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INTRODUCTION 

The discrimination problem, most simply explained, consists of de­

ciding how to assign a single observed element, X, to one of two or more 

different populations. It is assumed, a priori, that X comes from one of 

these populations. The more particular discrimination problem treated 

here considers only two populations. These populations, iri and irz 

are assumed to be p-dimensional normal with mean vectors, (xj and nz, 

and common covariance matrix z. The parameters jjli and |i2 are 

assumed to be unknown; the cases S known and S unknown are con­

sidered. To estimate the unknown parameters, previously obtained obser­

vations Xj^ (i = 1, 2, . . ., ni ) from iri and x^^ (j =1, 2,..,,n2) from 

TTz are used. The discrimination problem is further limited by requiring 

that a linear function of X be used to determine the assignment of X 

to either in or -nz . The ideal case, when no parameters need be esti­

mated, has a single admissible solution; that is (assuming no a priori 

probabilities of origin are available) a solution with minimizes the proba­

bility of assigning X to ttz when it comes from iri and the probability 

of assigning X to in when it comes from irz . This solution is to as-

I -1 
sign X to tti or m as the function V = [X - —(jxx + M-2 )]'S [ni - nz ] 

is positive or negative. 

The usual discrimination function for the case when ni and (j.2 are 

unknown and 2 is known is obtained by modifying the function V by 
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substituting the sample means, Xi and Xg, for the parameters [xi and 

Hz . As the function [X - ̂  (xi + xz )]'Z ^[xi-xz], where 

-1 - -1 
X]  =  ni E Xg =  ng E X , is positive or negative, X 

i=l j=l ^ 

is assigned to iri or irz • When no parameter values are known, the 

function V is further modified by estimating S in the usual manner, 

giving [X--|(xx +X2)]'S ^[xj - Xz], where 

_1 ni _ nz 
S = (ni+nE-2) [2 (x,. - xi ) (x - xi )'+J (x - xz ) (x - xz )"], 

i=l j=l 

which is variously identified in the literature as the "Fisherian discrim­

inant function" (for Fisher who suggested it (1936)), "Anderson's W, " 

or more simply "W" (for Wald who first investigated its properties (1944)). 

In the processes described above the "discrimination point" is zero 

(i. e., as the appropriate function is greater than or less than zero, X 

is assigned to tti or nz). When all parameters have known values, 

zero is the optimal choice as the discrimination point. When some or all 

of the parameters are estimated, the use of zero as the discrimination 

point is largely an intuitive choice or a matter of convenience. The topic 

dealt with in Part I of this dissertation is the choice of the discrimination 

point. It seems logical that if ni and p.z are estimated with differing 

degrees of precision, the discrimination point should not be placed sym­

metrically; rather, its position should reflect the relative precisions of 

the estimators. The results obtained in Part I indicate that a discrimina-

1  - 1  - 1  
tion point of - % (ni - nz )(p-2), where p denotes the dimensionality 
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of TTi and 112, reduces the combined probabilities of misclassification 

from those associated with a discrimination point of zero. 

Once a discrimination or classification procedure has been deter­

mined, the probability of a particular kind of error (e.g., assigning 

X to iTi when, in fact, X comes from ttz ) may be of interest. More 

precisely, the probability of a particular kind of error, conditional upon 

the sample values (xi, xg and S also if S is unknown) used to de­

fine the procedure, may be of interest. This probability is a function 

of the sizes, ni and nz, of the samples used to estimate the unknown 

parameters of m and irz, and of the Mahalanobis distance between 

2 -1 
TTi and tt2, given by D = (^-i - a function of the 

unknown parameters. Part II deals with the problem of estimating this 

(conditional) probability of a particular kind of error. At least fifteen 

different estimators appear in the literature. Some of these are equally 

adaptable to non-normal populations; but more of them rely upon the 

assumption of the normality of tti and -nz . The reasoning underlying 

them is variously intuitive, classical, and Bayesian. The most promis­

ing of each type as well as the most commonly used are investigated 

here. Unconditional mean square error is the criterion for comparison. 

Mean square error was chosen as a relatively "fair" way to assess the 

behavior of both Bayesian and non-Bayesian estimators. Unconditional 

mean square error was chosen because someone applying a fixed 



classification procedure is undoubtedly interested in estimating the con­

ditional probability of misclassification, but his choice of an estimator 

might well be based on a variety of possible true (if unknown) conditions. 

(Because of the intractability of the precise distribution of W, the results 

obtained are based on an asymptotic expansion for the distribution. ) The 

relative performances of the groups of estimators might be anticipated. 

Estimators requiring fewer initial assumptions (notably, the normality of 

TTi and Tvz ) have larger mean square errors than do those relying on 

knowledge of the distributions involved. Also, differences in mean 

square errors within types of estimators decrease as the sample sizes 

increase. 

The topic treated in Part III is the characterization of populations 

TTi and vz to simultaneously reduce the number of dimensions to be 

considered and to differentiate as sharply as possible between tri and 

•nz . It is no longer assumed that the populations are normally distributed; 

and complex-valued variables are considered. A defense of the extension 

of usual methods to the complex case is presented. 
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PART I. CHOICE OF A DISCRIMINATION POINT 
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CLASSICAL APPROACH TO THE PROBLEM 

Linear Discriminant Function 

The general two population discrimination problem consists of decid­

ing how to assign a single observed element X to one of two populations, 

TTi and TTz . It is assumed that the assignment of X must be based on a 

linear function of its (single- or vector-) value and any knowledge about 

the parameters of tti and ira, but not on any subjective (or other) prior 

probabilities. It is further assumed that the assignment of X cannot be 

deferred. 

Let (i = 1, 2,..., ni ) and (j = 1, 2, ..., nz ) denote two in­

dependent random samples from p-dimensional normal populations with 

means and jxz and common covariance matrix S. Let X be a sub­

sequently and independently (of the x^^ and of the x^^) drawn observa­

tion from either iri or -rrz. 

If all parameter values are known, then there is a "best" procedure. 

"Best" in this context means: (1) admissible, (2) unique Bayes' under 

equal a priori probabilities of in and irg and under equal losses for 

the two kinds of errors possible, or (3) minimax. Wald (1944) derives 

this procedure by seeking the method of classification that is "best" in 

the sense of (2). Letting fx (X) denote the density function of X when 

X comes from tti and letting fz (X) denote the density function of X 

when X comes from m, the conditional density, denoted by qi (X), of 
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originating in in given X can be written 

(1.1) qi (X) = fi (X)[fi (X) + fz (X)] 

Similarly, the conditional density, denoted by qz (X), of originating in ira 

given X can be written 

(1.2) qz (X) = f2(X)[fi (X) + f2(X)]"\ 

To minimize the probability of misclassification (both of classifying X 

as belonging to ttz when X comes from iri and of classifying X as 

belonging to in, then X comes from vz), X is assigned to iri or to 

112 as qi (X) or Qz (X), respectively, is the larger. This manner of as­

signing X to TTi or to TTz is equivalent to examining 

n qi (X) ^ £i (X) 
^ qz (X) fz (X) 

end assigning X to iri or to irz as this ratio is greater than or less 

than one. When both TTX and TTZ are multivariate normal populations 

(as specified above, with differing means ni and [iz and with common 

covariance matrix S) the ratio of densities given in equation 1. 3 reduces 

to 

(1.4) = exp{-|(X-Hi)'2"\x-^Lx)+^(X-Hi2)'s"^X-(j.2)}. 

By taking the logarithm (a monotonie increasing function) of equation 1.4, 

it follows that this assignment procedure is equivalent to 

(1.5) Classify X as belonging to in when 
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otherwise classify X as belonging to irz. 

Rearrangement of the expression in procedure 1.5 gives the familiar ex­

pression, denoted by V, and the procedure 

(1.6) Classify X as belonging to ttj or irz as 

V = X'2 ^(m-i-H-2 ) - )'2 

is positive or negative. 

Wald (1944), Anderson (1958) and Rao (1965) discuss this procedure. For 

proofs of other properties, see Anderson (1958). 

When, as is more often the case, the parameter values are unknown 

a like procedure seems intuitively reasonable; but its properties are no 

longer so easily ascertained. A direct manner of obtaining the linear dis­

criminant function W is to substitute the usual sample estimates for the 

unknown parameters into the expression for V in procedure 1.6. Thus 

the following classification procedure is derived. 

(1.7) Classify X as belonging to Tri and TTZ as 

W = X'S -X2 ) - |-(xi+X2 )'S \xi - X2 ) 

is positive or negative, 

- 1  -  - 1  
where Xj = ni % x , Xz = nz % x , and 

i=l j=l ^ 

S = (ni +n2-2)" [ 2 (x -xi)(x -xi)' + J (x -x2)(x -Xg) ' ] .  

i=l " j=l ^ ^ 

This procedure seems intuitively reasonable, and one might hope that it 

would give good results since it approximates the excellent procedure 1. 6. 
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Fisher (1936) derived the first term of W and an analogous pro­

cedure to procedure 1.1 by using a regression technique and a dummy 

variable. Define y^^ (i = 1,2,and y^^ (j = 1, 2,. . ., ng ) by 

— 1 
(1.8) = nz (ni + ng ) for i = 1, 2, .. ., ni ; and 

_ 1 
Y2^ = -ni(ni+n2) for j = 1, 2,..., nz • 

(Thus a positive y value is associated with ui and a negative y 

value is associated with irg . ) An artificial model can be applied to the 

yj^ (k = 1, 2; i = 1, 2, . .., n^). Consider the model below. 

(1. 9) y^ = - (ni+na) \niXi + ngXz )] + 

for k = 1, 2; jg = 1, 2, .. ., n^ , 

where y^ is a scalar (assuming the two values given in equation 1. 8), 

p '  i s  a  1  X  p  v e c t o r  o f  r e g r e s s i o n  c o e f f i c i e n t s ,  t h e  a r e  t h e  p X l  

vector observations from TTI and TTZ , and x^ and Xz are p X 1 

vector sample means, defined below procedure 1.7, and the e ^ are the 

(scalar) residuals. The usual least squares technique gives the solution 

(1.10) $ oc S~\xi - xz). 

Substituting this solution into the model gives 

(1-11) Yjçjj = (%i -Xz)'S ^ [Xj^ - (ni + nz ) \ni Xi + nz Xz )] + e 

Using equation 1.11 as a predictive equation results in predicting y to 

be positive (associated with tti ) or negative (associated with irz ) as 

X'S (xi - xz) is greater than or less than a constant. Thus, letting y 

represent the assignment of X 
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(to iri when y is positive, to ttz v/hen y is negative), a procedure 

analogous to procedure 1. 7 is defined. 

The distribution of the statistic W as defined in procedure 1. 7 is 

quite complicated, and depends on ni, n^ and Mahalanobi^ distance, 

denoted by and given by 

(1.12) = (Hii - Kiz )' - M-2). 

Wald (1944), Anderson (1951), Sitgreaves (1952), Kabe (1963), and Okamoto 

(1963) have all studied the distribution of W. The earliest analytic 

support for procedure 1.7 was given by Wald (1944). He used large 

sample theory to show that the limiting distribution of W is that of V. 

Probabilities of Misclassification 

Several types of probabilities of misclassification are of interest. 

The first, denoted by P**, is the probability of misclassification in 

optimal circumstances (i.e., when all parameters of tti and irz have 

known values). 

(1.13) Pi** = Pr {X classified as belonging to irz I p-i, nz , Z known, 

X € TTx }; and 

** f 11 Pz = Pr {X classified as belonging to iri | |jn , 1x2 , S known, 

X € 172 . 

A second probability of misclassification, denoted by P"^, is the uncon­

ditional probability of misclassification when the parameter values are 



unknown. 

(1.14) Pi = Pr{X classified as belonging to irz I X e tti }; and 

Pz = Pr{X classified as belonging to iri I X e ttz }. 

The remaining probability of misclassification, denoted by P, is the con­

ditional (on Xj, X2 and S) probability of misclassification when the un­

known parameter values are estimated by Xi, Xg and S. 

(1.15) Px = Pr{X classified as belonging to it2 I Xx,X2,S,X€ tti }; and 

Pi = Pr{X classified as belonging to tti | Xi, X2 , S, Xe irz 

When all parameter values are known and procedure 1. 6 is used, only 

the probabilities of misclassification Pi and P2 are relevant. These 

are relatively easy to determine. Note that the distribution of V is 

N(-^D^,D^) or N(-^D^,D^) as X comes from in or vz, where 

N(v,i|j^) denotes the distribution of a (scalar) normal variable with mean 

V and variance . It follows that 

(1.16) P** = Pr{V < 0 I X e -m }j and 

r I ^ Pz = Pr{V > 0 1 X € TTz }, 

and hence, that 

(1.17) P** = $(-jo); and 

** 1 Pz = $(- -D), 

where $ is the cumulative distribution function of a standard normal 
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variable. 

When the parameter values are unknown, the conditional probabilities 

of misclassification, Pi and Pz , and the unconditional probabilities of 

* * 
misclassification, and Pz , are of interest. The appropriate procedure 

for this case is procedure 1. 7, which leads to the conditional probabilities 

of misclassification given by 

(1.18) Pi = Pr {W < 0 1 Xi, X2, S, X e iri }, and 

Pz = Pr {W > 0 1 Xi, X2, S, X e irz }. 

Since the conditional distribution of V/ given Xj, Xg and S is 

N([ in - •|(xi +X2)]'S \xi -Xz), (Xi -X2)'S ^SS^^Xi -X2 )) 

or N([|J.2 - ̂ (Xi +X2)]'S \xi -Xz), (xi -KzYS ^SS~\XI -X2 )) 

as X comes from in or TTZ , equations 1.18 can be written 

(1.19) Pi = $ 

Pz = $ 

r (til -"|[Xl +X2])'S \xi -X2 ) -

- (H-2 -"^[Xi +X2])'2 \xi -X2 } -

_ [(î; - 2 

and 

It is not possible to produce immediately a specific version of equations 

1.19 in terms of the parameters of iri and irz. Nor, since the distribu-

* 
tion of W is intractible, is it easy to obtain expressions for Pi and 

* 
Pz . It can be noted, however, that Pi and P2 are unbiased estimators 

* * 
for Pi and Pz , respectively. 
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SUGGESTED DISCRIMINATION POINT 

Derivation 

Because of the intractability of the distribution of W, little evalua-

* * 
tion of the classification procedure 1.7 (with regard to Pi and Pz ) is 

given in the literature. The choice of zero as a discrimination point (i. e., 

classifying X as belonging to ttj or vz as W is greater than or less 

than zero) is not discussed. With the availability of Okamoto's (1963) 

asymptotic expansion for the distribution of W, an evaluation of dis­

crimination points is possible. That zero might sometimes prove an 

inferior choice seems likely. For example, when the sample sizes, n^ 

andnz, are fairly small and qiiite unequal, jxi and are estimated 

with differing precision. In applying procedure 1. 7, one is, in fact, 

using Xj r.nd x? (and S) as if the parameter values of iri and vz are 

Xi, xz and S. When, for example, (jlz is estimated quite precisely while 

Hi is estimated on the basis of very few observations, it seems illogical 

to put equal faith, in the estimates and to adopt the symmetric (with 

respect to Xj and Xg ) procedure 1.7. 

The method used here to obtain a desirablediscriminaticn point, ko, 

is to minimize over k the combined probability of misclassification. 

Let the classification procedure be given by 

(1.20) Classify X as belonging to tti whenever W> k; 

classify X as belonging to ttz whenever W < k, 



and let H(k) be defined by 

(1.21) H(k) = Pi*{k) + P2*(k) 

* * 
where (k) denotes under the classification procedure 1.20. Thus 

the problem here is to find kq such that 

(1.22) H(ko) = m in H(k). 
k 

Following procedure 1.2 0 leads to the combined (unconditional) prob­

ability of misclassification given by 

(1. 23) H(k) = Pr {W < k ! X e TTi } + Pr {W > k I X e irz }. 

Making use of Okamoto's (1963) asymptotic expansion, equation 1.23 can 

-1  -1  
be rewritten explicitly up to terms of the second order of nj , ng and 

-1 
(ill + n2 - 2) as 

(1.24) HOc)= )+^[2niD^r'[3f5-|) - " P(|,-

+ [2n2D^]"^[2D+3(|-|)-(^-|)(|+|) -P(5+f)l)-

•.(H, 

+ D' r'[2D-3(|+f ) + P(|,-S)] 

+ [2n2D^] V3(|,+f)+(-J,+^) +p(^+^)])<t>(-|,-^) + Oz 

where <j) is the density function of a standard normal variable and where 

-1 -1 -1 
Oz denotes second order terms of nj , nz and (nj + n^ - 2) 

For convenience in dealing with equation 1.24, define f(k) and g(k) by 
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(1.25) f(k) = T $(-^ - ̂ ); and 

(1.26) g{k) = ^[2niD^] ^[3(|j-^) - ("Ij-^) - P(|)+^)] 

+ [2m D'  r' [ZD + 3 (|,-f ) - (5-§)(5+f )' -p(|,-t)]j 

+ (pni r'[2D - 3[|+|) + (i +f ) (%-§)' - p(|-f )] 

+ [Zn;] '[-3('5+f ) + <0+^) + P(p+^)]^<ti(-
d" 

To find the derivative of H{k) (as given by equation 1. 24) consider first 

the derivative of f(k) (as given by equation 1.25). It is quickly estab­

lished that 

(1.27) f'(k) = D"^c|,(| - |) - d"^c|,(-| " |). 

The derivative of g(k) (defined by equation 1.26) after some tedious 

algebra can be shown to be 

(1.28) g'(k) = ^[2ni ] ^[3-p-(6-p)(-^-^) + -P(k-^)] 

+ [2nzD=r'[3_p_D'46-p)(%+§)(^-§)M%+§)\%-§)'])*^ 

+ ([2ni D" r^[-(3-p)+D" + (6-p){|^+|)(~-|) - (|+|)^ 

+ [2% ] V{3-p)+(6-p)(|^ + ̂ ) -(5 + f) 

From equations 1.27 and 1.28 is obtained 



(1.29) H'(k) = Cl + [2niD'r^[3-p-{6-p)(|-|)%(|^-|)' -p{k-^)] 

+ [2n2D^] ^[3-p-D^-(6-p)(|j+^)(-|-^)+(^+^) (|)-^) ]) 

-(l+[2niD^] ^[3-p-D^-(6-p)(-|^+^)(-^-^)+(|j+^) ] 

+ [2n2D^] \3-p-(6-p)(^+^) +{5+^) +P(k + ̂ )]^ 

Setting equation 1.2 9 equal to zero and solving for k yields no immediate 

solution. Note that H'(k) is a complicated expression with each of 

k D k D 
) and ({)(- — - —) multiplied by a fourth degree polynomial in k. 

Investigation shows that it is not certain that either of these polynomials 

has a real root, nor that a weighted difference of these two polynomials 

has a real root. The only property of a solution to the equation H'(k) = 0 

which is immediately apparent is its dependence on ni, ng, p and . 

Moreover, is a function of unknown parameters. However, the pos­

sibility arises of estimating from the x^^ (i = 1, 2,... ,ni ) and 

the X (j = 1, 2, ..., nz ). But substituting some estimator for 

into equation 1.29 still leaves the approximated H'(k) in a complicated 

and unsatisfactory form. Therefore this avenue of approach is abandoned. 

Consider next the approximation of H'(k) by a Taylor's series ex­

pansion of H'(k) about k = 0. Although it is suspected that zero is not 

necessarily the optimal discrimination point, it is anticipated that the 

optimal discrimination point is relatively "close" to zero. This expected 

"closeness" justifies the use of the Taylor's series expansion. 
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Taking the derivative of H(k) with respect to k and setting H'(k) 

equal to zero gives 

(1.30) H'(ko) = 0 = H'(0) + koH"(0), 

where kg denotes the value of k which minimizes H(k). Restating 

equation 1.30 in terms of f{k) and g(k) gives 

(1.31) f'(0) + g'(0) + ko[f"(0) + g"(0)] = 0. 

From equation 1.27, it is easily seen that f'(0) = 0. The original defini­

tion of f(k) and g(k) breaks H(k) (as given in equation 1.24) into leading 

terms and first order (with respect to nx \ ng ^ and (n^ + ng - 2) ^) 

terms. Since k is assumed to be relatively "close" to zero, it follows 

that ko[g"(0)] is of a higher order than the other terms in equation 1.31, 

and. hence may be omitted. Thus the solution, ko, to the discrimination 

point problem is given by 

(1.32) k„ = 

Setting k equal to zero in equation 1.28 gives 

(1.33) g'(0) = [(2ni(3-p-[6-p]~ + P^) 

+ (2n2 ^ (3-p-D^ + [6-p]^ ^ ^ ̂ 

+ [(2niD^) (-[3-p] + - [6-p] — - ̂  ) 

+ (2n2) ^{-[3-p] + [6-p] ~ - p ^)]c|,(- ^). 

Collecting terms of equation 1.33 and simplifying gives 
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(1.34) g'(0) = [(ZriiDf^p-Z) - (2n2D)''\p-2)]4,(5). 

Taking the derivative with respect to k of each side of equation 1. 27 

gives 

(1.35) f"(k) = - D ^(|j-^)4>(-^-^ + + 

Evaluating equation 1.35 at k = 0 gives 

(1.36) f"(0) = D"^(|,(~) . 

Thus from equations 1. 32, 1.34, and 1.36, it follows that 

(1.37) ko = -(nx"^ + n2"^(^) . 

The desirable classification procedure given by procedure 1.20 when 

k = ko therefore is given by 

(1.38) Classify X as belonging to tti whenever W > -(ni ^-ng 

-1 -1 p-2 
classify X as belonging to TTZ whenever W <-(ni -ng 

Probabilities of Misclassification 

Since the classification procedure given by procedure 1.38 is appro­

priate only when the parameter values are unknown, the probabilities of 

misclassification which are relevant are the conditional (on Xi, xg and S) 

probabilities of misclassification. Pi and Pz (defined by equations 1.15), 

* * 
and the unconditional probabilities of misclassification, P^ and Pg 

(defined by equations 1.14). To avoid confusion, each of these probabili­

ties will henceforth be written in general as a function of k and in 
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-1 -1 P~2 
particular as a function of either zero or ko = -(ni -nz )("~^) • 

The conditional probabilities of misclassification under procedure 1.38, 

that is Px (ko) and Pg (ko), can be written more precisely as 

(1.39) Pi (ko) = Pr{W<-(nr^-n2"^)(^) I Xi,%, 8, X e irj }, and 

Pz (ko) = Pr {W >-(nr^-(n2~S(-^) | Xi, % , 8, X e irg } . 

Again noting that the conditional distribution of W given Xi, Xz and S is 

N([m --^(Xi+X2 )]*S ^[Xi-Xz], [xi-xaJ'S ^[xi-xz]) or 

N([p.2 - -^(Xi +X2 )]'8 ^[Xi-Xz], [xi -XzJ'S ^2S ^[Xi -Xz]) 

as X comes from iri or irz, equations 1.39 can be written 
-1 _ -1. .P-2. 

2 (1.40) Pi (ko ) = $ 
-(ni ^-nz ")C^) - (|JLi --^[xi+X2 ])'S \xi -X2 ) -

[(Xi -X2 )'S"^SS'"\xi -X2 )f'^ 

Pz(ko) = $ 

""1 P" 2 1 — — —1 — 
r (^1 -nz  )(-Y") + +X2])'S (Xi -X2>-

[(Xi -X2)'S"W\xi -X2)f/^ 

The unconditional probabilities of misclassification, Pi (ko) and 

Pz (ko) (using the definitions in equations 1.14) can be written 

(1.41) Pi*(ko) = Pr {W<-(nf^ - n2"S(^) IXe ni), and 

P2*(ko) = Pr {W > -(nf^ - n2"S(-^) I X € U2 }. 

Since the distribution of W is intractable, it is not easy to obtain expres-

* * 
sions for Pi (ko) and P2 (ko) in terms of the parameters tti and ttz . It 



is noted, however, that Pi (ko) and P2(ko) are unbiased estimators for 

* * 
Pi (ko) and Pg (ko), respectively. 
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COMPARISONS AND SUMMARY 

Numerical Evidence 

To evaluate the performances of the two classification procedures, 

that using zero as the discrimination point and that using ko, the basis 

of comparison is H(k) as defined by equation 1.21. Although the 

Taylor's series expansion as given by equation 1.24 might be used to 

evaluate the reduction, [H(0) - H(ko)], of H(k) under procedure 1. 38, 

two objections are immediately apparent. The first, that the approxima­

tion of H(k) by a truncated Taylor's series expansion is insufficiently 

exact, might (conceptually) be dealt with by including terms of suffi­

ciently high order. (However, the algebraic manipulations required to 

obtain even the second and certainly the third order terms are horrendous; 

terms of yet higher order would severely tax the most patient researcher. ) 

The second objection, as even a cursory glance at H(k) suggests, is 

that when an expression for [H(0) - H(ko)] is obtained, meaningful con­

clusions cannot be drawn from it. Almost nothing can be said of the ex­

pression without substituting specific values for the various parameters 

and for the sample sizes. 

Hence, a Monte Carlo sampling experiment was conducted to de­

termine the degree of improvement (in terms of H(k)) of procedure 1. 38 

over procedure 1.7. Since the linear discriminant function W is in­

variant under any scale or location transformation, the distributions of 
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TTi and TTz were assumed ^.vithout loss of generality) to be p-dimensional 

normal with m ' = (0, 0), nz' = (D, 0, ...,()) and S = I (the identity 

matrix). Since kq = 0 when p = 2, only the values 3 , 4, 8 and 20 

were used for p; and since ko = 0 whenever nj = nz, only unequal 

values of ni and nz were used. (Recalling that the numbering of the 

populations is arbitrary, it is necessary to consider here only the case 

ni < na . ) The particular combinations of p and ni and nz are given 

in Table 1. 

Table 1. Sample sizes and numbers of dimensions 

p = 3 P = 4 P = 8 P = 20 

ni nz Hi nz ni nz ni nz 

4 8 8 16 8 16 20 40 

4 16 8 32 8 . 32 20 80 

4 24 8 48 8 48 

10 20 20 40 20 40 

10 40 20 80 20 80 

10 60 20 120 20 120 

Six different values were used for the Mahalanobis distance. These 

values were chosen to correspond to particular values of the combined 

probability of misclassification under optimal circumstances (when all 

parameter values are known). Using equation 1.17, the values of 
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given in Table 2 were determined. 

Table 2. Distances and corresponding values for Pi + 

D^ Pi + Pz 

1. 098 0.60 

1.817 0. 50 

2.836 0.40 

4.293 0.30 

6.574 0.20 

11.482 0. 10 

For each combination of parameters, random samples of sizes ni and nz 

were drawn from iri and irz • From these samples Xi, Xz and S were 

computed. 

Recall that Pi (k) and ?z (k) are unbiased estimators of Pi (k) and 

Pz (k). Thus H(k) can be estimated by H(k), defined by 

(1.42) H(k) = Pi(k) + P2(k). 

— —. ^ A — 2 "2 P"2 
Using Xi, xz and S, both H(0) and H(-[ni - nz ]["^]) were com­

puted. Define by A(p,ni,nz,Cf)^, 

(1.43) A)p, ni, nz , )^ = H(0)^ - H{-[ni ^ - nz for 

i! — 2j • • • ^ loo, 

where i denotes the repetition of the sampling experiment for the fixed 

parameters p, ni, nz and . (For each combination of the parameters 
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p, 111, nz and , one hundred repetitions of the sampling experiment were 

made. ) The criteria used to compare procedure 1. 38 and procedure 1. 7 are 

A(p, ni, nz, ) defined by 

100 
(1.44) A(p, m , nz , ) = — 2 A(p,ni,n2,Ef),, 

jg=l 

and t(p, ni, n2, ) defined by 

(1.45) t(p, ni, nz , ) = number {A(p, nj, nz , )^ < 0 

for i = 1, 2, .. ., lOO}. 

In Tables 3, 4, 5 and 6, the values of A(p, ni, nz, ) are recorded with 

the corresponding values of t(p, nj, nz , ) given in parentheses under­

neath. 

From Tables 3, 4, 5 and 6, four phenomena are readily observed. 

The first is that the value of t(p, ni, ng, ) exceeds 50 for only 7 of 

the 114 parameter combinations used. In other words, this numerical 

evidence suggests that with procedure 1. 38 there is a smaller combined 

probability of misclassification. The second observation is that as the 

disparity of nx and ng increases, the performance of procedure 1.7 

is increasingly Inferior to that of procedure 1.38. Examination of either 

the values of A or the values of t leads to this result. Since the dif­

ference between kq and zero increases as the ratio ~ increases, it 

might have been anticipated that the difference in the performance of the 

two procedures would also increase. Similarly, as p increases, ko 



Tables. Values for A(3, ni, nz , ) and t(3, ni, nz, ) 

ni,nz Df =1.098 cf =1.817 D^=2.836 D^=4.293 D^=6.574 Cf=11.482 

4,8 .00059602 
(37) 

00012391 
(47) 

.00008091 
(40) 

.00055602 
(37) 

00021849 
(59) 

00008744 
(54) 

4, 16 .00050471 
(36) 

.00100230 
(38) 

-.00008898 
(43) 

.00122736 
(33) 

.00022482 
(41) 

00000655 
(47) 

4,24 .00043034 
(35) 

.00202128 
(30) 

-.00073648 
(37) 

.00073318 
(3 9) 

.00043169 
(45) 

. 00020030 
(43) 

10,20 00006664 
(43) 

.00008413 
(41) 

.00015496 
(45) 

00005052 
(46) 

.00003280 
(51) 

.00003783 
(51) 

10,40 .00037113 
(31) 

00000574 
(42) 

00010430 
(47) 

00002720 
(46) 

.00010814 
(45) 

.00006388 
(39) 

10,60 .00019707 
(35) 

.00017836 
(30) 

.00003406 
(39) 

.00013912 
(41) 

00002739 
(50) 

.00004849 
(42) 



Table 4. Values for Â(4, ni, nz , ) and t(3, ni, nz, ) 

ni,nz Cf =1.098 =1.817 D^=2. 836 D^=4.293 D^=6. 574 =11.482 

8, 16 .00014373 
(45) 

.00045703 
(41) 

.00041372 
(36) 

.00046501 
(45) 

00004177 
(52) 

.00005083 
(47) 

8, 32 .00099086 
(31) 

.00117291 
(34) 

-.00054964 
(47) 

.00027542 
(39) 

.00025622 
(42) 

-.00011253 
(48) 

8, 

00 

.00151903 
(31) 

.00080418 
(44) 

.00110629 
(38) 

.00043181 
(40) 

.00085485 
(35) 

.00013077 
(45) 

20, 40 .00006370 
(46) 

-.00005782 
(46) 

.00006687 
(47) 

.00003941 
(47) 

.00011304 
(40) 

-.00001400 
(53) 

20, 80 -.00021611 
(49) 

,00017794 
(41) 

.00035265 
(36) 

. 000062 01 
(43) 

.00012257 
(40) 

.00003691 
(42) 

20, 120 .00008079 
(45) 

.00054317 
(31) 

.00011801 
(42) 

.00022996 
(39) 

.00000728 
(45) 

.00006857 
(40) 



Tables. Values for A(8, ni, %, ) and t(8, ni, nz, ) 

ni, nz D^=l. 098 Df =1.817 =2.836 =4.293 =6.574 =11.482 

8, 16 .00066258 
(35) 

.00056364 
(41) 

.00125513 
(37) 

.00110956 
(38) 

.00027200 
(44) 

-.00005167 
(54) 

8, 32 . 00309417 
(23) 

.00429165 
(24) 

.00168518 
(34) 

.00184777 
(33) 

a 
nc nc 

8, 48 .00463264 
(27) 

.00628243 
(21) 

,00419094 
(31) 

.00360128 
(31) 

. 00349234 
(29) 

.00118280 
(37) 

20, 40 .00046681 
(34) 

.00058087 
(42) 

.00051808 
(37) 

.00019562 
(42) 

.00020009 
(46) 

.00019649 
(41) 

20, 80 .00115990 
(35) 

.00163543 
(33) 

.00098799 
(33) 

.00048899 
(41) 

.00043931 
(46) 

.00036609 
(38) 

20, 120 .00117947 
(27) 

.00149078 
(30) 

.00074024 
(39) 

.00089983 
(35) 

.00062498 
(35) 

.00007181 
(47) 

^Not computed. 
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Table 6. Values of A(20, ni, nz , ) and t(20, ni, nz , ) 

ni,n2 =1.098 =1.817 D^=2.836 D^=4.293 

20,40 . 00121017 .00153557 .00110834 . 00102615 
(25) (29) (31) (35) 

20, 80 . 00580815 .00453632 .00556024 . 00446560 
( 7) (17) (12) (20) 

differs more from zero; and a more marked difference between the per­

formances of the two procedures might be expected. This conclusion also 

Is borne out by examination of the tabled values of either A or t. 

When is varied, the pattern of behavior of A and t is not as 

regular as when — or p takes on different values. In general how-
ni 

ever, A decreases as is increased. This response to increases in 

2 — vV o 
D seems reasonable since [Pi + Pz J also decreases as D is in­

creased. It is Interesting to note that despite the behavior of A, both 

—-r;— — and t increase as is increased. The explanation of 
Pi + Pz 

this phenomenon would seem to lie in the fact that when is large, 

only the tails of the distributions of in and -nz overlap. Hence, 

Pi (k) and Pg (k) are estimates of "tail probabilities." The ratios 

and , also and , as functions of tail 
Pr(k) ?2 (k) Pi (k) Pz -(k) 
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probabilities, are quite sensitive to errors in estimation of the parameters 

of TTi and irz • Thus (in the case cf normal populations), poor estimates 

of either m and nz or S are apt to produce more pronounced devia­

tions of these functions relative to the "true" values in the tails of the 

distribution than nearer the means. Hence the slightly more erratic be­

havior of A and t for large may be attributed not to the behavior 

of [H(0) - H(k)], but rather to the inaccurate estimation of ^^,^2 and 2. 

The last observation to be made about A is that relative even to 

[Px + Pz J, A is in almost all cases so small as to be negligible. 

î§c ^ — 
(Recall that [Pi + P2 J exceeds [Pj + P2 J, so comparison of A 

with [Pi + P2 J is optimistic relative to procedure 1.38.) A quick 

glance at any one of Tables 3, 4, 5 and 6 together with Table 2 confirms 

this. 

Conclusions 

The problem treated in this part of the dissertation is that of choosing 

an optimal discrimination point for the two-population (multivariate normal) 

classification procedure = It has been demonstrated that the usual dis­

crimination point, zero, is not always an optimal choice; and an alterna-

—1 —i p""2 
tive discrimination point, ko = -(n^ - nz )( 2"^' has been proposed. 

The classification procedure using ko has several attributes which 

recommend it. The value of ko is easily determined without recourse to 

a machine of any type; and it has been shown that the procedure using ko 



is a more desirable procedure than that using zero as the discrimination 

point. Unfortunately, the degree of improvement is so slight as to make 

the two procedures' performances comparable for all practical purposes. 

On the other hand, it is perhaps reassuring to be able to demonstrate that 

the commonly used procedure performs in so nearly optimal a manner. 
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PART II. ESTIMATION OF THE PROBABILITIES OF MISCLASSIFICATION IN 

THE UNIVARIATE NORMAL CASE 
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PROBABILITIES OF MISCLASSIFICATION AND THEIR ESTIMATORS 

Three Distinct Probabilities of Misclassification 

The probability of misclassification inherent in the use of a linear 

discriminant function is not necessarily known to the experimenter us­

ing such a function. Various estimators which may be calculated from 

the sample used to generate the sample discriminant function have 

been proposed. In this part of the dissertation, discussion is restricted 

to the case where each of the distributions is univariate normal and they 

are assumed to have common variance. 

Let (i = 1, 2, .. ., ni ) and x^^ (j = 1, 2,,.., nz ) denote two 

independent random samples from normal populations iri and ttz hav­

ing means [Xj and (ni < (j-z ) and variance . Let X be a sub­

sequently and independently (of the x^^ and of the x^^) drawn 

observation from either -m or ttz • To classify X as belonging to in 

or TTz, the linear discriminant function, W, may be used. It takes 

the form 

(2.1) W = [X - ̂  (xi + X2 )](Xi - X2 )A^ when ar^ is known 

= [X - ̂  (xi + X2 )](xi - xz )/s^ when <r^ is unknown; 

-1 - -1 
where Xj = ni ^ x xz = nz x_., and = 

1=1 j=l ^ 
ni nz 

(ni +n2-2) [ E (x -xi)^ + 2 - • 
i=l j=l ^ 



Commonly, X is classified as belonging to in or m as the ob­

served value of W is positive or negative. Thus the classification 

procedure may be written as 

1 -
(2.2) Classify X as belonging to iri if X < — (xx + Xa ) and 

Xi < X2 or if X>^(xi + X2 ) and Xi > Xz ; classify X as 

belonging to ttz otherwise. 

Two distinct probabilities of misclassification, conditional (on 

Xi and Xz ) and unconditional, are relevant. First, the conditional 

probability that X be misclassified as belonging to iri when X is 

from 1T2 is given by 

(2.3) P z  = P r { X < ~ ( x i  +  X Z )  | Xx,X2, X e TTZ )  when Xi < Xg 

= Pr {X >-^(xx + X2 ) 1 Xx,X2, X e TTZ ) when Xx > X2 . 

An alternative form of equation 2. 3 is 

(2.4) P2 = ^{[^(xx +X2) - li-zJA) when Xx < X2 

= 1 - ̂ ([y(Xi + Xz) - U2]A) when Xx > X2 , 

where $ is the cumulative distribution function of a standard normal 

random variable. Second, the unconditional probability of misclassi­

fication is 

(2. 5) Pz* = Pr {X < "I (Xx + Xz ), Xx < Xz 1 X e irz } 

+ Pr {X > ^ (Xx + X2 ), Xx > Xz I X E TTZ }, 
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which is, by definition, the expectation (with respect to Xi and xz ) 

of ?z . It may be noted that since the numbering of the populations is. 

arbitrary, the problem treated here is symmetric; and hence only the 

various errors of the second kind (classifying X as belonging to -rri 

when X comes from trz ) are considered. 

A third probability of misclassification is of interest for purposes 

of comparison. If all the parameters, (j.i, \i2 (ni < 1x2 ) and 0-^ should 

be known, the following classification procedure might be used 

(2.6) Classify X as belonging to ni if X<^(ijlx + nz 

classify X as belonging to nz if X > ^ (ni + nz ) 

instead of the procedure 2.2. This new procedure leads to the proba­

bility of misclassification 

(2.7) Pz*" = $(^[|JLi - h-zJA) . 

This represents the optimal situation in some sense; and both Pz and 

* 
Pz are expected to be greater than Pz because of the lack of infor­

mation on til and nz. 

The problem considered here is the estimation of the conditional 

probability, Pz . It is noted that Pz is a random variable since it is 

a function of x^ and xz . Of the several authors (especially John 

(1961), Okamoto (1963), Hills (1966), Geisser (1967), Lachenbruch 

and Mickey (1968), and Sorum (1968)) who have treated the probability 

of misclassification problem. Hills, Lachenbruch and Mickey, and 
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Sorum have particularly addressed themselves to the problems of esti­

mating Pz and of evaluating the estimators derived. Hills gave a 

general formulation of the classification problem when two populations 

are involved. He obtained some general analytical results about P2 

and its estimators. By assuming particular distributions (including 

normal) and using numerical examples, Hills obtained more precise 

results. Lachenbruch and Mickey compared several estimators of Pg 

using a Monte Carlo sampling experiment and obtained fairly conclu­

sive results. Sorum made an extensive analytical investigation of this 

problem for the cases of univariate and multivariate normal distributions 

with known variance and known covariance matrix, respectively. She 

used the conditional mean square error as the criterion for comparison 

of estimators of Pg. This criterion failed to confirm the findings of 

Lachenbruch and Mickey because of inadequate discrimination among 

estimators. The criterion of unconditional mean square error used in 

this dissertation both seems a more meaningful measure of performance 

and provides clearer discrimination 'raong the estimators, giving the 

support of analytical results for the univariate case to the numerical 

evidence of Lachenbruch and Mickey. 

Estimators of the Probabilities of Misclassification 

Of the eight estimators of Pg (the conditional probability of mis-

classification) to be considered, only the first two do not require any 
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distribution assumptions about tti and m ; the others rely on the 

assumption of the normality of -rri and uz . 

The reclassification estimator, P , suggested by Smith (1947) is 
R 

one of the classical estimators of Pg . To compute P^ , the discrim­

ination procedure 2. 2 must be formulated from the ni observations 

from TTi and the nz observations from trz . Then each of the ng 

observations from irz is classified according to the procedure. The 

estimator, P , is the proportion of the ng observations misclassified 

by the procedure as belonging to TI . 

The "jackknife" estimator, P^, was proposed by Lachenbruch and 

Mickey (1968) as "method U. " To compute the value of P^ , it is 

necessary to make all possible (nz - 1, 1) "splits" of the sample from 

172- For each possible split, a discrimination procedure 2.2 is formu­

lated from nx and nz - 1 observations on and uz, respectively. 

Then the remaining observation from ttz is classified according to this 

procedure. The estimator, P^, is the proportion of the nz observa­

tions from TTz which are misclassified as belonging to tri. 

Another classical estimator for Pz is P^, which is obtained by 

substituting the usual sample estimates into the expression for Pz 

given by equation 2.4. Hence, if o-^ is known, 

(2.8) Pj^ = $[^(Xi -xz)/(r] if Xj < Xz 

= 1 - (xi - Xz )/cr] if Xi > xz 5 



If cr^ is unknown 

(2.9) - xz )/s] if Xi < X2 

= 1 - (xi - Xz )/s] if Xi > X2 . 

* * 
To define the estimators and P^g , the asymptotic expansion 

* 
of Pz due to Okamoto (1963) is used, giving 

(2.10) Pz = i'[-^(M.i-|i.2)A] - ̂ [(hl3.-H-2 )A](ni ^ + n2 S<j)['^(p..-ia.2 )A]+02 

where Oz denotes the second order terms of (ni \ nz ^;,[ni +n2-2] ^). 

* 
Although not really estimates of P2, but rather of P2 , the estimators 

* * 
Pq and P^g (corresponding to the "0"and "OS" methods of Lachen-

bruch and Mickey) might still be useful and hence are included in this 

discussion. Substitution of the usual estimators for m and jxz (and for 

<r^ when <P' is unknown) gives P^ , Then when o-^ is known 

(2 .11)  Pq = $['^ (xi - xz )A] - ̂ [(xi -xz )A][ni ^+^2 ̂ ]<i5['^(xi -Xg )A]j 

and when o-^ is unknown, 

(2.12) Pq = ^[-^(xi-xz )/s] --^[(xj-xz )/s][ni Vnz ̂ ]<j5[-^(xi-xz)/s] . 

When <r^ is unknown, substitution into expression 2. 10 of the square 

2 / 2  ^  root of an unbiased estimator for (p-i -n-z ) A gives P^g . Thus, 

(2.13) P^g = $[^(xi -xz)(ni +n2-4)^'^/s(ni +nz -2)^"^] 

- [(Xi-Xz )(ni + nz - 4)^^^/s(ni + nz-2)^'^](ni ^ + nz ^) 

• <{)[-|-(xi - Xz)(ni + nz - 4)^'^^/s(ni + nz - 2)^^] . 
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2 Another estimator for the case when o- is unknown is P^g . 

SubsLi •- ion of the square root of the unbiased estimator for 

(|i.i - '/o"^ into expression 2.7 gives the "DS" method of 

Lachc j.ch and Mickey; 

1 _ _ 1 /2 1/2 
(2.14) - xz )(ni + nz -4) /s(n.i + ng -2) ]. 

Bayesian arguments suggest P and P , fj'otimators constructed 
Gj Q 

by Cfeisser (1967) and Sorum (1968), respectively. 

(2.15) P^ = (Xi - X2)/(r(l + nz ^^] when o-^ is known; 

and when cr^ is unknown, 

(2.16) Pg = ^ [-^(xi - X2 )/s(l + nz ^)^^^],* 

, 1 -  -  1 - 1 1 / 2  ,  
(2.17) Pg = $ [— (Xi - X2 )/ir(l + —na ) ] when cr is known, 

and when cr^ is unknown, 

(2.18) Pg = $[^(xi - X2)/s(l i^nz"^)^^] . 

It is noted that since the event Xx > X2 has probability of the 

_1 -1 k 
order o(ni , ng ) for any k as , ng -* oo because of the assump­

tion Hi < \Lz, equations 2.2, 2.4, 2.5, 2.8 and 2.9 can be rewritten 

as 

(2.19) Classify X as belonging to iri if X < (xi +X2 ); 

classify X as belonging to -nz otherwise; 

(2.20) Pz = ([•|(Xi + X2 ) - M-z ]A); 
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(2.21) Pz = Pr {X < "I (xx + X2 ) I X 6 TTz }; and 

(2.22) P^ == (Xi - X2 )/tr] when tr^ is known; 

(2.23) Pj^ = (xi - X2 )/s] when cr^ is unknown. 

(Since the terms omitted in equations 2.20, 2.21, 2.23 and 2.24 

are negligible, the notation of approximation is not used henceforth. ) 

The estimators in equations 2.22 and 2.23 can also be obtained 

by the substitution of the sample estimates into equation 2.7. The 

expansion 2.11 actually follows easily from 2. 21. 
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MEAN SQUARE ERRORS FOR THE o*^ KNOWN CASE 

Mean Square Errors for Estimators Requiring No Distribution Assumptions 

The unconditional mean square errors for the estimators P and P 
k u 

(which do not require any assumption about the distributions of in and 

172 ) are derived below for the case when cr^ is known. The assumption 

that 0-^=1 is made for convenience. This implies no loss of generality 

since the classification procedure is invariant under any scale transfor­

mation. 

A 

Consider a general estimator Pg which includes P and P as 
r u 

special cases. 

nz 

(2.24) ?2 = nz ^ y 
j=l \ 

where v. = 1 when X is classified as belonging to vi 
J 

= 0 when X,. is classified as belonging to vz 

and X is the j observation in the sample from nz, for j =1,2,..., nz 

2 % nz 
(2 .25)  E[(P2-P2)']  = nz" g  E[v^ )  + 2n2 g  E(V,\ . , )  

i=i ' i<i' ' ' 

1 
- 2%' 2 E(v,P2) + E(P2'), 

J=1 ' 

where E denotes expectation with respect to Xi, xz and . Since 

? z  is not a function of the y , B { P z )  denotes the expectation of P/ 
J 

with respect to Xj and xz . 
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To evaluate E(P2^), first define by 

(2.26) go = "I (xi + xz) - \iz; 

the go follows a normal distribution with mean -[i?. ) and variance 

1  - 1  - 1  
— (hx + Tiz ). From expression 2.20 it follows that 

(2 .27)  Pz = $(go)  

(Recall that the terms omitted in equation 2.27 are negligible and that 

the notation of approximation was dropped after equations 2.20, 2.21, 

2.23 and 2. 24. ) 

Expanding each of Pz and Pg^ in a Taylor's series about the 

point •^(m-i-(j.z) and taking the expectation with respect to go give 

(2.28) E(Pz ) = $0 + (ni + nz )^2 + (nx + nz )^ $ 4 + O3 ;  

(2 .29)  E(Pz')  = ^ +-T^(nx""^ + nz"^)^ ^ +  O3 ,  
8' " ^ ^ 128 

where J for r = 1,2; k = 0, 2, 4, and 
t = 2 (t^i~H-2) 

- 1  - 1  r  - . - l i  
and where denotes 0(nx , nz , or [nx + nz - 2] ) for i = 1,2,3. 

(For realizations of the see the Appendix. ) Equations 2.7, 2.10 

* ** 
and 2. 27 show that to O3,  both Pz and Pz are larger than Pz in the 

sense of expectation. 

Useful in evaluating the second term of expression 2. 25 is the fol­

lowing lemma. 
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Lemma. If ~ and p is small, then 

Pr {yi < 0, 72 <0} = ^(-vi )${-V2 ) + pcj)(-vi )<j>(-V2 ) 

+  ̂  V i  V 2  ) ( j ) ( - V 2  )  +  0 ( p ^  )  .  

, 0 0  
Proof, Pr {yi < 0, y2 < 0} = (2itn/ 1 ~ p ) J J Gxp {""^[(yi ~vj + (yz ~vz ]/ 

— 00 —00 

d-p')} 

•  e x p  { p ( y i - v i  ) { y 2 - V 2 ) / ( l -  p ^  ) } d y i d y 2  

-vi (1-p^ -V2 (1-p^ ) 

= \/l-p^ / ( t ) ( Z l  ) ^ { Z z  ) [ l  +  p Z i Z 2  +  

—00 —00 

2 
-p^zi^zz^ + 0(p^)]d2idz2 

where z^ = (1-p^) ^ {yi~vi) and Z2 = (1-p^ ) ^^(y2 -^2 ). Evaluation 

of the integral gives 

Pr{yi <0,y2< 0} = (1-p^ { $[-vi (l-p^ )"^/'^]$[-v2 (1-p^ 

+ p(})[-Vi (1-p^ ) ]cf) [ - V 2  (1-p^ )  ^  ]  +  •^p^ {$[-Vi {1-p^ )  

+ vi(i-p" 

• (#[-V2 (1-p^ ) '^] + V2(l-p^) ^ + 0(p^ ) . 

Expanding each of (1-p^ and (1-p^ ) in a binomial series about 1, 

expanding each of $[-v.(l-p^ ) and fi)[-v.(l-p^ in a Taylor's 

series about the point -v^ for i = 1, 2 and simplifying complete the proof. 
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Consider now the estimator P and its unconditional mean square 
K 

error as given by equations 2.24 and 2.25. Define by 

(2.30) = •|(xi + Xz) - Xgj for j = 1, 2,.. .,n2 ; 

then follows a normal distribution with mean -•(h-i-fj-z ) and variance 
J ^ 

,  ,  1  - 1  3  - 1  ,  .  .  .  1 - 1 3 - 1  
1 4 —ni - — nz ; also and have covariance — nj - — n^ 

for j /j' . Since E (Y.^) = E (Y .) = Pr{g. > O}, E (v.') = $[-^k(^ii-^iz)] 
J 3 3 3 ^ 

1 _ 1 3 -1 -1/2 
where k=(l+—m - — nz ) . Using a binomial expansion of k 

about 1 and a Taylor's series expansion of -|jiz )] about the 

point ^(li-i-jj-z) results in 

(2.31) E(y?) = $ + -^(ni ^ - 3nz ^)$2 + Oz for any j . 
J o 

/kg \ 
Since I . . I is distributed according to N I 

1  - 1  - 1  
with p = —k(ni - 3n2 ), the lemma proved at the beginning of this 

section applies and 

(2.32) E(Y.V.,) = Pr{g > 0, g ,> 0} 

= ^^[•|k(ij.x-fj.2 )] + pc|)^[-|k(H.i-H2 )] +^p^[^k{|j.i-(j.2 )]^<f)^[-|'k(ij.i-|j,2 

+ O3 

for any j / j', where 4> is the density function of a standard normal vari­

able. Using again a binomial expansion of k about 1 and Taylor's 

series expansions of k(|j,i-|j.z )] and k(iJLi-|j.2 )] about the point 
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equation 2.32 can be rewritten as 

(2.33) E(v.vj,) = 00 +-g(nx'^ - Snz'S^f ̂  (nf^-Sn^S'^ + O3 

for any j / j'. 

Consider next Ef^.Pz ) = E. [E(y.P2 Uo)] = E[$(^ 0) * Pr{^. > oUo }]• 
J bO ] J 

Since the conditional distribution of Cjllo is normal with mean 

"^(Hi -H-z ) + (3[to - -H2 )] and variance or# = 1 - nz ^ + (ni+na) \ 

-1 -1 -1 -1 
where p = (ni - nz )/(ni + nz ), it follows that Ely^Pz ) = E[ijj(^o )] 

where ijjCêo ) = ^'(êo ) ^{[•|(Ri-^.2 ) + p (^0 - "IEm.: DJAz )• Using 

a development similar to the development of equation 2.29, results in 

(2. 34) E(-Y^P2 ) = ijjo + "g (ni + n^ )4J2 + (ni + nz )^i(j4 + O3 

,kr, , 
for k = 0,2,4. 

t = 2 (M-i-H-2) 
where ijj. = 

" dt'' 

Straightforward calculation using binomial series, Taylor's series and 

expectations with respect to x^ and xg gives 

(2.35) E(V.P2) = +|(nr^-n2"^$f^+^(nr^-5nr^n2"^ + 5n2"')$f^ 

-2.(2) 
8 

n2 c{)2 + O 3 

where 
" dt" 

^ for r = 1,2 and k = 0,2. 

t = 2 ([J-i-M-2 ) 

By substituting expressions 2.29, 2. 31, 2. 33 and 2.35 into equation 2.25, 

or, equivalently, into 

(2.36) E[(?2 -P2)^] = E(P2M + n2"^E(v.2)+(l-n2"^E(Y.v^,) - 2E(v.P2 ), 
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the unconditional mean square error for is obtained, and 

,  - 1  i - i _ i  - 1  f ?  \  
(2.37) EliP^-Pzf] = nz 0(1-$) f-^ng (m -5na )(^2 - W ') 

+ j-nz + O3 . 

Consider next the estimator and its unconditional mean square 

error given by equations 2. 24 and 2.25. Following the same line of 

reasoning as that used to find the unconditional mean square error for 

P yields 
K 

7  - 1  1 - 1 - 1  - 1  / 2  Ï  
(2.38) E[(P^-P2 ) ] = n2 i>(l-$)+-n2 (ni +n2 )(#2 - # 2  )  

1 - 2  2  
+ ^n2 (fji + O3 . 

Mean Square Errors for Estimators Requiring Distribution Assumptions 

The following notation is convenient in obtaining the unconditional 

mean square errors of the estimators relying on the normality of in and 1T2 • 

Letting 

(2.39) Zi = Xx - (j-i, and 

22 = X2 - fX2 , 

Zi and zz are independent normal random variables each with mean zero 

-1 -1 
and with variances nx and n2 , respectively. Denote by 4 and t] 

the quantities 

(2.40) L = "I (zi + Z2) and 

T ]  =  ^ ( z i  -  Z 2 ) .  
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Then Pz can be written 

(2.41) p2 = ^["1 (m-1-f^2 ) + ^]. 

Recall that the terms omitted in equation (2.39) are arbitrarily small. 

(See equation 2.20 and comment following equation 2. 24. ) Expanding . 

P2 in a Taylor's series about the point (in ) gives 

(2.42) P2 = $0 + C ^ $2 + $4 

where the are as defined below equation 2.2 9 for k = 0,1,2,3,4. 

Consider first the estimator P^ , which can be written 

(2.43) P^ = $[-^(h-i-M-2) + T]]. 

Expanding P^ in a Taylor's series about the point (ni -p,2 ) gives an 

expansion analogous to the expression 2.42, but with t replaced by t]. 

Thus, by taking the difference of these two expressions and squaring 

the result gives an approximate expression for (P2 -P^)^, or 

(2.44) (Pz-Pg)' = K-T,)'$3 

Taking the expectation of equation 2.44 with respect to t and T] gives 

(2.45) E[(P2-Pj^)^] = n2 + ̂ (ni ^nz ^ + ng ^)$3 + "^ni ^ng ^$2 + O3 .  

* 
Consider next the estimator Pq which can be written 

*  r l  1 - 1 - 1  ]  
(2.46) Po - $[2 (N -Hz ) + n] + g +n2 )$2 [ 2 (w "M'Z ) + tj]. 

Expanding each term of equation 2.46 in a Taylor's series about the point 

1 
— (Hi-Hz), taking the difference of the resultant expression and equation 
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2.42 and squaring this difference give 

(2.47) (P2-P0 +  (C-'n) (G^ )#i $2 + "I (^-Ti) {C^-Ti^ )^x ^3 

+ $2 +^(nr^ + na~S[ a-r,)$i$2 

+ ^ -n^ )$2 $3 + ii(G-n)$i $3 +'^T](G^-71^,^2 $3 ] 

1 -1 -1, , 
+ (ni fnz ) 52 . 

Taking the expectation of equation 2.47 with respect to ^ and t] gives 

(2.48) E[(P2-Po*)'] = n2"^5^^Q+("' +^"'32''' >*20 

-1 -1 -2 
3ni nz + 3n2 ' 

^ 8~ *10*30-

Finally, consider the estimators P and P . Each is a special case 
L? b 

1 A * 
of the estimator P2 given by 

(2.49) P2 = #[(^[^1-^2] + n)(l + anz ^) 

where a takes the value 1 for P and the value •- for P . Expanding 
(a Z o 

(1 + anz in a binomial series about 1 and expanding 

~H-2 ] + Ti)(l + an2 ^) in a Taylor's series about the point 

give 

(2.50) P2 = $ + [ti—|(M-i-H-2){|-an2 |a^n2 ^)-Ti(-|an2 ^---a^nz ^)]$x 

+ ( W-M-2 )^a^n2 ^ -^T)(H.i-fi2)+ n - n^anz ^]$2 

^ 6 ^  4 ^ ^  ( M - i - R  ) a n 2  T ) ^ ( 1  - ' ^ a n 2  \ - ^^anz ^]$3 • 

Taking the difference of equations 2.42 and 2.50, squaring it and taking 
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the expectation of the result yield 

(2.51) E[{P2-PQ)^] = N2 #1^ + (RI] RIG + NZ )$I$3 + ^NI NG <ÈZ 

2 1 1 1 
+ nz [(- ̂  [n-i "H-z T -M-2 )^i ^2 ] + O3 , 

and 

(2.52) E[(P2-PG)^ ] = NZ +'^(NI ^NG ^+N2^1#I$3 +4^1 ^NZ ^#Z^ 

+ nz ^[(--^ + ̂  [fii-HL2 f +-^ (M-1)^i $2 ] + O3 . 



49 

MEAN SQUARE ERRORS FOR THE o"^ UNKNOWN CASE 

As was noted earlier in this part of the dissertation, only the esti­

mators motivated by the assumptioi of normality of the underlying popu­

lations have different forms for the cases when is known and when 

(T^ is unknown. Hence the mean square errors for P and P , when 
K U 

ar^ is unknowr^are the same as when cr^ is known and are given by 

equations 2. 37 and 2. 38, respectively. 

The estimators motivated by the normality of in and ttz will now 

be considered. First note that the classification procedure 2.19 guaran­

tees that Pa can still be written as 

(2.52) Pz = $[-^ (iJ-i - fi.2 ) + C] 

when is unknown. (Notation is as in equation 2. 40. ) The estimators 

Pj^ , P^g , Pg and Pg can all be written in the general form 

(2.53) P2 = ®([|([ia - fJLz) + Ti]/[1 + 

where = ^(ZI -  z z ) ,  T = s^ - 1, and a  takes on the values 

•"1 "2 2 —J 
0, 2(ni +n2-4) , nz and -nz for P^, P^g , P^ and Pg, respec­

tively. 

Consider the simplest case, that of P^ . As for the case when cr^ 

is known, equation 2. 52 can be expanded in a simple Taylor's series 

about the point Y( H - H-z )• Equation 2. 53 (with a = 0) can be expanded 

in a bivariate Taylor's series about the point (^ (N - M-2 ), 0). Taking 

the difference of these expansions gives 
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(2.54) Pz - Pj^ = ^02^ 

+ 7 [(4 - 3tit^ 
21 12 03' 

+ '^ t(^'' -n'')^40-4Ti^T^3^ - 6TI^t^^22 " ^13 " ^04^ 

where 0 = 8"$(tu''^^ 
w 

Bt^ au'^ 
0.1, 2,3 ,4 

u = 1 

Squaring equation 2. 54 and retaining all relevant terms results in 

(2.55) (P2-Pj^)'= (G-n)' $10 -
"10 01 01 

+ 7[(C^-n'')^^2o ^11 + T* 11 02 

- 4TTI(^^-T)^ ^^20^11 ~ )^9n^n9 + 4t^Î1^i i 20 02 11 02' 

+ (C-Tl)(C^-Tl^ )$JQ#20~ ^9n " 2TTI(C-T])$, 01 20 lO'll 

+ 2T^ (^-n)$io$o2 + ^01^02 

+ 3 3TT1^ (t,-Tl)c&,^$ 
10 21 

+ - 3-^'n(G-n)$io$i2 + 3^N^O1^12 

-T^ (^-^)$10$03 + ̂ 'Vos]' 

Taking the expectation of equation 2. 55 with respect to %, ti and 

T gives 
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(2.56) E[(P2 -PP)'] = + 2(NI TNG - 2)"^ 

1 — 1 — 1 "2 1 — 1 — 1 2 
+ %("' "2 +"2 '®loSo'^4"' ®20 

+ ^(ni + nz -2) (ni ' + nz ^)(®oi®21 ''' 

- 1  - 1  - 2  
+ (ni + nz - 2) nz ^^0^12 + ^2 - 2) ^QI^O2 ^3 ' 

For the estimators P , F and P the specific versions of 
J^u \ j  O 

equations 2. 53 are more complicated than is the version for P^; and 

subsequent computatiens are considerably more extensive. Except for 

the addition of a binomial expansion of (1 + a) , the methods used in 

obtaining the mean square errors of these three estimators are essentially 

the same as those demonstrated for F^. Therefore, only the mean square 

errors for P , P and P„ are given below. 
JJo 0 

(2.57) E[(F2-P*g)'] = n2~^$jp + 2(ni + n z  " 2)"^$'^^ 

2  — 1 " 1  — 2  1  —  2  —  2  2  
+ ®20 

+ ̂ (ni + n2 - 2) '(ni + nz ')(*oi®21 ^ ®u' 

- 1  - 1  - 2  
+  ( n i + n 2 - 2 )  n 2  ^  + ^ ^ 2  "  2 )  ^ o i ^ 0 2  

- Î(ni + n2 - 4) n z  - ~ (% + n2 - 4) ( [J-i - H^Z ^^ Q 

1  - 1 - 1  
--(ni tnz -4) nz (p-i - ̂ -2)^20^20 

- (ni + n2 - 4) (rii +n2 - 2) (^QJ + ^10^02^ + -
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(2.58) E[(P2-PQ)'] = nz'^^jQ + 2(nx + nz - 2)"^$^^^ 

2 —J —' % ""2 
+ 4<ni n; +r.2 «^o 

+ 2 (ni + Hz - 2) {ni ^ fng ^)Ï®QJ^21 ^11^ 

- 1  - 1  - 2  
+ (ni +112 ~2) nz ^20^12 ^ ^+ riz -2) ^oi%2 

-  ( i  -  16 ^4o 

1  - 1 - 1  
- 2 (Mi-H 2 ) ( n i  f n z  - 2 )  m (^Ql^ll ^10^02^ "^3 

(2.59) E[(P2-Pg)'] = nr^0^Q+ 2(ni tng -2)"^$'^^ 

1 •• X — 1 —2 X ""X " X 7 
+ i'"' '®10®30'^4"' ®20 

+ Y(ni + Hz - 2) '(m ' + nz ')(®Q[*2I + 

+ (nx + nz - 2) m + 10(^1 + nz - 2) ^^02^Q2 

- [% - ̂ (M.i-w)']n2'^®io "îlci -Hz)n2"''$j„®20 

1  - 1 - 1  
--(txi-}j.2)(ni+n2 -2) nz (^QI^II ^10^02^ ^3 " 

* * 
Next consider the estimators P and P which are based on 

O Ob 

Okamoto's (1963) expansion for Pz . Note that both estimators can 

be written in the general form 
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(2.60) Pz = ®pg([-j(Hi-|i2) + l]/[) + 

+ '5(nr' + n2'')®2j,([|(HLi-HLz)+,,]/[! + 

— 1 * n< 
where a takes on the values 0 and 2(ni+n2-4) for P and P 

O Oo 

respectively. 

1 yp 
As for the case when o-^ is known, (1 + a) can be expanded 

in a binomial series and the estimators as given in equation 2.60 can be 

expanded in a bivariate Taylor's series about the point 0). 

A * 

Taking the difference of the resulting expression for P and the expan­

sion of Pg (defined by equation 2. 52) gives 

(2.61) Pz - Pz* = (C-n)$2Q -

+ '|[C^-(-n- [•|(w-iJ-2) + ii][| -4(^1 ̂ +n2 S]$20 

- T[ti - (|[H-i-fJ-2]+Tl)(| - "2^^^ 
02 

3 r 1 , . -.rff 3g^ 1, , -1 -1 
-  4  ( t i - I  2 ^ » ^ i " H-2) + ti][-- — ])(ni +n2 ) $ 

+ n)(§ 

1 r. r 1 , ». T rOf 3«^ t »2 . 1 . ~1. "L 
- 2 " [ 2 2 " ^ +%(ni +n2 )] $21 

-6''\*03-

Squaring equation 2. 61 and taking the expectation with respect to , t] 

and T lead to 
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—2 —2 „ -1 "1 
( 2 . 6 2 )  E [ ( P 2 - P o V ]  =  n z "  0 ^ ^ +  ) ^ I q  

-1 -1 -2 
3n. m + 3nz 

8 10 30 

+ 2(ni + nz -2) + — (ni +nz-2) (ni +nz 

•*1 "1 3 "1 "*1 ""1 
+  { n i + n 2 - 2 )  n z  + ' ] ^ ( n i + n z - 2 )  ( n i  + n 2  

+ l0( n i + n 2 - 2 )  ^ $ ^ ^ 5 ^ 2  +  4 ( ^ ^ 1 + ^ 2 - 2 )  \ni Vnz ^)f'2Q^Q2"^^^' 

(2.63) E[(P2-PQg)^] - [n2 +2(ni+n2-4) n2 +(ni+n2-4) (fJ-i-fJ'Z 

- 2  - 2  - 1 - 1  - 1  - 1  - 2  
.ni +n2 9ni 02 . 2 3ni n2 + Snz 
^  6 4  3 2  ' 2 0  8  1 0  3 0  

+  2 ( n i + n 2 - 2 )  0 ^ ^  + ~ ( n i + n 2 - 2 )  ( n ^  f n z  ) $ ^ ^  

•"1 " 1 1 "l "1 — 1 
• Î  ( n i + n 2 - 2 )  n 2  $ + " 2 - 4 )  ( m  - 3 n 2  ~ M - 2  ) $ J Q ^ 2 O  

- 1  - 1  
+ 2(ni+n2-4) (n^fng-2) (ni -^2 )^io^o2 

- 1 - 1  
•7 4(ni+n2-4) (ni fng -2) (|J,I-fj,2 

3  _ i  _ i  - 1  
+ -(ni+n2-2) (ni fnz >^01^21 

+ 10(ni+n2-2) +4(^1+^2-2) \ni ^+nz ^)^20^02'*'^^ ' 
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DISCUSSION 

Comparison of the mean square errors fo the various estimators 

leads to some interesting results. If the two estimators not motivated 

by the assumption that tti and irg are normal populations (that is, 

P and P ) are compared, it can be seen that for large values of 
R U 

I P-i -H-z I, P_ is a "better" (in the sense of mean square error) estimator 
R 

of Pz than is P^. Making use of the normality of iti and TTZ , as 

might be expected, is advantageous. Support of the conclusion that any 

of Pj^, Pg, Pg, Pj^g , Pq , P^g is a better estimator than either P^ 

or P is given below. Choosing among the six estimators relying on 
u 

the normality of iri and T/Z is not trivial. However, P^ seems in 

general to be less satisfactory than the alternatives. 

Consider first the estimators P and P and their mean square 
R U 

errors given by equations 2.37 and 2.38, respectively. Note that the 

-1 -1 -1 
terms with coefficients n^ and ni nz are the same in both equations. 

The remaining term with the coefficient of nz ^ for P is $2 ) 
R o 

1 (2 ) 
+ ~(j)2 . For large values of |ni-^z I this expression is seen to be 

- 2  
negative. However, the remaining term (with the coefficient nz ) of 

Py is ^($z - 4 > which expression is always positive. 

(For definitions of $ and , see the appendix. ) Thus for large 

values of I|ii -jxz I, P is concluded to be a better estimator of Pz 
R 
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than is P^, despite the intuitive appeal of . 

Since the estimators P^, P^, P^. P^^ , P^, P^^ make use of 

additional information about tti and TTZ , it might be expected that the 

mean square error of any of these estimators could be shown to be smaller 

than that of either P or P . It is perhaps surprising that as quanti-
K U 

tatively crude an argument as the following one is sufficient to support 

this conclusion. 

The mean square errors of P and P are the same whether or not 
K U 

(T^ is known, while the mean square errors of P^ and the other esti­

mators motivated by the normality of tti and -nz are larger when o-^ 

is unknown than when o-^ is known. Thus it suffices here to treat the 

case when o-^ is unknown. Consider the first order terms of the mean 

square errors of P (or P , since such terms are the same for these two 
R U 

estimators) as given by equation 2.37 (or equation 2.38) and of P^ (or 

** * * 
^G' ^S' ^DS ' Pgg) as given by equation 2.56 (or any of equa­

tions 2.57, 2.58, 2.59, 2.62, 2.63). Define by Gi their difference; thus 

(2.64) GI = E[(P2 - P^)"] - E[(P2 -

to O2 . Rewriting Gi using equations 2.37 and 2.56, and making use 

of definitions in the appendix give 

(2.65) Gx (y) = nz ^$0 (y)[l-^0 (y)] -^+2(ni+n2-2) ^]y^ (y) 

for y < 0, 

where y ='^(^•1 "M-z )• By finding the minimum value of Gi (over the range 

of y) and showing this minimum value to be positive, it will have been 



57 

demonstrated that is the better (to O2) estimator of Pz for all 

values of . Hence consider next Gi ' (y), 

(2.66) Gi(y) = (n2 ^-2n2 ^®o(y)+~[n2 ^+2(ni+n2-2) ^][y^ -y]$i (y))#i (y). 

1 
S i n c e  ^ o ( y ) < ~ ,  i t  f o l l o w s  i m m e d i a t e l y  t h a t  f o r  y > - l ,  G i ' ( y )  i s  n o n -

negative. When y <-1, the behavior of Gi'(y) is not so apparent. 

However, whenever Gi'(y) = 0, 

( 2 . 6 7 )  G 2  ( y )  =  1  -  2 ^ . 0  ( y )  + - ^ [ 1  +  2 n 2  ( n i + n 2 - 2 )  ^ ] ( y ^ - y ) ^ i  ( y )  =  0 .  

It will now be shown that G2 (y) does not take on the value zero for 

y < -1. In fact, G2 (y) has only one local minimum for y < -1, and that 

minimal value of G2 (y) is positive. To find this minimum of G2 (y), 

consider G2' (y), which can be shown to be 

(2.68) G2'(y) = [-^-3y^ + + 2n2 (ni+n2-2) (y) . 

Setting equation 2. 68 equal to zero and solving for y gives only one 

r e l e v a n t  s o l u t i o n ,  y o ,  

(2.69) yo = -2.412. 

A check of G2"(y) shows that yo does indeed yield a minimum for 

G2' (y). Substitution of yo into equation 2. 67 gives 

(2.70) G2 (yo) = . 1272[1 + 2n2(ni + n2 - 2)"^]. 

It follows that Gi'(y) is nonnegative for all y < 0. Thus it is con­

cluded that Gi (y) attains its maximum and its minimum values at y = 0 

and in the limit as y -00. From equation 2.65, the maximum and 

minimum values of Gi (y) are given by 
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(2.71) Gi (0) = -^nz and 

( 2 . 7 2 )  l i m  G i ( y )  =  0 .  
y->- -00 

Thus it has been proved that (to O2 ) the mean square error for P 
R 

(or for Po) exceeds that for P^ (or for P^, P^, P*^ , P^ or P^g) 

regardless of the value of . 
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PART m. OPTIMALITY OF PRINCIPAL COMPONENTS 
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CASE WHEN VECTOR VARIABLES ARE REAL-VALUED 

The principal components of a p X 1 vector-valued random variable, 

x, (from any distribution for which expectation and variance are meaningful) 

can be characterized as linear combinations of , xg , . . ., with particu­

lar variance properties. Hotelling (1933) first introduced principal com­

ponents; Rao (1964), Darroch (1965) and Okamoto and Kanazawa (1968) 

have characterized them in terms of various optimal properties. 

The study of principal components is relevant when it is desirable to 

make assertions or inferences about a p X 1 vector-valued random variable 

in terms of fewer than p characteristics (or linear combinations of 

Xi ,X2,..., x^). For example, often it is the linear combination of 

Xi, X2 , .. •, Xp with the largest variance that is sought in order to investi­

gate individual variation using the "best" single indicator. The logical 

extension of this example would involve the "best k" (k < p) indicators. 

It is in the definition of "best" that the characterizations of principal 

components by Rao (1964), Darroch (1965) and Okamoto and Kanazawa 

(1968) differ. 

Let x =  ( x j ,  x 2 , . . . ,  x p ) '  be a real-valued random vector with mean, 

E(x) = (0, 0, ..., 0)', and real covariance matrix, E(xx') = 2. Also, let 

Xi > Xa > • • • > ^ ^ be the eigenvalues of S in order of decreasing 

magnitude; and let Vi, "ve ,..., Vp be the corresponding orthonormal 
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eigenvectors. Then yi'x, yz'x, ..., y^x are the principal components of 

X. Denote y^x by (i = 1, 2, .. ., p). 

In terms of geometry, the set of principal components effectively ro­

tates the coordinate axes to a new (mutually-orthogonal) system of coordi­

nates with useful statistical properties. For example, the first principal 

component is that (normalized) linear combination with maximum variance. 

Thus the largest variance component of x lies along the first axis in the 

new coordinate system. The second principal component is that (normal­

ized) linear combination (orthogonal to the first principal component) with 

maximum variance; hence the second largest variance component (inde­

pendent of the largest variance component) of x lies along the second 

axis in the new coordinate system; and so on. 

The characterization of the first k (k < p) principal components given 

by Rao (1964) is that linear form, y = T'x with a real p X k matrix T, 

which minimizes the Euclidean norm of the residual matrix of x after sub­

traction of its best linear predictor based on y. In other words, Rao con­

sidered the problem 

(3.1) Minimize ||E[(x - AT'x)(x - AT'x)']ll 

subject to the conditions that A is a p X k real matrix 

and T is a p X k real matrix, 

where 11 11 denotes the Euclidean norm; and he obtained the solution 
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The problem Darroch (1965) considered is 

( 3 . 2 )  M i n i m i z e  t r ( E [ { x  -  A y ) ( x  -  A y ) ' ] )  

subject to the conditions that A is a p X k real matrix 

and y is a random k-vector with E(y) = 0; 

k 
and he obtained the solution Ay = ^ . 

i=l ^ ^ 

Okamoto and Kanazawa (1968) treated the general case (of which 

problems 3. 1 and 3.2 are special cases), 

(3.3) Minimize simultaneously the eigenvalues of E[(x-Ay)(x-Ay)'] 

subject to the conditions that A is a p X k real matrix 

and y is a random k-vector with E(y) = 0); 

k 
and obtained the solution Ay = Yi y-i- • 

i=l ^ ^ 



CASE WHEN VECTOR VARIABLES ARE COMPLEX-VALUED 

The results for the case of complex variables presented in this 

section are strictly analogous to the results for the case of real 

variables. Since the result obtained by Okamoto and Kanazawa (1968) 

for the case of real variables is a general result encompassing those 

obtained by Rao (1964) and Darroch (1965), only the analogous general 

result for complex variables is presented here. For the sake of com­

pleteness, aspects of the proof of this more general optimality property 

which are unaffected by the complex character of the variables are 

included although the argument is as Okamoto and Kanazawa have 

presented it. 

Let x = (xi, x2 ,  . .  . ,  x ^ ) '  b e  a  c o m p l e x - v a l u e d  r a n d o m  v e c t o r  w i t h  

* 
mean, E(x) = (0, 0, ...,0), and c ©variance matrix E(xx )= S, 

* 
where x denotes the transpose of the complex conjugate of x. 

Note that S is a p X p Hermitian matrix. Let 

\ i  ( 2 ) >  X z  ( Z )  >  .  . .  >  k p ( Z )  >  0  b e  t h e  e i g e n v a l u e s  o f  S  i n  o r d e r  o f  
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decreasing magnitude. (Since 2 is Hermitian, is real for 

i = 1, 2, .. ., p, ) Let Yi (2), y2 (2), . . . , Yp(^) be the corresponding 

orthonormal eigenvectors; and let the principal components of x, 

* • * 
Yi (Z) X, y2 (Z) X, .  .  . ,  Yp(^) X, be denoted by ,  ^2 ,  .  .  . ,  -

Let be the set of all Hermitian matrices of order p. 
P 

A partial order in the set ^ is defined as usual; A > B if and only 

if A - B e For any A e let Xi (A) > Xz{A) > . .. > \^(A) > 0 

be the eigenvalues of A in order of decreasing magnitude. The fol­

lowing lemma is stated without proof. 

Lemma I. A necessary and sufficient condition for a real-

valued function f(A) defined on (Z. to be 

(i) strictly increasing, that is, f(A)>f(B) if 

A > B, and f(A) > f(B) if moreover A B, 

and 

(ii) invariant under unitary transformation, that is, 

* 
f ( P  A P (  =  f { A )  f o r  a n y  u n i t a r y  m a t r i x  P ,  

is that f (A) is identical to some function g(Xx (A), Xz (A), ..., X^(A)) of 
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the eigenvalues of A which is strictly increasing in each argument. 

Note that the trace and the Euclidean norm are both such functions f. 

Lemma 2. Let "Yi, Ye ,  •  .  • ,  b e  a n y  s e t  o f  f i r s t  k  e i g e n v e c t o r s  o f  a  

p X p Hermitian matrix, A. Then 

» 

y- x = 0 
i - i  2  k 

Proof. Define Aj and Ag, real pXp matrices, by A = Ai + iAg ; 

and denote by C the 2p X 2p real matrix . Note that C is 

symmetric since A is Hermitian; and that (C) = >v{A) (see Bellman 

(1960, p. 84)). Let v. denote a eigenvector for C (j < 2k); and let 

V. and vp\ real k-veccors, be defined by v. = j 1 . It is 
J  J  •  )  U P ) /  

asserted that there is a 1:1 relationship between v_. and Y- for 
j 

j  =  l , 2 , . . . , k .  

(i) Let V be any 2j^^ eigenvector for C (j < k). Then 

(1) . ..(2) A /(I) 

' which implies 
A i v  - A j v  

(Az + Ai v^j^ = Define Yj by Yj = 

Yj is a eigenvector of A since 
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AY. = (AI+IA2)(V(Y + IV^J)) = AL - AZ + V^^ + IAI 

=  X 2 j ( C ) v < ^ ' . i X 3 j ( C ) v P '  =  ' ^ 2 j ( C ) ( v » > + i v P ' )  =  ^ 3 . ( C ) V j  

= X^Yj since 

Thus CVgj = XjYj" 

(il) Let Yj beany eigenvector for A (j < k). Define 

y|^^ and y|^^ by Yj = y!^^ + then {Ai + iAz )y^ = (^i + iAz )(y|^^+iYj!^ V 

A ! ' ) \  t h  
Define v by / ^ . Then v is a 2j eigenvector for C since 

' Iv'^V 

-•c :)0 
Note that analogous reasoning relates v and y . 

2 j - i  J  

Next consider the assertion sup -^7^ = sup ^"V) where E, 

«k \ 
and Kj^ are the (real and complex, respectively) regions determined by 

the orthogonality relations (v, v^^= 0, (y, yS = 0 for i = 1, 2,.. • ,k-l, 

and V / 0, y  /  0 .  Let 

J ' l ,  
j ] for j = 1,2,.. .,p be a set of p eigenvectors for C. Then 



+ i for j = 1, 2, .. ., p is a set of p eigenvectors for A. Con-
J ) 

sider an arbitrary vector y satisfying the orthogonality relations given 
p 

above. Then y can be written Y = Z for 
j=l ^ j ^ ^ 

some real p-vectors and , j = l,2, . . . , p .  It foilov/s that 

(V,AY) = (Y%) = f \ X.(A)[(u!^))%(u!^Y], 
j^l J J J ] J j^l J J J 

and (y,y) = (y% = t = f, [(u!^h'+(u!^h' ]. Define 
j=l J J J J j=i J J 

ufs»'4 uf (-vf ) 
i=l ' ' i=l ' ' 2p 

v = =  2 j  S - y . ^  w h e r e  s . =  u ,  f o r  k = l , 2 , . . . , p  

rW + E"f'v"'/ " for 
\j"l ^ 'J j=l j 'j / j 

k  =  p + 1 , , ,  . ,  2 p .  

2p p 2 2 
Then (v,Cv) = % X (C)xJ = 2 g \.(C)[(u!^^ + (u!^^ ], and 

1=1 1=1 ^ ^ ^ 

(v,v) = 2 = 2 2 
1=1 1=1 ^ 

As y spans out the vector space of A, corresponding v spans out the 

vector space of C. Thus as v, y simultaneously 
(v, v) i y ,  v) '  "  

(v, Cv) 
span out the vector spaces of C and A; and hence sup = 

(y, ay) 
sup and the suprema (if achieved) occur simultaneously (or are 

analogous limit points). 
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(v, Cv) { y  A y )  
From previous work \ (A) = X_, , _ (C) = sup — — = sup— . 

k+1 2k+2 ^ (v, v) ^ (y, y) 

By the same argument, the supremum is attained if and only if y is an 

eigenvector of A associated with \^(A). 

Dually, if \  , y  . . . . . .  y  .  ,  is any set of last k eigenvectors 
p p-1 p-k+1 

* 

of A, it follows that \ , (A) = inf - A- . The infimum is at-
P-'' y*y = 0 

i = p , . . . ,  p - k + 1  

tained if and only if y  is an eigenvector of A associated with ^(A). 

Let Mj^(A) for k = 1, 2,.. ., p denote the linear subspace spanned 

by the eigenvectors corresponding to the eigenvalues larger than (A). 
K 

Note that M^(A) does not necessarily involve all of the eigenvectors cor­

responding to Xi (A),\2 (A), . .., ^ (A) since it is possible that X^ ^ (A) 

= X^(A). For any matrix L, denote by M(L) the linear subspace spanned 

by the column vectors of L. 

Lemma 3. For any p X p Hermitian matrix A, it holds that 

where the infimum is taken over all complex matrices L with p rows and 

with rank less than or equal to k, and where the supremum is taken over 

* 
p-vectors such that L y = 0. The infimum is attained if (but not only if) 

M(L) contains any first k eigenvectors of A. 

Proof. The method of proof is as in the proof of Lemma 2. Since the 



69 

result for real matrices is well-known as the Courant-Fischer min-max 

theorem, it suffices here to show the 1:1 relationship of C and A and 

to demonstrate an analogous relationship between the matrices J and L, 

where 

J  J ' v = 0  

It follows almost immediately from the proof of Lemma 2 that J = ) 
J2 Jl 

and L = Jl + ijz . 

Lemma 4. For any A e any positive integer k and any matrix L 

with p rows and with rank less than k, it holds that 

* 
where sup denotes the supremum for p-vectors y satisfying L -y = 0. 

A sufficient condition for equality to hold is 

M(L) D Mj^(A), 

which is also a necessary condition when k = p and which implies that 

M(L) is orthogonal to some eigenvector of the matrix A corresponding to 

the smallest eigenvalue %.^(A). 

Proof. The result follows immediately from Lemmas 2 and 3. 

Lemma 5. Let A, B, A-B all belong to il and let the rank of B be 

l e s s  t h a n  o r  e q u a l  t o  k .  T h e n  f o r  e a c h  i  =  1 ,  2 ,  . . . ,  p ,  

Xj(A-B) > 

where X.^(A) is defined to be zero for j > p. 
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A 

Proof. Define Ai, Ag , , Bz, Ci and Cg as follows 

=:A. B = B. +iB^, and C, , C^ ^ . 

Note that Ax and Bi are real symmetric p X p matrices, Az and Bg 

are real skew symmetric p X p matrices, and Ci and Cg are real sym­

metric 2p X 2p matrices. Then {X^(Ci )} = {\^(A)} and {^^(Cz = 

since each eigenvalue of A (or B) occurs exactly twice as an eigenvalue 

of Cx (or Cz). Thus the rank of B is less than or equal to k if and 

only if the rank of Cz is less than or equal to 2k, since ^ (B) = 0 
]c+1 

if and only if ^2k+l^^^^ ~ \k+2^^^ ̂  Ci, Cz and Ci - Cz 

are all real symmetric non-negative definite p X p matrices, and the 

rank of Cz is at most 2k, 

(Ci -Cz ) > ) for i = 1, 2, ..., 2p. 

This result is referred in Okamoto and Kanazawa (1968, p. 860) to Lemma 

3. Let A(A) represent the diagonal matrix with the eigenvalues of A in 

order of decreasing magnitude as the diagonal elements. Then 

A(Gi ), A(Gz ) and A(Ci -Cz ) are given by 

A(Cx ) = h (A) 0 0 

0 \i (A) 0 

0 0 Xz (A) 

I 0 

0 

0 

X^lA)J 
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A ( C I )  =  X i ( B )  0  0  

0 \i (B) 0 

0  0  X z ( B )  

X,(B) 

0 

0 

A(CI -CZ ) = Xi (A-B) 0 0 

0 Xi (A-B) 0 

0 0 Xz (A-B) 

X (A-B) 
P J 

Thus for i = 2, 4, . . ., 2pj X^(Ci ) = X(A), X^(C2 ) = X^ (B), and 

2 Z 

X ^ ( C i - C 2 ) =  X ^  ( A - B ) ;  a n d  f o r  i =  1 ,  3 ,  , . . ,  2 p - l ,  X ^ ^  =  X ^ ^ ^  f o r  C v ,  C z  o r  

Ci - Cz . It follows that X . (A-B) > X .(A) for i = 2,4, ...,p and 

X^^j{A-B) = X j, (A-B) for i = 1, 3, . . ., 2p-l. 

2 2 

Lemma 6. A necessary and sufficient condition that the equality sign 

in Lemma 5 holds simultaneously for all i is that both Hermitian matrices 

A and B can be reduced simultaneously into canonical forms (i. e., there 
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exists a unitary p X p matrix T and a diagonal matrix A with diagonal 

• 
elements in order of decreasing magnitude such that A = TAT and 

• 
B = TAJT for some matrix J which can be partitioned into an identity 

matrix of order not exceeding k and zero matrices). 

Proof. Define Ci and Cz as in the proof of Lemma 5. Then it is 

asserted that Cj and Cg can be diagonalized simultaneously if and 

only if A and B can be diagonalized simultaneously. 

(i) Let T be a unitary matrix which simultaneously diagonalizes Ci 

and c? . That is, T satisfies ci = TA^^^T and Cz =TA^^V^ 't ' ,  w h e r e  

(2) 
A denotes a diagonal matrix with diagonal elements in descending order 

and With = = Then 

T ' CiT  =  A ^ ^ \  a n d  i f  T  i s  p a r t i t i o n e d  i n t o  T j  a n d  T z ,  e a c h  p  X  2 p ,  

it follows that A = T^'A^Tj + Tj'AjTi — Ti'A2T2 + Tz'AiTz, where A is 

the p X p diagonal matrix with diagonal elements kzz, X44,..., . . 
\ ^ P /  V ^ P /  

Letting small letters denote the elements of the matrices, it follows that 

Using symmetry, this expression reduces to = %]t^^ ^ + 

+ YJ 2/ ^ a!v ^ . Since A is Hermitian, there exists a unitary matrix 
h j ^ jn 
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* X: 
P such that A = PAP and hence A = P AP. Define Pj and P, by 

P = P, + 1P2. Then = 2 (p'" Z <P" 

which can be written 

establishes the relationship between T and P, which may, of course, 

vary by an orthogonal prefactor to T. If R is a unitary matrix which 

diagonalizes B, it is clear that a similar relationship between T and R 

must hold. 

Assume that T diagonalizes Ci and Cz simultaneously. Let P 

diagonalize A. Then there exists an orthogonal matrix O such that 

/p. -P-X 
OT = / p ip j * ^^Gn OT also diagonalizes Ci and Cz simultaneous­

ly. Hence T must diagonalize B. 

(ii) Let P diagonalize A and B simultaneously. Then T = 

diagonalizes Ci and Cz simultaneously using the reasoning in (i). 

Thus the case for Hermitian matrices has been reduced to a case for 

real symmetric nonnegative definite matrices for which the result has 

already been proved. 
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Theorem. Let A be any (complex or real) p X k matrix and let 

y = (Vi ,Yz, • • •, y^)' be any random (complex or real) vector. Let f be 

a real-valued function on (L which is strictly increasing and invariant 

under any orthogonal transformation in the sense of Lemma 1. Then 

Fx = f[E{x - Ay)(x - Ay) *"] 

is minimized with respect to A and y when and only when 

* * * 
Ay = X + V2 72 X + . . . + X 

and the minimum value of Pi is g(Xj^^^, ..., 0, . .., 0), where 

f o r  j  =  1 , 2 , . . . , k  a r e  o r t h o n o r m a l  e i g e n v e c t o r s  o f  2  c o r r e s p o n d i n g  

to the V's and g is the function introduced in Lemma 1. 

Note that this theorem does not necessarily hold under the single 

assumption that f is strictly increasing, and also that the Ay which 

obtains the minimum of Fj is uniquely determined when and only when 

' 

Proof. Let r be the rank of the matrix S. If r <k, the problem is 

trivial; Fi is minimized uniquely by taking Ay = x. Suppose, therefore, 

r > k. 

* 
Without loss of generality, it is assumed that E(yy ) = and let 

* /S B 
E(xy ) = B. Since ^ J is the c ovarian ce matrix of a joint random 

X * 
vector (^), both it and S - BB are Hermitian. Since 

E[(x-Ay)(x-Ay)"] = 2 - Bb" + (A-B)(A-B)" >2 - BB'", 
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it follows that f[E{x-Ay){x-Ay) ] > f{S - BB ) = Fz, say, with the equality 

sign if and only if A = B. 

By Lemma 1, F2 is an increasing function of each eigenvalue of 

* 
S - BB , which is to be minimized here. Lemmas 5 and 6 imply that 

* 
- BB ) > for each i, where the equality holds for all i 

* * * * 
simultaneously if and only if BB = \ i y i y i  + Xz Yz Yz + ... + ^j^Yj^Yj, , 

where the YJ's are orthonormal eigenvectors of S corresponding to the 

V's (j = 1, 2, ..., p). Let r = (yi ,-^2 ,. . ., Yp) A = diag( Xi, X-z , .. 

Xp). Then BB can be written as BB = FA^ A^ r . Let A 

denote the diagonal matrix obtained by substituting ones for zeroes in the 

q, rv» -1. * 
diagonal of A, and define Q by Q = ( ^ ) = A ^ r B, where Q is a 

Tk » k X k matrix and Qz is a (p-k) X p matrix. Then 1 I = QQ = 

Qi Qi Qi Qz \ ^ 
^  j ,  and hence Qi Qi^ = L and Q z  =  0 .  Therefore Fg is 

Qz Qi Qz Qz ' 

minimized by taking B = r A^ ( = G, say, where Qi is any unitary 

k X k matrix and the minimum value of Fz is 

+ \+2\+2\+2 SVp*' 

\+2' •••' *-p' 

~  " 2 /  Q l  where g is the function defined in Lemma 1. Define H by H = TA ( q ) 

* * 
and "y = H x. Then it is easily seen that 2H = G and H G = . Now 
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it is asserted that there exists uniquely a random vector y satisfying 

the conditions E(yy ) = Ij^ and E{xy ) = G. In fact, y is the solution, 

for E(xy") = E(xx")H = SH = G and £(77*) = h"e(xy") = h"g = . 

* * * 
Uniqueness follows from the fact E(-Y-y)(Y-y) = E(yy ) ~ E(yy ) -

E(y\) + E(yyl = \ - \ = 0, 

* * V * 
since E(\y ) = H E(xy ) = H G. Thus is minimized by taking 

* /lif 0 \ * * * • 
Ay = G^ = GH X = [ ^JT x =  v i  y i  x  +  7 2  Y z  x  +  . . .  +  x  .  
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APPENDIX 

t=^ ( m-H-2 ) 

U=1 

f o r  k ,  i  =  0 ,  1 ,  2 ,  3 ,  4 .  

Let 0^ (t, u) 1 , be denoted in this appendix by $, ^ 
t ) ki 

u= 1 

Note that in the text is given in this appendix as 0^^ 

$ 
00 (N -M-2 )] 

1 0  
(p-i " y-i )] 

$ 
01 - -M2 )4'[|'(M'1-M'2)] 

0 
20 - 2 ~h-2 )4>[ 2 (n-i •"M'2 )] 

$ 
11 

(p-i -K2 f >[|- (H-1 -H-2 )] 

$ 
02 

3 1 1 
= [ g(H-i -F2 ) - 77 (R -H-2 f  ]ci3[7 -fj-z )] 32 

$ 
30 [ -  1  + - [ ^ 2  f  ] ( i > [ - | ( R  - H 2  ) ]  

$ 
3 1 1 

21 ~ f% (n-i -H^2 ) - -H^2 r ] (|)[ 2 (M-1 "1^2 )] 

22 ~ [^ ~ g (m-1 "^^2 )^ + "^ï (M'I-M'2 )^]ci3['^{|J-l-lJ-2 )] 

$ 
03 [- 2^ (H-i "H-z ) + 32 (t-'-i "H-z ~ 256 "^-2 g (H-i -^•2 )] 

$ 
40 [§ (M-1 -M-2 ) - ̂  (M-X -M-2 f ] «j>[^ (N -H-2 )] 

$ 
31 12 ~ 4 "H-2 + -^ (R -M-2 f ] (kii -HZ )] 
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15 
$22 ~ [" T (Hi ) +  I f .  (H ) - —- (H-I - [J.2 ) ]4'[7(HI-H2)] 1 6  128  

$1) = +^(txi-H-2)® jci>[-|(M-i-[JL2)] 

r l 0 5 ,  .  1 0 5  
^04 = (Hi -H-2 y + (Hi -H-2 f - 2048 ] ' 

4 ) [ 7 ( H i - H 2 ) ]  

. f a ,  

Let $p^t) 
k 

t = 2 (H-1 -H-Z) 

t  =  2  (h-i-H-2) 

for k = 0, 1, 2, 3, 4 . 

be denoted in this appendix by $ 
(2) 

^0^' ^ [^[2 

= 2#[-^ (p-i -H.2 )] ({)[^ (m -|i2 )] 

^2 ^ ~ "(H-1 "[•'•2 )^'['^ (H-1 ~H2 )] ci3[ ^(HI ~H2 )] + 2((j)[—([i-l-p,2 )])^ 

$3^^ = [-2 +-|(Ki-H-2)^]^[|(Hi-H-2)]ci)[-|(Hi-H2)]- 3(jJLi-iJi2)( 4{-~(H-i-f^z )])^ 

= [3 (H -Hz ) - 4(^1 -H-2 ]^[i(H -F2 )] ((lE&H'i -H2 )] + 

+ [- 8 + 2 (H-1 -H-2 f" ](<!>[2 (n-i "H-z )])^ 

for k - 0, 1, 2, 3. 

k = 2 (1^1-Hz) 
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Let 4)j^(t) be denoted in this appendix by c{) 

t = 2 ) 

4)o = $20 = 4'[-f (^ix)] 

*1 = ®20 2 (t-U -P-z ) <^[2 (P-i ~H-2 )] 

- $30 ~ [~1 + 4 (M'I ~H-2 )^ ] «i'T ^ (H-1 "H-z )] 

3 1 1 
4*1^ = $40 ~ (H-1 -M-z ) - % (p-i -^2 (N -H-z )] 

4%) for k = 0, i, 2, 3, 

t = 2 (^-^12) 

Let <{:^\t) be denoted in this appendix by <j) (2) 

t  =  2  ( N - N )  

^ - (w-M'2 -H-2 )])^ 

4*2^ = [-2 + (ni -p.2 ](({) (p. 1  -^12 )])^ 

>3 ^ - [6(}i.i-|J.2 ) - (H-1 ~H-2 )^ ]( <j>[ 2 (H'I ~H-2 )])^ 


