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ABSTRACT

Many artificial intelligence tasks (e.g., planning, situation assessment, scheduling) require
reasoning about events in time. Temporal constraint networks offer an elegant and often
computationally efficient framework for formulation and solution of such temporal
reasoning tasks. Temporal data and knowledge available in some domains is necessarily
imprecise - e.g., as a result of measurement errors associated with sensors. This paper
introduces stochastic temporal constraint networks thereby extending constraint-based
approaches to temporal reasoning with precise temporal knowledge to handle stochastic
imprecision. The paper proposes an algorithm for inference of implicit stochastic temporal
constraints from a given set of explicit constraints. It also introduces a stochastic version
of the temporal constraint network consistency verification problem and describes
techniques for solving it under certain simplifying assumptions.

1. INTRODUCTION

Many problems in artificial intelligence (AI) involve temporal inference - i.e., reasoning
about events that occur at (or during) different time instants (or intervals). Examples of
such problem domains include, among others, planning, scheduling, natural language
processing, complex situation assessment, and commonsense reasoning. The events may
be instantaneous (represented by points along the time line) or they may span a certain
duration (represented by intervals along the time line). The events can be in different
temporal relations with respect to each other. These relations instantiate a set of
constraints that must be satisfied by the events in question. A central task in temporal
reasoning involves inference of relations between a given set of events. A related task is
that of inferring the occurrence of events that satisfy the given relations between known
events. Also of interest is the detection of inconsistency among a given set of temporal
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relations between events. This inference is carried out in light of the available domain
knowledge and might be of interest to the reasoning agent.

The past several years  has seen much progress in temporal reasoning starting with the
pioneering work of Allen [1983] on reasoning with time intervals using topological (or
qualitative relations). Other notable early research on temporal inference includes Villain
and Kautz’s point algebra [1986], Dean and McDermot’s time map [1987], and linear
inequalities used by Malik and Binford [1983] and Valdes-Perez [1986]. More recently,
several researchers sought a unified framework for temporal inference using the formalism
and tools of constraint satisfaction [Montanari, 1974; Tsang, 1993]. In particular, Van
Beek [1992a, 1992b] and Ladkin and Reinefeld [1992] provided effective solutions to
some temporal reasoning tasks involving topological, i.e. qualitative, temporal relations
introduced earlier by Allen [1983].  Maddux [1993] contributed new results on the
complexity of some temporal reasoning tasks. Dechter, Meiri, and Pearl [1991] developed
constraint-based techniques for reasoning with metric (i.e. quantitative) temporal relations.
Kautz and Ladkin [1991] and Meiri [1991] proposed two different frameworks to handle
both topological as well as metric temporal relations. More recently, Schwalb and Dechter
[1993] examined a more general structure of temporal constraints, i.e. disjunctive
constraints. These frameworks have contributed an impressive array of theoretical results
as well as practical tools for dealing with temporal reasoning tasks. But they do not
adequately address imprecision of temporal knowledge and or data which is typical of
many practical application domains.

Imprecision of time measurements may stem from natural or artificial clutter which affects
sensors. Metric temporal relations may contain estimates of temporal parameters distorted
by random errors. This type of imprecision may be described using a probabilistic model
and is therefore called stochastic imprecision. As an illustration of temporal reasoning
under stochastic imprecision, consider a modified version of the narrative which was used
by Dechter, Meiri, and Pearl [1991]. We have introduced stochastic imprecision into a
simplified version of that narrative (with the disjunctive constraints eliminated).

Example_1.1. John goes to work by car and his trip to work takes an average of 35
minutes, with the standard deviation being 4 minutes. Fred goes to work by bus and his
trip takes an average of 45 minutes, with the standard deviation being 8 minutes). Today,
John left home at about 7:15 am (± 3 minutes), and Fred arrived at work exactly at 8:05.
We also know that John arrived at work about 25 minutes (± 6 minutes) after Fred left
home.

Given all necessary additional information about statistical properties of the random
variables used in this narrative, one might wish to answer queries such as: “To what extent
are the assertions in the narrative consistent?”, “What are the possible times at which
Fred could have left home for work with a probability 0.997 ?”, and so on.

With the exception of recent attempts by Kirillov [1994] and Goodwin, Neufeld, and
Trudel [1994], current literature on temporal inference has remarkably little to offer in
terms of approaches to dealing with stochastic sources of imprecision in various temporal
reasoning tasks. Given the ubiquitous presence of stochastic sources of uncertainty in



many practical applications of interest, this represents a significant gap in the current
repertoire of techniques for temporal reasoning.

The work of Goodwin, Neufeld, and Trudel [1994] deals with a rather restricted temporal
inference task (namely, that of propagating the truth values assigned to subintervals to the
truth value of the interval covering the subintervals when the knowledge of subintervals
may be imprecise in a probabilistic sense) motivated by a particular meteorological
application. Unfortunately, it does not address the general task of temporal inference
under stochastic imprecision.

The work presented in Kirillov [1994] was concerned primarily with heuristic solutions to
the situation assessment task under stochastic uncertainty with emphasis on military
surveillance applications. This work offers a framework for the representation of
stochastically imprecise time points and intervals, as well as for reasoning with such events
using imprecise metric time relations. But it does not support (among other things), the
use topological time relations. Neither does it take advantage of the general framework of
constraint-based approach to temporal inference. Thus there is clearly a need for extending
this approach to reasoning under stochastic uncertainty and integrating it with the
constraint-satisfaction based approaches to various temporal reasoning tasks.

Against this background, this paper develops a mathematically well-founded generalization
of constraint-based approaches to temporal inference to deal with practical applications
which involve temporal reasoning under stochastic imprecision. It builds on foundational
work on temporal reasoning and constraint satisfaction by various authors to deal with
stochastic imprecision. (Non-stochastic imprecision (e.g., fuzziness of temporal relations)
is the subject of a forthcoming paper [Kirillov and Honavar, 1996]). In particular, we
consider a constraint-based approach to temporal reasoning with simple (i.e., non-
disjunctive) stochastic constraints. Extension of this model to deal with disjunctive
constraints is currently under investigation.

The paper is organized as follows: An overview of Metric Temporal Constraint Networks
is provided in Section 2. A simple stochastic generalization of metrical temporal constraint
framework is outlined in Section 3. Section 4 describes inference of implicit stochastic
temporal constraints and section 5 further elaborates on stochastic temporal inference
techniques under the assumption that stochastic uncertainty can be modeled using
Gaussian probability distributions. Section 6 defines a measure of consistency of stochastic
temporal constraint networks and provides an algorithm for consistency checking. Section
7 concludes with a summary of the paper and an outline of some future research
directions.

2. OVERVIEW OF METRIC TEMPORAL CONSTRAINT NETWORKS

This section briefly summarizes the mathematical formulation of the temporal constraint
satisfaction problem (TCSP) due to Dechter, Meiri, and Pearl [1991] to lay the
groundwork for the discussion of stochastic temporal constraint networks that follows.  A



temporal constraint network is a directed graph whose nodes correspond to a set of
(typically real-valued) temporal variables, X1 ,...,Xn , having a continuous domain, and a
set of unary and binary constraints. Generally, each unary constraint Tj   on some temporal

variable Xj  is represented by a set of closed intervals. That is,

T I I a b a bj k k kj
i

j= ={ , . .., } {[ , ],. ..,[ , ]}1 1 1 .                                  (1)

Thus, a unary constraint Τ j , restricts the domain of a variable time point Xj  to the given
given set of intervals, and represents the disjunction

( )a X bj1 1≤≤ ≤≤ ∨...∨ (a X bk j kj j
≤≤ ≤≤ ).                                     (2)

A binary constraint Tij  restricts the permissible values for the difference in values that can

be simultaneously assumed by Xj  and Xi ; thus it stands for the disjunction

( ) ... ( )a X X b a X X bj i k j i kij ij1 1≤≤ −− ≤≤ ∨∨ ∨∨ ≤≤ −− ≤≤ .                            (3)

Thus, a unary temporal constraint can be naturally interpreted as specifying a time datum.
For instance, if kj = 1, then (2) simply means an assignment of an interval estimate to a
time point variable Xj . A binary constraint describes a relationship between two temporal
variables within a given  scenario. Dechter, Meiri, & Pearl (1991) further simplified the
mathematical specification of a TCSP by introducing a fictitious temporal variable X0 ,
which is typically assigned a value of 0 to represent the "beginning of the world". This
makes it possible to replace unary constraints of the form specified in (2) with an
equivalent binary constraint:

( ) ... ( )a X X b a X X bi k i ki i1 0 1 0≤ − ≤ ∨ ∨ ≤ − ≤                             (4)

The above specification of temporal constraints maps quite naturally to a simple constraint
network in the form of a directed constraint graph, in which nodes represent temporal
variables and edges represent the known binary constraints. Thus, an edge i j→
represents a given (known) binary constraint Τij .

An n −tuple Χ = ( ,..., )x xn1  is called a solution to a given TCSP if the assignment
{ ,..., }X x X xn n1 1= =  satisfies all the constraints of the TCSP. A constraint network is
said to be consistent if at least one solution exists. A value v is said to be a feasible value
for a variable Xi  if there exists a solution in which X vi = . The set of all feasible values
of a variable is called the minimal domain of the variable.

Major reasoning tasks with metric temporal constraint networks include
1. checking a given network for consistency;
2. inferring (not explicitly prespecified) constraints between any pair of variables, Xi  and

X j ; and

3. finding the solutions for a given TCSP.

Clearly, the latter two tasks are meaningful only when the constraint network is consistent.
The task 3 can be reduced to solving several instances of task 2 (with different pairs of
variables). The minimal domain for a variable Xi  ( )i ≠ 0  can be obtained by solving task 2



for the pair <X0 , Xi >. A solution to a TCSP can be constructed by selecting values from
minimal domains of different variables and instantiating the corresponding uninstantiated
variables. Because the assignment of some value to a variable Xi  requires specifying the
constraint for the variable pair <X0 , Xi >, in the worst case, a search for all TCSP
solutions entails performing the task 2 for all n pairs <X0 , X1 >,..., <X0 , Xn >.

The mathematical framework outlined above supports reasoning tasks with precise time
points using crisp metric relations (i.e., distances) between them. If reasoning with time
intervals is required, each interval is treated as an ordered pair of time points, and this
ordering is represented as an additional constraint. This facilitates the use of essentially the
same type of constraint network for reasoning about metric relations involving both time
points as well as time intervals.

Dechter, Meiri, & Pearl (1991), have shown that the search for a TCSP solution does not
need any backtracking, if for every constraint, the interval set of equation (1) consists of a
single time interval. This case corresponds to non-disjunctive constraints (also referred to
as simple constraints).

This paper proposes a stochastic generalization of simple TCSP.

3. SIMPLE STOCHASTIC TEMPORAL CONSTRAINT NETWORKS

There are at least three possible ways to generalize a TCSP to incorporate stochastic
imprecision in some form:

1. Assume that for some i,j, the parameters a bij ij,  are stochastically imprecise, and

hence, the constraints defined by equation 3 hold with some probability.

2. Assume that time variables X1 ,...,Xn  are random, and express the known constraints
on them in the form of a-priori specified probability distributions.

3. A combination of the above two approaches.

To keep things simple, the discussion in this paper is limited to the second of the three
approaches enumerated above. After Dechter, Meiri and Pearl (1991), we formulate the
problem using a fictitious time variable X0  which allows us to  replace unary constraints
on a variable Xi  ( )i ≠ 0  with an equivalent binary constraint for the variable pair
< X0 , Xi >. Also, following the notational convention that is common in probability theory
literature, we reserve upper-case letters for random variables and lower-case ones for their
values.

A simple binary stochastic constraint  stochastically constrains the permissible values for
the distance

                                                            ∆ ij = X Xj i−                                                     (5)

by asserting that the probability density function of ∆ ij  is f ij ( )δ ; 1≤≤ ≤≤i j n, .

We further assume that



                                                          f y f yij ji( ) ( )= −                                                  (6)

That is, the density function is an even function.

Further, to simplify analysis using standard techniques of probability theory (e.g. Von
Mises, 1964), we also assume that the probability density functions satisfy the assumptions
under which the maximum likelihood approach can be used.

A network of binary stochastic constraints consists of a set of random variables
X1 ,...,Xn , and a set of binary stochastic constraints, f ij ( )δ , imposed on the distances

∆ ij  between some of these variables.

As in the non-stochastic case, such a network can be represented by a directed constraint
graph whose nodes correspond to variables and edges represent explicit constraints. Thus,
an edge j i→  indicates that an explicit constraint Τij  for the random distance

∆ ij = X Xj i−  is specified; it is labeled by the respective probability density function.

Assumption (6) means we need only to consider either j i→ , or i j→ , but not both for
a given pair of nodes <Xi , Xj >. To keep things simple, we will further assume that any

two random distances, ∆ ij  and ∆ kl  corresponding to two different edges in the constraint

graph are stochastically independent. In a number of applications of practical interest, it is
often reasonable to require that the distributions are Gaussian. In this case, each binary
stochastic constraint is characterized completely by the mean mij  and standard deviation

σij . In the example that follows, we assume that ∀∀ ≤≤ ≤≤i j i j n, : ( , ),1 the distribution of

random distance ∆ ij  is Gaussian with mean mij  and standard deviation σ ij  (respectively).



The stochastic temporal constraint graph for Example 1.1 (see Section 1 above) is shown
in Fig. 1. Here [X X1 2, ] and [X X3 4, ] (respectively) are time intervals, during which John
and Fred travel to work.. The beginning of the world is X0=7:00 AM, which makes it
convenient to express time intervals in minutes. Since this example assumes that any given
probability density function, f ij ( )δ  can be uniquely characterized by its mean mij , and the

standard deviation σ ij , the edges of the constraint graph in Fig. 1 are labeled with these

two parameters (mij \σ ij ).

The sections that follow discuss the inference of derived constraints (i.e., those not
specified explicitly a-priori) and network  consistency checking in such a stochastic
temporal constraint network .

4. INFERENCE OF IMPLICIT STOCHASTIC TEMPORAL CONSTRAINTS

As in the case of non-stochastic temporal constraint networks which were outlined in
section 2 above, one can distinguish between explicit (or a-priori explicitly specified) and
implicit (or derived or inferred) stochastic constraints. This section discusses the inference
of derived stochastic temporal constraints.

Implicit constraints result from the linear orderings that exist along the time line. This is
illustrated in Fig. 2 for a simple network containing only two explicit constraints for pairs
< X Xi j, > and <X Xk i, >. The only inferable implicit constraint for <X Xk j, > is

represented by a dashed line which indicates the existence of the following relationship
between the three random distances ∆kj , ∆ ki , and ∆ ij :

                                                            ∆ ∆ ∆kj ki ij== ++ .                                                (7)



Thus, the implicit stochastic temporal constraint k→j corresponds to the random variable
∆ kj , whose probability distribution fkj ( )δ  is given by:

                                                    f kj ( )δ = f ij ( )δ ⊗ f ki ( )δ                                            (8)

where f ij ( )δ  and f ki ( )δ  are the probability densities of the random variables ∆ ki  and

∆ ij ,  respectively, and ⊗  is the convolution operation defined by:

                                              ( ) ( )g x h x g t h x t dt⊗ = −
−∞

∞

∫ ( ) ( )                                                 (9)

Since only explicit temporal constraints (of the sort denoted by solid lines in the figures 1
and 2) are used in inference of derived constraints, it is easily shown that the total number
κ  of implicit constraints between a given pair of nodes, will be in the range given by:
                                                        0 2 1≤≤ ≤≤ −−κ n                                                     (10)

where n is the number of time variables. In the above formula, the lower bound on κ
corresponds to the case when no path exists between the two given nodes in the constraint
graph. The upper bound corresponds to the case of a complete graph of explicit temporal
constraints, i.e. when an explicit constraint is provided for each pair of the time variables.

In the general case, the stochastic constraint network corresponds to a graph whose nodes
are time variables and edges are the given binary stochastic constraints. The inference of a
new stochastic constraint between any two nodes  say Xi  and Xj  (with the

corresponding node indices i and j respectively)  from the given set of stochastic
constraints can thus be reduced to finding a path between these two nodes in the (explicit)
constraint graph. Let i j j js sk

, ,..., ,
1

 be the node indices of the nodes that lie along the s-th

path Π ij
s  between the nodes Xi  and X j . This path yields the derived stochastic constraint

(( ))fij
s δ  (i.e., the probability density function of the random variable ∆ ij

s ) between the

nodesXi  and X j  where:

                                              ∆ ∆ ∆ ∆ij
s

ij j j j js s s sk
== ++ ++ ++

1 1 2
....                                          (11)

                                       f f f fij
s

ij j j j js s s sk
( ) ( ) ( ) ... ( ).δ δ δ δ== ⊗⊗ ⊗⊗ ⊗⊗

1 1 2
                             (12)

Since more than one such path may connect two chosen nodes in a stochastic constraint
graph, different constraints may be inferred from a given set of pairwise distances or
binary stochastic constraints. This raises the issue of possible inconsistency in the set of
explicit stochastic constraints (see section 5 below).

Given the mean values and variances of the explicit constraint probability distributions in
(11), the mean value s ijm  and (assuming stochastic independence of the set of random

variables that constitute the nodes of the explicit constraint graph), the variance s ijσ 2  for

the inferred constraint (( ))fij
s δ  (the probability density function of the random variable ∆ ij

s )

are given by:



                                               s
ij ij j j j jm m m m

s s s sk
= + + +

1 1 2
... .                                        (13)

and

                                              s
ij ij j j j jk k k ks

σ σ σ σ2 2 2 2

1 1 2
= + + +... .                                       (14)

Armed with this machinery for stochastic constraint-based reasoning, we can revisit
Example 1.1, and attempt to answer the query, “When did John arrive at work?”. Bearing
in mind that X2  stands for “John arrived at work”, the query can be answered by inferring
the implicit constraint for <X X0 2, >, from the given explicit constraints imposed on
< X X0 1, > and <X X1 2, >. Calculation of the mean and standard deviation in accordance
with (13), (14) results in the following result: “John arrived at 7:50 AM, with the
standard deviation 5 minutes”. Note that although an answer of this sort would be quite
satisfactory in many applications, a complete description of the inferred constraint requires
the derivation of the probability distribution corresponding to the desired implicit
constraint using formula (12).

As already pointed out, in general, for a given pair of nodes in a constraint graph, there
may be more than one path between them in the explicit constraint graph. This situation is
illustrated in Figure 3, where two alternative ways of inferring the constraint for the
distance, ∆ 02 2 0= −X X , exist. Thus, it is possible in this case, to derive two different
time references to the answer the query: "When did John arrive at work?".

It is natural then to raise the question as to how one may go about selecting the best result
from the set of derived constraints between two nodes in the constraint graph. A simple
rule of thumb suggests the selection of the derived implicit constraint that has the smallest



variance and ignore the rest. A potentially better alternative is suggested by the maximum
likelihood approach in statistics (Von Mises, 1964).

Within a maximum likelihood framework, it is natural to treat possible mismatches
between different estimates of a derived constraint obtained from using different paths in
the constraint graph as a result of stochastic imprecision associated with the explicit
constraints. Therefore, a natural interpretation of the different mean values of a derived
constraint (calculated considering different paths) between a given pair of nodes Xi  and

X j  using equation (13), as random estimates of the unknown mean value, ∆, of the

random distance, Xi - X j . To emphasize the fact that equation (13) yields estimates of the

actual mean value, in what follows, we will use Greek letters 1µ µij
N

ij,...  to denote these

estimates instead of 1m mij
N

ij,..., . Our objective then is to find the estimated value of ∆

that would maximize some optimality criterion, Q( 1µ µij
N

ij,... , ∆), for given values of
1µ µij

N
ij,... .

A natural criterion to optimize is the N-dimensional joint probability density function,
f( 1µ µij

N
ij,... , ∆). The estimation problem is thus reduced to a classic one-parameter

maximization problem. Its solution is given by:

                                                  
d

d
f ij

N
ij∆

∆( ,..., , ) .1 0µ µ =                                         (15)

Before we can solve equation (15), we need to derive the distribution function,
f( 1µ µij

N
ij,... , ∆), based on what we know about the stochastic constraint network.

Assuming stochastic independence of the explicit constraints, it is possible, in theory, to
construct this function if we have the following knowledge about the constraint network:

1. the specific explicit constraints that determine each of the estimated meanss
ijµ , and

2. the probability distributions associated with each such constraint.

Unless additional assumptions are made, the calculation of the desired distribution
function becomes rather complicated. Therefore, in order to illustrate the general
approach, we will limit our discussion in what follows to stochastic constraints that obey
Gaussian statistics.

5. INFERENCE OF IMPLICIT CONSTRAINTS WITH GAUSSIAN STATISTICS

To illustrate the feasibility of the maximum likelihood approach to reasoning with
stochastic temporal constraints, consider a particular case when all the time constraints are
Gaussian i.e., each probability distribution function in equation (12) is of the following
form:

                               f
m

ij

ij

ij

ij

( ) exp
( )

.δ
πσ

δ
σ

= ⋅ −
−









1

2 2

2

2
                                            (16)



Since the sum of any number of Gaussian random variables yields a Gaussian random
variable, the distribution on left-hand side  of equation (12) is Gaussian (normal). Since an
N-dimensional Gaussian distribution is fully specified by an N×N covariance matrix and an
N-dimensional mean vector, the task of estimating f ij

N
ij( ,..., , )1µ µ ∆  reduces to an

estimation of the corresponding  mean vector and covariance matrix.

To further simplify the analysis, we assume that different paths between any given two
nodes of the constraint graph are disjoint, i.e. they have no common edges. This makes the
variables, 1µ µij

N
ij,..., , stochastically independent.

Armed with these simplifying assumptions, we derive the likelihood function,
f ij

N
ij( ,..., , )1µ µ ∆ , for this particular case. We then a solve equation (15) and illustrate it

with an example.

To minimize notational clutter introduced by awkward indices, we omit below all
references to the i-th and j-th nodes (since it is clear from context that the focus is on
derived constraints between the variables X i  and X j ). We also move the upper-left

indices to the convenient lower-right position. Also, we change the indexing of the
elementary constraint variables so that ∆ pk  stands for the k-th elementary constraint in

the p-th path connecting the given pair of nodes in the constraint graph.

Thus we have a set of random variables, µ µ1,..., N , each being a sum of a few independent
Gaussian variables:

                                             µ p pk
k

np

=
=

∑∆
1

,          p=1,...,N                                            (17)

The mean value of µ p  over all possible paths that result in a derived constraint of interest

is the unknown parameter ∆ that needs to be estimated.

The N-dimensional probability distribution of the set of random variables µ µ1,..., N  is
given by:

                 f N n

T

p
( ,..., , )

( )
( ) ( ) ,

/ /
µ µ

π
µ µ1 2 1 2

1

2

1

2
∆ ∆ ∆= ⋅ − − −















→ →
−

→ →

K
exp K 1               (18)

where µ
→

= ( µ µ1,..., N ) and ∆
→

= (∆,..,∆) are N-dimensional rows, and K  is the covariance
matrix.

Given our assumptions, K  turns out to be a diagonal matrix. Furthermore, each diagonal
element σ k

2  of K corresponds to a known variance (given by the sum of the variances of
the stochastic constraints along the k-th path).

Differentiating both sides of equation (18) with respect to ∆, and equating it to zero (as in

equation (15) above), yields a linear equation in ∆. Its solution $∆  is given by:



                                                          ∆
∧

−

=

−

=

=
⋅∑

∑

µ σ

σ

p p
p

N

p
p

N

2

1

2

1

,                                               (19)

where σ p
2  is the variance of the sum of stochastic constraints on the p-th path.

Because of the maximum likelihood estimate, ∆
∧

, being the weighed sum of Gaussian
variables, has a normal distribution. Its mean is the unknown parameter ∆, and its variance
is given by the formula:

                                                           σ
σ

∆
2

2

1

1=
−

=
∑ p
p

N
.                                                 (20)

We now revisit Example 1.1, assuming that all the stochastic constraints used in it are
Gaussian to illustrate the preceding analysis. We find that for the constraint imposed on
X X2 0− ,

                                                  ∆
∧

= +
+

=50 5 45 10

1 5 1 10
49 0

2 2

2 2

/ /

/ /
. ,                                  (21)

and

                                                 σ ∆
2

2 2

1

1 5 1 10
20 0=

+
=

/ /
. .                                     (22)

In other words, using all the information available implicitly in the constraint network, we
find (using maximum likelihood estimates as discussed above) that John arrived at work at

7:49, where the standard deviation of the estimate is 20 ≈ 4.47 minutes. (Note that this
estimate is more accurate than any of the other two estimates obtained by tracing
individual paths from X0  to X2  in Section 4 above.)

Taking into account the fact that the estimated time is distributed normally, we can also
conclude that, the probability John arrived at work at 7:49±13.42 with a probability of
0.997 .

6. CONSISTENCY OF STOCHASTIC CONSTRAINT NETWORKS

In the case of precise constraint networks, a set of constraints either holds or it does not.
When a given set of constraints are not satisfiable, we say that the corresponding
constraint network is inconsistent. In the stochastic networks, since constraints are
stochastically imprecise, it makes it possible for a network to be consistent to various
degrees. Therefore, we need suitable metrics that can quantify the degree to which a set of
stochastic constraints are satisfied.

As shown above, for a given pair of nodes Xi  and X j  in a stochastic constraint network,

one or more implied constraints can be inferred, using different routes connecting these



nodes in the constraint graph. This is illustrated by Fig.3, where the two inferred
constraints have different mean values that provide two different estimates of the time of
John's arrival at work. A good measure of stochastic network consistency should help us
decide if these differences are negligible.

Consider an arbitrarily chosen pair of nodes, <Xi , X j >, from a stochastic temporal

constraint graph. (In what follows, we will use the same notations as in the previous
section.)

All the inferable implicit constraints for this pair of nodes, i.e. random estimates,
µ µ1,..., N , can be characterized by their respective distributions, f f N1( ),..., ( )µ µ , where
N is the total number for different routes between the chosen pair of nodes. Also, in
general, we should take into account the possibility that an explicit stochastic constraint
could be imposed on this pair as well. We will denote the distribution associated with the
latter by f 0 ( )µ .

Hence, we have N+1 different random estimates, µ 0 , µ µ1,..., N , for a non-random

distance, ∆, between the time points, Xi  and X j . Their probability distributions,

f 0 ( )µ , f f N1( ),..., ( )µ µ , all express different views on the single entity, the distance, ∆. It
is natural to associate the stochastic consistency property of the constraint network with
the difference of the first moments of these distributions, i.e. of their mean values. The
larger the magnitude of this difference, the lower must be the consistency of the network
under consideration.

It is also natural (as a first approximation) to require that in a perfectly consistent
stochastic network, all the routes connecting a given pair of nodes should yield the same
estimated mean distance, and the differences in the higher-order moments of the respective
probability distributions be relatively small. This allows us to reduce the stochastic
constraint network consistency checking problem to a set of N(N+1)/2 stochastic
hypotheses testing problems, for each ordered pair of nodes in the constraint network.

For the given pair, <Xi , X j >, consider the simple hypothesis:

                                 [ ]H M M0: ( ) ( ) ,        (p,q)∀ =µ µp q                                            (22)

claiming that all the estimated time distances, µ 0 , µ µ1,..., N , along different routes have
the same mean value (Here, M (x). denotes the mean of x). It should be tested against the
composite alternative hypothesis:

                                            [ ]H M M1: ( ) ( ) ,        (p,q)∃ ≠µ µp q                            (23)

which states that at least one of the estimates has a mean value that differs from the
others.

Stochastic hypotheses testing problem have been treated in detail in the probability theory
literature (Von Mises, 1964).Therefore, we limit our discussion below to an outline of the
key results. The interested reader is referred to Von Mises (1964) or other advanced texts
on probability theory for details.



An optimal decision making rule is based on the calculation of the so-called likelihood
ratio, L(.), which is be compared with a pre-assigned threshold, L0  as follows:
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where µ
→

= <µ 0 , µ µ1,..., N >, and f k( , | )µ
→

∆ H  is an (N+1)-dimensional conditional
likelihood function for the hypothesis, H k . (The above rule simply states that hypothesis
H 0  is to be preferred over H 1  if the value of the likelihood ratio is greater than the

threshold and vice versa).

Use of this likelihood ratio in the determination of consistency of stochastic constraint
networks is complicated by the lack of accurate knowledge of the parameter ∆. A couple
of different ways of resolving this difficulty suggest themselves. We outline each of them
in turn in what follows.

The first approach can be used when an explicit constraint for the pair of nodes under
consideration, namely, <Xi , X j >, is given. In many applications (e.g., situation

assessment tasks), it is natural to assume that the explicit constraint overrides any inferred
constraints for the particular pair. In other words, the following relationship holds:

                                                                         ∆= µ 0 .                                                (25)
The second approach is useful when no explicit stochastic constraint is given for the pair
of nodes under consideration, or when the application domain does not justify the use of a
known explicit constraint to override the inferred constraints. To be specific, we will
assume that µ 0  is unknown, and will use µ µ1,..., N  (the mean values corresponding to
the inferred constraint based on different paths through the constraint network). The

missing parameter, ∆, is substituted with its estimated value, ∆
∧

, which is obtained by
solving the maximum likelihood equation (15). Note that since the estimate is a function of
µ µ1,..., N , this fact needs to be taken into account in the derivation of the likelihood

functions. We shall refer below to the resulting functions as f k
* ( | )µ

→
H , k=0,1.

The decision rule in this case is given by:
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The likelihood ratio in this formula can be naturally interpreted as a useful measure of
consistency of the stochastic constraint network with respect to a particular pair of nodes.
The threshold value, L*

0 , for a hypotheses testing problem of this sort, has to be chosen
with respect to given probability α of the erroneous rejection of H 0 . This choice is
invariably domain-dependent.



Checking the entire network for consistency entails calculation of the likelihood ratio for
each pair of nodes. We outline this process for the particular case of Gaussian stochastic
constraints under the assumption that each of the multiple paths between a pair of nodes
yields statistically independent estimates for the corresponding inferred constraint.
Detailed derivation of the expression for the likelihood ratio for a similar case can be
found in Kirillov (1994). We simply present the final results here. The numerator of the
expression for likelihood ratio in equation (26)  can be shown to be an N-dimensional
normal distribution given by:

                                 f
N

T*
/ /

( | )
( ) | |

exp ,µ
π

ε ε
→ →

−
→

= −





H
C

C0

1

2

1

22 1 2
1                             (27)

where ε µ µ
→ ∧ ∧

= −( ,..., ) ( ,..., ),1 N ∆ ∆  and ∆
∧

 is given by equation (19).

The elements of the covariance matrix, C, are given by:
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where δ ur  = 1 if u=r , and 0 otherwise, and σ u
2  is the variance of the estimated time

distance along the u-th route in the constraint graph.

In this case, it is possible to further simplify the inequality in (26)  by replacing both sides
of the inequality by the corresponding logarithms. This yields:
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where dpq  is an element of C−1, and λ is the appropriately adjusted threshold.

As the size of the constraint network increases, typically, so does the number of different
paths, N. It follows from equation (28) that as N→∞, the matrix C becomes diagonal. This
allows us to consider the asymptotically optimal version of the decision making rule given
by:
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This simply states that if the sum of the weighed squared differences between the mean

values of time constraints found along different paths, µ µ1,..., N , and their average, ∆
∧

(given by equation by (19)) exceeds the threshold, λ, the network meets the consistency
test. This intuitively appealing rule is rather easy to implement for any given set of
stochastic constraints if probability distributions have finite variances. However, it should
be noted that if all the assumptions made in its derivation are not satisfied, it constitutes



only a sub-optimal rule for testing the consistency of stochastic temporal constraint
networks.

7. SUMMARY AND DISCUSSION

We have developed a generalization of a constraint-based approach to temporal inference
to deal with simple (i.e., non-disjunctive) stochastically imprecise temporal constraints.
Stochastic imprecision of this sort is typical of environments where temporal data are
captured by sensors or measurement devices that may be subject to random errors.

The framework developed in this paper provides some useful tools for situation
assessment, validation of schedules and plans in such environments. This development
took advantage of two simplifying assumptions concerning the stochastic independence of
random variables.

First, we assumed that the constraints imposed on individual time distances, ∆ ij = X j - Xi ,

are all stochastically independent. If we drop this assumption, the only consequence would
be that we would have to replace expressions (12) and (14) with somewhat more
complicated formulae containing (given or estimated) joint probability distributions of the
random variables, ∆ ij , for all pairs, <Xi , X j > for which explicit constraints are given. If

the individual distributions are Gaussian, this would give rise to a non-diagonal covariance
matrix in (18) (since the individual distances are no longer assumed to be stochastically
independent), and hence, somewhat more complicated expressions that would need to be
used instead of (19) and (20).

Second, in Section 6, it was assumed that different paths that connect given two nodes of
the constraint graph are disjoint. This guaranteed the stochastic independence of the
inferred implicit constraints. This assumption was used in the derivation of formulae (28)
and (30) only. If it does not hold, we would have to replace (28) with a more complicated
formula, and the resulting test for stochastic network consistence would be less than
optimal. Modulo these limitations, the framework for constraint-based temporal reasoning
that is presented in this paper is quite general. However, a number of problems remain to
be addressed. These include extensions of the proposed framework to handle disjunctive
temporal constraints as well as interval constraints, and computational complexity
considerations. We conclude with a brief sketch of an extension of the proposed approach
to handle interval temporal constraints. Intervals can be treated as ordered pairs of time
points and additional constraints can be imposed between the start and end of temporal
intervals. Since these additional constraints are not metric but are topological, our
framework needs to be modified to handle stochastic topological constraints. In particular,
such a topological constraint between the start and end points of a temporal interval
represented by the ordered pair of time points Xk  and Xj  can be formulated in terms of

the probability that the size of the interval is greater than zero as follows:

                                               Prob{ Xk - X j > 0 } >β,                                                (31)

where β is a given confidence level.



Since the knowledge about the variables, Xk  and X j , are presented in the form of

respective probability density functions, checking the constraint, (31), for consistency can
be performed, as follows:

1. using (8), infer the stochastic constraint, fkj ( )δ , for the distance, ∆ kj = Xk - X j , if this

constraint is not given;

2. calculate the probability that the specified constraint holds, that is,

Prob{ Xk - X j >0}= f dkj

0

∞

∫ ⋅( )δ δ ;

3. compare the calculated probability with the threshold value, β, and make the decision.

The test outlined above should be performed for each pair of variables, on which a
topological constraint of the form given by equation (31) has been imposed. The results of
these tests should be used in conjunction with the consistency tests for the metric
stochastic constraints described in section 6 to determine the consistency of a network that
includes both topological as well as metric constraints.
Applications of the framework for stochastic temporal inference to tasks such as schedule
evaluation and planning are currently under investigation.
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