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ABSTRACT
An alternative formulation of the non-orthogonal molecular orbital model of electronic structure theory is developed based on the expan-
sion of the inverse molecular orbital overlap matrix. From this model, a hierarchy of ab initio fragment-based quantum chemistry methods,
referred to as the nth-order expanded non-orthogonal molecular orbital methods, are developed using a minimal number of approxima-
tions, each of which is frequently employed in intermolecular interaction theory. These novel methods are compared to existing fragment-
based quantum chemistry methods, and the implications of those significant differences, where they exist, between the methods developed
herein and those already existing methods are examined in detail. Computational complexities and theoretical scaling are also analyzed
and discussed. Future extensions for the hierarchy of methods, to account for additional intrafragment and interfragment interactions, are
outlined.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0064864

I. INTRODUCTION

The last century of development in theoretical models of elec-
tronic structure theory as well as computational science has led to
the ability to quantitatively study a large number of systems using
computational chemistry. These systems, however, span a small sub-
space of the full chemical space due to the limitations in system size
that existing quantitatively accurate methods impose. Therefore, one
major focus of research in the field of theoretical quantum chemistry
in recent decades has been the development of various approxima-
tions, which may be employed to develop models and corresponding
methods that may be applied to realistic chemical systems. In gen-
eral, these approximations all seek to reduce the scaling of a given
method with respect to the system size. Many approaches focus
on introducing approximations into conventional quantum chem-
istry methods to reduce scaling orders or eliminate computationally
complex terms.

Fragment-based quantum chemistry may be considered as
one of the many approaches to reduced scaling quantitatively

accurate quantum chemistry. In these models, a full, realistic chem-
ical system is partitioned into smaller subsets whose calculations
are tractable at a certain level of theory. Many methods have been
developed using the fragmentation model, and interested readers
are directed to a number of excellent reviews for further infor-
mation on the subject.1–7 Although existing fragmentation meth-
ods have made the simulation of large chemical systems possi-
ble, the goal of quantitative accuracy is often not realized. In
many cases, this is due to the large number of approximations
that are introduced in the development of a given fragmentation
method.

The focus of this work is on the development of a novel model
of fragment-based electronic structure theory and the resulting hier-
archy of variational methods, which may be derived from this model.
These methods are developed by employing as few approximations
as possible in order to attain the linear scaling needed to make
the resultant methods viable for the study of realistic systems while
maintaining the accuracy needed to be applicable to the study of real
systems.
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II. BACKGROUND
A. Non-orthogonal molecular orbital theory

The problem of solving for the variationally minimized set
of non-orthogonal molecular orbitals (MOs) has been well-studied
and detailed elsewhere,8–21 so only a brief overview of the conven-
tional non-orthogonal molecular orbital (NOMO) theory is given
here.

For a closed-shell system of 2n electrons in n corresponding
non-orthogonal linearly independent spatial MOs, given by the set
{ϕi}i∈n, the expression for the energy of the system is given by

E =
n

∑
i=1

n

∑
j=1

Zijhij +
n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

ZijZkl(2Jkl
ij − Kkl

ij ), (1)

where the core Hamiltonian matrix elements, h, are given by

hij = (ϕi∣ĥ∣ϕj), (2)

the Coulomb electron repulsion integral (ERI) elements, J, are
given by

Jkl
ij = (ϕiϕj∣r−1

12 ∣ϕkϕl), (3)

and the exchange ERIs, K, are given by

Kkl
ij = (ϕiϕj∣r−1

12 ∣ϕkϕj), (4)

where r12 is the inter-electron distance and the Zij are elements of
the inverse of the MO overlap matrix, S, whose elements, Sij, are the
MO overlap integrals, sij,

Sij = (ϕi∣ϕj ) = sij, (5)

Zij = (S−1
)

ij
. (6)

One may then partition the MOs into M disjoint closed-
shell subsets or fragments. Thus, for the Ith fragment, there are
nI corresponding MOs, and therefore 2nI electrons, assigned to it.
For each fragment, orbitals assigned to the fragment are denoted
with a superscript representing the fragment index. For example,
for the Ith fragment, the set of MOs assigned to the fragment is
given by

{ϕi}i∈I = {ϕ
I
i}i∈I . (7)

The original set of all n MOs may then be written as a union of all
fragment MOs,

{ϕμ}
μ=n
μ=1 =

M
⋃
I=1
{ϕI

i}i∈I . (8)

The energy may then be rewritten in the fragmentation representa-
tion as

E =
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

ZiI,jJhiI,jJ +
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l=L

× ZiI,jJZkK,lL(2JkK,IL
iI,jJ − KkK,lL

iI,jJ ). (9)

For the sake of simplicity, it is assumed that all MOs within a
given fragment are expressed in the same atomic orbital (AO) basis.
Then, without loss of generality, it may be assumed that all MOs
assigned to a given fragment are mutually orthonormal,

(ϕI
i ∣ϕ

J
i′ ) = δii′∀i, i′ ∈ I; I ∈M. (10)

The MOs in different fragments, however, will not, in general, be
orthogonal,

(ϕI
i ∣ϕ

J
j ) = siI,jJ∀i ∈ I, j ∈ J; I ≠ J. (11)

Utilizing the identity
δ(SZ) = δI, (12)

one can derive the functional derivative of the total energy expres-
sion with respect to an arbitrary variation of a particular MO.

Following manipulation of the resultant equations, one obtains
the general expression for the optimal MOs,

(1 − p̂)F̂ϕ = 0, (13)

where F̂ is the non-orthogonal form of the Fock operator,

F̂ = h +
n

∑
i=1

n

∑
j=1

Zij(2Ĵij − K̂ ij), (14)

and p̂ is a projection operator onto the space spanned by all occupied
MOs of the total system,

p̂ =
n

∑
i=1

n

∑
j=1

Zij∣ϕi⟩⟨ϕj∣. (15)

The expression in Eq. (13) may be transformed in a number
of ways, depending on what constraints will be imposed on the
orbitals, to generate various eigenvalue equations for the optimal
orbitals. One of the earliest working methods using this approach
was that developed by Stoll et al., who used the following form of
the eigenvalue equation to determine the optimal orbitals for each
subsystem:15–17

[F̂ − (F̂p̂(I) + p̂†
(I)F̂) + p̂†

(I)F̂p̂(I)]ϕ
I
i = ϵI

i ϕ
I
i . (16)

In Eq. (16), the superscript dagger † indicates the transpose.
Without going into detail, it is sufficient to note that the projection
operator in Eq. (16) is fragment-specific and the Fock operator is the
total non-orthogonal Fock operator for the whole system, given in
Eq. (14), rather than the conventional Fock operator of orthonor-
mal MO theory. Utilizing this formalism, it is possible to obtain a
set of fragment wave functions, each of which may be expanded in a
unique basis set.

III. THEORY
A. Expanded non-orthogonal molecular orbital theory

This work focuses on the development of a theory for closed-
shell systems of 2n electrons, with n corresponding MOs. Extension
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of the methods derived herein to open-shell and multi-reference
NOMO methods is straightforward and will be presented in a future
publication.

1. Expansion of the molecular orbital overlap matrix
First, for convenience, the inverse MO overlap matrix, Z, in

Eq. (6) is transformed into an alternative representation. To begin,
an auxiliary MO overlap matrix, S′, is defined as follows:

S′ = S − I, (17)

where S is the MO overlap matrix given in Eq. (5) and I is the iden-
tity matrix. The S′ matrix is simply the original MO overlap matrix
with diagonal elements set equal to zero. Given the new matrix,
the Z matrix is rewritten in its power series expansion form as
follows:

Z = (I + S′)−1
= I − S′ + (S′)2

− (S′)3
+ ⋅ ⋅ ⋅ = I − ΔZ. (18)

The last equality in Eq. (18) is written in order to isolate terms that
depend on the interfragment MO overlap. The exact NOMO energy,
as it was given in Eq. (9), may then be written in the form

= 2
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J
(I − ΔZ)iI,jJhiI,jJ +

M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L

× (I − ΔZ)iI,jJ(I − ΔZ)kK,lL(2JkK,lL
iI,jJ − KkK,lL

iI,jJ ). (19)

Expanding the matrix products in Eq. (19) produces the following
expression for the total energy:

E = 2
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

IiI,jJhiI,jJ − 2
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

ΔZiI,jJhiI,jJ

+
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L

IiI,jJIkK,lL(2JkK,lL
iI,jJ − KkK,lL

iI,jJ )

−
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L

IiI,jJΔZkK,lL(2JkK,lL
iI,jJ − KkK,lL

iI,jJ )

−
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L

ΔZiI,jJIkK,lL(2JkK,lL
iI,jJ − KkK,lL

iI,jJ )

+
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L

ΔZiI,jJIkK,lL(2JkK,lL
iI,jJ − KkK,lL

iI,jJ ). (20)

Using the properties of the identity matrix, the first, third, fourth,
and fifth terms may be simplified by restricting summations

E = 2
M

∑
I=1

nI

∑
i∈I

hiI,iI − 2
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

ΔZiI,jJhiI,jJ +
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,iI − KkK,kK
iI,iI ) −

M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nK

∑
k=K

M

∑
L=1

nL

∑
l∈L

ΔZkK,lL(2JkK,kK
iI,iI − KkK,lL

iI,iI )

−
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

ΔZiI,jJ(2JkK,kK
iI,iI − KkK,kK

iI,jJ ) +
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L

ΔZiI,jJΔZkK,lL(2JkK,lL
iI,jJ − KkK,lL

iI,jJ ). (21)

The energy expression in Eq. (21) can be written as a sum of the
conventional orthonormal MO energy expression and the so-called
exchange-repulsion correction term

E = E0 + Eex−rep, (22)

where Eex-rep collects all terms that are not included in the part of the
energy expression that is identical to the conventional orthonormal
MO energy expression, namely, those terms that contain elements of
the ΔZ matrix, as shown in the following equation:

Eex−rep = −2
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

ΔZiI,jJhiI,jJ −
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L

ΔZkK,lL

× (2JkK,lL
iI,iI − KkK,lL

iI,iI ) −
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

ΔZiI,jJ

× (2JkK,kK
iI,jJ − KkK,kK

iI,jJ ) +
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L

× ΔZiI,jJΔZkK,lL(2JkK,lL
iI,jJ − KkK,iL

iI,jJ ). (23)

In order to develop a systematic approach to the formulation
of a hierarchy of approximate NOMO models, the ΔZ matrix is first
rewritten in a factorized form

ΔZ = S′T, (24)

where S′ is the previously defined auxiliary MO overlap matrix, and
therefore, the T matrix is given by

T = I − S′ + (S′)2
− (S′)3

+ ⋅ ⋅ ⋅ = Z. (25)

Although the T matrix is equal to the expansion of the orig-
inal inverse MO overlap matrix, Z, the T matrix notation will
be used in place of the Z matrix in the following sections (Secs.
III A 2, III B 2, and III B 3, as well as Appendix sections 2, 3,
4, and 5) in order to avoid confusion when approximations are
introduced.

Using the expression for ΔZ in Eq. (24), the factorized
exchange-repulsion energy is then given by
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Eex−rep = −2
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J
(S′T)

iI,jJ
hiI,jJ −

M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L
(S′T)

kK,lL
(2JkK,lL

iI,iI − KkK,lL
iI,iI )

−
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nj

∑
j∈J

M

∑
K=1

nK

∑
k∈K
(S′T)

iI,jJ
(2JkK,kK

iI,jJ − KkK,kK
iI,jJ )

+
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L
(S′T)

iI,jJ
(S′T)

kK,lL
(2JkK,lL

iI,jJ − KkK,lL
iI,jJ ). (26)

Expanding the matrix products,

Eex−rep = −2
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
P=1

np

∑
p∈P

S′iI,pPTpP,jJhiI,jJ −
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

S′kK,rRTrR,lL(2JkK,lL
iI,iI − KkK,lL

iI,iI )

−
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

M

∑
P=1

nP

∑
p∈P

S′iI,pPTpP,jJ(2JkK,kK
iI,jJ − KkK,kK

iI,jJ ) +
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L

M

∑
P=1

np

∑
p∈P

S′iI,pPTpP,jJ

×
M

∑
R=1

nR

∑
r∈R

S′ kK,rRTrR,lL(2JkK,lL
iI,jJ − KkK,iL

iI,jJ ). (27)

For the sake of clarity in comparing later results with the initial equations in the derivation and because fragment indices are still, at this
point, arbitrary, in the following, the J and P indices are swapped, as are the L and R indices:

Eex−rep = −2
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
P=1

np

∑
p∈P

S′iI,jJTjJ,pPhiI,pP −
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

S′ kK,lLT lL,rR(2JkK,rR
iI,iI − KkK,rR

iI,iI )

−
M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

S′ iI,jJTjJ,pP

M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,pP − KkK,kK
iI,pP ) +

M

∑
I=1

nI

∑
i∈I

M

∑
J=1

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

S′ iI,jJTjJ,pP

×
M

∑
K=1

nK

∑
k∈K

M

∑
L=1

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

S′ kK,lLT lL,rR(2JkK,rR
iI,lL − KkK,rR

iI,lL ). (28)

Using the properties of the S′ matrix given in Eq. (17), Eq. (28) may now be simplified by limiting the summations over I, J and K, L
fragment index pairs to unique pairs only [note that SiI,jJ = siI,jJ , as shown in Eq. (5)],

Eex−rep = −2
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

np

∑
p∈P

TjJ,pPhiI,pP −
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

MIovl

∑
J∈Iovl

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

T lL,rR(2JkK,rR
iI,iI − KkK,rR

iI,iI )

−
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

TjJ,pP

M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,pP − KkK,kK
iI,pP ) +

M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

TjJ,pP

M

∑
K=1

nK

∑
k∈K

MIovl

∑
J∈Iovl

skK,lL

×
M

∑
R=1

nR

∑
r∈R

T lL,rR(2JkK,rR
iI,pP − KkK,rR

iI,pP ). (29)

This expression is the final equation for the exact exchange-repulsion energy in the expanded NOMO model.

2. Truncation of the inverse molecular orbital overlap matrix expansion
If the expansion of the T matrix is truncated at some order, n, then the exchange-repulsion energy is approximated by
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E(n)ex−rep ≈ Eex−rep

= E(n) − E0

= −2
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

T(n)jJ,pPhiI,pP −
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

MIovl

∑
J∈Iovl

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

T(n)lL,rR(2JkK,rR
iI,iI − KkK,rR

iI,iI ) −
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

×
M

∑
P=1

nP

∑
p∈P

T(n)jJ,pP

M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,pP − KkK,kK
iI,pP ) +

M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI ,jJ

M

∑
P=1

nP

∑
p∈P

T(n)jJ,pP

M

∑
K=1

nK

∑
k∈K

MIovl

∑
J∈Iovl

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

T(n)lL,rR(2JkK,rR
iI,pP − KkK,rR

iI,pP ). (30)

The matrix T(n) is defined as

T(n) =
n−1

∑
m=0
(−1)m

(S′)m, n ≥ 1, (31)

from which it immediately follows that the complete T matrix, as shown in Eq. (25), can be expressed concisely in the form

T =
∞
∑
m=0
(−1)m

(S′)m. (32)

Using the expression given in Eq. (31), E(n)ex−rep may be rewritten as

E(n)ex−rep =
n−1

∑
m=0
(−1)m

⎧⎪⎪
⎨
⎪⎪⎩

−2
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′mjJ,pPhiI,pP −
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

S′mlL,rR(2JkK,rR
iI,iI − KkK,rR

iI,iI )

−
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′mjJ,pP

M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,pP − KkK,kK
iI,pP ) +

n−1

∑
m′=0
(−1)m′

⎡
⎢
⎢
⎢
⎢
⎣

M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′mjJ,pP

×
M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

S′m
′

lL,rR(2JkK,rR
iI,pP − KkK,rR

iI,pP )

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (33)

From this expression for E(n)ex−rep, it is possible to derive a general expression for the unique terms in the exchange-repulsion energy, which are
contributed by a given order in the expansion, denoted as δE(n),

δE(n)ex−rep = E(n)ex−rep − E(n−1)
ex−rep. (34)

The unique terms in the exchange-repulsion energy that are added at a given order, n, are thus given by

δE(n)ex−rep = (−1)n−1
⎧⎪⎪
⎨
⎪⎪⎩

−2
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′n−1
jJ,pPhiI,pP −

M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

S′n−1
lL,rR

×

⎡
⎢
⎢
⎢
⎢
⎣

(2JkK,rR
iI,iI − KkK,rR

iI,iI ) −
M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

np

∑
p∈P

T(n−1)
jJ,pP (2JkK,rR

iI,pP − KkK,rR
iI,pP )

⎤
⎥
⎥
⎥
⎥
⎦

−
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

np

∑
p∈P

S′n−1
jJ,pP

M

∑
K=1

nK

∑
k∈K
[(2JkK,kK

iI,pP − KkK,kK
iI,pP ) −

M−1

∑
L≠K

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

T(n−1)
lL,rR (2JkK,rR

iI,pP − KkK,rR
iI,pP )]

⎫⎪⎪
⎬
⎪⎪⎭

+
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′n−1
jJ,pP

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

S′n−1
lI,rR(2JkK,rR

iI,pP − KkK,rR
iI,pP ). (35)

J. Chem. Phys. 155, 154101 (2021); doi: 10.1063/5.0064864 155, 154101-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

B. Approximate expanded non-orthogonal molecular
orbital theory

Although the direct computation of the Z matrix is not itself
computationally complex, requiring only the calculation of the
MO overlap matrix and its inverse, the inclusion of the full Z
matrix, and by extension higher orders of the T matrix, intro-
duces terms in the exchange-repulsion energy that involve all unique
fragment quartets and all resulting unique MO quartet ERIs.
Computing the full set of these integrals has the exact same
computational complexity as performing the corresponding con-
ventional HF or NOMO theory calculation. Thus, in order to
further develop the model, an appropriate approximation is needed
to eliminate some elements of the T matrix at each order of the
expansion.

1. Partial neglect of interfragment overlap
In order to reduce the number of T matrix elements that

must be included at a given order, an approximation, referred
to as the partial neglect of interfragment overlap (PNIO) approx-
imation, is introduced herein and subsequently employed in the
derivation of a simplified model. The PNIO concept has been
utilized in various formulations in many fragment-based mod-
els and methods for the purpose of improving computational
tractability.22,23

The basis for the PNIO approximation is as follows: For a suf-
ficiently large system of many fragments, each with relatively well-
localized MOs, there will, in general, be fragment pairs for which
the overlap between each and every unique pair of MOs (i, k) in
those two fragments (I, K) is vanishingly small. In other words,
there will exist fragment pairs for which the following relationship
holds:

ϕI
i ϕ

K
k ≈ 0 a.e.⇒ siI,kK ≈ 0∀ i ∈ I, k ∈ K. (36)

Such fragment pairs will be referred to as non-overlapping.
Conversely, fragment pairs for which Eq. (36) does not hold will be
referred to as overlapping. For a given fragment index, I, the sub-
set of fragment indices for fragments that are overlapping with I
is denoted as Iovl. That is, Iovl is a set of fragment indices, {J ≠ I},
for which one or more MO overlap integrals between MOs in each
fragment is non-vanishing,

siI,jJ ≠ 0⇒ J ∈ Iovl. (37)

The size of this set will be denoted MIovl . Using this approximation,
the structure of the S′ matrix takes the form

S′ aA,bB =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0, B ∉ Aovl,

saA,bB, B ∈ Aovl ↔ A ∈ Bovl,

0, B = A.

(38)

Clearly, the PNIO approximation may also be considered to be
an assumption of a sparse MO overlap matrix. In practical applica-
tions, the set of non-overlapping fragment pairs may be chosen as
those for which all MO overlap integrals fall below some numerical
cutoff threshold, scutoff ,

siI,kK < scutof f for all i ∈ I, k ∈ K. (39)

For a simpler implementation, the set of non-overlapping frag-
ments may also be determined directly from the set of AO overlap
integrals between fragments, since it will be the case that if all AO
integrals fall below some chosen AO threshold, then all MO integrals
must also fall below a corresponding MO threshold.

The PNIO approximation is related to those approximations
that form the basis of fragment (or locality) based correlation meth-
ods, such as the Domain Local Pair-Natural Orbitals (DLPNOs),
Cluster-in-Molecule (CIM), and Divide–Expand–Consolidate
(DEC) methods. Along with a great deal of other related methods,
these local correlation methods have been shown to be capable of
calculating the total correlation energy for large molecular systems
at a quantitative level of accuracy while maintaining linear scaling
with respect to the size of the system.24–38

2. Approximate expanded non-orthogonal
molecular orbital energy

It is now possible to formulate an approximate form of the
exchange-repulsion energy, given in Eq. (29), which accounts for the
strongest interactions between overlapping fragments and neglects
those vanishing interactions between non-overlapping fragments.
By introducing the PNIO approximation, the computational com-
plexity associated with calculating the exchange-repulsion energy at
some order of truncation is significantly reduced, and the scaling of
calculations, with respect to the total system size, is made to be linear
at any arbitrary order of truncation.

First, the PNIO approximation is applied to the I, J and K, L
fragment index pairs,

Eex−rep ≈ −2
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

TjJ,pPhiI,pP

−
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

T lL,rR(2JkK,rR
iI,iI − KkK,rR

iI,iI )

−
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

TjJ,pP

M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,pP − KkK,kK
iI,pP )

+
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

TjJ,pP

×
M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

T lL,rR(2JkK,rR
iI,pP − KkK,rR

iI,pP ). (40)

This general expression for the approximated exchange-
repulsion energy, prior to choosing a truncation order for the T
matrix, utilizes only the restriction of summations over fragment
pairs to those that are considered overlapping under the criteria
given in Eq. (36). For the truncated exchange-repulsion energy,
E(n)ex−rep, the PNIO approximation is applied to each new fragment
index pair that appears at each increasing order n. By proceeding
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in this manner, the increase in the computational complexity with
each increasing order is linear with respect to the total size of the
system.

The expressions for the approximate exchange-repulsion
energy, which are obtained for the first few orders of truncation,
n, are given below. Extension of the model to higher orders is

straightforward and follows the same pattern used to obtain the
following expressions;

For the n = 1 (first-order) case, the equation is easily sim-
plified by replacing all instances of T with the identity matrix
and eliminating the additional summation indices. Thus, E(1)ex−rep is
given by

E(1)ex−rep = −2
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJhiI,jJ −
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2JkK,lL
iI,iI − KkK,lL

iI,iI )

−
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,jJ − KkK,kK
iI,jJ ) +

M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nj

∑
j∈J

siI,jJ

M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2JkK,lL
iI,jJ − KkK,lL

iI,jJ ). (41)

As will be shown in Sec. IV C 2, this expression for the first-order exchange-repulsion energy closely resembles that of previously described
methods. Although relatively inexpensive to calculate, this expression alone accounts for a substantial percentage of the total exchange-
repulsion energy.

For the n = 2 (second-order) case, additional applications of the PNIO approximation are needed to maintain tractability by avoiding the
addition of new summations over the full range of M fragment indices. In this instance, the approximation is applied to the new J, P and L, R
fragment index pairs. The unique terms for the exchange-repulsion energy at this order [i.e., δE(2)ex−rep = E(2)ex−rep − E(1)ex−rep] are given by

δE(2)ex−rep = E(2)ex−rep − E(1)ex−rep

= 2
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

MJovl

∑
P∈Jovl

nP

∑
p∈P

sjJ,pPhiI,pP +
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

MLovl

∑
R∈Lovl

nR

∑
r∈R

siL,rR

⎡
⎢
⎢
⎢
⎢
⎣

(2JkK,rR
iI,iI − KkK,rR

iI,iI ) −

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ(2JkK,rR
iI,jJ − KkK,rR

iI,jJ )

⎤
⎥
⎥
⎥
⎥
⎦

+
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

MJovl

∑
P∈Jovl

nP

∑
p∈P

sjJ,pP

M

∑
K=1

nK

∑
k∈K

⎡
⎢
⎢
⎢
⎢
⎣

(2JkK
iI,pP − KkK,kK

iI,pP ) −

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2JkK,lL
iI,pP − KkK,lL

iI,pP )

⎤
⎥
⎥
⎥
⎥
⎦

+
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

MJovl

∑
P∈Jovl

nP

∑
p∈P

sjJ,pP

×
M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

MLovl

∑
R∈Lovl

nR

∑
r∈R

slL,rR(2JkK,rR
iI,pP − KkK,rR

iI,pP ). (42)

As can be seen in Eq. (42), all terms in the second-order exchange-repulsion correction, aside from the last (fourth), have the signs
reversed relative to the first-order correction. Therefore, these first three terms will generally have the effect of reducing the magnitude of
the corresponding terms in E(1)ex−rep.

Next, consider the expression for the unique terms (i.e., δE(3)ex−rep = E(3)ex−rep − E(2)ex−rep − E(1)ex−rep) in the exchange-repulsion energy for the n = 3
(third-order) case,

δE(3)ex−rep = E(3)ex−rep − E(2)ex−rep − E(1)ex−rep

= −2
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

MJovl

∑
P∈Jovl

nP

∑
p∈P

sjJ,pP

MPovl

∑
Q∈Povl

nQ

∑
q∈Q

spP,qQhiI,qQ −
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

MLovl

∑
R∈Lovl

nR

∑
r∈R

slL,rR

MRovl

∑
S∈Rovl

nS

∑
s∈S

srR,sS

×

⎧⎪⎪
⎨
⎪⎪⎩

(2JkK,sS
iI,iI − KkK,sS

iI,iI ) −

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

⎡
⎢
⎢
⎢
⎢
⎣

(2JkK,sS
iI,jJ − KkK,sS

iI,jJ ) −

MJovl

∑
P∈Jovl

np

∑
p∈P

sjJ,pP(2JkK,sS
iI,pP − KkK,sS

iI,pP )

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

−
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

MJovl

∑
P∈Jovl

nP

∑
p∈P

sjJ,pP

MPovl

∑
Q∈Povl

nQ

∑
q∈Q

spp,qQ

M

∑
K=1

nK

∑
k∈K

⎧⎪⎪
⎨
⎪⎪⎩

(2JkK,kK
iI,qQ − KkK,kK

iI,qQ ) −

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

×

⎡
⎢
⎢
⎢
⎢
⎣

(2JkK,kK
iI,qQ − KkK,kK

iI,qQ ) −

MLovl

∑
R∈Lovl

nR

∑
r∈R

slL,rR(2JkK,kK
iI,qQ − KkK,kK

iI,qQ )

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

+
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

MJovl

∑
P∈Jovl

nP

∑
p∈P

sjJ,pP

MPovl

∑
Q∈Povl

nQ

∑
q∈Q

spP,qQ

×
M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

MLovl

∑
R∈Lovl

nR

∑
r∈R

slL,rR

MRovl

∑
S∈Rovl

nS

∑
S∈S

srR,sS(2JkK,sS
iI,qQ − KkK,sS

iI,qQ ). (43)
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Higher-order corrections follow the same pattern of includ-
ing one factor of S′ for each instance of the I, J and K, L fragment
index pairs and applying the PNIO approximation to new fragment
indices that appear as a consequence. The derivation of the last three
expressions is given in detail in the Appendix.

3. General Fock operator for the expanded
non-orthogonal molecular orbital method

Analogous to the conventional NOMO theory, in order to
define the Fock operator that determines the optimal orbitals for
each fragment, it is necessary to first define two new operators.
The first is a mean-field embedding Fock operator, F̂(n), which is
equivalent for all fragments,

F̂(n) = ĥ +
M

∑
K=1

nK

∑
k∈K

⎡
⎢
⎢
⎢
⎢
⎣

(2ĴkK,kK − K̂kK,kK)

−

MKovl

∑
L∈Kovl

nL

∑
l∈L

skL,lL∑
R(n)

nR

∑
r∈R

T(n)lL,rR(2ĴkK,rR − K̂kK,rR)

⎤
⎥
⎥
⎥
⎥
⎦

, (44)

where ĴkK,kK and K̂kK,kK are the conventional Coulomb and exchange
operators and ĴkK,lL and K̂kK,lL are the two-fragment analogs of these
operators,

ĴkK,lL = ∫ ϕK∗
k (r2)r−1

12 ϕL
l (r2)dr2, (45)

K̂kK,lL = ∫ ϕK∗
k (r2)r−1

12 ϕL
l (r2)dr2P̂12(r1, r2), (46)

and P̂12 is the permutation operator acting on electrons 1 and 2.
The summation limits on the fragment index R in Eq. (44) are not
specified, as they are dependent on the choice of the truncation
order, n. The nature of this dependency will become clear when the
Fock operators for the first few orders of truncation are given in
Sec. IV A.

In addition to the embedding Fock operator F̂(n) defined in
Eq. (44), it is necessary to define for each fragment (I) a fragment-
specific operator that projects onto some part of the occupied sub-
space of the full system, which is overlapping with the occupied
subspace spanned by the MOs in the Ith fragment, dependent on
the order n. Specifically, this operator, P̂(n)Iovl

spans the (potentially
non-orthogonal) subspace that contains fragments that overlap with
a given fragment I and is given by

p̂(n)Iovl
=

MIovl

∑
J∈Iovl

⎛

⎝

nJ

∑
j∈J

p̂jJ
⎞

⎠
(1 − p̂(n−1)

Jovl
); p̂(0)Jovl

= 0

=

MIovl

∑
J∈Iovl

p̂J(1 − p̂(n−1)
Jovl
)

=

MIovl

∑
J∈Iovl

nJ

∑
j∈J
∑

P(n)

nP

∑
p∈P

T(n)jJ,pP∣ϕ
J
j ⟩⟨ϕ

P
p ∣, (47)

where

p̂jJ = ∣ϕJ
j ⟩⟨ϕ

J
j ∣ (48)

and

p̂J =

nJ

∑
j∈J

p̂jJ . (49)

Using the two operators F̂(n) and p̂(n)Iovl
, it is now possible to

define the fragment-specific Fock operator that determines the opti-
mal set of MOs for a given fragment. Denoting this Fock operator
for the Ith fragment as F̂(n)I , the operator is defined as

F̂(n)I = F̂(n) − [F̂(n)(p̂(n)Iovl
)
†
+ p̂(n)Iovl

F̂(n)]

−
n

∑
m=1

m−1

∑
a=1
[p̂(a)Iovl

F̂(n)(p̂(m−a)
Iovl

)
†
]. (50)

The corresponding eigenvalue equation that determines the MOs
for the Ith fragment, after the usual unitary transformation of the
pseudo-eigenvalue equation, is given by

F̂(n)I ϕI
i = ϵI

i ϕ
I
i . (51)

The set of coupled Hartree–Fock (HF) equations for the frag-
ments may be solved iteratively using the two-level self-consistent
field (SCF) procedure, whereby individual HF equations are solved
in a static embedding potential of the other M − 1 fragments, and
then a global SCF iteration is performed to update the fragment-
density-dependent embedding potential. The SCF is converged
when all fragment wave functions have converged and the embed-
ding potential has therefore also converged. Although other iter-
ative schemes are possible, this procedure has proven to be effi-
cient and well-behaved in a number of previously developed
methods.39

IV. DISCUSSION
A. Unique fragmentation methods

The ENMO/n model offers a general formulation for the devel-
opment of various fragmentation methods, depending on the level of
truncation chosen in the expansion of the T matrix. Below, the first
few possible methods are outlined, and their distinct characteristics
are highlighted.

1. ENMO/1: The first-order expanded
non-orthogonal molecular orbital method

If one truncates the T matrix expansion at the first order (i.e.,
T ≈ T(1) = I), the ENMO/1 or First-order Non-Orthogonal Molec-
ular Orbital (FNMO) model is obtained. The method derived from
this model represents the complete variational optimization of all
coupled fragment HF equations defined by the pair of operators F̂(1)

and p̂(1)Iovl
,

F̂(1) = ĥ+
M

∑
K=1

nK

∑
k∈K

⎡
⎢
⎢
⎢
⎢
⎣

(2ĴkK,kK−K̂kK,kK)−

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2ĴkK,lL−K̂kK,lL)

⎤
⎥
⎥
⎥
⎥
⎦

(52)

and
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p̂(1)Iovl
=

MIovl

∑
J∈Iovl

nJ

∑
j∈J

p̂jJ (53)

to obtain MOs for each fragment and thus for the full sys-
tem. In some respects, ENMO/1 may be considered a partially
symmetry-adapted embedding analog of the electrostatically embed-
ded fragmentation methods, such as the fragment molecular orbital
(FMO)40 and explicit polarization (X-Pol)41 methods. In particu-
lar, the ENMO/1 Fock operator involves a one-particle mean-field
embedding potential composed of all other fragments in the total
system.

The computational procedure of the ENMO/1 (FNMO)
method is similar to those of other embedded methods, with varia-
tions arising due to the symmetry-adapted nature of the embedding
potential. Figure 1 presents an outline of the general algorithm for

computing the ENMO/1 fragment wave functions and energies. The
elements Cμv are AO coefficients, and the interfragment embedding
operator, V̂embed

1 , is defined as

V̂embed
1 =

M

∑
K=1

V̂(1)K =
M

∑
K=1

nK

∑
k∈K

⎡
⎢
⎢
⎢
⎢
⎣

(2ĴkK,kK − K̂kK,kK)

−

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2ĴkK,lL − K̂kK,lL)

⎤
⎥
⎥
⎥
⎥
⎦

. (54)

At the local SCF level, shown in Fig. 2, the computation of each
fragment wave function is distinctly different from other embedded
methods. The distinction is specifically that for each local SCF iter-
ation in the ENMO/1 method, the terms in the Fock matrix (both

FIG. 1. Global SCF algorithm for computing the ENMO/1 fragment wave functions and energy in a two-level iterative scheme.
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FIG. 2. Local SCF algorithm for computing each of the ENMO/1 (also known as FNMO) fragment wave functions and energy in a two-level iterative scheme.
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the core Hamiltonian and the two-electron matrices) that depend
on overlap with the MOs assigned to the fragment being stud-
ied must be recomputed because these MOs change each iteration.
While this recomputation of elements in the two matrices increases
the computational complexity of computing each term in the Fock
matrix, the overall scaling with respect to the total size of the sys-
tem is still minimized, as will be discussed in greater detail in
Sec. IV D.

2. ENMO/2: The second-order expanded
non-orthogonal molecular orbital method

If one instead truncates the T matrix expansion at the sec-
ond order (i.e., T ≈ T(2) = I − S′), the ENMO/2 model is obtained.
In analogy with ENMO/1, ENMO/2 represents the complete varia-
tional optimization of all coupled fragment HF equations defined by
the pair of operators

F̂(2) = ĥ +
M

∑
K=1

nK

∑
k∈K

⎧⎪⎪
⎨
⎪⎪⎩

(2ĴkK,kK − K̂kK,kK) −

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

⎡
⎢
⎢
⎢
⎢
⎣

(2ĴkK,lL − K̂kK,lL) −

MLovl

∑
R∈Lovl

nR

∑
r∈R

slL,rR(2ĴkK,rR − K̂kK,rR)

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

(55)

and

p̂(2)Iovl
=

MIovl

∑
J∈Iovl

nJ

∑
j∈J

p̂jJ
⎛

⎝
1 −

MJovl

∑
P∈Jovl

nP

∑
p∈P

p̂pP
⎞

⎠

=

MIovl

∑
J∈Iovl

nJ

∑
j∈J

⎛

⎝
∣ϕJ

j ⟩⟨ϕ
J
j ∣ −

MKovl

∑
P∈Jovl

nP

∑
p∈P

sjJ,pP∣ϕJ
j ⟩⟨ϕ

P
p ∣
⎞

⎠

=

MIovl

∑
J∈Iovl

nJ

∑
j∈J
∣ϕJ

j ⟩
⎛

⎝
⟨ϕJ

j ∣ −

MKovl

∑
P∈Jovl

nP

∑
p∈P

sjJ,pP⟨ϕP
p ∣
⎞

⎠
(56)

to obtain the MOs for each fragment and thus the full system.
The computational procedure for the ENMO/2 method is sim-

ilar to that for the ENMO/1 method, with variations in the local and
global SCF iterations due to the presence of products of fragment
pair overlap density matrices in the mean-field embedding operator,
as well as in the fragment-specific projection operator. The global
SCF algorithm is shown schematically in Fig. 3:

In Fig. 3, the only new algorithmic step is the computation of
fragment trimer overlap density matrices at each global SCF iter-
ation. In addition, the embedding operator, V̂embed

2 , now includes
additional Coulomb and exchange operators

V̂embed
2 = V̂embed

1 + δV̂embed
(2)

=
M

∑
K=1

nK

∑
k∈K

⎧⎪⎪
⎨
⎪⎪⎩

(2ĴkK,kK − K̂kK,kK) −

MKovl

∑
L∈K

nL

∑
l∈L

skK,lL

×

⎡
⎢
⎢
⎢
⎢
⎣

(2ĴkK,kK − K̂kK,lL) −

MLovl

∑
R∈Lovl

nR

∑
r∈R

slL,rR(2ĴkK,lL − K̂kK,rR)

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

.

(57)

There are also only minor algorithmic differences between the
ENMO/1 and ENMO/2 methods at the local SCF level. Specifically,
the ENMO/2 local SCF algorithm requires additional matrix multi-
plications to form overlapping fragment trimer terms. The modified
ENMO/2 algorithm for the local SCF is shown in Fig. 4:

3. ENMO/3: The third-order expanded
non-orthogonal molecular orbital method

Truncation of the T matrix expansion at the third order
[i.e., T ≈ T(3) = I − S′ + (S′)2] produces the ENMO/3 model. Once
again, the method derived from this model represents the com-
plete variational optimization of all coupled fragment HF equations
defined by the pair of operators

F̂(3) = ĥ+
M

∑
K=1

nK

∑
k∈K

⎧⎪⎪
⎨
⎪⎪⎩

(2ĴkK,kK−K̂kK,kK)−

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

⎡
⎢
⎢
⎢
⎢
⎣

(2ĴkK,lL−K̂kK,lL)−

MLovl

∑
R∈Lovl

nR

∑
r∈R

slL,rR

⎡
⎢
⎢
⎢
⎢
⎣

(2ĴkK,rR − K̂kK,rR) −

MRovl

∑
S∈Rovl

nS

∑
s∈S

srR,sS(2ĴkK,sS − K̂kK,sS)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭
(58)

and

p̂(3)Iovl
=

MIovl

∑
J∈Iovl

nJ

∑
j∈J

p̂jJ

⎡
⎢
⎢
⎢
⎢
⎣

1 −
MJovl

∑
P∈Jovl

nP

∑
p∈P

p̂pP
⎛

⎝
1 −

MPovl

∑
Q∈Povl

nQ

∑
q∈Q

p̂qQ
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=

MIovl

∑
J∈Iovl

nJ

∑
j∈J

⎡
⎢
⎢
⎢
⎢
⎣

∣ϕJ
j ⟩⟨ϕ

J
j ∣ −

MJovl

∑
P∈Jovl

nP

∑
p∈P

sjJ,pP
⎛

⎝
∣ϕJ

j ⟩⟨ϕ
P
p ∣ −

MPovl

∑
Q∈Povl

nQ

∑
q∈Q

spP,qQ∣ϕJ
j ⟩⟨ϕ

Q
q ∣
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=

MIovl

∑
J∈Iovl

nJ

∑
j∈J
∣ϕJ

j ⟩

⎡
⎢
⎢
⎢
⎢
⎣

⟨ϕJ
j ∣ −

MJovl

∑
P∈Jovl

nP

∑
p∈P

sjJ,pP
⎛

⎝
⟨ϕP

p ∣ −

MQovl

∑
Q∈Povl

nQ

∑
q∈Q

spP,qQ⟨ϕQ
q ∣
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(59)

to obtain the MOs for each fragment and thus the full system.
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FIG. 3. Global SCF algorithm for computing the ENMO/2 fragment wave functions and energy in a two-level iterative scheme.

The computational procedure of the ENMO/3 method expands
on the procedure for the ENMO/2 method by requiring the for-
mation of fragment tetramer overlap density matrices. The general
algorithms for the global and local SCF cycles follow straightfor-
wardly from Figs. 1–4.

The only new algorithmic step is the computation of
fragment tetramer overlap density matrices at each global
SCF iteration. In addition, the embedding operator, V̂embed

3 ,
is expanded to include additional Coulomb and exchange
operators,

V̂embed
3 = V̂embed

2 + δV̂embed
(3)

=
M

∑
K=1

nK

∑
k∈K

⎧⎪⎪
⎨
⎪⎪⎩

(2ĴkK,kK − K̂kK,kK) −

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

⎡
⎢
⎢
⎢
⎢
⎣

(2ĴkK,lL − K̂kK,lL) −

MLovl

∑
R∈Lovl

nR

∑
r∈R

slL,rR

⎧⎪⎪
⎨
⎪⎪⎩

(2ĴkK,rR − K̂kK,rR) −

MRovl

∑
S∈Rovl

nS

∑
s∈S

srR,sS(2ĴkK,sS − K̂kK,sS)

⎫⎪⎪
⎬
⎪⎪⎭

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

.

(60)
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FIG. 4. Local SCF algorithm for com-
puting each of the ENMO/2 fragment
wave functions, and their corresponding
energies, in a two-level iterative scheme.
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At the local SCF level, the algorithm for the ENMO/3 method
is extended from the ENMO/2 method. In addition to form-
ing fragment trimer overlapping density matrices, each iteration
also requires the formation of fragment tetramer overlapping den-
sity matrices. Similarly, the global SCF iterations also require this
computation.

The necessary modifications to the global and local SCF algo-
rithms for the extension of the ENMO/n model to the development
of methods that include higher-order exchange-repulsion correc-
tions (i.e., n > 3) follow the algorithms outlined above in a straight-
forward manner. At each increasing order, additional matrix mul-
tiplications are required to form fragment N-mer overlap density
matrices.

B. Fragment basis sets
Two choices for defining basis sets for each fragment appear

to be the most appropriate, although others are certainly possible.
The first is the simple explicitly localized basis set approach, in
which basis function centers are limited to atomic centers assigned
to a given fragment. This is the approach taken in the Abso-
lutely Localized Molecular Orbital (ALMO) method, along with
other related methods.18–21 It is valuable for isolating the Coulomb
and exchange effects from the so-called charge transfer interac-
tions. The drawback is that the quantitative results omit charge
transfer interaction energies, and these may be critical for accu-
rately describing a particular system. It is possible to add approx-
imate charge-transfer terms onto the explicitly localized energy
expression.21,51–53

A second approach is to assign basis functions to a given
fragment based on its own atomic centers as well as those of the
overlapping fragments. Since the charge-transfer interaction will,
in the zero-overlap limit of the PNIO approximation, be restricted
to overlapping fragments only, this approach can accurately cap-
ture the charge-transfer effects without the need to add secondary
corrections. The use of so-called shared basis functions has been
utilized in the Group Molecular Orbital (GMO) method and has
shown potential for substantial accuracy.44 This approach does
introduce certain complexities into performing calculations on a
given system for multiple points on the potential energy surface
(PES). This is because the set of overlapping fragments for a given
fragment may change over the PES, and at the boundaries of
such changes, it is possible for discontinuities to appear. These
discontinuities, however, may be minimized by proper treatment
of fragment overlap and the use of sufficiently tight overlapping
thresholds.

A second issue with the shared basis functions approach is with
regard to the derivation of analytic derivatives. This is due to the
fact that the set of basis function coefficients to be determined in
the typical HF response calculations may grow or shrink at certain
points. This is not an intractable problem, but it will require more
complex algorithms to account for such changes in comparison to
the explicitly localized basis functions approach.

Although it adds certain complexities, the use of shared basis
functions is the preferred implementation for the methods presented
here, as they offer greater accuracy and do not require perturba-
tive corrections for certain many-body interaction energies. The
implementation of such codes will be the focus of future work.

C. Comparisons to existing methods
The ENMO/n methods share a number of features with existing

fragmentation methods, while also seeking to improve upon certain
shortcomings in these methods. In the following, comparisons are
drawn between the ENMO/n methods and two existing classes of
fragmentation methods in order to highlight these similarities and
differences.

1. Comparison to electrostatically
embedded methods

Many of the most popular existing fragmentation methods
include a mean-field electrostatic embedding potential, which may
be included in a variational formulation40,41 or in a non-iterative
formulation.43 There are good justifications for each approach and
methods based on each are applicable to different systems and have
corresponding benefits and drawbacks.

The ENMO/n model improves on common electrostatic
embedding fragmentation formalisms in three primary ways
through the partial symmetry adaptation of the interfragment
embedding potential. First, the inclusion of exchange-repulsion
effects penalizes variational collapse when nearly linearly depen-
dent basis functions exist between different fragments. This allows
more systematic improvement of the accuracy of calculations
through the use of increasing basis set sizes, whereas exist-
ing methods, specifically those that are based on self-consistent
electrostatically embedded fragments, can exhibit random errors
when certain basis sets are used, namely, those with diffuse
functions.

The second improvement is in the intrinsic treatment of inter-
fragment bonds. Electrostatically embedded methods must use vari-
ous restricted-variational-subspace formulations, some of which are,
on their own, ad hoc,44 to handle fragmented systems with inter-
fragment covalent bonding. In the methods discussed in the cur-
rent work, the partial accounting for exchange-repulsion between
fragments once again penalizes variational collapse, thereby stabi-
lizing bonds between fragments. It is also still possible to combine
the various restricted-variational-subspace methodologies with the
ENMO/n methods when retaining the character of the interfragment
bonds is critical.

Finally, and most importantly, the partially symmetry-adapted
interfragment embedding potential accounts for part of the many-
body exchange-repulsion energy at any order of truncation due to
the mean-field nature of the potential. Therefore, it does not require
the addition of terms via a many-body expansion (MBE) in order
to capture such interfragment interaction energies. Because the
exchange-repulsion interaction is a component of the self-consistent
embedding, the many-body polarization (at the MO level of theory)
is tempered by its effects, and thus, certain phenomena due to vari-
ational collapse, such as the so-called polarization collapse, are less
likely to occur due to the increased constraints on the fragment wave
functions.45

2. Comparison to the Huzinaga method
The equations of the ENMO/1 method resemble, to a cer-

tain degree, those of the Huzinaga method46 and others based
upon it.42,47–50 In particular, the forms of the fragment-specific Fock
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operators appear, at first glance, to be the same. The Huzinaga Fock
operator has the form

F̂H
I = F̂ − (F̂p̂(I) + p̂(I)F̂), (61)

where F̂ is the Fock operator in the orthonormal representation. The
projection operator, p̂(I), is defined as

p̂(I) =
M−1

∑
J≠I

nJ

∑
j∈J

p̂jJ

=
M−1

∑
J≠1

nJ

∑
j∈J
∣ϕJ

j ⟩⟨ϕ
J
j ∣, (62)

and M is again the total number of fragments in the system. One
important difference between the methods is that the fragment-
specific projection operator in the ENMO/n methods is limited to
overlapping fragments, while the analogous projection operator in
the Huzinaga method runs over all other fragments in the system.
The limitation to overlapping fragments has previously been applied
in other methods, such as the GMO method.42

The major difference between the methods arises from the
difference between the mean-field embedding potential compo-
nent of the Fock operators. In order to focus solely on these
differences, it is first assumed that the PNIO approximation has
been applied to the projection operators in both methods, as this
assumption only changes the limits on the summation indices
for those terms that are shared by both methods. For the addi-
tional terms in the exchange-repulsion energy that are unique to
the ENMO/n methods and therefore the corresponding fragment
Fock operators as well, this assumption has no effect. Then, the
ENMO/1 and Huzinaga projection operators for a given fragment
are equivalent. The difference between the ENMO/1 and Huzinaga
Fock operators for a given fragment, I, denoted ΔFI , is therefore
given by

ΔFI = F̂(1) − F̂

= (F̂(1) − F̂) − [(F̂(1) − F̂)p̂Iovl + p̂Iovl(F̂
(1)
− F̂)]. (63)

Now, letting

δF̂ = F̂(1) − F̂

= −
M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2ĴkK,lL − K̂kK,lL), (64)

the expression for ΔFI may be rewritten as

ΔFI = δF̂ − (δF̂p̂Iovl
+ p̂Iovl δF̂)

= −
M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2ĴkK,lL − K̂kK,lL)

+
M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL[(2ĴkK,lL − K̂kK,lL)p̂Iovl

+ p̂Iovl(2ĴkK,lL − K̂kK,lL)]. (65)

The corresponding difference in the total energies, which is the
difference in the approximate exchange-repulsion energies calcu-
lated by the two methods, again assuming the overlapping fragment
approximation has been applied, is given by

ΔEex−rep = EENMO/1 − EH

=
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2JkK,lL
iI,lL − KkK,lL

iI,jJ ).

(66)

It has been noted previously that the analogous terms in the
exchange-repulsion energy difference between the Huzinaga and
conventional NOMO methods, which involve the Z matrix ele-
ments rather than MO overlap integrals directly, vanish when
the S2, or single-exchange, approximation is strictly applied not
only in the expansion of the inverse MO overlap matrix but also
to all resulting terms in the total energy expression.48 In order
to determine the effect of the RHS of Eq. (66) on the total
energy expression, note that the zeroth-order energy term in the
power series expansion given in Eq. (33) neglects all exchange-
repulsion effects. Given that the complete sum of the higher-order
terms will always be positive, as exchange is a repulsive interac-
tion in non-orthogonal formulations, one may conclude that the
zeroth-order term alone will always be lower in energy than the
variationally bound NOMO energy. Thus, the additional terms
in the Huzinaga energy expression will raise the energy. More
explicitly,

Eex−rep
H = EH − E0

= −2
⎡
⎢
⎢
⎢
⎢
⎣

M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJhiI,jJ

+
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2JkK,lL
iI,iI − KkK,lL

iI,iI )

⎤
⎥
⎥
⎥
⎥
⎦

≥ 0, (67)

where the equality in the final line of Eq. (67) only holds when all
MOs in the total system are mutually orthogonal. In the ENMO/1
method, the effect of Eq. (66) on the total exchange-repulsion
energy can be seen by closer inspection. It is immediately apparent
that the RHS of Eq. (67) is a first-order correction for the non-
orthogonal MOs interacting with the mean-field embedding. This
embedding, however, is not by itself completely correct as it is com-
posed of potentially overlapping regions between MOs in different
fragments. Therefore, there is an over-correction in the exchange-
repulsion due to a double-counting of the non-orthogonal compo-
nent of the embedding subspace between each pair of overlapping
MOs. In the ENMO/1 method, the extra term in the exchange-
repulsion energy correction (compared to the Huzinaga method),
given in Eq. (66), is a first-order correction to the mean-field
embedding. This can be seen more clearly if one formulates the
exchange-repulsion terms in the ENMO/1 energy expression in
an alternative representation by combining the second and third
terms of Eq. (41) and moving the fourth term inside the resulting
expression,
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E(1)ex−rep = −2
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJhiI,jJ −
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

⎡
⎢
⎢
⎢
⎢
⎣

(2JkK,lL
iI,iI − KkK,lL

iI,iI ) −
1
2

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

× (2JkK,lL
iI,jJ − KkK,lL

iI,jJ )

⎤
⎥
⎥
⎥
⎥
⎦

−
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

M

∑
K=1

nK

∑
k∈K

⎡
⎢
⎢
⎢
⎢
⎣

(2JkK,kK
iI,jJ − KkK,kK

iI,jJ ) −
1
2

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2JkK,lL
iI,jJ − KkK,lL

iI,jJ )

⎤
⎥
⎥
⎥
⎥
⎦

= −2
⎧⎪⎪
⎨
⎪⎪⎩

M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJhiI,jJ +
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

M

∑
K=1

nK

∑
k∈K

⎡
⎢
⎢
⎢
⎢
⎣

(2JkK,kK
iI,jJ − KkK,kK

iI,jJ ) −
1
2

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2JkK,lL
iI,jJ − KkK,lL

iI,jJ )

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (68)

Equation (68) shows that the exchange-repulsion energy for a
pair of overlapping MOs interacting with the mean-field embed-
ding potential is partially corrected by the subtraction of doubly
counted embedding terms due to overlapping MOs between frag-
ments, given in the last term in brackets, to account for the non-
orthogonality of the MOs that comprise this embedding. Of course,
this correction is only a first approximation, and higher-order
terms, such as those that appear in ENMO/2 or ENMO/3, improve
this correction. Although the complete correction for such over-
estimation is only obtained in the exact NOMO formulation (i.e.,
the ENMO/n limit), the first-order approximation in ENMO/1 is
expected to capture a significant part of this interaction, as all higher-
order corrections will consist of products of 3-or-more MO overlap
integrals.

Although this is, in general, an improvement, as it reduces the
overestimation of the exchange-repulsion energy predicted by the
Huzinaga method, it remains to be seen if the parallelity of the
Huzinaga method (the relatively constant error in the total energy
between the exact NOMO and Huzinaga methods along a given PES)
is retained in the ENMO/1 method.

D. Theoretical computational scaling
In order to study the scaling of calculations that employ the

ENMO/n methods at various orders, it is useful to define a set of
constants. First, let the system under study be composed of M frag-
ments. The number of fragments that overlap with a given fragment,
MIovl , is chosen to be equal for each fragment, and this constant is
denoted Movl,

M1ovl =M2ovl = ⋅ ⋅ ⋅ =MMovl =Movl. (69)

Generally, the number of overlapping fragments will vary for each
fragment in actual calculations. However, this variation can be
ignored for the present purpose of investigating ideal scaling behav-
iors. If it is assumed that the value of Movl is chosen as the largest
value for the set of fragments in a total system, then the true prefac-
tor in a given calculation will be smaller than that predicted by the
theoretical expression.

For simplicity, it is assumed that the number of basis functions
for a given fragment, KI , is equal for all fragments. Thus,

K1 = K2 = ⋅ ⋅ ⋅ = KM . (70)

Therefore, the number of unique basis functions for the total system
is given by

K = K1 + K2 + ⋅ ⋅ ⋅ + KM =MKM . (71)

With these quantities defined, one can study the theoretical
scaling of the ENMO/n methods, at various levels of truncation, with
respect to the parameters M, Movl, KM , and M. To determine the
theoretical scaling for various ENMO/n methods, it is necessary to
first rewrite the expression for an arbitrary individual fragment Fock
matrix, F(n)I , in the AO basis,

(F(n)I )μI,vI
= (χI

μ∣F̂
(n)
I ∣χ

I
v)

= (χI
μ∣F̂
(n)
∣χI

v) − (χI
μ∣[F̂

(n)
(p̂(n)Iovl

)
†
+ p̂(n)Iovl

F̂(n)]∣χI
v)

−
n

∑
m=1

n−1

∑
a
(χI

μ∣p
(a)
Iovl

F(n)(p(m−a)
Iovl

)
†
∣χI

v), (72)

where χI
μ denotes the μth AO basis function assigned to the Ith

fragment. The full expression for the ENMO/1 Fock operator, in
the AO basis, is given in the Subsection 1 of the Appendix for
reference.

The complexity of computing the total Fock matrix scales with
respect to the various parameters that affect the summation indices
in the respective Fock matrix expressions in the AO basis. For exam-
ple, the scaling of computing the core Hamiltonian matrix (in big O
notation) is given by

Hcore
I = O

⎛

⎝

KI

∑
μ∈I
(Hcore

I )μv

⎞

⎠

= O(K2
I ). (73)

Of course, eliminating redundant terms can reduce the scal-
ing by some constant prefactor, but the exponential scaling with
respect to the particular parameter [KI in Eq. (73)] is unaffected.
The scaling of the computation of the full Fock matrix for each frag-
ment, utilizing the constants given in Eqs. (69)–(71), may be written
approximately, focusing on the leading (largest) term in the scaling
expression, as

F(1)I ≈ O(KM2
ovlK

4
M). (74)

This approach may be continued for higher-order ENMO/n
Fock operators in order to derive big O scaling expressions for these
methods. For the second-order (ENMO/2) case, the leading term in
the scaling expression is
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F(2)I ≈ O(KM4
ovlK

4
M). (75)

Finally, for the third-order (ENMO/3) case, the leading term in the
scaling expression is

F(3)I ≈ O(KM6
ovlK

4
M). (76)

From Eqs. (74)–(76), it is apparent that increasing the order
of the ENMO/n method from n to n + 1 increases the total scaling
expression primarily by the addition of a term of the form

F(n+1)
I ≈ O(KM2n

ovlK
4
M). (77)

For computational tractability and applicability to the study
of large, complex chemical systems, the most important param-
eter is the size of the system, since the size impacts both the
computer time demand and the memory requirements. The size
parameter is generally chosen as the total number of basis func-
tions, K, as this value is directly proportional to the number of
floating-point operations required in a given computation. Below,
the approximate theoretical scaling of the ENMO/n methods, for
n = 1, 2, 3, with respect to the value of K is shown. For the plot
in Fig. 5, the number of basis functions assigned to each frag-
ment, KM , is chosen as 100 and the number of overlapping frag-
ments assigned to each fragment, Movl, is chosen as 2. These values
are, of course, arbitrary, and any choice would produce the same
set of linearly scaling plots, with only the prefactors (slopes) being
affected.

Figure 5 illustrates the linear-scaling nature of the theoretical
computational complexity for each of the ENMO/n methods with
respect to the total number of basis functions, K. The size of the sys-
tem in terms of the number of fragments, M, which can be an equally
useful metric compared to K as it is proportional to the total number
of atoms in the system, varies from 100 to 102 400. In the plot, sub-
sequent points along each line represent a doubling of the fragment
count from the previous point.

A critical feature of the plots that is also worth noting is
the relative size of the slopes of each line. Because the scaling

FIG. 5. Theoretical scaling of the ENMO/1, ENMO/2, and ENMO/3 methods with
respect to the total number of basis functions.

prefactor grows exponentially with respect to the number of over-
lapping fragments assigned to each fragment, Movl, as well as the
truncation order of the inverse MO overlap matrix expansion, n,
the ratio of the slopes for each line also grows exponentially, and
so the computational cost is dramatically affected by the choice of
Movl. This ratio, for two ENMO/n methods with truncation orders,
n and n + 1, is M2

ovl.
The increasing computational complexity due to changes in

the choice of value for Movl is shown more clearly in Fig. 6. The
theoretical prefactor scaling is shown for each of the ENMO/n
methods outlined in the text for Movl values of 2, 4, 6, 8, 10,
and 12.

The log–log plot of scaling prefactors in Fig. 6 further demon-
strates the rapid growth in computational complexity as a result of
increasing the value of Movl for a given ENMO/n method. Together
with Fig. 5, it is clear that for many cases, the limiting factor in com-
putational feasibility when applying the ENMO/n methods is the
value of Movl, rather than the total size of the system. It is therefore
critical in a given calculation to choose Movl as the smallest value
possible, which retains quantitative accuracy. Future work will focus
on determining this value on the fly for a given calculation in order
to choose the appropriate method to be employed. Although this
scaling is exponential for any ENMO/n method, it is important to
note that the value of Movl will be dependent on the chemical nature
of the system (e.g., delocalization of MOs) and not directly on the
physical size of the system. Of course, there are systems, such as those
with periodicity, where delocalization may be intrinsic and the size
of Movl will grow directly in proportion with M. These types of sys-
tems, however, are not well-suited for study by the use of any of the
fragmentation methods that are specifically based on the assumption
of fragment-localized MOs.

The final parameter that influences the computational com-
plexity of each of the ENMO/n methods is the number of
basis functions assigned to each fragment, KM . This parameter,

FIG. 6. Theoretical scaling prefactor of ENMO/1, ENMO/2, and ENMO/3 with
respect to the number of overlapping fragments assigned to each fragment, Movl
(log–log plot).
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however, has a constant quartic contribution to the scaling pref-
actor at each value of n. Therefore, the KM parameter only affects
the computational complexity of a given ENMO/n calculation indi-
rectly through its effect on the total number of basis functions, K.
Similarly, the total number of fragments, M, is proportional to the
total number of basis functions, and thus, each ENMO/n method
scales linearly with respect to the number of fragments in the total
system.

V. CONCLUSIONS AND FUTURE WORK
An approximate formulation of the NOMO model of elec-

tronic structure theory has been derived, and from it, a hier-
archy of ab initio fragment-based quantum chemistry methods,
referred to as the ENMO/n methods, have been developed. These
methods incorporate interfragment exchange-repulsion interac-
tions that are not accounted for in many existing methods and
refine the previously utilized embedding potential of certain other
methods.

The outlined methods seek to reproduce the results of con-
ventional MO theory at a substantially reduced computational cost.
Consequently, the methods neglect critical interfragment interac-
tions that are accounted for in post-SCF methods. This omission
may be remedied in two straightforward ways. For some calcu-
lations, post-SCF correlation corrections may be easily included
through the use of a many-body expansion in terms of correlated N-
mers, as has been done in existing fragmentation methods, such as
the FMO and Effective Fragment Molecular Orbital (EFMO) meth-
ods.29,34,35 This MBE-based approach to post-SCF corrections has
been shown to be highly accurate in existing fragmentation meth-
ods, and the same can be expected from the ENMO/n methods. For
each truncation order of the ENMO/n method, it is also possible
to develop a novel formulation of the Symmetry-adapted Pertur-
bation Theory (SAPT) for intermolecular interactions by using the
ENMO/n fragment wave functions as a reference state, an approach
that has been previously studied using electrostatically embedded
fragment methods.51–53 The development and application of these
correlation-consistent extensions to the outlined methods will be
investigated in future work. Note that certain correlation effects may
be accounted for through the use of a Kohn–Sham Density Func-
tional Theory (KS-DFT) based on the ENMO/n method, and this
too will be studied.

Note also that the approximations employed in the deriva-
tion of the ENMO/n methods, specifically the expansion of the
Z matrix followed by the application of the PNIO approxima-
tion to fragment pairs, can be applied in other non-orthogonal
MO methods. The approach may, for example, be applied to
single-molecule systems by partitioning MOs into subgroups
and applying the PNIO approximation to certain pairs of
subgroups.

Finally, as mentioned in the Introduction, extension of the out-
lined methods to multi-reference states will allow for a much wider
variety of chemical systems of interest to be studied. The deriva-
tion of the ENMO/n equations for such states will be developed
and used to study model systems of large chemical systems with
one or more fragments, which require the use of multi-reference
states.
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APPENDIX: EXPLICIT DERIVATIONS OF EXPRESSIONS
REFERENCED WITHIN THE TEXT
1. Matrix eigenvalue equations for the ENMO/1
method

Here, the AO basis matrix equations necessary for solving for
each fragment wave function in a system will be given for the FNMO
(ENMO/1) method. For a particular fragment, I, the basis functions
associated with MOs assigned to the fragment will be denoted χI

μ,
with the number of these basis functions given by KI . The mean-field
embedding component of the Fock operator, F, in the AO basis, is
then given by

F = HCore
+

M

∑
K=1

nK

∑
k∈K

KK

∑
α∈K

KK

∑
β∈K

CkαCkβ

×

⎧⎪⎪
⎨
⎪⎪⎩

(2Jαβ − Kαβ) −

MKovl

∑
L∈Kovl

nL

∑
l∈L

KL

∑
γ∈L

KL

∑
δ∈L

ClγClδsβK,δL(2Jαγ − Kβγ)

⎫⎪⎪
⎬
⎪⎪⎭

.

(A1)

In order to make the definition of later quantities more read-
ily apparent, this expression will be expanded into a less concise
form

F = HCore
+

M

∑
K=1

nK

∑
k∈K

KK

∑
α∈K

KK

∑
β∈K

2CkαCkβ(Jαβ −
1
2

Kαβ)

−
M

∑
K=1

nK

∑
k∈K

KK

∑
α∈K

KK

∑
β∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

KL

∑
γ∈L

KL

∑
δ∈L

2CkαCkβClγClδsβK,δL(Jαγ −
1
2

Kαγ).

(A2)

Now, density matrices for fragment monomers and dimers are
defined, which will be denoted DK and DKL for the monomer K
and the K, L fragment pair, respectively. The density matrices are
defined as

DK
αβ = 2

nK

∑
k∈K

CkαCkβ (A3)

and
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DKL
αγ =

nK

∑
k∈K

KK

∑
α∈K

KK

∑
β∈K

nL

∑
l∈L

KL

∑
γ∈L

KL

∑
δ∈L

CkαCkβsβK,δLClγClδ

=

KK

∑
β∈K

KL

∑
δ∈L

DK
αβsKL

βδ DL
γδ . (A4)

Utilizing the monomer and dimer density matrices allows the Fock
operator to be written in the simplified form

F = HCore
+

M

∑
K=1

K

∑
α∈K

KK

∑
β∈K

Dαβ(Jεβ −
1
2

Kαβ)

−
1
2

M

∑
K=1

KK

∑
α∈K

MKovl

∑
L∈Kovl

KL

∑
γ∈L

DKL
αγ (Jαγ −

1
2

Kαγ). (A5)

It is useful to note that each pair of overlapping fragments
appears twice in the third term of Eq. (A5). Limiting the summation
to unique overlapping fragment pairs, the total number of which will
be denoted Mtotal

ovl , gives

F = HCore
+

M

∑
K=1

KK

∑
α∈K

KK

∑
β∈K

Dαβ(Jαβ −
1
2

Kαβ)

−

Mtotal
ovl

∑
K,L

KK

∑
α∈K

KL

∑
γ∈L

DKL
αγ (Jαγ −

1
2

Kαγ), (A6)

from which it follows that the mean-field embedding Fock matrix,
in the Ith basis, is expressed as

Fμv = Hcore
μv +

M

∑
K=1

KK

∑
α∈K

KK

∑
β∈K

DK
αβ[(μv∣αβ) −

1
2
(μβ∣αv)]

−

Mtotal
ovl

∑
K,L

KK

∑
α∈K

KL

∑
γ∈L

DKL
αγ [(μv∣αγ) −

1
2
(μγ∣αv)]. (A7)

In order to express the unique terms in the Ith frag-
ment Fock operator, F̂I , begin by noting that the projection

operator onto the overlapping subspace, for the Ith fragment, is
given by

p̂Iovl =

MIovl

∑
J∈Iovl

nJ

∑
j∈J

KJ

∑
λ∈J

KJ

∑
σ∈J

CjλCjσ ∣χ J
λ ⟩⟨χ

J
σ ∣

=
1
2

MIovl

∑
J∈Iovl

KJ

∑
λ∈J

KJ

∑
σ∈J

DJ
λσ ∣χ

J
λ⟩⟨χ

J
σ ∣. (A8)

Simple expressions for the two terms Fp̂Iovl and p̂Iovl F may now be
given as

(χI
μ∣Fp̂Iovl ∣χ

I
v) =

1
2

MIovl

∑
J∈Iovl

KJ

∑
λ∈J

KJ

∑
σ∈J

DJ
λσ(χ

I
μ∣F∣χ

J
λ)(χ

J
σ ∣χ

I
v )

=
1
2

MIovl

∑
J∈Iovl

KJ

∑
λ∈J

KJ

∑
σ∈J

DJ
λσFμI,λJs

IJ
σJ,vI (A9)

and

(χI
μ∣p̂Iovl F∣χ

I
v) =

1
2

MIovl

∑
J∈Iovl

KJ

∑
λ∈J

KJ

∑
σ∈J

DJ
λσ(χ

I
μ∣χ

J
λ )(χ

J
σ ∣F∣χ

I
v)

=
1
2

MIovl

∑
J∈Iovl

KJ

∑
λ∈J

KJ

∑
σ∈J

DJ
λσsIJ

μI,λJFσJ,vI . (A10)

In Eqs. (A9) and (A10), the sIJ
σJ,vI and sIJ

μI,λJ matrices are KI

by KJ matrices whose elements are each an AO overlap integral
between an AO assigned to the Ith fragment and an AO assigned
to the Jth fragment. In order to further reduce the scaling of
the algorithm, the corresponding intermediate matrices, given by
1
2∑

KJ
σ∈JDJ

λσsIJ
σJ,vI and 1

2∑
KJ
λ∈JDJ

λσsIJ
μJ,λI , respectively, may be precom-

puted. Let D̃IJ
λJ,vI and D̃IJ

σJ,μI represent the resulting matrices, respec-
tively. Note that these are partial transformations and can be used
to compute the dimer overlap matrices given in Eq. (A4). Using the
D̃IJ

λJ,vI and D̃IJ
σJ,μI quantities, Eq. (A7) may be rewritten in the final

form

(FI)μv = Hcore
μv +

M

∑
K=1

KK

∑
α∈K

KK

∑
β∈K

DK
αβ[(μv∣αβ) −

1
2
(μβ∣αv)] −

Mtotal
ovl

∑
K,L

KK

∑
α∈K

KL

∑
γ∈L

DKL
αγ [(μv∣αγ) −

1
2
(μγ∣αv)] −

MIovl

∑
J∈Iovl

KJ

∑
λ∈J

D̃IJ
λJ,vI

×

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎣

Hcore
μI,λJ +

M

∑
K=1

KK

∑
α∈K

KK

∑
β∈K

DK
αβ[(μλ∣αβ) −

1
2
(μβ∣αλ)] −

Mtotal
ovl

∑
K,L

KK

∑
α∈K

KL

∑
γ∈L

DKL
αγ [(μλ∣αγ) −

1
2
(μγ∣αλ)]

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

+

MIovl

∑
J∈Iovl

KJ

∑
δ∈J

D̃IJ
σJ,μI

⎡
⎢
⎢
⎢
⎢
⎣

Hcore
σJ,vI +

M

∑
K=1

KK

∑
α∈K

KK

∑
β∈K

DK
αβ[(σv∣αβ) −

1
2
(σβ∣αv)] −

Mtotal
ovl

∑
K,L

KK

∑
α∈K

KL

∑
γ∈L

DKL
αγ [(σv∣αγ) −

1
2
(σγ∣αv)]

⎤
⎥
⎥
⎥
⎥
⎦

. (A11)

2. Derivation of the unique terms in the n th-order exchange-repulsion energy
The unique terms in the approximate exchange-repulsion energy correction in the ENMO/n method, denoted δE(n)ex−rep, may be obtained by

simply taking the difference between the ENMO/n and ENMO/n − 1 exchange-repulsion energies,
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E(n)ex−rep − E(n−1)
ex−rep = δE(n)ex−rep

=
n−1

∑
m=0
(−1)m

⎧⎪⎪
⎨
⎪⎪⎩

−2
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

s′mjJ,pPhiI,pP −
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Lovl

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

S′mlL,rR(2JkK,rR
iI,iI − KkK,rR

iI,iI )

−
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′mjJ,pP

M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,pP − KkK,kK
iI,pP ) +

n−1

∑
m′=0
(−1)m′

⎡
⎢
⎢
⎢
⎢
⎣

M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′mjJ,pP

×
M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

S′m
′

lL,rR(2JkK,rR
iI,lL − KkK,kK

iI,lL )

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

−
n−2

∑
m=0
(−1)m

⎧⎪⎪
⎨
⎪⎪⎩

−2
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′mjJ,pPhiI,pP −
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

S′mlL,rR(2JkK,rR
iI,iI − KkK,rR

iI,iI )

−
M

∑
I=1

nI

∑
i∈I

M−1

∑
J∈I_ovl

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′mjJ,pP

M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,pP − KkK,kK
iI,pP ) +

n−2

∑
m′=0
(−1)m′

×

⎡
⎢
⎢
⎢
⎢
⎣

M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′mjJ,pP

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

S′m
′

lL,rR(2JkK,kK
iI,pP − KkK,rR

iI,lL )

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (A12)

Eliminating common terms between E(n)ex−rep and E(n−1)
ex−rep, Eq. (A12) simplifies to

δE(n)ex−rep = (−1)n−1
⎧⎪⎪
⎨
⎪⎪⎩

−2
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′n−1
jJ,pPhiI,pP −

M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

S′n−1
lL,rR(2JkK,rR

iI,iI − KkK,rR
iI,iI )

−
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′n−1
jJ,pP

M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,pP − KkK,kK
iI,pP ) +

n−2

∑
m′=0
(−1)m′

×

⎡
⎢
⎢
⎢
⎢
⎣

M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′n−1
jJ,pP

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

S′m
′

lL,rR(2JkK,rR
iI,lL − KkK,rR

iI,lL )

⎤
⎥
⎥
⎥
⎥
⎦

+
n−2

∑
m=0
(−1)m

⎡
⎢
⎢
⎢
⎢
⎣

M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′mjJ,pP ×
M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

S′n−1
lL,rR(2JkK,rR

iI,lL − KkK,rR
iI,lL )

⎤
⎥
⎥
⎥
⎥
⎦

+ (−1)n−1
⎡
⎢
⎢
⎢
⎢
⎣

M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

siI,jJ

M

∑
P=1

nP

∑
p∈P

S′n−1
jJ,pP ×

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

skK,lL

M

∑
R=1

nR

∑
r∈R

S′n−1
lL,rR(2JkK,rR

iI,lL − KkK,rR
iI,lL )

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (A13)

Moving the third, fourth, and fifth terms out of the braced expression then leads to the expression

δE(n)ex−rep = (−1)n−1
⎧⎪⎪
⎨
⎪⎪⎩

−2
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJS′n−1
jJ,pPhiI,pP−

M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

skK,lLS′n−1
lL,rR(2JkK,rR

iI,iI − KkK,rR
iI,iI )−

M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJS′n−1
jJ,pP

×
M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,pP − KkK,kK
iI,pP )

⎫⎪⎪
⎬
⎪⎪⎭

+ (−1)2(n−1) M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJS′n−1
jJ,pP

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

skK,lLS′n−1
iI,lL(2JkK,rR

iI,lL − KkK,rR
iI,lL )

+ (−1)n−1
n−2

∑
m′=0
(−1)m′

⎡
⎢
⎢
⎢
⎢
⎣

M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJS′n−1
jJ,pP

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

skK,lLS′m
′

lL,rR(2JkK,rR
iI,lL − KkK,rR

iI,lL )

⎤
⎥
⎥
⎥
⎥
⎦

+ (−1)n−1
n−2

∑
m=0
(−1)m

⎡
⎢
⎢
⎢
⎢
⎣

M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJS′μjJ,pP

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

skK,lLS′
(n−1)
lL,rR(2JkK,rR

iI,lL − KkK,rR
iI,lL )

⎤
⎥
⎥
⎥
⎥
⎦

. (A14)

J. Chem. Phys. 155, 154101 (2021); doi: 10.1063/5.0064864 155, 154101-20

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The factor of (−1)2(n−1) may be eliminated, as it is always equal to unity. The last two terms in Eq. (A14) may be rewritten in terms of the
truncated T matrix expansion as

δE(n)ex−rep = (−1)n−1
⎧⎪⎪
⎨
⎪⎪⎩

−2
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJS′n−1
jJ,pPhiI,pP −

M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

skK,lLS′n−1
lL,rR(2JkK,rR

iI,iI − KkK,rR
iI,iI )

−
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJS′n−1
jJ,pP

M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,pP − KkK,kK
iI,pP )

⎫⎪⎪
⎬
⎪⎪⎭

+
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJS′n−1
jJ,pP

×
M

∑
I=1

nI

∑
i∈I

M−1

∑
L≠K

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

skK,lLS′n−1
lL,rR(2JkK,rR

iI,lL − KkK,rR
iI,lL ) + (−1)n−1

M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJS′n−1
jJ,pP

×
M

∑
I=1

nI

∑
i∈I

M−1

∑
L≠K

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

skK,lLTn−1
lL,rR(2JkK,rR

iI,lL − KkK,rR
iI,lL ) + (−1)n−1

M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJTn−1
jJ,pP

×
M

∑
I=1

nI

∑
i∈I

M−1

∑
L≠K

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

skK,lLSn−1
lL,rR(2JkK,rR

iI,lL − KkK,rR
iI,lL ).

Moving the terms with elements of the T matrix in their summations into the expression in braces, Eq. (A15) may be rewritten as

δE(n)ex−rep = (−1)n−1
⎧⎪⎪
⎨
⎪⎪⎩

−2
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJS′n−1
jJ,pPhiI,pP −

M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

M−1

∑
L≠K

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

skK,lLS′n−1
lL,rR

×

⎡
⎢
⎢
⎢
⎢
⎣

(2JkK,rR
iI,iI − KkK,rR

iI,iI ) −
M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJT(n−1)
jJ,pP (2JkK,rR

iI,lL − KkK,rR
iI,lL )

⎤
⎥
⎥
⎥
⎥
⎦

−
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1

nP

∑
p∈P

siI,jJS′n−1
jJ,pP

M

∑
K=1

nK

∑
k∈K
[(2JkK,kK

iI,pP − KkK,kK
iI,pP ) −

M−1

∑
L≠K

nL

∑
l∈L

M

∑
R=1

nR

∑
r∈R

skK,lLT(n−1)
lL,rR (2JkK,rR

iI,lL − KkK,rR
iI,lL )]

⎫⎪⎪
⎬
⎪⎪⎭

+
M

∑
I=1

nI

∑
i∈I

M−1

∑
J≠I

nJ

∑
j∈J

M

∑
P=1
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Thus, the expression given in the main text in Eq. (35) is obtained for the unique terms in the exchange-repulsion component of NOMO
energy at the nth-order. For the ENMO/n methods specifically, the PNIO approximation is also applied to all fragment pairs, giving the
following simplified expression for δE(n)ex−rep, which involves restricted summations over fragment pairs:

δE(n)ex−rep = (−1)n−1
⎧⎪⎪
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⎪⎪⎩
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3. Derivation of the first-order exchange-repulsion energy
As E(0)ex−rep is zero by definition, the first-order exchange-repulsion energy, E(1)ex−rep, is equivalently given by δE(1)ex−rep,

E(1)ex−rep = δE(1)ex−rep

= (−1)0
⎧⎪⎪
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⎪⎪⎩
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As T(0)aA,bB was previously defined as zero for all aA, bB pairs in Eq. (31), terms that include this factor vanish. Additionally,
all instances of the zeroth power of the S′ matrix may be replaced by the identity matrix. This simplifies Eq. (A17) to the
form
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Using the properties of the identity matrix, Eq. (A18) may be simplified to the final expression for δE(1)ex−rep by eliminating all terms for which
J ≠ P or L ≠ R and thus replacing all instances of the indices P or R with J or L, respectively,
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i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJhiI,jJ −
M

∑
I=1

nI

∑
i∈I

M

∑
K=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2JkK,lL
iI,iI − KkK,lL

iI,iI )

−
M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

M

∑
K=1

nK

∑
k∈K
(2JkK,kK

iI,jJ − KkK,kK
iI,jJ ) +

M

∑
I=1

nI

∑
i∈I

MIovl

∑
J∈Iovl

nJ

∑
j∈J

siI,jJ

×
M

∑
I=1

nK

∑
k∈K

MKovl

∑
L∈Kovl

nL

∑
l∈L

skK,lL(2JkK,lL
iI,jJ − KkK,lL

iI,iI ). (A19)
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4. Derivation of the unique terms in the second-order exchange-repulsion energy
Unlike the expression for the first-order exchange-repulsion energy, the expression for the unique terms in the second-order exchange-

repulsion energy, δE(2)ex−rep, will not involve vanishing T(n) matrix elements or replacement of S′ matrix elements with those of the identity
matrix. As such, it will be necessary to apply the PNIO approximation to new pairs of fragment indices. The general expression for δE(2)ex−rep is
given by

δE(2)ex−rep = (−1)
⎧⎪⎪
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⎪⎪⎩
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The instances of T(1)aA,bB may be rewritten as

T(1)aA,bB = (−1)0
(S′)0

aA,bB

= IaA,bB

= δaA,bB. (A21)

Making this substitution in Eq. (A20), as well as multiplying all terms in braces by the negative factor, and replacing all instances of S′1aA,bB
with the corresponding MO overlap integrals simplify the expression to
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First, the terms involving Kronecker delta factors are again simplified by eliminating all pairs for which J ≠ P or L ≠ R,
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Now, the PNIO approximation is applied to the new J, P and L, R fragment index pairs in all of the summations in Eq. (A23). Doing so
produces the final expression for δE(2)ex−rep,
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5. Derivation of the unique terms in the third-order exchange-repulsion energy
As in the derivation of the second-order exchange-repulsion energy, the expression for the unique terms in the third-order exchange-

repulsion energy, δE(3)ex−rep, will also involve non-vanishing T(n) matrix elements. As such, it will again be necessary to apply the PNIO
approximation to new pairs of fragment indices. The general expression for δE(3)ex−rep is given by
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The instances of T(2)aA,bB may be rewritten as

T(2)aA,bB = (−1)0
(S′)0

aA,bB + (−1)1
(S′)1

aA,bB

= IaA,bB − S′aA,bB

= δaA,bB − saA,bB. (A26)

Making this substitution in Eq. (A25) produces the expression

δE(3)ex−rep = −2
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Simplifying Eq. (A27) by limiting summations over Kronecker delta and MO overlap integral elements gives
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Now, the S′2aA,bB matrices are expanded. In order to maintain consistency with the previous exchange-repulsion expressions, the fact that
fragment indices in the S′2jJ,pP matrix expansion are arbitrary will be used to rearrange fragment indices. Specifically, the expansion of the
S′2jJ,pP and S′2lL,rR will be rewritten in the form

S′2jJ,pP =
M

∑
Q=1

nQ

∑
q∈Q

S′ jJ,qQ

M

∑
P=1
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∑
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and

S′2lL,rR =
M

∑
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∑
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M
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∑
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Using the expressions given in Eqs. (A29) and (A30), the expression in Eq. (A28) may be rewritten in the expanded form
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As was previously done in the derivation of the δE(2)ex−rep expression, the PNIO approximation is first applied to the J, P and L, R fragment
index pairs. In addition, the PNIO approximation is also applied to the new fragment index pairs, P, Q and R, S. Thus, the final expression for
δE(3)ex−rep, with each of the summations properly restricted to overlapping fragment pairs, is given by
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