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Abstract: Pectin is a critical component of the plant cell wall, supporting wall biomechanics and
contributing to cell wall signaling in response to stress. The plant cell carefully regulates pectin
methylesterification with endogenous pectin methylesterases (PMEs) and their inhibitors (PMEIs) to
promote growth and protect against pathogens. We expressed Aspergillus nidulans pectin methylesterase
(AnPME) in Arabidopsis thaliana plants to determine the impacts of methylesterification status on pectin
function. Plants expressing AnPME had a roughly 50% reduction in methylester content compared
with control plants. AnPME plants displayed a severe dwarf phenotype, including small, bushy
rosettes and shorter roots. This phenotype was caused by a reduction in cell elongation. Cell wall
composition was altered in AnPME plants, with significantly more arabinose and significantly less
galacturonic acid, suggesting that plants actively monitor and compensate for altered pectin content.
Cell walls of AnPME plants were more readily degraded by polygalacturonase (PG) alone but were
less susceptible to treatment with a mixture of PG and PME. AnPME plants were insensitive to
osmotic stress, and their susceptibility to Botrytis cinerea was comparable to wild type plants despite
their compromised cell walls. This is likely due to upregulated expression of defense response genes
observed in AnPME plants. These results demonstrate the importance of pectin in both normal
growth and development, and in response to biotic and abiotic stresses.

Keywords: Arabidopsis thaliana; pectin methylesterification; cell wall signaling; Botrytis cinerea;
pattern-triggered immunity

1. Introduction

The plant cell wall is an important, complex component of all plant cells. Changes in the wall
composition and structure can affect a plant’s fitness and response to stresses. The cell wall is composed
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primarily of polysaccharides, as well as lignin, proteins, and ions that associate with or bind to the
polysaccharides [1]. The polysaccharides of the primary cell wall make up the bulk of its dry weight
and are divided into three categories: cellulose, hemicelluloses, and pectins [2]. Pectins constitute
20–35% of the primary cell wall, and also reside in the middle lamellae between cells [3]. Pectins are
acidic heteropolymers of three distinct types containing galacturonic acid (GalA). Homogalacturonan
(HG) is composed of unbranched α-1,4-linked GalA residues that are gradually demethylesterified
as the plant ages [4,5]. Rhamnogalacturonan I (RG-I) is composed of alternating α-1,4-GalA and
α-1,2-Rhamnose (Rha) residues with sidechains of varying composition [6], and rhamnogalacturonan II
(RG-II) is composed of an α-1,4-linked GalA backbone with complex sidechains [6–8]. Pectins exist as
continuous heteropolymers in muro with long stretches of HG interspersed between shorter stretches
of RG-I and RG-II [9].

Plant cell wall proteins (CWP) play important roles in various abiotic and biotic stress responses, and
some CWPs were found to be key factors in adaptation to many stresses [10]. Signaling pathways for both
abiotic and biotic stresses reveal intersections between responses and share regulatory principles [11].
Another plant cell wall component, lignin, is deeply involved in control of plant growth and immunity
functioning. Remodeling of cell walls in transgenic plants with altered lignin content was shown to also
result in release of pectic oligosaccharide elicitors and defensive PR gene expression [12].

Pectin plays an important role in plant and organ morphology: the degree of pectin methylesterification
affects cell wall biomechanics via Ca2+-crosslinking, and consequently affects organ formation [13]. Pectin is
critical for cell wall porosity and elasticity, protection against degradation, and in plant immunity as
a source of signaling molecules released upon stress and acting as triggers for pattern-triggered
immunity [14–16]. These functions are determined and tuned by the interplay between pectin
methylesterases (PME) and pectin methylesterase inhibitors (PMEI) [17]. Arabidopsis plants expressing
catalytically inactive GalA biosynthetic enzymes (GAE1 and GAE6) have less cell wall pectin,
brittle leaves, and higher susceptibility to Botrytis cinerea in comparison with wild type (WT)
plants [18]. Overexpression of a seed-specific PME alters embryo morphology and reduces cell
size in Arabidopsis [19]. Constitutive overexpression of an endogenous AtPMEI increases seed
methylesterification and germination rates. AtPMEI overexpression also causes an unusual growth
phenotype: stunted growth and thick, twisted stems, particularly at points where cauline leaves
or flowers would normally separate from the main stem [20,21]. Overexpression of Arabidopsis
PMEI1 and PMEI2 decreases cell adhesion and increases the efficiency of protoplast isolation due to
decreased wall recalcitrance to enzyme degradation [22]. Pectin also contributes to guard cell mechanics.
Arabinan is critical for guard cell closure, and plants defective in pectin-modifying genes such as PME6
or a polygalacturonase show inhibition of stomatal opening and closing [23–25]. Such mechanical
changes in guard cells were shown to be caused by cell wall plasticity alteration via apoplastic Ca2+

modulation as a part of plant adaptation to heat stress [26].
PMEs are a large family of enzymes belonging to the CAZy class CE-8 (EC3.1.1.11) and are

present in plants, fungi, and bacteria [27]. The Arabidopsis genome contains 66 distinct PMEs [28].
AtPME usually de-esterifies HG in a blockwise fashion; 9 or more consecutive demethylesterified
GalA residues accommodate ionic Ca2+-mediated crosslinks between HG chains to rigidify the cell
wall [15,29,30]. Fungal PMEs generally de-esterify HG in sporadic, non-blockwise fashion [31,32].
Fungal PMEs do not usually promote Ca2+-mediated crosslinks; rather, they enhance the efficiency of
polygalacturonases and pectate lyases to facilitate pathogenesis [5,33].

The Arabidopsis genome contains 71 PME inhibitors (AtPMEIs), and some have been shown to
regulate AtPMEs during plant development and during pathogenesis [28,34]. AtPMEIs largely
inhibit plant PMEs; most do not inhibit fungal PMEs due to their structure [35,36]. However,
recently it has been demonstrated that several AtPMEIs are critical for cell wall integrity (CWI)
during pathogenesis. After B. cinerea inoculation, transcripts of AtPMEI10, AtPMEI11, AtPMEI12 are
upregulated, and knockout mutants of these genes displayed increased pathogen susceptibility [37].
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Pathogens must contend with the plant cell wall before successfully colonizing the plant.
Both biotrophic and necrotrophic pathogens secrete cell wall degrading enzymes (CWDEs),
which macerate the wall matrix and allow access to the cytoplasm [38]. Pectin-degrading enzymes such
as polygalacturonases, rhamnogalacturonan hydrolases, pectin lyases, and pectate lyases are among
the first CWDEs secreted by pathogenic fungi [39–42]. CWDE expression is induced in fungi during
pathogenesis, and is correlated with their virulence [43–46]. Endogenous CWDEs are important during
pathogenesis, too. For example, expression of AtPME17 is regulated by defense signaling pathways,
and atpme17 mutants exhibited increased susceptibility to Botrytis cinerea, suggesting its importance for
early defense response [47]. Thus, polygalacturonases and PMEs are critical for pathogenesis [48,49].

The process of sensing byproducts of pectin degradation such as oligogalacturonides (OGs)
is carried out by membrane-bound pattern-recognition receptors (PRRs). PRRs recognize OGs as
damage-associated molecular patterns (DAMPs) and initiate defense responses [50,51]. For example,
OGs are sensed by members of the WAK family of PRRs, which initiate signaling through a set of
mitogen-activated protein kinases (MPKs), MPK6, and possibly MPK8, to initiate a defense response [52].
It has also been suggested that volatilized methanol released by PME is bioactive and initiates a defense
response [53,54].

This study explores the role of pectin methylesterification in CWI and the impact of cell wall
de-esterification on plant growth and stress response. Aspergillus nidulans pectin methylesterase
(AnPME) was constitutively expressed under a 35S promoter and exported to the apoplast in
Arabidopsis thaliana plants. This approach allows cells to fully synthesize their cell walls in the same
manner as wild-type (WT) plants (in contrast to knockouts of biosynthetic enzymes), and the AnPME,
which is constitutively expressed in all tissues, modifies the cell wall to a higher degree than the tightly
regulated AtPMEs [55]. The transgenic plants showed a severe dwarf phenotype, reduced rate of
growth, decreased cell size, and cell wall compositional changes. A general reduction in stomatal pore
length was also observed in AnPME plants, though no change in guard cell function was detected.
In addition, the AnPME plants were insensitive to salt and osmotic stress and upregulated expression
of defense response genes as shown by qPCR analyses. Despite increased cell wall digestibility,
AnPME plants did not show changes in susceptibility to the fungal necrotroph B. cinerea in comparison
with wild type plants, most likely because of their constitutively upregulated defense responses.

2. Results

2.1. Arabidopsis Plants Expressing AnPME have a Dwarf Phenotype and Reduced Cell Expansion

Three independent homozygous transgenic events were selected for this study based on their
varying degree of phenotype shown (AnPME 1-1, 2-1, and 3-2). All three lines of AnPME-expressing
Arabidopsis plants exhibited impaired growth in almost all observed organs. Cotyledons of seven-day-old
seedlings expanded normally, but plant growth was visibly reduced after emergence of the first leaves.
AnPME plants displayed reduced rosette area, smaller leaves, siliques, flowers, and shorter stems
(Figure 1a,b). Roots of AnPME plants were approximately 50% shorter in comparison with WT
Col-0 (Figure 1c). Reduced hypocotyl length was also observed in etiolated seedlings (Figure 1d).
Confocal imaging of seven-day-old seedling roots revealed a significant reduction in cell length in two
independent transgenic AnPME lines (AnPME 2-1 and 3-2) relative to WT Col-0, whereas the cell size
in AnPME 1-1 plants was not statistically different (Figure 1e,f).

Guard cells of AnPME plants were observed to reveal whether stomatal development or function
were impaired. Stomatal pore length in AnPME 1-1 and 2-1 were significantly reduced, although no
changes were detected in AnPME 3-2 (Figure 2a). Stomatal responses to dark and light treatments were
also studied, but little difference was seen in all three lines of AnPME plants. Before dark treatment,
AnPME 2-1 exhibited a significantly lower length:width ratio, but no difference was observed in
this line after dark treatment (Figure 2b). AnPME 1-1 displayed increased length:width after dark
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treatment; the other two AnPME lines did not (Figure 2b). No change was observed before and after
light treatment (Figure 2c).

2.2. Cell Walls in AnPME Plants Have Reduced Methylester Content and Modified Recalcitrance to CWDEs

Cell wall methylester content in AnPME plants was reduced by 30–50% in comparison with
WT Col-0 cell walls (Figure 3a). To assess the impact of reduced methylesterification on cell wall
degradability, the transgenic and wild type cell walls were digested with cellulases. Amount of reducing
sugars released after cellulase treatment was not significantly different between AnPME plants and
WT Col-0 (Figure 3b). When cell walls from AnPME and WT plants were treated with a pectinase
cocktail (polygalacturonase + pectin methylesterase), a lower amount of reducing sugars was released
from AnPME cell walls than from WT cell wall (Figure 3c). However, when the cell walls were treated
with polygalacturonase alone, the amount of reducing sugars released from AnPME cell walls was
significantly higher in comparison with WT (Figure 3d). Compositional analysis revealed that cell
walls of all three AnPME lines had reduced galacturonic acid and increased arabinose content relative
to WT. Significant differences between at least one AnPME line and WT were also observed in fucose,
rhamnose, galactose, mannose, and glucuronic acid (Figure 3e).Plants 2020, 9, x 4 of 19 
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Figure 1. AnPME plants display a severe stunted phenotype. (a) Seven-day-old seedlings exhibit
reduced root growth and leaf expansion; (b) five-week old AnPME plants with reduced leaf and rosette
area, as well as shorter stems; (c) Root length is reduced in seven-day old AnPME plants (n = 60);
(d) Length of hypocotyls is reduced in etiolated AnPME seedlings (n = 60); (e,f) Cell elongation is
inhibited in AnPME plants determined through confocal imaging of propidium iodide stained root
tissue (n ≥ 18 root cells from 6 plants). Error bars represent standard deviation. Asterisks indicate
statistical significance (p < 0.05, student’s t-test).
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Figure 2. Six-day-old seedlings of AnPME lines show decreased stomatal size but have stomatal
functions that are similar to WT. (a) Stomatal pore length in WT Col-0 and AnPME lines (n ≥ 542
stomatal complexes from six independent experiments); (b,c) Stomatal responses to dark (b) and light
(c) treatment in WT Col-0 and AnPME lines, represented by pore width to pore length ratio (n ≥ 124
stomatal complexes from three independent experiments). Error bars represent standard deviation.
Asterisks indicate statistical significance (p < 0.05, one-way ANOVA).

2.3. Plants Expressing AnPME Display Decreased Sensitivity to Salt and Osmotic Stresses and Increased
Expression of Defense Response Genes

To investigate whether reduced pectin methylesterification impacts plant stress responses, AnPME and
WT Col-0 plants were subjected to salt and osmotic stress. Rates of root growth in plants grown on medium
in the presence of stress (100 mM NaCl or 300 mM mannitol) and absence of stress (1/2MS; 1

2-strength
Murashige and Skoog medium) were compared. While WT Col-0 root growth was significantly inhibited
under salt stress conditions, AnPME root length was not significantly different compared with AnPME
roots grown on salt-free medium (Figure 4a). The same pattern was observed comparing root growth in
unstressed and mannitol-grown plants: WT Col-0 plants grown under osmotic stress showed a significant
reduction in root growth, while roots of AnPME plants grown on mannitol-containing medium were not
significantly different from their unstressed counterparts (Figure S1).
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Because pectins are often demethylesterified by fungal pathogens during infection, we sought
to determine the impact of cell wall demethylesterification on plant resistance to fungal necrotrophs.
Four-week-old WT Col-0 and AnPME-expressing plants were challenged with B. cinerea, and lesion
areas were measured 48 h after inoculation. No significant difference was detected in lesion area
between WT Col-0 and AnPME plants 1-1 and 2-1. Lesion areas on AnPME 3-2 plants were significantly
larger than WT (Figure 4b).
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Figure 3. CW characterization and comparison between Col-0 and AnPME. (a) Methylester content in
WT Col-0 and AnPME cell walls; (b) Amount of reducing sugars released into solution after treatment
of cell wall with cellulase/cellobiase solution; (c) Amount of reducing sugars released into solution after
treatment of cell wall with polygalacturonase/pectin methylesterase solution; (d) Amount of reducing
sugars released into solution after treatment of cell wall with polygalacturonase; (e) Monosaccharide
composition of cell walls. Error bars represent standard deviation. Asterisks indicate statistical
significance (p < 0.05, one-way ANOVA; n = 3 biological replicates of 10 pooled plants each).

It is common for plants to initiate defense pathways in response to changes in the cell wall. One of
the earliest responses to pathogenesis is reactive oxygen species (ROS) accumulation, in particular
H2O2. Rosette leaves were incubated with 3,3′-diaminobenzene to stain H2O2, which revealed
an increased ROS accumulation in AnPME plants (Figure 4c). To determine which defense responses
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were being activated in AnPME plants, RNA was extracted from sterile-grown plants, and an array
of defense response genes were assayed. Interestingly, sterile-grown AnPME 2-1 and 3-2 plants
upregulated expression of PMEI10 and PMEI11, two PMEIs known to be induced under pathogenesis
by B. cinerea (Figure 5a,b). Defense response gene expression was also upregulated (Figure 5c).
This includes β-Glucanase2 (β-G2), Cytochrome P450 81F2 (CYP81F2), Enhanced Disease Susceptibility
1 (EDS1), Jasmonate Responsive 1 (JR1), Phytoalexin-Deficient 3 (PAD3), Phytoalexin-Deficient 4
(PAD4), Plant Defensin 1.2 (PDF1.2), Pathogenesis Responsive 1 (PR1), Pathogenesis Responsive 5
(PR5), Wound Responsive 3 (WR3), and WRKY40 (Figure 5c). Polygalacturonase-Inhibiting Protein
(PGIP) was upregulated in AnPME1-1, but was not significantly different in AnPME 2-1 or 3-2.
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Figure 4. Plant response to stresses. (a) Root growth comparison between plants grown in optimal
conditions (1/2MS) and salt stress (100 mM NaCl). Red lines indicate median values. Below box plot,
adjusted p-values (Bonferroni) comparing the same plants grown on 1/2MS and salt. Bold values
indicate statistical significance (p < 0.05, ANOVA; n ≥ 75); (b) Lesion areas 48 h after inoculation with
B. cinerea (n = 12); (c) Uninoculated rosette leaves stained with 3,3′-diaminobenzine showing ROS
accumulation in AnPME plants. Error bars represent standard deviation. Asterisks indicate statistical
significance (p < 0.05, student’s t-test). Scale bars = 1 cm.
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Figure 5. RT-qPCR of defense response genes. (a,b) Expression of PMEI10 and PMEI11 in plants
grown under normal conditions (n = 5); (c) Expression of defense response genes grown under normal
conditions (n = 5). Error bars represent standard deviation. Asterisks indicate statistical significance
(p < 0.05, one-way ANOVA).

3. Discussion

Pectin is critical for plant development and response to stresses, including cell wall mechanical
strength, cell-cell adhesion, and defense signaling [2,22,56]. However, due to the complexities of cell
wall structure and signaling, it is difficult to pinpoint how pectin exerts control over these functions.
Previous research has shown that constitutive expression of microbial hydrolases in the plant apoplast
is a useful approach to investigate the impacts of cell wall post-synthetic modification on cell wall
signaling, plant fitness, and stress responses [15,57–61]. Since plant growth is often halted under stress,
this approach provides an opportunity to understand pectin’s contribution to both plant cell wall
mechanics and plant response to stresses. This study has demonstrated that expression of fungal
AnPME elicits defense responses in Arabidopsis and causes a dwarfed morphology, most likely due to
pectin demethylesterification.



Plants 2020, 9, 1558 9 of 19

3.1. Microbial PME Expression Achieves Similar Phenotypes as Those Caused by Changes in Endogenous
PME Activity

The AnPME enzyme expressed in Arabidopsis caused up to 50% reduction of pectin
methylesterification, resulting in a severe dwarf phenotype most likely due to suppressed cell
elongation (Figure 1a,e and Figure 3a). Several previous studies have observed a similar negative
impact of reduced HG methylesterification on plant growth, in which pectin was altered either
through knockout of endogenous PME [14], overexpression of PMEI [21,62,63], or knockout of the
putative methyltransferases QUASIMODO2/TUMOROUS SHOOT DEVELOPMENT2 (QUA2/TSD2),
COTTON GOLGI RELATED2 (CGR2), and CGR3 [64,65]. qua2/tsd2 knockouts exhibited reduction in
pectic HG biosynthesis and in cell elongation [65]. cgr2 cgr3 double knockouts show reduced levels
of pectin methylesterification and severe growth defects. The authors proposed that reduced HG
methylesterification could increase Ca2+-dependent cross-linking, which limited cell wall expansion [64].
The AnPME plants in this study also most likely possess less expandable cell walls, resulting in reduced
cell elongation (Figure 1e,f and Figure 2). This suggests that AnPME functions much like AtPME when
expressed constitutively.

The non-blockwise de-esterification of HG by microbial PMEs promotes degradation of the cell
wall by increasing accessibility of HG to the action of PGs [5,31–33]. Indeed, the cell walls from
AnPME plants released significantly more reducing sugars than those of WT Col-0 plants when treated
with polygalacturonase, confirming that AnPME makes the wall more accessible to PG degradation
(Figure 3d). It is worth noting the results of cell walls treated with either PG+PME or PG alone.
A comparison of reducing sugars released between the two pectin-degrading treatments (Figure 3c,d)
shows that WT Col-0 cell walls with PG-only treatment yielded only 8% of the sugars yielded by WT
cell walls treated with PG+PME. On the other hand, AnPME cell walls treated with PG-only yielded
a much larger amount, between 38–45% of the total sugar content observed in AnPME cell walls
treated with PG+PME (Figure 3c,d). This demonstrates that AnPME plants have significantly less
HG available for additional de-esterification by added PME enzyme because a significant amount of
HG was already de-esterified by the ectopically expressed PME. Likewise, treatment with PG alone
yielded a significantly higher amount of reducing sugars in AnPME plants because de-esterified HG
was readily available for PG digestion. Taken together, this suggests that transgenic expression of PME
hastens wall degradation by facilitating hydrolysis by endogenous PG.

Interestingly, the cell walls from AnPME plants contained significantly less GalA and a higher
amount of Ara, indicating that the ratio between HG and RG-1 is significantly altered (Figure 3e).
This could occur due to the expressed PME increasing accessibility of HG to endogenous PGs,
resulting in reduced levels of HG and causing a dwarf phenotype similar to what was observed for
Arabidopsis and tobacco plants expressing microbial PG [66]. Arabinose-containing side chains are
known to be involved in pectin-cellulose interaction, which can negatively impact cell wall flexibility,
and could explain reduction of cell elongation in AnPME plants [23,67,68]. It is also possible that
either HG biosynthesis is downregulated, or RG-I/RG-II biosynthesis is upregulated in AnPME plants.
Further detailed analysis will be required to address this question.

3.2. Degree of Pectin Methylesterification Affects Plant Resistance to Stresses

Cell wall integrity (CWI) is the detection of changes in the cell wall and the subsequent signaling
and compensatory responses. This typically involves a growth-defense tradeoff controlled through cell
signaling, including hormone crosstalk [69]. For example, the plasma membrane co-receptors FLS2 and
BAK1 bind bacterial flagellin to induce expression of the microRNA mir393, which represses auxin gene
expression [70–72]. Jasmonic acid, a defense compound produced in plants in response to necrotrophic
pathogenesis or insect herbivory, suppresses the auxin efflux transporter PIN2 [73], but can also be
suppressed by brassinosteroid presence [74]. Endogenous AtPMEs, partially controlled by jasmonic
acid signaling, also contribute to pathogen response [47]. WAKs also control the growth-defense
tradeoff: either by signaling for cell expansion through MAP Kinase 3 (MPK3), or by initiating
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defense response through MPK6/MPK8 [56,75–77]. Given this tradeoff between growth and defense,
we sought to determine whether the morphological abnormalities in AnPME plants were caused by
disruption of cell wall biomechanics, or whether initiation of defense response was also a factor in the
AnPME phenotype.

While WT Col-0 root growth was greatly suppressed under salt stress, the AnPME roots did
not exhibit a reduction in growth (Figure 4a). Because the receptor-like kinase FERONIA interacts
with pectin and mediates salt stress response through Ca2+ modulation, this may suggest that pectin
methylesterification status is a key determinant to FERONIA signaling [78]. Since the free carboxyl
groups on pectates hold a negative charge, demethylesterified HG in AnPME plants could potentially
sequester more Na+ ions than in WT plants, minimizing the effect of high salinity on cell growth [79].
However, the observation that AnPME plants also showed no reduction in root growth under osmotic
stress suggests pectin methylesterification may affect resistance to osmotic stress rather than salt stress,
or that salt-stressed plants were responding to salt-induced osmotic pressure rather than Na+ ions [80].
This resistance to osmotic stress could be due to increased Ca2+-mediated crosslinks strengthening HG
and thus preventing reduction in cell size, increased availability of freed carboxyl groups to retain
water, or may be a result of osmotic stress signals passing through the same MPK3/MPK6 pathways as
the growth-defense WAK signaling pathways (Figure S1) [11,81]. However, without directly measuring
expression in the specific salt- and osmotic-stress signaling pathways, we are unable to determine the
stress to which AnPME plants possess resistance [82].

Fungi secrete CWDEs, including PME, to infiltrate plants and gain access to the cytoplasm [38].
The success of other pectin-degrading enzymes depends on pectin methylesterification status
(Figure 3c,d). Considering that de-esterified cell wall is more degradable by microbial PG (Figure 3d),
we expected increased susceptibility to B. cinerea. Although AnPME 3-2 lesion areas were larger than
WT plants, the AnPME 1-1 and 2-1 plants showed no difference from WT (Figure 4b). This indicates
that higher digestibility of cell walls in AnPME plants does not significantly compromise their response
to fungal pathogens, and may suggest that AnPME overexpression mimics endogenous AtPME activity
towards pathogenesis [47]. While these results could be a side effect of a stiffer cell wall due to
Ca2+-mediated crosslinking, it is more likely that heightened defense is responsible for this phenotype
(Figures 4b and 5). ROS production in healthy AnPME plants supports this because both salt and fungal
pathogenesis are known to induce H2O2 production in plants in response to these stresses (Figure 4c).

Upregulation of PMEI10 and PMEI11, as well as defense response markers, demonstrated that
strong defense responses were initiated in all three AnPME lines (Figure 5). AtPMEI10, AtPMEI11,
and AtPMEI12 were previously identified as upregulated in response to B. cinerea infection [37]. It was
also reported that PMEIs are involved in the plant’s responses to abiotic stresses; however, so far this
involvement is underexplored [17]. The most highly upregulated defense-related genes were CYP81F2,
PAD3, and WRKY40; all were upregulated more than 40-fold in each AnPME line (Figure 5c). PAD3 is
induced in plants under fungal pathogenesis and is involved in camalexin biosynthesis [83]. CYP81F2 is
involved in glucosinolate biosynthesis in response to fungal pathogenesis as well [84]. The WRKY
family of transcription factors is involved in broad, complex interactions in defense response [85].
WRKY40 in particular regulates mitogen-activated protein kinase cascades and is implicated in CWI in
Arabidopsis [57,58,86–88]. Other genes significantly upregulated in AnPME plants include β-G2, JR1,
PR1, PR5, and WR3 (Figure 5c). Upregulation of β-G2 in Arabidopsis inhibits fungal growth [89,90].
PR1 and PR5 are both defense proteins induced under pathogenesis and are involved in salicylic acid
metabolism and systemic acquired resistance [91,92]. JR1 and WR3 are both induced upon wounding
and are associated with hypersensitive-like cell death [93]. The genes upregulated in AnPME plants
are important antimicrobial defenses, including SA- and JA-responsive elements. SA and JA signaling
are generally perceived as antagonistic mechanisms. However, when SA and JA are present in low
concentrations, SA and JA pathways can also work synergistically to increase expression in both
pathways [94]. This suggests a defense priming of both SA and JA pathways in AnPME plants in
preparation for pathogenesis. It is unclear at this point whether AnPME plants are initiating defense
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responses as a result of cell wall modifications, or whether defenses are triggered by directly sensing
the presence of a microbial CWDE such as A. nidulans PME. It is also unclear whether growth inhibition
is due solely to Ca2+-mediated crosslinking of pectate, defense response activation, or whether both
processes contribute to a degree. In addition, we do not know whether defense responses are affected
in AnPME plants infected with B. cinerea. Additional studies in the future will be required to clarify the
impact of microbial PME constitutively expressed in the apoplast on plant responses to biotic stress.

4. Materials and Methods

4.1. Transgene Construct

cDNA encoding A. nidulans AnPME (AN3390) was amplified from Pichia pastoris recombinant
strains [95] from the Fungal Genetics Stock Center. The sequence was amplified by PCR with primers
containing restriction sites KpnI and HindIII, respectively. After restriction digest, the AnPME fragment
was ligated into a cassette containing (from 5′ to 3′) sequences encoding: an Arabidopsis thaliana
β-expansin signal peptide, AnPME, and a green fluorescent protein marker (smGFP) fused to the
C-terminus of AnPME. This expression cassette was subcloned into a pMLBart binary vector backbone
with a Cauliflower Mosaic Virus 35S promoter driving expression of the cassette, as described in
Fursova et al. [96]. Transformation was performed via Agrobacterium tumefaciens-mediated floral dip,
and the resulting seed was selected to a homozygous T4 generation [97].

4.2. Plant Materials and Growth Conditions

Arabidopsis seeds were sterilized with sequential treatments of 70% ethanol and 0.5% bleach,
washed with sterile water, and planted on 1/2-strength Murashige and Skoog medium (1/2MS) [98]
with 2% sucrose and 0.3% Gelrite (Research Products International, Mt. Prospect, IL, USA). Plants were
then transplanted into wet LC-1 potting soil mix (Sun Gro Horticulture, Agawam, MA, USA) 14 days
after germination in a growth chamber with controlled conditions: 12-h light/12-h dark at 21 ◦C,
with relative humidity of 65% and light intensity of 160 µmol s−1 m−2.

4.3. Cell Wall Extraction

Cell walls were isolated as described in Zabotina et al. [99]. 3 replicates of whole aerial parts
of 10 plants were harvested and cut into 1-cm length segments. Tissue was frozen in liquid N2 and
ground into a fine powder with a mortar and pestle. After homogenization, tissues were incubated
in 80% ethanol at 80 ◦C twice for 1 h, and further homogenized with a PolyTron (Kinematica, Inc.,
Bohemia, NY, USA) at 15,000 rpm for 5 min. Cell walls were collected by centrifugation at 12,000× g
and washed with 80% ethanol followed by several washes with 100% acetone until the supernatant
turned clear. The cell walls were incubated in a solution of 20% SDS with 5 mM sodium metabisulfite
at 4 ◦C for 16 h and washed five times with distilled water. Finally, the extract was incubated in 1:1
chloroform:methanol solution at room temperature for 20 min, washed three times with 100% acetone,
and air-dried at 50 ◦C.

4.4. Cell Wall Saccharification Assays

For the digestion of pectins, 3 replicates of 5 mg of dry cell wall material were incubated
with a mixture of 50 units of endo-polygalacturonase (Megazyme International, Wicklow, Ireland)
and 15 units of PME (PROZOMIX LTD, Haltwhistle, UK) in a 0.3-mL total volume of sodium
phosphate buffer (pH 6.0) for 24 h at 37 ◦C. Saccharification assays were performed as described
in Pogorelko et al. (2011) with some modifications. Cell walls from 3 replicates of 10 4-week old
plants (5 mg of fresh tissue) were incubated in 0.1 mL of citrate buffer (pH 4.9) containing 4 units
of cellulase (from Trichoderma reesei, Sigma–Aldrich, C62730) and 1 unit of cellobiase (from A. niger,
Sigma–Aldrich, C6105) on the shaker at 37 ◦C. The reaction was terminated by heating at 100 ◦C for
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15 min. Supernatants were collected by centrifugation at 10,000× g, and the amount of reducing sugars
released was analyzed by p-hydroxybenzoic acid hydrazide (PAHBAH) assay.

4.5. PAHBAH Assay of Reducing Sugars

Reducing sugars were measured from cell walls of 3 replicates of 10 pooled plants each using the
PAHBAH assay [100] with minor modifications. Briefly, 15 µL of supernatant from each enzyme assay
was mixed with 135 mL of freshly prepared PAHBAH reagent (1 volume of 5% p-hydroxybenzoic acid
hydrazide in 5% HCl mixed with 9 volumes of 1.25% trisodium citrate, 0.11% calcium chloride, and 2%
sodium hydroxide) and heated at 95 ◦C for exactly 6 min. Absorbance was measured at 410 nm using
a microplate reader (BioTek Instruments, Inc., Winooski, VT, USA). Calculations were done using
a standard curve prepared using different concentrations of glucose.

4.6. Cell Wall Monosaccharide Analysis

To determine monosaccharide composition, 3 replicates of cell walls from 10 plants were used.
1 mg of dry de-starched cell wall was hydrolyzed with 2 N trifluoroacetic acid at 120 ◦C for 2 h.
The hydrolysates were dried at 50 ◦C, re-dissolved in water, and analyzed by high-performance
anion-exchange chromatography with pulsed-amperometric detection using a CarboPac PA-20
column (3 mm × 150 mm; Dionex, Sunnyvale, CA, USA) as described earlier [99]. Monosaccharides
were separated using a gradient of 100 mM NaOH in water at 0.5 mL min−1 under the following
conditions: 0–0.05 min—12 mM NaOH; 0.05–26 min—0.65 mM NaOH; 26–46 min—300 mM NaOH;
46–55 min—12 mM NaOH. Monosaccharide standards included L-Fuc, L-Rha, L-Ara, D-Gal, D-Glc,
D-Xyl, D Man, D-GalA, and D-GlcA (all from Sigma–Aldrich, St. Louis, MO, USA). To determine
response factors, standard curves were created using mixtures of all standard monosaccharides at
different concentrations.

4.7. Methylester Content Determination

Methylester content was determined by a method adapted from Klavons and Bennett [101].
Three replicates of 5 mg of total cell wall were saponified in 1 M NaOH for 24 h, then centrifuged
at 12,000× g for 10 min. The supernatant was transferred to a new 1.5 mL tube, centrifuged again,
transferred to another tube to remove any particulates, then neutralized with 1 M HCl. 50 µL of
the supernatant was added to 50 µL of alcohol oxidase (0.6 U mL−1) in 0.1 M sodium phosphate
buffer pH 7.5, then incubated on a shaker for 15 min at 25 ◦C. Then, 100 µL of a solution containing
0.02 M 2,4-pentanedione, 2 M ammonium acetate, and 0.05 M acetic acid in sodium phosphate buffer
pH 7.5 was added to the reaction. After 10 min of incubation at 68 ◦C, samples were cooled on ice and
centrifuged. The solution was pipetted into a 96-well plate, then quantified in a spectrophotometer
at 412 nm wavelength and compared to a standard curve of methanol concentrations to determine
molar concentration.

4.8. Cell Length Measurements

Six one-week-old plants were incubated in a solution of 10 µg mL−1 propidium iodide in distilled
water for one minute, then washed briefly by soaking in distilled water three times for one minute
per wash. Roots were then mounted on a microscope slide with a cover slip and imaged using
a Leica SP5 confocal microscope at 535 nm excitation and 617 nm emission wavelengths (Iowa State
University Confocal and Multiphoton Facility). Cell length was then measured using ImageJ image
processing software.

4.9. Salt and Osmotic Stress Assays

Plants grown for salt stress were germinated on 1/2MS medium plates grown vertically for 5 days
until cotyledons had fully expanded. After 5 days of growth, seedlings were transplanted to new
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plates containing either 1/2MS with no stress, 1/2MS medium containing 100 mM NaCl (salt stress),
and 1/2MS containing 300 mM mannitol (osmotic stress). Root lengths of ≥75 plants were imaged and
measured using ImageJ software, then plants were grown vertically for 5 days, at which point root
length was measured again to determine the growth rate for each seedling.

4.10. Determination of Reactive Oxygen Species (ROS) Accumulation

Rosette leaves were carefully detached from 12 4-week old plants and incubated in a solution of
1 mg mL−1 3,3′-diaminobenzene, 0.05% Tween-20, and 10 mM Na2HPO4, pH 3.0 for 24 h. Leaves were
then transferred to a bleaching solution containing 3:1:1 ethanol: acetic acid: glycerol and heated to 95 ◦C
for 15 min. After cooling, leaves were rinsed twice in fresh bleaching solution and imaged immediately.

4.11. Botrytis cinerea Preparation and Inoculation

B. cinerea was grown for 15 days on potato dextrose agar at 23 ◦C under a 12-h photoperiod before
collecting spores. Spores were collected by washing the plates with 5 mL sterile water, then filtered through
glass wool to remove mycelia. Conidia were diluted to a stock concentration of 1 × 106 conidia mL−1.
Conidia were then further diluted to a working concentration of 1 × 105 conidia mL−1 in 25% grape
juice, then 10 µL of conidia solution was transferred to 12 detached Arabidopsis leaves in agar plates.
The inoculated leaves were grown in a growth chamber as described above for 48 h, and then lesion area
measurements were taken using ImageJ software.

4.12. RNA Extraction, cDNA Synthesis, and Real-Time Quantitative PCR

Total RNA from 5 3-week old plants grown on 1/2-strength MS medium was extracted with
Trizol-chloroform (Invitrogen). After treatment with DNase, RNA was converted to cDNA using
the SuperScript III First Strand Synthesis system (Invitrogen). Quantification of gene expression
was performed using the Maxima SYBR Green qPCR Master Mix (2X; Thermo Scientific, Waltham,
MA, USA) and the CFX-96 thermal cycler (Bio-Rad) normalized against ACTIN2 as an internal
control. Relative gene expression was calculated using the comparative threshold cycle method [102].
All primers used in this study are attached in Table S1.

4.13. Stomatal Measurements

Seeds were sterilized in 30% bleach with 0.1% SDS, rinsed with sterile water, and resuspended in
0.15% agar. After stratification at 4 ◦C for 3 days, seeds were grown on 1

2 MS (2.2 g/L Murashige and
Skoog salts, 0.6 g/L MES, pH 5.6), 1% (w/v) sucrose 0.8%, agar plates for 6 days. Healthy seedlings
were picked to float on stomatal function assay solutions (dark-induced closure: 20 mM KCl, 1 mM
CaCl2, and 5 mM MES- KOH, pH 6.15; light-induced opening: 50 mM KCl, 0.1 mM CaCl2, and 10 mM
MES-KOH, pH 6.15). To induce opening/closure of stomata, samples were pretreated under dark/light,
respectively, for 2.5 h. Seedlings were then transferred to light/dark environments, respectively,
and imaged. Guard cell images were recorded using a Nikon D5100 DSLR camera and Zeiss Cell
Observer SD microscope before and after induction; guard cell dimensions were measured using ImageJ.

5. Conclusions

In this study, we show that pectin methylester status occupies an intersection between cell
wall mechanics and plant stress response. In Arabidopsis, expression of AnPME modifies cell wall
HG, which in turn inhibits plant growth and activates plant stress responses. Reduction of pectin
methylesterification increases cell wall stiffness and limits cell elongation, promotes pectin degradation,
and can positively affect plant resistance to high salt and mannitol concentrations. Resistance to
high salt and mannitol concentrations could be achieved by free pectic carboxyl groups chelating
Na+ ions or retaining more water. Despite these changes in cell wall composition and recalcitrance,
AnPME plants displayed robust defense responses. The observations reported here show that HG
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methylesterification status is a critical factor in plant growth and protection. It is clear that HG is
important for plant growth and defense. In order to determine whether AnPME-expressing plants
are initiating defenses in response to either cell wall modification or the presence of AnPME itself,
a catalytically inactive AnPME will be produced, transformed into Arabidopsis plants, and assayed
for the same phenotypes in following studies. In the future, a comparison of plants expressing active
and inactive AnPME enzymes could reveal the exact relationship between pectin methylesterification,
cell wall integrity, and defense responses.

The cell wall is an indispensable component of plant life. Its ability to control growth and to
respond to changes around it are just two of the cell wall’s many functions. Here, we have shown that
pectin status directly affects growth and defense in Arabidopsis plants. Thus, this study advances our
understanding of the contribution of cell wall components to the numerous functions of the cell wall,
including the growth-defense tradeoff shown here.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/11/1558/s1,
Figure S1: Comparison of root lengths under optimal and osmotic-stressed conditions, Table S1: Primers used
for RT-PCR.
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