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Spatiotemporal Compound Wavelet Matrix
Framework for Multiscale/Multiphysics Reactor

Simulation: Case Study of a Heterogeneous
Reaction/Diffusion System∗

Sudib K. Mishra, Krishna Muralidharan, S. Pannala, Srdjan Simunovic, C. Stuart
Daw, Phani Nukala, Rodney Fox, Pierre A. Deymier, and George N.

Frantziskonis

Abstract

We present a mathematical method for efficiently compounding information
from different models of species diffusion from a chemically reactive bound-
ary. The proposed method is intended to serve as a key component of a mul-
tiscale/multiphysics framework for heterogeneous chemically reacting processes.
An essential feature of the method is the merging of wavelet representations of the
different models and their corresponding time and length scales. Up-and-down-
scaling of the information between the scales is accomplished by application of a
compounding wavelet operator, which is assembled by establishing limited over-
lap in scales between the models. We show that the computational efficiency
gain and potential error associated with the method depend on the extent of scale
overlap and wavelet filtering used. We demonstrate the method for an example
problem involving a two-dimensional chemically reactive boundary and first or-
der reactions involving two species.
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1. Introduction and Background                            

   
A demanding challenge in many branches of physical sciences is to bridge 
relevant length and time scales as seamlessly as possible. Of particular interest in 
reaction engineering is the accurate simulation of heterogeneous reaction 
processes such as fluid catalytic cracking (FCC), polymerization, and 
coal/biomass gasification where the micro-scale processes at the phase interfaces 
must be accurately resolved. Such high resolution is needed when the details of 
the microscopic processes (e.g., the nano-scale solid surface topology) control the 
global reaction and diffusion rates at the mesoscopic scales.  

Microscopic and mesoscopic interactions typically manifest themselves as 
closure relationships for drag, heat and mass transfer in continuum level 
simulations. There has been significant work in recent years in applying the 
Lattice Boltzmann method to particle ensembles to derive drag correlations [Hill 
et al., 2001a and 2001b; van der Hoef et al., 2005], and these new simulation-
based correlations have been a valuable addition to existing experiment-based 
correlation in improving the accuracy of the hydrodynamic gas-solid flows. 
However, most continuum simulations still employ experiment-based correlations 
for heat and mass transfer for heterogeneous reacting flows. Often the time and 
spatial length scales associated with different correlations in the literature can 
vary by several orders of magnitude [Breault, 2007], and this inconsistency can 
seriously hamper the accuracy of the large scale simulations employing these 
correlations. In addition, surface modifications over time (e.g., due to phase 
changes or sintering) can drastically alter the nature of the inter-phase coupling 
processes. Thus the development of computational approaches for directly 
addressing the details of inter-phase physics is highly desirable if significant gains 
in simulation accuracy are ever to be achieved.  

Before applying any new algorithms and techniques to a complicated 
chemical reactor, one can conceive of a basic building-block which mimics the 
heterogeneous reactive flow over a catalytic surface. This prototype problem is a 
multi-scale, multi-physics problem involving four distinct physical processes (Fig. 
1): Fluid motion (F), Reactant Species Transport (T), Fluid-Wall Interaction (W), 
and Wall Chemical Reactions (C). Each process involves characteristic time and 
length scales that evolve with local thermodynamic and chemical conditions. 
Generally speaking, processes F and T can be considered to be macroscopic, W is 
intermediate, and C has microscopic character and chemical-reaction dependent 
time-scales. The relevant F time scales are the advective and momentum-diffusion 
times, while T time scale is related to mass-diffusion time of the species. W and 
especially C processes are at the time step of chemical wall transfer and chemical 
reaction on the substrate, which are several orders of magnitudes smaller than the 
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former two. In order to simulate macroscopic devices, both temporal and spatial 
scaling is necessary. 

Lattice Boltzmann (LBM) Kinetic Monte Carlo (KMC)

KMC: ~1 μmLBM: ~1 mm 

Fluid with Reactant

Reactive Substrate

Fluid Motion (F)
Reactant Species Transport (T)

Fluid-Wall Interaction (W)
Wall Chemical Reactions (C)

Fig. 1 Illustration of the combined multiscale Lattice Boltzmann Method 
(LBM)/Kinetic Monte Carlo (KMC) scheme. In the LBM regime, the system 
length scale is ~ 1 mm, and the description is in terms of hydrodynamic fluid 
flows (gold lines). In the KMC regime the scale of the cell is ~ 1 µm, and the          

description is in terms of fluxes of reactants (green arrows) and reaction products 
(red arrows) determined by the diffusion, advection and chemical reactivity rates 

(Adapted from [Succi et al, 2001]). 

The challenge in multi-scale simulation is to bridge (as seamlessly as 
possible) the appropriate physical length and time scales, while keeping the 
computational problem within tractable limits. Although in principle a complete 
macroscopic simulation can be built up by fully accounting for all of the 
microscopic processes, the practical futility of such an approach is obvious when 
the macro- and micro-scales dominating the physics are many orders of 
magnitude apart. This can be clearly seen for problems where both KMC and 
LBM type physics are important. The typical time-steps encountered in KMC 
simulations are of the order of nano- to micro-seconds; where as the spatial extent 
can vary from nano- to micro-meters depending on the resolution of the solution 
space and the processes resolved. However, the typical time-steps in LBM 
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simulations vary from micro- to millisecond while the spatial resolution varies 
from micro- to millimeter. It is an obvious challenge to couple the physics at these 
two scales which vary over six orders magnitude in both space and time.  

For heterogeneous reactive flows, we propose to implement a specific type 
of Hierarchical Multiscale Modeling (HMM), which provides up- and down-
scaling between the relevant processes (at their respective length and time scales) 
without the need for full simulations at the microscopic levels. We apply our 
approach to couple the mesoscale LBM, which is suitable for modeling 
multiphase reacting flows with low Mach numbers, and the microscale KMC for 
modeling of chemical reactions on catalytic surfaces. Projections and reductions 
between these two types of models are primarily sought by a space- and time-
based CWM. We believe this coupling method constitutes a new paradigm for 
modeling multi-scale reaction systems and addresses the need for more efficient 
and accurate simulations in a unique way. 

In this paper, we simplify the above prototype problem further and 
consider mass transport only by diffusion to demonstrate the underlying coupling 
algorithm. At microscopic time and length scales, we employ kinetic Monte Carlo 
(KMC) to simulate kinetics of chemical reactions. Diffusion away from the 
reactive boundary operates on mesoscopic scales and we employ finite-difference 
of the diffusion equations. Direct coupling of the two models is computationally 
and conceptually impractical for realistic scenarios. For example, the time 
integration in coupled simulations is controlled by the KMC, thus prohibiting 
simulation over practical temporal and spatial (diffusion) scales. However, the 
KMC/diffusion simulations, in the following termed as the “fine” model, would 
provide information not only on the mean response of the system but also on its 
fluctuations, which is important for the robust understanding of these 
reaction/diffusion kinetics. In contrast to the fine model, deterministic modeling 
of the reactions combined with coarse-grained continuum-based modeling of the 
diffusion provide a model, termed “coarse” trades off the resolution with the 
ability to model much larger time increments and spatial domains.       

Both models are limited in either resolution or length of time over which 
simulations can be run, thus it is desirable to compound the two models by 
extracting the most useful and relevant information from each. Such a 
compounding process provides an avenue for approaching the complete behavior 
and can be greatly facilitated by the use of the wavelet transform, which allows 
for a natural decomposition of information in (spatial or temporal) scales. The 
compound wavelet matrix technique (CWM) [Frantziskonis et al, 2006 and 
references therein] can spatially as well as temporally decompose both the fine
and coarse simulations by using the forward wavelet transform for each, 
compound the information by forming a “union” CWM, and then, if needed, 
perform the inverse (backward) wavelet transform to obtain the spatiotemporal 
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information on the reaction/diffusion problem for long time periods and large 
spatial domains without considerable loss of information. In short, the CWM aims 
at using the computational efficiency of the coarse model yet retaining the 
accuracy of the fine one by compounding the two solutions. 

The CWM for the problems herein was addressed as a 1-D diffusion from 
a single (point) reaction site in [Frantziskonis et al, 2006]. For such problems, the 
coupling of the fine and the coarse models was done sequentially, i.e. the CWM 
was used to ensure a robust handshake between the models and the overlap was 
defined temporally in real time and in real space (not in the wavelet domain). 
Compounding of information was done temporally in the wavelet domain, and the 
1-D wavelet transform was used. When combining the time axis with a spatial one, 
a 2-D wavelet transform results in 2-D formation of the CWM. This coupling of 
space and time suggests that the overlap of the fine and coarse models be defined 
in the wavelet domain, and this is introduced in this paper. The result is improved 
spatiotemporal coupling of the two models. 

A detailed error analysis and computational efficiency of the CWM 
studies are presented in section 3. The so-called boundary conditions on the 
interval are used for the wavelet transform, instead of periodic or fixed boundary 
conditions. Rigorous use of non-periodic boundary conditions require a threshold 
value for some of the wavelet coefficients, and is closely tied to stationarity of the 
signal fluctuations of the in the fine model. 

1.1 Wavelet Analysis  

Wavelets are extremely valuable mathematical tools especially finding uses in the 
analysis of irregular signals due to their localized nature. Wavelet analysis can be 
regarded as a mathematical microscope as it enables the examination of broad 
features of a signal on coarse scales as well as the signal’s fine features at fine 
scales. A brief summary on wavelet transforms appears in the next paragraph for 
the continuous wavelet transform and in an appendix for the discrete one, while 
the reader is referred elsewhere for a more comprehensive review [Daubechies, 
1992]. 

In 1-D, a family of wavelet functions ψa,b(x), can be obtained via 
dilatations by a scaling factor a, and translations by a factor b of a mother wavelet 
ψ, and by using this set of wavelet functions, any function f(x) can be transformed 
as follows:   

,( , ) ( ) ( )f a bW a b f x x dxψ
∞

−∞

= ∫                           (1)                     
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In particular, for a discrete signal consisting of 2N data points, N scale 
decompositions are possible leading to 2N wavelet transform (WT) coefficients 
(Wf(a,b)). Specifically, the first decomposition yields a set of 2N-1 WT coefficients, 
corresponding to the finest features of the input signal. Next, the second 
decomposition yields a set of 2N-2 coefficients. This process is carried out 
recursively N times to obtain the complete set of 2N coefficients. Usually, the final 
few scale decompositions are represented through the so-called scaling 
coefficients. The extent of description of the finer features decreases with 
increasing levels of decompositions, while the exact opposite is true for the 
coarser features. Further, for the nth scale-decomposition, there are corresponding 
2N-n coefficients, out of which, the first and last few coefficients can be of higher 
magnitude depending on the boundary conditions.  

Once the entire spectrum of the WT coefficients Wf(a,b) is obtained, a 
subset of WT coefficients at any given range of scales between s1 and s2 can be 
used to reconstruct a  modified signal 

1 2
( )s sf x  enabling the examination of the 

signal at various scales via Eqn. (2a),  
2

1 2

1

, 2

1( ) ( , ) ( )
s

s s f a b
s

daf x W a b x db
c aψ

ψ
∞

−∞

= ∫ ∫                                       (2a)    

where cψ is a normalization constant. In other words, the inverse wavelet 
transform can be used as a selective filter, from which a modified signal can be 
obtained representing the characteristics at some select scales. Note that the 
original signal can be obtained by using the entire spectrum of scales ( )0,∞  in 
(2a). Extending, one can couple two different signals P1 and P2 by identifying the 
overlapping scales (spatial/temporal) and replacing corresponding wavelet 
coefficients between the different signals to get a hybrid signal that has the 
desired characteristics of both signals as shown in the equation below. 

1

1 2

1

0, , ,2 2
0

1 1( , ) ( ) ( , ) ( )
s

P P
f a b f a b

s

da daf W a b x db W a b x db
c a c aψ ψ

ψ ψ
∞ ∞ ∞

∞
−∞ −∞

= +∫ ∫ ∫ ∫               (2b)            

Although this brief introduction was limited to 1-D WT, WT in 2-D is similar and 
will be explained in detail later in the paper. 
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2. Multi-Physics Models at Multiple Scales  

2.1 Reaction Dynamics: Kinetic Monte Carlo (KMC)  

The fine model uses the Kinetic Monte Carlo algorithm for solving the kinetic 
evolution for the species at the reactive boundary. Uni-molecular reversible first 
order reactions (3) are considered involving two species, A and B.  

AB

BA

k

k

A B
B A
⎯⎯→

⎯⎯→
                           (3) 

The rate constants ,AB BAk k (each of inverse time (t) units) for the two reactions are 
taken to be equal to unity (sec-1), while the following are the rate equations for 
both reactions: 

[ ] [ ] [ ]AB BA

d A
k A k B

dt
= − + ,        [ ] [ ] [ ]BA AB

d B
k B k A

dt
= − +                              (4) 

The algorithm uses the canonical probability distribution function to 
describe the probability of the reaction events [Gillespie, 1977], and the time 
required for one reaction or for a unit change in the concentration of [A], [B] are 
expressed as 

[ ]

[ ]

1

2

1 ln(1 )

1 ln(1 )

AB
AB

BA
BA

t R
k A

t R
k B

= − −

= − −
                                      (5)    

where R1 and R2 are independent uniformly distributed random numbers between 
zero and unity. 

At any time in the simulation the reaction which requires the least time is 
the one that will occur. Thus, at every KMC iteration step, two random numbers 
are generated, i.e. 1 2,R R , and ,AB BAt t  are evaluated based on (5). The minimum of 

,AB BAt t  is the time increment associated with the selected reaction event. 

In the KMC formulation no assumption on any statistical dependency among 
reactive sites is made. The reaction phenomena are equally likely to occur at any 
of the sites along the boundary at any particular time instant. This is ensured by 
selecting uncorrelated uniformly distributed random numbers in the KMC. 
However, two alternate reactions at a specific site (either A B→  or B A→ ) are 
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assumed to be perfectly correlated (same random number for each reaction time 
demand). This is justified from the fact that one of the reactions is fully dependent 
on the other. Statistically speaking the reaction spatio-temporal field is a white 
noise field for each individual species (A and B). However this assumption can be 
relaxed for situations where a number of different types of independent reactions 
are possible. 

2.2 Reaction Dynamics: Deterministic          

The coarse model uses a deterministic algorithm for solving the kinetic evolution 
for the species at the reactive boundary. Equations (4) can be written in a 
difference form using a first order Eulerian scheme as   

[ ] [ ] [ ] , [ ] [ ] [ ]AB BA BA ABA k A t k B t B k B t k A tΔ = − Δ + Δ Δ = − Δ + Δ                       (6) 

The difference equations are solved iteratively and the concentrations of [A] and 
[B] are updated for each time step.   

2.3 Finite Difference Method for Diffusion    

Mass transport of the reactive species A and B are described within the theoretical 
framework of diffusion, and the relevant equations in two dimensions are written 
as 

2 2

2 2

2 2

2 2

[ ( )] [ ( )] [ ( )]

[ ( )] [ ( )] [ ( )]

Ax Ay

Bx By

A x A x A xD D
t x y

B x B x B xD D
t x y

⎛ ⎞∂ ∂ ∂
= +⎜ ⎟∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂

= +⎜ ⎟∂ ∂ ∂⎝ ⎠

                                                      (7)    

where Dpr denotes the diffusion coefficient of species p (A or B) along the rth

direction (x or y) and all are assumed to be constant and equal to 0.05 in units of 
space square per unit of time. A finite difference scheme (explicit Euler scheme 
for time and second order central differencing for space) with fixed time steps tΔ  
and fixed spatial discretization ,x yΔ Δ  are used to solve the above equations. 
Though higher order schemes can be used, this choice of discretization is 
sufficient to create a coarse representation.  
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2.4 The Two Models for 2-D Diffusion with Reactive Boundary 

In the two theoretical frameworks, i.e. fine and coarse, reaction kinetics and mass 
transport serve as the foundations of a model of a chemically reactive boundary 
with diffusive species to and from the boundary. The spatially 2-D problem 
consists of the semi-infinite positive half space (diffusion domain) with 
chemical reactions taking place at the boundary of the half space (reaction 
domain). For both theoretical frameworks, the problem of boundary reaction – 
diffusion is solved by operator splitting [Hairer et al, 2002] as described in detail 
in [Frantziskonis et al, 2006]. At the reactive site, concentrations of both A, B are 
specified by the values evaluated from the reaction kinetics during the operation 
splitting process. 

The boundary conditions considered for the present semi-infinite positive 
half space field are a) Periodic in the direction of the reactive sites, i.e. along the 
boundary of the half space. b) Reflecting boundary (flux is zero) in the direction 
transverse to the boundary of the half space. The periodic boundaries are enforced 
by considering periodic repetition of the nodes i.e. the last node in one end will 
reappear as first node in other extremities. This also enforces flux continuity 
between the two ends. Reflecting boundary is enforced by making the flux to be 
zero at the boundary. The updated concentration of species at any other node is 
calculated by adding contribution of fluxes from all four adjacent nodes. For the 
reflecting boundary nodes the respective flux in that direction is set to zero. In the 
present implementation the spatial domains were large enough so that species did 
not reach the end within the time frame considered. 

2.5 Parameters Adopted for Each Model 

The problem is defined such that the reaction sites are in the y-direction, at x=0, 
and diffusion of A and B takes place in the x-y space. Table 1 shows the 
parameters adopted for each model.  
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Table 1. Physical parameters adopted for each model     

             

The parameters in table 1 reflect the difference in various scales involved 
in the two models. Note that coarse-graining of the KMC reaction sites is not 
considered at this stage, thus the mesh size along the y-direction is the same for 
the fine and coarse models. Thus, in a way, the compounding of the two models 
presented below is “pseudo” 2-D. Coarse graining at the reaction sites that results 
in a coarser Δy for the coarse model will be presented elsewhere. The time 
increments in the KMC are not constant since the algorithm finds the minimum 
time it will take for the next reaction to occur. Thus, 1tΔ , i.e. the mean value of 

1tΔ  is shown in table 1. The results presented below are for Δt2= 18 tΔ , yet, as 
shown in table 1, factors larger than 8 have been used for the error analysis 
presented towards the end of the paper. 

Parameters Fine model Coarse model 

Δx: mesh size 
along x  

0.125 units 0.625 units 

Δy: mesh size 
along y  

0.125 units 0.125 units 

nx: nodes along x   512 512 
ny: nodes along y  128   128 
nt: no. of time steps  4096   4096 
Δt: time step (sec)  

1tΔ = 0.526
4096

=0.0001284 Δt2= 18 tΔ , 116 tΔ , 132 tΔ ….
etc 

T: total run time 
(sec)

T1=0.526 T2= 4096 2tΔ

Initial 
concentrations  

A=100 units, B=0 along 
reactive wall, rest are zero 

Same as fine model 

9Mishra et al.: Framework for Multiscale/Multiphysics Reactor Simulation

Brought to you by | Iowa State University
Authenticated | 129.186.176.40
Download Date | 5/5/14 5:07 PM



C
A

C
B

C
A

(a)
(b)

(c)
(d)

C
B

C
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C
B

C
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(a)
(b)

(c)
(d)

C
B

Fig 2 Kinetic evolution of reactants A, B along reactive (y axis at x=0) boundary. 
(a) Concentration of A, CA, from fine model; (b) Concentration of B, CB, from fine

model; Concentration of A from coarse model; Concentration of B from coarse
model. 

2.6 Illustrative Results from the Two Models   

Figure 2 shows typical concentrations obtained using the parameters shown in 
table 1. For the fine model, the initially smooth diffusion profile of the evolution 
is being modified by the fluctuations arising out of the reactive surface. For the 
coarse model, however, the smooth diffusion profile remains smooth due to the 
absence of fluctuations.   

Figure 3 shows the kinetic evolution along the reactive sites (y for x=0) at 
several time steps. As can be seen, the fluctuations change with respect to time for 
the results from the fine model, yet this is not the case for the coarse model. Since 
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at the beginning of the simulation (t=0) there are no fluctuations, it is natural that 
fluctuation increase for certain time period. The statistical analysis of the 
fluctuations of A and B are examined in detail in a subsequent section.  
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Fig 3 The spatial structure of A along the reactive sites shown as snapshots at 
several time steps. (a) Fluctuations resulting from the fine model. The top curve is 

at time t=0.025 sec, and at the bottom curve at t=0.4 sec; (b) “Fluctuations” 
resulting from the coarse model. The top curve (solid line) is at time t=0.025 sec, 

and the bottom curve (short dot line) is taken at t=3.08 sec. 

The scale disparity in the two models can be seen more clearly by plotting the 
concentration of A or B as a function of time for specific reaction sites. Such plots 
are shown in Fig. 4, for typical reaction sites. 

3. Proposed Method for Combining the Multiscale/Multiphysics   

3.1 Coupling Scales via the CWM Method    

A typical limitation encountered in multiscale simulations that combine two or 
more different models is the fact that the kinetics driven, high resolution model(s) 
usually require significantly more number of computations than the models based 
on integral conservation laws at lower resolution (could extend to several orders 
of magnitude) in order to model the desired behavior in space and time. CWM 
strives to overcome this by combining the event driven fine fluctuations that can 
only be obtained from the high-resolution model with the long-time mean 
behavior of the integral model(s). As an example, consider two temporal 1-D 
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signals, one representing the short-time highly accurate trajectory of the system 
under study - the fine signal, while the other corresponds to an approximate 
estimate of the mean trajectory of the same system obtained over a much longer 
time-interval - the coarse signal. Let R denote the ratio of the size of the coarse 
(Δtc) and fine (Δtf) time steps such that R=2ne, while Nc (=2pc) and Nf (=2pf) 
represent the number of coarse and fine data points, yielding pc and pf possible 
scale decompositions, respectively. Note that by using the coarsest-scale 
information of the coarse signal in conjunction with Eqn (2b), one can reconstruct 
the approximate long-time trajectory, while if one uses the coarse-scales of the 
fine signal only the short-time trajectory is reconstructed. Similarly, using the 
finest-scales of the fine signal, the fluctuations inherent to the system can be 
obtained. Thus, information corresponding to two signals differing vastly in the 
“nature of information” they possess can be coupled together as explained below. 
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Fig 4 Evolution of reactants A and B at certain reaction sites resulting from the 
two models. (a) From fine model at 3 reaction sites for B; (b) From fine model at 3 

reaction sites for A; (c) From coarse model at all reaction sites for B; (d) From 
coarse model at all reaction sites for A.  
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Using table 2, where for convenience R, Nc and Nf are chosen to equal 8
(ne=3), 4096 (pc=12), and 2048 (pf=11) respectively, one can identify distinct 
scale-information corresponding to the two signals, that must be used to obtain 
the compound wavelet matrix (vector in 1-D). Specifically, using the following 
series of steps, one can combine information from the two signals in order to 
obtain the desired compounded signal. 

1. Wavelet decomposition: Since the coarsest-scale information of the coarse 
signal are necessary for reconstructing the long-time mean behavior of the desired 
signal, WT of the coarse signal are carried out to obtain WT coefficients 
corresponding to all pc scales. Similarly, wavelet decompositions of the fine 
signal are carried out. Correspondence of scales in the two models is deduced 
from the sampling of the signal at the WT level. Pertaining to that, while pc and pf
scale-decompositions are possible for the coarse and fine signals, respectively, pc-
3 and pf-3 scale-decompositions are carried out as shown in Table 2; the reason 
for this is the correspondence of scales in the two models. The number 3 here is 
related to the specific scales chosen for the two models. This is further addressed 
in the following paragraph. 

2. Scale selection: As indicated in table 2, an overlap region is first identified and 
all coarse-signal scales not included in the overlap are selected to represent the 
coarse-scale coefficients of the compound wavelet vector; the overlap region 
corresponds to time-scales common to both coarse and fine signals and is 
determined from the knowledge of pf and ne. In this case (i.e. in table 2), there are 
5 overlapping scales, corresponding to pf-ne-3, where “3” represents the number 
of the finest-scales of the fine signal beyond the overlap, that due to 
correspondence of scales, they are not included in the formation of the CWM (see 
discussion on ultra fine scales in a subsequent section). In principle, a larger 
overlap region leads to a better description of the overall trajectory of the system 
as more fine-scales of the fine signal can be included in the compounding and if 
one wants to include all the fine-signal scales, then both signals need to have the 
same resolution in time. 

3. Prolongation: For a given scale, the fine WT coefficients are replicated to 
ensure consistency in the number of coarse and fine WT coefficients. The number 

of replications Mp at a given scale is given by c
p

f

N RM
N

= ; in table 2, Mp equals 16. 

This replication is a first order approximation at this time as we can assume that 
the fine scale statistics are stationary and periodic.    

4. Thresholding: In order to avoid problems that arise due to the combination of 
boundary effects and replication of fine WT coefficients, the values of fine WT 
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coefficients that are greater than a specified cut-off in magnitude are reduced (a 
detailed discussion is given in a later section, also addressing energy preservation). 

5. Replacement: To ensure the preservation of the long-time approximate 
trajectory of the coarse signal, at every “overlap” scale, any fine coefficient is 
replaced by its corresponding coarse coefficient if the coarse coefficient is greater 
in magnitude. 

6. Compounding: The selected WT coefficients are assembled to form a 
compounded matrix (vector in this illustration) that has both coarse and fine WT 
coefficients. 

7. Reconstruction: The hybrid signal is now obtained via Eq. (2b), where both fine 
and coarse features are included. Note that inversion is not always required or 
desirable. For example, if statistical information on the signal suffices, the 
inversion will not provide any additional information, since the statistics can be 
obtained directly from the CWM. 

The above concepts can be readily extended to 2-D; specifically, two-
dimensional maps of concentration of species, one axis of the map being time t, 
and the other axes being the spatial coordinate y are considered. The two-
dimensional WT in this case includes transforms in the t direction, the y
direction, and in the diagonal t-y direction. The latter is done by constructing 
wavelet bases from the tensor products of the one-dimensional wavelets in the t
and y directions. The details of the wavelet transform, wavelets used, and 
construction of the CWM in 2-D are given in appendix A, where also details on 
the boundary conditions used in the wavelet transforms are given; these will 
prove important when results are presented in the following. For the reader 
willing to bypass the details and rely on the qualitative issues of the transform, 
the following example may suffice: given a map (matrix) of dimension 
1024x512 in t,y, respectively, the discrete wavelet transform consists of three 
512x256 matrices, three 256x128 matrices, and so on; each decomposition level 
is at half the resolution from the previous one. The final level of decomposition 
represents the map at the coarsest scale. Once the fine and coarse WT are 
carried out, appropriate coefficients of the coarse WT matrix are replaced by 
fine WT coefficients in a fashion analogous to the 1-D case. 
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Table 2. Schematic coupling of spatiotemporal scales through CWM 

Fine Model Coarse Model   CWM formation 

Wavelet 
transform  

Scale   Wavelet 
transform 

Scale  CWM CompoundSc
ales 

8 4096 tfine 8 4096 tfine

8 4096 tfine 8 4096 tfine

16 2048 tfine 16 2048 tfine

32 1024 tfine 32 1024 tfine 

8 x 16 256 tfine 64 512 tfine 

C

O

A

R

S 64 512 tfine

8 x 16 256 tfine 128 256 tfine 128 256 tfine 

16 x 16 128 tfine 256 128 tfine 256 128 tfine 

32 x 16 64 tfine 512 64 tfine 512 64 tfine 

64 x 16 32 tfine 1024 32 tfine 1024 32 tfine 

128 x 16 16 tfine    2048 16 tfine 

C
O
M
M
O
N
  2048 16 tfine 

256 x 16 8 tfine    Tot. 4096 8 tfine  Tot. 4096 8 tfine 

512  4 tfine  

1024  2 tfine  

Tot.2048  1 tfine  

tfine ~ time step in  

Fine model  

tcoarse  ~ time step in 
coarse model (=8 tfine)   

F 

I 

N

E

3.2 Compounding – Pseudo 2-D 

For the 2-D CWM for the problems herein, the primary scale difference between 
the coarse and fine modes is in time t. This is because spatial coarse-graining of 
the reaction sites is not performed, thus the number of reaction sites is the same in 
the two models. However, the difference in the discretization of the x-axis 
between the two models brings in the effects of spatial scaling. In table 2, a 
schematic of the compounding technique is shown. This essentially shows the 
hierarchical decompositions of the concentration maps through the wavelet 
transform. 

By forming the CWM and performing the inverse wavelet transform on it, 
the multiscale map of concentrations result. Crucial to the success of the method 
is the number of overlapping scales, in the wavelet domain, between the two 
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models. Another important factor is the boundary conditions used in the wavelet 
transform of the map from the fine model. The boundary conditions are mainly a 
reason for considering a threshold value for the wavelet coefficients, as explained 
in the following sub-section. 

3.3 Threshold Value for the Wavelet Coefficients   

In wavelet analysis, threshold values are typically used for noise reduction, where 
wavelet coefficients below a threshold are usually set to zero. The threshold value 
is generally estimated according to the noise present. There are two types of 
thresholds reported in the literature namely uniform thresholds and spatially 
adaptive thresholds. Several algorithms have been proposed for removing additive 
noise in signal based on thresholds, e.g. [Donoho, 1995]. The threshold value is 
chosen from estimates of the noise variance.  

In the present work, threshold values are used to alleviate problems with 
the boundary conditions used for the wavelet transform of the maps resulting from 
the fine model. If such maps are periodic, using the periodic boundary condition 
for the maps does not present any problems and use of threshold values is not 
needed. However, when this is not the case, use of other boundary conditions such 
as fixed or even performing the wavelet transform on the interval (see appendix 
A) results in high wavelet coefficients at and near the boundaries. Even though 
these coefficients are needed for reconstructing the map by the inverse wavelet 
transform, they create the following problem when constructing the CWM. For 
second order statistically stationary maps resulting from the fine model, the 
coefficients at certain scales are repeated in order to match the size of the 
corresponding matrices in the CWM, and this produces an artificial influence of 
the wavelet coefficients near the boundary: the number of repetitions pM
amplifies (approximately doubles) the effect of the coefficients near the 
boundaries. One way to avoid this is to introduce a threshold value and cutoff 
these boundary coefficients to that value. The value of the threshold can impact 
the error of the CWM technique. 

A simple algorithm to estimate the threshold is used, i.e. the value that 
reproduces the fluctuations of the map as closely as possible, based on statistical 
energy, is chosen. Since there is interplay between threshold value and number of 
overlap scales in the CWM, it takes a few iterations until a proper threshold is 
established. Results presented in the following are for various threshold values. 

Figure 5 shows results from the inverse wavelet transform for various 
values of the threshold and number of overlapping scales. The threshold value 
used is designated as T. Increasing of the threshold and/or the overlap increases 
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the fluctuations. At large overlap, the impact of threshold on fluctuations 
diminishes. Figure 5 clearly shows that the replacement step in the CWM ensures 
the preservation of the long-time coarse behavior. Note that the reconstructed 
signal exhibits periodicity. The obvious reason is that fine coefficients are 
periodically repeated to achieve dimensional conformity between equivalent 
wavelet scales in two models. These repetitions in the wavelet domain show up as 
periodically repeating peaks in the physical maps. An appropriate value of the 
threshold diminishes such peaks. However, the possibility of a Kalman filter 
based Baysian inference technique [Guo et al, 2004] for predicting the unknown 
fine wavelet coefficients is presently being explored to avoid such repetitions in a 
more formal way than the thresholding. The other possibility is to reconstruct the 
signal in real space to the required length preserving the statistics before applying 
the wavelet transform to avoid boundary edge effects.  
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Fig 5 Results from the inverse wavelet transform of the CWM for time evolution 
of concentration of B at the 10th node. (a) T=1.0 and 5 overlap scales; (b) T=2.0 

and 2 overlap scales; (c) T=3.0 and 5 overlap scales. 
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3.4 CWM and Stationarity   

The CWM is nicely suited for providing scale-wise statistical information on a 
problem. For this purpose, performing the inverse wavelet transform of the CWM 
is not necessary, since the statistics, including correlations along spatiotemporal 
scales, can be obtained directly from the CWM. However, for certain problems it 
may by informative to perform the inverse wavelet transform of the CWM and 
obtain realizations of the problem in actual space and time. In doing so, there is a 
difference depending on whether the problem (here the reaction-diffusion one) is 
statistically stationary or not. At certain scales, there will be a mismatch on the 
number of coefficients provided by the fine model and the number of coefficients 
required by the CWM. Since the mean behavior of the system is obtained from 
the CWM coefficients provided by the coarse model, and the fluctuations from 
the CWM coefficients provided by the fine model, it is important whether the fine
model provides, or not, results that are second order stationary. If such results are 
second order stationary, or approximately second order stationary, the coefficients 
at relevant scales can be repeated in order to fill the CWM out at these scales (due 
to the properties of the CWM, the number of required repetitions is always an 
integer). If the fluctuations from the fine model are not stationary, an alternative 
process can be followed as discussed in the sequence.  

For the specific problem studied herein, it will be shown that the 
assumption of approximately stationary fluctuations is justified if sufficient 
overlap is assigned between two models. At first glance, it may seem that the 
fluctuations in the fine model tend to increase (see Figs. 1,2) and that would imply 
non stationarity. This is not the case, however. The change of some statistics with 
respect to time is presented in Fig. 6. It is apparent that the (first and second 
order) statistics are changing temporally. The standard deviation increases up to 
some point and then decreases. The coefficient of variation is quite low, thus, the 
assumption of the fluctuations being approximately second order stationary 
appears reasonable. This is addressed further in the error analysis section.  
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Fig 6 (a) Mean value of concentration of A along reactive boundary as a function 
of time from the fine model; (b) Standard deviation of concentration of A along 

reactive boundary as a function of time for the fine model. 

For the problems examined herein, the following holds: (a) at short times, 
near the reactive boundary fluctuations are limited since a small number of 
reactions occur in all sites and thus a smooth concentration profile appears at the 
reactive sites; (b) also at short times and near the reactive boundary, the 
concentration-gradient is high because of large concentration of species along the 
reactive nodes thus the diffusion is rapid, and this can damp out the fluctuations 
in the concentration profile; (c) at long times, concentrations near as well as far 
from the reactive sites smooth out due to small concentration gradients which 
slow down the diffusion and its effect on the fluctuations of the concentration. In 
order to study the correlation structure of the concentrations, if at all present, 
concentrations along the reactive boundary are considered. There are three 
parameters affecting the reproduction of the spatial correlations in CWM: a) the 
number of overlap scales; b) the threshold value; c) the total time in the 
simulation. The effect of the overlap in scales was addressed in the previous 
section where it was shown that the fluctuations increase with increasing overlap. 
The effect of the other two parameters is examined here, i.e. the threshold value 
and the time. Figure 7 shows typical autocorrelation structures for concentrations 
along the reactive boundary, i.e. plot of  

( )
2

2

( ) ( )A x A x r
r

μ
ρ

σ
+ −

=                                                              (8)   

where ( )rρ  denotes the autocorrelation as a function of the “lag” r, ,μ σ  denote 
the mean value and the standard deviation of species A along the reactive 
boundary, respectively, and ⋅ denotes expected value. Since at r=0, ( )0ρ 1.0= , 
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Fig. 7 shows that the concentrations are practically white noise in the y-direction. 
This conclusion holds for a wide range of the threshold value and for the entire 
time of the simulation.    
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Fig 7 Autocorrelation ( )rρ  as a function of r, r=0,1,2, …, 128 in the y-direction, 
for species B at the 500th time step, obtained from (a) the fine model; (b) the 

CWM method. 

3.5 Inclusion of Ultra Fine-scale Data in the CWM and Energy Conservation 

In table 2 a schematic of the CWM construction and the available scales from 
each model is presented. As explained above, ultra fine scales from the fine model 
(sampling interval below 8tf) were not included in the construction of the CWM. 
Due to the mismatch between Δtc and Δtf, there is no place (scales) in the CWM 
where they would be substituted. Since Δtf<<Δtc, holds, the fine model can resolve 
much finer scales than the coarse model. And since the scales from the coarse
model are used from the beginning of the simulation, the fine scales substitution 
into the CWM should be limited to those scales which do not exceed the scales of 
the coarse map. In the present simulations this is satisfied up to the scales with 
sampling interval 8tf. This observation is crucial for maintaining the physical 
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nature of the compounded map. Any attempts to include those finer scales can 
result in a distorted map from the inverse transform of the CWM.  

There is a way to include all small scales from the fine model by 
resampling the coarse model maps at a finer time interval by interpolation. Even 
though resampling does not add any new information from the coarse model into 
the map, it allows inclusion of ultra fine scales and thus additional information 
from the fine model. One additional important outcome is the process becomes 
less sensitive to the threshold value. For the present example, the coarse model 
has a time interval of 8tf. Resampling results in mathematically equating the scale 
range of the two maps. Figure 8 shows typical results from this process of 
resampling the data from the coarse model before forming the CWM.   
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Fig 8 Concentration of B at reactive site 10 obtained by resampling the results 
from the coarse model before the CWM is constructed. (a) T=2.5; (b) T=5.0. 

21Mishra et al.: Framework for Multiscale/Multiphysics Reactor Simulation

Brought to you by | Iowa State University
Authenticated | 129.186.176.40
Download Date | 5/5/14 5:07 PM



              Fig 9 Comparison of energy along scales for the two models and for the 
CWM maps. The energy axis is logarithmic     

  It is interesting to observe the energy distribution along scales resulting 
from the two models and from the compounded maps. Figure 9 shows such a 
distribution, showing clearly the smooth and natural transition from coarse to fine 
scales when the CWM is used. 

A natural question is about energy conservation in the CWM process. The 
wavelet transform conserves energy by virtue of the Parseval theorem. This 
energy is distributed in each wavelet scale, and the distribution is not uniform in 
general. For the results from the two models herein, the initial few scales (about 
two for the coarse model, more than two in the fine model) contain most of the 
energy, and the contribution from finer scales diminishes progressively along fine 
scales. This is shown in table 2. The energy contribution decays much faster for 
the results from the coarse model than those from the fine. This is anticipated due 
to the fact that fine model produces significant information in fine scales. Through 
CWM these coefficients are transferred to their equivalent scale to impart those 
fine features. Consequently additional energy is imparted in these scales. Figure 9 
shows the individual energy contained in them and redistribution through CWM. 
However smooth decay/transition of energy from lower to higher subbands/ scales 
is essential [Wang et al,1996, Kadambe, 1992] for maintaining the physical nature 
of the signal. The pM repetition of wavelet coefficients if performed without 
thresholding will increase the energy of the system. Thresholding avoids this by 
reducing the value of the WT coefficients (near boundaries) that would contribute 
to this increase. 
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3.6 Error in CWM Technique with the Overlap Scales    

Errors in the CWM solution process include: error in finite difference solution of 
the diffusion equations (time step, integration method, etc.); error from 
inappropriate number of overlap scales; error from the boundary conditions used 
in the wavelet transform and the related threshold value; error in the coarse model 
in modeling the reactions. This section concentrates in analyzing the error in the 
CWM technique as compared to the fine model acting as benchmark.  

If the overlap scales include all the scales available in the fine model, then 
the fluctuations in the CWM will be represented in full detail. Thus, as the 
number of overlap scales increases, the error decreases, and for sufficient overlap 
the error should reach a plateau. This plateau value is used here as a reference 
point, i.e. as the benchmark, in order to study the effect of overlap on error. Since 
the mere time/spatial history does not give a quantitative idea about the intensity 
of the fluctuations, the L2 norm of the fluctuations along the reactive boundary as 
a function of overlap scales n, denoted as 2 ( )BL n , is used to study the effect of 
overlap on error. Figure 10a shows 2 ( )BL n  for the A concentrations at the 500th

time step, where the asymptotic behavior of the fluctuations with the number of 
overlap scales can be seen. As the n in 2 ( )BL n  increases, the norm approaches 
saturation. Figure 10b is similar to 10a, yet L2B is normalized with respect to its 
value at 5 overlap scales, i.e. 

2 2

2

( ) ( )( )
( )

B s B

B s

L n L nn
L n

ε ε −
= =                                       (9)      

where ( )nε  denotes the relative error as a function of the overlap scales n 
(considering the fluctuations at the saturation number of  overlap scales to 
represent the fluctuations with zero error) and sn  denotes the number of overlap 
scales at saturation, considered herein equal to 5. 
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Fig 10 (a) Norm of fluctuations of A concentration at the reactive boundary as a 
function of the number of overlap scales. (b) Relative error as a function of the 

number of overlap scales.       

The error in the solution of the diffusion from a reactive boundary 
problem is mostly in the diffusion domain, since the KMC and deterministic 
solution for the reactions are quite accurate and agreeing with each other, i.e. the 
mean response of the KMC is pretty close to the solution of the reactions (3) 
solved deterministically. It is informative to examine the error from solving the 
diffusion part of the problem using finite differences. Such a formal examination 
is presented in appendix II, in 1-D spatial domain for simplicity, where it is shown 
that  

( ) ~fLog sε                                  (10) 

Holds, where fε denotes the relative error in the fundamental solution of the 

diffusion equation, and s denotes scales in the wavelet transform such that 2 ~s t . 
Superpositions of the fundamental solutions result in the solution of a specific 
diffusion problem. Figure 11 shows the plot of (10) for the proportionality 
relation tailored to match the plot in Fig. 10b. As can be seen, the curves in Fig. 
10b and Fig. 11 are close to each other, even though the error in the 2-D diffusion 
problem, including the error in the simulation of the chemical reactions and errors 
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from the superposition of the fundamental solution, may result in slight alterations 
of (10). 

1 2 3 4 5
0

0.05

0.1

0.15

0.2

Fig 11 Relative error expressed through equation (10) as a function of scale s. 

3.7 Error in CWM with Increasing Time Scale Disparity  

Another source of error in the CWM process is the difference in time scales 
involved in the two models. The difference in time scale can be measured by the 
ratio of the respective time steps.   However, as shown from table 3, the number 
of scales in the overlap domain depends on the ratio of time steps in the two 
models.   
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Table 3 The overlapping scales with different time scale ratios.  

Equivalent scales are marked by bold letters. First no. is no. of data points and 
second one is the sampling interval.   

Time ratio =8 Time ratio=16 Time ratio=32 Time ratio=64 
Coarse Fine Coarse Fine Coarse Fine       Coarse Fine       
4096 
(8tf) 

2048 
(1tf) 

4096 
(16tf) 

2048 
(1tf)   

4096 
(32tf)  

2048 
(1tf)   

4096 
(64tf)     

2048 
(1tf)  

2048 
(16tf)  

1024  
(2tf)   

2048 
(32tf)   

1024  
(2tf)   

2048 
(64tf)   

1024  
(2tf)   

2048 
(128tf)   

1024 
(2tf)   

1024 
(32tf)  

512 
(4tf)  

1024 
(64tf)   

512 
(4tf)   

1024 
(128tf)  

512 
(4tf)  

1024 
(256tf)  

512 
(4tf)  

512 
(64tf) 

256 
(8tf) 

512 
(128tf) 

256 
(8tf) 

512 
(256tf) 

256 
(8tf) 

512 
(512tf) 

256 
(8tf) 

256 
(128tf) 

128 
(16tf) 

256 
(256tf) 

128 
(16tf) 

256 
(512tf) 

128 
(16tf) 

256 
(1024tf) 

128 
(16tf) 

128 
(256tf) 

64 
(32tf) 

128 
(512tf) 

64 
(32tf) 

128 
(1024tf) 

64 
(32tf) 

128 
(2048tf) 

64 
(32tf) 

64 
(512tf) 

32 
(64tf) 

64 
(1024tf) 

32 
(64tf) 

64 
(2048tf) 

32 
(64tf) 

64 
(4096tf) 

32 
(64tf) 

32 
(1024tf) 

16 
(128tf) 

32 
(2048tf) 

16 
(128tf)

32 
(4096tf) 

16 
(128tf) 

32 
(8192tf) 

16 
(128tf) 

16 
(2048tf) 

8 
(256tf) 

16 
(4096tf) 

8 
(256tf)

16  
(8192tf) 

8 
(256tf) 

16 
(16384tf) 

8 
(256tf)  

8 
(4096tf) 

8 
(256tf) 

8 
(8192tf) 

8 
(256tf) 

8 
(16384tf) 

8 
(256tf) 

8 
(32768tf) 

8 
(256tf) 
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Fig 12 Number of overlap scales available with ratio of time step (coarse to fine) 

The plot of the number of overlap scales as a function of the time increment ratio 
tc/tf  is shown in Fig. 12. Increasing ratio tc/tf  implies a decrease in overlap. 

Therefore the parametric variation of the error will be the same as the one in the 
previous section.    

3.8 Computational Efficiency   

A quantitative measure of the computer expense in solving the reaction/diffusion 
problem using the CWM as compared to a brute force solution method based on 
the fine model is provided in Table 4. The computer times refer to CPU time on a 
personal single processor computer operating at 1.8GHz. 
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Table 4. Comparison of computational expense in the CWM  

Model  nx  

(X-
nodes 
) 

ny  

(Y-
nodes)  

Kinetic evolution time 
of the model   

computer 
processing time   

0.22 sec   (2048 steps) 459 sec    

0.41 sec (4096 steps) 948 sec   

Fine 512 128 

3.5520 sec (35520 
steps) 

8579 sec     

3.5144 sec  (4096 steps) 928 sec  Coarse 512 128 

1.7572 sec (2048 steps) 515 sec  

Wavelet 
transform 

  7 sec 

CWM 512 128 0.22 sec fine  model 

3.5144 sec coarse 
model 

7+459+928=1394  
sec     

For the present problem, it requires much larger CPU time to run the fine
model for the same evolution time as in the coarse model. But the same solution 
using the CWM requires CPU time that is a little higher than the coarse model 
processing time but much less than the CPU time required by the fine model. This 
is partly due to the fast algorithm for performing the wavelet transform.  

The main difference between the fine and the coarse model is the KMC 
selection step of the reaction time demand. In each step this includes the 
generation of random numbers (which requires O(N) operations) and from them 
calculating the time demand for each site (O(N) operations). These O(2N) 
operations are part of each step of the kinetic evolution calculations. For the 
present case the fine model requires orders of magnitude more CPU time than the 
coarse model for modeling over the same time interval.  

Finally, it is noted that the problems examined herein, no coarse graining 
of the reaction sites was performed for obtaining the spatial grid of the coarse 
model. This can increase the efficiency of the CWM substantially and relevant 
results will be presented elsewhere.  
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4. Conclusions and Summary  

We have presented a detailed example application of the proposed CWM 
approach for combining information from two physical models (KMC and LBM) 
that address different spatiotemporal scales. The overlap between the two models 
is defined in the wavelet domain, and this provides a robust and convenient way 
to seamlessly link the different physics. An important consequence of our 
approach is that the computational error can be easily estimated and controlled by 
changing the degree of scale overlap.  

The results presented herein are valid as long as (second order) stationarity 
is approximately preserved. If this is not the case, longer fine-scale simulations 
may not be an appropriate alternative even if it is computationally feasible. For 
problems with non-linearities, stationarity may break down [Muralidharan et al, 
2007], and, the CWM method must be made dynamic (DCWM) by restarting the 
fine model simulation as needed to update the statistics prior to compounding. A 
sequential dynamic coupling is necessary in such cases to catch the system 
dynamics over a substantial amount of time. 

We expect that the basic approach for multi-scale simulation proposed 
here will be of considerable relevance to chemical reactor engineering research, 
both in regard to applications and computational simulations. While our CWM 
method specifically addresses numerical issues, we also believe that the 
fundamental understanding of the underlying physics can ultimately be improved 
by the development of better computational models. Thus in the end we hope that 
both engineering physics and simulation science are served by discussions 
ensuing from our approach. 

NOTATIONS     

A               chemical species  (no. of molecules)  

( )A x        value of a function  at x (unit of x )  

( )A x r+  value of a function  at ( )x r+  (unit of x )  

[ ]A            matrix for forward wavelet transform (dimensionless)  

( ),a y t     spatial concentration profiles at ordinate a and time t  (no./area) 

B               chemical species  (no. of molecules)  

Cψ             normalizing constant in inverse wavelet transform  (dimensionless)  
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AxD            diffusion constant of species A  in x direction  (m/sec2) 

BxD            diffusion constant of species B in x direction (m/sec2)  

D              diffusion coefficient for any species   (m/sec2)  

( )f x        signal defined over space/temporal dimension x (no. of species)  

( )
1 2s sf x   wavelet transformed signal f with scale parameter 1 2,S S  

                  (no. of species) 

iG             high pass wavelet synthesis filter (dimensionless)  

iG%             high pass wavelet synthesis filter  (dimensionless)   

iH            low pass wavelet analysis filter  (dimensionless) 

iH%            low pass wavelet synthesis filter (dimensionless)  

ch             coarse discretization of time (sec)     

fh            fine discretization of time (sec)      

ABk           reaction rate constant of A  to B reaction  (no. of species/sec) 

BAk           reaction rate constant of  B to A reaction (no. of species/sec)  

ck             coarse discretization of space (m)  

fk            fine discretization of space (m)    

( )2L n     2L  norm of a signal   (square of unit of the signal)     

pM         no. of overlapping scales    (dimensionless)  

xn            no. of grids along x direction (dimensionless) 

yn           no. of  grids along y direction (dimensionless) 

tn           no. of time steps   (dimensionless) 

cN          no. of data points in coarse solution (dimensionless) 
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fN         no. of data points in fine solution (dimensionless) 

f
p         possible no. of scale decompositions in fine solution (dimensionless)             

cp          possible no. of scale decompositions in coarse solution (dimensionless)  

R           ratio of time steps of coarse and fine solution (dimensionless)  

[ ]SYN   matrix of backward wavelet transform  (dimensionless) 

's            scaling coefficients at particular wavelet scale    

              (unit of transformed variables) 

ABt          reaction time demand for A to B reaction (sec)  

BAt          reaction time demand for B to A reaction (sec)  

1T           total run time for fine solution (sec)    

2T            total run time for coarse solution (sec)  

( ),fW a b wavelet transform of signal f with scale a and scaled time b                            

                 (unit of f )       

'w           wavelet coefficient at particular wavelet scale     

               (unit of transformed variable)       

  

Greek symbols    

( ),a b xψ   wavelet basis with scale a and shift b  of dimension x (dimensionless) 

xΔ             finite difference grid size in x direction  (m)  

yΔ             finite difference grid size in y direction (m)  

tΔ              time steps for reaction-diffusion simulation (sec)  

2tΔ             time steps for deterministic reaction-diffusion simulation (sec)      

1tΔ         ensembles of time steps of stochastic simulation (sec)  
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fε               error in fine solution (no. of species) 

( )rρ          spatial autocorrelation function with lag r  

                   (unit square of same variable)   

Subscripts   
... 2, 1,0,1,2...i = − − positions of filter coefficients  

f      parameters associated with fine scale model  

c       parameters associated with coarse scale model  

Superscripts  
  /       no. of wavelet scale decomposition of the signal        

APPENDIX A  

        

A. 1. Illustration of the Wavelet Hierarchical Decomposition of Scales in 2-D 
and Formation of CWM   

This appendix illustrates the wavelet decomposition and CWM formation. In 2-D, 
one of the dimensions can be space (x or y axis) and the other time. The fine
model provides such 2-D maps of concentrations in time-space, e.g. a matrix of 
dimensions 2048x128, the 2048 corresponding to time steps, and the 128 to space 
discretization in the y-direction. Such a matrix, denoted as S, can be decomposed 
into hierarchy of scales using the wavelet transform. The wavelet transform of a 
matrix can be performed by pre-multiplying and post-multiplying the matrix by 
the analyses matrices [A]i , [A]ii as 

[ ] [ ] [ ] [ ], , , ,
( ) i ii

m n m m m n n n
WT S A S A=                          (A.1) 

where [WT(S)] denotes the wavelet transform of [S]. The analyses matrices are 
obtained by forming the block Toeplitz matrix from specific wavelet analysis 
filter [Harbo and Jensen, 2000]. Typical structure of such block Toeplitz analysis 
matrix is 
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[ ]

0 1 2 2 1

0 1 2 2 1

2 1 0 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 1 2

2 3 2 1 0 1

2 2 1 0 1

..... ....
.... .....

.... .....
.. ..

... ...
.... ...
.... ....
.... .... ....

H H H H H
G G G G G
H H H H H
G G G G G

A
H H H H H
G G G G G

H H H H H H
G G G G G

− −

− −

− −

− −

− −

− −

− − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                         (A.2)  

Here H and G denote the High and Low pass wavelet filters respectively. 
The filter coefficients are wrapped around the boundary, typically the case for 
analyzing periodic problems. For a finite signal however one need to use the 
wavelet transform in the interval. For that case, special boundary filters replace 
the end couple of rows with no periodic wrapping. The details of such 
implementation can be found in [Harbo and Jensen, 2000].   

Once the signal is multiplied by the analysis matrix then a down sampling 
operation is performed which groups the low pass part in the upper half and high 
pass part in the lower half of the matrix.  Mathematically,     

( ) ( ), (2 1), (2 1)SC i j S i j= − − ;    ( ) ( )/ 2 , / 2 2 ,2WV n i n j S i j+ + =   
(i,j=1,2,...,N/2)                                                                                     (A.3) 

where SC and WV are the upper and lower part of the wavelet transform map S at 
a particular scale. The same operations are then repeatedly performed on the 
scaling coefficients at each scale to achieve progressively lower resolution at 
progressively lower scales; the final matrix is the so-called scaling coefficient 
matrix. The whole algorithm is performed with a fast algorithm. The whole 
structure of the algorithm is shown in (A.4) 
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' ''
1 1 1

' ''
2 3 5

' ''
3 5 3

' ''
4 7 7

' '
5 2 2

' '
6 4 4

' '
7 6 6

' '
8 8 8

S s s
S s s
S s w
S s w
S w w
S w w
S w w
S w w

⎧ ⎫ ⎧ ⎫⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪

⎪ ⎪ ⎪ ⎪ ⎪ ⎪→ →⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

                      (A.4) 

where the first vector is the actual signal. The arrow sign implies multiplication 
by the analysis matrix and down sampling. Thus scaling and wavelet coefficients 
are obtained for that scale. For the next scale once again the scaling coefficients 
of the present scale is multiplied by analysis matrix and down sampling will give 
the scaling and wavelet coefficients of the next higher scale and so on.                       

The backward or inverse wavelet transform is performed to regain back 
the original signal from the wavelet coefficients obtained by forward transform. 
This is done by first performing the up-sampling operation on the scaling and 
wavelet coefficients. Mathematically the up-sampling is expressed as  

( ) ( )2 1,2 1 ,S i j SC i j− − = ;      ( ) ( )2 ,2 ,S i j WV i j=   (i,j=1,2,...,N/2)        (A.5)                           

 After that, the up-sampled vector is multiplied by the synthesis matrix. Like the 
analysis matrix the synthesis matrix is also another block Toeplitz matrix formed 
as    

� � � � �

� � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � �

� � � � �

0 1 2 2 1

0 1 2 1

2 1 0 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 1 2

2 3 2 1 0 1

2 2 1 0 1

...... ....

..... .....

..... .....

.. ..
[ ]

... ...

.... ...

.... ....

.... .... ....

H H H H H

G G G G

H H H H H

G G G G G
SYN

H H H H H

G G G G G

H H H H H H

G G G G G

− −

− −

− −

− −

− −

− −

− − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                      (A.6)     
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The structure of the synthesis matrix is similar to that of the analysis matrix 
except the filters. The high and low pass synthesis filters are not independent of 
each other they are related by the following relations for bi-orthogonal (used in 
this paper) filter.  

� ( ) ( )1 (1 )nG n H n= − −   and    ( ) ( ) % ( )1 1ng n h n= − −                                     (A.7)     

The choice of the wavelet family is important for each specific problem. For 
preserving the symmetry and physical appearance of a problem, without totally 
sacrificing orthogonality, symmetric biorthogonal filters provide a great choice. 
Also for exact treatment of the boundary the so-called biorthogonal CDF(4,6) 
wavelet is used herein with boundary corrections in the interval. Detailed 
implementation of the CDF family is provided by [Harbo & Jensen, 2000].         

Using the discrete wavelet transform a 2-D map is transformed into 
various scales as shown in Fig. A1. The matrix of size 2048x128 (kinetic 
evolution map) is decomposed into a series of scales. A matrix similar to  Fig. A.1 
results from both the fine and coarse models.  
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Fig A.1  Wavelet decomposition of fine model. 5 scales (4 wavelet, 1 scaling) are 
used in the wavelet decomposition. Notation: W- wavelet transform coefficients; 
S - scaling coefficients; t – time variable; s - space variable; the number in each 

box refers to the scale number. The sub matrices dimensions can be deduced from 
the horizontal and vertical axes. 

A.2 CWM Formation through Compounding  

          
Once the multi scale decompositions are available from the fine and coarse 
models, these are then compounded to form the CWM. In forming the CWM the 
higher scales decompositions are those of the fine model. Of course, there may be 
dimensional mismatch, i.e. although the scales of the fine model and the CWM 
are matched, the size of the matrices in the WT of the fine model can be smaller 
than those in the CWM. For the purpose of extracting statistical information, this 
mismatch does not pose any problems. However, if the inverse wavelet transform 
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of the CWM is to be performed, then the mismatch needs to be addressed. For 
periodic boundary conditions in the fine model, periodic repetitions of the 
submatrices from the WT of results from the fine model fill out the corresponding 
CWM submatrices. The same holds when the results from the fine model are 
second order stationary, since the trend of the response is obtained from the 
coarse model. For cases where the results from the fine model are not second 
order or approximately second order stationary, the CWM must be constructed for 
relatively small time intervals, and the process is repeated in time (a number of 
CWMs are formed) as mentioned in the “Conclusions and Future Issues” section. 
The information on coarse scales is taken form the coarse model. The 
equivalency of scales in the WT of the fine, coarse model and those in the CWM 
can be determined by merely observing their sampling interval. 

The scales common to both models forms the overlap. As the scale 
difference between the two models increases, the number of overlapping scales 
decreases. For the problems addressed herein, even one scale overlap may be 
sufficient to obtain reasonable results (with little error). However this may vary 
depending upon the problem being studied. Table A.1 shows the overlap scales as 
well as the equivalent scales for various values of the ratio of time increments 
(tcoarse/tfine) and corresponding ratio of space discretization (scoarse/sfine). It is not 
necessary that (tcoarse/tfine)= (scoarse/sfine), yet the cases shown in the table facilitate 
understanding of overlap and equivalent scales.   
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Table A.1 Equivalent scales for forming CWM     

            

Time ratio: 
(tcoarse/tfine)  

Space ratio: 
(scoarse/sfine) 

Overlap 

scales 

Equivalent scales Match dimension 
of scale from fine 
model to CWM 

2   (tcoarse =2 tfine)   

     (scoarse =2 sfine)  

Coarse 
(1,2,3) 
Fine 
(2,3,4)  

1st Coarse - 2nd Fine  

2nd Coarse - 3rd 
Fine    

3rd Coarse - 4th Fine   

4 times repetition  
of fine sub 
matrices are 
required in both 
directions  

4   (tcoarse =4 tfine)   

     (scoarse =4 sfine)   

Coarse 
(1,2) Fine 
(3,4)   

1st Coarse - 3rd Fine 

2nd Coarse - 4th Fine 8 times repetition   

8    (tcoarse =8 tfine)   

      (scoarse =8 sfine)  

Coarse (1)   

Fine (4)       

1st Coarse - 4th Fine   16 times 
repetitions  

16   (tcoarse =16 tfine)   

       (scoarse =16 sfine)  

 No 
overlap  

APPENDIX B  

The diffusion equation in one spatial dimension, i.e. diffusion in y 
2

2

[ ( , )] ( , )a y t a y tD
t x

∂ ∂
=

∂ ∂
                            (B.1) 

where ( , )a y t  denotes the concentration of diffusing species a at coordinate y and 
time t, and D denotes the diffusion coefficient, can be solved numerically by 
discretizing y in intervals of length h and time in intervals of time k. The error 
from a forward difference (explicit) finite difference solution is expressed as [e.g.
Duchateau & Zachmann, 1986] 

( )
2 2 4

2
2 4

( , ) ( , )~
2 12
k a y t h a y terror D O k h

t x
∂ ∂

− = +
∂ ∂

                      (B.2) 
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The fundamental solution (Green’s function) to (B.1) reads 
21( , ) exp

42
ya y t
DtD tπ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
                      (B.3) 

For the fundamental solution (B.3), a straightforward evaluation shows that the 
error (B.2) is maximum at y=0, and at that spatial coordinate, the error is 
expressed as 

( )
5/ 2

6 1
32

k r
error

D rtπ
−

=                              (B.4)  

where  

2

kr D
h

=                               (B.5)   

Note that the error in (B.4) tends to zero at r=1/6, which implies a time increment 
equal to 1/3 of the time increment at the numerical stability limit. At that specific 
value of r, the error becomes ( )2 4O k h+  [Duchateau & Zachmann, 1986]. Yet, 
for the purposes herein we consider 1/ 6r ≠  (and r relatively far from 1/6) and 
thus error of ( )2O k h+ ). 

Let fε  denote the relative error in the fundamental solution, i.e. 

1
2

c f
f

error error

D t

ε

π

−
=                                                    (B.6)  

where ,c ferror error  denote the error in the coarse and fine model, respectively, 
and the denominator in (B.6) is simply the fundamental solution evaluated at y=0. 
Denoting by ,c fk k  the time discretization in the coarse and fine models, and by 

,c fh h  the corresponding space discretization, respectively, and setting for 
simplicity 

2 2
fc

c f

kkr D
h

D=
h

=                    (B.7)   

it follows that 

( )( )6 1
8

c f
f

k k r
rt

ε
+ −

=            (B.8)  
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Considering that c fk k>> , the relative error in the fundamental solution is 
proportional to the time discretization in the coarse model. Since the scales, s, in 
the wavelet transform are such that 2 ~s t , and since ck  and t are directly related 
to the overlap scales in the CWM method, it follows that 

( ) ~fLog sε                    (B.9)   
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