotype 
controls (solid gray histograms). Concentrations of polyanhydride microspheres added to 
the DCs cultures were 60, 125, or 250 µg/mL corresponding to ratios of 1:3, 1:6, and 
1:12 microspheres:DC, respectively. One representative experiment out of three 
independent experiments shown. 
B). Mean MFI of CD40 of three independat experiments (error bars = SEM) at 250 µg/ml 
concentration. Linked bars are significantly different from each other, * indicates P ≤ 
0.05; bar marked with # is significant from all others, P ≤ 0.001. 
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Figure 5: Induction of CD209 expression by DCs stimulated with polymer microspheres. 
A) Histogram of DCs that were stimulated with 250 µg/mL of microspheres. Flow 
cytometric analysis was performed as described in the Materials and Methods. Results 
depicted are representative of one experiment out of three. 
B) Mean MFI of three independat experiments (error bars = SEM) at 250 µg/mL 
concentration. Bars identified with the same letter represent significant differences 
bewteen those groups (P < 0.05). Bkgd = non-stimulated DCs. Linked bars are 
significantly different from each other, * indicates P ≤ 0.05; **, P ≤ 0.01. 
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3.3 Induction of cytokine secretion by microsphere stimulation  

The measurement of the cytokines secreted by stimulated DCs support the flow 

cytometry findings that polyanhydride microspheres are able to activate DCs in a dose 

dependent manner (Figure 6A & B). The cytokines that were secreted by DCs stimulated 

with the microspheres were IL-6 and IL-12p40. The cytokines TNFα, IL-10 and IL-4 

were also measured but their levels were below the limits of detection but were detected 

when DCs were stimulated with lipopolysaccharide, lipotecholic acid, or 

monophosphoryl-lipid A (data not shown) [57]. The dose response curves for each 

cytokine were different. Greater amounts of IL-12p40 were produced at doses of 60 or 

125 µg/mL in comparison to that induced by 250 µg/mL (Figure 6A). In contrast, 

production of IL-6 exhibited a positive linear dose response with the greatest amounts 

induced with the highest dose of polymer tested (250 µg/mL)(Figure 6B). While for most 

polymers, there was a significant effect of composition of CPH:SA effecting cytokine 

production, the R2 values are low indicating that monomer composition is only a small 

factor in the observed differences between groups (Table 3).  

 

 

 

Table 3: Statistical summary of linear fit model to CPH:SA 
and CPTEG:CPH for the effect of copolymer composition 
on cytokine release.  
 
Polymer Cytokine R2 P value 
CPH:SA IL-6 0.0298 0.1312 

IL-12p40 0.0742 0.0159 
CPTEG:CPH IL-6 0.0279 0.1180 

IL-12p40 0.0745 0.0096 
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Figure. 6: Cytokines secreted by DCs after incubation with increasing concentrations of 
polymer microspheres.  Panel A:IL-12p40, panel B: IL-6. White bars 60 µg/mL, grey 125 
µg/mL, and black 250 µg/mL. Data represented in median concentration of cytokines 
from four independent experiments. Dashed line represents the amount of cytokine 
secreted by non-stimulated cells in each experiment (1,522 pg/mL for IL-12p40 and 18 
pg/mL for IL-6). LPS was used as a positive stimulant ( > 50,000 pg/mL for IL-12p40, 
and 5,012 pg/mL for IL-6).  
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3.4 In vitro proliferation of lymphocytes by activated DCs 

In order to address the outcome of DC activation by polyanhydride microspheres, 

lymphocytes were obtained from OT I and OT II mice. These mice express a clonotypic 

TCR such that in the OT I, approximately 90% of their CD8+ T cells respond to residues 

257-264 of Ova and, in the OT II mouse, 90% of their CD4+ T cells respond to peptide 

323-339 of Ova. Unfractionated lymph node cells were mixed with DC that had been 

incubated with microspheres and ovalbumin for 8 to 12 h. Activation of the DCs with 

LPS served as a positive control and non-stimulated cultures refer to DCs incubated with 

Ova alone (i.e., no microspheres) (Figure 7). Figure 7 shows the proliferative response of 

these lymphocytes in the presence of Ova. As observed in other analyses, DCs incubated 

with pSA induced responses lower than non-stimulated cells. This suggests that the 

degradation of pSA and the acidic pH generated had detrimental effects on DC and DC-

driven T cell activation [47]. A robust proliferative response was observed when CD8+ 

OT I lymphocytes were incubated with DCs that had been stimulated with PLGA or 

CPTEG containing microspheres. In contrast, a modest 2-fold increase in lymphocyte 

proliferation was observed when OT II CD4+ T cells were incubated with DCs stimulated 

with 50:50 CPH:SA while there was no discernable enhanced response induced by PLGA 

or CPTEG. Dendritic cells stimulated with LPS induced the greatest proliferative for the 

CD4+ OT II lymphocytes.  
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Figure 7: Proliferation of ovalbumin-specific transgenic T cells co-cultured with 
microsphere stimulated DCs. DCs were stimulated with 100 µg/mL ovalbumin and 250 
µg/mL of the indicated microsphere compositions for 8-12 h then lymphocytes recovered 
from OT I (CD8) and OT II (CD4) mice were added to the stimulated DCs. Cells were 
incubated for 96 h at which time 3H-thymidine was added and the cells were harvested 18 
h later. No Stim wells received Ova and DCs but no microspheres or other stimulant. One 
representative experiment of three independent experiments is shown. Error bars = SEM 
of replicate wells.  
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3.5 Induction of immune response in vivo with polymer adjuvants 

In order to evaluate the effects of microsphere as adjuvants, an in vivo model of 

early events in T cell activation and adaptive immune induction was used. CD4+ T cells 

from DO11.10 mice were infused into BALB/c recipients. At the same time, the 

recipients were immunized with 100 µg Ova along with 500 µg of 20:80 CPH:SA, 20:80 

CPTEG:CPH, or PLGA microspheres as an adjuvant. 5 days later, mice were euthanized 

and draining lymph nodes evaluated for evidence of immune activation. Saline treated 

mice received T cells but no Ova. 

CD4+ T cells from DO11.10 mice expressing the Ova Tg TCR can be identified 

with the monoclonal antibody KJ1.26. Data depicted in Figure 9 is the mean percentage 

of CD4+ cells positive for KJ1.26 (n = 3-4 mice/group). The percentage of CD4+ 

lymphocytes positive for KJ1.26+ increased in all mice receiving Ova. A greater increase 

was seen in animals also receiving an adjuvant along with the Ova.   

In order to evaluate the activation state of antigen specific T cell population in the 

draining lymph node, cells were gated on CD4 and KJ1.26 and evaluated for CD44 and 

CD62L expression. As T cells move from naïve to effector/memory populations, they 

become positive for CD44, an integrin receptor, and lose surface expression of CD62L, a 

homing marker. Nearly all CD4+KJ1.26+cells are CD44hi, but fewer cells (as a 

percentage) have matured into the memory phenotype (CD62Llo) (Figure 9 and Figure 

10).  
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Figure 8: Percentage KJ1.26+ T cells in the lymph nodes of BALB/c recipient mice 5 
days post-immunization. On day zero, BALB/c mice received 1 x 106 CD4+ T cells from 
DO11.10 and were immunized with one of the following treatments: saline, ovalbumin 
(Ova) (100 µg) alone, Ova plus 20:80 CPH:SA microspheres (0.5 mg), Ova plus 20:80 
CPTEG:CPH (0.5 mg) microspheres, Ova plus PLGA microspheres (0.5 mg), or Ova 
plus LPS (25 µg). Flow cytometric analysis was performed as described in Materials and 
Methods. Total bar represents total percentage of KJ1.26+ cells which were > 90% 
CD44+. The lower (black) portion depicts percentage of KJ1.26+ cells that were CD44+ 
and CD62Llo. Histograms identified with the same letter are not significantly different 
from each other but are different from bars marked with a different letter (P < 0.05, n=3-
5). The data presented is representative of three independent experiments. Error bar is 
SEM of KJ1.26+ cells. 
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Figure 9: Dot plot of KJ1.26+ CD4+ T cells recovered from the draining lymph nodes of 
mice immunized with 100 µg ovalbumin and microsphere adjuvants. Cells were gated on 
both CD4+ and KJ1.26+. Percentages of the right two quadrants are given in the upper and 
lower right corners. A representative example of each treatment group is shown. n = 3 to 
5 mice per group. 

 

To address the induction of the immune response induced by polymer adjuvants, a 

portion of the lymphocytes recovered from mice described above were stimulated ex vivo 

with 100 µg ovalbumin and cultured in vitro for three days. Supernatants from these 

cultures was collected and assayed for the presence of IL-2, IL-4, IL-5, IL-6, IL-10, IL-

12p40, and IFN-γ. Results are depicted in Figure 11. IL-4, IL-5, IL-6, and IL-12p40 were 

below assay detection limits. Very little IL-2, IL-10, and IFN-γ was detected from cells 

from mice receiving LPS as an adjuvant, whereas cells recovered from mice receiving 

20:80 CPH:SA, 20:80 CPTEG:CPH, or PLGA induced Ova-specific T cell recall 

responses as measured by the production of IL-2, IL-10 and/or IFN-γ.  



 
 

129

IL-2

0

100

200

300

400

500

600

Ova
-on

ly

CPH:S
A

CPTEG:C
PH

PLG
A

LP
S

pg
/m

l

A)

IL-10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ova
-on

ly

CPH:S
A

CPTEG:C
PH

PLG
A

LP
S

pg
/m

l

B)

IFN-γ

0
20
40
60
80

100
120
140
160
180
200

Ova
-on

ly

CPH:S
A

CPTEG:C
PH

PLG
A

LP
S

pg
/m

l

C)

 
 
Figure 10: Antigen-specific cytokine responses of lymphocytes recovered from mice 
vaccinated with ovalbumin in the presence of microspheres. Draining lymph nodes from 
mice receiving 1x106 DO11.10 CD4+ T cells (Ova responsive), 100 µg ovalbumin and 
20:80 CPH:SA microspheres (0.5 mg), 20:80 CPTEG:CPH microspheres (0.5 mg), 
PLGA (0.5 mg) or LPS (25 µg) were excised 5 days after transfer. Lymphocytes were 
cultured with 100 µg Ova for 3 days and culture supernatants were analyzed for 
cytokines. Data represents one experiment of three, 4-6 animals per group, error bars = 
SEM. 
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3.6 Antibody production in adjuvanted mice 

To further address adjuvant activity of the polyanhydride microspheres, a separate 

group of mice were immunized as above, receiving Tg DO11.10 T cells and 100 µg 

ovalbumin in the combination with 20:80 CPH:SA, 20:80 CPTEG:CPH, PLGA, LPS, or 

saline (i.e., Ova alone). Serum was collected 21 days after transfer/immunization. IgG1 

and IgG2a serum antibody titers were evaluated by ELISA (Figure 12A and B). When 

IgG2a titers were evaluated, overall the magnitude of the IgG2a titers was much lower 

than IgG1 titers. The only two groups showing any appreciable IgG2a anti-Ova responses 

was serum collected from mice treated with LPS or CPH:SA.   

 
 

 
 

 
 
 
 
 

 
 
 
Figure 12: Ovalbumin-specific serum antibody response of mice 21 days after receiving 
1 x 106 DO11.10 CD4+ T cells.  Mice were immunized with 100 µg ovalbumin and the 
response was adjuvanted with 20:80 CPH:SA microspheres (0.5 mg), 20:80 CPTEG:CPH 
microspheres (0.5 mg), PLGA (0.5 mg), LPS (25 µg), or saline. Data presented is mean 
titer of individual mice from three experiments (10-13 mice per group) error bars = SEM. 
A) IgG1 anti-Ova antibody response. B) IgG2a anti-Ova antibody response. Boxes on y-
axis highlight the same magnitude on each panel. 
 

4 Discussion 

There is pressing need for novel adjuvants to improve vaccine efficacy and direct 

the immune response against a particular disease. The rational design of new adjuvants 

involves developing an in-depth understanding of the complex function of the 

communication between the innate and adaptive immune systems. These studies 

demonstrated that polyanhydride microspheres possess characteristics/properties that can 

be manipulated making them potential promising candidates as vaccine adjuvants. One 
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important attribute of these biodegradable polymers is that even small amounts of 

microspheres were capable of significantly activating murine DCs. The ratios (1:3-1:10) 

of polyanhydride microspheres to DCs used in these studies were significantly lower 

compared to previous studies employing polyester microspheres [53, 58, 59]. In 

previously published studies, the polyester microspheres were used at ratios that were 

more than 50 times the ratio used in the current study [58]. In addition, MPLA was often 

added to the polyester microspheres when stimulating immune cells [53]. In this study, a 

head-to-head comparison of two polyanhydrides and polyester chemistries was made 

with fairly comparable DC activation abilities but marked differences when DC-T cell or 

in vivo interactions were measured. The ability of a low dose of the polyanhydride 

microspheres to activate APCs is a very important characteristic to take into 

consideration when designing vaccines, as the ability to induce enhanced immune 

responses with a minimum of adjuvant would be a desirable outcome (i.e., cost 

effectiveness). Similar DC activation experiments were performed using DCs derived 

from C3H/HeNHsd (C3H), BALB/c, or C57BL/6 (BL6) mice with respect to induction of 

cell surface marker expression and there were no observable differences in the robustness 

or magnitude of responses of DCs derived from the different mouse strains. This is 

important to note as the OT I/OT II and DO11.10 mouse models are in different genetic 

backgrounds.  

Overall, the results indicate that there was differential activation as shown by 

enhanced surface expression of MHC II and the co-stimulatory molecules CD86, CD40, 

and CD209 by CPH:SA and CPTEG:CPH containing microspheres, suggesting that 

adjuvant chemistry plays a major role in the activation of DCs. CPTEG containing 

compounds are more hydrophilic than SA containing compound, with 50:50CPH:SA 

being the most hydrophobic of all compositions. Hydrophobicity relates not only to 

protein interactions but also erosion kinetics. It is very interesting to note that while 

CPTEG:CPH copolymers induced the greatest stimulation of surface marker expression, 

the CPH:SA (namely, 50:50 CPH:SA) enhanced a greater proliferative response of CD4+ 

T cells responses both in vitro and in vivo. These studies clearly show that in terms of 

cytokine secretion and surface marker expression, CPTEG containing compounds are 
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slightly superior to CPH:SA or PLGA microspheres at activating DCs. Furthermore, 

CPTEG containing microspheres were the only formulation to promote the expression of 

CD209 suggesting different mechanisms of particle recognition and uptake. This being 

said, there are other properties (erosion type and protein interactions) that may be useful 

in CPH:SA containing microspheres. While CPTEG:CPH copolymers enhanced surface 

marker expression (Figures 2-6), CPH:SA copolymers enhanced CD4+ responses 

(Figures 7 & 12). 

It has been recently shown that polyanhydride chemistry affects protein release 

and stability [48]. In these previous studies, the amphiphilic, high CPTEG-containing 

microspheres provided for greater protein stability. This observation is in accordance 

with the fact that carriers containing both hydrophobic and hydrophilic entities may 

provide a gentler environment for proteins [60, 61]. The amphiphilic nature of these 

materials also change their erosion properties from surface eroding (e.g. 50:50 CPH:SA) 

to bulk eroding, like PLGA.  

Since it is known that a small number of DCs are sufficient to induce strong 

immune responses [62], all the polyanhydride chemistries studied here still have potential 

as adjuvants. A small amount of ligand, originating from pathogens or damaged cells 

trigger activation in innate immune cells through TLR, C-type lectin receptors and other 

pathogen recognition receptors [63]. Matzinger proposed that hydrophobic molecules 

may trigger these pattern (or pathogen) pattern recognition receptors [63]. The 

polyanhydrides included in these studies are relatively hydrophobic, especially when 

compared to sugars and lipids, it is likely that the hydrophobic nature of these 

microspheres activated the DCs by triggering a pattern recognition receptor. As CPH:SA 

and CPTEG:CPH induced differing levels of surface marker expression and cytokine 

secretion, it is likely that the two chemistries may trigger intracellular signaling by 

different receptors and/or different pathways which result in the different responses 

observed. An optimal vaccine formulation might consist of a cocktail of microspheres of 

different compositions, with different release profiles that optimizes antigen stability over 

longer periods of time and at the same time enhances the activation and maturation of 

DCs leading to the development of the preferred immune response (Th1, Th2 or Th17). 
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The specific cytokine profile, in conjunction with surface marker expression, can 

influence the bias and magnitude of an immune response. The secretion of IL-12p40 and 

the absence of IL-4 suggest that polyanhydride chemistries preferentially induce a Th1-

type response. As the mere activation of DCs is not an absolute indicator of an effective 

immune response, the further evaluation of the activation of other immune effector cells 

(e.g., T and B cells) is required.  

In summary, this study showed that these biodegradable polymers have promising 

characteristics for the development of vaccine adjuvants. The three major functions of an 

adjuvant include: (1) providing a “depot” or reservoir for the antigen for a slow release; 

(2) enhancing antigen phagocytosis by APCs; and (3) modulating and enhancing the 

immune response against the particular antigen alone. Previous work has evaluated the 

depot potential through protein stabilization and release of antigen after short-term 

storage (48). The studies presented here show that the polyanhydride microspheres 

activate APCs by modulating cell surface marker expression, cytokine secretion, and 

enhancing the immune response to a co-delivered antigen.  

 

5 Conclusions 

Despite the advantages of enhancing and possibly modulating immunogenicity by 

using polymeric microspheres as vaccine carriers, no vaccines based on polymeric 

carriers have been approved for human use to date. The ability of polyanhydride 

microspheres to activate murine DCs in vitro and contribute to immune activation in 

vivo, in conjunction with their biocompatibility and potential for enhanced protein 

stability, demonstrates that these are promising candidates for the development of 

vaccines. In addition, the studies described here clearly point out the role of polymer 

chemistry in APC activation and the disconnect between experimental models employing 

a single cell type and the complex interaction within the mammalian host. Regardless, 

these studies lay the foundation for further investigation into the molecular and cellular 

mechanisms responsible for this effect. 
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Abstract  

There is a need to develop adjuvants that can stabilize multi-epitope vaccine 

antigens. Biodegradable polyanhydrides based on the aliphatic sebacic acid (SA), the 

aromatic 1,6-bis(p-carboxyphenoxy)hexane (CPH), and the amphiphilic 1,8-bis(p-

carboxyphenoxy)-3,6-dioxaoctane (CPTEG) have exhibited characteristics that make for 

promising protein-based vaccine adjuvants. The current study evaluates the immune 

response to ovalbumin (Ova) encapsulated into 20:80 CPH:SA and 50:50 CPH:SA 

microspheres fabricated by two different methods (S/O/O and cryogenic atomization) 

using three different mouse strains (BALB/c, C3H/HeN, and C57BL/6). Protein stability 

was effected by choice of polymer chemistry and fabrication method In addition, the 

magnitude of antigen-specific immune responsiveness to the encapsulated Ova was 

mouse strain dependent. While only modest immune responses were observed in BALB/c 

and C3H/HeN mice given a single dose of polymer encapsulated Ova, a greater response 
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was seen after the mice were given a small antigenic challenge or boost five days prior to 

evaluation of antibody responses and lymphocyte proliferation. The immunological 

response of BALB/c mice was more susceptible to protein instability induced by 

microsphere fabrication method (S/O/O vs. cryogenic atomization). Microspheres 

comprised of 50:50 CPTEG:CPH enhanced the stability of encapsulated Ova and 

enhanced the immune response to encapsulated Ova; however, immunization with this 

copolymer formulation was only tested in C57BL/6 mice. It is hypothesized that 

degradation of Ova observed in other studies with CPH:SA co-polymers results in lost 

epitopes of a weak immunogen. Protein stability must be considered when designing 

vaccine adjuvant and delivery systems for which biodegradable polyanhydrides have 

been proposed, especially in the context of designing multi-epitope vaccines that would 

need to be efficacious in a non-homogenous MHC haplotype population.  

 
1 Introduction 

According to the NIH, infectious disease remains the second leading cause of 

death worldwide [1]. Vaccination is the most cost effective means for the prevention of 

disease. Many new vaccines under development consist of rationally designed 

recombinant proteins that are often relatively poor immunogens. Thus, adjuvants are 

employed in order to enhance the immune response (e.g., antibody titer, T cell memory) 

to these recombinant antigens. Currently, licensed adjuvants (e.g., alum or MPLA) induce 

effective humoral immunity but are poor inducers of cell-mediated immunity (CMI). 

Thus, there is a need to develop adjuvants that will enhance both. Recent studies 

demonstrate that biodegradable microspheres based on novel polyanhydrides have the 

properties and characteristics that make them suitable carriers for vaccine delivery [2-7]. 

These characteristics include an amphiphilic environment for protein stabilization, 

enhanced adjuvant effect (controlled by polymer chemistry), immunomodulatory 

capabilities (Th1/Th2 balance), and lower monomer solubility in water (leading to micro-

environments with a more suitable pH) [2-7]. Previous immunization studies in mice 

evaluated the immune response against tetanus toxoid (TT) released from polyanhydride 

microspheres [5]. Upon release from the microspheres, the TT maintained its 
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immunogenicity and antigenicity. In addition, the microspheres provided adjuvant-like 

activity and a prolonged exposure to TT that was sufficient to induce high titer anti-TT 

antibody responses following a single administration [3, 5]. Additionally, a shift in the 

induction of antigen-specific IgG1-IgG2a antibody isotypes was observed in a polymer 

chemistry-dependent manner [5].  

The ability of a substance to induce antigen-specific T cells of the desired 

phenotype and to maintain a sufficient immune response to provide protective immunity 

is crucial to the rational design of vaccines. The purpose of this study was to evaluate the 

in vivo induction of an immune response to ovalbumin (Ova) encapsulated in novel 

polyanhydride microspheres.  

 

2 Materials and Methods 

2.1 Materials and polymer synthesis 

The polyanhydride chemistries used in this study are based on the aliphatic 

sebacic acid (SA), the aromatic 1,6-bis(p-carboxyphenoxy)hexane (CPH), and the 

amphiphilic 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) (Figure 1). The 

chemicals needed for the synthesis of CPH and CPTEG monomers include: 4-p-

hydroxybenzoic acid, 1,6-dibromohexane, 1-methyl-2-pyrrolidinone, and tri-ethylene 

glycol, and sebacic acid (99%) were purchased from Sigma Aldrich (St Louis, MO); 4-p-

fluorobenzonitrile was obtained from Apollo Scientific (Cheshire, UK); potassium 

carbonate, dimethyl formamide, toluene, sulfuric acid, acetic acid, acetonitrile, acetic 

anhydride, methylene chloride, and petroleum ether were purchased from Fisher 

Scientific (Fairlawn, NJ). CPH:SA and CPTEG:CPH copolymers were synthesized by 

melt polycondensation as described previously [8]. The purity and degree of 

polymerization of the polymers was analyzed using 1H NMR spectra obtained from a 

Varian VXR-300 MHz NMR spectrometer. 
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Figure 1: Chemical structures of A) aliphatic poly-sebacic acid (SA), B) aromatic poly-
1,6-bis(p-carboxyphenoxy)hexane (CPH), and C) amphiphilic poly1,8-bis(p-
carboxyphenoxy)-3,6-dioxaoctane (CPTEG). m and n represents degree of 
polimerization. Microspheres were made from copolymers of CPH and SA or CPTEG 
and CPH in molar ratios of 20% CPH and 80% SA (20:80) or 50% CPH and 50% SA 
(50:50) or 50% CPH and 50% CPTEG (50:50 CPTEG). 
 
2.2 Endotoxin removal from Ova  

Ovalbumin to be used in antigen specific studies was tested for endotoxin levels. 

Two mg/mL solutions of Ova were prepared in endotoxin free water and assayed with 

Limulus Amebocyte Lysate (LAL) QCL-1000 test kit (Cambrex, Walkersville, MD). 

LAL was performed according to manufacturer’s instructions. Ovalbumin, as purchased, 

contained endotoxin in amounts > 100,000 EU/mg protein. To remove contaminating 

endotoxin, AffinityPak Dextoxi-Gel endotoxin removing gel columns (Thermo Scientific, 

Rockford, IL) were used according to manufacturer’s instructions. Resulting Ova 

contained less than 10 EU/mg which equates to roughly 1 ng endotoxin equivalent per 

mg protein. Endotoxin-free Ova was lyophilized and stored at -20ºC until needed. 

 
2.3 Microsphere fabrication 

2.3.1 Solid-oil-oil emulsion  

Ovalbumin loaded microspheres were fabricated using a modified solid/oil/oil 

(s/o/o) method [3, 9, 10]. Briefly, lyophilized Ova (2-3 mg) were suspended in a solution 

of 100 mg of 20:80 or 50:50 CPH:SA copolymer dissolved in 2 mL of methylene 
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chloride to produce the first emulsion. The suspension was obtained by homogenizing the 

solution at 20,000 rpm for 3 minutes using a Tissue-TearorTM. The second emulsion was 

produced by adding 3 mL of Dow Corning oil 550 saturated with methylene chloride. 

The mixture was poured into 200 mL of ice cold heptane and stirred for 2 h at 300 rpm. 

Microspheres were collected by filtration and dried under vacuum. Blank microspheres 

were prepared by the same method, omitting the Ova in the first emulsion.  

 

2.3.2 Cryogenic atomization 

Cryogenic atomization (CA) method has also been shown to provide for high 

encapsulation efficiencies of the desired immunogen [6, 7]. As above, microspheres of 

20:80 and 50:50 CPH:SA and 50:50 CPTEG:CPH compositions were prepared using 

procedures as previously reported [3, 11]. Following suspension of the lyophilized Ova 

(2-3 mg) in the polymer/methylene chloride solution, solution was stirred at 10,000 rpm 

for 1 min using a Tissue-TearorTM. The solution was pumped with a syringe pump 

through an 8700-1200 MS ultrasonic atomizing nozzle (Sono Tek Corporation, Milton, 

NY) into 200 mL of frozen ethanol overlaid with ~100 mL of liquid nitrogen. After 

atomization, the resulting polymer/protein solution was stored at -80°C for three days to 

allow the methylene chloride to be extracted and the resulting microspheres were 

collected by filtration and dried under vacuum. Microsphere morphology was 

characterized by scanning electron microscopy and particle size distribution will be 

obtained from SEM images (250-500x) using analySIS® software (Soft Imaging System 

Corp, Lakewood, CO). 

 
2.4 Mice  

Female C3H/HeNHsd (C3H) and C57BL/6 (BL6) mice were purchased from 

Harlan Sprague Dawley. Male and female BALB/c mice, at least 6 weeks of age, were 

obtained from the breeding colony maintained by the Hybridoma Facility at Iowa State 

University (Ames, IA). All of the mice were housed under specific pathogen-free 

conditions where all bedding, caging, water, and feed were sterilized prior to use.  
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Animal procedures were conducted with the approval of the Iowa State University 

Institutional Animal Care and Use Committee. 

 

2.5 Immunizations and blood collection 

Mice were immunized in the right hind leg (IM) with 0.5 mg of microspheres 

(20:80 CPH:SA Ova-loaded, 50:50 CPH:SA Ova-loaded, 20:80 CPH:SA-blank, 50:50 

CPH:SA-blank or 50:50 CPTEG:CPH Ova-loaded) suspended in pyrogen-free saline. 

Microspheres were sonicated briefly to disperse clumps prior to immunization using a 23 

gauge (or smaller) needle. A total volume of 100 µL was administered into the right 

quadriceps. Mice immunized with Ova alone received 25 µg Ova in 100 µL pyrogen-free 

saline administered with 26 gauge needles into the right quadriceps. Control animals 

received 100 µL saline alone. Blood samples were collected from the left saphenous vein 

prior to immunization and every two weeks thereafter. Serum was collected by 

centrifugation and stored at -20°C until assayed for Ova-specific antibody by ELISA.  

At twelve weeks post immunization (PI), some animals received a booster dose 

consisting of 25 µg Ova in 100 µL saline IM. This boost dose was given 5 days prior to 

euthanization.  

 

2.6 Culture and in vitro restimulation of lymphocytes  

Twelve weeks following immunization, lymph nodes draining the immunization 

site (right popliteal and inguinal) were excised and single cell suspensions prepared. Cells 

were counted and resuspended at 2.5 x 106 cells/mL in complete culture medium (RPMI 

1640 supplemented with 2% essential amino acids (Mediatech, Herndon, VA), 1% non-

essential amino acids (Mediatech), 100 mM sodium pyruvate (Mediatech), 25 mM 

HEPES buffer (Mediatech), 100 units/mL penicillin, 0.1 mg/mL streptomycin 

(Mediatech), 0.05 mg/mL gentamicin (Sigma), 100 mM l-glutamine (Mediatech), 5 x 105 

M 2-mercaptoethanol (Sigma), 2.5% heat inactivated fetal bovine serum (FBS) (Valley 

Biomedical, Winchester, VA)). Separate well containing lymphocytes were incubated 

with either concanavalin A (ConA) (Sigma) (1 µg/mL), Ova (50 µg/mL) or medium 

alone. Cells were incubated at 37°C in 5% CO2 in air. Culture supernatants were 
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collected at 72 h and frozen for later cytokine analysis. Medium was replaced with fresh 

complete culture medium. 0.5 μCi of methyl-[3H]-thymidine (specific activity 6.7 Ci 

mmole-1, Amersham Life Science, Arlington Heights, IL) was added to each well and 

incubated for additional 18 h. Well contents were harvested onto glass fiber filters and 

the incorporated radioactivity was measured using liquid scintillation counter. The assays 

were performed in triplicate and data are presented as mean counts per minute of 

triplicate wells. 

 

2.7 Cytokine assay 

Cytokines IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p40, IL-17a and IFN-γ were 

assayed from cell free supernatants collected from lymphocytes cultured as described 

above. Supernatants were collected at 72 h after in vitro re-stimulation with antigen and 

stored at -20°C until assayed using Luminex® Multiplex assay (Austin, TX).  

 

2.8 Enzyme-linked immunosorbent assay (ELISA) 

Serum samples collected from mice prior to immunization and every two weeks 

following immunization were tested for Ova-specific antibodies. Costar brand high 

binding ELISA plates (Catalog # 3590, EIA/RIA high binding) were coated overnight 

with 5 µg/mL Ova. Plates were washed with phosphate buffered saline (PBS, pH 7.4) 

containing 0.5% Tween 20 (PBST) and blocked for two hours with PBST+ 2% gelatin 

(Difco, catalog # 214340). Plates were washed and individual serum samples were 

serially diluted in PBST and incubated overnight at 4°C. On the third day, plates were 

washed again with PBST and alkaline phosphatase-conjugated goat anti-mouse IgG 

(H&L), IgG1, IgG2a or IgG2c (Jackson ImmunoResearch Laboratories, West Grove, PA 

for reagents to detect serum antibody from BL6 and BALB/c mice, or Southern 

Biotechnology Associates, Birmingham, AL to detect serum antibody from C3H mice) 

(1:1000 dilution) was added. After incubating for two hours, plates were washed and p-

nitrophenyl phosphate (Sigma 104) substrate (1 mg/mL) in carbonate buffer (pH 9.3) was 

added to each well. Changes in optical density (OD) were spectrophotometrically 

measured at 405 nm. 
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2.9 Statistical analysis 

One-way analysis of variance (ANOVA) was performed on experimental data 

sets, with Tukey pair-wise comparison post-tests using GraphPad Prisim 4.0 for 

Macintosh (GraphPad Software, La Jolla, CA).  

 

3 Results 

3.1 Twelve week immunization in BALB/c and C3H with Ova-loaded microspheres 

prepared by S/O/O. 

In order to evaluate the ability of Ova-loaded microspheres to induce an antigen-

specific immune response, mice received a single immunization dose as described in 

Materials and Methods. At twelve weeks PI, half of the animals received a 25 µg 

antigenic challenge (i.e., booster dose). Figures 2, 3, and 4 depict data from BALB/c 

mice, Figures 5, 6, and 7 depict data from C3H mice, all receiving 50:50 CPH:SA or 

20:80 CPH:SA Ova-loaded microspheres fabricated using the S/O/O method. Figure 2 

and 5 show the total antibody specific for Ova as measured over time. Figure 3 and 6 

depict the isotype specific antibodies to Ova at 12 weeks. Figure 4 and 7 depict the 

antigen specific proliferation of lymphocytes recovered from these mice at 12 weeks PI. 

The ConA-induced proliferative simulation index was 10 to 30 times that of background 

or non-simulated responses (data not shown). After 3 days re-stimulation with Ova, cell 

free supernatants were collected from cells recovered from the C3H mice and analyzed 

for antigen-specific cytokines released upon restimulation . Cytokines IL-4 and IL-6 were 

below detectable limits. IFN-γ and IL-12p40 were secreted by cells stimulated with ConA 

, but there was no demonstrable secretion of Ova-induced  T cell cytokines by cells 

recovered from the mice immunized with the Ova-loaded microspheres (Data not shown). 
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Figure 2: Ovalbumin-specific serum antibody (IgG, H&L) response of BALB/c mice 
receiving Ova-loaded CPH:SA microspheres fabricated by S/O/O method, with and 
without Ova boost (25 µg Ova) given 5 days prior to necropsy. Mice were immunized 
with the noted Ova-loaded CPH:SA microsphere formulations, 25 µg soluble Ova, or 
saline alone. Mice received a single immunization at week 0 (w0) and samples collected 
at intervals over 12 weeks (w12). ELISA was performed as described in Materials and 
Methods. Data is presented as the mean + SEM titer of serum samples from five mice per 
group. Error bars represent the standard error of the mean. 
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Figure 3: Isotype specific serum antibody to ovalbumin from BALB/c mice receiving 
CPH:SA Ova-loaded microspheres fabricated by S/O/O method, with and without boost 
(25 µg Ova) 5 days prior to necropsy. ELISA performed as described in Materials and 
Methods. Data presented is mean optical density (O.D.) at 1:400 dilution of sera collected 
at 12 weeks after a single immunization, error bars = SEM (n = 5) 
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Figure 4: Induction of antigen-specific lymphocyte proliferation in cells recovered from 
BALB/c mice receiving Ova-loaded CPH:SA microspheres fabricated using S/O/O. At 
12 weeks post-immunization, the proliferative response of lymphocytes recovered from 
the draining lymph was evaluated. Specifically, the treatment groups consisted of mice 
that had been immunized with Ova-loaded microspheres, soluble ovalbumin (Ova), or 
saline. Half of the mice in each group received 25 µg Ova 5 days prior to necropsy 
(Boost). Single cell suspensions of lymphocytes were stimulated with 50 µg/ml Ova in 
vitro for 72 h at which time 3H-thymidine was added and the cultures were incubated for 
another 18h. Stimulation index was calculated from counts per minute of Ova-stimulated 
cells divided by the counts per minute of unstimulated cells. Data is presented as the 
mean stimulation index + SEM (n=5). Linked bars with indicate statically significant 
difference between groups, * indicates P ≤ 0.05. 
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Figure 5: Ovalbumin-specific serum antibody (IgG, H&L) response of C3H mice 
receiving Ova-loaded CPH:SA microspheres fabricated by S/O/O method, with and 
without boost (25 µg Ova) 5 days prior to necropsy. Mice were immunized with Ova-
loaded CPH:SA microspheres, 25 µg soluble Ova, or saline alone. Mice received a single 
immunization at week 0 (w0) and samples collected at intervals over 12 weeks (w12). 
ELISA performed as described in Materials and Methods. Data is presented as the mean 
+ SEM titer of serum samples from five mice per group. Error bars represent the standard 
error of the mean. 
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

50:50ova 50:50ova-
Boost

20:80ova 20:80ova-
Boost

Ova Ova-Boost Saline Saline-
Boost

O
.D

. a
t 1

:4
00

 d
il.

IgG1
IgG2a

 
Figure 6: Isotype specific serum antibody to ovalbumin from C3H mice receiving Ova-
loaded CPH:SA microspheres (0.5 mg microspheres, 25 μg Ova) fabricated by S/O/O 
method, with and without boost (25 µg Ova) five days prior to necropsy. ELISA 
performed as described in Materials and Methods. Data is presented as the mean + SEM 
optical density (O.D.) at 1:400 dilution of sera collected at 12 weeks following a single 
immunization.(n = 5) 
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Figure 7: Induction of antigen-specific lymphocyte proliferation from cells recovered 
from C3H mice receiving Ova-loaded CPH:SA microspheres fabricated using S/O/O. At 
12 weeks post-immunization, the proliferative response of lymphocytes recovered from 
the draining lymph was evaluated. Specifically, the treatment groups consisted of mice 
that had been immunized with Ova-loaded microspheres, soluble ovalbumin (Ova), or 
saline. Half of the mice in each group received 25 µg Ova 5 days prior to necropsy 
(Boost). Single cell suspensions of lymphocytes were stimulated with 50 µg/ml Ova in 
vitro for 72 h at which time 3H-thymidine was added and the cultures were incubated for 
another 18h. Stimulation index was calculated from counts per minute of Ova-stimulated 
cells divided by the counts per minute of unstimulated cells. Data is presented as the 
mean stimulation index + SEM (n=5). # indicates group mean is statically significant 
from other groups, P ≤ 0.001. 
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In addition to antigen-loaded microspheres, for each strain (BALB/c and C3H) 

there were groups of mice that received blank (no-antigen) microspheres of each polymer 

formulation and these mice served as adjuvant controls. Consistently, no detectable 

antigen-specific immune response (antibody or proliferation) was observed in these 

control treatment groups (data not shown).  

 
3.2 Immunization in BALB/c, C3H/HeN, and C57BL/6 with Ova-loaded 

microspheres prepared by cryogenic atomization.  

In order to evaluate the effect of fabrication method on the induction of the 

immune response, mice were immunized with Ova-loaded microspheres that had been 

prepared by the CA method as described in Materials and Methods. At twelve weeks PI, 

half of the animals received a 25 µg antigenic boost. Figures 8, 9, and 10 depict data from 

BALB/c mice, Figures 11, 12, and 13 depict data from C3H mice, and Figure 14 depicts 

data from BL6 mice, all receiving 50:50 CPH:SA or 20:80 CPH:SA microspheres loaded 

with Ova. In the studies using BL6 mice, induction of Ova-specific antibody responses 

by 50:50 CPTEG:CPH microspheres loaded with Ova were also evaluated. Figure 8 and 

11 show the total Ova-specific antibody response as measured over time. Figure 9, 12, 

and 14 depict the isotype specific antibodies to Ova at 12 weeks PI. Figure 10 and 13 

depict the antigen-specific proliferation of lymphocytes recovered from these mice, 12 

weeks PI. The ConA-induced proliferative simulation index was 5 to 20 times 

background or non-simulated response (data not shown). After 3 days of in vitro re-

stimulation with Ova, cell free supernatants were collected from cells recovered from 

spleen and lymph node of the BL6 mice and analyzed for cytokine release. Cytokines IL-

4, IL-6, and IL-17a were below detectable limits. IL-2, IL-12p40, and IFN-γ were 

secreted when cells were stimulated with ConA. IL-5 and IL-10 were secreted from 

lymph node cells restimulated with Ova; however, cytokine secretion was greater from 

cells recovered from the spleen of the immunized mice. There were no detectable 

differences in the induction of IL-12p40 or IFN-γ secretion when comparing the 

responses between Ova-immunized and sham immunized animals (data not shown).  
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Figure 8: Ovalbumin-specific serum antibody (IgG, H&L) response of BALB/c mice 
receiving Ova-loaded CPH:SA microspheres fabricated by CA, with and without boost 
(25 µg Ova) 5 days prior to necropsy. Mice were immunized with Ova-loaded CPH:SA 
microspheres, 25 µg soluble Ova, or saline alone. Mice received a single immunization at 
week 0 (w0) and samples collected at intervals over 12 weeks (w12). ELISA performed 
as described in Materials and Methods. Data is presented as the mean + SEM titer of 
serum samples from 3-4 mice per group. Error bars represent the standard error of the 
mean. 
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Figure 9: Isotype specific serum antibody to ovalbumin from BALB/c mice receiving 
Ova-loaded CPH:SA microspheres fabricated by CA, with and without boost (25 µg Ova) 
5 days prior to necropsy. ELISA performed as described in Materials and Methods. Data 
presented is mean + SEM of the optical density (O.D.) at 1:400 dilution of sera (n = 3-4). 
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Figure 10: Induction of antigen-specific lymphocyte proliferation in cells recovered from 
BALB/c mice receiving Ova-loaded CPH:SA microspheres fabricated using CA. At 12 
weeks post-immunization, the proliferative response of lymphocytes recovered from the 
draining lymph was evaluated. Specifically, the treatment groups consisted of mice that 
had been immunized with Ova-loaded microspheres, soluble ovalbumin (Ova), or saline. 
Half of the mice in each group received 25 µg Ova 5 days prior to necropsy (Boost). 
Single cell suspensions of lymphocytes were stimulated with 50 µg/ml Ova in vitro for 
72 h at which time 3H-thymidine was added and the cultures were incubated for another 
18 h. Stimulation index was calculated from counts per minute of Ova-stimulated cells 
divided by the counts per minute of unstimulated cells. Data is presented as the mean 
stimulation index + SEM (n = 3-4). Linked bars indicate statistically significant 
difference in the group means, * indicates P ≤ 0.05, ** indicates P ≤ 0.01, and # indicates 
P ≤ 0.001. 
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Figure 11: Ovalbumin-specific serum antibody (IgG, H&L) response of C3H mice 
receiving Ova-loaded CPH:SA microspheres fabricated by CA, with and without boost 
(25 µg Ova) 5 days prior to necropsy. Mice were immunized with Ova-loaded CPH:SA 
microspheres, 25 µg soluble Ova, or saline alone. Mice received a single immunization at 
week 0 (w0) and samples collected at intervals over 12 weeks (w12). ELISA performed 
as described in Materials and Methods. Data is presented as the mean + SEM titer of 
serum samples from 3-4 mice per group.  Error bars represent the standard error of the 
mean. 
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Figure 12: Isotype specific serum antibody to ovalbumin from C3H mice receiving Ova-
loaded CPH:SA microspheres fabricated by CA, with and without boost (25 µg Ova) 5 
days prior to necropsy. ELISA performed as described in Materials and Methods. Data 
presented is mean + SEM of the optical density (O.D.) at 1:400 dilution of sera, (n = 3-4). 
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Figure 13: Induction of antigen-specific lymphocyte proliferation in C3H mice receiving 
Ova-loaded CPH:SA microspheres fabricated using CA. At 12 weeks post-immunization, 
the proliferative response of lymphocytes recovered from the draining lymph was 
evaluated. Specifically, the treatment groups consisted of mice that had been immunized 
with Ova-loaded microspheres, soluble ovalbumin (Ova), or saline. Half of the mice in 
each group received 25 µg Ova 5 days prior to necropsy (Boost). Single cell suspensions 
of lymphocytes were stimulated with 50 µg/ml Ova in vitro for 72 h at which time 3H-
thymidine was added and the cultures were incubated for another 18 h. Stimulation index 
was calculated from counts per minute of Ova-stimulated cells divided by the counts per 
minute of unstimulated cells. Data is presented as the mean stimulation index + SEM (n = 
3-4). Linked bars indicate statistically significant difference in the group means, * 
indicates P ≤ 0.05, and ** indicates P ≤ 0.01. 
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Figure 14: Isotype specific serum antibody to ovalbumin from C57BL/6 mice receiving 
Ova-loaded microspheres fabricated by CA method, with boost (25 µg Ova) 5 days prior 
to necropsy. ELISA performed as described in Materials and Methods. Data presented is 
mean + SEM of the optical density (O.D.) at 1:400 dilution of sera, (n= 5). 
 

4 Discussion 

Based upon prior published reports, biodegradable polymers have demonstrated 

great promise as adjuvants in single dose vaccine regimen used in laboratory animal 

studies [11-15]. Vaccine formulations based on PLGA, PLA, or PGA have been 

successful in inducing immune responses to a large number of antigens including: 

Yersinia pestis antigens, HIV gp140, Bordetella pertussis antigens, measles virus antigen, 

OVA, TT, diphtheria toxin, type II collagen, malarial antigens, cancer cell antigens, 

Escherichia coli adhesion proteins, Vibrio cholerae antigens, influenza virus antigens, 

hepatitis B viral antigens, and ricin toxoid  [13, 16-18]. Several of these studies 

incorporated mono-phosphoryl lipid A (MPLA), a known adjuvant, into the polymer 

delivery devise along with Ova complicating the ability to determine whether or not the 

polymer itself provide any immune enhancing activity [14, 15, 18-20]. Other studies 

included excipients and stabilizers to enhance immunogenicity of the encapsulated 

protein [12, 21, 22]. In the current study, no additional immune-enhancers or stabilizers 
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were included during the fabrication of the microspheres. Therefore, any stability and 

immunomodulation capabilities were the direct result of the polymers themselves. 

In previous studies using TT as the immunogen, a shift from a dominant IgG1 

antibody response to a more balanced IgG1-IgG2a anti-TT antibody response was 

observed and this was attributed to polymer chemistry because different responses were 

observed between 20:80 and 50:50 CPH:SA microspheres [5]. The current studies were 

undertaken to confirm and extend the previous observations using a different model 

antigen and several strains of mice. 

Evaluation of the immune response induced by Ova-loaded microspheres was 

performed using three different strains of mice. The three strains (BALB/c, C3H/HeN, 

and C57BL/6) were chosen for differences in their genetic immune biases. BALB/c mice 

are generally considered to be genetically biased towards Th2-type immune responses 

and are used as prototypic allergy models [23-25]. C57BL/6 mice are considered biased 

toward Th1-type immune responses and are used as models for typical delayed-type 

hypersensitivity (DTH) responses and inflammatory autoimmune diseases [26, 27]. C3H 

mice are considered unbiased toward induction of Th1- or Th2-type immune responses. 

Furthermore, each of these mice strains express a different MHC haplotype: BALB/c 

express H-2d, C3H express H-2k and C57BL/6 express H-2b. These H-2 haplotypes can 

restrict antigen presentation causing some of the differences observed in peptide derived-

antigen responsiveness between strains [28]. Complex antigens generally contain 

multiple epitopes that interact with a wider variety of MHC haplotypes [29]. It is possible 

that slight differences in antigen presentation are magnified by antigen dose and general 

protein stability. Others have shown that different mouse strains (BALB/c and NIH) 

respond with maximal IgG1 responses with different doses of antigen (high or low dose) 

[30].  

In the SO/O fabrication process, lyophilized protein is mixed with polymer 

dissolved in methylene chloride. This is then emulsified in silicon oil where polymer-

protein droplets are formed into microspheres as the methylene chloride is dissolved into 

the silicon oil where the polymer is not. The resulting microspheres are harvested by 

filtration and washed with heptane to remove any residual silicon oil and methylene 
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chloride. In contrast, cryogenic atomization (CA) starts with the same polymer-protein-

methylene chloride solution, but the solution is pumped through an atomizing nozzle into 

an ice-cold ethanol bath. The bath is stirred for three days at zero degrees to evaporate off 

methylene chloride. The resulting microspheres are harvested by filtration. It was thought 

that fabrication methods that used fewer solvents and fewer emulsification steps would be 

beneficial to protein stability. Lopac, et. al., showed that there was no difference in 

profile of protein release kinetics when Ova was encapsulated in microspheres made by 

either fabrication method [6].However, as shown by the differences between mice 

receiving Ova-loaded CPH:SA microspheres fabricated by S/O/O vs. CA, there could be 

differences in the stability of Ova encapsulated using the S/O/O vs. CA fabrication 

methods. The enhanced response to Ova-loaded 50:50 CPH:SA (Figures 5 and 7) are also 

contrary to what one would predict given the results of earlier stability studies from this 

laboratory group. Determan et. al., showed that incubation of bovine serum albumin 

(BSA) in saturated solutions of the CPH monomer there was an associated increase in  

protein aggregation, protein cleavage, and changes in the tertiary protein structure (β-

sheet vs. α-helix) [2, 3]. While there are many structural differences between BSA and 

Ova [23] which make Ova more immunogenic, it was perhaps a false assumption on the 

part of the authors that these two proteins would behave similarly when encapsulated. 

Administration of aggregated or chemically denatured Ova has been shown to induce less 

robust immune responses when compare to native Ova [23, 24, 26]. Lopac et al., showed 

that there was marked degradation of Ova when encapsulated and released from 

microspheres containing high amounts of SA (poly-SA and 20:80 CPH:SA) [6]. In those 

previous studies, CPTEG containing microspheres had a more stabilizing effect on Ova 

as shown by SDS-PAGE gel. This is also reflected in the current study by the greater 

response seen in BL6 mice immunized with 50:50 CPTEG:CPH Ova-loaded 

microspheres (Figure 14).  

In general, the immune responses to Ova tended to induce a dominant Th2-type 

immune response based upon the higher IgG1 versus IgG2a antibody detected in the 

serum samples of immunized mice (Figures. 3, 6, 9, 12 and 14). When care is not taken to 

remove contaminating endotoxin-like material from commercial Ova a more Th1-type 
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immune response was observed (data not shown). While little secreted cytokine was 

measured from Ova-stimulated cells recovered from immunized mice, the presence of IL-

5 and IL-10 are consistent with higher IgG1 antibody response (i.e., Th2 phenotype). 

Furthermore, the Ova-specific induction of IL-10 secretion from splenocytes recovered 

from mice receiving Ova-loaded microspheres is consistent with other observations in 

our laboratory in that CPH:SA microspheres induce demonstrable B cell expansion in 

vivo and antigen-specific B cell proliferation in vitro (data not shown). One limitation of 
3H-thymidine incorporation as a measure of proliferation is that the phenotype (i.e., T cell 

or B cell) of the proliferating cell is unknown. To address this shortcoming, lymphocytes 

recovered from the draining lymph nodes of mice receiving Ova-loaded microspheres 

were stained with CFSE and stimulated in vitro with Ova; the results of this limited study 

demonstrated that the predominant proliferating cell type was CD19+ (B cells) (data not 

shown). 

The induction of modest antigen-specific proliferation, low cytokine secretion, 

and low to modest levels of Ova-specific antibody, all indicated that the immunization 

regimen used in these studies failed to induce a robust immune response to Ova. It should 

be noted that although there is statistical differences in proliferative responses between 

some groups, a stimulation index less than 2 may not be biologically relevant. 

Additionally O.D. measurements of less than 0.5 border on non-responsive antibody 

responses. As the groups immunized with Ova alone failed to induce a robust immune 

response, one could conclude that in the absence of an adequate adjuvant administered 

along with the 25 µg dose of Ova resulted in insufficient immune activation. In this 

regard, 25 µg was the amount of Ova loaded into a 0.5 mg quantity of microspheres using 

a target encapsulation of 5% antigen in the total mass of the polymer. Previous studies 

have shown that increasing the loading percentage reduces encapsulation efficiency and 

may introduce destabilizing factors into the polymer matrix of the microspheres. 

Enhanced immune responses to Ova have been previously demonstrated when mice were 

immunized with 100 µg of Ova in the presence of blank microspheres affirming their 

adjuvant like potential (Chapter 3 and data not shown). Others have observed that a dose 

of 25 µg of Ova given in Alum-based adjuvants was sufficient to induce an immune 
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response in the context of allergic hypersensitivity (Edward Rose, University of Virginia, 

personal communication). Therefore, it is unlikely that insufficient Ova delivered in the 

context of microspheres was the reason for the lack of immune responses. This 25 µg 

dose of Ova encapsulated into the microspheres appeared to be sufficient to prime the 

mice, as observed by many groups responding with increased antibody and Ova-specific 

proliferative responses five days following administration of an in vivo antigenic boost 

(Figures 4, 5, 6, 7, 8, 11, and 12). However, if this was the case, every group receiving 

the antigenic boost would have responded with an anamnestic immune response, but this 

was not the case. There was no single explanation (e.g., fabrication method, polymer 

chemistry, dose, or strain) for the variability in the immune responses observed in this 

study. However, these results suggest that a combination of low (insufficient) dose, Ova 

instability in CPH:SA polymer microspheres, and differences MHC restricted recognition 

of Ova epitopes between the different mouse strains influenced the magnitude of the 

resultant immune response.  

 

5 Conclusion 

Polymer chemistry affects not only erosion kinetics but also protein stability. For 

complex antigens, antigen stability is vitally important to ensure maintenance of full 

antigenic repertoire and recognition by a wide variety of MHC haplotypes. Co-polymers 

containing CPH:SA, especially high levels of SA may not be suitable for single dose 

immunization due to rapid release of antigen and destabilization of the protein during 

encapsulation and/or release. The effects of chemistry dependent instability are 

compounded by microsphere fabrication methods. These studies add to the understanding 

of the complex interplay between polymer chemistry, antigen stability, and immune 

responsiveness. Induction of efficacious or protective immune responses (antibody, cell-

mediated) will require careful selection of dose, polymer adjuvant and fabrication 

method.   
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Abstract 

As vaccine stockpiles are critical components of medical preparedness, the ability 

to plan for long-term storage of vaccines without a loss of protective efficacy is 

important. In this regard, the stability of the immunogen, the choice of adjuvant, and the 

method of vaccine delivery must all be evaluated. Stability of protein antigens in the 

presence of polyanhydride monomers or during encapsulation conditions has been 

previously evaluated. Induction of antigen-specific immunity following single dose 

vaccination with tetanus toxoid (TT) loaded polyanhydride microspheres has been 

previously shown. In order to evaluate the shelf-life of TT loaded microspheres, mice 

were vaccinated with TT-loaded microspheres that had been stored for four years at -20 

°C. Using a single dose immunization regimen, TT-specific antibody and lymphocyte 

proliferative response were evaluated 12 weeks later. By comparing serum samples 

obtained from mice that had been immunized with the TT-loaded microspheres 
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immediately after fabrication with serum from mice immunized after four years of 

storage there was no statistical difference in the anti-TT response. Lastly, the magnitude 

of the TT-specific proliferative recall response of mice immunized with stored 

microspheres was similar when compared to responses previously observed. 

Polyanhydride microspheres show promise for single dose vaccination by not only 

preserving protein structure during encapsulation and release but as shown by this study, 

stability under common storage conditions.   

Keywords: Polyanhydrides, Tetanus Toxoid, Single-Dose Vaccination, Shelf-life 

 

1 Introduction 

Even under the best of circumstances, there is an extensive time lag between 

manufacture of a vaccine formulation and actual administration to a patient. Therefore, 

pharmaceutical preparations of novel vaccine formulations must remain antigenicly 

stable over time. For example, stockpiles of foot-and-mouth disease vaccine are part of 

the prevention and control program of several countries [1]. These vaccines, with or 

without an oil adjuvant are stable for 18-24 months when stored at 4°C, and potency is 

lost when stored at temperatures higher than 4°C. More than 60% of vaccine 

formulations currently on the market consist of refrigerated solution suspensions [2]. 

These suspensions are also susceptible to degradation during both freeze-thaw and 

lyophilization procedures [2]. Oil emulsions, widely used in veterinary vaccines, show a 

reduced potency when stored at -20°C [1]. Longer storage times can be achieved by 

storing vaccines at lower temperatures. Thus a vaccine adjuvant that preserves critical 

antigens during lyophilization or storage at -20°C is needed.  

Antigens of novel vaccines are derived from rationally designed engineered 

proteins [3]. Preservation of primary and secondary structure of protein epitopes is 

necessary to achieve immunity as degraded and altered proteins have been shown to 

lessen the immune response [4]. Previous studies have evaluated the protein stability in 

conjunction with novel polyanhydride polymers. Studies by Determan et. al., showed 

enhanced preservation of primary and secondary structure, and retention of antigenic 

epitopes of various proteins incubated in the presence of monomers of 1,6-bis(p-
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carboxyphenoxy)hexane (CPH) and sebacic acid (SA), versus proteins incubated in the 

presence of  polyesters (lactic and glycolic acids) [5, 6]. Studies conducted by Lopac et. 

al., showed preservation of these same key measurements (primary structure, secondary 

structure and antigenicity) for proteins that were encapsulated and released from 

polyanhydride microspheres (Manuscript in Preparation). These studies were conducted 

within short time frames following the fabrication of the polyanhydride microspheres. As 

was demonstrated by Kipper et. al., TT-loaded microspheres induced high titer serum 

antibody responses and demonstrable lymphocyte proliferation at 12 weeks following a 

single immunization [7]. 

The opportunity arose that would allow for the testing of antigen-loaded 

microspheres four years from the date of manufacture. This study allowed for the 

evaluation of the immune response to stored microspheres as compared to the immune 

response elicited from the same microspheres within a month of their manufacture.  

 

2 Materials and Methods 

2.1 Polymer synthesis and characterization 

Poly(CPH-SA) (20:80) and poly(CPH-SA) (50:50) were synthesized by melt 

polycondensation from acetylated prepolymers as described previously [7]. Gel 

permeation chromatography was performed on a Waters GPC system (Milford, MA) 

using PL Gel columns (Polymer Laboratories, Amherst, MA). The 20:80 copolymer had 

an average molecular weight (Mw) of 21,000 and a polydispersity index (PDI) of 2.2. The 

50:50 copolymer had an Mw of 13,000 and a PDI of 2.0. Polymers were stored desiccated 

flooded by dry argon gas. 

 

2.2 Microsphere fabrication and storage 

Polyanhydride polymer and TT-loaded microspheres were prepared and evaluated 

as described in Kipper et al [7]. A portion ( < 10 mg) of the batch used in that manuscript 

was placed in a microcentrifuge tube inside a small airtight container (~2 oz) with 

approximately 20 g DriRite desiccant and stored at -20 C.  
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2.3 Animals 

Adult mice, strain C3H/HeN, ranging 16 to 30 weeks of age, were used for these 

experiments. Groups were arranged so that both males and females were distributed 

across all the treatment groups. Mice were obtained from the breeding colony maintained 

at Iowa State Laboratory Animal Resource Facility (Ames, IA). All bedding, caging, 

water, and feed were sterilized prior to use. All animal procedures were undertaken with 

prior approval from the Iowa State University Committee on Animal Care and Use. 

 

2.4 Immunizations and blood collection 

To evaluate the effectiveness of polyanhydride microspheres to induce an 

antibody response, mice (5 per group) received a single intramuscular (right quadriceps) 

injection of microspheres composed of 20:80 CPH:SA which had been stored for four 

years as indicated above. For comparison, a separate group of 5 mice received 10 µg 

soluble TT in 100 µL saline and a third group received 100 µL saline only. The soluble 

TT had been stored solublized in saline at 4ºC for two years. Following immunization, 

blood samples were collected weekly for 13 weeks via the saphenous vein [8]. Blood was 

allowed to clot, and serum was collected and stored at –20 ºC until assayed.  

 

2.5 TT-specific enzyme linked immunosorbent assay (ELISA) 

Ninety-six well microtiter plates (Costar high protein binding) were coated 

overnight with 100 µl PBS containing 1 µg/mL TT. To remove unbound TT, plates were 

washed with PBS (pH 7.0) containing 0.05% Tween 20 (PBST) and then blocked for two 

hours at room temperature with PBST containing 2% gelatin and 2% fetal bovine serum 

(FBS). Serum samples (100 µL/well) from individual mice were serially diluted in PBST 

supplemented with 2% FBS (PBST-FBS). The plates were then incubated overnight (18 

h) at 4 oC.  The plates were again washed three times with PBST followed by addition of 

100 µL of PBST-FBS containing alkaline phosphatase-conjugated goat anti-mouse IgG 

(H&L) (0.5 mg/mL diluted 1:1000) (KPL, Gaithersburg, MD). After a two hour 

incubation period, the plates were washed three times with PBST followed by the 
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addition of 100 µL of sodium carbonate buffer (pH 9.3) containing phosphatase substrate 

(Sigma 104, Sigma-Aldrich, St. Louis, MO) at a concentration of 1 mg/mL and allowed 

to react for one hour at room temperature.  The optical density (OD) of the reaction was 

measured at 405 nm using a Spectramax 190 Plate Reader (Molecular Devices, 

Sunnyvale CA). Serum titers are reported as the reciprocal of the highest dilution giving 

an OD equal to or greater than the average OD of all background wells (PBST-FBS 

alone) plus two times the standard deviation of these samples. Of note, the original value 

for the group mean titer published in Kipper et. al., was 12,800 indicating that the stored 

serum from the original study has not undergone significant degradation [7]. 

 

2.6 In vitro antigen-specific recall proliferation assay 

To evaluate the antigen-specific recall response induced by vaccination, mice that 

were immunized 13 weeks previously were euthanized by CO2 asphyxiation and draining 

lymph nodes (popliteal and inguinal) were removed using aseptic technique. Single cell 

suspensions were prepared from each animal, cellular debris was removed by settling, 

and the cells were then washed via centrifugation. The cells were resuspended in culture 

medium (cRPMI) consisting of RPMI 1640 containing L-glutamine (Mediatech, 

Herndon, VA) and supplemented with 1 % nonessential amino acids (Mediatech), 1 % 

sodium pyruvate (Mediatech), 2 % essential amino acids (Mediatech), 25 mM HEPES 

buffer (Mediatech), 100 units/mL penicillin, 0.1 mg/mL streptomycin (Mediatech), 0.05 

mg/mL gentamicin (Sigma), 1 % L-glutamine (Mediatech), 5 x 10-5 M 2mercaptoethanol 

(Sigma), and 5 % heat-inactivated FBS. Round-bottomed 96-well microtiter plates were 

seeded with 2.5 x 105 cells in cRPMI at a total volume of 200 µL per well. Wells also 

contained either concanavalin A (Con A, 5 µg/mL, Sigma), TT (5 or 25 µg/mL), or 

cRPMI alone (i.e., no stimulation). Plates were then incubated for 3 days at 37 oC in 5 % 

CO2 in air. After 3 days, 0.5 µCi of methyl- [3H]-thymidine (specific activity 6.7 Ci 

mmole-1, Amersham Life Science, Arlington Heights, IL) at a concentration of 50 

µCi/mL in 10 µL of complete media was added to each well, and the plates were 

incubated for an additional 18 h. The contents of each well were harvested onto glass 

fiber filters, and the incorporated radioactivity was measured by liquid scintillation 
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counting. Treatments were run in triplicate. Stimulation index (SI) is the counts per 

minute (CPM) of stimulated wells divided by the CPM of background wells. 

 

3 Results 

TT-loaded microspheres or soluble TT was suspended in saline and injected 

intramuscularly into the hind leg of adult C3H/HeN mice. Blood was drawn at weekly 

intervals and serum antibody titers were chronologically evaluated. As shown in Figure 1, 

the total IgG TT-specific antibody titer for the serum samples obtained from mice 

immunized with soluble TT reached > 400,000 by six weeks post-vaccination. At three 

weeks post-vaccination, the TT-specific antibody titer for the mice immunized with TT-

loaded microspheres was similar to that induced by soluble TT (76,900). By eight weeks 

post-vaccination, the titer for the microsphere vaccinated group reached it maximal level 

(105,700) and this waned by 13 weeks 38,500. When comparing the serum anti-TT titer 

of the week 13 samples to a pool of serum collected after 12 weeks from mice immunized 

with the TT-loaded 20:80 CPH:SA microspheres when they were originally prepared, the 

stored microspheres induced an equivalent serum antibody titer than the freshly prepared 

TT-loaded microspheres (Figure 2) [7]. 



 
 

170

0

100000

200000

300000

400000

500000

600000

700000

800000

w0 w1 w3 w6 w8 w13

Ti
te

r

0.5mg 20:80-TT
microspheres
10 ug soluble TT

saline

 
Figure 1: Anti-tetanus toxoid (TT) serum antibody titer of mice immunized with TT-
loaded 20:80 CPH:SA microspheres that were stored for  four years, 10 µg soluble TT, or 
saline alone. Mice received a single immunization at week 0 (w0) and samples collected 
at intervals over 13 weeks (w13). Data is presented as the mean + SEM titer of serum 
samples from five mice per group.  Error bars represent the standard error of the mean.  
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Figure 2: Effect of storage on the ability of TT-loaded 20:80 CPH:SA microspheres to 
induce serum antibody. Comparison of serum antibody titer of a pooled serum sample 
collected four years earlier to that of mice immunized with TT-loaded 20:80 CPH:SA 
microspheres that had been stored for four years. The serum samples were collected from 
the vaccinated mice at either 12 or 13 weeks post-immunization for the original 
immunization study (original) or  the current study (4 yrs storage), respectively. Error bar 
represents SEM (n=5) 

 



 
 

171

 

In addition to serum antibody, an effective vaccine regimen should induce cell-

mediated immune responses. At 12 weeks post-immunization, the poplietal and inguinal 

lymph nodes draining the injection cite were excised from the euthanized mice. The data 

depicted in Figure 3 depicts the TT-specific recall response of lymphocytes stimulated 

with 1 µg/mL TT. The data indicates that the mice immunized with the TT-loaded 

microspheres (four years old) had greater proliferative responses than mice immunized 

with TT alone. 
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Figure 3: Induction of antigen-specific lymphocyte proliferation. At 12 weeks post-
immunization, the proliferative response of lymphocytes recovered from the draining 
lymph was evaluated. Specifically, the treatment groups consisted of mice that had been 
immunized with the aged-microspheres (MS-old), soluble TT (TT), or saline. Single cell 
suspensions of lymphocytes were stimulated with 1 µg/mL TT in vitro for 72 h at which 
time 3H-thymidine was added and the cultures were incubated for another 18 h. 
Stimulation index was calculated from counts per minute of TT-stimulated cells divided 
by the counts per minute of unstimulated cells. Data is presented as the mean stimulation 
index + SEM (n=5). 
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4 Discussion 

As vaccine stockpiles are part of many disease outbreak control programs (i.e., 

foot-and-mouth disease in UK and Anthrax in the US), there is a need for the 

development of vaccines with long-term storage capabilities [1]. Currently used alum-

adjuvants and many oil-emulsion adjuvants undergo irreparable separation and 

destabilization of the emulsion during freeze-thaw cycles [2]. 

While the stored sample of TT-loaded microspheres was too small to allow for 

extensive analysis (e.g., protein stability, release kinetics), there was sufficient sample to 

immunize five mice [7]. When serum samples were compared with respect to the anti-TT 

titer there was no statistical difference (p<0.05) between that induced by mice that had 

been immunized with the TT-loaded microspheres one week or four years after 

microsphere fabrication. The simple storage conditions, glass jar with desiccant at -20ºC, 

were able to preserve the immunogenicity of TT-loaded polyanhydride microspheres. 

One method that has been employed in the effort to extend the shelf life of foot-and-

mouth disease, involves storing the non-emulsified vaccine at -80ºC [1]. These 

specialized freezers can be costly, consume considerable energy, and are susceptible to 

power outages. This study showed that polyanhydride adjuvants maintained the 

immunogenicity of TT during long term storage in a regular lab freezer, in a ready to use 

state.  

Protein degradation can occur at several steps in the process of microsphere 

fabrication. Protein can be altered or rendered non-immunogenic during encapsulation in 

reaction to polymer monomers and organic solvents. Previously published reports from 

the Narasimhan group reported that the tertiary conformation of a protein is altered by 

interactions with polyanhydride monomers in a chemistry dependent manner [5, 6, 9]. 

Other immunization studies have shown that immunogenic protein is released from 

CPH:SA microspheres as evidenced by the induction of antigen-specific antibody and 

proliferative responses [7] (Wilson-Welder, manuscript in preparation). This is the first 

study undertaken to evaluate the immunogenicity of protein encapsulated in 

polyanhydride microspheres and held for long term storage.  
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1. Industry Summary 

As commodity markets fluctuate and producer profit margins diminish, economic 

loss due to infectious disease become even more important to the survivability of 

operations. Vaccination continues to be the most economic method for controlling 

infectious disease, especially ones which are difficult to control without prophylactic 

antibiotics. As consumer acceptance of current livestock practices change (e.g., use of 

antibiotics), as well as the increase in organic and antibiotic free niche markets, control of 

disease by preventive vaccination becomes more important. Single dose vaccines have 

long been sought in human medicine to improve vaccine efficacy. The same advantage 

applies to animal health – a single dose vaccine would improve vaccine compliance, 

reduce labor costs, and, in the end, result in higher producer profits due to prevention of 

disease. A single dose vaccine could be readily integrated into current livestock 

management systems. The goal of this project was to evaluate a novel biodegradable 

polymer adjuvant as single dose vaccine carrier. In many cases, it is impractical in terms 

of labor and animal stress to immunize more than once. For most vaccines, including 
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swine dysentery, two or three doses of a vaccine administered over several weeks are 

needed for complete protection. While the disease studied in this case was swine 

dysentery, the concept could be applied to other infectious disease agents. Using a mouse 

model of swine dysentery, a single dose microsphere delivered vaccine containing 

pepsin-digested Brachyspira hyodysenteriae antigen (PD) induced immune response to 

Brachyspira antigen and ameliorated inflammatory cytokine production associated with 

disease. A single dose vaccine containing co-polymers of CPH:SA microspheres 

encapsulating PD along with some unencapsulated PD was administered to crossbred 

grower pigs. No tissue reactivity at the injection site of polymer containing vaccine pigs 

was observed, whereas most of the animals receiving PD antigen incorporated into 

incomplete Freund’s adjuvant (a common mineral oil based carrier) had granulomatous 

masses at the injection site. While all of the PD-vaccinated pigs were protected from 

challenge or did not develop dysentery, only one out of five pigs receiving microsphere 

based vaccine were protected from developing any signs of clinical dysentery. Further 

study is needed to characterize the nature of the immune response (immune regulation 

and/or inflammatory cytokine profile) of the microsphere vaccine. While no injection site 

reactivity was observed, further evaluation of antigen stability, antigen loading of the 

microspheres and dosing regimens are needed to show that single dose vaccines based on 

polyanhydride microspheres will be beneficial/efficacious for use in livestock animals.  

 

2. Scientific Abstract 

Single dose vaccination has long been sought as one of the key hallmarks for 

increasing vaccine efficacy. Biodegradable polyanhydrides possess many properties that 

facilitate the development of single dose vaccines, including ability to enhance protein 

stability, tailorable release kinetics and surface erosion. This study evaluated the use of 

polyanhydride encapsulated pepsin-digested Brachyspira hyodysenteriae antigen (PD) as 

a vaccine regimen to protect pigs from the development of swine dysentery. In 

comparison to previously studied microspheres containing a single purified protein 

antigen, microspheres containing the complex antigen performed as expected with 

respect to morphology and release kinetics of the encapsulated antigens. Prior to 
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challenge, mice vaccinated with PD encapsulated into microspheres developed 

demonstrable immune responses, both serum antibody and cellular proliferation, to B. 

hyodysenteriae antigen. Upon challenge with B. hyodysenteriae organisms, the cytokine 

profile of cecal tissue recovered from microsphere vaccinated animals and the antibody 

isotype profile was qualitatively different than those of mice vaccinated with PD or from 

non-vaccinated B. hyodysenteriae infected mice. In swine, animals vaccinated with PD in 

Freund’s incomplete adjuvant (FIA) or PD loaded microspheres showed a reduction in 

disease severity upon challenge with B. hyodysenteriae, 100 % and 60%, respectively. 

While pigs vaccinated with PD-loaded microspheres exhibited lower serum antibody 

titers than the pigs receiving PD in FIA prior to challenge, post-challenge serum antibody 

titers were equal and greater than that of sham vaccinated pigs indicating immunological 

priming. Furthermore, lymphocytes recovered from the colonic lymph node of pigs 

vaccinated with the PD-loaded microspheres exhibited greater in vitro antigen-specific 

recall responses than cells recovered from pigs receiving the PD-FIA vaccine. In 

addition, the proliferation of peripheral blood mononuclear cells recovered from the 

microsphere vaccinated pigs was lower than that for cells recovered from the PD-FIA 

vaccinated pigs, suggesting differential immune modulation. The results of these studies 

demonstrate that the use of polyanhydride microspheres is safe, induced no detectable 

tissue reaction at the site of injection. However, pigs vaccinated with PD-loaded 

microspheres were not protected from disease. Taken together, further refinement in 

antigen loading, and dosing regimens is needed in order to demonstrate that 

polyanhydride microspheres can be used as a single dose vaccine carrier that can be used 

in livestock species.  

 
3. Introduction 

As commodity markets fluctuate and producer profit margins diminish, economic 

loss due to infectious disease become even more important to the survivability or 

operations. Vaccination continues to be an effective method for controlling infectious 

disease, especially ones such as swine dysentery (SD). Single dose vaccines have long 

been sought after in human medicine to improve vaccine efficacy and patient compliance. 
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The same advantages apply to animal health – a single dose vaccine would improve 

vaccine compliance, reduce labor costs, and, in the end, result in higher producer profits 

due to prevention of disease. A single dose vaccine could be easily integrated into current 

livestock management systems. 

Studies evaluating the use of controlled-release, single dose vaccines in large 

animals (sheep, mini-pigs, cattle, and horses) have shown promise when employing 

protein antigens [1-3]. Biodegradable polyanhydride delivery systems for vaccines offer 

attractive features such as improved adjuvanticity, antigen stabilization, and enhanced 

immune responses [4-7]. The specific polyanhydrides of interest in this proposal 

copolymers of 1,6-bis(p-carboxyphenoxy)hexane (CPH) and sebasic acid (SA). This 

class of hydrophobic polymers degrades into biocompatible, water-soluble carboxylic 

acids which are quickly metabolized, leaving no tissue residue. Studies have shown that 

polyanhydrides are capable of stabilizing polypeptides and sustaining their release 

without the inclusion of potentially reactive excipients or stabilizers [8-11]. In addition, 

polyanhydrides have characteristics that make them suitable carriers for vaccine delivery, 

including a beneficial environment for protein stabilization by preventing aggregation, 

enhanced adjuvant effect (controlled by polymer chemistry), and potential 

immunomodulatory capabilities (Th1/Th2 balance) [8, 12]. 

There are many different swine diseases where both effective humoral immunity 

(Th2) and cell-mediated immunity (Th1) are desired [13, 14]. One instance where 

protection seems to depend on activation of both is swine dysentery (SD) [15]. SD is a 

severe diarrheal disease of swine and the etiologic agent is an anaerobic spirochete, 

Brachyspira hyodysenteriae, which colonizes the cecum and colon [16-18]. The disease 

characterized by the presence of mucohemorrhagic diarrhea, weight loss, dehydration and 

shedding of spirochetes in the stool. Any age of pig can be affected, however, most 

severe losses occur during the grower/finisher stage [19]. The acute phase of the disease 

appears to be driven by leukocytes responding to translocation of luminal commensal 

bacteria into the lamina propria following epithelial erosion due pathogenic factors 

secreted by B. hyodysenteriae [20]. The chronic phase is mediated by CD4+ T cell 

infiltrate into the colonic mucosa [20]. The disease is endemic in most pig producing 
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countries, where infection prevalence can be as high as 35% of the swine herds [21, 22]. 

Efforts to maintain herds free of SD can be complicated by the fact that wild rodents and 

waterfowl are natural hosts of the bacterium [23, 24]. Control measures include antibiotic 

therapy, however, recently, antibiotic resistant strains have emerged [25]. With the 

increase in demand for organic and/or antibiotic free pigs, producers are encountering an 

increase in incidence in SD. Currently in the United States, there is no licensed vaccine in 

use for SD. Efforts to produce both recombinant and whole cell vaccines have met with 

varying success [16, 26-28]. Outer membrane preparations and other recombinant 

vaccines yielded only partial protection [16, 26-28]. Using a squalene/pluronic acid 

adjuvant, protection was conferred by a pepsin digest preparation of whole cell B. 

hyodysenteriae [16, 29, 30]. Non-mineral water/oil emulsions such as this are capable in 

inducing cell-mediated immunity (Th1) with lower dosage of protein than can be induced 

using an alum based vaccine [31]. The current study was undertaken to provide proof-of-

concept that a single dose polyanhydride based vaccine can induce protective immunity 

in pigs. A single-dose microsphere-based vaccine was compared to an efficacious vaccine 

regimen for SD in a grower pig model.  

 
4. Materials & Methods 

4.1 Pepsin digest preparation 

Pepsin digest of Brachyspira hyodysenteriae antigen was prepared as described 

previously in Waters et al [15, 16]. Brachyspira hyodysenteriae strain B204 frozen 

lyophilized bacterial stock was rehydrated with distilled water, briefly sonicated and pH 

adjusted to 2.0 with 1 N HCl. Lysate was mixed with 0.5 µg Pepsin (Sigma) per mg of 

dry weight bacteria. The solution was placed on rotary mixer at 37°C for 24 hrs. The pH 

was then adjusted to 7.2 with 1N NaOH. PD was sterilized by UV irradiation. Protein 

was quantified by bicinchoninic acid (BCA) protein assay (Pierce, Rockford, IL) and re-

lyophilized. All measurements were based on dry weight of lyophilized pepsin digest 

(PD). Whole cell sonicate (WCS) was prepared from the same lot of frozen lyophilized 

stock. Briefly, lyophilized bacteria were rehydrated to give 2 mg/ml suspension in sterile 
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PBS, subjected to two freeze thaw cycles and briefly sonicated. WCS was sterilized by 

UV irradiation and stored at -20 until needed for ELISA or cellular re-stimulation.  

 
4.2 Polymer synthesis and microsphere fabrication 

Prepolymers for both CPH and SA were synthesized using a method outlined by 

Shen et al. [32]. Poly(CPH-SA) (20:80) and poly(CPH-SA) (50:50) were synthesized by 

melt polycondensation from acetylated prepolymer solutions as described previously [32, 

33]. Gel permeation chromatography was performed on a Waters GPC system (Milford, 

MA) using PL Gel columns (Polymer Laboratories, Amherst, MA). The 20:80 copolymer 

had an average molecular weight (Mw) of 21,000 and a polydispersity index (PDI) of 2.2. 

The 50:50 copolymer had an Mw of 13,000 and a PDI of 2.0. Polymers were stored 

desiccated under dry argon until needed. Microspheres encapsulating PD were fabricated 

by a solid/oil/oil double emulsion method as reported elsewhere [12, 33]. Polymer (100 

mg) was dissolved in methylene chloride (2 mL) and PD (10 mg) was added to the 

dissolved polymers in a 50 ml centrifuge tube and immediately emulsified by agitation at 

30,000 rpm for 20:80 CPH:SA and 20,000 rpm for 50:50 CPH:SA with a handheld 

homogenizer (Tissue-TearorTM, Biospec Products Inc., Bartlesville, OK) for one minute. 

With the homogenizer running at 10,000 rpm, 3 ml of Dow Corning Fluid (silicon oil), 

saturated with methylene chloride (4 mL), was added drop-wise to form the 

microspheres. Homogenization at 30,000 rpm was continued for an additional minute. To 

precipitate the microspheres, the double emulsion was transferred to a 400 mL Berzelius 

beaker containing 200 mL n-heptane on an ice water bath. The heptane was stirred at 300 

rpm using a Caframo overhead stirrer (Warrington, Ontario) with a three-inch impeller 

for two hours to extract the methylene chloride. Heptane was periodically added during 

the solvent removal to replace the volume lost due to evaporation. The PD-loaded 

microspheres were isolated by filtration using Whatman #50 filter paper. The beaker and 

impeller were rinsed several times with fresh heptane to maximize recovery. The 

microspheres were washed at least three times with 50 mL of heptane to remove residual 

Dow Corning fluid, and dried for 24 h under vacuum. This procedure yielded a free-

flowing powder with about 80% of the input polymer mass being recovered. Blank and 
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WCS containing microspheres were fabricated by a similar techniques, without the 

addition of PD or the inclusion of B. hyodysenteriae WCS respectively.   

 

4.3 Determination of microsphere size and morphology 

A JEOL 840A scanning electron microscope (SEM) was used to determine the 

size and shape of the microspheres. Microspheres were smeared onto carbon stubs, 

sputter coated with 200 Å of gold, and imaged. Size distribution analysis was performed 

using Image J software (NIH, Bethesda, MD). 

 
4.4 Antigen release and antigenicity 

Polyanhydride microspheres (10 mg) fabricated by S/O/O were suspended in 1 

mL of phosphate buffered saline (PBS, pH 7.4) containing 0.01% sodium azide and 

placed in an incubator at 37 °C while stirring at 100 rpm. Samples of the buffer were 

collected at two hours later, then daily for one week, and every other day for 35 days. An 

aliquot of 750 µL was sampled each time and subsequently replaced with 750 µL of fresh 

PBS to ensure perfect sink conditions; the microcentrifuge tubes containing the 

microsphere suspensions were centrifuged before sampling to ensure that no 

microspheres were removed along with the sampled PBS. In order to quantify the amount 

of protein released, BCA was performed on each sample, in duplicate, as described by the 

manufacturer (Pierce, Rockford, IL). The release data is presented as cumulative fraction 

of protein released, in which the amount of protein released is normalized by the total 

protein loaded into the microspheres. 

 

4.5 Mice 

C3H/HeOuJ mice of either sex and 8 to 16 weeks of age were used for these 

studies. Mice were obtained from the breeding colony maintained at Laboratory Animal 

Holding Facility, Iowa State University (Ames, IA) or were purchased from Harlan 

Sprague Dawley. Animals were free of any observable diarrheal disease at the beginning 

of each experiment. Mice were given autoclaved conventional rodent diet, water, and 

bedding. During the infection phase of the experiment, mice were house in isolation 
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cages with HEPA filtered positive pressure air. All procedures were approved by the 

Iowa State University Committee on Animal Care. Mice were weighed and observed for 

any clinical signs of disease every other day during infection. All mice were euthanized 

by CO2 asphyxiation 30 days post-infection, tissues were scored for gross lesions, and 

samples were collected for bacteriological, histopathological, serological, and cell-

mediated immune analyses. 

 

4.6 Mouse vaccinations 

Mice were immunized with a single vaccination intramuscularly in the right 

quadriceps with 100 µL pyrogen-free saline containing one of the following: 0.5 µg 

WCS, 25 µg PD, 0.5 mg WCS-loaded 20:80 CPH:SA microspheres (20:80-WCS), 0.5 

mg PD-loaded 20:80 CPH:SA microspheres (20:80-PD), 0.5 mg PD-loaded 50:50 

CPH:SA microspheres (50:50-PD), or 0.5 mg PD-loaded microspheres (20:80+PD or 

50:50+PD) along with 2.5 µg unencapsulated PD. Suspensions of microspheres were 

sonicated briefly to disperse aggregates before delivery via 25 gauge hypodermic needle.  

 

4.7. Bacterial inoculation 

At 30 days post-vaccination, mice were challenged with B. hyodysenteriae, and 

four to seven mice were sham inoculated with broth alone in each experiment. Mice were 

orally colonized with a bacterial inoculum (0.3 mL, approximately 108 cells/mL) of B. 

hyodysenteriae administered by orogastric intubation on two consecutive days. 

Spirochete infection confirmed bacteriologically at necropsy by demonstration of β-

hemolytic spirochetes grown on anaerobic selective media [34].  

 

4.8 Gross inflammatory scores of murine ceca 

At necropsy, gross pathological changes to the cecum were scored using a 

modification of a previously reported scoring system [34, 35]. Lesions were scored from 

0 to 6, giving one point for each of the following parameters when present: cecal 

blunting, cecal atrophy, cecal emptying (excessive mucus), watery or mucoid cecal 

contents, enlarged lymphoid aggregates, and observed blood in the cecum. 
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4.9 Histology of murine cecal tissue 

Formalin-fixed cecal tissues were embedded in paraffin, sectioned at 5 µm, 

stained with hematoxylin and eosin (H&E), and scored for microscopic inflammation 

[34, 35]. Tissue sections were coded and presented blind to the pathologist. Histological 

scores were based on the severity of mucosal epithelial damage (erosions, edema), degree 

of lamina propria cellular infiltrate, and architectural distortion (crypt length, cellular 

hyperplasia). These parameters were added together to give a relative histologic score 

index. 

 

4.10 Murine antigen-specific serum antibodies 

Serum samples were obtained every two weeks via saphenous vein blood 

collection [36]. Blood was refrigerated overnight and serum separated via centrifugation. 

Sera samples were stored at -20ºC until assays were performed. Measurement of B. 

hyodysenteriae antibodies in sera was performed by ELISA. Briefly, 96-well plates were 

coated with 5 µg/mL WCS of B. hyodysenteriae. After blocking the plates (2% gelatin 

with 1% fetal calf serum) for two hours, serial dilutions (1:100 to 1:256,000) was added 

to each well and incubated at 4 ºC overnight. Then, alkaline phosphatase conjugated goat 

anti-mouse IgG (H&L), IgG1, or IgG2a (Southern Biotechnology, Birmingham AL) was 

added and incubated for 2 h at room temperature. Wells were developed using p-

nitrophenyl phosphate (Sigma 104) in sodium carbonate/bicarbonate buffer (pH 9.3) at 

room temperature. Optical densities were measured at 405 nm using a microtiter plate 

reader. 

 

4.11 Antigen-specific proliferation responses of murine lymphocytes 

In order to assess the cellular response induced by a single vaccination, 

lymphocytes isolated from the mesenteric lymph nodes and lymph nodes draining the 

injection site (right side popliteal and inguinal). Single cell suspensions were prepared 

from each individual animal, cellular debris was removed by settling, and the cells were 

then washed via centrifugation. The cells were resuspended in complete culture medium 
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(cRPMI) consisting of RPMI 1640 containing L-glutamine and supplemented with 1 % 

nonessential amino acids, 1 % sodium pyruvate, 2 % essential amino acids, 25 mM 

HEPES buffer, 100 units/mL penicillin, 0.1 mg/mL streptomycin, 0.05 mg/mL 

gentamicin, 1 % L-glutamine, 5 x 10-5 M 2 mercaptoethanol, and 5 % heat-inactivated 

FBS. Round-bottomed 96-well microtiter plates were seeded with 2.5 x 105 cells in 

cRPMI at a total volume of 200 μL per well. Wells also contained either concanavalin A 

(Con A, 0.5 μg/mL, Sigma), B. hyodysenteriae WCS (5 or 25 μg/mL), or cRPMI alone 

(i.e., no stimulation). Plates were then incubated for 3 days at 37 oC in 5 % CO2 in air. 

After 3 days, 0.5 μCi of methyl- [3H]-thymidine (specific activity 6.7 Ci mmole-1) at a 

concentration of 50 μCi/mL in 10 μL of cRPMI was added to each well, and the plates 

were incubated for an additional 18 h. The contents of each well were harvested onto 

glass fiber filters, and the incorporated radioactivity was measured by liquid scintillation 

counting. Treatments were run in triplicate and data is presented as mean counts per 

minute (CPM) or stimulation index (SI) calculated by dividing the CPM of treated wells 

by the CPM of non-stimulated (background) wells. 

 

4.12 Cytokine secretion from murine lymphocytes and cecal tissue 

Single cell suspensions of lymphocytes were prepared by tissue homogenization 

from the mesenteric lymph nodes and were incubated in cRPMI at 2.5 x 105 cells/well 

with or without WCS of B. hyodysenteriae for 72 h. Cells were stimulated with specific 

bacterial antigens at a concentration of 25 µg/mL or with ConA (0.5 mg/mL). Cell-free 

supernatants were harvested and analyzed for the presence of TNF-α, IFN-γ, IL-4, IL-5, 

IL-6, IL-10 and IL-12 cytokines using a multiplexed flow cytometric assay (FlowMetric 

System; Luminex, Austin TX). Additionally, at time of necropsy, two 4 mm biopsy 

punches were taken from cecal tissue and placed in 200 µL cRPMI with additional 

antibiotics (200 µg/mL Kanamycin, 200 units/mL penicillin, 0.2 mg/mL streptomycin, 

0.1 mg/mL gentamicin). Punches were incubated for 48 h at 37°C, 5% CO2. Cell free 

supernatants were collected and stored at -20°C until assayed for IL-1β, IL-6, IL-10, IL-

12p40, IL-17a, IFN-γ and TNF-α by multiplexed flow kilometric assay.  
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4.13 Pigs 

Twenty-seven mixed bred pigs (both genders) were purchased from Northwood 

Farms, a herd known to be free of dysentery and respiratory mycoplasma disease. Pigs 

were 10 days of age upon arrival and randomly split into pens. Pigs were treated with 25 

mg EXCENEL (ceftiofur hydrochloride, Pfizer) three times, 24 h apart starting day of 

arrival and 50 mg Baytril (enrofloxin, Bayer) two times, on days 5 and 7 after arrival. 

Pigs were fed nursery diet free-choice for the first two weeks and gradually switched to a 

standard corn-soybean grower ration (14% crude protein) (Heartland Co-op, Des Moines, 

IA) hand fed once daily. Animals were maintained to preserve the high-health, pathogen 

free status. Pigs were weighed weekly to monitor growth rate and enrichment provided in 

the pens. Pigs remained healthy and free of any clinical signs of disease (respiratory or 

enteric) prior to challenge with B. hyodysenteriae. All procedures involving pigs were 

approved by the Iowa State University Committee on Animal Care. 

 

4.14 Experimental design 

At 45 days of age, pigs were randomly assigned to their respective treatment 

groups. The first group was vaccinated in order to assess the immune response to the 

vaccine designated NI or non-infected and the second group was vaccinated and 

challenged with Brachyspira hyodysenteriae strain B204, 4 weeks following initial 

vaccination, designated INF for infected. Pigs were vaccinated once with PD loaded 

microspheres or blank microspheres on day 0 and a separate group of pigs was 

immunized twice with PD in incomplete Freund’s adjuvant (IFA) on day 0 and day 14. 

On day 28 and day 29 following initial vaccination, pigs were challenged orally with 100 

mL of culture broth containing B. hyodysenteriae (108 cells/mL). Animals were 

euthanized on day 42 (14 days post-challenge) via administration of Fatal-Plus followed 

by exsanguination. All injection sites were examined for presence of granuloma 

formation or other adverse tissue reactions. Colonic lymph nodes and lymph nodes 

draining the injection site were excised for evaluation of in vitro lymphocyte responses. 

Ceca and spiral colon were examined for gross lesions. Tissue samples of colon, ceca and 
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injection site tissue and lymph node were preserved in formalin for histological 

evaluation.  

 

4.15 Pig vaccinations 

Vaccines were prepared and administered as follows: PD vaccinated pigs: 1.25 

mg dry weight PD (40% protein) dissolved in 1 mL pyrogen-free saline was then 

emulsified with 1 mL IFA. Total volume of 2 mL delivered intramuscularly (IM) into 

neck muscle with 20 gauge hypodermic needle on days 0 and 14. MS vaccinated pigs: 7 

mg 50:50 CPH:SA PD-loaded (10 % w/w), 7 mg 20:80 CPH:SA PD-loaded (10% w/w) 

and 0.8 mg dry weight PD (40% protein) were suspended in 2 mL of saline, sonicated 

briefly to suspend the microspheres and injected IM with 20 gauge hypodermic needle on 

day 0. Non-loaded (i.e., blank) microsphere vaccinated pigs: 7 mg 50:50 CPH:SA (blank) 

microspheres and 7 mg 20:80 CPH:SA (blank) microspheres were suspended in 2 ml of 

saline, sonicated briefly to suspend particles and were injected IM using a 20 gauge 

hypodermic needle on day 0. 

 

4.16 Porcine PBMC proliferation assay 

To evaluate the in vitro antigen-specific recall response induced by vaccination, 

peripheral blood was collected at days 0, 14, 28 and 35 from the jugular vein into 

heprinated vaccutainer tubes. Peripheral blood mononuclear cells (PBMC) were isolated 

by diluting peripheral blood 1:3 in phosphate buffered saline (PBS, pH 7.2). Diluted 

blood was layered over Lymphocyte Separation Medium (density 1.077) (Mediatech Inc, 

Manassas VA), and centrifuged at 500 x g for 40 minutes. PBMC were obtained from the 

medium/plasma interface (buffy coat), washed three times in sterile PBS, and the cells 

were enumerated for use in proliferation assays.  

The cells were resuspended in culture medium (cRPMI) consisting of RPMI 1640 

containing L-glutamine and supplemented with 1% nonessential amino acids 

(Mediatech), 1% sodium pyruvate, 2% essential amino acids, 25 mM HEPES buffer, 100 

units/mL penicillin, 0.1 mg/mL streptomycin, 0.05 mg/mL gentamicin, 1% L-glutamine, 

5 x 10-5 M 2 mercaptoethanol, and 10% heat-inactivated FBS. Flat-bottomed 96-well 
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microtiter plates were seeded with 2.5 x 105 cells in cRPMI at a total volume of 200 µL 

per well. Wells also contained either Con A (5 µg/mL, Sigma), 5 or 25 µg/mL B. 

hyodysenteriae WCS antigen or cRPMI alone (i.e., no stimulation/background). Plates 

were then incubated for 3 days as described above. Treatments were run in triplicate and 

data are presented as mean counts per minute (CPM) ± SEM.  

 

4.17 Lymphocyte proliferative response of porcine lymph nodes(injection site and 

colonic) 

Injection site lymph nodes were identified by administering diluted India ink in 

PBS to a test pig in the same site and manner as vaccines were administered eight hours 

prior to sacrifice. Upon necropsy, muscles and tissue were carefully dissected until lymph 

nodes containing the ink were found. Two small lymph nodes located between the ear 

and shoulder, deep to the trapezius and longissimus muscles were removed from each 

pig. Additionally, colonic lymph nodes located within the fold of the spiral colon were 

analyzed. Lymph nodes were homogenized and single cell suspensions were passed 

through a 40 µm mesh cell filter (BD) to remove fibrous material and washed twice by 

centrifugation. Flat-bottomed 96-well microtiter plates were seeded with 5 x 105 cells in 

cRPMI at a total volume of 200 µL per well. Wells also contained either Con A (5 

µg/mL, Sigma), 5 or 25 µg/mL B. hyodysenteriae WCS antigen or cRPMI alone (i.e., no 

stimulation/background) and were cultured as described above. Stimulation indices were 

calculated by dividing the CPM of treated wells by the CPM of non-stimulated 

(background) wells.  

 

4.18 Porcine antigen-specific serum antibody (ELISA) 

Ninety-six well microtiter plates (Costar high protein binding) were coated 

overnight with 100 µL PBS containing 5 µg/mL B. hyodysenteriae WCS antigen. To 

remove unbound WCS, plates were washed with PBS containing 0.05% Tween 20 

(PBST) and then blocked for two hours at room temperature with PBST containing 2% 

gelatin and 2% fetal calf serum (FCS). Serum samples (100 µL/well) from individual 

pigs were serially diluted in PBST supplemented with 1% FCS (PBST-FCS). The plates 
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were then incubated overnight (18 h) at room temperature (25°C). The plates were again 

washed three times with PBST followed by addition of 100 µL of PBST-FCS containing 

alkaline phosphatase-conjugated goat anti-swine IgG (H&L) (0.5 mg/mL diluted 1:1000) 

(KPL, Gaithersburg, MD). After a two hour incubation period, the plates were washed 

three times with PBST followed by the addition of 100 µl of sodium carbonate buffer (pH 

9.3) containing phosphatase substrate (Sigma 104, Sigma-Aldrich, St. Louis, MO) at a 

concentration of 1 mg/mL and allowed to react for 1 h at room temperature. The optical 

density (OD) of the reaction was measured at 405 nm using a Spectramax 190 Plate 

Reader (Molecular Devices, Sunnyvale CA). Serum titers are reported as the reciprocal of 

the highest dilution giving an OD equal to or greater to a value calculated from the 

average of all background (d0) wells plus one standard deviation. 

 

4.19 Statistical analysis:  

Where appropriate, one-way analysis of variance (ANOVA) was conducted on 

group data with the aid of various computer software packages. Pair-wise comparisons 

were done for significant ANOVA using Bonferroni’s Correction for multiple 

comparisons.  

 

5. Results 

5.1 Encapsulation and release of PD in microspheres 

Pepsin digest (PD) whole cell lysate of Brachyspira hyodysenteriae was 

encapsulated into either 20:80 CPH:SA or 50:50 CPH:SA microspheres. Scanning 

electron microscopy revealed spherical particles between 5 and 10 µm in diameter as 

seen in Figure 1. Resulting microspheres were a gray free-flowing powder which 

suspended in PBS following brief sonication. The data in Figure 2 depicts the in vitro 

release kinetics of the encapsulated protein. The large initial burst was consistent with 

previous reports using ovalbumin which clustered near the outer surface of the 

microsphere during solid-oil-oil solvent emulsification [11]. For microspheres made from 

20:80 CPH:SA formulation, 50% of the material was released within the first two hours, 

with over 80% of the total protein encapsulated released in approximately 12 days. The 



 
 

188

release profile of 50:50 CPH:SA formulations was more consistent with previous results 

evaluating the release of ovalbumin [11, 37] or tetanus toxoid [12], the release profile 

indicated that 40 to 60 % of the material was released within 20 days and material 

continued to be released for at least 35 days (the length of this release kinetic study).  

 

 
  

Figure 1: Scanning electron photomicrographs of pepsin-digest loaded microspheres. 
Photomicrographs are increasing in magnification, as shown by the scale bar in the 
bottom right of each image (200 µm, 50 µm, 20 µm from left to right, respectively). Top 
panel depicts 20:80 CPH:SA formulation, and the bottom panel depicts the 50:50 
CPH:SA formulation. Microspheres were spherical in shape, non-aggregated and had a 
size distribution between 5 and 10 µm.  
 

20:80 CPH:SA microspheres, S/O/O, Loaded with PD B. hyodysenteriae 

50:50 CPH:SA microspheres, S/O/O, Loaded with PD B. hyodysenteriae 
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Figure 2: In vitro release kinetics of encapsulated B. hyodysenteriae pepsin-digest from 
polyanhydride microspheres. Following encapsulation, microspheres were incubated in 
buffer for up to 35 days. Samples of the released materials were analyzed for protein 
content. Data depicts the accumulated fractional release of the protein from the 
microspheres. The B. hyodysenteriae PD antigen preparation was encapsulated into one 
of two polyanhydride formulations: 20:80 CPH:SA or 50:50 CPH:SA. 
 

5.2 Immune response and protection against B. hyodysenteriae in mice immunized with 

PD-loaded microspheres 

In order to assess the immune response and efficacy of pepsin digest-loaded 

microspheres, C3H/HeOuJ mice were immunized with various microsphere formulations. 

Four independent experiments were performed. Results presented are from a single 

replicate but are representative of trends present in each independent experiment.  

Rarely do mice exhibit clinical signs of chronic B. hyodysenteriae infection. In order to 

more closely monitor the overall health status, mice were weighed every two days during 

the infection period. Infection with B. hyodysenteriae alone did not cause a significant 

decrease in weight as compared to non-infected mice (Figure 3). Vaccination had no 

discernible impact on weight gain. Four weeks following infection, mice were euthanized 

and evaluated for protection or attenuation of the typhlocolitis induced by B. 
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hyodysenteriae infection of mice. Unlike the swine, vaccination in mice does not protect 

from the acute phase of disease but does facilitate recovery from the chronic or immune 

mediated phase of infection [38]. Gross cecal scores between the individual vaccinated 

groups were not significantly different (Figure 4), but there was a trend toward less 

severe cecal lesion scores in the mice receiving either the single dose of PD or PD-loaded 

50:50 microspheres administered along with a small bolus (0.5 µg) of free PD. In 

previous studies in our lab, mice were protected (60%) when given two doses of PD 

given 10 to 14 days apart.  

 

 

 
Figure 3: Net weight change of C3H mice vaccinated with pepsin digest (PD), 50:50 
CPH:SA PD-loaded, 20:80 CPH:SA PD-loaded microspheres and challenged with 
Brachyspira hyodysenteriae. Weight changes during the four week infection period were 
monitored. Individual mice are depicted by symbols, the horizontal bar represents the 
group mean.  
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Figure 4: Four weeks following infection with B. hyodysenteriae, cecal lesions were 
evaluated using a modification of a previously established scoring system. Lesions scores 
of non-infected mice were significantly different (p ≤ 0.05) from all other groups but 
none of the vaccinated groups were significantly different from each other. 

 

PD was considered successful if 60% of the mice were protected. In the current 

study, all mice received only a single dose of PD, thus confirming the need for multiple 

antigen exposures to generate a protective immune response. When the ceca were 

evaluated microscopically for lesions (Figure 5), there was a trend toward less severe 

epithelial erosions, restitution of the crypt architecture, and less inflammatory cell 

infiltrate even though statistical difference between vaccinated groups was not observed. 

Evaluation of cytokines released from cecal tissue, differences in local inflammatory 

milieu were observed (Figure 6A-D) 
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Figure 5: Evaluation of microscopic erosions, cellular infiltrate, and inflammation in 
cecal tissue from mice vaccinated as described above and challenged with B. 
hyodysenteriae. Four weeks following infection with B. hyodysenteriae, ceca were placed 
in formalin, paraffin embedded, sectioned and stained with hematoxylin and eosin. Slides 
were evaluated in a blinded fashion by a pathologist for epithelial erosion, inflammatory 
cell infiltrate, and changes in cecal tissue architecture. Tissue sections from non-infected 
mice were significantly different from all other groups (P<0.05) and B. hyodysenteriae 
infected only group was significantly different from 50:50 and PD vaccinated groups.  
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Figure 6: Cytokines released from murine cecal tissue explants collected four-weeks 
post-infection. Mice were immunized and infected as described in Materials and 
Methods. Cytokines IL-1β, IL-17a, and TGF-β were also assayed but values were either 
below detection or there were no observable differences between vaccinates and non-
Infected groups. Data represented is mean + SEM of the amount of cytokine released 
from one experiment, (n = 4 – 6 samples per treatment group). 
 
 

Despite lack of protection from typhlocolitis, the PD-loaded microspheres either 

primed the mice or induced antigen-specific immune response prior to infection. As seen 

in Figure 7, the serum antibody response mice vaccinated with microspheres (20:80 or 

50:50) with or without free PD greater than that of non-vaccinated mice. The highest 

antibody responses were observed in mice receiving the PD-loaded 50:50 CPH:SA plus 

free PD, and PD alone groups. Post-challenge, all challenged mice demonstrated nearly 

the same level of serum antibody response (Figure 8). There was a trend for a greater 

antibody response in the 50:50 microsphere vaccinated group, indicating that the mice 

were primed by the antigen-loaded microspheres prior to challenge. However, the only 

statistical difference was observed between the non-infected mice and the challenged 

groups as a whole. Antibodies can be induced to switch to different IgG isotypes 
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depending on immune modulating signals from the CD4+ T cells. To evaluate the ability 

of the microspheres to modulate the antibody response, the induction of antigen-specific 

IgG1 (Th2) and IgG2a (Th1) antibody were measured. Mice immunized with 20:80 

CPH:SA microspheres, PD or WCS, with or without bolus, exhibited an antigen-specific 

antibody response suggesting a dominant Th2 immune response (IgG1:IgG2a ratio 

greater than one,  Figure 9). A ratio less than one would indicate the presence of higher 

amounts of IgG2a which is indicative of a dominant Th1 immune response. The 

differential IgG1:IgG2a ratios induced by vaccination with the PD-loaded microspheres 

supports the immune modulation observed with other antigens [12]. To evaluate the 

cellular immune response induced by microsphere and PD vaccination, lymph nodes 

draining the injection site (popliteal and inguinal) were removed and evaluated for 

proliferation in response to in vitro stimulation with WCS antigen. While there was 

demonstrable proliferation of cells recovered from all of the challenged groups (Figure 

10), the highest amount of proliferation was the group receiving 50:50 CPH:SA 

microspheres (significantly different from B. hyodysenteriae challenged only and Non-

infected). In contrast, proliferation from the mesenteric lymph node (Figure 11) was 

elevated in all challenge groups with no significant difference between them. To further 

analyze the in vitro recall response of the cells recovered from the mesenteric lymph 

node, culture supernatants were harvested and levels of IL-4, IL-5, IL-6, IL-10, IL-12, 

IFN-γ and TNF-α were evaluated in order to assess the Th1/Th2 bias of the immune 

response. There was no evidence that there was a measurable in vitro cytokine response 

following antigenic stimulation. However, the 20:80 + PD regimen appeared to modulate 

the IgG response towards a Th2 response (Figure 9). 
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Figure 7: Analysis of serum antibody responses (total IgG) from mice following a single 
immunization with PD or PD-loaded microspheres. Mice were immunized as described in 
Materials and Methods. Data depicted is the ELISA results four weeks after 
immunization, but before B. hyodysenteriae challenge. Asterisk indicates that the 
antibody response of the PD vaccinated group was significantly different only from non-
vaccinated mice (P < 0.05)  
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Figure 8: Analysis of serum antibody responses (total IgG) following challenge with B. 
hyodysenteriae. Mice were immunized as described in materials and methods. Serum 
antibody responses in mice vaccinated with PD-loaded 20:80 and 50:50 microspheres 
(with and without free antigen bolus) increased compared to controls and to pre-challenge 
serum antibody responses (Figure 7) indicating that the lower serum antibody responses 
observed prior to challenge were not due to the induction of immune tolerance. The 
asterisk indicates that the antibody response of the non-infected group was significantly 
different (P < 0.05) from all other groups. 
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Figure 9: Assessment of the immunological balance in the IgG isotype response induced 
by vaccination with PD-loaded microspheres followed by challenge with B. 
hyodysenteriae. A ratio of one would suggest a similar amount of IgG1 and IgG2a were 
induced against B. hyodysenteriae. Ratios below one would suggest a Th1-bias in the 
antibody response while ratios above one would suggest a Th2-bias in the antibody 
response.  

 
Figure 10: Antigen-specific proliferation of lymphocytes recovered from lymph nodes 
draining the injection. Mice were immunized once with PD digest-loaded CPH:SA 
microspheres of the given formulations as described in Materials and Methods. Four 
weeks after challenge, mice were euthanized and the lymph nodes draining the injection 
site were collected and analyzed in vitro for antigen-specific recall responses. Enhanced 
responses induced by 50:50 CPH:SA PD-loaded microspheres suggests that the predicted 
persistent release of antigen from this formulation differentially effected lymphocyte 
proliferation.  
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Figure 11: Lymphocyte proliferation from mesenteric lymph node cells following 
restimulation with B. hyodysenteriae WCS. Mice were immunized and challenged as 
described in materials and methods. Four weeks after challenge, mice were euthanized 
and the antigen-specific proliferation of mesenteric lymph node cells was analyzed. 
 

 

5.3 Immune response and subsequent protection of a single dose SD vaccine based on 

PD loaded polyanhydride microspheres in grower pigs 

In order to evaluate the efficacy of a single dose vaccine based on polyanhydride 

microspheres, a model of swine dysentery (SD) was chosen. The investigators have had 

success developing a vaccine for SD, and many years of experience with the model. 27 

crossbred pigs were purchased at 10 days of age from a farm known to be free of both 

swine dysentery and Mycoplasma-induced respiratory diseases. Upon arrival at ISU, pigs 

were given several rounds of long lasting, broad spectrum antibiotics and housed to 

prevent acquisition of respiratory pathogens. When animals reached 45 days of age, 

vaccination for evaluation of microsphere based vaccines was initiated. A time line of the 

study is depicted in Figure 12.  
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Figure 12: Timeline depicting experimental design for vaccinating and challenging pigs. 
Animals were given antibiotics upon arrival, at 45 days of age the pigs were separated 
into their respective vaccination groups, at day 66 (experimental day 0) all pigs were 
injected with vaccine or received a sham treatment (IFA-PD, PD-MS and blank), and at 
day 80 (experiment day 14) the IFA-PD group received the second vaccination. Pigs were 
challenged with Brachyspira hyodysenteriae on two consecutive days (28 and 29).  

 

Pigs were weighed weekly in order to monitor growth. Growth rate is also an 

economically important clinical sign of B. hyodysenteriae infection. Prior to challenge, 

vaccination had no effect on growth rate. Upon challenge, vaccination had a definite 

effect on growth rate indicating protection from disease. The growth rate (average daily 

gain, ADG) for the group receiving two doses of pepsin digest B. hyodysenteriae antigen 

in incomplete Freund’s adjuvant (IFA), a common mineral oil vaccine adjuvant, was 

significantly higher (p ≤ 0.05) than the group receiving the sham vaccine (Figure 13). The 

variability of ADG in the pigs receiving the PD-loaded microspheres correlated with the 

severity of clinical disease of the animals in the group. For example, pigs presenting with 

little or no disease had an ADG of 1.6 to 1.8 pounds/day compared to pigs presenting 

with severe disease (ADG 0 to 0.4). 
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Figure 13: Average daily gain (ADG) of pigs following infection with B. hyodysenteriae. 
The ADG for the group receiving two doses of the IFA-PD vaccine was significantly 
different (P<0.5, α=0.05) from the group receiving blank microspheres but neither was 
significant from the group receiving the single dose of PD-loaded microspheres (MS) 
(n=5). Non-infected (control) animals were housed in a separate room and had an ADG 
of 1.7 lbs (n=12). 

 

Reduction of carcass loss due to adverse reactions and granuloma formation at the 

injection site is of economic importance to producers as well as important for adjuvants 

with potential use in human as well as livestock vaccines. At necropsy, injection sites 

were examined for any gross signs of adverse reactions. As summarized in Table 1, 6 of 8 

pigs receiving PD in IFA developed granulomas in the muscle tissue of the injection site. 

The granulomas consisted of a sterile abscess (no bacterial growth from the exudate) with 

thick fibrous capsule and contained mostly inflammatory cells. In the pigs receiving 

either the blank and PD-loaded microspheres there was no evidence of tissue reactivity, 

granuloma formation or other adverse reactions. This is consistent with other 

observations from mice and sheep vaccinated with the polyanhydride microspheres in 

that there is little to no local inflammatory reaction or granuloma formation in response to 

microsphere vaccination. 

Pigs were observed daily beginning day of challenge and evaluated for any 

clinical signs of dysentery including loose or watery stools, presence of blood and/or 

mucus, inappetence, and lethargic behavior. Observations were recorded for each 

individual pig and total number of diarrhea days for each individual are reported (Figure 



 
 

201

14). The PD-IFA vaccinated group remained free of any clinical signs of dysentery. 

While there was no significant difference between the PD-microsphere vaccinated group 

and the sham (blank) vaccinated groups, there was animal-to-animal variability. All five 

of the animals in the sham vaccinated group displayed clinical signs of dysentery whereas 

one of the microsphere vaccinated pigs remained completely healthy. In contrast to all 

previous studies in this laboratory with the swine dysentery model, four out of 5 pigs in 

the sham vaccinated group spontaneously recovered from disease by 10 days following 

challenge. Likewise, two of the animals with disease symptoms in the PD-microsphere 

vaccinated group recovered between days 7 to 10 post-challenge. The spontaneous 

resolution of clinical signs was not due to clearance of B. hyodysenteriae. As shown in 

Table 1, there were animals in each group that were positive for β-hemolytic anaerobic 

spirochetes at time of necropsy.  

 

 
Figure 14: Total number of days that clinical signs of dysentery was observed in pigs 
infected with B. hyodysenteriae. Animals were observed daily during the 14 day infection 
period. Signs of dysentery included loose or watery stools, presence of blood or mucus in 
the stools, lethargy, and reduced appetite. The group receiving two doses of IFA-PD (PD) 
was significantly different (* P < 0.05) from either group receiving blank microspheres or 
the group receiving a single dose of the pepsin digest loaded microsphere vaccine (MS) 
(n = 5). 
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Table 1: Summary of clinical observations of infected and non-infected pigs 
following vaccination. 
 
 
Treatment Group 

No. pigs with 
Colonic 
Lesionsa  

Positive for β-
hemolytic 
spirochetesb  

No. pigs with 
clinical signs of 
dysenteryc 

No. pigs with 
injection site 
reactionsd  

IFA-PD 
Vaccinated 

0/5 2/5 0/5 6/8  

PD-loaded 
Microspheres 

3/5 3/5 4/5 0/8 
 

Blank 
Microspheres 

1/5 3/5 5/5 0/8 
 

agross lesions at necropsy included mild to severe hyperemia, hemorrhage, mucus, 
or fibrin deposition.  
bculture of colonic samples for β-hemolytic spirochetes on selective media. 
cpresence of clinical signs of dysentery during the 14 days post-challenge. 
dpresence of granulomatous reactions at  the injection site at time of necropsy. 
Observations of injection site reactivity also include the vaccinated but non-
challenged animals. 
 

In order to assess the immune response induced by PD-loaded microspheres, 

peripheral blood was collected at day 0 (pre-vaccination), day 14 following vaccination, 

day 28 (prior to challenge) and day 38 (10 days post-challenge). Serum antibody 

responses to B. hyodysenteriae antigen were measured by ELISA. No group showed any 

appreciable antibody on day 14, but on day 28 the IFA-PD vaccinated groups had a 

serum antibody titer of 12800 and 6400 for the infected and non-infected groups (Figure 

15). Following infection, the median titer for the IFA-PD vaccinated group increased 

from 12800 on day 28 to 25600 on day 38. The group receiving PD-loaded microspheres 

did not exhibit any appreciable antibody until day 38 and only those pigs that were 

challenged with B. hyodysenteriae. No appreciable antibody titer was observed after 

infection in the pigs receiving the blank microspheres, indicating that the PD-loaded 

microspheres primed these pigs for a secondary immune response.  
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Figure 15: Serum antibody (IgG H&L) responses to B. hyodysenteriae antigen in pigs 
following vaccination and challenge. Peripheral blood was collected prior to vaccination 
(d0), at day 14 after initial vaccination, day 28 (prior to challenge), and day 38 (10 days 
after challenge). Pigs were vaccinated with either two doses of pepsin digested B. 
hyodysenteriae antigen in incomplete Freund’s adjuvant (PD), a single dose of pepsin 
digest loaded microspheres (MS) or a single injection of blank microspheres containing 
no antigen (Blank). On day 28, some animals (n = 15, 5 per treatment group) were 
challenged with B. hyodysenteriae (-Inf), and the other animals (n = 4 per treatment 
group) remained unchallenged (-NI).  

 

On days 0, 14, 28 and 38 mononuclear cells were isolated from peripheral blood 

and stimulated with B. hyodysenteriae antigen. The proliferation of these PBMC is 

depicted for the challenged groups in Figure 16. The IFA-PD vaccinated group’s 

proliferative response increased after day 14, after the second PD immunization, and 

again between days 28 and 38, increasing after challenge. Similarly, IFA-PD vaccinated 

but non-challenged pigs’ proliferative response increased from day 0 to 14 and again 

days 14 to 28 (data not shown). Peripheral blood mononuclear cells recovered from pigs 

vaccinated with the blank microsphere did not exhibit appreciable proliferation until after 

challenge (day 38). In contrast, the PD-loaded microsphere vaccinated group did not 

show an increase their proliferative response following challenge. This failure to increase 

proliferation in the PD-loaded microsphere vaccinated group in contrast to the blank 
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microsphere group further indicates immunological priming and differential 

immunological response induced by the microsphere delivered vaccine from PD 

delivered in Freund’s incomplete adjuvant or the immune response induced by infection 

alone (blank microsphere group).  
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Figure 16: Peripheral blood mononuclear cell (PBMC) proliferative recall response to B. 
hyodysenteriae antigen. Peripheral blood was collected prior to vaccination (d0), at day 
14, day 28 (prior to challenge), and day 38 (10 days after challenge). PBMC were 
isolated and stimulated as described in Materials and Methods. Pigs were vaccinated and 
challenged as described in Materials and Methods. Data points that represent the PBMC 
proliferation at day 38 for the corresponding non-infected pigs are represented by open 
symbols: IFA-PD (open square, n =5), PD-MS (open circle, n = 4 – superimposed with 
the closed circle) and blank-MS (open triangle, n = 3).  

 

At necropsy, lymph nodes draining the injection site were excised, single cell 

suspensions were prepared, and stimulated in vitro with B. hyodysenteriae antigen. Very 

little antigen-specific proliferation was observed and was not statistically different 

between vaccination groups (data not shown). Unlike the vaccinated mice, antigen-

specific cells were not detected in the lymph nodes adjacent to the injection site four 

weeks following vaccination. In addition, antigen-specific proliferative responses were 

also evaluated for cells recovered from the colonic lymph nodes. A robust proliferative 

response was observed in the colonic lymph node cell cultures from challenged pigs 

receiving the IFA-PD and PD-loaded microspheres (Figure 17). A significant 



 
 

205

proliferative response was also observed in non-challenged animals receiving the PD-

loaded microspheres. In contrast, colonic lymphocyte proliferation to B. hyodysenteriae 

antigen was not observed in infected only (blank microsphere vaccinated) animals. 

Colonic lymph node proliferation is in contrast to the PBMC response further indicating a 

different immune response induced by the two vaccine regimens.  

 

 
Figure 17: Antigen-specific proliferative response of lymphocytes recovered from 
porcine colonic lymph nodes. At necropsy, colonic lymph nodes were excised and single 
cell suspensions were prepared as described in materials and methods. Stimulation 
indices were calculated by dividing the counts per minute of antigen stimulated wells 
with the counts per minute from non-stimulated (background) wells. Statistical 
differences were found between PD-NI group and MS-Inf, and between MS-Inf and 
Blank-Inf but no other groups.  
 
6 Discussion 

To date, a majority of commercial vaccines used to induce protection against 

bacterial-induced diseases of swine employ two or more vaccinations increasing the 

burden on personnel needs and costs. Additionally, these vaccines are often whole cell 

bacterins and there is concern that adverse reactions at the injection site induced by TLR 

ligands can affect carcass quality. Previous studies from this laboratory had shown that 

the intramuscular administration to pigs of an enzymatic digest of B. hyodysenteriae (PD) 
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incorporated into IFA induced protection from swine dysentery. As was shown in the 

current study, two doses of the IFA-PD vaccine induced protection in 100 % of the pigs 

challenged with B. hyodysenteriae.  

Consistent with previous observations, the IFA containing vaccine induced 

demonstrable antigen-specific serum antibody and proliferation of PBMCs that was 

accompanied by a characteristic granulomatous reaction at the injection site. In contrast 

to other laboratories using this model, there does not appear to be direct link between 

culture positive, highest number of symptom days, or severity of gross lesions at 

necropsy, as not all of these disease indices were seen in the each of the affected animals. 

All of the sham vaccinated pigs developed clinical swine dysentery following challenge. 

The majority of the pigs (4 of 5) receiving the single dose vaccine containing the PD-

loaded polyanhydride microspheres (PD-MS) also developed swine dysentery. Relative 

to the sham vaccinated pigs, the PD-MS vaccinated pigs had slightly fewer diarrhea days 

(Figure 14) and were primed for the induction of a serum antibody response after 

challenge (Figure 15, day 38). There is little evidence that a serum antibody response 

alone provides protection from swine dysentery. However, these results suggested that 

pigs immunized once with a vaccine formulated with antigen-loaded MS would induce 

significant serum antibody following infectious challenge. 

As cell-mediated responses may also be an important component of protective 

immunity, the results of these studies indicate that lymphocytes recovered from lymph 

nodes (LN) draining the colon of vaccinated pigs proliferated to a greater extent than 

those from the sham immunized pigs following challenge (Figure 17). In addition, the 

antigen-specific proliferative response of colonic LN cells recovered from the PD-MS 

vaccinated pigs showed greater proliferation than cells recovered from the IFA-PD group. 

Waters and Hontecillas showed that cells expressing CD8αα were increased following B. 

hyodysenteriae infection [15]. Vaccination with PD in a squalene-oil adjuvant increased 

proliferation and IFN-γ secretion by peripheral blood mononuclear cells but, at the 

colonic lymph node level, PD vaccination decreased numbers of proliferating cells [16]. 

 While the original Th1/Th2 paradigm of CD4 T cell activation has evolved to 

include other induction pathways (Th17 and Treg) in laboratory rodents and humans, 
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these new T helper cells are poorly defined in livestock species and thus the Th1/Th2 

differentiation still provides a suitable reference for nature of immune response. Aberrant 

immune responses can exacerbate many different inflammatory diseases. The lesions of 

B. hyodysenteriae have been likened to human inflammatory bowel disease. While the 

etiology of these diseases are not completely known, they are characterized by an 

increase of pro-inflammatory or Th1 cytokines. Previous studies have shown that PD 

vaccination increased IL-10 secretion by murine MLN [38] and comparatively reduced 

IFN-γ secretion by colonic lymph node cells of pigs [16]. In the present studies, increases 

in IL-10 secretion were observed from cecal tissue explants of vaccinated mice versus 

infected controls (Figure 6 B). The nature of the antigen-specific response (i.e., type of T 

cells proliferating or cytokines produced) induced by the various vaccination regimen 

was not evaluated. However, prior experience by the authors indicated that the clinical 

signs of swine dysentery were often exacerbated (earlier onset) by the induction of an 

inappropriate immune response. In this regard, clinical signs of swine dysentery appeared 

one to two days earlier in the PD-MS vaccinated pigs in comparison to the sham 

vaccinated group suggesting that vaccination with the PD-MS exacerbated disease 

induction. However, there were fewer total number of days with clinical disease in the 

PD-MS group compared to the sham vaccinated pigs (Figure 14). 

Alteration in the colonic microbiota alters microbial activities (such as the 

inactivation of trypsin and conversion of bilirubin to urobiliogen, production of butyrate). 

The interactions between the microbiota and diet may predispose pigs to increasing 

severity of dysentery [39]. By treating the pigs in this study with several courses of broad 

spectrum antibiotics and housing them in very clean conditions, their intestinal 

microbiota may have been altered such as the organisms necessary for the induction of 

severe disease were not present. Oral administration of Baytril eliminated many Gram-

negative anaerobe species resident in the gut of a wild rodent species [40]. Wiuff et. al., 

found that intramuscular administration of Baytril was effective at reducing the numbers 

of Salmonella and other coliform bacterial species in the intestinal tract of pigs [41]. As 

shown by Whipp et. al., gnotobiotic pigs only displayed the characteristic lesions of SD 

when also colonized with Bacteriodes vulgatus, a Gram-negative anaerobe [42]. The 
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authors speculate that the mild lesions and reduced immune response observed in this 

study may be attributed to alterations of the microbiota upon arrival at the facility and 

treatment with EXCENEL and Baytril in conjunction with to the clean environment, 

certain bacterial species were not reinoculated.  

While the mouse studies did not provide evidence that the antigen-loaded MS 

induced protection from disease, there was evidence that the PD-loaded 50:50 

microspheres enhanced antigen-specific antibody responses prior to and after challenge 

with B. hyodysenteriae. While the results were not statistically significant, there was also 

a trend toward less severe typhlocolitis and histopathological lesions in mice receiving 

the PD-loaded 50:50 polyanhydride microspheres. From the different replications (shown 

in this report as one experiment), there is a definite effect of vaccine regimen on resultant 

immune response. When free-antigen is included with the 50:50-PD loaded microspheres, 

the response more closely mirrors the PD vaccinate responses and there is a trend toward 

greater protection. This is consistent with other studies performed in this laboratory using 

ovalbumin as a model antigen in mice. Mice receiving Ova-encapsulated in 50:50 

CPH:SA microspheres show an increased immune reactivity (antibody and cellular 

proliferation) as compared to mice receiving Ova-loaded 20:80 CPH:SA microspheres. 

The sustained release predicted for the 50:50 CPH:SA microspheres by model antigens in 

vitro, may be important in vivo for the development of sustained immune responses. In a 

separate replicate of the mouse immunization studies, the phenotype of cells in the 

mesenteric lymph node was analyzed by flow cytometry. While the percentage of CD19+ 

and CD4+CD25+ in the draining lymph node was not different than those from non-

immunized mice, there was a definite increase in the total number of cells recovered from 

the MLNs of infected with B. hyodysenteriae compared to those from mice infected and 

vaccinated or non-infected.  

In a pilot study, sheep were injected with 20:80 CPH:SA microspheres loaded 

with B. hyodysenteriae whole cell sonicate (WCS). At 14 days post-immunization, the 

serum antibody response and peripheral blood proliferative responses were similar to 

sheep receiving WCS in Freund’s incomplete adjuvant (data not shown). These 

responses, while still greater than their pre-immunization responses, waned by 45 days 
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post-immunization. It is possible that the microspheres did not sustain release of WCS 

antigens as was predicted by in vitro release of other model proteins. Also, while the dose 

of microspheres administered was based on a weight comparison of doses administered to 

mice and previous PD vaccination studies, the microsphere dose given to the sheep may 

have been insufficient for sustained response in the absence of Brachyspira species in the 

ovine microbiota or subsequent to an infectious challenge. This is relevant to the current 

study in pigs in that many of the same issues could explain the weak immune response 

(e.g., insufficient antigen dose) of pigs immunized with PD-loaded microspheres.  

The blend of microspheres consisting of 20:80 and 50:50 CPH:SA nanospheres 

was used in the current swine immunizations with the hypothesis that this would provide 

for a sustained release of antigens from the 50:50 CPH:SA microspheres while taking 

advantage of the more rapid release of antigen from the 20:80 CPH:SA microspheres. 

However, in other studies, the blend of these two polymer chemistries actually 

suppressed subsequent immune responses as compared to animals that received either 

20:80 CPH:SA or 50:50 CPH:SA alone. This unpredicted result could also explain the 

low immune responses in pigs receiving the PD-MS vaccine.  

In conclusion, an enzymatic digestion of a whole cell antigen preparation was 

successfully encapsulated into polyanhydride microspheres. The antigen was released 

from the MS with the expected kinetic rate, and the released material was immunogenic 

as well as antigenic. In addition, administration of the PD-loaded MS to both pigs and 

mice induced antigen-specific immune responses; however, the PD-MS formulations 

used in these studies did not induce protection from clinical dysentery. Future studies will 

be required to optimize the immunization regimen or to evaluate the ability of antigen-

loaded MS in order to become an efficacious vaccine carrier with benefit to livestock 

health. 
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 CHAPTER 7 

 

General Conclusions 

The induction of antigen-specific immune responses, in general, follows fairly 

predictable patterns. Pathogen-derived stimuli activate antigen presenting cells via pattern 

recognition receptors (e.g., TLRs). Activation in APCs such as dendritic cells (DCs) is 

characterized by the increased surface expression of antigen presenting molecules (MHC 

I or MHC II), increased in surface expression of costimulatory molecules (CD80, CD86, 

and/or CD40) and secretion of cytokines (IL-6, IL-12 and TNF-α) necessary for 

induction and activation of antigen-specific effector T cells . Activated T cells 

differentiate into either effector or central memory T cells, and these effector T cells can 

affect the differentiation of memory B cells into antibody secreting plasma cells. Thus, 

there are three keys to induction of a long-lived efficacious immune response to a 

pathogen: i) activation of the antigen presenting cell, ii) a sufficient dose of antigen to 

induce and sustain T cell activation, and iii) sufficient activation signals to ensure the 

induction of long term T cell and/or B cell memory. The last step in the evolution of a 

pathogen-specific immune response involves induction of the critical effector molecules 

or cells that are required for pathogen clearance with minimal host damage. For example, 

an antibody to block viral or toxin binding may be sufficient to prevent disease and will 

induce a lot less cellular damage than a plethora of armed CD8+ T cells. The studies 

presented in this dissertation were undertaken to address specific aspects of these three 

key steps in the process of immune activation; in this regard, the final study evaluated the 

induction of protective immunity against Brachyspira hyodysenteriae using antigen-

loaded polyanhydride microspheres in the context of an infectious disease. 

First, a mechanistic study was undertaken to evaluate the activation of murine 

bone marrow derived DCs by incubating these cells in the presence of varying 

concentrations and differing compositions of CPH:SA and CPTEG:CPH microspheres. 

To this end, experiments were performed to evaluate the expression of cell surface 

markers on DCs and cytokine secretion from DCs that had been incubated with 

microspheres. All of the microsphere formulations tested, in general, increased the MFI 
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of MHC II expression, increased the MFI and percentage of cells expressing both CD86 

and CD40. In addition, microspheres composed of CPTEG enhanced surface expression 

of CD209. There was little evidence that this observed activation of DCs occurred in 

either a dose- or chemistry-dependent manner as evidenced by poor R2 values obtained 

by following the linear regression analysis (R2 = 0.2 or lower). The activation of DCs by 

microspheres did enhance antigen-specific T cell proliferation as was observed using 

cells derived from transgenic OT I (CD8+ T cell responder) and OT II (CD4+ T cell 

responder) mice which carry an clonotypic T cell receptor that recognizes Ova-specific 

peptides in the context of the appropriate MHC molecule. The studies outlined in Chapter 

3 demonstrated that CPTEG containing polymers and PLGA polymers enhanced OT I or 

CD8+ T cell proliferation to a greater extent than they enhanced OT II or CD4+ T cell 

proliferation. CD8+ T cells have the ability to cross prime each other and respond to a 

lower threshold of stimuli than do CD4+ T cells. Activation of CD8+ T cells does not 

require a prolonged interaction between the peptide-MHC I complex on the DC with the 

T cell receptor on the CD8+ T cell in order to initiate immune activation, antigen-specific 

clonal proliferation, and induction of memory cells. The observed differential activation 

of CD209, the differing magnitude of cytokine secretion, and the inconsistent induction 

of lymphocyte proliferation all suggest that CPH:SA and CPTEG:CPH copolymers are 

not activating the same pathways in DC. The differing chemistries were shown to have an 

effect on cellular uptake (phagocytosis) [1] and may also effect pathways of antigen 

processing and presentation (i.e., cytosolic for MHC I presentation and CD8+ T cell 

activation, phagolysosome for MHC II presentation and CD4+ activation). In contrast, 

the role of DC activation for B cell activation is poorly defined and as APCs themselves, 

the B cells may interact directly with the microspheres in vivo leading to differentiation 

into antibody producing plasma cells. Future studies will need to be conducted to 

determine the effects of microspheres on antigen processing and presentation by DCs. 

Studies evaluating the role of Toll-like receptors (TLRs) on innate and adaptive 

immunity have flooded the immunology literature of late [2-27]. One article that has 

relevance to our work with polyanhydrides, was Polly Matzinger’s hydrophobicity 

hypothesis [25]. Simplified, what Janeway described as non-self receptors may actually 
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be more like danger receptors that bind hydrophobic ligands derived from both 

pathogenic invaders and damaged host cells [25]. The most promiscuous of these 

receptors appears to be TLR2 and TLR4. Starting with non-activating blocking antibodies 

and moving on to TLR2 and TLR4 deficient mice, DC activation by microspheres and 

immune response to Ova co-injected with microspheres was evaluated. While that data is 

still being analyzed and are not a part of this dissertation, these studies indicated that 

there is no difference in activation or in vivo immune response between TLR2-/-, TLR4-/-, 

and wild type C57BL/6 mice in the presence of the polyanhydride microspheres. 

While the microspheres enhanced the expression of cell surface markers and 

increased cytokine secretion of DCs derived from C3H or C57BL/6 mice over non-

stimulated or background levels, the magnitude of the responses was much less than 

when DCs were stimulated with TLR ligands (LPS, lipotecholic acid from S. aureus, and 

MPLA). It is important to note that microsphere stimulated DCs were still capable of 

responding to LPS when it was added to the medium 8 to18 hours after addition of 

microspheres to the DC culture indicating that the TLR-MyD88 activation pathway was 

not exhausted following exposure to the microspheres. Thus, the responses observed 

were not aberrant activation of DC, a mechanism induced by many pathogens in order to 

evade or inhibit adaptive immunity, but just low levels of activation. In comparison, it 

has been shown to be necessary to include MPLA in polyester microspheres in order to 

enhance DC activation in similar studies clouding the ability to conclude that the 

polyester microspheres directly activate DCs [28]. In this regard, future work with 

polyanhydrides should evaluate the inclusion of TLR ligands for enhancement of DC 

activation and possible enhancement of subsequent immune activation. 

A study by Thompson et. al., showed that transfer of DO11.10 transgenic (Tg) T 

cells into naïve donors proliferated well when Ova was administered to the mice at the 

same time; but these Tg T cells did not accumulate in the lymph nodes if TLR agonists 

are not co-administered with Ova [29]. It is possible that we observed a similar 

phenomenon in the present studies. Specifically, we were able to detect and recover an 

expanded population of CD4+KJ1.26+ T cells from recipient BALB/c mice that were co-

injected with Ova and blank microspheres employed as adjuvants; these cells received 
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sufficient survival signals such that they were still demonstrable after day 5. However, it 

is hypothesized that these cells did not receive sufficient signal to differentiate into 

effector or memory cells. Furthermore, as T cells mature from a naïve cell into an antigen 

experienced, effector/memory T cell pool, CD4+ T cells require more time engaged with 

APCs in order to complete replication rounds and differentiate into effector cells [30]. 

Successive rounds of APC engagement, T cell proliferation followed by inactive “rest”, 

constitutes one theoretical model of T cell activation where at each successive 

engagement-proliferation stage the T cells are maturing into effector and/or memory T 

cells [30-32]. If sufficient antigen and/or “danger-signal”-activated APC are available at 

each of these successive rounds of stimulation and replication, progress toward 

effector/memory cells stops and CD4+ T cells undergo death by neglect [30-32]. From the 

present studies, it is evident that: 1) the time points chosen as part of the experimental 

design to observe these events was critical (in terms of days PI and length of stimulation 

ex vivo); and 2) the administration of soluble Ova (without replenishment from a depot or 

a replicating pathogen) did not remain in the lymph node long enough for complete CD4+ 

T cell activation to occur. Both of these outcomes are consistent with the poor 

proliferative responses observed and the phenotype (CD44hiCD62Lhi) of antigen-specific 

T cells recovered from mice receiving the Ova-responsive Tg T cells and Ova co-injected 

with microspheres. Had there been sufficient Ova and/or APC activation, we would have 

expected to demonstrate the presence of CD44hiCD62Llo effector CD4+ T cells. 

In contrast, B cells that reside in the follicles of tissue draining lymph nodes can 

obtain soluble antigen that directly enters the lymph node via the afferent lymphatic 

vessels [33]. B cells can also interact with activated DCs and receive co-stimulation from 

them, but the B cell response (e.g., isotype switching) is limited in the absence of 

sufficient CD4+ T cell activation. It has been shown by others that an antibody response 

may be limited to IgG1 production without the appropriate CD4+ T cell signals [34, 35]. 

Therefore, it is likely that the IgG1 dominant Ova-specific antibody responses measured 

arose as a consequence of similar mechanisms. 

After evaluating the results from mice immunized with Ova-loaded microspheres 

12 weeks following a single immunization, there appeared to be a definite affect on the 
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immune response based on fabrication method of the microspheres. Lopac et. al., showed 

that there was no difference in release kinetics of Ova encapsulated by the two different 

fabrication methods [36]. That study showed a chemistry dependent decrease in protein 

stability. The current studies demonstrated that the immunogenicity of Ova was also 

affected by fabrication method as evidenced by the differences observed in mice 

immunized with Ova-loaded microspheres fabricated by S/O/O and CA. Differences 

were also observed in groups of mice receiving Brachyspira-derived antigen-loaded into 

microspheres fabricated by S/O/O and CA (data not shown). There was a trend in the 

profile of the immune response that suggested that the CA fabricated microspheres 

induced lower antibody responses and recall proliferative responses, and increased 

clinical signs of disease upon challenge with B. hyodysenteriae, but these results were not 

significantly different (data not shown). Even though the encapsulated bacterial antigen 

induced an immune response, this did not result in protective immunity. These studies 

were undertaken in an attempt to evaluate the ability of the polymer delivery system to 

induce protective immunity using a single dose immunization regimen. While the mice 

and pigs were primed, protective immunity was not induced. This was in contrast to the 

protective immunity induced in pigs using a more traditional two-dose oil-in-water 

emulsion. 

Ovalbumin is susceptible to heat, chemical, and enzymatic degradation resulting 

in reduced immunogenicity [37-39]. One might conclude that the polymer induced 

degradation of Ova during encapsulation and/or release reduced the immunogenicity of 

the protein sufficiently such that the immune responses approximated those induced by a 

small dose (25 µg) of soluble protein administered without an adjuvant. The observed 

responses were actually enhanced over soluble Ova-alone in that the mice were primed 

sufficiently to respond with an anamnestic antibody response and modest, but detectable, 

Ova-specific proliferative response following in vivo boost with an antigenic challenge. 

The present studies also demonstrated that there were strain-related differences 

the Ova-specific immune response. As these common mouse strains (C3H/HeN, 

C57BL/6, and BALB/c) possess different MHC haplotype genes that likely affect or 

restrict the epitope repertoire of their respective MHC II molecules. In this regard, the 
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testing of a single antigen in several strains of mice has become a good predictor of an 

antigen’s immunogenicity in an out-bred population [40-42]. Similarly, a mixed epitope 

vaccine should show varying magnitude of efficacy in an outbreed (mixed haplotype) 

population. Thus, the variation observed in the levels of protection of the PD-loaded 

microsphere vaccinated pigs may be linked to mixed genetic background. The pigs used 

in this study, like humans, represent a heterogeneous population. Two out of the five pigs 

receiving PD-loaded microspheres were protected from challenge, thus strongly 

suggesting that while the entire protein may not have been destroyed, key epitopes for 

some MHC configurations may have been lost. It was an interesting observation that the 

three pigs that exhibited the most severe clinical signs of dysentery (one from the blank-

MS group and two from the PD-loaded MS group) were thin, dark skinned red pigs, a 

unique phenotype as compared to the rest of the group, but unfortunately records were 

not able to be obtained from the supplier that could confirm genetic linkage (e.g., 

littermates).  

It is not insignificant that a key underlying observation in all of these studies was 

biocompatibility of these novel polyanhydrides. High concentrations of polymer were 

tolerated by a variety of cell types in vitro [43]. In all of the murine studies (comprising 

well over 1,000 mice) and preliminary studies in two livestock species (sheep and pigs), 

no injection site reactivity (severe fibrosis or granuloma formation) was observed. Good 

vaccine adjuvants walk a fine line between efficacy and toxicity (i.e., LPS and MPLA). 

As evidenced by the DC activation studies and the lack of tissue reactivity in vivo, the 

polymers themselves may not be inducing much of a “danger” signal. There is a 

correlation between tissue site reactivity and the magnitude of antibody production [44]. 

However, in humans, injection site reactivity following vaccination is cited as a key 

reason for poor patient compliance in westernized countries [45]. In livestock species, 

granulomas and tissue site abscesses contribute to economic losses at harvest [44, 46, 47]. 

Future studies must find a balance of danger signal and biocompatibility in order for 

these polyanhydrides to make effective vaccine adjuvants.  

As for the effect of long-term storage on antigen loaded microspheres, the results 

described herein suggest that there is preservation of immunogenicity during storage. 
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There are several unique features of tetanus toxoid that make it a very successful model 

antigen. TT is a very potent immunogen in laboratory animals. Small doses induce high 

titer antibody responses and long term TT-specific memory responses [48, 49]. Finally, 

TT is generated by formalin fixation of tetanus toxin and this chemical modification may 

improve the antigenic stability of TT. There were quite possibly other sites within the TT 

that were stabilized by fixation besides just linking the A and B subunits. This formalin 

fixation could have given the protein additional stability during encapsulation and 

subsequent release from CPH:SA microspheres that was not a consideration for the 

proteins studied as part of this dissertation (i.e., Ova, or, Brachyspira pepsin digest).  

Further studies will need to consider the protein-polymer interactions that are 

occurring and how these affect antigen processing and presentation. Taken together, these 

studies indicate that the protein stability and dose of delivered protein over time were key 

factors in the inability to induce robust antigen-specific immune responses or protective 

immunity.  
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