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Abstract

Finite element modeling of charged species transport has enabled the analysis, design, and opti-
mization of a diverse array of electrochemical and electrokinetic devices. These systems are repre-
sented by the Poisson-Nernst-Planck (PNP) equations coupled with the Navier-Stokes (NS) equa-
tion. Direct numerical simulation (DNS) to accurately capture the spatio-temporal variation of ion
concentration and current flux remains challenging due to the (a) small critical dimension of the
electric double layer (EDL), (b) stiff coupling, large advective effects, and steep gradients close to
boundaries, and (c) complex geometries exhibited by electrochemical devices.

In the current study, we address these challenges by presenting a direct numerical simulation
framework that incorporates: (a) a variational multiscale (VMS) treatment, (b) a block-iterative
strategy in conjunction with semi-implicit (for NS) and implicit (for PNP) time integrators, and
(c) octree based adaptive mesh refinement. The VMS formulation provides numerical stabiliza-
tion critical for capturing the electro-convective instabilities often observed in engineered devices.
The block-iterative strategy decouples the difficulty of non-linear coupling between the NS and
PNP equations and allows using tailored numerical schemes separately for NS and PNP equations.
The carefully designed second-order, hybrid implicit methods circumvent the harsh timestep re-
quirements of explicit time steppers, thus enabling simulations over longer time horizons. Finally,
the octree-based meshing allows efficient and targeted spatial resolution of the EDL. These features
are incorporated into a massively parallel computational framework, enabling the simulation of re-
alistic engineering electrochemical devices. The numerical framework is illustrated using several
challenging canonical examples.
Keywords: electrokinetics, electrohydrodynamics, Navier-Stokes Poisson Nernst-Planck, octrees,
variational multiscale approach

1. Introduction

A diverse set of energy conversion, energy storage, manufacturing, and healthcare processes
are characterized by the transport and interaction of charged species in aqueous environments.
These interactions span multiple time and length scales, often involving complex geometries [1–6].
Examples of such processes include electrolysis for hydrogen production, electrodialysis for water5
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desalination, gas diffusion electrodes for chemical conversion, carbon capture, as well as several
other processes that have a direct impact on sustainability and climate resilience [7–12].

Quantitative analyses of such processes are performed using continuum mechanics-derived
partial differential equations (PDEs), specifically the Navier-Stokes (NS) and the Poisson-Nernst-
Plank (PNP) equations. Often, detailed, high-fidelity simulations — i.e., direct numerical simula-10

tions — are critical for comprehensive understanding and design of electrokinetic systems. How-
ever, the complexities arising from the tight coupling of multiscale and multiphysics phenomena
in these processes make simulating these systems very challenging. A comprehensive simulation
framework can significantly accelerate the exploration and understanding of complex electrochem-
ical processes and enable the design and optimization of societally relevant applications like more15

efficient water electrolysis and cheaper and lightweight dialysis machines.
One can broadly identify three challenges to performing direct numerical simulations of NS-

PNP equations in complex geometries: First, electrokinetic systems involve coupled mass transport,
fluid flow, and electrodynamics. This stiff coupling between the NS and PNP equation is respon-
sible for producing a variety of very interesting phenomena [7–15]. For instance, even in systems20

with small hydrodynamic velocities, i.e., low Reynolds (Re) numbers, a strong applied electric field
triggers strongly non-linear and multi-scale electrokinetic instabilities [16]. This calls for numerical
methods that can robustly and efficiently capture stiff coupling. Second, such systems often exhibit
thin regions with a high electric field and high gradients in ion concentration, usually near the
boundary. Accurately resolving these near-boundary gradients is essential, as they determine not25

only the bulk behavior but also impact the boundary fluxes, which are often the quantities of most
interest from an experimental point of view [17–20]. The challenge of accurately resolving these
regions is further exacerbated by the complex geometries exhibited by various electrochemical de-
vices (packed beds, dendritic surfaces). This calls for approaches that are endowed with the ability
to spatially resolve complex geometries in a scalable fashion. Third, simulating practical systems30

of engineering interest requires performing simulations across a long time horizon. This calls for
time discretizations that are higher order and have good stabilizing properties, thus offering the
ability to successfully capture long time horizon simulations affordably [21].

Resolving these challenges requires careful design of spatial stabilization and temporal dis-
cretization as well as appropriate strategies of (de)coupled solution of the equations and adap-35

tive mesh refinement. To resolve those challenges, Druzgalski et al. [16] performed pioneering
direct numerical simulations of electroconvective instabilities. They used a non-uniform mesh in
the wall-normal direction to resolve the EDLs for small Debye lengths and a semi-implicit time
scheme. The framework was then pushed for more complicated geometries and patterned surfaces
in [22, 23]. One of the main challenges in simulating these systems is that if one resolves the thin40

EDLs with a fine mesh resolution, one often requires very small timesteps for stability reasons.
The problem of resolving thin EDLs is exacerbated when the problem length scale is larger, i.e.,
small non-dimensional Debye lengths, requiring even finer meshes and even smaller timesteps.
Additionally, instabilities generated under high electric fields require subgrid-scale modeling as
the mesh is coarsened away from the fine resolution near the boundary.45

There have been computational studies using commercial software to analyze the non-linear
behavior of electrokinetics [24–26]. It is important to note that most commercial software is un-
suitable for such electrochemical systems, either because the numerical methods are not designed
for these phenomena or they are not scalable enough to accurately resolve the spatial and temporal
scales required. For example, Karatay et al. [27] showed that with a carefully designed numerical50

method, their code was 20× faster than the commercial alternative (COMSOL in this case) on a sin-
gle processor. This advantage shot up to about 160× speed up when both the codes were deployed
in parallel but on a single node. Therefore, careful design of numerical methods and efficient par-
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allel implementation are essential for affordable high-fidelity simulations of electrochemical sys-
tems. While there has been some progress in developing flexible frameworks [28, 29], numerical55

challenges involved in solving the PNP equations still remain.
In this work, we seek to resolve all three challenges detailed above for the direct numerical sim-

ulation of electrokinetic phenomena. We build upon our previous work on a finite elements based
framework for solving the NS and PNP equations [30]. Finite element approaches have been suc-
cessfully applied for high-resolution simulations of NS (See [31] for an overview) and PNP [32–60

40] equations. They are well suited for the NS-PNP system of equations due to (a) the use of a
variational formulation that allows the weakening of derivatives, (b) the natural incorporation of
heterogeneous and mixed boundary conditions often seen in these systems, and (c) ability to con-
struct rigorous a posteriori error estimates for mesh adaptivity that enable substantial computational
gains away from the EDLs.65

The main contributions of this paper are as follows:
1. We decouple the solution procedure of NS and PNP equations in a block-solve strategy. The

PNP equations are solved using a fully implicit Newton method-based non-linear solver, en-
suring the choice of large time steps even for cases with very fine mesh resolution used for thin
EDLs. On the other hand, the Navier-Stokes equations are discretized using a semi-implicit70

linear discretization which also ensures stability for larger time steps. In conjunction with
this strategy, we utilize a second-order time discretization for both NS and PNP to ensure ac-
curacy across long time horizons. This block-iterative strategy, in conjunction with carefully
chosen preconditioners, allows robust and efficient DNS computations.

2. We use a variational multi-scale (VMS) based stabilization for the pressure that allows for a75

pressure-coupled solver in conjunction with continuous Galerkin finite elements. Addition-
ally, the VMS method provides sub-grid scale modeling for fine-scale velocities and ion con-
centrations not resolved by the grid size. This allows us to use adaptive mesh discretization
without compromising the accuracy of the field variables.

3. We use a massively parallel octree-based meshing framework to resolve the thin EDLs for80

small Debye lengths, as well as mesh complex geometries in 3D. We use Dendro-KT, a highly
scalable parallel octree library, to generate, manage and traverse adaptive octree-based meshes
in distributed memory. Octrees are widely used in computational sciences [41–48], due to its
conceptual simplicity and ability to scale across a large number of processors.

4. We illustrate the framework with a series of increasingly difficult simulations exhibiting electro-85

convective instabilities and complex geometries.
The rest of the paper is structured as follows: Section 2 details the equations in non-dimensional

form. Section 3 lays out the spatial and temporal discretization and associated properties. Section
4 describes the implementation and algorithmic details of the framework. Section 5 reports on
the numerical results, starting from convergence tests using manufactured solutions to a full 3D90

simulation of a bio-diagnostic device. We conclude in Section 6.

2. Governing equations

2.1. Dimensional form:
Consider a bounded domain Ω ⊂ R3 (for 3 = 2, 3) and the time interval [0, )]. The domain

contains a fluid (usually aqueous) with # ionic species, and we seek to model the behavior of95

the # species concentration under the imposition of electric fields. The concentration distribution
of the # species is represented using Nernst-Plank transport equations, along with the Poisson
equation for the electric potential, together making up the Poisson-Nernst-Plank (PNP) equations.
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The pressure and fluid velocity are represented using the Navier Stokes (NS) equations. There is
a two-way coupling between the species concentration and the underlying fluid motion, given by100

an advection term in the PNP equation and an electrohydrodynamic term in the NS equation.
We consider # > 1 number of charged species with subscript B indicating the species index.

The species flux, 9B,∗
8

, which is driven by diffusion, migration, and convection is written as:

9B,∗
8
= −�B %2

B,∗

%G∗
8

− �B I
B�

')
2B,∗

%)B,∗

%G∗
8

+ E∗8 2
B,∗ for BCℎ species, (1)

�B is diffusivity of BCℎ species, 2B,∗ is concentration of BCℎ species, IB is valance of BCℎ species, � is
Faraday constant 96,485.33 C/mol, ' is gas constant 8.314 J/mol K, ) is temperature, )∗ is electric
potential, and E∗

8
is fluid velocity.

Remark 1. Note that we use Einstein notation throughout this work; in this notation, E8 represents the 8th105

component of the vector v, and any repeated index is implicitly summed over. Superscript B is the species
index. To avoid confusion powers of the terms are represented by writing the power outside the braces. For
example square of BCℎ species of concentration is written as (2B,∗)2. For non-dimensional quantities, ∗ in the
superscript will be dropped.

The time variation of concentration can be obtained by taking the divergence of species flux,

%2B,∗

%C∗
= −

%9B,∗
8

%G∗
8

, for the BCℎ species. (2)

Combining eqs. (1) and (2) and assuming that the fluid is incompressible %E∗
8

%G∗
8
= 0 produces the

Nernst-Planck equation,

%2B,∗

%C∗
+ E∗8

%2B,∗

%G∗
8

=
%

%G∗
8

(
�B %2

B,∗

%G∗
8

+ �B I
B�

')
2B,∗

%)B,∗

%G∗
8

)
. (3)

The second term on the left-hand side of Eqn. 3 represents the advective transport of species, which110

is the coupling between the species concentration and the flow field. The first term on the right-
hand side of Eqn. 3 represents the diffusion of species, while the second term represents the electric
migration of species.

The electric potential, )∗ in the domain, depends on the concentration distribution of the #
species and the imposed electric field. The potential is the solution to the Poisson equation [49]

%

%G∗
8

(
−�

%)∗

%G∗
8

)
= �∗4 . (4)

� is the electric permittivity of fluid, and �4 is charge density. Charge density can be expressed with
species concentration.

�∗4 = �
∑

2B,∗IB (5)
Then, equation (4) becomes (assuming that the permittivity, �, is constant)

−� %

%G∗
8

(
%)∗

%G∗
8

)
= �

∑
2B,∗IB . (6)
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Finally, the Navier-Stokes equation is written as,

�
%E∗

8

%C∗
+ �

%
(
E∗
9
E∗
8

)
%G∗

9

+
%?∗

%G∗
8

− � %

%G∗
9

(
%E∗

8

%G∗
9

)
− �∗4�∗8 = 0 (7)

� is the density of the fluid, ? is pressure, � is dynamic viscosity, and �8 is 8Cℎ component of the
electric field. The last term in the above equation is the body force due to the electric field. This
is the coupling between the NS and the PNP. Using the relationship between electric potential and
electric field,

−
%)∗

%G∗
8

= �∗8 , (8)

and from the expression of charge density (equation (5)), equation (7) can be written as

�
%E∗

8

%C∗
+ �

%
(
E∗
9
E∗
8

)
%G∗

9

+
%?∗

%G∗
8

− � %

%G∗
9

(
%E∗

8

%G∗
9

)
+ �

∑
2B,∗IB

%)∗

%G∗
8

= 0. (9)

Remark 2. Note that some papers in the literature use elementary charge 4 and Boltzmann constant :�
instead of Faraday constant � and gas constant ' [50]. The choice of these parameters is simply dependent115

on how to define concentration. Here, we choose the Faraday constant, �, and gas constant ' since molarity
" was used for concentration.

We write all the governing equations together as,

Momentum Eqns: �
%E∗

8

%C∗
+ �

%
(
E∗
9
E∗
8

)
%G∗

9

+
%?∗

%G∗
8

− � %

%G∗
9

(
%E∗

8

%G∗
9

)
+ �

(∑
2B,∗IB

) %)∗
%G∗

8

= 0, (10)

Poisson: − � %

%G∗
8

(
%)∗

%G∗
8

)
= �

∑
2B,∗IB , (11)

Nernst-Planck: %2B,∗

%C∗
+ E∗8

%2B,∗

%G∗
8

=
%

%G∗
8

(
�B %2

B,∗

%G∗
8

+ �B I
B�

')
2B,∗

%)∗

%G∗
8

)
. (12)

Table 1 shows all the dimensional parameters involved.
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Parameters Units Value/Formula

Species diffusivity, �B <2/B
Species valence, IB
Faraday constant, � �/<>; 96,485.33 �/<>;

Gas constant, ' �/ · <>; 8.314 �/ · <>;
Temperature, )  

Vacuum permittivity, �0 �/<, �/+ · <, #/+2 8.854×10−12�/<
Relative permittivity, �A

Permittivity, � �/<, �/+ · <, #/+2 � = �A�0
Charge density, �4 �

Density, � :6/<3

Viscosity, � %0 · B, 2% 8.90 ×10−4% · B for water at 25 °C
Ionic strength of bulk, �1 ", <>;/<3 �1 =

1
2ΣI

2
8
28

Thermal voltage, +) + +) = ')/�

Table 1: Dimensional parameters in the governing equations.

2.2. Non-dimensional form:
Each variable is scaled with its associated reference quantity to define its non-dimensional coun-120

terpart.

G8 =
G∗
8

!2ℎ
, C =

C∗

C2ℎ
, E8 =

E∗
8

*2ℎ
, ? =

?∗

?2ℎ
, 28 =

2∗
8

22ℎ
, ) =

)∗

)2ℎ
. (13)

And for the derivative terms,

%

%G8
= !2ℎ

%

%G∗
8

,
%

%G8

(
%

%G8

)
= !2

2ℎ

%

%G∗
8

(
%

%G∗
8

)
(14)

To non-dimensionalize the governing equations, it is important to select appropriate reference
quantities in eq. (13). We typically consider internal flows (like in microfluidic channels), and the
reference length !2ℎ is the channel width ! for 2-dimensional problems or the hydraulic diameter
�ℎ for 3-dimensional problems. The reference concentration and reference potential are selected
as follows:

22ℎ = �1 =
1
2
∑
(IB)2 2B and )2ℎ = +) =

')

�
(15)

�1 is the ionic strength of bulk, and+) is the thermal voltage. The rest of the variables have multiple
options to choose from for the reference quantity. We choose the following reference quantities: The
characteristic velocity*2ℎ is given by �/!, characteristic time C2ℎ given by !2/�, and characteristic
pressure given by ��/!2. Here, � is the mean species diffusivity, and � is the dynamic viscosity of125

the fluid medium.
With these characteristic quantities, the non-dimensional equations are given as follows,

Momentum Eqns: 1
(2

(
%E8
%C
+
%
(
E 9E8

)
%G 9

)
+

%?

%G8
− %2E8

%G2
9

+ �

2Λ2

(∑
2BIB

) %)

%G8
= 0, (16)

Solenoidality: %E8
%G8

= 0, (17)
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Poisson: − 2Λ%2)

%G2
8

=

∑
2BIB , (18)

Nernst-Planck: %2B

%C
+ E8

%2B

%G8
=

%

%G8

(
%2B

%G8
+ IB2B

%)

%G8

)
. (19)

Where the Schmidt number, (2 = �
�� , the electrohydrodynamic (EHD) constant, � = �

��2
(
')
�

)2,
and non-dimensionalized Debye length, Λ = ��/!2ℎ , where �� is the Debye length, �� =

√
1
2
�')
�2�1

.

3. Numerical method and its properties130

We use a second order backward difference formula (BDF) scheme as a time-stepping strategy
for eqs. (16) to (19). We solve momentum equations and Poisson Nernst-Planck (PNP) equations
in two separate blocks.

Let �C be a time-step; let C: := :�C; Let = + 1 be the current time-point, and = be the previous
time-point. We define an intermediate velocity at time = + 1 as follows:

ṽ:+1 := 2v: − v:−1 , (20)

We define our time-discretized weak form of the Navier-Stokes-Poisson-Nernst-Plank (NS-PNP)
equations are as follows:135
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Definition 1

Let (·, ·) be the standard !2 inner product. We state the time-discrete variational problem as
follows: find v:+1(x) ∈ HA(Ω), ?:+1(x), ):+1(x), 2B,:+1(x) ∈ �A(Ω) such that

Momentum Eqns: 1
(2

(
F8 ,

�0E:+1
8
+ �1E:8 + �2E:−1

8

�C

)
Ω

+ 1
(2

(
F8 , Ẽ

:+1
9

%E:+1
8

%G 9

)
Ω

+
(
F8 ,

%?:+1

%G8

)
Ω

+
(
%F8
%G 9

,
%E:+1

8

%G 9

)
Ω

−
(
F8 , =̂ 9

%E:+1
8

%G 9

)
%Ω

+ �

2Λ2

(∑
2B,:+1IB

) %):+1

%G8
= 0,

(21)

Solenoidality:
(
@,

%E:+1
8

%G8

)
Ω

= 0, (22)

Poisson: 2Λ
(
%@

%G8
,
%):+1

%G8

)
Ω

− 2Λ
(
@, =8

%):+1

%G8

)
%Ω

−
(
@,

∑
2B,:+1IB

)
Ω
= 0, (23)

Nernst-Planck:
(
@,

�02B,:+1 + �12B,: + �22B,:−1

�C

)
Ω

+
(
@, Ẽ:+1

8

%2B,:+1

%G8

)
Ω

+
(
%@

%G8
,
%2B,:+1

%G8
+ IB2B,:+1 %):+1

%G8

)
Ω

−
(
@, =̂8

(
%2B,:+1

%G8
+ IB2B,:+1 %):+1

%G8

))
%Ω

= 0,

(24)

∀w ∈ HA(Ω), ∀@ ∈ �A(Ω), given v: , v:−1 ∈ HA(Ω), and ): , ):−1 , 2B,: , 2B,: ∈ �A(Ω). n̂ is the
outward pointing normal to the boundary %Ω

Remark 3. Note that the variational forms above are for general Hilbert spaces with regularity A (order of
allowed derivatives in the space). However, for the cases in this paper, we restrict ourselves to A = 1, which
corresponds to bilinear basis functions.

3.1. Spatial discretization and the variational multiscale approach140

We use continuous Galerkin finite elements for spatial discretization of the time-discrete sys-
tem presented in definition 1. However, imposing the d’Alembert constraint (eq. (22)) when solv-
ing v, ? together presents a challenge. An equal order polynomial approximation of velocity and
pressure leads to pressure instability because of the violation of the discrete inf-sup condition
(Ladyzhenskaya-Babuska-Brezzi condition, e.g., see Volker [31, page 31]). There are two ways to145

circumvent this issue; 1) add pressure stabilization to eq. (22), which converts the inf-sup stability
restriction to a V-elliptic coercivity problem [51], thereby curbing the artificial pressure instabilities;
2) The second method is to solve a separate pressure Poisson equation using the Helmholtz Hodge
decomposition of solenoidal velocity fields. For our specific problem of NS-PNP equations, we
choose to use method 1. Choosing method one allows us to use the Variational multi-scale method150

(VMS) [52] to stabilize pressure. In addition to providing pressure stabilization, VMS also has a
very useful feature. It allows us to naturally perform Large Eddy simulation type decomposition

8



and appropriate subgrid scale modeling [53]. The VMS enrichment for modeling fine-scale veloc-
ities, pressures and ion concentrations allows us to coarsen away from the extremely fine resolu-
tions near the boundary, resolving the thin EDLs. Note that providing targeted resolution near the155

boundary for resolving EDLs is relatively simpler, however resolving emerging small-scale struc-
tures due to electrochemical instabilities for high electric fields is extremely difficult without doing
adaptive meshing 1. Therefore, the subgrid-scale modeling away from the fine resolutions of the
EDLs is valuable for accurately capturing electroconvective instabilities with relatively coarser res-
olutions.160

The VMS approach uses a direct-sum decomposition of the function spaces as follows. If v ∈ V,
? ∈ &, and ) ∈ & then we decompose these spaces as:

V = V2 ⊕ V 5 and & = &2 ⊕ & 5 , (25)

where V and & are the cG(r) subspaces of V and &, respectively, and the primed versions are the
complements of the cG(r) subspaces in V and &, respectively. We decompose the velocity and
pressure as follows:

v = v2 + v 5 , ) = )2 + ) 5 , 2B = 2B,2 + 2B, 5 , and ? = ?2 + ? 5 , (26)

where the coarse scale components are v2 ∈ V2 and ?2 , )2 , 2B,2 ∈ &2 , and the fine scale components
are v 5 ∈ V 5 and ? 5 , ) 5 ∈ & 5 . We define a projection operator, � : V → V2 , such that v2 = �{v}
and v 5 = v −�{v}. Similar operators decompose the other variables, ?, ), 2B .165

Substituting these decompositions in the original variational form in definition 1 yields:

Momentum Eqns: 1
(2

(
F8 ,

�0E
2,:+1
8
+ �1E

2,:
8
+ �2E

2,:−1
8

�C

)
+ 1
(2

(
F8 , Ẽ

:+1
9

%E2,:+1
8

%G 9

)
− 1
(2

(
%F8
%G 9

, Ẽ:+1
9 E

5 ,:+1
9

)
+

(
F8 ,

%
(
?2,:+1 + ? 5 ,:+1)

%G8

)
+

(
%F8
%G 9

,
%E2,:+1

8

%G 9

)
+

(
%F8
%G 9

,
%E

5 ,:+1
8

%G 9

)
+ �

2Λ2

(
F8 ,

(∑ (
2B,2,:+1 + 2B, 5 ,:+1

)
IB

) %)2,:+1

%G8

)
+ �

2Λ2

(
F8 ,

(∑ (
2B,2,:+1 + 2B, 5 ,:+1

)
IB

) %) 5 ,:+1

%G8

)
+

(
@,

%E2,:+1
8

%G8

)
+

(
@,

%E
5 ,:+1
8

%G8

)
= 0,

(27)

Poisson: 2Λ
(
%@

%G8
,
%
(
)2,:+1 + ) 5 ,:+1)

%G8

)
Ω

+ 2Λ
(
@, =8

%
(
)2,:+1 + ) 5 ,:+1)

%G8

)
%Ω

−
(
@,

∑
2B,2,:+1IB

)
Ω
−

(
@,

∑
2B, 5 ,:+1IB

)
Ω
= 0,

(28)

1Adaptive mesh refinement to capture small-scale instabilities also presents its challenges, primarily of constructing
aposteriori error estimates for solutions to Navier-Stokes which is an open research field
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Nernst-Planck:
(
@,

�02B,2,:+1 + �12B,2,: + �22B,2,:−1

�C

)
Ω

+
(
@, Ẽ:8

%
(
2B,2,:+1 + 2B, 5 ,:+1)

%G8

)
Ω

+
(
%@

%G8
,
%
(
2B,2,:+1 + 2B, 5 ,:+1)

%G8
+ IB

(
2B,2,:+1 + 2B, 5 ,:+1

) %
(
)2,:+1 + ) 5 ,:+1)

%G8

)
Ω

−
(
@, =̂8

(
%
(
2B,2,:+1 + 2B, 5 ,:+1)

%G8
+ IB

(
2B,2,:+1 + 2B, 5 ,:+1

) %
(
)2,:+1 + ) 5 ,:+1)

%G8

))
%Ω

= 0,

(29)

where w, v2 , ∈ �HA(Ω), ?2 , )2 ∈ ��A(Ω), v 5 ∈ (ℐ −�)HA(Ω), ) 5 , 2B, 5 , ? 5 ∈ (ℐ −�)�A(Ω), and
2B,2 , @ ∈ ��A(Ω). Here ℐ is the identity operator, and � is the projection operator.

We can further simplify eq. (29),

(
@,

�02B,2,:+1 + �12B,2,: + �22B,2,:−1

�C

)
Ω

+
(
@, Ẽ:8

%
(
2B,2,:+1 + 2B, 5 ,:+1)

%G8

)
Ω

+
(
%@

%G8
,
%
(
2B,2,:+1 + 2B, 5 ,:+1)

%G8
+ IB

(
2B,2,:+1 + 2B, 5 ,:+1

) %
(
)2,:+1 + ) 5 ,:+1)

%G8

)
Ω

−
(
@, =̂8

(
%
(
2B,2,:+1 + 2B, 5 ,:+1)

%G8
+ IB

(
2B,2,:+1 + 2B, 5 ,:+1

) %
(
)2,:+1 + ) 5 ,:+1)

%G8

))
%Ω

= 0,

(30)

=⇒
(
@,

�02B,2,:+1 + �12B,2,: + �22B,2,:−1

�C

)
Ω

+
(
@, Ẽ:8

%2B,2

%G8

)
Ω

+
(
@, Ẽ:8

%2B, 5

%G8

)
Ω

+
(
%@

%G8
,
%2B,2,:+1

%G8

)
Ω

+
(
%@

%G8
,
%2B, 5 ,:+1

%G8

)
Ω

+
(
%@

%G8
, IB2B,2,:+1 %)2,:+1

%G8

)
Ω

+
(
%@

%G8
, IB2B, 5 ,:+1 %)2,:+1

%G8

)
Ω

+
(
%@

%G8
, IB2B,2,:+1 %) 5 ,:+1

%G8

)
Ω

+
(
%@

%G8
, IB2B, 5 ,:+1 %) 5 ,:+1

%G8

)
Ω

−
(
@, =8

%2B,2,:+1

%G8

)
%Ω

−
(
@, =8

%2B, 5 ,:+1

%G8

)
%Ω

−
(
@, =8I

B2B,2,:+1 %)2,:+1

%G8

)
%Ω

−
(
@, =8I

B2B, 5 ,:+1 %)2,:+1

%G8

)
%Ω

−
(
@, =8I

B2B,2,:+1 %) 5 ,:+1

%G8

)
%Ω

−
(
@, =8I

B2B, 5 ,:+1 %) 5 ,:+1

%G8

)
%Ω

= 0,

(31)

We set the boxed terms to zero (see next paragraph, and also, Table. 2). These assumptions reduce

10



the Nernst-Plank equations to the following,

Nernst-Planck:
(
@,

�02B,2,:+1 + �12B,2,: + �22B,2,:−1

�C

)
Ω

+
(
@, Ẽ:8

%2B,2,:+1

%G8

)
Ω

+
(
@, Ẽ:8

%2B, 5 ,:+1

%G8

)
Ω

+
(
%@

%G8
,
%2B,2,:+1

%G8

)
Ω

+
(
%@

%G8
, IB2B,2,:+1 %)2,:+1

%G8

)
Ω

+
(
%@

%G8
, IB2B, 5 ,:+1 %)2,:+1

%G8

)
Ω

−
(
@, =8

%2B,2,:+1

%G8

)
%Ω

−
(
@, =8I

B2B,2,:+1 %)2,:+1

%G8

)
%Ω

= 0
(32)

=⇒
(
@,

�02B,2,:+1 + �12B,2,: + �22B,2,:−1

�C

)
Ω

+
(
@, Ẽ:8

%2B,2,:+1

%G8

)
Ω

−
(
%@

%G8
, Ẽ:8 2

B, 5 ,:+1
)
Ω

+
(
%@

%G8
,
%2B,2,:+1

%G8

)
Ω

+
(
%@

%G8
, IB2B,2,:+1 %)2,:+1

%G8

)
Ω

+
(
%@

%G8
, IB2B, 5 ,:+1 %)2,:+1

%G8

)
Ω

+
(
@, =8 Ẽ

:
8 2
B, 5 ,:+1

)
%Ω
−

(
@, =8

%2B,2,:+1

%G8

)
%Ω

−
(
@, =8I

B2B,2,:+1 %)2,:+1

%G8

)
%Ω

= 0.
(33)

Table 2 lists the various boxed terms in the coupled set of NS-PNP equations that are set to
zero, along with the rationale for setting them to zero. We remind the reader that these terms are170

set to zero based on well-established assumptions from VMS approaches [52, 54, 55], as well as
moderate assumptions on smoothness of the potential (which allows us to set ) 5 to zero), and that
the fine-scale variables for concentration and potential are zero at the boundary.
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Equation Terms Rational for assumption

Momentum equations
(
%F8
%G 9

,
%E

5 ,:+1
8

%G 9

)
Ω

Projection: Orthogonality conditions from the
projection decomposition, as F8 ∈ �HA (Ω) and

E
5 ,:+1
8

∈ (ℐ −�)HA (Ω)

Momentum equations �
2Λ2

(
F8 ,

(∑ (
2B,2,:+1 + 2B, 5 ,:+1

)
IB

)
%) 5 ,:+1

%G8

)
Ω

) 5 ,:+1 assumed to be zero

Nernst-Planck
equations

(
@, =8 Ẽ

:
8
2B, 5 ,:+1

)
%Ω

Depends on the boundary condition, could be
zero by either a Dirichlet condition of velocity

or a Dirichlet condition of concentration

Nernst-Planck
equations

(
%@
%G8

, %2B, 5 ,:+1
%G8

)
Ω

Projection: Orthogonality conditions from the
projection decomposition, as @ ∈ ��A (Ω) and

2B, 5 ,:+1 ∈ (ℐ −�)�A (Ω)
Nernst-Planck

equations
(
%@
%G8

, IB 2B,2,:+1 %) 5 ,:+1

%G8

)
Ω

) 5 ,:+1 assumed to be zero

Nernst-Planck
equations

(
%@
%G8

, IB 2B, 5 ,:+1 %) 5 ,:+1

%G8

)
Ω

) 5 ,:+1 assumed to be zero

Nernst-Planck
equations

(
@, =8

%2B, 5 ,:+1
%G8

)
%Ω

flux of 2B, 5 ,:+1 assumed to be zero on
boundaries

Nernst-Planck
equations

(
@, =8I

B 2B, 5 ,:+1 %)2,:+1

%G8

)
%Ω

) 5 ,:+1 assumed to be zero

Nernst-Planck
equations

(
@, =8I

B 2B,2,:+1 %) 5 ,:+1

%G8

)
%Ω

) 5 ,:+1 assumed to be zero

Nernst-Planck
equations

(
@, =8I

B 2B, 5 ,:+1 %) 5 ,:+1

%G8

)
%Ω

) 5 ,:+1 assumed to be zero

Poisson equations 2Λ
(
%@
%G8

,
%) 5 ,:+1

%G8

)
Ω

) 5 ,:+1 assumed to be zero

Poisson equations 2Λ
(
@, =8

%) 5 ,:+1

%G8

)
%Ω

) 5 ,:+1 assumed to be zero

Table 2: Table to test captions and labels.

With all the simplifications listed in Table 2 we can now write the fully discrete variational form
for the NS-PNP equations.175
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Definition 2

Let (·, ·) be the standard !2 inner product. We state the time-discrete variational problem as
follows: find v2,:+1 , ∈ �HA(Ω), and ?2,:+1 , 2B,2,:+1(x), )2,:+1 ∈ ��A(Ω) such that

Momentum Eqns: 1
(2

(
F8 ,

�0E
2,:+1
8
+ �1E

2,:
8
+ �2E

2,:−1
8

�C

)
+ 1
(2

(
F8 , Ẽ

:+1
9

%E2,:+1
8

%G 9

)
− 1
(2

(
%F8
%G 9

, Ẽ:+1
9 E

5 ,:+1
9

)
+

(
F8 ,

%
(
?2,:+1 + ? 5 ,:+1)

%G8

)
+

(
%F8
%G 9

,
%E2,:+1

8

%G 9

)
+ �

2Λ2

(
F8 ,

(∑
2B,:+1IB

) %)2,:+1

%G8

)
= 0,

(34)

Solenoidality:
(
@,

%E2,:+1
8

%G8

)
+

(
%@

%G8
, E

5 ,:+1
8

)
= 0, (35)

Poisson: 2Λ
(
%@

%G8
,
%)2,:+1

%G8

)
Ω

− 2Λ
(
@, =8

%)2,:+1

%G8

)
%Ω

−
(
@,

∑
2B,2,:+1IB

)
Ω
−

(
@,

∑
2B, 5 ,:+1IB

)
Ω
= 0,

(36)

Nernst-Planck:
(
@,

�02B,2,:+1 + �12B,2,: + �22B,2,:−1

�C

)
Ω

+
(
@, Ẽ:8

%2B,2,:+1

%G8

)
Ω

−
(
%@

%G8
, Ẽ:8 2

B, 5 ,:+1
)
Ω

+
(
%@

%G8
, IB2B,2,:+1 %)2,:+1

%G8

)
Ω

+
(
%@

%G8
, IB2B, 5 ,:+1 %)2,:+1

%G8

)
Ω

+
(
%@

%G8
,
%2B,2,:+1

%G8

)
Ω

−
(
@, =8

%2B,2,:+1

%G8

)
%Ω

−
(
@, =8I

B2B,2,:+1 %)2,:+1

%G8

)
%Ω

= 0.

(37)

∀w ∈ �HA(Ω), @ ∈ ��A(Ω)
, and v 5 ,:+1 ∈ (ℐ −�)HA(Ω), 2B, 5 ,:+1 , ? 5 ,:+1 ∈ (ℐ −�)�A(Ω)
, given v: , v:−1 ∈ HA(Ω), and ): , ):−1 , 2B,: , 2B,: ∈ �A(Ω).

Note that the above variational problem is not closed as the fine-scale velocities, pressure, and
ion concentrations are unknown. To close the system, we use the residual-based approximation pro-
posed in Bazilevs et al. [54] for the fine-scale components. Defining R< , RB>; , and R2B as the resid-
uals of the momentum, solenoidility and Nernst-Plank equations, the fine scale components are:

E
5

8
= −�<R<

(
E28 , ?

2 , 2B,2
)
, ? 5 = −�B>;RB>;(E28 ), and 2B, 5 = −�2BR2B

(
2B,2 , E28 , )

2
)
, (38)
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where,

�< =

(
4
ΔC2
+ E28�8 9E

2
9 + ��

( 1
'4

)2
�8 9�8 9

)−1/2

, (39)

�B>; =
1

CA(�8 9)�<
, (40)

�2B =

( 4
ΔC2
+ E28�8 9E

2
9 + ���8 9�8 9

)−1/2
. (41)

Here we set �� and �) for all our simulations to 6, and �8 9 =
∑3
:=1 %�:/%G8%�:/%G 9 is a mesh-

based tensor that accounts for the inverse mapping (%�:/%G8) between the parametric and the phys-
ical domain of the element. For octrees, with equal aspect ratio (ΔG = ΔH = ΔI = ℎ), such a
transformation simplifies �8 9 to (2/ℎ)2, where ℎ is the element’s size. Subsequently, the final fully-180

discrete variational form that is solved can be written as follows.
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Definition 3

Let (·, ·) be the standard !2 inner product. We state the time-discrete variational problem as
follows: find v2,:+1 , ∈ �HA(Ω), and ?2,:+1 , 2B,2,:+1(x), )2,:+1 ∈ ��A(Ω) such that

Momentum Eqns: 1
(2

(
F8 ,

�0E
2,:+1
8
+ �1E

2,:
8
+ �2E

2,:−1
8

�C

)
+ 1
(2

(
F8 , Ẽ

:+1
9

%E2,:+1
8

%G 9

)
+ 1
(2

(
%F8
%G 9

, Ẽ:+1
9 �<R<

(
E2,:+1
8

, ?2,:+1 , 2B,2,:+1
))

+
(
F8 ,

%?2,:+1

%G8

)
+

(
%F8
%G8

, �B>;RB>;

(
E2,:+1
8

))
+

(
%F8
%G 9

,
%E2,:+1

8

%G 9

)
+ �

2Λ2

(
F8 ,

(∑
2B,:+1IB

) %)2,:+1

%G8

)
= 0,

(42)

Solenoidality:
(
@,

%E2,:+1
8

%G8

)
−

(
%@

%G8
@, �<R<

(
E2,:+1
8

, ?2,:+1 , 2B,2,:+1
))
= 0, (43)

Poisson: 2Λ
(
%@

%G8
,
%)2,:+1

%G8

)
Ω

− 2Λ
(
@, =8

%)2,:+1

%G8

)
%Ω

−
(
@,

∑
IB2B,2,:+1

)
Ω
+

(
@,

∑
IB�2BR2B

(
E2,:+1
8

, )2,:+1
))
Ω
= 0,

(44)

Nernst-Planck:
(
@,

�02B,2,:+1 + �12B,2,: + �22B,2,:−1

�C

)
Ω

+
(
@, Ẽ:8

%2B,2,:+1

%G8

)
Ω

+
(
%@

%G8
, Ẽ:8 �2BR2B

(
E2,:+1
8

, )2,:+1
))
Ω

+
(
%@

%G8
, IB2B,2,:+1 %)2,:+1

%G8

)
Ω

−
(
%@

%G8
, IB�2BR2B

(
E2,:+1
8

, )2,:+1
) %)2,:+1

%G8

)
Ω

+
(
%@

%G8
,
%2B,2,:+1

%G8

)
Ω

−
(
@, =8

%2B,2,:+1

%G8

)
%Ω

−
(
@, =8I

B2B,2,:+1 %)2,:+1

%G8

)
%Ω

= 0.
(45)

∀w ∈ �HA(Ω), @ ∈ ��A(Ω)
, and v 5 ,:+1 ∈ (ℐ −�)HA(Ω), 2B, 5 ,:+1 , ? 5 ,:+1 ∈ (ℐ −�)�A(Ω)
, given v: , v:−1 ∈ HA(Ω), and ): , ):−1 , 2B,: , 2B,:−1 ∈ �A(Ω).
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4. Solution strategy and design of the numerical framework

4.1. Solution strategy
It is important to note that because we are using a block solution method, the fully discrete

Navier-Stokes equations, eqs. (42) to (43), and the Poisson Nernst Planck equations, eqs. (44)
to (45), are solved as two different sub-problems. Note that the NS (eqs. (42) to (43)) is a lin-
ear system, whereas, PNP (eqs. (44) to (45)) is a non-linear system. We use the Newton method
to reduce the non-linear system (eqs. (42) to (43)) to an iteration of linear problems. Symbolically,
we can write this nonlinear algebraic system as

)8

(
* :

1 , *
:
2 , . . . , *

:
=

)
= 0, (46)

where U: is a finite-dimensional vector that contains all of the degrees of freedom at the discrete-
time level C: . In the system of eqs. (42) and (43), U: contains ion concentrations and electric
potential at time level :. Then the Newton iteration can be posed as,

�<,:
89

�*<,:
9

= −)8
(
*<,:

1 , *<,:
2 , . . . , *<,:

=

)
, �<,:

89
:= %

%* 9
�8

(
*<,:

1 , *<,:
2 , . . . , *<,:

=

)
, (47)

where *<,:
9

is the vector containing all the degrees of freedom at the :th time step and at the <th

Newton iteration. �*<,:
9

is the “variation” vector that will be used to update the current Newton
iteration guess:

*<+1,:
9

= *<,:
9
+ �*<,:

9
. (48)

and �<,:
89

is the Jacobian matrix computed analytically compute by calculating the variations (par-
tial derivatives) of the operators with respect to the degrees of freedom. The iterative procedure
begins with an initial guess which is set to the solution from the previous time step:

*0,:
8
= * :−1

8 , (49)

and ends once we reach the desired tolerance:

‖�*<,:
9
‖ ≤ TOL. (50)

The block strategy for solving the system is given in Fig. 1. The flow chart in fig. 1 shows that185

the linear semi-implicit Navier Stokes system is solved first from the available data from the pre-
vious timestep. Subsequently, the Poisson Nernst-Planck system is solved from the data from the
previous timestep and the first block of Navier-Stokes. The block iteration is repeated until a de-
sired convergance is reached. Numerical experiments reveal that 2 block iterations produces tight
convergence for all examples; with 1 block iteration often providing good results for most examples.190

4.2. Software design
The software is designed in a layer-by-layer fashion. The numerical simulation presented in

this work is implemented on top of massively parallel framework Dendrite-KT. Dendrite-KT uses
Dendro-KT for adaptive octree mesh generation and Petsc for linear algebra solver by utilizing
KSP (Krylov Subspace) context for solving linear system of equations and SNES context for Newton195

iteration. Dendro-KT allows allows for targeted, dynamic mesh refinement based on either the
location or aposteriori estimates.
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Known fields at
some timestep ::
v: , v:−1, ?: , ): ,
):−1, 2B,: , 2B,:−1,
blockiter : ℓ = 0

Semi-Implicit: Solve Navier-Stokes and
update the fields (eqs. (42) to (43)):

v:+1(ℓ ) , ?:+1(ℓ ) ← v: , ?: , ): , 2B,: ?:+1(ℓ ) ← ?:

Fully-Implicit: Solve Poisson and Nernst-Planck
equations and update the fields (eqs. (44) to (45)):

2B,:+1(ℓ ) ← 2B,: , v:+1(ℓ ) , v: and ):+1(ℓ ) ← ): , 2B,:+1(ℓ ) , 2B,:

blockiter : ℓ = ℓ + 1

if blockiter > 1 and
max

U:+1(ℓ ) −U:+1(ℓ−1) <
blocktol, where U:+1
is a vector containing
v:+1(;) , ?:+1(;) , 2B,:+1(;) , ):+1(;)

Solution at current timestep : + 1 (ℓ =
<): v:+1 = v:+1(<), , ?:+1 = ?:+1(<),
, ):+1 = ):+1(<) , 2B,:+1 = 2B,:+1(<)

NO

YES, for ℓ = <

Figure 1: Flowchart for the block iteration technique as described in section 4.1 .
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The organization of the overall framework is illustrated in Fig. 2. The yellow layers represent
the computational framework. The modeling framework - shown as three blocks on top of the
computational framework, represents the fully discrete scheme presented in section 3. The non-200

linear solve for the PNP system (eqs. (44) to (45)) is solved by coupling the data structures on
the octree meshing framework with Petsc using the SNES context. Subsequently, the inner linear
solves required for the PNP system and the NS system (eqs. (42) to (43)) are solved using the
KSP construct. This allows us to exploit the plethora of preconditioner and linear iterative solvers
in Petsc. The final solution vectors are saved in the parallel VTK format, which makes visualization205

using ParaView straightforward.
Dendro-KT meshing framework: An “octant“ represents the fundamental building block of

the octree mesh. At the root of the octree, an octant is a cube that encompasses the full domain. In
order to construct the octree, all ? compute processes start at the root node. To avoid communica-
tion during the refinement stage, we perform redundant computations on all ? processes. Starting210

from the root node, all processes refine (similar to the sequential code) until at leastO(?) octants are
produced. Then using a weighted space-filling-curve (SFC) based partitioning, we partition the oc-
tants across all processes. Further, proceeding in a top-down fashion, an octant is refined based on
user-specified criteria. The refinement criteria is a user-specified function that takes the coordinates
of the octant and the associated values, and returns true or false. Since the refinement happens215

in an element-local fashion, this step is embarrassingly parallel. In distributed memory, the initial
top-down tree construction (which describes the mesh) also enables an efficient partitioning of the
domain across an arbitrary number of processes.

The key distinguishing factor for Dendro-KT, as compared to other octree libraries [42, 56, 57],
is the ability to carve out any arbitrarily shaped object based on a simple Active - InActive clas-220

sification of a point ∈ R3, leading to the generation of incomplete octree. An element is said to be
Active, if all the nodes of the element falls within the active region of the domain Ω and InActive
if all the nodes falls within the inactive region. If some of the nodes fall within the active region
and some within the inactive, the element is marked Intercepted. The basic idea of Dendro-KT is
to retain the Active and Intercepted elements and remove the InActive elements. Such a construc-225

tion leads to generation of octree that is incomplete. An octree is called incomplete if siblings of at
least one octant (at any given level) are missing. During the top-down construction, if any given
octant falls into the InActive region of the domain, then the given octant is not further considered
a candidate for refinement. This introduces a very efficient way to generate octrees by pruning the
tree at a coarser level. Additionally, incomplete octrees provide saving in total number of degrees230

of freedom to be solve, in comparison to traditional complete octrees. This translates to additional
savings in time-to-solve as well as conditioning of the matrix. We refer the interested readers to
our previous work [58, 59] for further details of incomplete octree construction and scalability
performance.

FEM operations: Dendro-KT supports both matrix and matrix-free computations. To prevent235

indirect memory access, Dendro-KT does not store any elemental to global map data structure
but relies on performing top-down and bottom-up traversals of the mesh tree. The top-down and
bottom-up traversals can be thought of as scatter and gather operations, respectively.

The top-down phase selectively copies nodes from coarser to finer levels until the leaf level is
reached. We create buckets for all child subtrees. Looping through the nodes, a node is copied240

into a bucket if the node is incident on the child subtree corresponding to that bucket. A node that
is incident on multiple child subtrees will be duplicated. By recursing on each child subtree and
its corresponding bucket of incident nodes, we eventually reach the leaf level. Once the traversal
reaches a leaf octant, the elemental nodes have been copied into a contiguous array. The elemental
vector is computed directly without the use of an element-to-node map. The result is stored in a245
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Fully coupled NS-PNP equations for electrokinetics

Stabilization using
Variational Multiscale

Method
Hybrid fully-implicit and

semi-implicit schemes

Highly parallel adaptive meshing using Dendro

Continuous Galerkin Finite elements integration using Dendrite-KT

Scalable iterative linear solvers (gmg/amg) using Petsc suite

Detailed visualization using parallel vtk

Electro-
kinetics
applica-
tions

M
od

el
in
gf

ra
me

wo
rk

Computational framework

Figure 2: Design schematic of the parallel framework for solving NS-PNP.

contiguous output buffer the same size as the local elemental input vector.
After all child subtrees have been traversed, the bottom-up phase returns results from a finer to

a coarser level. The parent subtree nodes are once again bucketed to child subtrees, but instead of
the parent values being copied, the values of nodes from each child are accumulated into a parent
output array. For any node that is incident on multiple child subtrees, the values from all node250

instances are summed to a single value. The global vector is assembled after the bottom-up phase
executes at the root of the octree. A detailed description of this process is provided in our previous
work, specifically Saurabh et al. [58], Ishii et al. [60], Khanwale et al. [61]

5. Results

5.1. Method of manufactured solutions for convergence analysis255

We use the method of manufactured solutions to assess the temporal and spatial convergence
of our proposed scheme. In this work, we restrict ourselves to a linear basis function (A = 1). We
construct the appropriate forcing function to satisfy the analytical solution of the form:

D = cos(2C) sin(2�G) cos(2�H)
E = − cos(2C) cos(2�G) sin(2�H)
? = cos(2C) sin(2�G) cos(2�H)
) = − cos(2C) cos(2�G) sin(2�H)
2+ = cos(2C) cos(2�G) sin(2�H)
2− = cos(2C) sin(2�G) cos(2�H)

(51)

We solve the NS-PNP equations on a square domain [0, 1]2, with Dirichlet conditions enforced
on all boundaries. We note that the manufactured solution for the fluid velocity is divergence-260

free. Fig. 3 shows both the spatial and temporal discretization convergence results. For the spatial
convergence analysis, we fixed the timestep ΔC at 0.0157 and varied the spatial resolution. Next, to
study the temporal convergence behavior, we chose the spatial resolution to be level 9 (ΔG = ΔH =
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Figure 3: Convergence analysis using the method of manufactured solutions. (a), spatial, and (b), temporal convergence
of the NS-PNP solver.

1/29). The !2 error is reported at the final time of C = �. We observe an expected second-order
spatial ( Fig. 3(a)) and temporal convergence ( Fig. 3(a)). At an error of about O(10−7), we see the265

flattening out of the error curves, especially in temporal convergence studies. This flattening can
be attributed to the errors from the spatial resolution limit starting to dominate the !2 error. These
results indicate that the implementation exhibits the expected second-order spatial and temporal
convergence behavior.

5.2. Electro-Osmotic Flow270

We next test our approach to model electroosmotic flow (EOF) in a straight channel by solving
the NS-PNP equations for monovalent binary electrolytes (i.e., B = 2, I = 1). EOF forms when an
electric field is applied across a channel with charged walls. The applied electric field drives fluid
flow in the boundary layer where the net charge is non-zero, resulting in the typical plug shaped
profile due to the shear stress. We simulate EOF in a 2-D straight channel having zeta potential (�0)275

of −2.77 against the channel center and a potential drop (0.3959) along the channel axis (- = 10).
The concentration at the inlet and outlet is set to 1.0, and no-mass transport is allowed across the
wall boundary. The non-slip boundary condition is applied at the channel wall, and, at the inlet
and outlet, EH = 0, ? = 0, and %EG

%G = 0. The (2 = �
�� was 6.87 × 102, and Λ = �

!2ℎ
was 0.096.

Considering the symmetric nature of the velocity profile, only the bottom half of the channel280

was calculated. The size of the mesh was 0.0156 near the bottom wall (H ≤ 0.7) to resolve the
boundary layer and 0.0313 away from the wall (H > 0.7). Initially, only the PNP equations were
solved to obtain the initial condition with developed EDL, and then, the fully coupled NS-PNP
equations were solved to simulate EOF. A time step ofΔC = 14−5 was chosen. Around 100 timesteps
produce the expected plug profile.285

The evolution of the boundary layer and the steady-state plug profile can be found at Fig. 4.
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Figure 4: Evolution of velocity profile from EOF simulation and analytical solution.

The analytical solution of electroosmotic flow velocity is

E∗G,�$� = −
��∗0�G
�

. (52)

For the EOF simulation in this section, � = 7.083 × 10−10 and� = 8.9 × 10−4. And the non-dimensional
EOF velocity is

EG,�$� =
!2ℎ
�
E∗G,�$� . (53)

Fig. 4 shows that as the flow develops, the plug flow profile approaches the analytical plug flow
prediction of EG,�$�. After the flow was fully developed, we found a good agreement between EOF
simulation and analytical solution with less than 5% error.

5.3. Electro-convective instability
We next demonstrate electrokinetic transport near an ion-selective surface, which is a good290

benchmarking problem because 1) the problem can be found in a wide range of applications, 2)
the length scale of the EDL near the surface requires an extremely small mesh size, which makes
the problem a good test case for the proposed octree-based mesh, and 3) the turbulence-like char-
acteristics trigger numerical instabilities, which necessitates numerical stabilization from VMS.

The simulation was performed for the transport of monovalent binary electrolytes in a rectan-295

gular domain whose dimension is 8 × 1. The top boundary is a reservoir at which the potential and
the concentration of both species are fixed (Dirichlet). The ion-selective surface is located at the
bottom boundary, where the potential is grounded. The cation concentration was 2+ = 2, and no
anion flux was allowed across the ion-selective surface. A periodic boundary condition is applied
to the side walls. Fig. 5 shows the schematic of the domain, and Table 3 lists the boundary condi-300

tions for the different variables. We consider two cases, one when a moderate potential difference of
Δ) = 20 is imposed across the domain, and another when a large potential difference of Δ) = 120
is imposed. We anticipate significant electro-convective instabilities to occur in the second case.

Similar to the previous example, finer refinement was used near the ion-selective surface to
resolve steep gradients in the boundary layer. The bottom part of the domain, extending from y =305
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Figure 5: Schematic diagram (not on scale) for the electro-convective instability.

Variable Type Value

NS

Top Wall u Dirichlet 0
v Dirichlet 0

Bottom Wall u Dirichlet 0
v Dirichlet 0

Side walls Periodic

PNP

Top Wall
) Dirichlet 20 or 120
2+ Dirichlet 1
2− Dirichlet 1

Bottom Wall
) Dirichlet 0
2+ Dirichlet 2
2− Neumann 0

Side walls Periodic

Table 3: Boundary condition for the electro-convective instabilty
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0 to y = 0.1, consists of elements refined to level 13 (ΔG = ΔH = 8/213), while the rest of the region
consists of elements refined to level 10 (ΔG = ΔH = 8/210). The setup resulted in a domain with
approximately 1M cells. In contrast, an equivalent uniform mesh at the finest resolution would
have ∼ 10M cells. The initial condition with fully developed EDL was generated by solving only
the PNP equations, then randomly perturbing the resultant concentrations locally by 1% to initiate310

the instability before solving the fully coupled NS-PNP equations. The timestep was 10−2 for the
case with potential difference, Δ) = 20, and a time step of 10−4 for the case of potential difference
Δ) = 120.

We first compare the temporal evolution of the charge density (2+−2−) and velocity fields under
the imposition of the potential drops. This is shown in Fig. 6 for the Δ) = 20 case and Fig. 7 for the315

Δ) = 120 case. Once a potential drop is applied, the ion concentration profile near the ion-selective
surface forms an electric double layer (EDL) and diffusion layer (DL). Depending on the level of
the potential drop, the extended space charge layer (ESC) may form between EDL and DL [16].
When Δ) = 20, the ESC is not formed, and the magnitude of convection was insufficient to trigger
instabilities. A series of counter-rotating vortices are observed in Fig. 6. On the other hand, an ESC320

was observed in the initial stage of Δ) = 120. The interplay between ESC and convection triggered
electrohydrodynamic instability, as reported in Druzgalski et al. [16]. As the simulation proceeds,
the development of electrohydrodynamic instability becomes even more evident. We note that the
average velocity at Δ) = 120 was greater than that of Δ) = 20 case by two orders of magnitude.

We next extract quantitative properties for comparison. The current measured on the boundary
is an often used property, as it is the easiest property to experimentally measure. Fig. 8 (a) shows
the temporal variation of the magnitude of the net species flux, | 9±

)
|, through the top boundary,

calculated as

9±) = −
1
!)

#)∑
;=1

[(
@, =̂)

(
%2+,C

%G8
+ I+2+,C

%)C

%G8

))
Γ;

−
(
@, =̂)

(
%2−,C

%G8
+ I−2−,C

%)C

%G8

))
Γ;

]
, (54)

where !) , #) , =̂) , and Γ = %ΩΓ are the length of the top boundary, the number of the top boundary325

elements, the normal vector to the top boundary, and the top boundary, respectively. We see that,
in the absence of electro-convective instabilities, the current (for the Δ) = 20 case) was uniform
over time, as expected in the absence of ESC and not enough convection to perturb established
EDL. In contrast, the significant current fluctuations was observed for the Δ) = 120 case due to the
instability.330

We finally plot G−averaged field values for the potential (Fig. 8 (b)), concentration (Fig. 8 (c))
and charge density (Fig. 8 (d)). Note the logarithmic axis in these figures to ensure that the varia-
tion close to the ion-selective surface are emphasized. These figures also allow detailed comparison
with previous DNS simulations of the same case by Druzgalski et al. [16], which shows excellent
agreement. Note that our numerical scheme allows three orders of magnitude larger time steps as335

compared to the benchmarking problem by Druzgalski et al. [16], with identical results.
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Figure 6: Contour plots of charge density and velocity magnitudes at different times for Δ) = 20.
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Figure 8: Electro-osmotic instability: Variation of current with time (in s) for different Δ) is shown in Fig. 8a. Time and X
averaged variation of potential gradient (%H)) (Fig. 8b), concentration (Fig. 8c) and charge density (Fig. 8d) with wall
normal distance H for Δ) = 20 and 120. The dotted markers in the plot corresponds to the previous DNS results by
Druzgalski et al. [16]
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5.4. Packed bed ion concentration polarization: Complex geometries, small EDLs, and upstream vortex for-
mation

Our final example illustrates a simulation of ion concentration polarization (ICP) – a phe-
nomenon used in a wide array of electrochemical unit operations – in a realistic, state-of-art en-340

gineering device. The device consists of a packed bed of metallic beads that act as a set of elec-
trodes embedded within a microfluidic device. This device was recently studied experimentally
by Berzina et al. [62] to circumvent two challenges faced by conventional ICP occurring at a planar
electrode, detailed in the next paragraph. The device configuration offers a challenging canonical
simulation example due to (a) the complex geometries of the electrodes involved, (b) the steep345

gradients (especially near these complex geometries), and small EDL’s produced by the operating
conditions, (c) the ensuing channel scale vortical structures that have to be accurately resolved, and
(d) the long time horizon over which the current measurements stabilize.

There has been a growing interest in ICP due to its ability to enrich and separate charged species.
The key idea of ICP is to manipulate target analytes by leveraging a high electric field in the ion350

depletion zone (IDZ) created by selective charge transport. Previous studies have successfully
demonstrated a variety of applications, including seawater desalination [8], hemodialysis [63], an-
alyte preconcentration [64], and manipulation of neutral species following their partition in to ionic
micelles [65], all using planar ICP. However, two challenges preclude the scaling up of ICP from
enabling commercial deployment. First, an IDZ formed at a planar membrane or electrode may355

not extend across the full channel cross-section under the flow rate employed for focusing, thereby
allowing the analyte to “leak” past the IDZ. Second, within the IDZ, large fluid vortices lead to
mixing, which decreases the efficiency of analyte enrichment and worsens with increased chan-
nel dimensions. A promising approach has been to move away from a planar electrode (along the
bottom of the channel) to using engineered, porous electrodes across the channel cross-section. Re-360

cently, Berzina et al. [62] introduced 3-D packed bed electrodes that successfully control unwanted
instabilities and extend high electric field area for enrichment of bioanalytes prior to detection. In
a follow-up study by Berzina et al. [66], an additional bed of packed bioconjugated beads was in-
corporated for DNA capture. We deploy our computational framework on this configuration to
explore the impact of the packed bed electrodes on the current generation, concentration distribu-365

tion, electric field extent, and vorticity patterns.
The domain consists of a cuboidal geometry with packed bed electrodes – made up of spherical

beads – downstream of the channel inlet. Fluid is pushed from left to right, and a potential differ-
ence is maintained. The length, width, and height of the simulation domain are 32× 1× 1. We only
simulate a part of the width considering symmetry. On the floor of the packed bead bed, a planar370

electrode is located. The geometry around the packed beds is shown in Fig. 10 - Fig. 11.
A challenging aspect in such simulations is the need to construct an adaptively refined mesh of

this complex geometry. Here, the octree-based adaptive meshing feature in our framework allows
us to efficiently construct a high-quality mesh of the system. Fig. 9 illustrates the mesh refinement
near the packed bed on a vertical plane. The refinement level ranges from 9 (bulk) to 13 (elec-375

trodes), which corresponds to the element sizes ranging from 32/29 ∼ 0.0625 and 32/213 ∼ 0.0039,
which captures physics in a wide range of length scales from the EDL around the ”rough” electrode
surface to the fluid flow at bulk. The non-dimensional Debye length, in this case, is 0.0036.

The details of boundary conditions are listed in Table 4. As before, the initial conditions were
obtained by solving only the PNP equations until the EDL was fully developed. Then, the fully380

coupled NS-PNP equations were solved.
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Type Value

NS

Sphere
Top Wall

Bottom Wall
(no - slip)

u Dirichlet 0
v Dirichlet 0
w Dirichlet 0
p Neumann 0

Inlet

u Dirichlet 0.371
v Dirichlet 0
w Dirichlet 0
p Neumann 0

Outlet

u Neumann 0
v Neumann 0
w Neumann 0
p Dirchlet 0

Side walls Periodic

PNP

Sphere,
Bottom electrode
region (electrode)

) Dirichlet 277.1
2+ Dirichlet 0
2− Dirichlet 0

Inlet
) Dirichlet 0
2+ Dirichlet 1
2− Neumann 1

Outlet
) Neumann 0
2+ Neuman 0
2− Neumann 0

Bottom Wall
except

the electrode

) Neumann 0
2+ Neuman 0
2− Neumann 0

Side walls Periodic

Table 4: Boundary condition for 3-D electrode packed bed ICP
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Figure 9: Adaptive mesh refinement: Figure showing the mesh refinement across a Z slice for the microbeads case
described in Section 5.4. The overall mesh varies by 5 levels, i.e. element lengths can vary by a factor of 25 = 32× in each
direction, resulting in > 104× difference in the volume difference between the coarse and fine resolution.
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We compare the spatial variations in the electric field, charge densities, and flow fields between
two cases: a microchannel with a packed bead electrode as described above versus a microchannel
with only a planar electrode. We first compare the magnitude and extent of the electric field in
Fig. 10. We see that the presence of the microbeads causes the local enhancement of the electric385

field to extend throughout the channel cross section rather than being concentrated only in the
bottom region. We note that these observations are qualitatively consistent with the ones reported
in the experimental study of Berzina et al. [62].

Next, we compare the flow fields between the two cases in Fig. 11. Note the set of vortices
that span the channel width, with each vortex pair nearly spanning the channel height. This is in390

contrast to a single large vortex in the planar electrode case. The increased region over which the
electric field acts induces a larger velocity field upstream of the packed bed. However, experimen-
tal evidence suggests that this does not cause any electroconvective instabilities. The absence of
electroconvective instabilities is confirmed by visualizing the ionic strength in Fig. 12.

6. Conclusions and future work395

Direct numerical simulations of the coupled NS-PNP equations are challenging due to the 1)
wide ranges of time and length scales exhibited by the multiscale physics, 2) chaotic flow features
that often trigger numerical instabilities, and 3) geometric complexities that escalate the computa-
tional cost. In this work, we presented a finite element based numerical framework that addresses
those challenges by incorporating 1) Variational multiscale pressure stabilization, 2) hybridized400

semi-implicit and fully implicit time integration schemes, and 3) highly parallelized adaptive mesh-
ing.

We demonstrate the utility of the framework using a series of numerical examples. The tempo-
ral and spatial convergence tests were performed to verify the order of accuracy of the numerical
framework. Next, the simulation results for an electroosmotic flow were compared with its ana-405

lytical solution. Then, we performed simulations capturing electrohydrodynamic instabilities near
an ion-selective surface. These simulations showed excellent agreement with previously reported
direct numerical simulations. Moreover, the proposed numerical scheme enabled using time steps
three orders of magnitude larger than the benchmarking study, allowing significant savings in com-
putational costs. Finally, we deployed the framework for simulating a practical microfluidics ap-410

plication for analyte preconcentration, which involves a complex geometry. The adaptive meshing
and numerical approach are able to capture the impact of the complex geometry of 3-D electrodes.
The simulation confirmed the effect of the 3-D electrodes on suppressing unwanted vortices and
extending the high electric field area, and this phenomenon was also observed in the experimental
work.415

In summary, our proposed numerical framework addresses the challenges involved in detailed
simulations of electrokinetic phenomena for practical applications. The numerical framework of-
fers robustness for simulations with numerical instabilities, the ability to take large time steps to
reach long-time horizon simulations, and adaptive octree-based meshing to resolve geometric com-
plexities, all packaged within a massively scalable software stack.420
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