Physical Sciences Reading Room

UNCLASSIFIED

ISC-812

UNITED STATES ATOMIC ENERGY COMMISSION

Tabulation, Bibliography, and Structure of Binary

Intermetallic Compounds. II. Compounds of

Beryllium, Magnesium, and Calcium

by

K. A. Gschneidner, D. J. Beerntsen, R. W. Vest, J. A. Kingston, and J. F. Smith

December 27, 1956

Ames Laboratory at Iowa State College F. H. Spedding, Director Contract W-7405 eng-82

UNCLASSIFIED

ISC-795

This report is distributed according to the catagory Metallurgy and Ceramics, as listed in TID-4500, July 15, 1956.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express on implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

Printed in the USA. Price 30 cents. Available from the

Office of Technical Services U. S. Department of Commerce Washington 25, D. C.

ISC-812

TABLE OF CONTENTS

 Part I: Tabulation of Compounds
 5

 Part II: References
 22

 Part III: Structure Details
 28

Page

This report is the second in a series. ISC-795, the first in this series, listed the compounds of lithium, sodium, potassium, and rubidium.

PART I: TABULATION OF COMPOUNDS

COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS (Å)	STRUCTURE	E REMARKS	REFER- ENCES
BeCu ₂	cubic	a= 2.80 (750°C)	A 2	Exists only above 575°C; disordered atonic arrangement.	1
BeCu	cubic	a= 2.703 0.007	B2	X-ray powder data, with comparison of observed a calculated intensities; some disordering noted; after annealing at 830° two hours completely ordered.	and for 2,3,11, 32
BeCu	tetrag- onal	a=2.79 c=2.54		Intermediate phases duri precipitation; single cr x-ray data.	ing ystal 3
BeCu	mono- clinic	a=2.54 b=2.54 c=3.24 c=85025;		11	3
Be3Cu	cubic	a=5.952 (at CuBe2) to 5.899 (at CuBe3)	C15	Maximum solubility range — CuBe ₁ at 933°C; at r temperature ranges from — CuBe ₁ ; maximum in li occurs at CuBe ₃ ; structur mined at Cu:Be of 1:2.35 powder data, with compar observed and calculated intensities.	e CuBe ₂ coom CuBe _{2.35} quidus ure deter- bu; x-ray rison of 2,4
Be ₂ Ag	cubic	a ≠€.300	C1 5		5,6
BeAu3				Determined from microsco data and thermal analysi x-ray powder data indica these exist; no structur yet determined (7).	opic is (6); ites es 6,7
BeAu ₂				11	6,7

COMPOUND	CRYSTAL CLASS	LATTICE \circ PARAMETERS(A)	STRUCTUR	E REMARKS	REFER- ENCES
Be3 ^{Au} 4				Determined by thermal anal and microscopic data; exis only between 550-600°C.	ysis sts 6
BeAu	cubic	a⊒1.668 ±0.001	B20	X-ray powder data, with co parison of calculated and observed intensities.	om- 8
Be ₃ Au				X-ray data indicates this compound exists, but struc ture not yet determined.	- 7
Be ₅ Au	cubic	a_6.699 ±0.007	C15	X-ray powder data, with co parison of calculated and observed intensities; latt parameter also reported as 6.083 by (36).	9 ,3 6
Be ₁₃ Mg	cubic	a=10.166 ±0.005	^{D2} 3	X-ray powder data, with co parison of calculated and observed intensities.	10
Be ₁₃ Ca	cubic	a=10.312 ±0.001	^{D2} 3	n	10,37
Be ₂ B	cubic	a=1.3	Cl	Possibly B2Be5.	38
Be ₁₃ Ce	cubic	a=10.375 ±0.001	D23	X-ray powder data, with co parison of calculated and observed intensities.	m - 12
Be ₁₃ Th	cubic	a=10.395 ±0.001	^{D2} 3	11	12
Be ₁₃ U	cubic	a=10.256 ±0.001	D2 ₃	X-ray powder data, with co parison of calculated and observed intensities; Be parameter verified by neut diffraction.	m- ron 12,13
Be ₁₃ Pu	cubic	a=10.253	D23	·	121

COMPOUND	CRYSTAL CLASS	LA TTICE o PARAMETERS(A)	STRUCTUR	E REMARKS	7 REFER- ENCES
Be ₁₃ Np	cubic	a=10.266 (Be rich) a=10.256 (Np rich)	D2 ₃	X-ray powder data with com parison of calculated and observed intensities; latt constants accurate to ±0.001.	- ice 14
Be ₂ C	cubic	a=4.3420 ±0.005	Cl	X-ray powder data with com parison of calculated and observed intensities.	- 15,34
BeTi	1 .			X-ray data indicates that compound exists, but struc ture not determined.	the 16
Be ₂ Ti	cubic	a=6.1427	C15	X-ray powder data with com parison of calculated and observed intensities.	5,16
Be _l Ti		,		X-ray data indicates that compound exists, but struc ture not determined.	the - 16
Be ₁₂ Ti	hexag- onal	a=29.44 c=7.33	<u>∕</u> D _{6h} P6/mmm7	True cell dimensions; sing crystal x-ray data; struct of pseudo-cell given, dimensions are $a=1.23$, $c=7.33$; possible that actual compo- sition is TiBe ₁₃ , but x-ray data favors TiBe ₁₂ .	le ure n- - y 17
BeZr				Existence questionable.	5,18
Be ₂ Zr	hexag- onal	a= 3.82 c=3.24	C32	X-ray powder data.	19
Be _l Zr				Tentative assignment from a on phase diagram; x-ray da indicates one phase at this composition.	work t a 18
Be ₇ Zr				Tentative a ssignment from a on phase diagram; x-ray da indicates one phase at this composition; solubility lin vary from 38-41 w/o Be.	vork ta s nits 18

•

.

8 COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS(A)	STRUCTUR	E <u>REMARKS</u>	REFER- ENCES
Be ₁₃ Zr	cubic	a=10.047 ±0.001	D23	Single crystal x-ray data comparison of calculated a observed intensities.	with nd 12
Be3N2	cubic	a=8.15 ±0.01	D53	X-ray powder data with com parison of calculated and observed intensities.	20
Be 3 ^P 2	cubic	a=10.17 ±0.03	D53	**	20
Be_V 2	hexag- onal	a=1.394 c=7.144	СІЦ	"	5
^{Be} 12 [♥]		a=7.251 c=4.168			33
Be _{l2} Nb		a=7.357 c=4.247			33
∼Be ₁₂ Ta				Misch reported a high Be content compound with Ta similar to the molybdenum compound.	5
BeS	cubic	a=4.863	B3 .	X-ray powder data with com parison of calculated and observed intensities.	- 21
BeSe	cubic	a=5.139 ±0.004	В3	11	22
BeTe	cubic	a=5.626 ±0.006	В3	n	23
Be ₂ Cr	hexag- onal	a=4.259 ±0.001 c=6.975 ±0.001	С14	11	24,35

COMPOUND	CRYSTAL CLASS	LATTICE o PARAMETERS(A)	STRUCTURE	E <u>REMARKS</u>	9 REFER- ENCES
Be ₂ Mo	hexag- onal	a=4.433 c=7.341	CIL	Powder and single crystal x-ray data.	25
Be ₁₂ Mo	tetrag- onal	a=7.271 ±0.005 c=4.234 ±0.005	<u>/</u> □ ¹⁷ I4/mmm7	Based on work of Raeuchle Batchelder; single crystal x-ray data with comparison calculated and observed in sities; also reported as M by Gordon; lattice constan of the two determinations a in agreement if unit cells converted; chemical analys and spatial considerations strongly support the formula MoBe ₁₂ .	and of ten- oBel3 ts re are is 5,25,26
Be₂ [₩]	hexag- onal	a=4.1446 c=7.289	Cl4	X-ray powder data with com parison of calculated and observed intensities.	- 5
~ ^{Be} 12 [₩]				Misch reported a high Be content compound with W, similar to the molybdenum compound.	5
Be ₂ Mn	hexag- onal	a=4.240 c=6.923	Cll	X-ray powder data with com parison of calculated and observed intensities.	- 5
Be _{8.1} ^{Mn}	cubic	a <u>=</u> 5.92 	C15		27
Be ₂ Re	hexag- onal	a=4.354 c=7.101	C14	X-ray powder data with com parison of calculated and observed intensities.	5
Be ₂ Fe	hexag- on a l	a=1.221 <u>+0.005</u> c=6.848 <u>+0.005</u>	Cl4	tt	28

COMPOUND	CRYSTAL CLASS	LATTICE O PARAMETERS(A)	STRUCTUR	E REMARKS	REFER- ENCES
Be5 [₽] e	cubic	a=5.884	015	X-ray powder data with com parison of observed and calculated intensities.	2,29
Bell _L Fe	hexag- onal	a=4.13 c=10.71		X-ray powder data.	29
ВеСо	cubic	a <u>-</u> 2.611	B2	X-ray powder data with com parison of calculated and observed intensities.	5
Be ₂₁ Co ₅	cubic	a=7,66	A12	Structure questionable sin this compound has six atoms per unit cell less than required by Al2 structure.	ce 30
BeNi	cubic	a=2.621 (13.4% Be) a=2.609 (18.1% Be)	B2	Structure worked out by (2 x-ray powder data with cal and observed intensities c parison; lattice for solub limits by (31).) by culated om- ility 2,31
Be ₂₁ Ni5	cubic	a=7.625	D81-3	Possibly related to &-bras structure.	s 2,31
Be2 ^{Ru}				Misch reports one phase ex ing at this composition, having a complex powder pattern.	ist- 5
Be2Rh				11	5
Be Pd 3				Reported on basis of therm analysis and microscopic evidence.	al 6
Be Pd ₂				11	6
Be2Pd3				Reported on basis of thermal analysis.	6

COMPOUND	CRYSTAL CLASS	LATTICE O PARAMETERS(A)	STRUCTURE	REMARKS	REFER- ENCES
Be10Pd13				Reported on basis of thermal analysis.	6
Be25Pd27				11	6
Be Pd	cubic	a =2. 819	B2	X-ray powder data with com parison of calculated and observed intensities.	- 5
Be ₅ Pd	cubic	a=5 .99	C15	it	9
Be ₂ 0s				Shows a complex x-ray powd pattern.	er 5
Be2Ir				**	5
Be ₂₁ Pt ₅			^{D8} 1-3	Possibly related to the % -brass structure.	2,5
Mg2Li				Only one compound in syste formula reported by differ authors not in agreement (Li ₂ Mg ₅ , ~Li ₂₀ Mg ₈₀); evi- dence that structure can b derived in a continuous tr sition from B. C. C. with no phase transition.	em; ent - ee an- 39,40,41
^{Mg} 5 ^{Li} 3	cubic	a~9.7		Structure evidently stabil by oxide contamination, an not a binary Li-Mg compound.	ized 1d 41,42,43
Mg ₂ Cu	ortho- rhombic	a=5.28 b=9.07 c=18.25	_D24 Faad7	Thermal analysis; x-ray po der and microscopic data.)111 Maria

COMPOUND	CRYSTAL CLASS	LATTICE o PARAMETERS(A)	STRUCTURI	E REMARKS	REFER - ENCES
MgCu2	cubic	a=7.04	C15	Rotation and Laue x-ray data.	45
Mg ₃ Ag				Previously reported as hexagonal with a=4.93 and c=7.81; complicated struc ture of lower symmetry	-
MgAg	cubic	a=3. 29	В2	ours of fower symmetry,	46,48
MgAg ₃ ,	cubic	a=4.111 (disordered) a=4,X4.108 (ordered)		Powder and Weissenberg x-ray data.	49
MgAu	cubic	a=3.27	B2		50
Mg ₃ Au	hexag- onal	a=4.64 c=8.46	DO ₁₈	Powder and single crystal x-ray data; Mg ₂ Au reported by (96,97) and Mg ₅ Au ₂ reported by (95), both on basis of thermal analysis, are probably this compound.	d ' orted b- 97, 51,95,96
Mg ₂ Ca	hexag- onal	a=6.22 c=10.10	C14	Powder and single crystal x-ray data.	53
MgSr	cubic	a=3.908	B2		54
Mg ₂ Sr	hexag- onal	a=6.939 c=10.494	CIH	Debye-Scherrer x-ray powder data.	55
Mg ₉ Sr				Thermal analysis; con- gruently melting compound	• 57
Mg _l Sr				Thermal analysis; incon- gruently melting compound	• 57
Mg2Ba	hexag- onal	a=6.649 c=10.676	CIL	Debye-Scherrer x-ray powder data.	55

COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS(Å)	STRUCTURE	<u>REMARKS</u>	REFER- ENCES
Mg _↓ Ba				Thermal analysis; incon- gruently melting compound.	56,57
Mg ₉ Ba				Thermal analysis; con- gruently melting compound.	56,57
MgZn	hexag- onal	a=5.33 c=8.58		X-ray powder data.	58,59
MgZn ₂	hexag- onal	a=5.16 c=8.50	C1 4	Laue and rotation x-ray data.	60
Mg ₂ Zn ₁₁	cubic	a=8.552	<u>∠</u> T _h Pm <u>3</u> 7	Powder and Weissenberg x-r data, Patterson and Fourie analysis.	ay r `61
Mg ₃ Cd	hexag- onal	a=6.313 c=5.074	DOla	X-ray powder data.	62
MgCd	ortho- rhombic	a=5.0051 b=3.2217 c=5.2700	B19	X-ray powder data.	63
MgCd3	hexag- onal	a=6.2334 c=5.0450	D0 ₁₉	n	62
Mg ₃ Hg	hexag- onal	a=4.87 c=8.66	DOl8	Powder and Weissenberg x-ray data.	64
Mg2Hg				Thermal analysis, x-ray powder data.	98
Mg5Hg3	hexag- onal	a=8.26 c=5.93	d88	Powder and Weissenberg x-ray data.	64
MgHg	cubic	a=3.449	B2		50
MgHg ₂	tetrag- onal	a=3.84 c=8.80	∑D ₄ h ¹⁷ I/mmm7	Powder and single crystal x-ray data.	98
Mg5Hg2				At 28 a/o Hg the phase is homogeneous; x-ray powder data, could not be	09
				indexed.	98

14					
COMPOUND	CRYSTAL CLASS	LATTICE O PARAMETERS (A)	STRUCTUR	E REMARKS	REFER - ENCES
Mg3B2				Questionable; article deal with the reaction of B_2Mg_3 with water.	.s 66
MgB ₂	hexag- onal	a=3.083 c=3.521	C32		67
Mg2Al3	cubic	a z 28,22	∠ ⁰ h Fd3m7	Complicated structure with 1166 atoms/cell; earlier r ported as hexagonal with a=11.38 and c=17.87.	e- 68,70
~Mg ₁₇ Al ₁₂	cubic	a=10.54	A 12		70 ,7 1
~MgA1			Al2 (deformed)	45-50 a/o Mg; exists >420°C.	69
^{Мg} ц3-цц ^{А1} 57	7 - 56			Probably peritectic; exist < 410°C; phase diagram in this region somewhat uncertain.	5 69
Mg ₂ Ga	hexag- onal	a=7.85 c=6.94	<u>C</u> 22	Incongruently melting compound.	72,73
Mg5Ga2	ortho- rhombic	a=13.72 b=7.0 c=5.02	<u>∕</u> D _{2h} Ibam7	Congruently melting compound.	72
MgGa					72,74
MgGa2					72,74
MgIn	tetrag- onal	a=3.24 c=4.38	LlO	Superlattice < 300°C.	72
MgIn	cubic		Al	Exists $> 300^{\circ}$ C; evidently no phase boundary between this structure and tetrag- onal indium, indicating a continuous change in c/a t the limit of unity.	° 80

(COMPOUND	CRYSTAL CLASS	LATTICE O PARAMETERS(A)	STRUCTURE	REMARKS	15 REFER- ENCES
	∼MgIn	ortho- rhombic	·		Narrow region $\sim 300^{\circ}$ C be- tween Al and L10 structures with b/a ~ 1 .	s 80
	∼MgIn _{2 or}	cubic	a=4.60	L12	Superlattice.	72
	~Mg7In3	cubic		L12	Superlattice <~300°C.	80
	Mg ₂ In	hexag- onal	a=8.40 c=6.96	C22	Structure may be more complex.	72,80
	Mg5 ^{In} 2				Reported by (72) as iso- morphous with Mg5Ga2, but possibly a more complex structure.	72,80
	MgTl	cubic	a=3.628	B2		72, 75
	Mg ₂ Tl	hexag- onal	a=8.11 c=7.34	C22		72
	Mg5 ^{T1} 2	ortho- rhombic	a=15.17 b=7.30 c=6.16	_D _{2h} Ibam7	Isostructural with Mg5Ga2 and Mg5In2.	72
	Mg ₂ Th	cubic	a=8.570	C15	Weissenberg x-ray data; structure $< 700^{\circ}$ C.	76
	Mg ₂ Th	hexag- onal	a=6.086 c=19.64	C36	Weissenberg and precession x-ray data; structure $>700^{\circ}C$.	76
	Mg ₂ C ₃	hexag- onal	a=7.43 c=10.59		X-ray powder data.	52
	MgC2	tetrag- onal	a=5.54 c=5.02		X-ray powder data; possibly isomorphous with ThC ₂	7 52
	Mg ₂ Si	cubic	a=0.39	Cl		99
	Mg ₂ Ge	cubic	a=6.39	Cl	X-ray powder data.	77

COMPOUND	CRYSTAL CLASS	LATTICE \circ PARAMETERS(A)	STRUCTUR	E	R	MARKS	REFER- ENCES
Mg ₂ Sn	cubic	a <u>=</u> 6.76	Cl	X-ray	powder	data.	77
Mg2Pb	cubic	a=6.82	Cl			11	77
Mg3N2	cubic	a=9.93	^{D5} 3			18	78
Mg3P2	cubic	a=12.01	D53			19	79
Mg3As2	cubic	a=12.35	^{D5} 3			98	79
Mg3Sb2	hexag- onal	a=4.573 c=7.229	D52			Ħ	79
Mg3Bi2	hexag- onal	a=4.687 c=7.416	D5 ₂			11	79
MgS	cubic	a=5.1913	Bl				81
MgSe	cubic	a=5.45	Bl				82
MgTe	hexag- onal	a=4.53 c=7.38	В4				83
Mg ₂ Co				Thermal hardnes and x-1	l analy ss, met ray dat	vsis; density, callographic, ca.	84
MgNi ₂	hexag- onal	a=4.81 c=7.95	C3 6				85
Mg ₂ Ni	hexag- onal	a=5.18 /Db c=13.19 1	(D5) P6222 P6122)7			-	51

COMPOUND	CRYSTAL CLASS	LATTICE o PARAMETERS(A)	STRUCTUR	E REMARKS	17 REFER- ENCES
Mg2Pt				Doubtful; crystalline pro from reaction of Mg vapor hydrogen with Pt.	du ct in 87
Mg ₉ La				Thermal analysis.	88
Mg ₃ La	cubic	a=7.49	DO 3	X-ray powder data.	89
Mg ₂ La	cubic	a=8.79	C1 5		90
MgLa	cubic	a=3.973	B2		54
Mg ₉ Ce				Density, magnetic, and thermomagnetic data.	88,91,92
Mg ₃ Ce	cubic	a=7.373	DO3	X-ray powder data.	89
Mg ₂ Ce	cubic	a=8.73	C15		90
MgCe	cubic	a=3.906	B2		54
Mg ₉ Pr				Thermal analysis.	93
Mg ₃ Pr	cubic	a=7.37	DO2	X-ray powder data.	89
MgPr	cubic	a=3.88	B2		100
MgPr ₄				(93) (1943) reported XMg ₃ XMg ₃ , XMg, and X ₁ Mg for La, Ce, and Pr; later wor showed only XMg ₉ , XMg ₃ , X XMg for La and Ce; it is possible that PrMg ₉ , PrMg PrMg ₂ , and PrMg are also correct compounds for Pr.	, Mg ₂ , 3, the 93
Mg ₉ Gd				Magnetic data; the first compounds are probably is morphous with the corresp ing compounds of the other	three o- ond- r
				rare earths.	94
Mg ₃ Gd				n	94

18					
COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS(A)	STRUCTUR	E REMARKS	REFER - ENCES
MgGd				(See Remarks for Mg ₉ Gd).	94
MgGd9				Magnetic data.	94
				, (
ط Ca	cubic	a = 5.57	Al	Stable below 460°C; x-ray powder data.	101
/3Ca	cubic	a=4.48	A 2	Stable above 460°C; x-ray powder data; a hexagonal (A3) form also reported, a is believed to stabilized by impurities.	and 65,101
CaLi ₂	hexag- onal	a=6.250 ±0.008 c=10.25 ±0.02	Ելի	X-ray powder data.	55
CaCu5	hexag- onal	a =5. 092 c= 4.086	∑¯ ¹ _{6h} c6/mmm7	X-ray powder data; previou thought to be CaCu ₄ .	lsly 102
CaAg	cubic	a=9.07		X-ray powder data.	103
CaAg ₂	hexag- onal	a=5.72 c=9.35	C1 4	X-ray powder data; a trace of Mg must be present.	, 104
CaAg3	tetrag- on å l	a=11.3 c=9.96		X-ray powder data.	103
CaAgl				Potential measurements.	105
Ca ₂ Ag				Thermal analysis and x-ray powder data.	86
Call An3				Thermal analysis.	106
CaAu				n	106

COMPOUND	CRYSTAL CLASS	LATTICE o PARAMETERS (A)	STRUCTUR	E <u>REMARKS</u>	19 REFER- ENCES
CaAu				Thermal analysis.	106
CaAu ₃				11	106
CaAu				99	106
CaZn5	hexag- onal	a=5.405 c=4.183	_¯D _{6h} c6/mmm¯7	X-ray powder data; previou thought to be CaZn ₄ .	102
CaZn ₁₃	cubic	a=12.13 ±0.005	D23	X-ray powder data; compare to KCd ₁₃ .	107
CaZn				Thermal analysis.	108
Ca2Zn3				n	108
Ca _l Zn				n	108
CaCd				11	108
CaCd ₂	hexag- onal	a=5.99 c=9.65	C1)4	X-ray powder data.	104
CaCd3				Thermal analysis.	108
CaB6	cubic	a=1.115 ±0.005	D21	X-ray powder data, with co parison of calculated and observed intensities.	0m- 109
CaAl2	cubic	a=8.02	C15	X-ray powder data.	110
CaAl	tetrag- onal	a=4.35 c=11.07	D13	11	111
CaGa ₂	hexag- onal	a=4.323 ±0.005 c=4.323 ±0.005	C 32	X-ray powder data; c/a = 1.00.	90
CaTl	cubic	a=3.847 ±0.004	B2	X-ray powder data.	75

COMPOUND	CRYSTAL CLASS	LATTICE O PARAMETERS (A)	STRUCTUR	E REMARKS	REFER - ENCES
Ca3II4				Thermal analysis.	112
CaT13	cubic	a=4.794 ±0.003	L12	X-ray powder data.	113
Ca ₂ Si	cubic	a≓₄,71		X-ray powder data.	114
CaSi	ortho- rhombic	a=3.91±0.04 b=4.59±0.05 c=10.795±0.008	∑D ¹⁷ 2h Cmmc7	Single crystal x-ray data; Laue photographs, good agree ment with calculated and	3 8-
				observed intensities.	112
CaSi ₂	rhombo- hedral	a=10.4 ∝=21°30'	C12	Single crystal x-ray data.	116
CaGe2	rhombo- hedral	a=10.51 ∝=21°42'	C12	ŧt	117
Ca ₂ Sn				Thermal analysis.	108
CaSn				n	108
CaSn3	cubic	a=4.732 ±0.003	L12	X-ray powder data.	113,
Ca ₂ Pb				Thermal analysis.	112
CaPb				n	112
CaPb3	cubic	≥=4.891 ±0.003	L12	X-ray powder data.	113
≪-Ca ₃ N ₂	cubic	a=11.40 ±0.01	5 ₃	High temperature form; x-rapowder data; undergoes an irreversible transformation to $/3-Ca_3N_2$ at $\sim 700^{\circ}C$.	ay 1 118
∕3-Ca ₃ N ₂	pseudo- hexag- onal	a=3.553 c=4.11		Stable up to about 700°C; x-ray powder data at 300°C for lattice parameters.	119

x-ray powder data at 300°C for lattice parameters. 119

COMPOUND	CRYSTAL CLASS	LATTICE PARAMETERS (Å)	STRUCTUR	E REMARKS	21 REFER - ENCES
CaS	cubic	a=5.683	Bl	X-ray powder data.	120
CaSe	cubic	a=5.91	Bl	n	120
CaTe	cubic	a=6.34	Bl	Ŧ	120
CaNi5	hexag- onal	a=4.960 c=3.948	∠¯ ¹ _{6h} c6/mmm7	n	54

)

PART II: REFERENCES

- 1. Kossolapow and Trapesnikow, Metallwirtschaft 14, 45-46 (1935).
- 2. Misch, L., Z. physik. Chem. B29, 42-58 (1935).
- 3. Geisler, Mallery, and Steigert, J. Metals 4, 307-316 (1952).
- 4. Losana and Venturello, Alluminio 11, 8-16 (1942).
- 5. Misch, L., Metallwirtschaft 15, 163-166 (1936).
- 6. Winkler, O., Z. Metallkunde 30, 162-173 (1938).
- 7. Chatterjee and Sidhu, Phys. Rev. 76, 175 (1949).
- 8. Cullity, B., Trans. Am. Inst. Mining Met. Engrs. 171, 396-400 (1947).
- 9. Misch, L., Metallwirtschaft 14, 897-899 (1935).
- 10. Baker and Williams, Acta Cryst. 8, 519 (1955).
- 11. Guinier and Jacquet, Rev. met. <u>41</u>, 1-16 (1944), and Compt. rend. <u>217</u>, 22-24 (1943).
- 12. Baenziger and Rundle, Acta Cryst. 2, 258 (1949).
- 13. Koehler, Singer, and Coffinberry, Acta Cryst. 5, 394 (1952).
- 14. Runnalls, O., Acta Cryst. 7, 222-223 (1954).
- 15. Stackelberg and Quatrum, Z. physik. Chem. B27, 50-52 (1934).
- 16. Ehrlich, P., Z. anorg. Chem. 259, 1-41 (1949).
- 17. Raeuchle and Rundle, Acta Cryst. 5, 85-93 (1952) and 6, 107 (1953).
- 18. Hausner and Kalish, Trans. Am. Inst. Mining Met. Engrs. 188, 59 (1950).
- 19. Nielsen and Baenziger, Acta Cryst. 7, 132-133 (1954).
- 20. Stackelberg and Paulus, Z. physik. Chem. B22, 305-322 (1933).
- 21. Zachariasen, W., Z. physik. Chem. 119, 201-213 (1926).
- 22. ibid., 124, 436-448 (1926).
- 23. ibid., 124, 277-284 (1926).

- 24. Zakharova and Dalnov, Technical Physics of the USSR (Leningrad) 5, 184-188 (1938).
- Gordon, McGurty, and Klein, J. Inst. Metals 3, 637-638 (1951) and
 U. S. Atomic Energy Comm. Report No. NEPA-1686 (1951).
- 26. Raeuchle and von Batchelder, Acta Cryst. 8, 691-694 (1955).
- 27. Kripyakevich and Gladyshevskii, Dopovodki Akad. Nauk Ukr. R. S. R. 1955, no. 2, 154-155 (1955), from Chem. Abstracts <u>50</u>, 1561i (1956).
- 28. Misch, L., Naturwissenschaften 23, 287-288 (1935).
- 29. Teitel and Cohen, Trans. Am. Inst. Mining Met. Engrs. 185, 285-296 (1949).
- 30. Venturello and Burdese, Alluminio 20, 558 (1951).
- 31. Losana and Goria, Alluminio 11, 17-22 (1942).
- 32. Bowles and Tegart, Acta Met. 3, 590 (1955).
- 33. Kripyakevich and Hadyshevskii, Doklady Akad. Nauk. S. S. S. R. <u>103</u>, 82-84 (1955), from Chem. Abstracts <u>50</u>, 7538a (1956). <u>Note:</u> the quoted primary reference does not correspond to the paper abstracted.7
- 34. Staritzky, E., Ann. Chem., Justus Liebigs 28, 915 (1956).
- 35. Edwards and Johnstone, J. Inst. Metals 84, 313-317 (1955-56).
- 36. Sidhu and Henry, J. Appl. Phys. 21, 1037 (1950).
- 37. Baenziger and Rundle, Acta Cryst. 2, 258 (1949).
- 38. Smithells, C., "Metals Reference Book" <u>1</u>, 197 (1955), Interscience Publishers Inc., New York.
- 39. Soldau and Schamrey, Z. anorg. u. allgem. Chem. 224, 388-398 (1935).
- 40. Grube, von Zeppelin, and Bumm, Z. Elektrochem. 40, 160 (1934).
- 41. Hume-Rothery, Gaynor, and Butchers, J. Inst. Metals 71, 589-602 (1945).
- 42. Berry and Raynor, Nature 171, 1078-1079 (1953).
- 43. Herbstein and Averbach, U. S. Atomic Energy Comm. Report No. NYO--7046, 1-8 (May 31, 1954).
- 44. Schubert and Anderko, Z. Metallkunde 42, 321-325 (1951).
- 45. Friauf, J., J. Am. Chem. Soc. 49, 3107 (1927).

- 24
 - 46. Letner and Sidhu, J. Appl. Phys. 18, 833 (1947).
 - 47. Ageew and Kuznezow, Bull. Acad. Sci. U. S. R. R., Classe sci. math. nat., Ser. chem., 289-309 (1937).
 - 48. Owen and Preston, Phil. Mag. 2, 1266-1270 (1926).
 - 49. Clarebrough and Nicholas, Australian J. Sci. Research 3A, 284-289 (1950).
 - 50. Brauer and Haucke, Z. physik. Chem. <u>33</u>, 304-310 (1936).
 - 51. Schubert and Anderko, Z. Metallkunde 42, 321 (1951).
 - 52. Irmann, F., Helv. Chim. Acta <u>31</u>, 1584 (1948).
 - 53. Witte, D., Naturwissenschaften <u>25</u>, 795 (1937).
 - 54. Nowotny, Hans, Z. Metallkunde <u>34</u>, 247-252 (1942).
 - 55. Hellner and Laves, Z. Krist. 105, 134-143 (1949).
 - 56. Grube and Dietrich, Z. Elektrochem. 44, 755 (1938).
 - 57. Klemm and Dinkelacker, Z. anorg. Chem. <u>255</u>, 2 (1947).
 - 58. Tanschisch, L., Z. Krist. <u>86</u>, 423 (1933).
 - 59. McKeehan, L., Z. Krist. <u>91</u>, 501 (1935).
 - 60. Friauf, J., Phys. Rev. 29, 34 (1937).
 - 61. Samson, Sten, Acta Chem. Scand. 3, 835-843 (1949).
 - 62. Edwards, Wallace, and Craig, J. Am. Chem. Soc. 74, 5256-5261 (1952).
 - 63. Steeple, H., Acta Cryst. 5, 247-249 (1952).
 - 64. Brauer, Nowotny, and Rudolph, Metallforschung 2, 81-84 (1947).
 - 65. Melsert, Tiedema, Burgess, Acta Cryst. 9, 525 (1956).
 - 66. Mikheeva and Surs, Doklady Akad. Nauk S. S. S. R. <u>91</u>, 1133-1135 (1953).
 - 67. Russell, Hirst, Kanda, and King, Acta Cryst. 6, 870 (1953).
 - 68. Perlitz, H., Chalmers Tek. Högskol. Handl. 50, 6 (1946).
 - 69. Eickhoff and Vosskühler, Z. Metallkunde <u>44</u>, 223-231 (1953).

- 70. Riederer, K., Z. Metallkunde 28, 312-317 (1936).
- 71. Laves, Löhberg, and Rahlfs, Nachr. Ges. Wiss. Göttingen, Math.-physik. Kl., Fachgruppen II, <u>1</u>, 67-71 (1934).
- 72. Haucke, W., Naturwissenschaften 26, 577-578 (1938).
- 73. Pusin and Micic, Z. anorg. Chem. 234, 229-232 (1937).
- 74. Graber and Hauk, Z. Metallkunde 41, 480 (1950).
- 75. Zintl and Brauer, Z. physik. Chem. B20, 245-258 (1933).
- 76. Peterson, Diljack, and Vold, unpublished information (to be published in Acta Cryst.).
- 77. Brauer and Tiesler, Z. anorg. Chem. 262, 319-327 (1950).
- 78. Hagg, G., Z. Krist. 74, 95-99 (1930).
- 79. Zintl and Husemann, Z. physik. Chem. 21, 138-155 (1933).
- 80. Raynor, G., Trans. Faraday Soc. 44, 15 (1948).
- 81. Primak, Kaufman, and Ward, J. Am. Chem. Soc. 70, 2043-2046 (1948).
- 82. Goldschmidt, V., Geochemische Verteilungsgesetze VII, (1926).
- 83. Klemm and Wahl, Z. anorg. Chem. 266, 289-292 (1951).
- 84. Cramer, Nielsen, and Schonfield, Light Metal Age 5, 6-9 (1947).
- 85. Laves and Löhberg, Nachr. Ges. Wiss. Göttingen, Math.-physik Kl., KlNeue Folge 1, 59-66 (1934).
- 86. Hansen, M. "Aufbau der Zweistofflegierungen," p. 16 (Edwards Brothers, Inc., Ann Arbor, Michigan, 1943).
- 87. Hodgkinson, Waring, and Desborough, Chem. News 80, 185 (1899).
- 88. Vogel and Heumann, Metallforschung 2, 1-8 (1947).
- 89. Rossi and Iandelli, Chem. Zentr. 105, 1264-1265 (1934).
- 90. Laves, F., Naturwissenschaften 31, 96-145 (1943).
- 91. Mahn, F., Ann. phys. <u>3</u>, 393-458 (1948).
- 92. Mahn. F., Rev. met. 46, 365-369 (1949).

- 26
- 93. Rolla, Iandelli, Canneri, and Vogel, Z. Metallkunde 35, 29 (1943).
- 94. Gaume-Mahn, Francoise, Compt. rend. 237, 702-704 (1953).
- 95. Urazov and Vogel, Z. anorg. u. allgem. Chem. 67, 442-447 (1910).
- 96. Vogel, R., Z. anorg. u. allgem. Chem. 63, 169-183 (1909).
- 97. Urazov, G., Z. anorg. u. allgem. Chem. <u>64</u>, 375-396 (1909).
- 98. Brauer and Rudolph, Z. anorg. Chem. 248, 405-424 (1941).
- 99. Owen and Preston, Proc. Phys. Soc. (London) <u>36</u>, 341 (1924).
- 100. Rossi and Iandelli, Atti R. Accad. Lincei, Roma 18, 156-161 (1933).
- 101. Smith, Carlson, and Vest, J. Electrochem. Soc. 103, 409 (1956).
- 102. Haucke, W., Z. anorg. allgem. Chem. 244, 17 (1940).
- 103. Degard, C., Z. Krist. <u>90</u>, 399 (1935).
- 104. Howotny, H., Metallforschung 1, 31 (1946).
- 105. Kremann, Wostall, and Schopfer, Forschungsarb. Metallkunde u. Röntgenmetallog. <u>5</u>, 1 (1922).
- 106. Weibke and Bartels, Z. anorg. u. allgem. Chem 218, 241 (1934).
- 107. Ketelaar, J., J. Chem. Phys. <u>5</u>,668 (1937).
- 108. Donski, L., Z. anorg. Chem. <u>57</u>, 185 (1908).
- 109. Pauling and Weinbaum, Z. Krist. 87, 181 (1934).
- 110. Nowotny and Mohrnheim, Z. Krist. 100, 540 (1939).
- 111. Nowotny, Wormnes, and Mohrnheim, Z. Metallkunde 32, 39 (1940).
- 112. Barr, N., Z. anorg. Chem. 70, 352 (1911).
- 113. Zintl and Neumayr, Z. Elektrochem. 39, 86 (1933).
- 114. The Dow Chemical Company; X-Ray Diffraction Data Card 3-0798 (The American Society for Testing Materials, Philadelphia, 1950).
- 115. Hellner, E., Z. anorg. Chem. 261, 226 (1950).
- 116. Böhm and Hassel, Z. anorg. Chem 160, 152 (1927).

- 117. Wallbaum, H., Naturwissenschaften 32, 76 (1944).
- 118. Paulus, R., Z. physik. Chem. B22, 305 (1933).
- 119. Hartmann and Frohlich, Z. anorg. u. allgem. Chem. 218, 190 (1934).
- 120. Oftedal, I., Z. physik. Chem. 128, 154 (1927).
- 121. Könobeevskii, S., Conf. Acad. Sci. U. S. S. R., Div. Chem. Sci. <u>1955</u>, 207-214 (1955).

PART III: STRUCTURE DETAILS

A 1: 05--Fm3m

A=4: Cu structure with 4 Cu (0_h) : 000; $\frac{1}{2}0\frac{1}{2}$; $\frac{11}{2}0$; $0\frac{1}{2}$;

Reported compounds: MgIn, ~-Ca

Remarks: MgIn must have Mg and In atoms randomly distributed to exist in this structure.

A 2: 02--Im3m

A=2: W structure with 2 W (0_h): 000;111 222

Reported compounds: BeCu₂, /3-Ca

Remarks: BeCu₂ must have Be and Cu atoms randomly distributed to exist in this structure. Calcium has also been reported in the hexagonal closest packed structure. Best current evidence is that the hexagonal form is stabilized by minor impurity content.

A 12: T_d³--I₄3m

A=58: ∞ -Mn structure (isomorphous with chi phase, Fe₃₆Cr₁₂Mo₁₀) with 2 Mn (T_d): 000 + B. C. 8 Mn (C₃v): xxx;xxx; ; + B. C.: x=0.32 24 Mn (C₃): xxz; \mathcal{D} ; xxz; \mathcal{D} ;

Reported compounds: Be₂₁Co₅, ~Mg₁₇Al₁₂

Remarks: The structure of the compound occurring with the approximate formula \sim MgAl is probably closely related to this structure.

02**--**Fm3m B 1: A=8: NaCl structure with $4 \text{ Na}(0_h)$: 000 + F. C. $4 \text{ Cl}(0_h)$: $\frac{111}{522}$ + F. C. $/\overline{F}$. C. = add 000; $\frac{1}{2}0\frac{1}{2}$; $\frac{1}{22}\frac{1}{2}$; $\frac{1}{22}$; Reported compounds: MgS, MgSe; CaS, CaSe, CaTe. $0_{\rm h}^{\rm l}$ --Pm3m B 2: A=1: ordered /3-brass or CsCl structure Cs (0_h) : 000 Cl (0_h) : $\frac{111}{232}$ with Reported compounds: BeCu, BeCo, BeNi, BePd, MgAg, MgAu, MgSr, MgHg, MgTl, MgCe, MgPr, MgLa, CaTl. Td--F43m B'3: A=8: Sphalerite structure, ZnS with Reported compounds: BeS, BeSe, BeTe. C^L_{dy}--P63mc в4: A=4: Wurtzite structure, ZnS with 2 Zn (C₃v): 1/3,2/3,0; 2/3,1/3,1/2 2 S (C₃v): 1/2,2/3,z; 2/3,1/3,(¹/₂+z): z≈3/8 Reported compounds: MgTe. D5h--Pmcm B 19: A=4: AuCd structure 2 Au (C_{2v}): \pm (Oy $\frac{1}{4}$): y=0.805 2 Cd (C_{2v}): \pm ($\frac{1}{2}$ y $\frac{1}{4}$): y=0.315 with Reported compounds: MgCd with y(Mg)=0.818, y(Cd)=0.323.

B 20: T⁴--P2, 3 A=8: FeSi structure 4 Fe (C₃): $xxx;(\frac{1}{2}+x)(\frac{1}{2}-x)\overline{x}; 2$: x=0.137 4 Si (C₃): the same with x=0.842 with Reported compounds: BeAu with $x(Au)=0.150\pm0.005$, x(Be)=0.844. 0_h--Fm3m C 1: A=12: fluorite structure, CaF₂ with $\begin{array}{c} \mu \text{ Ca }(\text{O}_h): & 000 + \text{F. C.} \\ 8 \text{ F} (\text{T}_d): & \pm(\frac{111}{444}) + \text{F. C.} \end{array}$ Reported compounds: Be₂B, Be₂C, Mg₂Si, Mg₂Ge, Mg₂Sn, Mg₂Pb. $D_{3d}^5 - R\overline{3}m$ C 12: A=6: CaSi₂ structure 2 Ca (C_{3v}): \pm (xxx): x=0.083 2 Si (C_{3v}): the same with x=0.185 2 Si (C_{3v}): the same with x=0.352 with Reported compounds: CaSi2, CaGe2. D_{6h}--P63/mmc C 14: A=12: Laves Phase--MgZn₂ structure with $4 \text{ Mg } (C_{3v}): \pm (1/3, 2/3, z; 1/3, 2/3, \frac{1}{2}-z): z \approx 1/16$ $2 \text{ Zn } (D_{3v}): 000; 00\frac{1}{2}$ $6 \text{ Zn } (C_{2v}^{3d}): \pm (x, 2x, \frac{1}{4}; \overline{2x}, \overline{x}, \frac{1}{4}; x, \overline{x}, \frac{1}{4}): x \approx 5/6$ Reported compounds: FeBe₂ with z=0.063 and x=0.833, MnBe with z=0.053, Be₂Mo, Be₂W, Be₂Re, Be₂V, Be₂Cr, Mg₂Ca, Mg₂Sr, Mg₂Ba, MgZn₂, CaLi₂, CaAg₂, CaCd₂.

C 15: 07--Fd3m

A=24: Laves Phase--MgCu₂ structure with 8 Mg (T_d): 000; $\frac{111}{4.14}$ + F. C. 16 Cu (D_{3d}): 5/8,5/8; 7/8,7/8,5/8; 7/8,5/8; 7/8,5/8; 7/8,7/8; 5/8,7/8,7/8 + F. C.

Reported compounds: Be₃Cu, Be₂Ag, Be₅Au, Be₂Ti, Be_{8.1}Mn, Be₅Fe, Be₅Pd, MgCu₂, Mg₂Th, Mg₂La, Mg₂Ce, CaAl₂ (CaAl₂ may possibly be C¹L instead).

Remarks: Those compounds which deviate from the AB₂ formula evidently have some atomic sites which are occupied statistically by both atomic species.

C 22: D₃²--P321

A=9: Fe₂P structure with 3 Fe (C₂): $\overline{x}00; 0\overline{x}0; xx0: x=0.26$ 3 Fe (C₂): $x0\frac{1}{2}; 0x\frac{1}{2}; \overline{x}x\frac{1}{2}: x=0.40$ 1 P (D₃): $00\frac{1}{2}$ 2 P (C₃): $\pm(1/3, 2/3, z): z\approx1/3=0.125$

Reported compounds: Mg₂Ga, Mg₂In, Mg₂Tl.

C 32: Dth--P6/mmm

A=3: AlB₂ structure with 1 Al (D_{6h}): 000 2 B (D_{3h}): 1/3,2/3,1/2; 2/3,1/3,1/2

Reported compounds: Be₂Zr, MgB₂, CaGa₂.

C 36: $D_{\text{Ch}}^{\text{L}} - P_{\text{Ch}}^{\text{L}}/mmc$

A=Laves Phase--MgNi₂ structure with 4 Mg (C₃v): $\pm(1/3,2/3,z)$; $\pm(2/3,1/3,\frac{1}{2}+z)$: $z\approx27/32$ 4 Mg (C₃v): $\pm(00z)$; $\pm(0,0,\frac{1}{2}+z)$: $z\approx3/32$ 6 Ni (C₂h): $\frac{1}{5}00;0\frac{1}{2}0;\frac{1}{2}\frac{1}{2}0;\frac{1}{2}0\frac{1}{2};0\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$ 6 Ni (C₂v): $\pm(x,2x,\frac{1}{4};2\overline{x},\overline{x},\frac{1}{4};x,\overline{x},\frac{1}{4})$: $x\approx1/6$ 4 Ni (C₃v): $\pm(1/3,2/3,z)$; $\pm(2/3,1/3,\frac{1}{2}+z)$: $z\approx1/8$

Reported compounds: Mg, Th, MgNi,.

D 02: T⁵_b--Im3 A=32: CoAs3 structure 8 Co (C_{3i}): 1/4, 1/4, 1/4; 3/4, 3/4, 1/4; 2 + B. C.24 As (C₃): $\pm(xy0; 2) \pm(xy0; 2) + B. C.$: x=0.35, y=0.15with Reported compounds: Mg₃Pr. D 03: 05--Fm3m A=16: BiLi₃ structure with $\begin{array}{c} 4 & \text{Bi}(O_h): & 000 + \text{F. C.} \\ 4 & \text{Li}(O_h): & \frac{111}{222} + \text{F. C.} \\ 8 & \text{Li}(T_d): & \frac{1(11)}{444} + \text{F. C.} \end{array}$ Reported compounds: Mg₃La, Mg₃Ce. $D O_{18}: D_{6h}^{l_4} - P_{63}/mmc$ A=8: Na₃As structure 2 As (D_{3h}) : $\pm (1/3, 2/3, 1/4)$ 2 Na (D_{3h}) : $\pm (00\frac{1}{4})$ 4 Na (C_{3v}) : $\pm (1/3, 2/3, z; 2/3, 1/3, \frac{1}{2}+z)$: z=0.583with Reported compounds: Mg₃Au, Mg₃Hg. D 019: D6h--P63/mmc A=8: Mg₃Cd structure 2 Cd (D_{3h}) : $\pm (1/3, 2/3, 1/4)$ 6 Mg (C_{2v}) : $\pm (2x, x, \frac{1}{4}; \overline{x}, x, \frac{1}{4}; \overline{x}, 2x, \frac{1}{4})$: $x \approx 1/6$ with Reported compounds: Mg₃Cd, MgCd₃. $D_{Lh}^{17} - I4/mmm$ D 13: A=10: BaAl₄ structure with 2 Ba (D_{4h}) : 000 + B. C. \downarrow Al $(C_{\downarrow v}^{411})$: $\pm (OOz) + B. C.: z=0.380$ \downarrow Al (D_{2d}) : $O_{24}^{11}; \frac{1}{2}O_{4}^{1} + B. C.$ Reported compounds: CaAl),.

 $D 2_1: O_n^1 - - Pm3m$ A=7: CaB₆ structure with 1 Ca (O_h) : 000 6 B $(C_{\downarrow v})$: $\pm (\frac{11}{22}x; 2)$: x=0.293±0.001 Reported compounds: CaB₆. 0_h--Fm3c D 23: A=112: NaZn13 structure 8 Na (0): $\pm (\frac{111}{444}) + F. C.$ 8 Zn (T_h): 000; $\frac{111}{252} + F. C.$ 96 Zn (C_s): $\pm (0yz; 2; \frac{1}{2}zy; 2; 0yz; 2; \frac{1}{2}zy; 2) + F. C.$ with Reported compounds: CeBe₁₃, ThBe₁₃, UBe₁₃, ZrBe₁₃, Be₁₃Mg, Be₁₃Ca, Be₁₃Pu, Be₁₃Np, CaZn₁₃ Remarks: For the first four compounds listed, y=0.178, z=0.112. For the remaining compounds the adjustable parameters are reported to be the same as those for NaZn₁₃. D 5₂: $D_{3d}^3 - P\overline{3}ml$ A=5: La₂^O₃ structure with ² La (C_{3y}): $1/3, 2/3, z; 2/3, 1/3, \overline{z}: z \approx 0.63$ 1 O (D_{3d}): 000 2 O (C_{3y}): $1/3, 2/3, z; 2/3, 1/3, \overline{z}: z \approx 0.63$ Reported compounds: Mg3Bi2, Mg3Sb2. T_{h}^{7} --Ia3 D 53: A=80: $Mn_2^{O}_{38}$ structure with $^{26}_{38}$ Mn (C_{3i}): 1/4, 1/4, 1/4; 1/4, 3/4, 3/4; 2 + B. C. $24 Mn (<math>C_2$): $\pm(x, 0, 1/4; 2); \pm(x, 1/2, 3/4; 2): x=0.970$ + B. C. 48 0 (C₁): $\pm(xyz; 2); \pm(x, y, \frac{1}{2}-z; 2); \pm(\frac{1}{2}+x, y, z; 2); \pm(x, \frac{1}{2}+y, z; 2): x=0.39, y=0.15, z=0.38: + B. C.$ Reported compounds: Be₃N₂ with $x_1=0.985$, $x_2=0.385$, y=0.145, and z=0.380; Be₃P₂ with x₁=0.997, x₂=0.385, y=0.145, and z=0.380; Mg_3N_2 , Mg_3P_2 , Mg_3As_2 , ∞ -Ca₃N₂.

D 8₁₋₃:
$$O_h^9$$
--Im3m; T_d^3 --I \overline{L} 3m; and T_d^1 -P \overline{L} 3m

A=52:)-brass structures. The basic structure consists of a cubic unit cell whose edge is three times the edge of a simple body-centered cubic cell. From this large cell of 54 atomic sites is abstracted 2 atomic sites with small attendant shifts in parameters of some of the 52 occupied sites. The space group depends upon the formula of the compound and the atomic species occupying the various atomic sites.

Reported compounds: Ni5Be21, Pt5Be21

Remarks: X-brass structures usually exhibit extensive composition variation.

 $D 8_8: D_{6h}^3 - P_{6_3}/mcm$

A=16: Mn_5Si_3 structure with $4Mn (D_3)$: 1/3, 2/3, 0; 2/3, 1/3, 0; 1/3, 2/3, 1/2; 2/3, 1/3, 1/2 $6Mn (C_{2v})$: $\pm (xO_4^1; xx_4^1)$: x=0.23 $6Si (C_{2v})$: the same with x=0.60

Reported compounds: Mg_5Hg_3 with x(Mg)=0.25, x(Hg)=0.615.

L 10: $D_{lib}^{\perp} - C_{lib}$

A=4: CuAu structure with 2 Cu (D_{4h}) : OOO + B. C. 2 Au (D_{4h}) : $\frac{1}{2}O_{2}^{1}$ + B. C.

Reported compounds: MgIn

L 12: $0_{h}^{1} - -Pm3m$

A=4: Cu₃Au structure with 1 Au (O_h): 000 3 Cu (D_{lih}): $\frac{1}{3}O^{\frac{1}{3}}; O^{\frac{11}{32}}; \frac{1}{32}O$

Reported compounds: ~MgIn_{2 or 3}, ~Mg7In₃, CaTl₃, CaSn₃, CaPb₃.

 $D_{6b}^{1} - P6/mmm$ _ _ _ _ TiBe_structure--pseudocell 1^2 Ti (D_{6h}): in 000 or in 00 $\frac{1}{2}$ 2 Be (C_{6v}): 00z;00z: z=0.28 when Ti is at 000, z=0.22 A=13: with when Ti is at $00\frac{1}{2}$ 6 Be (C): $\pm(\frac{1}{2}0z)$; $\pm(0\frac{1}{2}z)$; $\pm(\frac{11}{2}z)$: z=0.252 Be (D_{3d}): $1/3, 2/3, \overline{0}$; $2/3, 1/2, \overline{0}$ 2 Be (D_{3d}): 1/3, 2/3, 1/2; 2/3, 1/3, 1/2Reported compounds: Be Ti. $D_{lp}^{17} - I4/mmm$ ----Reported compounds: $Be_{1,2}Mo$ with x=0.344 and x=0.284. $D_{lih}^{17} - I/mmm$ ----A=6: MgHg₂ structure with 2 Mg: 000; $\frac{111}{222}$ 4 Hg: 002; $\frac{111}{22}(\frac{1}{2}+z)$; 00 \overline{z} ; $\frac{11}{22}(\frac{1}{2}-z)$: $z=\frac{1}{2}$ Remarks: isomorphous with MoSio. $D_{2}^{1}(D_{6}^{5}) - P_{2}^{22}(P_{1}^{22})$ A=18: Mg_Ni structure Ni structure 3 Ni (D_2) : 0,0,1/6; 0,0,3/6; 0,0,5/6 3 Ni (D_2) : 0,1/2,1/6; 1/2,0,3/6; 1/2,1/2,5/6 6 Mg (C_2) : $\pm (1/2,0,z)$; 1/2,1/2,(1/3+z); 1/2,1/2,(1/3-z); 0,1/2,(2/3+z); 0,1/2,(2/3+z): z=1/96 Mg (C_2) : $\pm (x,2x,0)$; $x,\overline{x},1/3$; $\overline{x},x,1/3$; 2x,x,2/3; 2x,x,2/3: x=1/6with

Reported compounds: Mg_Ni.

D_{2h}--Fddd -----A=48: Mg₂Cu structure 16 Cu (C₂): $\pm (00z); \frac{11}{44}(\frac{1}{4}+z); \frac{11}{44}(\frac{1}{4}-z): z=0.128: \pm F. C.$ 16 Mg (C₂): the same with z=0.411: $\pm F. C.$ 16 Mg (C₂): $\pm (0y0); \frac{1}{4}(\frac{1}{4}+y)\frac{1}{4}; \frac{1}{4}(\frac{1}{4}-y)\frac{1}{4}: y=0.161: \pm F. C.$ with Reported compounds: Mg_Cu. $T_{h}^{\perp} - -Pm_{3}$ A=39: Mg₂Zn structure with $11 6 Mg (C_{2}v): \pm (x0\frac{1}{3}; 2): x=0.32$ $6 Zn (C_{2}v): \pm (x00; 2): x=0.235$ $12 Zn (C_{5}v): \pm (\frac{1}{2}yz; 2); \pm (\frac{1}{2}y\overline{z}; 2): y=0.234, z=0.343$ $1 Zn (T_{h}): \frac{111}{222}$ $6 Zn (C_{2}v): \pm (x\frac{1}{2}0; 2): x=0.160$ $8 Zn (C_{3}^{2}v: \pm (xxx; x\overline{xx}; 2): x=0.222$ Reported compounds: Mg2Zn11. D_{2h}²⁶--Ibam ----A=28: Mg5Ga structure with $\begin{array}{c} Mg5Ga (C_s): \pm (xy0); \pm (x\overline{y}\frac{1}{2}): x=0.122, y=0.262: + B. C. \\ 8 Mg (C_s): the same with x=0.080, y=0.660: + B. C. \\ 8 Mg (C_2): \pm (xO\frac{1}{4}); \pm (\overline{x}O\frac{1}{4}): x=0.242: + B. C. \\ 4 Mg (D_2): \pm (0O\frac{1}{4}) + B. C. \end{array}$ Reported compounds: Mg5Ga, Mg5Tl2. D_{2h}¹⁷--Cmmc ----A=8: CaSi structure 4 Ca (C_{2v}) : $\pm (\frac{1}{4}Oz)$: z=0.36: + B. C. 4 Si (C_{2v}) : the same with z=0.07: + B. C. with Reported compounds: CaSi. D_{6h}^{1} --C6/mmm ___ A=6: CaCu₅ structure with 1 Ca (D_{6h}): 000 2 Cu (D_{3h}): 1/3, 2/3, 0; 2/3, 1/3, 0;3 Cu (D_{2h}): $\frac{1}{2}0\frac{11}{2}; 0\frac{11}{22}; \frac{111}{222}$

Reported compounds: CaCu5, CaZn5, CaNi5.