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ABSTRACT 

The resonance phenomenon observed in Rayleigh wave scattering from surface-breaking cracks has been 
investigated using Freund's results on reflection of Rayleigh waves from an infinite crack edge. To model 
the crack as a section of acoustic waveguide, resonances are treated as standing waves in the length and 
depth directions. The model takes both faces of the crack into consideration, and this makes it possible 
to explain the observations of all order resonances in the length direction for excitation by a Rayleigh 
wave beam at normal incidence. Calculations are made for rectangular and half-penny shaped cracks and 
differences between the two cases are discussed. 

INTRODUCTION 

One of the sources of data for the estimation 
of dimensions of surface breaking cracks is their 
frequency response. Experimental results have 
shown that crack response shows resonance-like 
variations in the short wavelength regime.1,2 Some 
of those variations were found to be associated 
with the length and depth of the cracks,2 however 
previous interpretations fail to explain the ob­
servation of all order length resonances for a sym­
metric excitation in length dimension. Such inter­
pretations take only the illuminated face of the 
crack into a~c~unt, neglecting the effect of its 
back face.l, • Freund has demonstrated in Refer­
ence 4 that the crack edge couples the fields be­
tween the front and back faces and the coupling 
parameters have been calculated. Using those pa­
rameters, he also showed that an infinite slit 
structure can guide waves if the edge separation is 
wide enough and he derived dispersion relations for 
the modes of this structure.S In this study, these 
calculations are reviewed and a model is proposed 
for surface crack resonances, using the waveguide 
modes obtained from the calculations. 

RAYLEIGH WAVE PROPAGATION IN HJO DH1ENSIONS 

A surface wave, traveling on the plane defined 
by x and y axes and decaying in z direction 
can be expressed in terms of its cgmponent along 
the decay direction (z-axis). only. The particle 
velocity component along the decay direction then 
can be written as 

Vz(x,y,z) = f(z) Vz(x,y)eiwt (1) 

where Vz(x,y) satisfies the two-dimensional re­
duced wave equation 

[ 'i + (w/VR)
2J Vz(x,y) = 0 (2) 

and f(z) is a known function describing the decay 
along the depth of the plate. The other components 
of particle velocity can easily be found once 
Vz(x,y) is known.6 

REFLECTION OF RAYLEIGH WAVES FROM AN 
INFINITE CRACK EDGE 

Consider a semi-infinite crack with its edge 
along the .Y axis and faces in the x-y plane for 
x > 0 . The faces are assumed to lie on either 
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side of the z = 0 plane. They are denoted as the 
z+ and z- faces. Let a Rayleigh wave on the z+ 
face be incident obliquely on the edge, its propa­
gation vector lying at an angle e with the crack 
edge (y-axis). The incident wave will yield two 
scattered surface waves, one on each face of the 
crack. Bulk waves will also be radiated into the 
medium outside the crack when th~ angle of inci­
dence e is large enough. Of the two scattered 
surface waves, the one on z+ face will be called 
the reflected wave (with reflection coefficient 
R(e)) and the one on z- face will be identified 
as the transmitted wave (with transmission coeffi­
cient T(S)). The reflection and transmission coef­
ficients are defined in terms of the component of 
particle displacement in the z direction. 

Using the three-dimensional representation 
theorem due to deHoop, Freund solved this scatter­
ing problem and calculated the parameters R(e) 
and T(S) .4 When the angle of incidence 
e < eCR s = cos-l(VR/Vs) , (VR - Rayleigh wave 
veloc1ty; Vs - shear wave velocity), the incident 
wave cannot excite propagating bulk waves and all 
the power is scattered into surface waves on the z+ 
and z- faces. That is 

for e < eCR,S (3) 

In the same angular region, the phases of the 
reflection and transmission coefficients satisfy 
the following relation, 

Ll(e) = arg T(e)- arg R(e) = ~ for e < eCR,S (4) 

For e > ScR s the incident wave is able to 
excite radiating shear waves which can carry energy 
away from the crack edge; and, for e > ScR L = 
cos-1 (VRIVL) , (VL - longitudinal wave velocity) 
R(e) and T(e) approach small purely imaginary 
quantities with magnitudes in the order of 0.1. 
Under this condition IT(S)i > IR(e)l . 

Crack Modeling. We first solve the guidance prob­
lem for the infinite crack geometry, using the 
transverse resonance technique, then impose the 
finite length of the crack in order to find its 
resonances. For the partial waves to be used in 
transverse resonance analysis, we will use solutions 
of Eq. (2) in an appropriate coordinate system. 



(a) Rectangular crack: Rectangular :rack 
geometry is shown in Fig. 1(a). The solu~10n~ of 
Eq. (2) are ordinary plane waves propagat1ng 1n x-y 
plane. Since the power is confined to surface waves 
only for 8 < 8cR s , only the partial waves with 
incidence angle satisfying that relation wil~ be 
considered. Otherwise the waveguide modes w1ll be 
very lossy and will not produce good resonances. 

Slit waveguide modes. The slit waveguide 
geometry is shown in Fig. l(b). On each face of 
the crack we assume two partial waves propagating 
in opposite x directions with ~he same ~ngle of 
incidence at x = ± L/2 , L be1ng the w1dth of 
the slit. We will assume that each partial wave 
reflects from an edge as if the other edge were 
absent. The validity of this assumption depends on 
the relative magnitude of the slit width L with 
respect to the Rayleigh wavelength AR , and for 
the frequency range of interest to us, where 
2~(L/\R) > 1 , this assumption.is ve~ifi~d b~ 
Freund.5 Considering the conf1gurat1on 1n F1g. 1(b), 
the partial waves Pi,i=1,2,3,4 can be expressed as 
follows: 

P1: A1 exp(-ikxx- 8Gy) with decay in +z direction 

P2: A2 exp{-ikxx- 8GY) with decay in -z direction 
(5) 

P3 : A3 exp{ikxx- 8Gy) with decay in +z direction 

P 4: A4 exp{ikxx- 8~) with decay in -z direction 

.. - X 
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FIG. 1. {a) Rectangular crack geomery; 
{b) Partial waves for slit waveguide; 
(c) Partial waves for crack waveguide. 

Writing the boundary conditions at x = ± L/2 
and keeping in mind that R and T are defined 
in terms of +z components of the partial waves, 
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one obtains the fallowing eigenvalue expression: 

A1 \ 
: 0 (1 R - T \ 

r::) 
\ 

i kxl A2 I 0 0 -T R i 
e I i {6) 

A3 I R -T 0 0 I \ ,, \ I 
\ A i \-T R 0 o; A4 \ 4i \ 

Each solution of Eq. (6) defines a modal field 
distribution. The solutions are tabulated in 
Table 1. Mode identifications are made considering 
Fig. 1(b), where E and 0 stands for even {sym­
metric) and odd (antisymmetric) variations along the 
direction defined by the subscripts x and z . 
The modes are consistent with the symmetry of the 
structure. 

Table 1. Slit waveguide modes 
i k L 

A1 A2 A3 A4 e X Mode Identification 

1 1 1 R- T E E 
X Z 

-1 -1 R + T E 0 
X Z 

-1 -1 -(R- T) 0iz 
-1 -1 -(R+ T) 0 0 

X Z 

Dispersion relations can be obtained in the 
following manner. From the fifth column, one can 
write 

kxl = arg(R ± T) + 2~ (7a) 

and plot the RHS as a function of 8 Considering 
Fig. (1b), the following relation can readily be 
shown to be required 

(?b) 

Taking 8GL as a parameter, kxl vs 8 can also 
be plotted. Intersection of two curves for 
8 < 8cR s determines kx (and 8G ) for the prop­
agating'modes. This is illustrated in Fig. 2 where 
dashed lines correspond to Eq. (?b) and solid lines 
correspond to Eq. (?a). This figure is for a 
Poisson ratio of 0.25, for which 8cR,S = 23.2o 
The following p_oints are worth considering: 

1) For the lowe~t order propagating mode, 
8GL ~ 2 , kxl - ~/4 , kRL- 2.2 . Therefore the 
analysis is valid only for cracks with L > 0.4 \R 

2) Since 8 < 8cR s = 23.2° , the guided wave 
velocity VG = VR/cos 8' is very near to the Rayleigh 
wave velocity. 

Crack waveguide modes. Consider the crack wave­
guide shown in Fig. 1(c). Through a similar analy­
sis, one can analyze the waveguide modes supported 
by this structure, if scattering coefficient of 
Rayleigh wave at the upper edge of a crack face is 
known. To our knowledge this problem has not been 
solved for other than normal incidence.? We will 
denote the relevant reflection coefficient by R(8) 
and either approximate it or treat it as an adjust­
able parameter to be fitted to experimental results. 
Scattering at the bottom of the crack is treated as 
in the previous subsections, by the Freund theory. 
Although the crack waveguide has no symmetry in the 
plane of the crack, it is symmetrical with respect 
to the z direction. The analysis shows that 



modes of even and odd symmetry with respect to the 
z direction have the properties listed in Table 2. 
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Graphical solution of dispersion equation 
for slit waveguide modes. 

Table 2. Crack waveguide modes 

i2k h 
A2 A3 A4 e Y Mode Identification 

1 R R R(R- T) E z 
1 -1 R -R R(R+ T) oz 

For the crack waveguide modes to be non-leaky, 
the dispersion relations must be satisfied for_re~l 
kyh (or real SG ) since for small angles of lncl­
dence I R ± Tl = 1 , I Rl = 1 is neces~ary for ~on­
leaky modes to exist. As before, we 1mpose th1s 
condition in order to obtain strong resonances. 
Dispersion curves can be obtained in the manner 
described in the previous section. If we assume 
that R(e) ~ 1 (which corresponds to 3Uz/3y = 0 
at y = 0 ), the curves in Fig. 2 can be used with 
the following substitutions: kxl + 2kyh , 
SGL + 2SGh . The Ox modes should be ignored. 
This shows that for the lowest order mode to propa­
gate SGh ~ 1 and h > 0.2 AR , provided that 
R~ 1 1s a good approximation for 6 < 9CR,S . We 
will comment further on the existence of crack 
waveguide modes when we discuss half-penny shaped 
cracks. 

Resonances of rectangular surface cracks. 
Following the approach used in References 1 and 2 
we treat resonance effects as due to standing wave 
resonances along the depth or the length of the 
crack. However, we do not use simply Rayleigh waves, 
but rather the guided waves of the crack in which 
the vibrations of the front and back faces are 
coupled at the edges. We restrict ourselves to non­
leaky waveguide modes only, on the grounds that 
leaky standing waves·will not have sufficient high 
Q's to be strongly excited and to give useful NDE 
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signatures. Our analysis therefore treats only 
depth standing wave resonances of the trapped slit 
waveguide modes and length standing wave resonances 
of trapped crack waveguide modes (Fig. 3). 

/z 
hiU1b -X Q ~1 

l2=j! I 
y 

(0) DEPTH RESONANCES 

-LL -L 
~-x ¢ Q(e r)Q 

I 
I 
y 

(b) LENGTH RESONANCES 

FIG. 3. Waveguide standing wave model for 
(a) depth resonances, and 
(b) length resonances of the crack. 

To continue this approach we must evaluate the 
modal reflection coefficients at the top and bot­
tom of the crack for the depth resonances and the 
analogous reflection coefficients at the edges of 
the crack for the length resonances. With the pre­
sent model, we are able to introduce more realis~ic 
boundary conditions than the rigid boundary condl­
ti ons assumed previously by others. These boundary 
conditions are evaluated by considering the be­
havior of each partial wave in Fig. 1 at an edge 
boundary normal to the guided wave propagation di­
rection. 

For reflection from crack edges and the crack 
bottom, the results given by Freund apply, and we 
have the reflection coefficients listed in Table 3 
for the various types of modes treated previously. 
Note that R and T should now be evaluated near 
90° since partial waves grazing the guiding edges 
hit the terminating boundaries normally. There is 
no coupling at the crack edges between modal fami-
1 i es or between modes of the same family. In the 
case of reflection from a crack top, there is no 
coupling between the z+ and z- faces of the 
crack, and each partial wave reflects with the re­
flection coefficient R , for which the results 
given by Cuozzo, et al, 7 can be used as an approxi­
mation. In this way we obtain the reflection coef­
ficients rt, rb and re defined in Fig. 3. 

Table 3. Reflection coefficients at a crack 
edge for slit and crack waveguide modes 

Mode Reflection Coefficient 

(R - T) 

(R + T) 



To investigate the depth resonances, we model 
the crack as a slit waveguide terminated by a crack 
edge at one end and a crack top at the other. The 
resonance condition of the transmission line model 
as shown in Fig. 3(a) is 

- i 28Gh 
rtrbe 1 (8) 

iat iab 
where ft = Pte and rb = Pbe are the re-
flection coefficients for the mode of concern at 
the top and bottom of the crack respectively, and 
8G is the propagation constant for that particular 
mode. Due to the fact that terminations are lossy, 
one should allow for a complex resonant frequency, 
i.e., 

8 = G 

w(1 + i/2Q) 

VG 
(9) 

The resonant frequency and quality factor are found 
to be 

V G [at + ab ] f = ----+N 
2h 211 

(10) 

and 

Q = 0. 5(at + ab) + N11 
(11) 

- loge(ptpb) 

For a= 0.25 , ft ~ Q 25 rb(Oz modes) = 0.3ei(rr/2) 
fb(Ez modes)= 0.1 e- 1 t11121 . The analysis pre­
dicts a quality factor in the order of unity, al­
though experimental quality factors are reported 
to be somewhat higher than this. 

For length resonances, the same kind of proce­
dure gives 

(12) 

writing r = p e i ae , one obtains the resonance 
frequency ~nd qUality factor as 

and 

f = V G (M + ae) 
2L 11 

Q 
a + M11 e 

-2 loge(pe) 

(13) 

(14) 

where re (02 mode) = 0.3 ei( 11/ 2), re (E mode) = 
0.1 e-i(rr/2) and VG- VR for trapped m~des. 

It is interesting to note that the edge reflec­
tion coefficients fe for the 02 and the Ez 
modes are 11 radians out of phase. This indicates 
that standing wave pattern of an Ez mode and 
standing wave pattern of the same order 02 mode 
have a shift of A/4 with respect to each other. 
In other words, if the E mode for a specific 
resonance frequency is ev~n, the corresponding 02 mode is odd or vice versa. Keeping in mind that 
VG- VR for both modes we see that, at each 
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resonance frequency predicted by Eq. (13), there is 
always an even and an odd standing wave pattern 
that can be sup ported by the crack structure. In 
experimental observations of crack resonances ex­
cited by normally incident Rayleigh waves, length 
resonances of all orders have been noted. This 
poses a difficulty for the single surface model 
used previously. In this model the resonances are 
alternately x-symmetric and x-antisymmetric, while 
the excitation of normal incidence is x-symmetric 
only. One therefore predicts excitation of alter­
nate modes only. We see that the two surface model 
used here resolves the dilemma since it predicts an 
x-symmetric vibration for every order of resonance, 
alternating from an Ez type mode to an 02 type 
mode as the order increases. 

(b) Half-Jenny shaped crack: Here, the solu­
tions of Eq. (2 are Hv + (kRr) e±iv¢ , where r 
and ¢ are polar coordinate variables and 
Hv + (kRrl are Hankel f4nctions of the first and 
second kind of order v . We do not restrict our­
selves to integer values of v since the structure 
is not periodic in ¢ (-11/2.:; ¢ .:; 1T/2) . It is 
appropriate in this problem to express the Hankel 
functions in the following form: 

+ilj! (x) 
H + (x) = M (x) e v (15) 
v v 

where Mv(x) is the magnitude and Wv(x) 
phase of the Hankel functions, i.e., 

is the 

and 

M)xl = [J~(x) + Y~(x)] 

y (X) 
1jJ (x) = tan- 1 _v_ 

v 

(16) 

(17) 

In our notation, the - and + signs in Eq. (15) 
correspond to radially outgoing and incoming waves, 
respectively. 

To get a feeling about the behavior of these 
circular partial waves, let us examine them more 
closely. Any of the partial waves shown in Fig. 4 
can be expressed in the form 

Pi = M)~Rr) exp[±i(lj!)kRr) ± v¢)] (18) 

The propagation vector at any point (r,¢) can 
then be found by taking the negative gradient of the 
phase function: 

[ J 
dlj! (kRr) v A 

k = -V ± w)kr) ± v¢ = + k v r + r ¢ 
R Cl(kRr) 

(19) 

where r and ~ are unit vectors in polar coordi­
nates. If we make an analogy between the circular 
and rectangular cases, kRW~ corresponds to ky 
and v/t' corresponds to kx . Therefore one can 
form the analogous cases of slit and crack wave­
guides, as shown in Fig. 4. It.is seen that the 
analogous case of slit waveguide is such that the 
modes are guided by the crack top- that is, the 
waves are radial. For the case of crack waveguide, 
the guidance is assumed via the crack edge and the 
waves are angular. In both cases, the partial 
waves should graze the guiding boundaries for non­
leaky propagation. We will assume that Freund's 



results are also applicable for the curved crack 
boundaries. 

~,.,.,, 
,r a 

z- FACE 

-I 
"' 

(b) 

z-FACE 

r =a 

(c l 

FIG. 4. (a) Half-penny shaped crack geometry; 
(b) Partial waves for radial waveguide 

modes (cf Fig. 1(b)); 
(c) Partial waves for angular waveguide 

modes (cf Fig. 1(c)). 

The radial waveguide modes can now be investi­
gated. The partial waves are: 

Writing the boundary conditions at ~ = ± rr/2 , 
one obtains 

( ,, /0 0 R 0 

(::) eivrr A2 

(: 
0 0 R 

A3 0 0 0 

A4 R 0 0 A4 

for which the solutions can be obtained as 

A1 A2 A3 A4 
eivrr Mode Identification 

1 1 R E~Ez 

1 -1 -1 R E~Oz 

1 1 -1 -1 -R O~Ez 

-1 -1 1 -R o~oz 

If we again assume a boundary condition of 

(20) 

(21) 

(3U/3n) = 0 at ~ = ± rr/2 ' (i.e. , R = 1), we 
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obtain the restriction 

I 0,2 ,4, ... 
\) = 

1,3 ,5' ... 

for 

for 

The resonance condition for the modes can be 
written in a similar manner, and one obtains 

-i(1!.) 

i21jJ(kRa) {(R-T)~0.1e 2 
forEzmodes 

e v = i (1!.) 
(R+T) ~ 0.3e 2 for Oz modes 

(22) 

(23) 

Again equating the phases, one can graphically 
obtain the depth resonances as shown in Fig. 5. 
The resonances corresponding to v > 0 must be 
eliminated since "the incidence angles of partial 
waves", 8 :: tan-1(v/kr) do not allow "grazing 
incidence" at ~ = ±(rr/2) , especially around r= 0 
For v=O, we approximate the angle of the Hankel 
function by its asymptotic expansion, 

1jJ (k a) ~ k a - 1!. o R R 4 
(24) 

The accuracy of the approximation can be seen from 
Fig. 5. We then obtain the resonance frequency and 
quality factor 

f 
VR 
- • N 
2a 

Nrr Q = -log (p' ) 
e e 

where (~ ) is the magnitude of (R ± T) given in 
Eq. (23)~ 

37T 
2 

v=l 

1T 

(25) 

(26) 

27T ka 

1T 
-2 

FIG. 5. Graphical evaluation of radial (i.e. depth) 
resonance frequencies for a half circular 
crack. 



Comparing Eqs. (25) and (26) with Eqs. (10) 
and (11) we see that depth resonance frequencies 
are almost the same, and ~nat the circular crack 
yields a higher quality factor. 

For length resonances, the same kind of analy­
sis yields the following equation 

i21jJ (kRa) 
e v = 

{

(R- T) 

(R+ T) 

(27} 

provided that the incidence angle of partial waves 
at r =a is small. That angle can be expressed 
as 

(28) 

Taking v as a parameter and eliminating kRa , 
one can plot 1/Jv{ka) vs e . From Freund's bound­
ary conditions ·;, arg{R± T) vs e can also be plot­
ted. As in the rectangular crack case, the inter­
section of two curves should give the guide parame­
ters. We have plotted these curves in Fig. 6 and 
one readily observes that there is no solution for 
the "angular waveguide" modes. In other words, the 
guide proposed in Fig. 4(c) does not act as a non­
leaky waveguide. 

FIG. 6. Graphical solution of dispersion 
equation of angular waveguide 
modes. 
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Experimentally, length resonances have been 
found to not depend significantly on the shape of 
the crack, and they are found to exist even in 
circular cracks. The basic analytical difference 
between rectangular and circular cracks is that in 
the rectangular case, guidance is achieved via the 
bottom of the crack. The "mode switching" between 
Ez and Oz modes noted in the previous section as 
the explanation for observations of resonances in 
all orders is caused by edge coupling between the 
front and back faces of the crack.. However in the 
circular crack, the analysis shows that there are 
no corresponding non-leaky resonances in the angu­
lar direction. Furthermore scattering at the top 
of the crack does not introduce the coupling be­
tween the back and front faces required for "mode 
switching". An explanation of the length reso­
nance behavior observed in circular cracks must 
therefore be sought elsewhere. 

One possible explanation for length resonances 
could be through the concept of edge waves intro­
duced by Bondarenko and Dubovitskii,8 Wagers,9 and 
Sharon.10 These waves can propagate along the top 
edge of the crack, decaying in two other direc­
tions. Using the concepts introduced by crack 
waveguide two such waves, one on each top edge, 
can be postulated. As in the crack waveguide, 
these waves are coupled at the crack corners and 
the reflection coefficients at the corners must 
behave differently for even and odd field distri­
butions relative to the z direction, resulting 
in a similar "mode switching" to that noted above. 
The drawback of this hypothesis is that the edge 
waves travel slower than Rayleigh waves (for 
a= 0.25, Vedge- 0.87 VR), which results in lower 
resonance frequencies. Assuming that boundary 
conditions are the same as those of the crack wave­
guide, the length resonances with edge waves can 
be found to occur at 

f = V edge (M + l) 
2L 2 (29) 

COMPARISON WITH EXPERIMENTAL DATA 

We have compared our analytical results with 
the data given in References 2 and 11. Our results 
(Tables 4 and 5) agree fairly well with the length 
resonances of Reference 2, and good agreement is 
obtained for both. resonances of Reference 11. For 
each resonances, we can ~ssign the mode indices 
M and N (see Eqs. 10, 13, 25, 29) with reason­
able accuracy. The formulas used in calculations 
are repeated below. 

Length resonances: (30) 

Depth resonances: (31) 



TABLE 4. Comparison of Theoretical Calculations with the Data of Reference 2 

Crack # 
fL (MHz) fL 

(Ex~erimental) Eg. (30) 

1 3.48 3.55 
4.02 4.20 
4.58 4.84 
5.20 5.49 

2 3.60 3.62 
5.18 5.08 

3 3.86 3.56 
* 5.94 

4 3.18 3.43 
5. 72 5.72 

5 3.00 3.43 
5.80 5. 72 

6 3.00 3.43 
5.80 5. 72 

M 

5 
6 
7 
8 

2 
3 

1 
2 

1 
2 

1 
2 

1 
2 

f D (MHz) 
(Ex~erimental) 

5.8 

5.68 

5.6 

5.1 

4.0 

3.6 

fD 
Eg. (31) 

6.62 

5.94 

5.94 

4.58 

3.3 

2.57 

N 

1 

1 

1 

The cracks tested were EDM notches on a steel sample, with their aspect ratios varying between 0.097 
and 0.89. The asterisk for the second resonance of the third crack means that the resonance also 
corresponds to a depth resonance. · 

TABLE 5. 

fL (MHz) 
(Ex~erimental) 

Comparison of Theoretical Calculations with the Date of Reference 11 

0.83 
1. 24 
1. 79 
2.27 
2.90 

* 
4.00 
4.48 
5.24 
6.13 
6.41 
7.03 

fL 
Eg. (30} 

0.84 
1.40 
1. 96 
2.52 
3.07 
3.63 
4.20 
4.75 
5.31 
5.87 
6.43 
6.99 

M 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

f D (MHz) 
(Ex~erimental) 

3.41 
7.93 

fD 
Eg. (31) 

3. 711 
7.47 

N 

1 
2 

The crack is a (2.54 mmx 0.38 mm) EDM notch on the aluminum sample. 

In the length resonance calculations above, 
we used Rayleigh wave velocities instead of edge 
wave velocities. A complete analysis of the edge 
waves can be found in Reference 12, where the 
equations of motion are solved by expanding each 
displacement component in a double series of 
Laguerre functions. The analysis shows that there 
are two symmetry modes that can be supported by 
the edge, and for cr = 0.25 the corresponding 
edge wave velocities- are Vedge/VR ~ 0.98 and 
1.002 , which are very close to the Rayleigh wave 
velocity. 

There have been other approaches for the solu­
tion of edge wave modes and velocities.8,9 In 
Reference 8 the solutions are approximated such 
that the boundary conditions are not fully satis­
fied on the two free surfaces of the edge. For 
a = 0.25 , this approach yields a numerical value 
of Vedge/VR = 0.86 . In Reference 9 a variational 
approach is utilized and their result gives 
VedgeiVR ~ 0.7 for ~ = 0.34 . This result is in 
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agreement with what can be obtained from Refer­
ence 8. One reason for this agreement is that the 
trial functions used in the variational approach 
are of the same nature as the functions resulting 
from the analysis of Reference 8. 

In conclusion, considering the results given 
by Maradudin, et al. ,12 the use of Rayleigh wave 
velocities instead of edge wave velocities does 
not ignore the role of edge waves for length reso­
nances. The open question is the verification of 
the hypothesis of TI radians phase shift between 
the even symmetric and odd symmetric edge wave 
modes in the z direction. 
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SUMMARY DISCUSSION 
(S. Ayter and B. Auld) 

Ed Kraut (Session Chairman--Science Center): Questions on this talk? 

Unidentified Speaker: 
crack, you excite 
waves travel down 
again, or is this 

Let me see if I get this straight. Talking about the rectangular 
the Rayleigh wave along the ZED plus or minus face, and the 
in the Y direction and up again on the other side and back 

S. Ayter: You don't excite simple Rayleigh waves. You excite the wave guide modes 
which are combinations of Rayleigh waves, and those waves go down and come up, 
but they go down on both faces and come up on both faces. 

Unidentified Speaker1 How do you excite the wave? What is the excitation scheme? 

S. Ayter: 
here. 
mally 
modes 

We have calculated the coupling quotient, but we don't have the results 
The way to excite is you have a crack here, and you illuminate it nor­

with the Rayleigh wave, and these Rayleigh waves excite the waveguide 
going down. 

Unidentified Speaker: There is no wave going down there. It's only on the two 
surfaces, and the two surfaces are separated by distance between ZED plus and 
ZED minus. How does it go from one side to the other? It has to go down one 
crack and up the other side. 

S. Ayter: On each face, each face is a traction-free surface. So, each face separ­
ately can support Rayleigh waves. And, a combination of those Rayleigh waves 
can guide waves that are going down. 

B. Auld: Could I make a comment, in response here? The fact is, the two faces are 
coupled at the edges. These Rayleigh waves that are propagating on the faces 
at an angle are coupled at the edges all the way down, and it's that edge 
coupling that gives rise to the guided waves which exist on both surfaces. 
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