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Abstract

Protocol conversion problem involves identifying whether two or more protocols can be com-

posed with or without an intermediary, referred to as a converter, to obtain a pre-specified desired

behavior. We investigate this problem in formal setting and propose, for the first time, a temporal

logic based automatic solution to the convertibility verification and synthesis. At its core, our tech-

nique is based on local model checking technique and determines the existence of the converter

and if a converter exists, it is automatically synthesized. A number of key features of our technique

distinguishes it from all existing formal and/or informal techniques. Firstly, we handle both data

and control mismatches (for the first time), using a single unifying model checking based solution.

Secondly, the proposed approach uses temporal logic for the specification of correct behaviors (un-

like earlier automaton based specifications) which is both elegant and natural to express event

ordering and data-matching requirements. Finally, we have have experimented extensively with

the examples available in the existing literature to evaluate the applicability of our technique in

wide range of applications.

1 Introduction

Application-specific and ubiquitous computers, called embedded systems, are often designed by

reusing several pre-designed blocks to reduce designer effort and verification time while improving
the overall design quality. During this process, a designer puts together a set of intellectual property

(IP) blocks (using some well known tools and design methodology). For example, a system-on-a-

chip (SoC) is built by reusing IPs connected using a central bus such as AMBA [DRS04]. A major
problem with this reuse is the inherent mismatch between protocols of IPs. This has been an active

area of research for over two decades [BK87, Gre86], even before SOCs came into being (because
of earlier component-reuse techniques). Mismatches occur because components are developed in-

dependently without any intention of eventual integration, and can result from control signal mis-

matches [Gre86], inconsistent naming conventions [SL89], different clock speeds and difference in
data-widths [DRS04].

Problem Definition. Mismatches are corrected, if possible, by synthesizing extra glue-logic, called

a converter[PdAHSV02] to control communication between two given protocols in order to satisfy
given specifications. Figure. 1 presents the protocol conversion problem between two protocols P1

and P2. The reader protocol P1 has three control inputs next, ack and more and has one control
output req. Its data input port DIn8 is 8-bits wide. On the other hand, the writer protocol P2 has

one control output ack, two control inputs req and reset, and a data output port DOut16 of size 16.

P1 and P2 can share the control signals req and ack to communicate with each other. However,
the input reset for P2 or the inputs more and next for P1 are not emitted by the dual protocol.

Also, the data ports DIn8 and DOut16 do not have the same sizes which may result in lossy data
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Figure 1: Convertibility Verification Problem

communication. Furthermore, the unrestricted interaction between the two protocols may lead to

faulty execution paths or to blocking states (for example, where P2 is waiting for the input reset not
provided by P1).

Given the above inconsistencies between P1 and P2, it may be required to restrict or guide their

communication in such a way that intended behavior of the combined system can be achieved. These
restrictions may include control and/or data constraints (also known as specification as shown in Fig-

ure 1). For example, an appropriate control constraint could require that control signals between
the protocols are exchanged in specific orders (e.g., a request req from P1 is always followed by an

acknowledge ack from P2 before any any data can be read by P1). Similarly, a data constraint may

require that P2 never tries to write more data for P1 before P1 has read all data available to it pre-
viously (to prevent overflows). Given the description of the protocols and the desired specifications

(which capture control/data constraints), protocol conversion investigates whether a converter can

be generated which can guide protocol interaction in order to satisfy the given constraints.

Related Work. Protocol conversion has been studied extensively in literature and many different

solutions have been proposed. Broadly, approaches can be categorized as either being informal
(algorithmic but lacking in any mathematical rigor) or formal (based on some mathematical proof

technique such as refinement or model checking).

Protocol conversion was first proposed in [Gre86] which focused on the need for protocol con-
version and proposed informal ways of handling mismatches. Early work mostly proposed ad-hoc

solutions such as converters for protocol gateways [Boc90] and interworking networks [BI89] have

been proposed. For embedded systems, initial informal solutions were proposed by Borriello et al.
[BK87], where timing diagram based specifications of protocols were used. Subsequently, Narayan

and Gajski [NG95] proposed an algorithm that could bridge both control mismatches and data-
width mismatches. However, the algorithm is fairly limited due to the following: firstly, the protocol

descriptions were only linear traces of automata where no branching was allowed. Secondly, the

algorithm could bridge only limited data-width mismatches where data ports had to be exact mul-
tiples. Finally, the algorithm had no way of answering the fundamental question: given protocol

descriptions of P1 and P2 how do we determine if a converter exists that can bridge the mismatches.
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Unlike these ad-hoc solutions, formal approaches try to provide an answer to the above question

using some rigorous technique. These require protocols and specifications to be represented for-
mally and use mathematical proofs to address the protocol conversion problem [GBB+06, DRS04,

PdAHSV02]. [PdAHSV02] presents a formal approach where protocols are described using finite

automata. The desired specifications (which capture only control constraints in their setting) are
also described as an automaton. A game-theoretic formulation is used to check for the existence of

a converter and also to generate a converter. While this formulation presents, for the first time, an
elegant formal verification based solution, it suffers from several limitations. Firstly, the protocol de-

scriptions use automaton that do not distinguish between inputs and outputs and may be triggered

by either of them (this can be extremely problematic as justified in section 2.3). Secondly, the pro-
tocol conversion problem only solved control mismatches of half-duplex protocols and no solutions to

the data-width mismatch problem was provided. Finally, no practical protocol conversion tool was

developed for benchmarking and evaluating the proposed approach. [DRS04, dRS05] present syn-
chronous protocol automata, which is a much better representation compared to earlier approaches

as it faithfully models clocks while distinguishing between inputs and outputs. Authors propose a
compatibility relation (similar to other well known refinement and bisimulation like relations) to

check for protocol compatibility. However, no solution for data-width mismatches was proposed

and no data and control constrains could be captured (though authors performed an additional pass
of model checking to ensure converter correctness). In [GBB+06], a hybrid simulation/verification

approach to protocol conversion in SoC designs is proposed, where both simulation and formal

verification is combined. However, the proposed approach also suffers from similar limitations.

The protocol matching problem seems superficially similar to the problem of controller synthesis

in discrete event systems (DES) [RW89]. Early approaches in DES [KG95] were limited to both
plant and specifications being described using labeled transition systems (a type of automata-based

specification). More recently, specifications have been captured in temporal logics, which are a

very natural way of describing requirements involving liveness, safety and fairness. In [Ant95] the
logic CTL is used to describe specifications. In [JK06], the logic CTL∗ is used for specifications

while the plant is modeled as an LTS. Then, an automatic synthesis approach for the controller is

presented. Authors show that the DES control problem for CTL∗ specifications is equivalent to the
module checking problem [KVW01]. While both DES approach and converter synthesis approach

try to synthesize a controller (or a converter), there are fundamental differences between the two
approaches. Firstly, the in DES setting a controller may only disable events in the plant to ensure that

all desired specifications are met. This is unlike the role of the converter that performs disabling

of transitions in addition to performing other desirable actions such as the buffering of an event
for later forwarding, and the generation of extra control signals. Secondly, in the DES setting,

there is no need for bridging data-width and clock mismatches, which are critical requirements for

convertibility verification.

Contributions of our solution. In this paper, for the first time, we provide an uniform solu-

tion mechanism for convertibility verification and converter synthesis using the well studied model
checking based approach. The key issues while developing a solution and the main contributions of

our approach are summarized below:

1. How to represent the protocols P1 and P2?: we introduce the notion of synchronous Kripke

structure (SKS) to represent protocols. SKS can distinguish between inputs and outputs and
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also can effectively model data-widths. Hence, in our opinion, they provide an ideal modeling

paradigm for IP protocols. Unlike synchronous protocol automata [DRS04] which is primarily
designed for checking for the existence of a compatibility relation (a refinement based solu-

tion) between two protocols, our model is ideal for a model checking based solution and is

created to tackle both control and data-width mismatches.

2. How to describe the required specifications?: we develop a temporal logic based formula-

tion where the temporal logic ACTL is used to describe both control-constraints and data-

constraints. We believe that temporal logics are the most natural way of writing these require-
ments succinctly and effectively. We use ACTL since these control and data constraints need

to be always universally quantified. LTL was not considered (though it is more expressive) be-
cause of much higher complexity of LTL convertibility verification (which is PSPACE complete

[KVW01]).

3. What kind of approach for convertibility verification and converter synthesis is required?: we

develop a local model checking based formulation for both convertibility verification and con-
verter synthesis. In our approach, we perform disabling, buffering and event forwarding in

composite system (P1||P2). More critically, we also perform the checking of data-constraints
using a formulation similar to [AD94] using bounded integer data-counters that are valid only

in specified bounded regions. Unlike previously known approaches to data-constraint match-

ing during protocol conversion, our approach can deal with arbitrary data-widths of the two
protocols (earlier solutions required data-widths to be multiples of each other).

Organization. The rest of this paper is organized as follows. Section 2 presents synchronous

Kripke structure and temporal logic ACTL used for describing the behavior and desired properties
of protocols in our setting. Section 3 presents the model checking based algorithm for converter

synthesis. Section 4 provides implementation results with concluding remarks in section 5.

2 Model, Specification & Composition

For converter synthesis, three types of mismatches need to be considered: control, data-width and

clock. In the paper we concentrate only on the first two types of mismatches and assume that there
are no clock mismatches1. Hence, in our setting, both the IPs and the converter use the same clock

for synchronization. The proposed protocol conversion algorithm takes as input the synchronous

Kripke structure (SKS) descriptions of two protocols and a set of ACTL properties representing the
desired behavior of their composition. It then employs a local model checking based algorithm

to verify the existence of a converter which regulates the behavior of protocols to (a) resolve the
incompatibilities, if any and (b) ensure conformance to the desired behavior of the composition.

1We have also developed a technique for bridging clock mismatches using multi-clock Kripke structures (See
http://www.cs.iastate.edu/∼sbasu/research/multiclock.pdf) which is not the subject matter of the current paper.
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2.1 Protocol Description using SKS

We introduce Synchronous Kripke Structures (SKS) for protocol description. An SKS extends stan-
dard Kripke structures by introducing transition triggers and outputs and also has a notion of syn-

chrony through a clock that is used for sampling all inputs.

Definition 1 (SKS) A Synchronous Kripke structure (SKS) is a finite state machine represented as a

tuple 〈AP , S, s0, ΣI , ΣO, R, clk L〉 where AP is a set of atomic propositions; S is a finite set of states;

s0 ∈ S is the initial state; ΣI = Σ+
I ∪ Σ−

I is a finite and non-empty set of all possible input events

(where Σ+
I is the set of input events and Σ−

I is the set of negated events) and ΣO is the finite non-empty

set of output events. ΣI and ΣO include the empty output event .; R ⊆ S × t × ΣI × ΣO × S is the

transition relation; and L : S → 2AP is the state labeling function. Finally, the event t represents the

ticking of the clk.

All transitions trigger with respect to the ticks of this clock. Moreover, each transition has an input
trigger event. A transition will trigger only when the associated input event is present (in case the

trigger is the negation of an event, the event must be absent) during the current tick. When a given

transition triggers, a specific output (which is specified in the transition) is also generated by the
protocol. Because of ideas of synchrony borrowed from synchronous languages [Lef05, BCE+03],

SKS can model both the presence and absence of events. In case no matching input triggers are

present, the protocol remains in its current state. We use ∼ (e.g., ∼ a) to represent the absence
of input signals, ∗ to represent any input signal and use . to represent no signal. We represent the

relations (s, t, i, o, s′) ∈ R also as s
i/o
−→t s

′. We represent autonomous transitions that trigger on the

tick event as s
./o
−→t s

′ (not requiring presence of any external stimuli, except the tick).

States of a SKS are labeled using atomic propositions exactly like standard Kripke structures.
However, we use some atomic propositions that have an integer suffix (such as DIn8) to indicate

data input or output over ports of specific widths. These are subsequently used by the our algorithm

for updating counter values (to be illustrated in section 3).

Two protocols represented as SKS have finite sets of inputs and outputs. We require that at

least some input signals in one protocol match with outputs emitted by the other (ΣI1 ∩ ΣO2 6= ∅,
Σ12 ∩ ΣO1 6= ∅). This restriction allows for meaningful bi-directional exchange of signals between

the two protocols, even under the control of a converter (described in the following section).

In our current setting, we assume that the same clk is used for both the protocols and also the
converter. This allows us to use well known results from the theory of synchronous languages to

deal with issues such as causality and constructiveness [BCE+03] effectively. For example, we reject

transitions of the form s1
a/∼a
→ s1 as semantically invalid. This assumption, will make protocol

composition and converter synthesis simpler, compared to multi-clock systems.
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Figure 2: Reader-writer protocol pair

Illustrative example: Reader-Writer protocols. Figure. 2 shows the SKS representations of the
reader and writer protocols (presented in Figure. 1), which are typical protocols in SoCs [RMK03].

The reader protocol P1, in its initial state s0 awaits the next input to start a new transaction. Once
next is received, it sends a request (output req) to the writer and makes a transition to state s1.

In s1, if the acknowledge input ack is present in the next clock-tick, the reader evolves to state s2

(otherwise resets back to s0). In s2, the reader reads an 8-bit data packet (represented by the label
DIn8). If the input signal more is provided, a transition back to s2 is made and more 8-bit data is

read (otherwise, the protocol resets back to s0).

The writer protocol P2, on the other hand, awaits a request req in its initial state t0 and once
a request is received, emits the acknowledge output ack and moves to state t1. On reaching t1, the

writer writes one 16-bit data for the reader (represented by DOut16). It then awaits a reset signal
reset to go back to t0. In case, reset is not present in the next clock tick, it moves to state t2. In case

reset is still not present, it moves to state t3 representing error (labeled by Error).

These protocols have a number of incompatibilities:

1. Control signal mismatches: The reader protocol sends a request (req) in its state s0 and awaits
an acknowledge (ack) in state s1 (after one tick). However, the writer generates an acknowl-

edge as soon as a request is received. Unless the acknowledge signal is somehow buffered, the

reader will never be able to read the acknowledge signal.

2. Missing input signals: The input signals next and more for the reader and the input reset for

the writer are not emitted by any protocol. Unless these are generated, the composite system

of the two IPs will simply block.

3. Data-width mismatches: The reader reads data in 8-bit packets while the writer writes 16-bit
data. Furthermore, the reader can read multiple packets in each transaction while the writer



Converter Synthesis: Sinha, Roop, Basu 8

can only write once per-transaction. Therefore, it is possible that the reader may attempt to

read more data than is actually presented by the writer, resulting in an underflow (this can
happen if some how many more inputs are asserted).

4. Error states: State t3 in the writer protocol is an error state and once the protocol reaches it,

not further communication with the reader is possible. Therefore it is essential to prevent the
writer from making a transition to t3 under all circumstances.

To detect and resolve these incompatibilities, we define of synchronous parallel composition

of two SKS which represents all possible (unrestricted) behavior of the composition (including the

behavior with incompatibilities).

Definition 2 (Protocol Composition) Given two

SKS P1 = 〈AP1, S1, s01
, ΣI1, ΣO1, R1, L1, clk 〉 and P2 = 〈AP2, S2, s02

, ΣI2, ΣO2, R2, L2, clk 〉, their

parallel composition, denoted by P1||P2 is 〈AP1||2, S1||2, s01||2
, ΣI1||2, ΣO1||2,R1||2, L1||2,clk〉 where

AP1||2 = AP1∪AP2 ; S1||2 = S1×S2; s01||2
= (s01

, s02
); and ΣI1||2 ⊆ ΣI1×ΣI2; ΣO1||2 ⊆ ΣO1×ΣO2.

R1||2 ⊆ S1||2 × t× ΣI1||2 × ΣO1||2 × S1||2 such that

(s1
i1/o1

−→t s
′
1) ∧ (s2

i2/o2

−→t s
′
2) ⇒ ((s1, s2)

(i1,i2)/(o1,o2)
−→t (s′1, s

′
2))

Finally, L1||2((s1, s2)) = L1(s1) ∪ L2(s2).

Note that in the composition, there may be some transitions which have triggers and outputs of

the form (a, b)/(b, a) i.e., the first protocol expects input awhile producing output bwhile the second
protocol expects input b while producing output a. Such protocols, when composed synchronously,

will produce non-causal [BCE+03] specifications - specifications that do not have a precise meaning

in the synchronous setting. Protocol compositions that are non-causal will also be semantically
rejected (using standard causality analysis tools such as [Lef05]). Figure. 3 presents the synchronous

composition of protocols in Figure. 22.

2.2 ACTL Specifications

Once the composition of protocols is generated, the next step is to describe the the intended commu-
nication between the participating protocols. This is performed using (ACTL) which is a branching

time temporal logic with universal path quantifiers. It is defined over a set of propositions using

temporal and boolean operators as follows:

φ→ P | ¬P | tt | ff | φ ∧ φ | φ ∨ φ | AXφ | A(φ U φ) | AGφ

2Transitions in Figure. 3 are color-coded as follows: red transitions lead to error states, blue transitions reset the compo-
sition to its initial state, while remaining transitions appear in black.
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Figure 3: Parallel Composition P1||P2 of the reader-writer protocol pair

1: [[p]] = {s | p ∈ L(s)} 2: [[¬p]] = {s | p 6∈ L(s)}

3: [[tt]] = S 4: [[ff]] = ∅

5: [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]] 6: [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]

7: [[AXϕ]] = {s|∀s −→t s′ ∧ s′ ∈ [[ϕ]]}

8: [[A(ϕ U ψ)]] = {s|∀s = s1 → s2 → . . .
∧ ∃j.sj ∈ [[ψ]] ∧ ∀i < j.si ∈ [[ϕ]]}

9: [[AGϕ]] = {s|∀s = s1 → s2 → . . . ∧ ∀i.si ∈ [[ϕ]]}

Figure 4: Semantics of ACTL

Semantics of an ACTL formula, ϕ denoted by [[ϕ]]M are given in terms of set of states in a Kripke
structure (or a KS), M , which satisfies the formula (see Figure. 4). A state s ∈ S is said to satisfy a

ACTL formula ϕ, denoted by M, s |= ϕ, if s ∈ [[ϕ]]M . Typically, the context of the semantics, i.e., M
in [[ ]]M is implicit, and omitted. We also say that M |= ϕ to indicate M, s0 |= ϕ. In this paper, we
restrict ourselves to formulas where negations are applied to propositions only.

2.3 Control Constraints in ACTL

For the producer-consumer example in Figures. 2 and 3 the following control-constraints of their

composition are specified in ACTL:
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[ϕ1] AG(¬Error): The writer never enters the error state t3.

[ϕ2] AG((Idle1 ∧ Idle2) ⇒ AX(¬DOut16 ∨ ROut)) When both protocols are in their initial states,
the writer cannot write data before a request is received from the reader.

[ϕ3] AG(DOut16 ⇒ A(¬Idle1 U DIn8)): Once data is written by the writer, the reader does not reach

its initial state before reading data written by the writer.

[ϕ4] AG(Idle2 ⇒ (Idle1 ∨ A(¬DOut16 U Idle1))): Once the writer resets back to its initial state, the
reader must also reach its initial state before more data can be written.

[ϕ5] AG(ROut ⇒ (DOut16 ∨ A(¬DIn8 U DOut16))): Once a request is made by the reader, it waits for

the writer to write data before reading.

Note that control-constraints that involve AU formulas will result in the generation of empty

converters if protocol descriptions have transitions which may be triggered by outputs (label transi-
tion systems such as used in [PdAHSV02]). This is because, a converter has no control over output

transitions and will not be able to disable them. Hence, if the protocols have loops that are triggered
by outputs alone, AU properties will fail to hold. This is one of the motivations of developing SKS

with i/o-transitions (instead of transitions with single labels; either input or output but not both) to

describe protocols in this paper.

2.4 Data Constraints in ACTL

The above properties describe desired behavioral sequence of the composition. However, they do
not take into consideration the data-width mismatches of the protocols resolution of which may also

require some desired behavioral pattern of the composition.

As discussed earlier, the reader-writer protocol pair has a data-width mismatch as P1 reads 8-bit

data while the writer P2 writes 16-bit data. In order to restrict the protocols such that the data-

communication between the two never results in an underflow or an overflow, we introduce data

counters as follows.

First, we formally describe the desired data-communication behavior. Given the data-widths N
and M (which are integers) of the outputs and inputs respectively, we compute the minimum width
needed for the communication medium (usually a buffer) between the two protocols. If N < M ,

then the minimum capacity must be N × f such that f is the smallest integer for which N × f ≥M ;
otherwise the minimum capacity is N . This assumption is needed to ensures that there are enough

preceding outputs before any one input. While the minimum bound of communication medium

buffer can be computed as above, the maximum bound is be any value greater than the minimum
bound. In our setting, we assume that the maximum bound of the communication medium buffer is

LCM(N,M). Given a capacityK of the communication medium between these bounds, the maximum

number of outputs possible when the medium is empty is x = bK/Nc; while the maximum number
of inputs possible when the medium is full is y = bK/Mc. We use an auxiliary counter for every

input/output pair such that the counter is incremented by y for every output and decremented by x
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for every input. We then verify that the counter always remains between 0 and x×y using the global

ACTL property AG(0 ≤ counter ≤ (x× y)).

Reader-Writer Example Revisited. Consider the reader-writer example in Figure. 2. Data outputs

from the reader (DOut16 in P2) are 16-bits while data inputs by the reader (DIn8 in P1) are 8-bits.

Hence, N = 16 and M = 8. As N > M , we set the communication medium capacity to 16-bits.
Given this 16-bit capacity of the communication medium, the maximum number of write operations

possible when the medium is empty is x = bK/Nc = 1. Similarly, the maximum number of read
operations is y = bK/Mc = 2. Given these values for x and y, we introduce a counter counter
which is incremented by 2 (y) every time a DOut16 is encountered and is decremented by 1 (x) when

a DIn8 is encountered. To verify that the counter always remains between 0 and x × y = 2, we use
the following property ϕd ≡ AG(0 ≤ counter ≤ 2).

2.5 Converter as SKS

Recall that (Figure. 1), a converter acts as an intermediary between the participating protocols

in a composition. Inputs to the converter are outputs from the protocols while outputs from the
converter act as inputs to the protocols. In addition to relaying outputs from one protocol to the

inputs of another, the converter is also capable of generating missing inputs to protocols. As the

converter is providing the inputs to the protocols, it can effectively regulate the behavior of the
protocols by disabling or enabling transitions in the protocols by not providing or providing the

appropriate triggering inputs of the transitions.

Definition 3 (Converter) Given protocols P1 = 〈AP1, S1, s01
, ΣI1, ΣO1, R1, L1, clk 〉 and P2 =

〈AP2, S2, s02
, ΣI2, ΣO2, R2, L2, clk 〉, a converter C for P1 and P2 is an SKS: 〈APC , SC , sC0, ΣCI ,

ΣCO, RC , LC〉 where APC = ∅, ΣCI ⊆ (ΣO1 × ΣO2) and ΣCO ⊆ (ΣI1 × ΣI2).

Observe that, the converter is not required to satisfy any propositional property (AP = ∅) as all
desired propositional properties must be satisfied by the participating protocols.

Definition 4 (Control consistent converter) A converter is said to be control-consistent if and only

if in all paths from sC0 whenever there is a transition which outputs signal ’a’ it is always preceded by a

transition with input trigger on signal ’a’ if a ∈ Σ01 ∪ Σ02, i.e., if a protocol is capable of providing a

signal a, then the converter must not generate that signal.

The protocols, when composed with the converter, can only make moves if the converter provides

the appropriate triggering inputs to the protocols, i.e., if the composite protocol wants to make a
move from state s to t where the transition is of the form (i1, i2/o1, o2), then this move is only

allowed when the converter state c composed with s has a transition on (o1, o2/i1, i2).
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3 Converter Synthesis Algorithm

The composition in Figure. 3 does not satisfy the desired ACTL specifications. A converter is necessary

to regulate the composition behavior to avoid violation of the properties. For example, a candidate

converter will disable protocol transitions from (s0, t0) to (s0, t1) on absence of next signal and
presence of req signal because that will lead to violation of property ϕ2 (see Section 2.3).

In this section, we present an algorithm to identify whether there exists a converter that can reg-

ulate a given composition to ensure conformance to the pre-specified desired properties. Our algo-
rithm is inspired by (but is substantially different from) on on-the-fly CTL model checking ([BCG95])

and is presented in Algorithm 1. The function isConv takes as argument

1. the state s of the composite protocols,

2. the set of counter valuations I keeping track of data communications (see Section 2.4),

3. the set of formulas FS (referred to as obligations) representing the desired properties (control
and data constraints) to be satisfied at that state,

4. a history set H which keeps track of visited state formula pairs to ensure termination of our

algorithm, and

5. an event set E which keeps track of the outputs from the protocols that can be relayed by a
candidate converter (consistent-converter). This is used for checking if a given input has been

buffered by the converter to be relayed later.

The function returns a structure of type NODE which is the root of a graph witnessing whether or not
the behavior starting from state s can be regulated/converted to ensure satisfiability of formulas in

FS. s is said to be convertible if and only if the return of the function isConv is a non false node.

Discussion. If FS = ∅, then there is no obligation on the state s and the function returns a TRUE NODE

denoting the existence of converter which allows all possible behavior from s (Lines 1–3).

Lines 5–11 handles termination of our algorithm and will be discussed below. At Lines 4 and 12,

a new node is created using s and FS information and the history set is updated to H 1 by inserting
this new node. A formula F is removed from FS to create FS 1. If F is a propositional constant true

then converter existence is checked against s with respect to FS 1 as any state can satisfy true (Lines
13, 14). On the other hand, s is not convertible if F is equal to false as no state can satisfy false

(Lines 15, 16). Similarly, if F is a proposition p (¬p), s must satisfy p (not satisfy p); otherwise

converter does not exist (Lines 17–28).

If F is a conjunction of formula, convertibility is checked against s with respect to FS 1 and each

of the conjuncts (Lines 29,30). On the other hand, for disjunctive formula, the function is recursively

called for each disjunct and the return nodes (Line 33,34), if non-false, are attached to the current
node as children (Lines 35–40). In that case, the current node type is updated to be OR NODE (Line
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32). If the return nodes are both false, then there exists no converter (Lines 41, 42) as none of the

choices can be satisfied in the presence of any converter at state s.

If F is AGϕ, the obligation on s is updated to include ϕ ∧ AXAGϕ, denoting ϕ must be satisfied at

s and all its (converter) permitted successors must satisfy AGϕ (Lines 46,47). Similarly, if F is equal

to A(ϕ U ψ), the obligation on s is updated to include ψ ∨ (ϕ ∧ AXA(ϕ U ψ) (Lines 48,49).

The control reaches Line 51 only when none of the other rules are applicable, i.e., FS only con-

tains formulas of the form AX, which captures the next state obligation of s. Accordingly, FS AX

aggregates all the formulas that must be satisfied in all destinations of (converter) permitted transi-

tions from s. The converter permitted transitions are the ones which can be forced by a candidate

converter by providing missing signals or the ones that can be enabled by the same by relaying out-
puts from one protocol to the input of the other (control-consistent converter, see Definition 3). This

is captured in Line 54 where it is stated that if the input trigger ij can be provided by the output of

a protocol (ij ∈ ΣO1 ∪ ΣO2), then it must be present in the set of already seen signal-set E (i.e, is
already buffered by the converter). If such a trigger is consumed from E to enable a transition, the

E-set is appropriately updated in Line 55; the trigger actions used are removed and output signals
are added (∪nodup represents union without duplicates). Furthermore, the counter valuations (see

Section 2.4) are updated appropriately to record data read/written at the new next state s’ (Line

56). The function is recursively invoked to identify the convertibility of all the next states in the
context of FS AX, new signal set, history and counter valuations. The result for a next state is added

as child to the current node only when it is not a false node. Furthermore, the corresponding label

the edge from current node to the newly added child node denotes the corresponding transition
label of a candidate converter. If no child is added then there exists no converter for s as the AX

formulas are unsatisfiable. In that case, a false node is returned.

Observe that, the recursive process may not terminate as formulas are expanded at Lines 46 and

48. To ensure termination, we rely on fixed point characterization of ACTL. Specifically, semantics of

AGϕ is the greatest fixed point of Z = ϕ ∧ AXZ as AG properties are infinite path properties. As a
result, proof of whether a state satisfies an AG property can depend on itself. On the other hand, the

semantics of A(ϕ U ψ) is the least fixed point of Z = ψ ∨ (ϕ ∧ AXZ) as A(ϕ U ψ) properties are finite

path properties where ψ must be satisfied after finite number of steps. From the above observations,
if a state s with a formula set FS is revisited in the recursive call (Line 5), it is checked whether there

exists any least fixed point obligation. If yes, this recursive path is not a witness to conformance of
obligation in FS by s and false node is returned; otherwise the current node is returned (Line 6–10)

resulting in a loop.

Another important aspect that is worth mentioning is the presence of counter valuations. Even
if the counters can potentially take infinite number of valuations (which will also lead to non-

termination of the recursive procedure), the valuations of the counters that are of interest are always

partitioned finitely. For example for data-width requirements of the form AG(i ≤ counter ≤ j), any
counter valuations less than i or greater than j results in violation of the property when theisConv

terminates and returns false-node. As such, there are exactly j − i+ 3 partitions of counter valua-
tions; j − i+ 1 partitions each recording desired valuations between i and j and the rest recording

undesirable valuations.
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Algorithm 1 NODE isConv(s, I, FS, H, E)

1: if FS = ∅ then
2: return TRUE NODE

3: end if
4: curr = createNode(s, I, FS);
5: if curr ∈ H then
6: if FS contains an AU formulas then
7: return FALSE NODE

8: else
9: return curr

10: end if
11: end if
12: H 1 = H ∪ {curr}; FS 1 := FS − F

13: if F = TRUE then
14: return isConv(s, I, FS 1, H 1, E)
15: else if F = FALSE then
16: return FALSE NODE

17: else if F = p (p ∈ AP or p is a counter-constraint) then
18: if F is not satisfied in s then
19: return FALSE NODE

20: else
21: return isConv(s, I, FS 1, H 1, E)
22: end if
23: else if F = ¬p (p ∈ AP or p is a counter-constraint) then
24: if F is satisfied in s then
25: return FALSE NODE

26: else
27: return isConv(s, I, FS 1, H 1, E)
28: end if
29: else if F = ϕ ∧ ψ then
30: return isConv(s, I, FS 1 ∪ {ϕ,ψ}, H 1, E)
31: else if F = ϕ ∨ ψ then
32: curr.type := OR NODE

33: child 1 := isConv(s, I, FS 1 ∪ {ϕ}, H 1, E)
34: child 2 := isConv(s, I, FS 1 ∪ {ψ}, H 1, E)
35: if child 1 6= FALSE NODE then
36: curr.addChild(child 1)
37: end if
38: if child 2 6= FALSE NODE then
39: curr.addChild(child 2)
40: end if
41: if child 1 = child 2 = FALSE NODE then
42: return FALSE NODE

43: else
44: return curr

45: end if
46: else if F = AGϕ then
47: return isConv(s, I, FS 1 ∪ {ϕ ∧ AXAGϕ},H 1, E)
48: else if F = A(ϕ U ψ) then
49: return isConv(s, I, FS 1∪{ψ ∨ (ϕ ∧ AXA(ϕ U ψ))},H 1, E)
50: end if
51: curr.type := AX NODE

52: FS AX = {ϕ | AXϕ ∈ FS}

53: for each s
i1,i2/o1,o2

−→t s′ do
54: if foreach j = 1, 2 : ij ∈ ΣO1 ∪ ΣO2 ⇒ ij ∈ E then
55: E 1 := E− {ij} ∪nodup {o1, o2}
56: I’ := update(I, s’);
57: if (N:=isConv(s’, I’, FS AX, H 1, E 1)) 6= FALSE NODE then
58: curr.addEdge(o1, o2/i1, i2); curr.addChild(N);
59: end if
60: end if
61: end for
62: if !curr.hasChild() then
63: return FALSE NODE

64: else
65: return curr

66: end if
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Complexity. The complexity of the algorithm can be obtained from the number of recursive calls.

It is linear to the number of states in the composite protocols times the total number of counter
partitions and exponential to the size of the ACTL formulas. The exponential factor comes in specif-

ically because all the conjuncts in the conjunctive formula expression are aggregated (Line 30) and

considered in converter existence. This is different from on-the-fly model checking [BCG95] where
each conjunct are considered separately resulting in a complexity linear to the size of the formula.

It is worth mentioning that in the current problem, unlike model checking, it is required to identify
a converter which must behave identically for ensuring protocol conformance to each conjuncts and

as such the conjuncts are aggregated.

The theorem follows from the above discussion.

Theorem 1 (Sound and Complete) Given a protocol compositionP1||P2 = 〈AP1||2, S1||2, s01||2
, ΣI1||2,

ΣO1||2,

R1||2, L1||2,clk〉 and properties represented as a set of formulas in FS , a control-consistent converter

exists if and only if isConv(s01||2
, FS, ∅, ∅) returns a non false node.

To extract a control-consistent converter, the graph generated by the isConv function is tra-
versed and the procedure is presented in Algorithm 2. The exploration is performed in a depth-first

fashion and returns the converter state corresponding to the node N of the graph (argument of

extract). Lines 1–3 state that if N is a false node, then the corresponding converter state is also
a false state, denoting absence of converter. If the node N is revisited in the DFS exploration, then

the converter state is one that is already associated with N during the first visit (Lines 4–6). If N is
generated due to the presence of disjunctive obligation (Lines 31–45 in Algorithm. 1) a candidate

controller can be extracted from any of the children of N (Lines 7–11). Finally, if N is an AX NODE

then a new converter state is generated and associated with N and for each edge-child of N, the
corresponding transition-next states of the converter state are extracted.

Converter for Reader-Writer Example. For the reader-writer protocol pair example in Figure. 2

and the control and data requirements as described in Sections 2.3 and 2.4 the result from isConv

is illustrated in Figure. 5. Note that, the extracted converter will have a state corresponding to each

node in the graph (there is no OR NODE in the graph). We will use the converter state and node
identifiers of the graph interchangeably. The transitions in the extracted converter can be explained

as follows: The converter state Node 1 moves to Node 2 via req,ack/next,req. Essentially, this

means that the converter provides next signal to the reader protocol which produces req signal that
is relayed by the converter to writer which in turn outputs ack. These operations happen in on clock

tick. On the other hand, the converter moves from Node 2 Node 3 without consuming any output

from the protocols; it just provides appropriate triggers to the protocols–ack signal to the reader and
∼reset (i.e. does not provide reset) signal to the write. The other transitions can be read likewise.

The converter not only allows the composite protocol behavior that conforms to control and
data-mismatch requirements defined as ACTL formulas but it also resolves the incompatibilities be-

tween the protocols:
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Algorithm 2 CSTATE extract(N)

1: if N = FALSE NODE then
2: return FALSE STATE

3: end if
4: if N.visited = true then
5: return getAssocState(N)
6: end if
7: if N.type = OR NODE then
8: N.visited := true
9: pick any one child using N.getChild(i)

10: return extract(N.getChild(i)
11: end if
12: if N.type = AX NODE then
13: N.visited := true
14: CSTATE cstate := new CSTATE

15: associateState(cstate, N);
16: for each child of N do
17: cstate.addTrans(N.getEdge(i))
18: cstate.addNextState(extract(N.getChild(i)))
19: end for
20: return cstate

21: end if

1. Synthesis of missing input signals: The converter artificially generates inputs like more and next for
the reader protocol and the reset signal for the writer as they are not emitted by any protocols.

2. Buffering of the acknowledge signal: From the initial state (s0, t0) of P1||P2, once the transition to

state (s1, t1) is allowed, the writer generates the acknowledge signal immediately. The converter

buffers this signal and presents it to the reader in the next clock-tick (represented by the enabled
transitions from state (s1, t2) to states (s2, t2) and (s2, t0) in P1||P2).

3. Handling data-width mismatch: The converted system satisfies the ϕd property, which requires the

counter associated with labels DIn8 and DOut16 to remain within the range 0 to 2. The converter
synthesized guarantees the satisfaction of this specification and it can be seen that no reachable

state exceeds the bounds on the counter.

4. Preventing error states: The converter synthesizes the reset signal for the writer to prevent it from

entering the error state t3.

4 Results

Our technique has been implemented by extending the NuSMV model checker [CCK+06]. Table. 1

shows the results obtained from classical protocol conversion examples presented in existing litera-
ture on protocol conversion [RM91, PdAHSV02, CL90]. The first three columns describe the serial

number and name of the protocols used, and the state size of their composition (P1||P2). The fourth
column informally describes the temporal logic specifications used for the converter synthesis. The

final two columns present the result (success/failure in synthesizing a converter) and the size of the

converter synthesized. Problems 1,2,3 and 4 are classical control mismatch problems with one-way
communication between protocols. The handshake-serial problem for example requires that pro-

tocols do not read signals before they are emitted (ϕ11
) and that no two identical outputs appear
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No. Name No. of states Properties Result No. of states
in P1||P2 in C

1 Handshake-serial [PdAHSV02] 4 ⇒No read before corr. write (ϕ11
). Success 3

⇒Outputs a and b alternate along every path (ϕ12
).

1.1 Handshake-serial 12 ⇒ϕ11
,ϕ12

Success 8
(2-way communication)

1.2 Handshake-serial 12 ⇒ϕ11
,ϕ12

Success 8
(data-mismatch) ⇒Data is eventually consumed before more is written.

2 ABP sender (8-bit data)- 18 ⇒Each output is eventually read (ϕ21
). Success 8

NS receiver (8-bit data)[CL90] ⇒Another output allowed only after an input (ϕ22
).

2.1 ABP sender (16-bit data)- 18 ⇒ϕ21
, ϕ22

Success 12
NS receiver (8-bit data)

2.2 ABP sender (8-bit data)- 18 ⇒ϕ21
, ϕ22

Success 10
NS receiver (16-bit data)

3 ABP receiver (8-bit data)- 24 ⇒Each output is eventually read (ϕ31
). Success 8

NS sender (8-bit data) [CL90] ⇒Another output allowed only after an input (ϕ32
).

3.1 ABP receiver (16-bit data)- 24 ⇒ϕ31
, ϕ32

Success 10
NS sender (8-bit data)

3.3 ABP receiver (8-bit data)- 24 ⇒ϕ31
, ϕ32

Success 12
NS sender (16-bit data)

4 Poll-End receiver (8-bit data)- 6 ⇒No overflow or underflow during Success 6
Ack-Nack sender (8-bit data)[RM91] data communication (ϕ41

).

4.1 Poll-End receiver (8-bit data)- 9 ⇒ ϕ41
Success 7

Ack-Nack sender(16-bit data)

Table 1: Results from classical protocol conversion examples

consecutively along any path (ϕ12
). Problems 2 and 3 present the mismatch between alternating-bit

and non-sequenced protocols where ABP protocols attach 1-bit tags with each output while the latter

do not have any such sequencing. The aim of conversion in these cases was to ensure each output

in one protocol is eventually read by the other (ϕ21
, ϕ31

) and that subsequent outputs happen only
after previous outputs have been read (ϕ22

, ϕ32
). Problem 4 is a similar example which presents the

mismatch between a Poll-end receiver and an Ack-Nack sender and conversion requires that out-
puts generated by the sender are always read successfully by the receiver. We found that for these

classical examples, our approach generates converters similar in size and functionality to the ones

described in the source literature from where the examples were obtained. However, when these
examples are varied slightly to include bidirectional communication and/or data-width mismatches

(1.1, 1.2, 2.1, 2.2, 3.1, 3.2 and 4.1), only our technique is able to generate converters.

Table. 2 shows the results obtained from synthetic benchmarks. Some benchmarks, namely
Mutex, MCP-missionaries and 4-bit ABP sender-receiver, were obtained by modifying (introducing

mismatches) the existing protocols in the NuSMV collection [CCK+06], while the others are mod-
eled on typical SoC protocols. Each example is selected to highlight the unique features of the

protocol conversion approach presented in this paper. For example, while the Mutex problem (no.

2) can be handled by other conversion techniques like [PdAHSV02, Lam88], they involve writing
a complex automaton to describe the mutual exclusion property. On the other hand, our approach

creates the same converter using a much simpler mutual exclusion property (which requires that

along all states, both processes never enter their critical sections simultaneously). Data mismatches
and bidirectional communication presented in master-slave, reader-writer, MCP and ABP problems

problems are handled successfully by our approach whereas other approaches failed.

The above benchmarking results showcase the capabilities of the presented conversion ap-
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No. Name No. of states Properties Result No. of states
in P1||P2 in C

1 Master-slave 9 ⇒No input before corr. output. Success 6
⇒Each output is read before another output.

2 Mutex 16 ⇒Mutual exclusion always achieved Success 7

3 Reader-writer 12 ⇒Writer never enters error state. Success 5
⇒No data written before request is made.
⇒All written data is read before transaction completes.
⇒Both protocols reset after each transaction.
⇒No read before data is written.
⇒Data-communication stays within bounds.

4 MCP missionaries- 30 ⇒All missionary-cannibal pairs Success 22
cannibals are transported without loss.

5 4-bit ABP sender- 166432 ⇒Sender can always eventually read data. Success 14312
modified receiver

Table 2: Results from synthetic benchmarks

Node 1
State: (s0,t0)

Node 2
State: (s1,t1)

Node 3
State: (s2,t2)

Node 4
State: (s2,t0)

Node 5
State: (s2,t0)

req,ack/next,req

./ack,~reset

./~more,reset

./ack,reset

./more,~req

./~more,~req

~next,~req

Figure 5: isConv(s01||2
, {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕd}, ∅, ∅)

proach. While common control-mismatch problems can be tackled in a similar manner to other

techniques, more complex specifications can be described in a succinct fashion and we allow con-

version for protocols with data-width mismatches and/or bidirectional communication. More details
on all above experiments appear in http://www.cs.iastate.edu/∼sbasu/research/emsoft07res.pdf

5 Conclusions

Protocol conversion to resolve protocol mismatches is an active research area and a number of solu-

tions have been proposed. Some approaches require significant user effort, while some only partly

address the protocol conversion problem. Most formal approaches work on protocols that have uni-
directional communication and use finite state machines to describe specifications. In this paper we
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propose a uniform formal approach to protocol conversion which can precisely represent protocols’

input/output behavior and can handle bi-directional communication. The converters synthesized by
our approach are capable of relaying and buffering of signals and address several protocol mismatch

problems. We also presented comprehensive experimental results to show the practical applicability

of our approach.
Some of the future avenues include investigating more powerful logic for property specification and

handling of clock mismatches. We claim that the same algorithm can be extended with little effort
to handle extensions to the logic while clock mismatches can be represented and addressed by using

multi-clock Kripke structure.
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