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ABSTRACT 

Damages in composite components of wind turbine blades and large-scale structures can lead to increase in 
maintenance and repair costs, inoperability, and structural failure. The vast majority of condition assessment of 
composite structures is conducted by visual inspection and non-destructive evaluation (NDE) techniques. NDE 
techniques are temporally limited, and may be further impeded by the anisotropy of the composite materials, 
conductivity of the fibers, and the insulating properties of the matrix. In previous work, the authors have proposed a 
novel soft elastomeric capacitor (SEC) sensor for monitoring of large surfaces, applicable to composite materials. This 
soft capacitor is fabricated using a highly sensitive elastomer sandwiched between electrodes. It transduces strain into 
changes in capacitance. Here, we present a fabrication method for fabricating the SEC. Different surface treatment 
techniques for the nanoparticles are investigated and the effects on the mechanical and the electrical properties of the 
produced film are studied. Results show that using melt mixing fabrication method was successful at dispersing the 
nanoparticles without using any surface treatment, including coating the particles with PDMS oil or the use of Si-69 
coupling agent. Yet, treating the surface would result in increasing the stiffness of the matrix as well as improving the 
interaction between the filler particles and the matrix. 

Keywords: Strain gauge, soft capacitor, structural health monitoring, wind turbine blade, smart structures, capacitive-
based sensor, sensing skin, smart materials 

1. INTRODUCTION 

Condition assessment of wind turbine blades involves careful examination and diagnosis of specific 
components to identify critical defects and damages that could compromise the overall structural strength. Currently, the 
vast majority of SHM of composite structures is conducted by visual inspection and non-destructive evaluation (NDE) 
techniques. NDE techniques, such as real-time X-rays, optical coherence tomography, Eddy current, and laser strain, 
have been thoroughly researched and evaluated 1-3. The major disadvantage of these techniques is their temporal 
limitation, where they typically cannot be used for real-time (i.e. continuous) monitoring of large-scale systems. A 
solution is to utilize SHM techniques, which include sensing hardware that continuously measure structural states. In 
previous work, the authors have developed a novel sensing hardware to conduct continuous condition assessment of 
large-scale surfaces, which include wind turbine blades4-6. The sensing hardware consists of an array of soft-elastomeric 
capacitors (SECs), which behave as a sensory membrane capable of mapping two dimensional strains. Other bio-inspired 
materials have been proposed to conduct SHM 7-12.  

The novel SEC proposed by the authors consists of three layers; a high permittivity dielectric elastomer 
sandwiched between two layers of highly conductive electrodes 4. Nanoparticles were used as fillers in all the layers to 
enhance the permittivity and electro conductivity of the polymeric matrix. The capacitance of the film is defined by: 

ܥ  = ߝ଴ߝ ݐܣ  (1) 
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where ܥ is the capacitance, ߝ଴ the vacuum permittivity ߝ	is the permittivity of the elastomer, ܣ the area of the electrodes, 
and ݐ is the thickness of the membrane. Any change in the SEC geometry caused by a strain in the monitored structure 
will result in a direct change in capacitance. 

The polymeric matrix of the SEC is fabricated from a styrene-based poly(styrene-ethylene/butylene-styrene) 
(SEBS) block copolymer filled with titanium dioxide (TiO2). The dispersion of the TiO2 fillers contributes to enhancing 
the physical and mechanical properties of the sensors. BCPs have shown better control on the spatial and orientation 
distribution of the ceramic nanoparticles when used for preparing nanocomposite dielectric materials13. Also, BCPs can 
be transformed easily into customizable geometries using conventional polymer processing techniques. The most 
common techniques used to produce sensor patches are solution cast and melt processing 14. Both techniques can be used 
in large scale production of dielectric films.  

The original fabrication method for the SEC is the drop-cast (or solution cast) technique. Fig. 1 illustrates the 
fabrication process of a SEC. The process is initiated by the fabrication of a SEBS/toluene solution. Part of this solution 
is used to create the nanoparticle mix, in which TiO2 particles are added and dispersed using an ultrasonic dismembrator. 
The resulting mix is drop-casted on a glass slide, and dried over 5 days to allow complete evaporation of the solvent. 
Meanwhile, the remaining SEBS/toluene solution is used to create the compliant electrodes. Here, carbon black (CB) 
particles are added instead of TiO2 to create a conductive mix. Finally, the CB mix is sprayed or painted on both surfaces 
of the dried polymer. 

 

Fig 1: Drop-cast fabrication process [20] 

The melt processing technique has been investigated by the authors 14, and research concluded the particle 
coating should be further investigated to ensure proper dispersion of the nanoparticles within the polymer matrix. The 
melt mixing fabrication technique is implemented as shown in Fig. 2. The process is done in two steps. First, the 
polymer and the filler are mixed in a twin-screw heated mixing chamber at 200 °C, 50 rpm. Second, the resulting mix is 
pressed into thin films at 200 °C, 3 psi. Fabricating the SEC using melt processing technique would have the added 
benefit of not requiring any solvent. This more sustainable process would reduce production cost and time in an 
industrial setup. 
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crystalline phase is used as the uncoated filler, while the surface modified nanoparticles with poly-dimethylsiloxane 
(PDMS) surface coating is used as the coated filler. Both the coated and uncoated nanoparticles were purchased from 
sachtleben Chemie GmbH, Germany.  

2.2 Fabrication Processes 

The samples used for the experiments are listed in Table 1. They are designed to study the influence of chemical 
modification of the polymer matrix and nanoparticles on the dielectric and mechanical properties. The samples are 
prepared by blending TiO2 nanoparticles into SEBS by melt mixing with a twin screw internal mixture from C.W. 
Brabender® Instruments, Inc., NJ. The amount of nano-fillers is adjusted to attain a volume concentration of 15 vol.% in 
all the samples. Similarly, modified SEBS polymer matrix is prepared by blending 5 ppm of Si-69 into the same twin 
screw compounder.  The shear force applied on the sample while processing the twin screw internal mixture drives the 
dispersion of the nanoparticles inside the polymer matrix. The compounded samples are pressed into 110 × 110 × 0.2 
mm films using a compression molding Machine from Carver, Inc, IN. 

Table. 1 Testing smaples 

Name Content 
pure Pure SEBS films 
un Uncoated TiO2+ SEBS 

uncsi Uncoated TiO2+ SEBS+Si-69 
coated TiO2 particles coated with PDMS oil 

 
2.3 Characterization 

The morphology of the composite SEBS-TiO2 nanoparticles is investigated by scanning electron microscopy 
(SEM) using a Hitachi S-2460N variable pressure SEM (VP-SEM) under helium atmosphere. The SEM images are 
collected at an accelerating voltage of 4, 8 and 20 kV and from a working distance of 25 mm. The SEM images are 
collected from the cryo-fractured surfaces prepared in liquid nitrogen (LN2). Mechanical properties are characterized by 
tensile testing using an Instron universal testing machine (model 5569) with a ±10 N load cell at room temperature (23 ± 
2°C) and a rate of 50 mm/min. The tests are conducted on dog-bone samples to allow uniaxial deformation with a gauge 
length of 30 mm. The samples for the tests are prepared by stamping dog-bone shape specimens in accordance to ISO 
527 type 5A. The relative permittivity of the films is measured after adding a layer of electrodes on the top and bottom of 
the films. The electrodes consist of 15% volume percentage CB (printex XE 2-B) in SEBS-Dryflex 500040. The 
capacitance of the sample is measured using a Sinometer 30-Range Digital Multimeter with Capacitance Measurement 
(MS8261) at a frequency of 40 Hz. The permittivity ߝ	is calculated using Eq. (1). 

3. RESULTS AND DISCUSSION 
 
3.1 Morphology 

 A cryo-fracture is created using liquid nitrogen in a randomly selected location for each of the three films with 
nanoparticles filler. Fig. 3 shows the surfaces at magnification of 1500x and 5000x. The nanoparticles are expected to 
have a slightly ellipsoidal shape as revealed previously from SEM investigations 18. They should also exhibit a highly 
anisotropic static dielectric19. 

Fig.3a to 3c corresponds to the SEM micrographs from cryo-fractured surfaces of investigated samples. The 
SEM micrographs depict fine dispersion of the nanoparticles in all the samples. However, the fractured surface 
morphology of nanocomposite with PDMS coated TiO2 nanoparticles appear to show large clusters of nanoparticle 
agglomerations inside well dispersed nanocomposite phase. Similar agglomerations are found in composites when the 
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3.2 Permittivity  

Table. 2 lists the results of relative permittivity calculated form Eq. (1). As hypothesized, the addition of the 
nanoparticles enhances the permittivity of the films. The coated particles (unc) resulted in the least enhancement; this is 
mainly due to the non-uniform dispersion of the nanoparticles in the polymeric matrix, as seen in Fig. 3. The permittivity 
enhancement induced by the addition of the uncoated particles represent an increase by 7% for the coated, 17% for the 
uncsi and 18% unc case, respectively. Adding Si-69 to the matrix does not appear to significantly affect the permittivity 
of the polymer, which shows that the Si-69 has little effect on the dispersion of the nanoparticles. 

Table.2 Permittivity Analysis 

Sample Permittivity % change wrt pure
pure 3.876 0 
unc 4.574 18 

uncsi 4.533 17 
coated 4.145 7 

3.3 Mechanical properties 

Here, the tensile tests for all of the four films are performed. The engineering stress-strain curves are shown in 
Fig. 4.  Young Modulus values are shown in Table. 3. The stress-strain profiles for all the specimens show an elastic 
response with yield strength less than 0.5 MPa and a high stretching capability before break which exceeded 600% of the 
original length. 

 

Fig 4. Stress-strain curves the presses films 

Fig. 4 shows that treating the surface of nanoparticles affects the mechanical properties of the polymer. These 
changes are explained by an increase in the interaction between the nanoparticles and the polymer matrix. The curves 
show that the addition of fillers substantially increases the stiffness. The use of coated particles shows an increase in the 
stiffness of the processed nanocomposite accompanied by a decrease in the stretchability of the films. Using the uncoated 
nanoparticles results in increasing the stiffness and decreasing the ductility. The decrease in ductility can be explained by 
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the weaker bonds between the polymer matrix and the filler particles. The use of Si-69 seems to have an adverse effect 
on the ductility, while improving stiffness.  

Table.3 Young’s Modulus of the processed films 

Sample Young’s Modulus 
(MPa) 

% change wrt pure 

pure 0.221 0 
unc 0.405 83 

uncsi 0.454 105 
coated 0.426 93 

4. CONCLUSION 

Soft nanocomposites made of TPE filled with ceramic particles were prepared to create SEC, for applications to 
wind turbine blades. We have investigated the melt-mixing fabrication technique for industrial manufacturization of the 
sensor. The melt-mixing process is seen as an improvement to the drop-cast process, as it has the potential to eliminate 
the presence of a solvent during the fabrication process. Two types of surface treatment were investigated to enhance the 
interaction between the nanoparticles and the polymer particles: 1) PDMS oil; and 2) saline coupling agent Si-69. The 
results showed that using the melt mixing technique resulted in a good dispersion of the uncoated nanoparticles and 
treating the surface did not have any significant effect on the dispersion. Conversely, treating the surface enhanced the 
particle matrix-nanoparticles interaction, resulting in an increase in ductility. 
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