
To investigate uncertainties in regional-scale climate projections, NARCCAP evaluated 

temperature and precipitation results from six regional climate models driven by  

NCEP–DOE Reanalysis II boundary conditions for 1980–2004.

F	rom a global climate point of view, three main  
	uncertainties have been identified regarding  
	projections of future climate in the twenty-first 

century: internal (natural) variability of the cli-
mate system; the trajectories of future emissions of 
greenhouse gases and aerosols; and the response of 
the climate system (represented by various global 
climate models) to any given set of future emissions/
concentrations (Cubasch et al. 2001; Meehl et al. 2007; 
Hawkins and Sutton 2009). However, as greater inter-
est and concern has been focused on the regional scale 
of climate change and the desire for greater regional 
detail continues to grow, the uncertainty due to the 
application of regional climate models to the climate 
change problem introduces an additional uncer-
tainty (Giorgi et al. 2001; Christensen et al. 2007a): 
the uncertainty entailed in dynamical downscaling 
from coarse to fine resolution. This uncertainty in 
the regional climate response has been documented 
in numerous contexts (Giorgi et al. 2001; Christensen 
et al. 2007a,b; de Elía et al. 2008) and extends to 
uncertainties in climate impacts (Mearns et al. 2001; 
Mearns 2003; Wilby et al. 2000; Wood et al. 2004; 

Oleson et al. 2007; Morse et al. 2009). European 
research has moved forward to systematically examine 
the combined uncertainty in future climate projec-
tions from global and regional models (Christensen 
et al. 2007b, 2009), but no such research program has 
heretofore been developed over North America (NA). 
We developed the North American Regional Climate 
Change Assessment Program (NARCCAP) (Mearns 
et al. 2009) to fill this research gap.

The fundamental scientific motivation of NARCCAP 
is to explore the separate and combined uncertainties 
in regional climate change simulations that result from 
the use of different atmosphere–ocean general circula-
tion models (AOGCMs) to provide boundary condi-
tions for different regional climate models (RCMs). 
An additional and equally important (and related) 
motivation for this project is to provide the climate 
impacts and adaptation community with regionally 
resolved climate change projections that can be used as 
the basis for studies of the societal impacts of climate 
change. Because we are using multiple regional and 
global climate models, impacts researchers will have 
the ingredients to produce impacts assessments that 
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characterize multiple uncertainties. Additional goals of 
the program include the following: to evaluate regional 
model performance over North America by nesting 
the RCMs in National Centers for Environmental 
Prediction–Department of Energy (NCEP–DOE) 
Reanalysis; to explore some remaining uncertainties 
in regional climate modeling (e.g., importance of com-
patibility of physics in nesting and nested models); and 
to enhance collaboration among the U.S., Canadian, 
and European climate modeling groups, leveraging 
the diverse modeling capability across the countries.

As impressive as the two European programs 
exploring regional future climate uncertainty are, 
they also have limitations. In Prediction of Regional 
Scenarios and Uncertainties for Defining European 
Climate Change Risks and Effects (PRUDENCE), 
most of the regional models used only one or at most 
two AOGCMs for boundary conditions and few used 
more than one emission scenario (A2). Ensemble-
Based Predictions of Climate Changes and Their 
Impacts (ENSEMBLES) improved on the structure 
of PRUDENCE by using more global models to drive 
more RCMs (Christensen et al. 2009), but there was no 
effort to balance which and how many AOGCMs were 
used by the 15 RCMs involved. In NARCCAP, we have 
created a smaller but more balanced program that 
focuses on the uncertainty of the different AOGCMs 
and RCMs, using only one emissions scenario.

PROGRAM STRUCTURE. The program includes 
two main phases: phase I, wherein six RCMs use 
boundary conditions from the NCEP–DOE Reanalysis 
II (R2) for a 25-yr period (1980–2004), and phase II, 
wherein the boundary conditions are provided by four 
AOGCMs for 30 years of current climate (1971–2000) 
and 30 years of a future climate (2041–70) for the 
Special Report on Emissions Scenarios (SRES) A2 
emissions scenario (Nackicenovic et al. 2000). The 
simulation domain of the RCMs covers northern 
Mexico, all of the lower 48 U.S. states, and most of 
Canada (up to about 60°N) (Fig. 1).

The six RCMs used are as follows: the Canadian 
RCM (CRCM; Caya and LaPrise 1999), the fifth-
generation Pennsylvania State University–National 
Center for Atmospheric Research (NCAR) Meso-
scale Model (MM5; Grell et al. 1993), the Met Office 
Hadley Centre’s regional climate model version 3 
(HadRM3; Jones et al. 2003), the Regional Climate 
Model version 3 (RegCM3; Giorgi et al. 1993a,b; 
Pal et al. 2000, 2007), the Scripps Experimen-
tal Climate Prediction Center (ECPC) Regional 
Spectral Model (RSM; Juang et al. 1997), and the 
Weather Research and Forecasting model (WRF; 
Skamarock et al. 2005). Five of these models (all but 
HadRM3) have previously been run over a North 
American domain using boundary conditions from 
both reanalyses and AOGCMs.1 Most have also 
participated in the Project to Intercompare Regional 
Climate Simulations (PIRCS; Takle et al. 1999). 
These particular models were chosen to provide a 
variety of model physics and/or to use models that 
have already performed multiyear climate change 
experiments, preferably in a transient mode. A 
table displaying the major characteristics of the re-
gional models may be found online (at www.narccap 
.ucar.edu). Note that some of these model systems 
(e.g., WRF and MM5) provide multiple options for 
model parameterizations and submodels; the evalu-

1	MM5 [Leung et al. (2003a,b, 2004) for western United States 
and Leung and Gustafson (2005) and Gustafson and Leung 
(2007) for conterminous United States]; various versions of 
RegCM over the western United States (Giorgi et al. 1998; 
Bell et al. 2004; Snyder et al. 2002; Diffenbaugh et al. 2004), 
the southeastern United States (Mearns et al. 2003), and the 
entire continental United States (Pan et al. 2001; Diffenbaugh 
et al. 2005); the RSM over the continental United States 
(Roads 2003; Han and Roads 2004; Nunes and Roads 2007); 
the Canadian RCM [Laprise et al. (1998, 2003) and Caya 
and LaPrise (1999) over western and eastern Canada and 
Plummer et al. (2006) for the whole continent]; and WRF 
over the western United States (Salathé et al. 2008, 2010).
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ations in this paper are valid only for 
the particular model configurations 
specified in the table.

Two of the RCMs (RSM and 
CRCM) use spectral nudging, which 
provides information from the 
nesting model not only for the lat-
eral domain boundaries and initial 
conditions but also throughout the 
domain and vertical levels. Thus, 
these models are more directly con-
strained to follow the nesting model, 
and in some analyses we compare 
ensembles of the nudged and non-
nudged models with individual 
models and the full ensemble.

Phase I: Simulations using reanalysis 
boundary conditions. The RCM simu-
lations for phase I use boundary 
conditions from the NCEP–DOE R2 
for a 25-yr period (1980–2004). Evaluation of such 
runs is a crucial prerequisite to generating climate 
scenarios and characterizing their uncertainties 
(Pan et al. 2001) and was performed in the Model-
ling European Regional Climate, Understanding and 
Reducing Errors (MERCURE) program precursor to 
PRUDENCE (Christensen et al. 1997), its successor 
ENSEMBLES (Christensen et al. 2009), the Regional 
Climate Model Intercomparison Project (RMIP) over 
China (Fu et al. 2005), and the PIRCS program (Takle 
et al. 1999; Pan et al. 2001; Anderson et al. 2003).

Phase II : Current and future climate simulations. 
Although this paper concerns phase I, we present a 
brief overview of phase II to establish the full context 
of the program and because results of phase I contrib-
ute to the characterization of uncertainty in phase II.

In phase II, we use boundary conditions from 
four AOGCMs: the NCAR Community Climate 
System Model, version 3 (CCSM3; Collins et al. 
2006); the Canadian Climate Centre Coupled General 
Circulation Model version 3 (CGCM3; Scinocca and 
McFarlane 2004; Flato 2005); the HadCM3 (Gordon 
et al. 2000; Pope et al. 2000); and the Geophysical 
Fluid Dynamics Laboratory Climate Model version 
2.1 (GFDL CM2.1; GFDL Global Atmospheric Model 
Development Team 2004). Simulations using the 
SRES A2 emissions scenario have been performed 
with all of these models, and all have saved output at 
6-hr intervals appropriate for driving RCMs. Phase 
II also includes two high-resolution (50 km) time-
slice experiments using the Community Atmosphere 

Model (CAM; Govindasamy et al. 2003) and the 
atmospheric component of the CM2.1 (AM2.1; GFDL 
Global Atmospheric Model Development Team 2004), 
the respective atmospheric model components of the 
CCSM and GFDL AOGCMs. In these experiments, 
the atmospheric models are run using observed SSTs 
and sea ice for lower boundary conditions in the cur-
rent period and the same observations with an offset 
calculated from current and future runs of the cor-
responding AOGCM in the future period.

Characterization of uncertainty. Because limited 
funding precluded the simulation of all 24 nesting 
combinations, we adopted a balanced fractional 
factorial design to sample half of the 4 × 6 matrix in 
a statistically meaningful way that maximizes the 
amount of information that can be obtained from 
the experiment. In this type of design as applied here, 
in the 12 pairings so chosen, each AOGCM provides 
boundary conditions for three different RCMs and 
each RCM uses two different AOGCMs for bound-
ary conditions. In addition, each RCM uses one of 
the AOGCMs that has a corresponding time-slice 
experiment. Table 1 shows the resulting matrix of 
AOGCM–RCM pairings.

NARCCAP is paying particular attention to quan-
tifying uncertainty, using a Bayesian probabilistic 
approach (cf. Tebaldi et al. 2004, 2005) to characterize 
the joint uncertainty in multimodel ensembles on 
a regional scale for temperature and precipitation 
(Tebaldi and Sansó 2009).We will improve on these 
methods by employing nested Bayesian models that 

Fig. 1. Domain for NARCCAP as represented by the RegCM3 regional 
climate model, at 50-km gridpoint spacing over North America 
showing topography. Colors refer to elevations in meters. Four 
regions analyzed in detail are delineated by black outlines.

1339september 2012AMERICAN METEOROLOGICAL SOCIETY |



account for both the global and regional model 
uncertainties and by adopting a refined approach 
to weighting the different simulations, a critical 
improvement over Tebaldi et al. (2005), that will use 
detailed analysis of climate model results to establish 
expert judgments of simulation credibility for subre-
gions of interest within the domain and then translate 
these judgments into a differential weighting scheme 
used in the Bayesian statistical models. The NCEP-
driven RCM results evaluated in the present paper 
will be used in the development of the weighting 
scheme and to determine the boundary forcing bias: 
that is, the difference between the reanalysis-driven 
RCM runs and the current-period GCM-driven RCM 
runs (Pan et al. 2001).

Data archive and website. We store RCM output 
for more than 50 variables at 3-hourly resolution 
in standards-compliant, GIS-compatible Network 
Common Data Form (NetCDF) format. The files are 
organized similarly to the CMIP archive and distrib-
uted for free (registration required) via the Earth Sys-
tem Grid data portal. The NARCCAP website (http://
narccap.ucar.edu) provides extensive information and 
guidance in support of three main interests: further 
dynamical and statistical downscaling; climatological 
analysis of model results; and exploration of impacts, 
adaptation strategies, and other policy-related issues.

PHASE I RESULTS FOR TEMPERATURE 
AND PRECIPITATION. Observed datasets used 
for comparisons. From the various available observed 
datasets, we selected version 2.01 of the University of 
Delaware dataset (UDEL) of monthly temperatures 
and precipitation (Willmott and Matsuura 1995; 
Matsuura and Willmott 2010) as our primary ob-
served dataset for comparison with model simulations 

because it was developed at 
the same spatial resolution 
as the regional model ex-
periments, covers the same 
spatial and temporal range, 
and includes an elevation 
correction for tempera-
ture. The station data used 
include thousands of sta-
tion records of monthly 
temperature and precipita-
tion developed in Legates 
and Willmott (1990a,b), 
which employs a standard 
interpolation method that 
uses an enhanced distance 

weighting approach (Willmott et al. 1985) and cor-
rection for elevation for temperature based on envi-
ronmental lapse rates.

We also use two other observed datasets to examine 
uncertainty in observations that may affect the calcu-
lation of model biases: we employ version 2.10 of the 
Climatic Research Unit (CRU) monthly time series of 
temperature and precipitation (Mitchell 2008; Mitch-
ell and Jones 2005), which includes elevation correc-
tion for temperature and precipitation (New et al. 
2000) and the Precipitation–Elevation Regressions 
on Independent Slopes Model (PRISM) dataset (Daly 
et al. 1994, 2011). CRU and UDEL use data from thou-
sands of stations around the world interpolated to a 
half-degree grid over land, whereas PRISM is much 
higher resolution (4 km), uses a more sophisticated 
elevation correction scheme (for both temperature and 
precipitation) ,and includes data from around 8,000 
stations, but covers only the conterminous United 
States. PRISM is therefore likely more accurate for 
estimates of precipitation in topographically complex 
regions but could not be used as the primary observed 
dataset because of its coverage limitations.

Because the models have different map projections 
and “sponge zones” (edge regions where boundary 
conditions from the nesting model are blended with 
RCM calculations), each model’s domain is slightly 
different. For comparison with observations, we 
interpolated the model data to the UDEL grid over the 
domain common to all models. The NCEP reanalysis, 
with a native grid of about 2.5° latitude and longitude 
(~250-km spatial resolution), was also interpolated to 
the half-degree UDEL grid.

Domain-wide seasonal temperature. Figures 2 and 3 show 
bias plots (model minus observed) of mean seasonal 
temperature (winter and summer, respectively) for each 

Table 1. RCM–AOGCM combinations simulated in NARCCAP.

AOGCM

GFDL CGCM3 HadCM3 CCSM3

R
C

M

MM5 X X

RegCM3 X X

CRCM X X

HadRM3 X X

RSM X X

WRF X X

Corresponding time-slice experiment

AM2.1 CAM3
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Fig. 2. Winter [December–February (DJF)] temperature bias (model − UDEL observed; °C) plots 
for the six regional models: (a) CRCM, (b) RSM, (c) HadRM3, (d) MM5, (e) RegCM3, and (f) WRF.
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Fig. 3. Summer [June–August (JJA)] temperature bias (model − UDEL observed; °C) plots for 
the six regional models: (a) CRCM, (b) RSM, (c) HadRM3, (d) MM5, (e) RegCM3, and (f) WRF.
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of the six RCMs for the period 1980–2004, and Table 2a 
lists the root-mean-square errors (RMSEs) for seasonal 
temperature. The table also lists values for three 
ensembles: the full ensemble mean averaging all six 
models, the nudged ensemble mean averaging CRCM 
and RSM (the models that use spectral nudging), and 
the nonnudged ensemble mean averaging the other four 
models. The results for NCEP R2 are also provided as 
background. The percentage of grid points significantly 
different from UDEL at the 0.05 level is also included in 
Table 2. The statistical significance of the bias (at each 
grid point) was calculated using bootstrapping with 
bias correction and acceleration to estimate confidence 
intervals following von Storch and Zwiers (1999) and 
Efron and Tibshirani (1993). Lower and upper tail criti-
cal values (0.05 and 0.95, respectively) were calculated 
from 1,000 bootstrap samples and then corrected, 
following the above references. These calculations do 
not include the effect of the multiplicity of and spa-
tial autocorrelation in the tests, and thus the tests do 
not determine the field 
significance of the dif-
ference between model 
simulations and obser-
vations but can be used 
as a relative measure of 
the differences among 
the models. This is also 
the case with other sta-
tistical tests presented 
in this paper.

The largest temper-
ature biases are shown 
by HadRM3, which 
exhibits a pronounced 
warm bias in all sea-
sons but particularly 
in winter, when tem-
peratures more than 
8°C above the observed 
are found in central 
to northern Canada 
(Fig. 2c). CRCM exhib-
its mainly cold biases in 
winter, whereas most of 
the other models tend 
toward warm biases in 
the northern part of the 
domain and cold bi-
ases in the south during 
winter. WRF’s warm 
bias in the central Great 
Plains extends up into 

Canada but is surrounded by cold biases elsewhere. In 
summer, there is a common warm bias for all models 
through the central plains of the United States and 
up into Canada of around 2°C, with small cold biases 
towards both coasts. The exception is HadRM3, which 
exhibits a larger warm bias (2°–8°C) and no coastal cold 
bias. Based on RMSE values (Table 2a), the full ensem-
ble mean outperforms most of the individual models in 
all seasons, but certain individual models perform as 
well as the ensemble (MM5 in winter and spring and 
RSM in spring). However, the nudged ensemble out-
performs the full ensemble in all seasons, and the non-
nudged ensemble usually performs more poorly than 
the full ensemble and many of the individual models. 
In addition, the NCEP reanalysis outperforms many 
of the regional models in most seasons but not the full 
or nudged ensemble. [However, it should be noted that 
it is difficult to establish meaning in comparisons be-
tween the NCEP reanalysis itself and the RCM results 
because the reanalysis assimilates a variety of observed 

Table 2. Spatial RMSEs for seasonal means of temperature and precipitation 
over the common domain. The percentage of grid points that statistically 
differ from the UDEL observations at the 0.05 level is given in parentheses. 
The lowest value for each season is underscored and the highest is in bold.

a. Temperature (°C) Winter Spring Summer Fall

CRCM 3.1 (78) 3.0 (81) 2.4 (79) 2.5 (91)

RSM 3.6 (78) 2.4 (63) 2.2 (82) 1.9 (69)

HadRM3 5.9 (96) 3.9 (93) 3.6 (88) 3.1 (84)

MM5 2.8 (62) 2.4 (74) 2.3 (79) 2.9 (81)

RegCM3 4.5 (84) 3.4 (66) 2.1 (75) 1.9 (59)

WRF 3.6 (73) 4.0 (88) 2.3 (82) 2.9 (75)

ENSEMBLE 2.8 (74) 2.4 (71) 1.8 (66) 1.8 (68)

ENS-Nudge 2.5 (57) 2.3 (64) 1.7 (69) 1.7 (66)

ENS-NonNudge 3.7 (80) 2.8 (79) 2.0 (77) 1.8 (69)

NCEP R2 3.1 (76) 2.4 (70) 2.2 (76) 1.9 (65)

b. Precipitation (mm day–1) Winter Spring Summer Fall

CRCM 0.86 (73) 0.66 (77) 0.70 (68) 0.82 (63)

RSM 1.01 (88) 1.12 (91) 0.80 (66) 0.89 (74)

HadRM3 1.35 (79) 1.01 (81) 0.60 (76) 1.22 (76)

MM5 1.09 (83) 0.84 (83) 0.60 (60) 0.97 (73)

RegCM3 1.19 (86) 1.12 (90) 1.10 (80) 1.15 (79)

WRF 0.94 (64) 0.69 (70) 0.77 (67) 0.87 (66)

ENSEMBLE 0.93 (82) 0.82 (87) 0.57 (66) 0.85 (70)

ENS-Nudge 0.87 (84) 0.84 (91) 0.62 (63) 0.81 (71)

ENS-NonNudge 1.00 (81) 0.82 (85) 0.61 (67) 0.92 (70)

NCEP R2 0.84 (66) 0.64 (70) 1.53 (83) 0.89 (63)
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data and is produced at a much coarser resolution (2.5° 
vs 0.5°)]. CRCM, RSM, and MM5 perform similarly 
well, with most RMSE values less than 3°C. HadRM3, 
WRF, and RegCM3 tend to have the larger RMSEs. All 
models and ensembles perform better in summer than 
winter based on RMSEs, though not necessarily from 
the point of view of percent of grid points that differ 
significantly from observations. In almost every case, 
more than 60% of the grid points are significantly dif-
ferent from the observations.

The biases and RMSEs of these RCM simulations 
are within the range found in many regional mod-
eling comparisons (see Takle et al. 1999; Pan et al. 
2001; Anderson et al. 2003; Leung et al. 2004; Fu 
et al. 2005; Christensen et al. 2007a; Gutowski et al. 
2007; Christensen et al. 2010), several of which have 
used the same or earlier versions of the RCMs used 
in NARCCAP. For example, central U.S. temperature 
errors in continental U.S. simulations are typically 
around 2°C (e.g., Takle et al. 1999).

There are some uncertainties based on different ob-
servational datasets. Figure 4a portrays the maximum 
difference in temperature among the three observed 
datasets for winter (1980–2004) for the lower 48 U.S. 
states at the 0.5° spatial scale. Across most of the 
domain, differences are quite small, less than 0.6°C, but 
in the mountainous west differences (in any season) 

can be greater than 2°C and thus could affect the calcu-
lation of bias. These differences result from differences 
in the stations involved in the formation of the datasets, 
the exact nature of the elevation correction used, and 
the initial resolution of each dataset. In regions of 
complex terrain, it is difficult to determine if one set 
is closer to “the truth” in the context of the resolution 
of the RCMs. For example, in parts of the northern 
Rockies of the United States, UDEL’s temperatures are 
about 3°C lower than CRU’s. However, throughout the 
Rocky Mountains there is no consistent bias between 
the two datasets (i.e., one is not consistently higher or 
lower than the other), and thus performing the bias 
analysis with CRU instead of UDEL would not have 
produced consistently different results.

HadRM3 as an outlier. It is clear from the above 
assessment that the HadRM3 performs significantly 
worse than the others in terms of seasonal tempera-
ture biases. However, application of this model over 
other regions indicates that it does not have a system-
atic tendency to simulate temperatures significantly 
warmer than observed [e.g., Xu et al. (2006) over 
China, Marengo et al. (2009) over South America, 
and Kamga and Buscalet (2006) over Africa]

In most previous studies, HadRM3 has been 
driven by the 15-yr European Centre for Medium-

Fig. 4. Comparison of three observed datasets for winter over the lower 48 states for (a) temperature and (b) 
precipitation. Temperature values displayed are the maximum difference (°C) in each grid box among the three 
datasets. For precipitation the maximum percent difference across the three datasets is displayed.
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Range Weather Forecasts (ECMWF) Re-Analysis 
(ERA-15), ERA-40, or ERA-Interim. Rerunning 
HadRM3 using the ERA-Interim data over a subset 
of years common to that analyzed above (1990–99) 
produces significantly different temperature biases 
(Fig. 5). The patterns of the biases are similar, espe-
cially in winter, but the magnitudes are significantly 
less, up to 5°C less, when using the ERA-Interim data 
for boundary conditions, now of similar magnitude 
to biases in the other RCMs.

These results indicate clearly that there must be 
differences between the two reanalyses. Comparing 
them on the boundary of the NARCCAP domain (not 
shown) demonstrates that the NCEP data are both 
warmer and moister both in the lower troposphere 
and in the upper troposphere/stratosphere. For ex-
ample, at the 850-mb level at the inflow (western) and 
outflow (eastern) boundaries, NCEP relative humid-
ity is around 12% and 9% higher, respectively, than 
that of ERA Interim, whereas temperature along the 
inflow boundary is about 1.0°–1.5°C warmer.

Both differences would lead the NCEP-driven 
simulation to be warmer, via the direct increase in 
temperature in the boundary conditions and via 
greater downward longwave radiation resulting from 
higher humidity (possibly further enhanced in winter 
if the higher humidity led to increased cloud cover). 
The difference in simulated surface temperatures is 
greater than in the boundary conditions, which lends 
support to these additional 
mechanisms being involved, 
which may also be enhanced 
by surface feedbacks.

In addition, in winter the 
warmer temperatures would 
lead to reduced snow cover, 
enhancing solar radiation 
absorption at the surface. In 
summer they could lead to 
drier soils and thus less cloud 
cover, also enhancing surface 
solar radiation and consistent 
with high negative precipi-
tation biases in the NCEP-
driven simulation (not shown).

Temperature pattern correla-
tions and variances. In addition 
to overall bias, we also con-
sider the standard Pearson 
spatial pattern correlation of 
mean seasonal temperature 
(and precipitation). Figure 6a 

portrays this metric for the full domain (NA) as well 
as for three of the four subregions (discussed below). 
The pattern correlation of temperature for the full 
domain is very high for all models in both seasons 

Fig. 6. Spatial pattern correlation for seasonal (a) temperature and (b) 
precipitation for the full domain (NA) and three of the four subregions, the 
Atlantic coast (denoted as CATLA), the south-central United States (denoted 
as SOUTH), and the Great Plains (denoted as PLAINS).

Fig. 5. Difference in winter temperature simulated 
for 10 years (1990–99) by HadRM3 driven by NCEP vs 
ERA-Interim boundary conditions.
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Fig. 7. Ratio of model to observed interannual variance of winter seasonal temperature for 
the six regional models: (a) CRCM, (b) RSM, (c) HadRM3, (d) MM5, (e) RegCM3, and (f) WRF. 
The F statistic at the 0.0275 level is 0.44 and at the 0.975 level is 2.27. The percentage of grids 
below (above) those critical values is indicated below each panel.
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Fig. 8. Ratio of model to observed interannual variance of summer seasonal temperature for 
the six regional models: (a) CRCM, (b) RSM, (c) HadRM3, (d) MM5, (e) RegCM3, and (f) WRF. 
Values of the F statistic at the 0.275 level is 0.44 and at the 0.975 level is 2.27. The percentage 
of grids below (above) these critical values is indicated below each panel.
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but is slightly higher in winter than in summer. There 
is little difference across the models, with all winter 
values above 0.95 and most summer values likewise.

Figures 7 and 8 present interannual winter and 
summer seasonal temperature variance ratios 
(model/observations) for the six RCMs, respectively, 
including the 0.0275 and 0.975 levels of the F test, 
which indicate ratios that are significantly differ-
ent from 1.0. In accordance with observations, all 
models demonstrate higher variance in winter than in 
summer and higher values in the continental interior 
(figures not shown), but biases are pronounced for 
many of the models in both seasons.

In winter, CRCM mainly underestimates variance, 
particularly in the interior parts of the domain and 
land areas east of Hudson Bay (Fig. 7a), whereas MM5 
and RegCM3 (Figs. 7d,e) mainly overestimate it. RSM 
reproduces it relatively well (Fig. 7b) over most of the 
domain, except for an area of underestimation over 
the American Rocky Mountains. HadRM3 (Fig. 7c) 
mainly underestimates variance through the center 
of the domain and extending northward through the 
Canadian Rocky Mountains. WRF (Fig. 7f) reproduces 
the observed variance in the center of the domain but 
overestimates it in large portions of Canada.

In summer, when observed variability is substan-
tially less than in winter, most models overestimate 
the variance over most of the domain (Fig. 8). CRCM 
and MM5 produce fewer grid points with significant 
differences than the other models, and these are a 
mixture of small underestimations and overesti-
mations. RSM performs relatively well but displays 
areas of overestimation in the southern parts of the 
domain and up through the U.S. Midwest. HadRM3 
and RegCM3 produce the most substantial overesti-
mations of variance throughout most of the domain. 
WRF produces a pattern of bias similar to that of 
HadRM3, and in some areas the overestimations 
are of the same magnitude. The biases in variance 
are relatively independent from the biases in mean 
temperature in all four seasons. The correlations of 
the two types of biases are generally between +0.3 and 
−0.3 for most model–season combinations.

Domain-wide seasonal precipitation. Figures 9 and 10 
present bias plots (% difference) for precipitation 
in winter and summer, respectively. Table 2b gives 
RMSE values and percentages of grid points that are 
significantly different from observations.

In winter, most models produce predominantly wet 
biases, with one of the most extreme being RSM, with 
biases of 80% or more over much of the domain. On 
the other hand, RSM has the lowest bias in the south-

central United States (lower Mississippi River basin), 
which is a region of high precipitation in the observa-
tions. This may be because RSM uses spectral nudging 
and receives more large-scale information from the 
NCEP reanalysis. Most of the models underestimate 
this subregional concentration of precipitation.

In summer, more models exhibit underestimates of 
precipitation, particularly WRF, MM5, and HadRM3 
in the central plains of the United States and Canada. 
Of the six RCMs, CRCM produces the lowest RMSE 
in every season but summer, whereas the producer 
of the highest RMSE varies from season to season. 
The ensemble average performs best only in summer, 
whereas the nudged ensemble performs best only 
in fall, when its performance is little better than 
CRCM’s. The NCEP reanalysis produces the largest 
RMSE of all models in summer; this is most likely due 
to the well-known and well-documented assimila-
tion/spindown problem present in the R2 that leads 
to excessive precipitation, particularly in summer 
(Kalnay et al. 1996; Bukovsky and Karoly 2007).

We examined the uncertainty in bias estimation 
based on the uncertainty in precipitation observa-
tions. Figure 4b shows the largest percent difference 
in the three observational datasets for the contiguous 
United States for the winter. Although most of the dif-
ferences in the eastern two-thirds of the United States 
are relatively small (within 5–10 percentage points) in 
the west, in areas of complex terrain some differences 
are substantial, such as in the northern U.S. Rocky 
Mountains and in the southwest margin of California. 
In these areas, differences can be as much as 80%. It 
is likely that the PRISM dataset, which tends to have 
the largest value in these regions, is closer to the true 
values, given the care that was taken to correct its 
precipitation values for elevation. This means that, 
in areas like the northern U.S. Rockies, the positive 
biases indicated by the comparison with UDEL are 
likely too high. However, given the magnitude of the 
biases for many of the models, the biases over large 
subregions would not be substantially altered due 
to comparison with a different observed dataset. In 
general, the biases in precipitation fall in the range 
seen in other modeling efforts. Precipitation errors 
in continental U.S. simulations are generally between 
0.6 and 1.4 mm day–1 (Anderson et al. 2003; Gutowski 
et al. 2007). Leung et al. (2003c) compared three 
regional simulations for the western United States 
based on MM5 and RSM driven by different global 
reanalyses and found that, although RCM simulations 
were too wet compared to observations by 20%–75%, 
the same RCM (MM5) driven by two different global 
reanalyses can produce very different results because 
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Fig. 9. Winter precipitation bias (% difference; model − UDEL observed) plots for the six regional 
models: (a) CRCM, (b) RSM, (c) HadRM3, (d) MM5, (e) RegCM3, and (f) WRF.
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Fig. 10. Summer precipitation bias (% difference; model − observed) plots for the six regional models: 
(a) CRCM, (b) RSM, (c) HadRM3, (d) MM5, (e) RegCM3, and (f) WRF.
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the moisture f luxes in the reanalyses are not well 
constrained by observations over the oceans.

The spatial pattern correlations for precipitation 
(Fig. 6b) are lower than those for temperature but are 
still relatively high for all models, especially in winter, 
when they are generally greater than 0.8. In summer 
most values are greater than 0.8, although HadRM3, 
WRF, and NCEP are around 0.7.

In winter (Fig. S1; see http://dx.doi.org/10.1175 
/BAMS-D-11-00223.2), most models show variance 
ratios in the 3–4 range in the western half of the conti-
nent, but some of this is due to the dry bias of UDEL in 
the mountainous part of the domain. In the southeast, 
most models exhibit an underestimation of variance, 
except for the HadRM3, which shows slight overestima-
tions. Areas of underestimation are much more com-
mon in summer (Fig. S2) than in winter for all models 
but RSM and RegCM3, where overestimations prevail.

In contrast to temperature, for precipitation, the 
correlation between mean biases and biases of vari-
ance is considerable. For 22 of the 24 model–season 
combinations, the correlations are greater than 0.5 
and all are positive. Hence, models that have positive 
biases in mean seasonal precipitation tend to have 
positive biases in the variance as well. (Note that a log 
transformation was applied to the data to render the 
distributions close to normal for this analysis.)

More detailed subregional analyses. We also analyzed 
four subregions of North America (displayed in 
Fig. 1) to sample how well the models reproduce cli-
matically distinct subregions of the domain. Southern 
California has a Mediterranean climate (Köppen 
classifications Csa and Csb; Köppen 1900) with a pro-
nounced summer dry season and mild, damp winters. 
There is a strong ENSO signal in this region. The Great 
Plains has a midlatitude continental climate (mostly 
Köppen classifications Dfa and Dfb) with a large an-
nual temperature range, having warm summers and 
cold winters. The region has a precipitation maximum 
in late spring and early summer that is largely attribut-
able to organized mesoscale convective systems. The 
south-central region has a humid subtropical climate 
(Köppen classification Cfa) with a modest wintertime 
precipitation maximum and temperatures that do not 
often reach below freezing. The Atlantic coastal region 
has a moist midlatitude climate affected by proximity 
to the Atlantic Ocean, with substantial variation from 
north to south in both temperature and precipitation 
and Köppen classifications ranging from Cfa in the 
south to Dfb and Dfc in the north.

Our regional analysis includes pattern correla-
tions for seasonal temperature and precipitation, 

as well as correlations between temperature and 
precipitation, which give some indication of how 
well the models reproduce the factors that govern the 
overall climatology of the subregion. We also examine 
the monthly biases averaged over each region, the 
observed versus modeled temporal correlations, and 
a comparative quartile analysis of the seasonal biases. 
We also examine the uncertainty of the observed 
datasets in some of these analyses to determine under 
which conditions uncertainty in observations has an 
important effect on model evaluation.

Comparative quartile analysis. Any climatological 
variable of interest (e.g., seasonal temperature or pre-
cipitation) will have a spatial distribution over a given 
region. To perform comparative quartile analysis, we 
determine the median, lowest, and highest quartiles 
(q50, q25, and q75) of the distribution for both model 
and observations on a seasonal basis. We then con-
struct a bias index by comparing them as follows:

	 q50(model) > q75(obs)Index +1,

	 q50(model) < q25(obs)Index −1,

	 q25(model) > q50(obs)Index +1, and

	 q75(model) < q50(obs)Index −1.

This gives index values between −2 and +2. Each 
increase (decrease) of 1 means there is a positive 
(negative) bias of the model compared to the observa-
tions. A nonzero index value indicates that the model 
median is outside the central half of the observed 
distribution, that the upper or lower quartile of the 
model distribution is shifted past the median of the 
observations, or both.

Mean seasonal cycle of temperature and precipitation. 
In this analysis, we include all three observational 
datasets for the two subregions (Southern California 
and south-central United States) fully within the con-
tinental United States and two datasets for the other 
two subregions (Great Plains and the Atlantic coast) 
that extend outside the PRISM coverage area. To fur-
ther quantify the bias ranges based on the different 
datasets, we provide ranges of seasonal bias based on 
different observational datasets for temperature and 
precipitation for the first two subregions (Table 3).

Southern California. All models reproduce the 
observed climatology of warm, dry summers and 
cool, moist winters (Figs. 11a,e), but nonetheless 
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there are notable variations. Observational uncer-
tainty is significant in the winter for precipitation 
and in the summer for temperature. HadRM3 
underestimates winter precipitation by between 
about 1.5–2 mm day–1, a 60%–70% underestimation 
(Table 3) of the observed rates, whereas the RSM 

bias ranges from −2% to +29%, depending on the 
observed dataset used for comparison (Fig. 12e and 
Table 3). The ensemble mean corresponds to the ob-
served annual cycle of precipitation from the UDEL 
observations especially closely but underestimates 
winter precipitation based on the other two observed 

Table 3. Range of seasonal biases for (a) temperature (°C), (b) precipitation (percentage difference), 
and (c) precipitation (difference in mm day–1) for two subregions based on the three different observed 
datasets for DJF, March–May (MAM), JJA, and September–November (SON).

a. Range in temperature bias (°C)

Southern California South-central United States

DJF MAM JJA SON DJF MAM JJA SON

CRCM −3.0 : −2.6 −1.2 : 0.0 2.3 : 4.7 −1.5 : −0.5 −1.2 : −0.9 −0.8 : −0.5 1.0 : 1.4 −0.9 : −0.6

RSM −0.8 : −0.4 −0.2 : 1.0 0.6 : 2.9 0.1 : 1.2 −0.3 : 0.0 0.1 : 0.4 0.4 : 0.8 0.5 : 0.9

HadRM3 1.7 : 2.1 2.0 : 3.3 3.7 : 6.1 2.9 : 4.0 3.0 : 3.3 1.7 : 2.1 3.5 : 3.9 2.2 : 2.5

MM5I −0.1 : 0.3 −0.3 : 0.9 −0.1 : 2.2 −0.7 : 0.4 −1.7 : −1.3 −1.2 : −0.8 −0.2 : 0.1 −2.3 : −2.0

RegCM3 −0.1 : 0.3 0.3 : 1.5 0.5 : 2.9 0.3 : 1.4 −1.4 : −1.1 −0.7 : −0.3 0.8 : 1.2 −2.2 : −1.8

WRFG 0.2 : 0.6 −0.6 : 0.6 0.5 : 2.9 0.1 : 1.1 0.4 : 0.8 0.1 : 0.5 −0.9 : −0.5 −1.4 : −1.0

ENS −0.3 : 0.1 0.0 : 1.2 1.3 : 3.6 0.2 : 1.3 −0.2 : 0.2 −0.1 : 0.2 0.8 : 1.2 −0.7 : −0.3

NCEP −0.6 : −0.2 −1.7 : −0.5 −2.3 : 0.1 −1.0 : 0.0 −0.9 : −0.6 0.1 : 0.5 0.0 : 0.4 −0.4 : 0.0

b. Range in precipitation bias (%)

Southern California South-central United States

DJF MAM JJA SON DJF MAM JJA SON

CRCM −16 : 11 −2 : 24 92 : 210 −3 : 38 −25 : −23 −5 : −3 1 : 3 −32 : −28

RSM −2 : 29 4 : 32 −39 : −2 −6 : 34 −8 : −6 4 : 5 1 : 3 −32 : −27

HadRM3 −71 : −62 −16 : 7 34 : 117 −81 : −72 −16 : −14 −8 : −7 −8 : −6 −41 : −37

MM5I −23 : 2 −16 : 7 −60 : −35 −24 : 8 −43 : −42 −8 : −7 4 : 6 −38 : −34

RegCM3 −17 : 11 −15 : 9 2 : 64 −19 : 15 −34 : −33 1 : 3 42 : 45 −36 : −31

WRFG −33 : −11 −40 : −23 −37 : 1 −33 : −5 −37 : −36 −19 : −17 −35 : −34 −33 : −28

ENS −27 : −3 −14 : 9 −2 : 59 −27 : 3 −27 : −26 −6 : −5 1 : 3 −35 : −31

NCEP −47 : −29 −47 : −33 −55 : −27 −44 : −21 −39 : −38 −15 : −13 80 : 83 −16 : −10

c. Range in precipitation bias (mm day–1)

Southern California South-central United States

DJF MAM JJA SON DJF MAM JJA SON

CRCM −0.50 : 0.26 −0.03 : 0.27 0.12 : 0.17 −0.02 : 0.24 −0.99 : −0.92 −0.19 : −0.14 0.05 : 0.11 −1.15 : −0.94

RSM −0.08 : 0.68 0.05 : 0.36 −0.05 : 0.00 −0.05 : 0.21 −0.30 : −0.23 0.15 : 0.20 0.03 : 0.09 −1.14 : −0.92

HadRM3 −2.19 : −1.43 −0.22 : 0.08 0.04 : 0.09 −0.72 : −0.46 −0.64 : −0.57 −0.34 : −0.28 −0.26 : −0.19 −1.47 : −1.25

MM5I −0.71 : 0.05 −0.23 : 0.07 −0.08 : −0.03 −0.21 : 0.05 −1.72 : −1.65 −0.34 : −0.28 0.15 : 0.21 −1.37 : −1.15

RegCM3 −0.51 : 0.24 −0.21 : 0.10 0.00 : 0.05 −0.17 : 0.10 −1.35 : −1.29 0.05 : 0.11 1.43 : 1.49 −1.28 : −1.06

WRFG −1.02 : −0.26 −0.56 : −0.26 −0.05 : 0.00 −0.29 : −0.03 −1.50 : −1.43 −0.77 : −0.71 −1.18 : −1.12 −1.17 : −0.95

ENSA −0.83 : −0.08 −0.20 : 0.10 0.00 : 0.05 −0.25 : 0.02 −1.08 : −1.01 −0.24 : −0.18 0.04 : 0.10 −1.26 : −1.05

NCEP −1.44 : −0.68 −0.67 : −0.36 −0.07 : −0.02 −0.40 : −0.13 −1.58 : −1.51 −0.60 : −0.55 2.69 : 2.76 −0.57 : −0.35
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datasets (e.g., −27%; Table 3b). The large ranges of pre-
cipitation biases in summer (Table 3b) result from the 
very small amounts of precipitation occurring in that 
season (Table 3c). Temperature biases for the models 
(Fig. 12a and Table 3) range from a strong cold bias in 
winter and warm bias in summer (CRCM) to a warm 

bias throughout the year (HadRM3). The ensemble 
mean reproduces the seasonal cycle of temperature 
quite well except for an overestimation in summer, 
which is slight based on the PRISM observations but 
substantial based on UDEL and CRU. Comparative 
quartile analysis for seasonal temperature (Fig. S3) 

Fig. 11. Seasonal cycle of (left) temperature (°C) and (right) precipitation (mm day–1) for the six models 
in the four subregions: (a),(e) Southern California; (b),(f) Great Plains; (c),(g) south-central United 
States; and (d),(h) the Atlantic coast. Results for the ensemble of the six models (denoted as Ens), 
NCEP, and three observed datasets are also displayed. ECP2 refers to RSM.
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shows that most models reproduce all four seasons 
well, except for CRCM in summer and winter and 
HadRM3 year-round. This can also be seen in Fig. 12. 
Most models perform best in the shoulder seasons. 
Based on quartile analysis for precipitation (Fig. S4), 
most models perform well in most seasons but sum-
mer, when observed precipitation amounts are very 

small. Overall, HadRM3 produces the largest total 
bias index score.

Great Plains. All models reproduce the general 
trend of cold winters and warm summers (Fig. 11b), 
although all but CRCM have a warm bias in winter 
(Fig. 12b). The observed values for both UDEL and 

Fig. 12. Monthly biases of (left) temperature (°C) and (right) precipitation (mm day–1) for the six 
models in the four subregions: (a),(e) Southern California; (b),(f) Great Plains; (c),(g) south-central 
United States; and (d),(h) the Atlantic coast. Results for the ensemble of the six models (denoted as 
Ens), NCEP, and two other observed datasets compared to UDEL observations are also displayed. 
ECP2 refers to the RSM.
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CRU for temperature and precipitation are extremely 
close and do not contribute appreciable uncertainty 
to the model evaluations. HadRM3 has a pronounced 
warm bias ranging from 3.2°C in June to over 7°C in 
March and September. This tendency for the warm 
bias to peak in spring and fall appears in a more 
muted form in several other models. The annual 
cycle of precipitation shows a tendency for wet biases 
in winter and a dry bias from midsummer through 
fall (Figs. 11f, 12f). The summer dry bias may reflect 
the fact that much of the warm-season precipitation 
in this region is produced by mesoscale systems that 
are poorly resolved at the 50-km grid spacing used 
in NARCCAP (Anderson et al. 2007). The warm 
temperature bias and wet precipitation bias in winter 
are consistent to the extent that a warmer atmosphere 
implies greater water vapor content and thus greater 
potential for precipitation. Quartile analysis shows 
that HadRM3 has a consistent warm bias in all 
seasons (Fig. S3) and WRF has a warm bias in winter 
and spring. Other models perform well in all seasons. 
All models overestimate precipitation in the winter 
(Fig. S4), and half the models (particularly HadRM3 
and WRF) show dry biases in the summer and/or fall.

South-central United States. All three observed 
datasets for this region are very close in value for 
both temperature and precipitation and thus do not 
reflect any significant range in biases for any of the 
models (Table 3).

As in the Great Plains region, HadRM3 has a 
warm bias throughout the year, peaking in March and 
September at 3.6° and 4.9°C, respectively (Figs. 11c, 
12c). There is no consistent pattern to the other 
models, though most have a cool bias in winter and 
spring. Precipitation shows large intermodel spread in 
each month, amounting to a variation of about 50% 
of observed monthly precipitation in most months 
(Figs. 11g, 12g). The ensemble mean underestimates 
precipitation in fall and winter but is very close to 
observations from May through September. Interest-
ingly, over this part of the year, NCEP is the worst 
performer for both temperature and precipitation but 
particularly the latter. It exhibits a pronounced and 
unrealistic maximum in August that overestimates 
precipitation by about 125%. The RegCM3 most 
closely follows the NCEP seasonal cycle. This seasonal 
difference in bias may reflect seasonal differences in 
the physical character of precipitation. The quartile 
analysis for temperature (Fig. S3) also shows that 
HadRM3 has a consistent warm bias and that other 
models have difficulty reproducing fall and summer 
temperatures, with only RSM performing well across 

all seasons. Precipitation biases, mainly negative, are 
pronounced in most seasons in most models (Fig. S4). 
Note that perceived performance of the models varies 
based on whether one views the seasonal (Fig. S4) or 
monthly (Figs. 11g and 12g) results.

Atlantic coast. For this region, the differences in the 
UDEL and CRU observed datasets do not result in 
an appreciable range in biases for any given model, 
although the CRU dataset is about 0.2 mm day–1 
wetter in most months. Most models have a slight 
cool bias or are close to the observed mean in most 
months (Figs. 11d, 12d), with the notable exception 
being HadRM3, with a warm bias throughout the 
year peaking at 3.9°C in March. The bias of the en-
semble mean is generally small and is most extreme 
in October and November at −0.9°C. It is interesting 
to note that the skill of the ensemble mean comes 
about in part because the warm bias in HadRM3 
acts as a counterweight to the cool bias in most of the 
other models. Thus, in this case, a model that could 
be viewed as having relatively low skill (based on its 
individual bias) adds value to the ensemble. Quartile 
analysis of temperature (Fig. S3) shows that all models 
perform well in all seasons, except for a slight cool 
bias for MM5 in summer. Note that the warm bias 
discussed above for HadRM3 is not evident in the 
seasonal quartile analysis (Fig. S3). This illustrates 
the role selection of metrics can have in the final per-
ception of model quality. For precipitation (Fig. S4), 
models exhibit positive and negative biases in more 
than half of the model–season combinations. Most 
of the models have a wet bias from March through 
July and a dry bias from October through December 
(Figs. 11h, 12h), whereas RegCM3 and RSM show 
high positive biases in all seasons but fall (Fig. S4).

Spatial pattern correlations for all regions. As illustrated 
in Fig. 6, the pattern correlation in winter tempera-
ture is excellent, at greater than 0.95 in all instances. 
Summer temperature pattern correlations are also 
good, at greater than 0.90 for all regions except the 
south-central United States, where the position of the 
summertime southern U.S. maximum has a strong 
influence on the temperature gradient’s orientation. 
As expected, model performance on this metric is 
much more variable for precipitation than tempera-
ture; the greatest consistency in performance is in 
the Great Plains region, where most models perform 
well (above 0.80).

Precipitation pattern correlations for spring and 
fall are included in Fig. 6b for the south-central 
United States, because the models’ performance 
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on this metric in this subregion stood out as 
particularly poor. This is due to poor positioning 
of the precipitation maximum in this region. In 
the spring, for instance, instead of positioning a 
maximum adjacent to the coast, most models place it 
towards the northern edge of this region (nearer the 
Appalachians), switching the direction of the gradient 
and yielding poor correlations.

Precipitation/temperature correlations. Correlations of 
precipitation and temperature for winter and summer 
in each subregion are shown in Fig. 13. In the Great 
Plains and the south-central United States, where 
warmer summers are often drier summers, all of the 
RCMs capture the interannual interplay between 
precipitation and temperature. Performance in the 
coastal regions and in winter, where the average cor-
relations are weaker, is less straightforward, but most 
of the RCMs capture the direction of correlation indi-
cated by UDEL and CRU. One exception is HadRM3 
in winter; although these regions are comparatively 
small, the pattern of the precipitation/temperature 
correlations is not homogeneous and in most regions 
there is an area where HadRM3 produces an exagger-
ated correlation that overwhelms the signal from the 
rest of the region. For example, in Southern California 
there is a strong gradient to the correlation from 

weakly negative in the south to moderately positive 
in the north (not shown). All of the RCMs capture the 
direction of this gradient, but HadRM3 has a stronger 
negative correlation in the south and a weaker posi-
tive correlation in the north, resulting in an overall 
correlation that is weakly negative. The same is true 
in the Great Plains region, where from north to south 
the correlation pattern switches sign twice, with the 
central negative correlation dominating the region 
(not shown). Some models capture this better than 
others, but HadRM3 produces a strong positive cor-
relation at the south end that results in an overall 
positive correlation.

Time series correlations. Because the annual cycle 
dominates the time series, obscuring interannual 
and intermodel variations, before computing correla-
tions we subtracted the mean annual cycle from each 
time series; we refer to the result as “deviation tem-
perature” or “deviation precipitation.” Computing 
deviations also factors out systematic biases in both 
the model mean and the mean annual cycle. Even 
models with large biases can be useful if those biases 
are systematic and can be easily removed.

Correlations of deviation temperatures with UDEL 
(Table 4a) are around 0.7–0.8 for most models and 
regions. CRCM has the highest correlation with ob-

servations in each region, which may 
be because it is one of the two models 
to use spectral nudging. RSM has the 
second highest correlation and is the 
other model using spectral nudging. 
Of the remaining four models, 
RegCM3 has the lowest regional 
correlations but is not markedly 
lower than the other models. Note 
that, despite HadRM3’s large biases, 
its correlations with the observed 
deviation time series are comparable 
to those of the other models, suggest-
ing that the model depicts interan-
nual variability well once systematic 
biases are removed.

For deviation precipitation, cor-
relations with UDEL are largest for 
Southern California and smallest for 
the Great Plains (Table 4b). This may 
reflect the difference in precipitation 
seasonality between the two regions; 
Southern California has a pro-
nounced cool-season precipitation 
maximum resulting primarily from 
synoptic-scale processes that are 

Fig. 13. Correlations of temperature and precipitation for the four 
subregions for (a) winter and (b) summer. Results for all six models, 
the full ensemble (denoted as ENS), the subensemble of the two 
models that used nudging (denoted as ENS-NUDGE), that of the 
remaining four models (denoted as ENS-NONUDGE), NCEP, and 
two different observation datasets are displayed.
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large enough to be resolved 
on the 50-km NARCCAP 
grid, whereas the Great 
Plains has a warm-season 
precipitation maximum 
resulting primarily from 
mesoscale systems that 
are poorly resolved on a 
50-km grid. The features 
of observed interannual 
precipitation variation in 
Southern California, such 
as large positive anomalies 
during the El Niño events 
of 1982/83, 1994/95, and 
1997/98 and the multiyear 
drought of the late 1980s, 
are well represented, par-
ticularly by the ensemble 
(Fig. S5a). Models have 
most difficulty reproducing 
the variability in the Great 
Plains, where correlations 
are lowest. However, the 
ensemble mean generally 
ref lects observed interan-
nual precipitation variabil-
ity, with the exception of 
the extreme wet anomaly 
of 1993 (Fig. S5b).

For regions other than 
Southern California, the 
highest correlations for de-
viation precipitation are shown by CRCM and RSM, 
sometimes markedly so (Table 4b). We hypothesize 
that this is again attributable at least in part to the 
use of large-scale information in the domain interior 
via nudging and therefore have computed correla-
tions for a mini-ensemble containing only these two 
models. This nudged mini ensemble has correlations 
consistently greater than both the best single model 
and the full ensemble mean.

DISCUSSION AND CONCLUSIONS. Given 
the variety of metrics examined, the variability of 
model performances across them, and the spatial and 
temporal variability and complexity of the climate, it 
is difficult to simply state whether the models success-
fully reproduce the climate over North America for 
1980–2004. Our results are within the range of what 
has been found in other multiple model comparisons: 
seasonal temperature is relatively well produced by 
most models but seasonal precipitation is less so. All 

models have more difficulty reproducing the vari-
ability of precipitation than of temperature. They do 
correctly reproduce the seasonal cycle of temperature 
variability. Performance also varies substantially 
from one subregion to another.

There is no single model that performs “best” 
in terms of simulation of both temperature and 
precipitation based on the specific metrics we apply. 
Failure to discern a best model has been documented 
in recent papers on model evaluation (e.g., Gleckler 
et al. 2008; Reichler and Kim 2008; Walsh et al. 2008). 
We maintain that all NARCCAP simulations can 
provide useful information about current and future 
climate and that the spread across the simulations 
underscores the uncertainty in understanding and 
modeling climate processes.

However, differential model performance is dis-
cernible. With regard to seasonal average temperature 
biases over the whole domain RSM and MM5 had 
the lowest total RMSEs, whereas HadRM3 had the 
greatest overall temperature bias. RSM, RegCM3, and 

Table 4. Correlation of RCM simulated monthly time series with the 
UDEL observational data. Highest values of the six RCMs and of the two 
ensembles are underscored.

a. Temperature: Deviation from model’s annual cycle

Southern 
California Great Plains

South-central 
United States Atlantic coast

CRCM 0.86 0.92 0.85 0.90

RSM 0.83 0.91 0.80 0.86

HadRM3 0.74 0.71 0.55 0.68

MM5 0.80 0.74 0.68 0.66

RegCM3 0.62 0.72 0.51 0.57

WRF 0.74 0.75 0.63 0.73

Ensemble 0.83 0.87 0.80 0.83

Nudged 0.87 0.94 0.87 0.91

b. Precipitation: Deviation from model’s annual cycle

Southern 
California Great Plains

South-central 
United States Atlantic coast

CRCM 0.68 0.45 0.67 0.64

RSM 0.69 0.39 0.59 0.60

HadRM3 0.63 0.28 0.39 0.20

MM5 0.67 0.33 0.41 0.33

RegCM3 0.66 0.33 0.30 0.34

WRF 0.68 0.30 0.48 0.33

Ensemble 0.70 0.43 0.63 0.56

Nudged 0.69 0.45 0.68 0.70
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MM5 had the lowest (absolute value) total compara-
tive quartile index scores, giving RSM and MM5 the 
lowest temperature bias by both metrics combined. 
Aside from HadRM3, the models reproduced well 
the seasonal temperatures. We did identify some 
uncertainty for bias calculation based on choice of 
observed dataset for small regions in complex terrain.

Regarding precipitation bias, generalizations are 
harder to make. In addition, we found some impor-
tant uncertainties in calculation of bias based on 
choice of observed dataset for regions with complex 
terrain.

Based on the sum of the four seasonal RMSEs, 
CRCM has the lowest total RMSE for the full domain, 
with WRF following closely, whereas HadRM3 and 
RegCM3 have the highest total RMSEs. Summing the 
absolute values of the comparative quartile index over 
all regions and seasons produces a slightly different 
picture, with MM5, CRCM, and RSM showing the 
lowest bias (scores of 13, 15, and 15, respectively). 
However, these models do not produce the lowest 
scores for each region taken individually. The full 
ensemble scored 18 as did RegCM3 and WRF, and 
HadRM3 scored highest at 23. Considering both 
metrics, the models with lowest precipitation bias 
are CRCM, MM5, and WRF. Although MM5 ranks 
among the top-tier performers for both mean tem-
perature and precipitation, it is not a top performer 
with regard to variance of temperature and precipita-
tion, as noted below.

The ensemble average of all six RCMs performs 
well on many metrics for mean temperature and 
precipitation, but it does not perform best in all 
cases. For example, CRCM outperforms it (as well as 
the nudged mini-ensemble) with regard to RMSE of 
mean seasonal precipitation in several seasons. The 
nudged mini-ensemble often performs better than 
the full ensemble, clearly ref lecting the advantage 
of having additional information from the driving 
model within the domain interior.

Regarding temperature variability, RSM, CRCM, 
and WRF have relatively low total number of grid 
points showing statistically significant departures 
from observations in this category in winter, whereas 
CRCM and MM5 are the models with the lowest 
numbers in summer. The models in general per-
form better on this metric in winter, which contrasts 
with the seasonal tendencies for mean temperature 
performance. Regarding precipitation variability, all 
models perform relatively poorly, and there are no 
clear indications of differential model performance. 
Performance is slightly better in summer than in 
winter, which is consistent with the results for mean 

precipitation. With regard to regional correlation 
metrics, results vary across the regions and seasons. 
The correlations of monthly time series for both 
temperature and precipitation do show some clear 
tendencies, with the nudged mini-ensemble gener-
ally having the highest correlation in the four regions 
for both temperature and precipitation. Of the six 
models, the CRCM has the highest temperature cor-
relation in the four regions, with values very close to 
those of the nudged ensemble, as well as the highest 
correlation of the six models in all of the regions 
for precipitation but one, being surpassed by RSM 
in Southern California. The fact that both CRCM 
and RSM score relatively high on reproduction of 
variability for both temperature and precipitation 
suggests that the large-scale circulation, which is 
more faithfully captured in CRCM and RSM due to 
nudging, has important control over temperature and 
precipitation variability.

The relatively poorer performance of HadRM3, 
compared to the other models, for many of the 
metrics we used may well reflect the “home-court 
advantage” in that this is the one model that has not 
previously been used to perform simulations over 
North America (Takle et al. 2007). The performance 
of HadRM3 is generally substantially better when 
driven with ERA-Interim. We make several observa-
tions based on the comparison of HadRM3 driven 
by the different reanalyses: 1) it may be important 
to recognize the limitations of evaluating a model’s 
performance based on simulations driven by a single 
set of reanalyses; 2) it may be appropriate to assess 
the quality of a reanalysis before using it to validate 
an RCM; and 3) HadRM3 is the only non–North 
American model being used in NARCCAP and it is 
unlikely that its current formulation would have been 
deemed acceptable if it had been tested using NCEP 
boundary conditions during its development. Thus, 
we establish here a potentially important uncertainty 
regarding which reanalysis acts as driver.

Our goal was to provide an overview of the rela-
tive performances of the six models both individually 
and as an ensemble with regard to temperature and 
precipitation. We have shown that all the models can 
simulate aspects of climate well, implying that they all 
can provide useful information about climate change. 
In particular, the results from phase I of NARCCAP 
will be used to establish uncertainty due to boundary 
conditions as well as final weighting of the models for 
the development of regional probabilities of climate 
change.

Some researchers have tried to create a single com-
posite metric for weighting of models; for example, 
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Reichler and Kim (2008) successfully distinguished 
performance across different generations of models 
(e.g., CMIP1 vs CMIP3), although they had more 
difficulty distinguishing between individual models. 
Walsh et al. (2008) were able to rank global climate 
models over several nested domains of North America 
using a composite metric (combined RMSEs for 
three variables). We prefer to follow the approach of 
Gleckler et al. (2008) and look at the various metrics 
individually. Christensen et al. (2010), in working 
with the ENSEMBLES suite of RCMs, used six metrics 
that mainly consider temperature and precipitation 
and found differences among the models. Although 
a model that performed best was identified when 
the metrics were combined, there was still variety 
in which model performed best for each metric. The 
authors used the metrics and the combined metrics 
to establish different weighting schemes, not to elimi-
nate poor or only use best models. They note that we 
still know little about how to comparatively evaluate 
regional models to the end of differentially ranking 
or weighting them. A similar conclusion was reached 
in an Intergovernmental Panel on Climate Change 
(IPCC) document developed to provide guidance for 
use of multimodel ensembles (Knutti et al. 2010) for 
the IPCC Fifth Assessment Report.

Although comparing regional models across dif-
ferent metrics provides a useful baseline evaluation, 
understanding why models perform the way they do 
is a more critical endeavor. As more of the 3D fields 
(outputs from the vertical levels) from the simulations 
are made available for all NARCCAP model runs, 
we plan to provide process-level analysis for why 
the models do well in certain regions and less well 
in others as well as variability in individual model 
performance. These in-depth analyses will improve 
our understanding of sources of errors in the regional 
climate models and, when combined with similar 
analyses of the RCM simulations driven by GCM cur-
rent climate simulations, will help establish the ability 
of the GCM–RCM combinations to reliably simulate 
the climate of the region. This is a crucial first step 
in providing reasons for giving greater credibility to 
certain model results over others and thus providing 
higher quality information about future climate 
change and its uncertainties across North America.
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