
Buoyancy-driven flow and fluid-structure interaction with moving boundaries

by

Songzhe Xu

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Mechanical Engineering

Program of Study Committee:
Baskar Ganapathysubramanian, Co-major Professor

Ming-Chen Hsu, Co-major Professor
Alberto Passalacqua

Wei Hong
Steven Hou

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this dissertation. The Graduate College
will ensure this dissertation is globally accessible and will not permit alterations after a degree is

conferred.

Iowa State University

Ames, Iowa

2018

Copyright© Songzhe Xu, 2018. All rights reserved.

ii

DEDICATION

To my lovely wife, Jiayu, and our dog, Elvis, and cat, Gouzi.

And to my Father and Mother.

For all of your support and company without which I couldn’t finish this work.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGMENTS . xi

ABSTRACT . xii

CHAPTER 1. INTRODUCTION . 1

1.1 Buoyancy-Driven Flows Using Finite Element Method 1

1.2 Particle Focusing in Fluids with Application to Microfluidics 2

1.3 Dissertation structure . 4

1.4 References . 5

CHAPTER 2. A RESIDUAL-BASED VARIATIONAL MULTISCALE METHOD WITH

WEAK IMPOSITION OF BOUNDARY CONDITIONS FOR INCOMPRESSIBLE

BUOYANCY-DRIVEN CONVECTION PROBLEMS 7

2.1 Introduction . 8

2.2 Variational multiscale formulation and discretization 10

2.2.1 Strong and weak formulations of the continuous problem 10

2.2.2 Semi-discrete variational multiscale formulation 11

2.2.3 Weakly imposed boundary condition for both velocity and temperature . . 14

2.3 Numerical method and implementation . 15

2.3.1 Time discretization and averaging over time 15

2.3.2 Block iteration method . 16

iv

2.3.3 Non-dimensional form . 16

2.3.4 Computational method . 18

2.4 Rayleigh–Bénard convection problem . 18

2.4.1 2D case . 20

2.4.2 3D case . 23

2.4.3 2D case with weakly imposed boundary condition 32

2.5 Conclusions . 33

2.6 References . 35

CHAPTER 3. IMMERSOGEOMETRIC ANALYSIS OF MOVING OBJECTS IN INCOM-

PRESSIBLE FLOWS . 39

3.1 Introduction . 39

3.2 Immersogeometric methodology . 43

3.2.1 Governing equations of incompressible flow 43

3.2.2 Semi-discrete variational multiscale formulation 44

3.2.3 Variationally consistent weak boundary conditions 46

3.2.4 Time discretization and iterative method 47

3.3 Implementation of moving B-rep . 47

3.3.1 Modeling the rigid body motion . 47

3.3.2 In-out test . 49

3.3.3 Treatment of freshly-cleared nodes . 49

3.3.4 Work flow of the framework . 50

3.3.5 Non-dimensionalization . 52

3.4 Verification and validation . 52

3.4.1 Free falling cylinder with low Re (2D) . 52

3.4.2 Free falling sphere with moderate Re . 54

3.4.3 Neutral buoyant circular particle focusing in a straight channel 56

3.4.4 Circular particle focusing in a straight channel with pillar 58

v

3.5 Conclusions and future work . 63

3.6 Appendix: Fluent simulation setup . 63

3.7 References . 64

CHAPTER 4. TRACKING MOVING OBJECTS IN FLUIDS: A SCALABLE, IM-

MERSED BOUNDARY METHOD ON OCTREES . 69

4.1 Introduction . 70

4.2 Target problem . 72

4.3 Immersed boundary method . 75

4.4 Scalable IBM on octree meshes . 78

4.4.1 Matvec - integration with TalyFEM . 81

4.4.2 Sampling the immersed boundary & adding corrections 82

4.4.3 Timestepping and particle evolution . 82

4.4.4 Intergrid transfers . 84

4.5 Experiments & Results . 85

4.5.1 Implementation details . 85

4.5.2 Meshes/domains . 86

4.5.3 Parallel Scalability . 87

4.5.4 Overhead of immersed boundary corrections 91

4.6 Conclusions & Future directions . 91

4.7 References . 93

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 95

5.1 Conclusions . 95

5.2 Future work . 96

5.3 References . 97

vi

LIST OF TABLES

Page

Table 2.1 2D mesh convergence results for Nu. 20

Table 2.2 Comparisons of Nu and maximum velocities and locations along median

lines from Ra = 103 to Ra = 106. 21

Table 2.3 2D comparisons of Nu from Ra = 107 to Ra = 1010. 22

Table 2.4 2D comparisons of the maximum velocities and locations along median

lines from Ra = 107 to Ra = 1010. 22

Table 2.5 2D comparison of the maximum horizontal velocity and the location along

the vertical median line for Ra = 109. 22

Table 2.6 3D mesh convergence results for Nu. 27

Table 2.7 3D comparisons of Nu for Ra = 1.89 × 105. 27

Table 2.8 3D comparison of Nu for Ra = 1.5×109 on the median plane at the hot wall. 27

Table 2.9 2D mesh convergence results for Nu with weak BC. 32

Table 2.10 2D comparisons of maximum velocities and locations along median lines

for strong BC and weak BC at Ra = 109. 33

Table 3.1 Comparison of computational effort. 60

vii

LIST OF FIGURES

Page

Figure 2.1 Flow chart of the block iteration for the Navier–Stokes and energy equation. 17

Figure 2.2 Geometry and boundary condition. 19

Figure 2.3 Stretched mesh. 22

Figure 2.4 Mean profile comparisons of present 2D and [12] at Ra = 105. (a) Tem-

perature along the horizontal median line. (b) Vertical velocity along the

horizontal median line. (c) Horizontal velocity along the vertical median

line. 24

Figure 2.5 Mean profile comparisons for present 2D at Ra = 109, and 2D LES at

Ra = 1.5 × 109 in [18]. (a) Temperature along the horizontal median line.

(b) Vertical velocity along the horizontal median line. (c) Temperature

along the vertical median line. (d) Horizontal velocity along the vertical

median line. 25

Figure 2.6 Visualizations of present 2D cases. (a) Streamline and velocity magnitude

contour at Ra = 105 (b) Temperature contour at Ra = 105. (c) Streamline

and velocity magnitude contour at Ra = 109 (d) Temperature contour at

Ra = 109. 26

Figure 2.7 Mean profile comparisons for present 3D at Ra = 1.89 × 105, numerical

result at Ra = 105 in [44], and experimental result at Ra = 1.89 × 105

in [46]. (a) Temperature along the horizontal median line. (b) Vertical ve-

locity along the horizontal median line. (c) Temperature along the vertical

median line. (d) Horizontal velocity along the vertical median line. . . . 29

viii

Figure 2.8 Mean profile comparisons for present 3D and [18] at Ra = 1.5 × 109. (a)

Temperature along the horizontal median line. (b) Vertical velocity along

the horizontal median line. (c) Temperature along the vertical median line.

(d) Horizontal velocity along the vertical median line. 30

Figure 2.9 Fluctuation distribution comparison for present 3D and [18]. (a) Tem-

perature along horizontal direction. (b) Vertical velocity along horizontal

direction. (c) Temperature along vertical direction. (d) Horizontal velocity

along vertical direction. 31

Figure 2.10 Mean profile comparisons of uniform mesh for 2D strong BC and weak BC

at Ra = 109. Strong BC mesh: 600 × 600; Weak BC mesh: 100 × 100. (a)

Temperature along the horizontal median line. (b) Vertical velocity along

the horizontal median line. (c) Temperature along the vertical median line.

(d) Horizontal velocity along the vertical median line. 34

Figure 3.1 Schematic of the interpolation of the freshly-cleared nodes. 50

Figure 3.2 Flow chart of the process of moving IMGA. 51

Figure 3.3 Free falling cylinder with low Re (2D). (a) Problem setup. (b) Cluster mesh. 54

Figure 3.4 Mesh convergence results compared with the analytical solution. 55

Figure 3.5 Velocity magnitude contour and streamlines at t = 1. 55

Figure 3.6 Comparison of the sphere trajectory and velocity. (a) Height of the sphere

bottom apex. (b) Sedimental velocity. 56

Figure 3.7 Velocity magnitude contour at different heights. 56

Figure 3.8 Neutral buoyant circular particle focusing in a straight channel. (a) Prob-

lem setup. (b) A mesh example. 58

Figure 3.9 Comparison of the particle trajectory. 59

Figure 3.10 Circular particle focusing in a straight channel with pillar. (a) Problem

setup. (b) Moving meshes at different times. 60

Figure 3.11 Mesh convergence results of the particle trajectory. 61

ix

Figure 3.12 Comparison of particle trajectory. 61

Figure 3.13 Comparison of particle velocities. (a) Horizontal velocity. (b) Vertical

velocity. 62

Figure 3.14 Comparison of contours of fluid velocity magnitude and streamlines. (up-

per) Moving IMGA. (lower) Body-fitted Fluent. 62

Figure 4.1 An illustration of the canonical target problem. Following standard prac-

tice in fluid dynamics, we normalize length scales by the channel width,

W, and consider all physical variables in dimensionless quantities. This

allows broad usability of the resulting computations, due to kinematic and

dynamic similarity principles. The canonical problem is parametrized by

5 variables: (a) the size of the particle (a), (b) the location, δ and diameter,

D of the pillar, (c) the flow speed, characterized in terms of the Reynolds

number (<), and (d) the height of the microchannel, h. 72

Figure 4.2 A schematic of the volume assembly in the IBM method. We loop over

each element and each Gauss point within each element. An in-out test is

performed to identify whether that Gauss point is lies inside the particle

(red points) or inside the fluid (green points). Only the Gauss points in the

fluid domain are used to assemble the elemental matrices. 76

Figure 4.3 Schematic showing how the surface assembly of IBM is performed. The

triangulated surface mesh is used to identify surface Gauss points (the ’X’

locations). The surface integral terms (i.e. the last three terms in Eq. 3.16)

are computed at these surface Gauss points, and then distributed to the

nodal locations. 77

Figure 4.4 Interpolation of freshly-cleared node. 78

Figure 4.5 (top) An example of the adaptive mesh for the target geometry (§4.2) cre-

ated by DENDRO. (bottom) A slice through our 3D mesh to illustrate the

refinement around the pillar and particle. 79

x

Figure 4.6 An example of the octree-grid along with the velocity along the y-axis

being plotted at three different time-points. Notice the balanced 2:1 refine-

ment as we move closer to the particle surface. 85

Figure 4.7 Representative streamlines around the moving sphere. 86

Figure 4.8 Total time (assembly + solve), summation of each time step for various

mesh refinements. 87

Figure 4.9 Matrix assembly time (volume + surface assembly) for various mesh re-

finements. 88

Figure 4.10 Vector assembly time (volume + surface assembly) for various mesh re-

finements. 89

Figure 4.11 Volume assembly time (matrix + vector) for various mesh refinements. . . 89

Figure 4.12 Surface assembly time (matrix + vector) for various mesh refinements. . . 90

Figure 4.13 Total time for adaptive remeshing for various mesh refinements. 90

Figure 4.14 Total time spent in matrix assembly broken down by volume vs surface for

refinement level 8/11. 92

Figure 4.15 Total time spent in vector assembly broken down by volume vs surface for

refinement level 8/11. 92

xi

ACKNOWLEDGMENTS

I would like to take this opportunity to express my thanks to those who helped me in various

aspects of conducting this research and the writing of this thesis. First and foremost, I would like

to thank Dr. Baskar Ganapathysubramanian for his guidance, patience and support throughout this

work. Besides the challenging and interesting projects, Dr. Ganapathysubramanian always shared

his insights in the leading edge of related fields and guided me to more creative and thoughtful

research ideas and topics in these fields. Secondly, I would like to thank Dr. Ming-Chen Hsu for

his guidance in the first two chapters of this research. The deliberate discussions with Dr. Hsu

and significant suggestions he offered clarified a lot of my doubts and made brilliant progress in

these two chapters. I would also like to thank my committee members, Dr. Alberto Passalacqua,

Dr. Wei Hong and Dr. Steven Hou, for their efforts and contributions to this work. I would like to

additionally thank Dr. Hari Sundar for his guidance in the last chapter of this research. Dr. Sundar

offered a lot of insightful ideas in computer science and valuable suggestions in the optimization

of the framework we developed in this chapter. Finally, I would like to thank my colleagues, Alec

Lofquist, Aditya Kommajosula and Fei Xu for their help to complete this research.

xii

ABSTRACT

We deploy the residual-based variational multi-scale (VMS) method in the sense of large-eddy

simulation (LES) in finite element method to buoyancy-driven flow in enclosures and consider an

extensive range of Rayleigh number from laminar (103) to turbulent (1010) in a 2D benchmark

Rayleigh–Bénard problem. 3D simulations for a laminar and a turbulent case are performed and

comparisons including mean profiles as well as fluctuation profiles with other numerical and ex-

perimental results are successfully carried out. A weakly imposed boundary conditions method is

employed for both velocity and temperature, and it produces reasonable results with a much coarser

mesh compared with the traditional imposition of boundary conditions. This suggests that the VMS

framework with the weak imposition of boundary conditions is a computationally efficient approach

to model buoyancy-driven flows in complex indoor environments.

In addition to the flow fields, we deploy the immersogeometric analysis (IMGA) method in the

sense of the immersed boundary method (IBM) for objects moving in fluids onto an unstructured

framework. The finite element formulation is stabilized by the VMS method in an unstructured

background mesh. Weak imposition of boundary conditions is used to impose no-slip boundary

condition on the immersed boundary. Adaptively refined quadrature rules are used to better capture

the geometry of the immersed boundary and accurately integrate the background elements that in-

tersect the immersed boundary. Treatment for the freshly-cleared nodes is considered. We assess the

accuracy of the moving IMGA framework by analyzing object motion in a variety of flow structures,

including freely dropping cylinder/sphere in viscous fluids and particle focusing in (un)obstructed

channels. We show the quantities of interests are in good agreements with other analytical, numer-

ical and experimental solutions. Advantages of this moving IMGA framework in computational

cost and efficiency are indicated by the comparison with the body-fitted method using a commercial

xiii

computational fluid dynamic (CFD) software. The framework of moving IMGA is capable to be

deployed in applications of particle control and manipulation in microfluidic channels.

The moving IMGA on the unstructured framework is further deployed to a scalable, adaptively

refined, octree-based finite element approach for a better computational performance to track ob-

ject motion. This enables using a parallel, hierarchically refined octree mesh as the background

mesh, with a variationally consistent IMGA formulation on this background mesh. We integrate the

unstructured framework of moving IMGA to the octree-based framework. We show good scaling

results of the coupled framework on Stampede2, TACC. This illustrates the potential of the moving

IMGA on the coupled framework to efficiently track complex particles in flows.

1

CHAPTER 1. INTRODUCTION

1.1 Buoyancy-Driven Flows Using Finite Element Method

The finite element method is being increasingly used for computational fluid dynamics (CFD).

Early work has shown that the standard Galerkin approach is unable to solve the Navier–Stokes

equations in convection dominated problems [1]. Subsequent analysis (and comparisons with cen-

tral difference schemes) resulted in improvements in one-dimensional problems via upwinding,

while still had issues in multi-dimensions [2, 3]. The work of Brooks and Hughes [1] showed

that the Streamline-upwind Petrov Galerkin (SUPG) method overcomes these issues and yields a

reasonable solution of the Navier–Stokes equation. Since velocity and pressure have differentials

of unequal orders in the Navier–Stokes equation, it requires their basis functions also have different

orders of differentiability. Pressure-stabilizing Petrov Galerkin (PSPG) overcomes this, and further

allows the use of equal-order basis functions for velocity and pressure [4]. SUPG along with PSPG,

as well as some other stabilizer methods, such as least-squares incompressibility constraint (LSIC)

and Galerkin least-square (GLS), has shown a good success in a wide range of flow field until it

becomes turbulent.

For turbulent flows, a more general formulation to stabilize the Navier–Stokes equations,

residual-based variational multi-scale method (VMS), has been proposed and shown success to

resolve turbulent flows [5]. The basic idea is to split the spatial domain (similar to the idea of

large-eddy simulation (LES)) into a coarse scale represented by the finite element discretization,

and a fine scale modeled by the residuals of the coarse scale. The terms incorporating fine scale

variables serve as stabilizers that compensate the domain discretization, and can be interpreted as

the combination of the classic SUPG/PSPG stabilizer and the turbulence modeling of flow fields.

An additional challenge with the solution of the Navier–Stokes equation is the imposition of the

no-slip boundary conditions at walls. This strong imposition (i.e. Dirichlet conditions) of the no-slip

2

conditions, which explicitly specifies the Dirichlet values on the walls, results in the requirement

of a highly refined mesh at the boundaries to resolve the steep velocity gradients. In this context,

the weak imposition of boundary conditions in the sense of Nitsche’s method [6] has been shown

to produce reasonable results for isothermal flows [7–9]. Instead of the traditional way, the weak

imposition of boundary conditions essentially applies the boundary traction (flux) to the fluid. As a

result, it doesn’t struggle to resolve the steep velocity gradient and allows relaxation of the mesh in

the boundary layer, which is especially important for turbulent flows.

VMS with the weak imposition of boundary conditions gives the advantage to solve turbu-

lent naturally occurring (buoyancy-driven) flows in indoor environments, which draws growing

interests in high fidelity simulations. Naturally occurring flows could be utilized to reduce en-

ergy consumption in built environments. Accurately capturing the heat transfer produced by the

buoyancy-driven flow is essential to calculate energy usage, where RANS models have been shown

with problems [10–15], while LES methods are able to make good predictions [16–19]. Since VMS

belongs to the LES family, and the weak imposition of boundary conditions can decrease the mesh

density in the boundary layer, it is promising to deploy them to buoyancy-driven flows.

1.2 Particle Focusing in Fluids with Application to Microfluidics

In addition to flow fields, control and localization of particles (cells, precipitates) in aqueous

flow are useful in biological processing, chemical reaction control, and for creating structured ma-

terials. The controlled motion and localization of cells and particles can automate cellular sample

preparation and bio-sensing. Some examples include fast identification of e. coli in water, robust

removal of circulating tumor cells from the blood plasma and fast separation of cells types for rapid

flow cytometry and subsequent identification/tagging for genomic analysis. The precise, efficient

and cheap localization of a heterogeneous collection of cells in a fluid medium is a foundational

challenge in science and engineering. Most current approaches to particle localization in microflu-

idic devices is predominantly active, i.e., some external stimuli (electric field, permeate flow, stirrer)

is used to create flow conditions that encourage particle separation and localization. However, ac-

3

tive control of particles in microfluidic devices results in device designs that are potentially more

expensive, with multiple moving parts that can fail more frequently, and that require operation and

transport in controlled environments. This translates to reduced applicability of state-of-art biomed-

ical devices by reducing shelf-life, especially in remote areas and/or making robust devices too

expensive for large scale use, especially in the global south. A general (computationally informed)

strategy for passive control of particle localization in microfluidic channels will be transformative

to this field.

In this context, the immersed boundary method (IBM) [20] – which embeds a solid object into

a background Cartesian mesh of fluid without conforming them to each other – is a computationally

convenient approach. The traditional body-fitted method has to deform the background mesh be-

cause of the object motion which may cause the mesh severely distorted, and frequent cumbersome

remeshing is further required which is even more difficult for complex geometries. IBM doesn’t

suffer from these issues. One major challenge of IBM is to impose no-slip boundary condition on

the immersed surface. Since the interface of the object and fluid does not align with the nodes in

the background mesh, the traditional way to explicitly enforce Dirichlet boundary conditions on

boundary nodes is non-trivial. There are typically two ways to impose the boundary conditions

for an immersed boundary [21]. (1), continuous forcing approach: representing the effect of the

immersed boundary as a forcing term added onto the Navier–Stokes equation and transmitting the

boundary force to surrounding flow [22]. (2), discrete forcing approach: introducing ghost nodes

(in the object domain) into the discretized system and interpolating the ghost nodes using the pre-

scribed boundary conditions on the immersed boundary so that the immersed boundary conditions

are implicitly incorporated [23]. While IBM shows great flexibility in solving complex boundary

problems, it typically suffers from the reduced accuracy of the solution near the immersed boundary,

which is related to the capture of the immersed geometry in the background mesh. To resolve these

issues, an immersogeometric analysis (IMGA) method has been proposed and shown success for

steady objects [24]. In this thesis, we extend this approach to account for moving objects.

4

The detailed simulations of object migration in micro-channels are still computational expensive

within traditional unstructured framework for realistic 3D problems due to the necessity to solve the

full fluid-structure coupling and associated small time steps and adaptive (re)meshing requirements.

This calls for the development of an efficient, scalable, adaptively refined approach for particle

tracking in fluids. We further deploy the moving IMGA to an octree-based framework in this work.

1.3 Dissertation structure

This Dissertation is organized as follows. In chapter 2, we deploy the VMS formulation to

buoyancy-driven flow with a wide range of Rayleigh number. Weak imposition of boundary condi-

tions is also deployed to the heat equation, and we highlight its capability to substantially decrease

the mesh density in the boundary layer for a turbulent case. In Chapter 3, we develop and implement

the IMGA for moving objects in a variety of flow structures. We illustrate its advantage regarding

the computational cost and efficiency compared with the body-fitted method using the commercial

CFD software Fluent. In Chapter 4, we integrate the unstructured moving IMGA framework to

the octree-based adaptive meshing framework. We demonstrate the scaling studies of the coupled

framework. Finally, we draw conclusions and motivate future work in Chapter 5.

5

1.4 References

[1] A. N. Brooks and T. J. R. Hughes. Streamline upwind/petrov-galerkin formulations for convec-
tion dominated flows with particular emphasis on the incompressible navier-stokes equa-
tions. Computer methods in applied mechanics and engineering, 32(1-3):199–259, 1982.

[2] G. D. Raithby. A critical evaluation of upstream differencing applied to problems involving
fluid flow. Computer Methods in Applied Mechanics and Engineering, 9(1):75–103, 1976.

[3] G. D. Raithby and K. E. Torrance. Upstream-weighted differencing schemes and their ap-
plication to elliptic problems involving fluid flow. Computers & Fluids, 2(2):191–206,
1974.

[4] T. E. Tezduyar, S. Mittal, S. E. Ray, and R. Shih. Incompressible flow computations with sta-
bilized bilinear and linear equal-order-interpolation velocity-pressure elements. Computer
Methods in Applied Mechanics and Engineering, 95(2):221–242, 1992.

[5] Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational
multiscale residual-based turbulence modeling for large eddy simulation of incompressible
flows. Computer Methods in Applied Mechanics and Engineering, 197(1):173–201, 2007.

[6] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung
von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, 36:9–15, 1971.

[7] Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid
mechanics. Computers & Fluids, 36:12–26, 2007.

[8] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Isogeometric variational multiscale
modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on
unstretched meshes. Computer Methods in Applied Mechanics and Engineering, 199:780–
790, 2010.

[9] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Weak Dirichlet boundary con-
ditions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and
Engineering, 196(49):4853–4862, 2007.

[10] N. C. Markatos and K. A. Pericleous. Laminar and turbulent natural convection in an enclosed
cavity. International Journal of Heat and Mass Transfer, 27(5):755–772, 1984.

[11] R. A. W. M. Henkes, F. F. Van Der Vlugt, and C. J. Hoogendoorn. Natural-convection flow
in a square cavity calculated with low-reynolds-number turbulence models. International
Journal of Heat and Mass Transfer, 34(2):377–388, 1991.

[12] A. M. Lankhorst and C. J. Hoogendoorn. Numerical computation of high rayleigh number nat-
ural convection and prediction of hot radiator induced room air motion. Applied Scientific
Research, 47(4):301–322, 1990.

[13] G. Barakos, E. Mitsoulis, and D. Assimacopoulos. Natural convection flow in a square cavity
revisited: laminar and turbulent models with wall functions. International Journal for
Numerical Methods in Fluids, 18(7):695–719, 1994.

[14] K. J. Hsieh and F. S. Lien. Numerical modeling of buoyancy-driven turbulent flows in enclo-
sures. International Journal of Heat and Fluid Flow, 25(4):659–670, 2004.

[15] S. Tieszen, A. Ooi, P. Durbin, and M. Behnia. Modeling of natural convection heat transfer.
In Proceedings of the Summer Program, pages 287–302, 1998.

[16] J. Salat, S. Xin, P. Joubert, A. Sergent, F. Penot, and P. Le Quéré. Experimental and numer-
ical investigation of turbulent natural convection in a large air-filled cavity. International
Journal of Heat and Fluid Flow, 25(5):824–832, 2004.

6

[17] S.-H. Peng and L. Davidson. Large eddy simulation for turbulent buoyant flow in a confined
cavity. International Journal of Heat and Fluid Flow, 22(3):323–331, 2001.

[18] A. Sergent, P. Joubert, and P. Le Quéré. Development of a local subgrid diffusivity model
for large-eddy simulation of buoyancy-driven flows: application to a square differentially
heated cavity. Numerical Heat Transfer: Part A: Applications, 44(8):789–810, 2003.

[19] C. Van Treeck, E. Rank, M. Krafczyk, J. Tölke, and B. Nachtwey. Extension of a hybrid
thermal lbe scheme for large-eddy simulations of turbulent convective flows. Computers
& Fluids, 35(8):863–871, 2006.

[20] C. S. Peskin. Flow patterns around heart valves: a numerical method. Journal of computational
physics, 10(2):252–271, 1972.

[21] R. Mittal and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech., 37:239–
261, 2005.

[22] C. S. Peskin. The fluid dynamics of heart valves: experimental, theoretical, and computational
methods. Annual review of fluid mechanics, 14(1):235–259, 1982.

[23] S. Majumdar, G. Iaccarino, and P. Durbin. Rans solvers with adaptive structured boundary
non-conforming grids. Annual Research Briefs, Center for Turbulence Research, Stanford
University, pages 353–466, 2001.

[24] F. Xu, D. Schillinger, D. Kamensky, V. Varduhn, C. Wang, and M.-C. Hsu. The tetrahedral
finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex
geometries. Computers & Fluids, 141:135–154, 2016.

7

CHAPTER 2. A RESIDUAL-BASED VARIATIONAL MULTISCALE METHOD

WITH WEAK IMPOSITION OF BOUNDARY CONDITIONS FOR

INCOMPRESSIBLE BUOYANCY-DRIVEN CONVECTION PROBLEMS

A paper submitted to Computer Methods in Applied Mechanics and Engineering

Songzhe Xu, Ming-Chen Hsu and Baskar Ganapathysubramanian

Abstract

There is growing interest in high fidelity simulations of buoyancy driven flows in indoor en-

vironments. This is driven to a large extent by the push to utilize naturally occurring flows to

reduce energy consumption in the built environment. Naturally occurring (buoyancy-driven) flows

exhibit spatiotemporal thermal fluctuations, and accurately capturing these thermal variations is es-

sential to calculate energy usage. In this work we deploy a residual-based variational multiscale

(VMS) finite element LES model for accurately modeling buoyancy-driven flows in enclosed en-

vironments. We use the canonical example of the Rayleigh–Bénard convection problem in 2D and

3D to verify and validate the proposed VMS model. We show good comparison with benchmark

numerical and experimental results across seven orders of magnitude variation in Rayleigh numbers

(Ra ∼ 103 to 1010), covering both laminar, transition and turbulent regimes, without any extra

treatments. We additionally employ weak enforcement of Dirichlet boundary conditions for both

velocity and temperature, and show that comparable results can be produced with much coarser

meshes. This suggests that the VMS framework with weak imposition of Dirichlet boundary con-

ditions is a computationally efficient approach to model buoyancy-driven flow physics in complex

indoor environments.

8

2.1 Introduction

Accurate simulation of coupled heat and momentum transport in incompressible fluids is es-

sential in a variety of engineering applications. One critical application is in building simulations,

which involves understanding and controlling the thermal and flow physics in complex, enclosed

domains. There has been increasing interest in understanding and engineering the coupled thermal

and momentum transport in inhabited domains so as to simultaneously increase the efficiency with

which buildings use energy, while maintaining indoor comfort. Lower energy consumption reduces

the impact of buildings on human health and the environment, reduces greenhouse gas emissions,

enables the integration of onsite renewables, and lowers the economic hurdles to home ownership.

According to the U.S. Energy Information Administration (EIA), even incremental improvements

in energy efficiency have a significant impact on the U.S. energy budget, since buildings are respon-

sible for approximately 40% of the total U.S. energy consumption [1].

One promising approach towards enhancing the energy sustainability of buildings has been

to integrate passive natural ventilation (or buoyancy-driven flows) into the building environmental

control system [2–7]. Such an approach requires a detailed understanding of how buoyancy-driven

flows affect, and are affected by, different thermal boundary conditions. This is an area where robust

and reliable computational tools have been scarce, especially for the building design community [8].

Standard computational fluid dynamics (CFD) approaches based on Reynolds-Averaged

Navier–Stokes (RANS) models have been shown not to work well for this class of problems [9–14]1

and require site-specific and application-specific models [8]. In particular, most RANS-based mod-

els are unable to reliably predict boundary heat transfer coefficients (or Nusselt numbers) across the

necessarily large range of Rayleigh numbers (Ra) that occur during building operation. In even com-

paratively simple geometries, the variation in thermal boundary conditions can result in Rayleigh

1This is often the case due to rapid variations in thermal boundary conditions caused by fluctuations in wind loads, as
well as variations in incident solar radiation. Additionally, indoor spaces exhibit localized regions of laminar, transition
and turbulent behavior. RANS based approaches have difficulty tracking this without a priori information, which is
usually not available.

9

numbers spanning from 103 (laminar) to 1010 (turbulent), thus making it necessary for any method

used to reliably and automatically predict Nusselt numbers across this range of flow conditions.

Recent results suggest that a more high-fidelity approach using Large-Eddy Simulation (LES)

would enable accurately accounting for the effects of natural ventilation [15–17]. Large-eddy sim-

ulation based approaches has been applied for buoyancy-driven flow [18–21] with success. This is

particularly promising with the increase in availability of (as well as ease of access, and use of) high-

performance computing resources that make such simulations possible. Motivated by the need to

reliably model thermal transport in complex enclosed domains, we propose and implement a finite

element LES model based on variational multiscale (VMS) method [22–24] for buoyancy-driven

flow. The VMS approach uses variational projections in place of the traditional filtered equations

in LES and focuses on modeling the fine-scale equations. The method derives completely from the

incompressible Navier–Stokes and heat equations and does not employ any eddy viscosities. Such

VMS formulations have shown significant success in modeling turbulent flows [24,25] and continue

to be successfully applied to a wide range of engineering applications [26–28].

In this work, our proposed VMS formulation is augmented with weakly enforced essential

boundary conditions for buoyancy-driven flow. The weak enforcement of Dirichlet boundary con-

ditions [29] improves the accuracy of simulations of flows with thin boundary layers, as in the case

of flows in the built environment. Such a strategy releases the point-wise no-slip condition imposed

at the boundary of the fluid domain and instead allows the flow to slip on the solid surface, thus

minimizing the mesh resolution required to track the steep gradients close to the boundaries. Note

that this effect reliably imitates the presence (and effect) of the thin boundary layer [30,31]. Enforc-

ing Dirichlet boundary conditions weakly allows for an accurate overall flow solution even if the

mesh size in the wall-normal direction is relatively large. This approach has substantially benefited

efficient simulations of turbulent flow scenarios as demonstrated in [30, 32].

This paper is outlined as follows. In Section 2.2, we develop the formulations of VMS method

and the weak imposition of essential boundary conditions for both velocity and temperature for the

simulation of buoyancy-driven flows. Section 2.3 illustrates the numerical implementation of the

10

proposed method. Section 2.4 verifies and validates the VMS formulation and shows its ability to

produce accurate results for an extensive range of Ra from 103 to 1010 for both 2D and 3D cases.

The advantage of applying weakly enforce Dirichlet boundary conditions in buoyancy-driven flow

simulations is also demonstrated in this section. Section 2.5 draws conclusions and outlines the

potential of applying the proposed method in the future work of indoor simulations for complex

buildings.

2.2 Variational multiscale formulation and discretization

2.2.1 Strong and weak formulations of the continuous problem

In what follows, Ω ⊂ Rd, d = 2, 3, denotes the spatial domain of the problem with boundary Γ.

The Navier–Stokes equations for incompressible flow may be written on Ω as

∂u
∂t

+∇∇∇ · (u ⊗ u) = −
1
ρ
∇∇∇p + ν∇∇∇2u + f (u,T) , (2.1)

∇∇∇ · u = 0 , (2.2)

where u is the velocity, f is the forcing function (velocity-temperature coupling), p is the pressure,

ρ is the fluid density, ν is the kinetic viscosity, T is the temperature, and ∇∇∇ is the spatial gradients.

The energy equation may be written on Ω as

∂T
∂t

+∇∇∇ · (uT) = α∇∇∇2T , (2.3)

where α is the thermal diffusivity. Based on our application scenario, we assume the Boussinesq

approximation for the velocity-temperature coupling, thus

f = −aβ (T − Tr) , (2.4)

where a is the gravitational acceleration, β is the thermal expansion, and Tr is the reference tem-

perature. The problem (2.1)–(2.4) is subject to suitable boundary conditions, defined on the domain

boundary, Γ = ΓD ∪ ΓN with ΓD = ΓD
u ∪ ΓD

T and ΓN = ΓN
u ∪ ΓN

T :

u = ug on ΓD
u , (2.5)

11

T = Tg on ΓD
T , (2.6)

−
p
ρ

n + ν∇∇∇u · n = hu on ΓN
u , (2.7)

α∇∇∇T · n = hT on ΓN
T , (2.8)

where ug and Tg are prescribed velocity and temperature at the Dirichlet boundaries ΓD
u and ΓD

T ,

respectively, hu and hT are given functions at the Neumann boundaries ΓN
u and ΓN

T , respectivrly, and

n is the unit normal vector.

Let V be the space of both trial solutions and test functions. The variational formulation is

stated as: Find {u, p,T } ∈ V such that ∀ {w, q, l} ∈ V,

B ({w, q, l}, {u, p,T }) − F ({w, q, l}, {u, p,T }) = 0 , (2.9)

where

B ({w, q, l}, {u, p,T }) =

∫
Ω

w ·
∂u
∂t

dΩ −

∫
Ω

∇∇∇w : (u ⊗ u) dΩ +

∫
Ω

∇∇∇w · ν∇∇∇u dΩ

−

∫
Ω

p
ρ
∇∇∇ · w dΩ +

∫
Ω

q∇∇∇ · u

+

∫
Ω

l
∂T
∂t

dΩ −

∫
Ω

∇∇∇l · (uT) +

∫
Ω

∇∇∇l · α∇∇∇T dΩ , (2.10)

and

F ({w, q, l}, {u, p,T }) =

∫
Ω

w · f dΩ

−

∫
ΓN

u

(w · u) u · n dΓ +

∫
ΓN

u

w · hu dΓ −

∫
ΓN

T

lTu · n dΓ +

∫
ΓN

T

l hT dΓ. (2.11)

Note that f is a function of T .

2.2.2 Semi-discrete variational multiscale formulation

Extending the variational multiscale theory proposed by [24] to the buoyancy-driven convection

problem, the space of trial solution and weighting function is split into coarse and fine scales as

V = Vh ⊕ V′, where the superscript h denotes resolved coarse scales represented by the finite

12

element discretization and the primed quantity corresponds to the unresolved scales that need to be

modeled. The decomposition of the space leads to

{u, p,T } = {uh, ph,T h} + {u′, p′,T ′} , (2.12)

{w, q, l} = {wh, qh, lh} + {w′, q′, l′} . (2.13)

Substituting Eq. (2.12) into Eq. (2.9) and choosing {w, q, l} = {wh, qh, lh} yields

B
(
{wh, qh, lh}, {uh, ph,T h} + {u′, p′,T ′}

)
− F

(
{wh, qh, lh}, {uh, ph,T h} + {u′, p′,T ′}

)
= 0 . (2.14)

Because {wh, qh, lh} are in a finite-dimensional space, Eq. (2.14) leads to a finite-dimensional system

of equations for which the coarse scale variables {uh, ph,T h} are the unknowns. The variational

statement (2.14) indicates that the coarse scale equations depend on the fine-scale fields. The fine

scales {u′, p′,T ′} are not given and their effect in the coarse-scale equations must, therefore, be

modeled. To simplify Eq (2.14), three assumptions are typically employed: (1) the fine scales are

orthogonal to the coarse scales with respect to the inner-product generated by the viscous term; (2)

the fine scales are quasi-static; and (3) the fine scales variables are zero at the domain boundary.

We decompose the domain Ω into a collection of Nel disjoint elements each denoted by Ωe,

Ω =
⋃Nel

e=1 Ωe. We follow the developments in [24] and arrive at the semi-discrete variational multi-

scale formulation for the buoyancy-driven convection problem as: Find {uh, ph,T h} ∈ Vh such that

∀{wh, qh, lh} ∈ Vh,

BVMS
(
{wh, qh, lh}, {uh, ph,T h}

)
− FVMS

(
{wh, qh, lh}, {uh, ph,T h}

)
= 0 , (2.15)

where

BVMS
(
{wh, qh, lh}, {uh, ph,T h}

)
=

∫
Ω

wh ·
∂uh

∂t
dΩ +

∫
Ω

wh ·
(
uh · ∇∇∇uh

)
dΩ +

∫
Ω

∇∇∇wh · ν∇∇∇uh dΩ

−

∫
Ω

ph

ρ
∇∇∇ · wh dΩ +

∫
Ω

qh∇∇∇ · uh

+

∫
Ω

lh
∂T h

∂t
dΩ +

∫
Ω

lh
(
uh · ∇∇∇T h

)
dΩ +

∫
Ω

∇∇∇lh · α∇∇∇T h dΩ

13

−

Nel∑
e=1

∫
Ωe

(
uh · ∇∇∇wh +∇∇∇qh

)
· u′ dΩ −

Nel∑
e=1

∫
Ωe

(
uh · ∇∇∇lh

)
T ′ dΩ −

Nel∑
e=1

∫
Ωe

p′

ρ
∇∇∇ · wh dΩ

−

Nel∑
e=1

∫
Ωe

wh ·
(
u′ · ∇∇∇uh

)
dΩ −

Nel∑
e=1

∫
Ωe
∇∇∇wh :

(
u′ ⊗ u′

)
dΩ

−

Nel∑
e=1

∫
Ωe

lh
(
u′ · ∇∇∇T h

)
dΩ −

Nel∑
e=1

∫
Ωe
∇∇∇lh ·

(
u′T ′

)
dΩ , (2.16)

and

FVMS
(
{wh, qh, lh}, {uh, ph,T h}

)
=

∫
Ω

wh · fh dΩ +

Nel∑
e=1

∫
Ωe

wh · f′ dΩ . +

∫
ΓN

u

wh · hu dΓ +

∫
ΓN

T

lh hT dΓ. (2.17)

In the above, f′ = −aβT ′. Bazilevs et al. [24] proposed solutions of the fine scale variables as

a linear approximation based on the residuals of the coarse-scale equations for isothermal flows.

Extending the same approximation to the energy equation, we have

u′ = −τMrM
(
{uh, ph,T h}

)
, (2.18)

p′ = −τCrC
(
uh

)
, (2.19)

T ′ = −τErE
(
{uh,T h}

)
, (2.20)

where

rM =
∂uh

∂t
+ uh · ∇∇∇uh +

1
ρ
∇∇∇ph − ν∇∇∇2uh − fh, (2.21)

rC = ∇∇∇ · uh, (2.22)

rE =
∂T h

∂t
+ uh · ∇∇∇T h − α∇∇∇2T h, (2.23)

τM =

(
4

∆t2 + uh ·Guh + CMν
2G : G

)−1/2

, (2.24)

τC = (τMg · g)−1 , (2.25)

τE =

(
4

∆t2 + uh ·Guh + CEα
2G : G

)−1/2

, (2.26)

and

Gi j =
∂ξk

∂xi

∂ξk

∂x j
, (2.27)

14

G : G = Gi jGi j, (2.28)

gi =

3∑
j=1

∂ξ j

∂xi
, (2.29)

g · g = gigi. (2.30)

In the above, CM and CE are positive constants derived from an appropriate element-wise inverse

estimate [33, 34], and G and g are mesh-dependent quantities related to the mapping from physical

elements to the iso-parametric element.

The terms in the second, third and fourth line in Eq. 2.16 make up the standard Galerkin form,

B
(
{wh, qh, lh}, {uh, ph,T h}

)
, of the Navier–Stokes equation and energy equation. Note, however, that

we expand the coarse-scale convection terms in these equations into their convective form 2. The

fifth line incorporates the classic stabilization terms, such as streamline-upwind/Petrov–Galerkin

(SUPG) and pressure-stabilizing/Petrov–Galerkin (PSPG). We also have the SUPG stabilization

term in the energy equation. The last two lines incorporate additional terms produced by the VMS

formulation [24]. The terms incorporating the fine scale variables added onto the standard Galerkin

terms can be interpreted as the combination of the classic stabilization coupled with VMS turbulence

modeling for the buoyancy-driven convection problem.

2.2.3 Weakly imposed boundary condition for both velocity and temperature

Weakly imposed boundary conditions in the sense of Nitsche’s method [35] has been very suc-

cessfully applied for isothermal flows [29, 30, 32]. Building upon the detailed interpretation of the

formulation of the weakly imposed boundary conditions in [29], we extend the weak imposition to

the two equation system here. Decomposing the domain boundary Γ into Neb surface elements each

denoted by Γb, we propose the semi-discrete formulation with the weak boundary conditions for the

2This is done by integrating by parts again for the second term in the second line (coarse-scale convection term in
momentum equation) and the first term in the sixth line in Eq 2.16 as well as for the second term in the fourth line
(coarse-scale convection term in energy equation) and the first term in the last line in Eq 2.16, and considering the full-
scale continuity constrain∇∇∇ ·

(
uh + u′

)
= 0. As a result, both coarse-scale and fine-scale boundary terms generated by the

integral by part of convection terms in Eq. 2.11 vanish in Eq. 2.17 with the assumption (3)

15

buoyancy-driven convection problem as

BVMS
(
{wh, qh, lh}, {uh, ph,T h}

)
− FVMS

(
{wh, qh, lh}

)
−

Neb∑
b=1

∫
Γb ⋂

ΓD
u

wh ·

(
−

ph

ρ
n + ν∇∇∇uh · n

)
dΓ −

Neb∑
b=1

∫
Γb ⋂

ΓD
T

lhα∇∇∇T h · n dΓ

−

Neb∑
b=1

∫
Γb ⋂

ΓD
u

(
ν∇∇∇wh · n +

qh

ρ
n
)
·
(
uh − ug

)
dΓ −

Neb∑
b=1

∫
Γb ⋂

ΓD
T

α∇∇∇lh · n
(
T h − Tg

)
dΓ

+

Neb∑
b=1

∫
Γb ⋂

ΓD
u

τB
Mwh ·

(
uh − ug

)
dΓ +

Neb∑
b=1

∫
Γb ⋂

ΓD
T

τB
Elh ·

(
T h − Tg

)
dΓ = 0. (2.31)

Note since we use the convective form for the coarse-scale convection terms, there are no boundary

terms generated from them. The second line in Eq. (2.31) incorporates the consistency terms arising

from the integral by parts of pressure and viscous terms. The third line incorporates the so-called

adjoint terms to optimize the convergence. The fourth line incorporates the penalty-like terms to

help satisfy the prescribed Dirichlet boundary conditions. It has been noted in previous work that

the penalty-like stabilization parameters τB
M and τB

E cannot be too large, because in that case the

formulation would behave simply like the traditional strong boundary conditions, thus losing the

advantage of the implementation. Interestingly, the terms should also not be too small due to stabil-

ity considerations. Earlier work [29] proposed τB
M to have the following form τB

M = CB
Mν/h, where

h is the wall-normal size of the boundary elements, and CB
M is a positive constant. Similarly, we

propose τB
E = CB

Eα/h, with CB
E having the same definition as CB

M.

2.3 Numerical method and implementation

2.3.1 Time discretization and averaging over time

We employ a finite difference based fully implicit backward Euler scheme for the discretization

of the equations in time. The time step ∆t is selected using the CFL condition. We define the set

of variables as U = {uh, ph,T h}. The time-averaged statistics of Ua in the quasi-steady state can

be expressed as Ua =

∫ t
ti

U dt

t−ti
, where ti is the time at which we start collecting data to compute the

averages, and t− ti is a sufficiently long time interval. The fluctuations of the variables U f is defined

16

as U f = U − Ua. We also average the product U f U f in the same time interval to obtain the time-

averaged statistics of the fluctuation quantities {U f U f }a. We report Ua (mean profiles) and {U f U f }a

(fluctuation profiles) to verify and validate our framework in Section 2.4.

2.3.2 Block iteration method

We employ the Newton–Raphson method, J · δU = −E, to solve the set of non-linear equations.

J is the Jacobian matrix, E is the vector of function values, and δU is the vector of the increments

of variables. We employ a block-iterative strategy to solve this set of equations (due to the very stiff

nature of the fully coupled system). In block iteration, at each iteration, the temperature field in the

Navier–Stokes equation and the velocity field in the energy equation are considered known fields.

Thus, the coupling between the two equations is weakened. Note that with this decoupling, the

energy equation becomes linear because the velocity field is known, and reduces to the following∫
Ω

lh
∂T h

∂t
dΩ +

∫
Ω

lh
(
uh · ∇∇∇T h

)
dΩ +

∫
Ω

∇∇∇lh · α∇∇∇T h dΩ −

Nel∑
e=1

∫
Ωe

(
uh · ∇∇∇lh

)
T ′ dΩ = 0. (2.32)

Thus, in the block-iteration strategy, we form two individual systems and solve them self-

consistently at every time-step.

At each time-step we first solve the energy equation for the temperature field with velocity and

pressure fields known from the last iteration (or time-step). Then we pass the temperature field to the

Navier–Stokes equation to solve for the velocity and pressure field. We update every variable after

this block iteration, and compute the L2 error of the fields. We continue the self-consistent block

iteration until the relative L2 norm error for every variable field is less than 0.1%. The workflow

chart is as Fig. 2.1

2.3.3 Non-dimensional form

We solve the equations in their non-dimensional form. This is done by scaling the variables as

follows:

x∗ =
x
L0
, u∗ =

u
u0
, t∗ =

t
t0
, p∗ =

p
ρu2

0

, θ =
T − Tr

∆T
. (2.33)

17

Given solution Un =
(
{uh, ph,T h}

)n

from previous time step tn

Initialize block interation: i = 0;(
uh

)n+1

(0)
=

(
uh

)n
,
(
ph

)n+1

(0)
=

(
ph

)n
,
(
T h

)n+1

(0)
=

(
T h

)n

i = i + 1

Solve energy equation with(
uh

)n+1

(i−1)
and

(
ph

)n+1

(i−1)
to obtain

(
T h

)n+1

(i)

Solve Navier–Stokes equation with(
T h

)n+1

(i)
to obtain

(
uh

)n+1

(i)
and (p)n+1

(i)

Check if

∥∥∥Un+1
(i) −Un+1

(i−1)

∥∥∥
2∥∥∥Un+1

(i−1)

∥∥∥
2

> 0.001

Obtain solution:(
uh

)n+1
=

(
uh

)n+1

(i)
,
(
ph

)n+1
=

(
ph

)n+1

(i)
,
(
uh

)n+1
=

(
uh

)n+1

(i)

yes

no

Figure 2.1: Flow chart of the block iteration for the Navier–Stokes and energy equation.

18

Here, L0 is the characteristic length of the problem, u0 is the characteristic velocity, u0 = (gβ∆T L)1/2

for buoyancy-driven flow. t0 is the characteristic time, t0 = L0/u0. Pressure is scaled by ρu2
0.

∆T is the temperature differential of the hottest temperature Th and the coldest temperature Tc,

∆T = Th − Tc. θ is the dimensionless temperature. We choose the reference temperature Tr to be

the coldest temperature Tc. This results in the following set of equations:

∂u∗

∂t∗
+∇∇∇∗ · (u∗ ⊗ u∗) +∇∇∇∗p∗ −

√
Pr
Ra
∇∇∇∗2u∗ − f∗ = 0 (2.34)

∇∇∇∗ · u∗ = 0 (2.35)

∂θ

∂t∗
+∇∇∇∗ · (u∗θ) −

√
1

PrRa
∇∇∇∗2θ = 0, (2.36)

where Ra is the Rayleigh number, Ra = gβ∆T L3/να, and Pr is the Prandtl number, Pr = ν/α. (·)∗

represents dimensionless quantities. ∇∇∇∗ is the dimensionless spacial gradient operator, ∇∇∇∗ = ∂
∂x∗ ,

and f∗ = egθ, where eg is the unit vector pointing in the direction of gravity.

2.3.4 Computational method

We implement the variational multiscale method and the weakly imposed boundary condition

method for buoyancy-driven flow within our in-house parallel finite element framework. We couple

our framework with an open source package PETSC [36], to employ its scalable non-linear equa-

tion solvers (SNES) as well as its linear Krylov subspace solvers (KSP). Domain decomposition is

performed with the parallel graphics partitioning package Parmetis [37].

2.4 Rayleigh–Bénard convection problem

The Rayleigh–Bénard convection phenomena serves as the canonical problem that we choose

to model in this work. This serves as a very well studied problem, with extensive experimental

and computational results available for comparison, as well as a typical representative of buoyancy

driven flow in enclosed geometries that is our application thrust. We consider a (non-dimensional)

Rayleigh–Bénard convection problem with temperature differential applied on the vertical walls. We

19

Figure 2.2: Geometry and boundary condition.

consider simulations in both 2D and 3D cases as shown in Fig. 2.2. No-slip boundary conditions

are applied on all walls.

We first show 2D results with strongly imposed boundary condition. Mesh convergence studies

are performed for an extensive range of Ra numbers from 103 to 1010 at Pr = 0.7. We choose the

surface averaged Nusselt number Nu as the parameter of interest for the mesh convergence study.

This is motivated from the building science application where the net heat transfer from surfaces

(given by the Nusselt number) is a key quantity of interest. The local Nu and surface averaged Nu

on the (hot) wall ΓH with area AΓH are defined as

Nu = ∇∇∇∗θ · n (2.37)

Nu =

∫
ΓH
∇∇∇∗θ · ndΓ

AΓH

. (2.38)

Then we show 3D results with strongly imposed boundary conditions. Mesh convergence stud-

ies for a laminar case with Ra = 1.89×105, and a turbulent case with Ra = 1.5×109 are performed.

The results of Nu, mean profiles, and fluctuation profiles are compared with reported experimental

results [18].

Finally, the weak imposition of Dirichlet boundary condition for both velocity and tempera-

ture is applied for the 2D cases. Mesh convergence studies and comprehensive comparisons with

strongly imposed boundary condition are performed to illustrate the computational advantages of

the weakly imposed boundary conditions.

20

2.4.1 2D case

2.4.1.1 Mesh convergence studies

We employ a unit square with a uniform mesh to report consistent results across a range of Ra.

The results for 2D cases is shown in Table 2.1. We can see that for the laminar cases Nu rapidly

converges. Even a coarse mesh is enough to resolve the thermal boundary layer for these cases. For

higher Ra, a denser mesh is required. The convergence of Nu value is clear across the wide range of

Ra from 103 to 1010. We identify the converged value with an underline at each Ra when the error

of Nu for two successive mesh densities is less than 2%.

Table 2.1: 2D mesh convergence results for Nu.

Ra (Laminar) Ra (Transition) Ra (Turbulent)
Uniform mesh 103 104 105 106 107 108 109 1010

50 × 50 1.117 2.240 4.488 8.585 14.99 22.78 28.90 33.15
100 × 100 1.118 2.244 4.511 8.772 16.15 27.91 43.23 57.66
200 × 200 1.118 2.245 4.516 8.810 16.44 29.67 51.18 81.22
400 × 400 - - - - - 30.1 53.81 93.40
600 × 600 - - - - - - 54.29 96.63
800 × 800 - - - - - - - 97.29

2.4.1.2 Comparisons of averaged Nusselt numbers and maximum velocities

To validate the results of our solution, we compare the average Nusselt number Nu, maximum

horizontal velocity along the vertical median line, and maximum vertical velocity along the hor-

izontal median line with previously reported computational results. We first compare our results

with Refs [12,38] for the laminar region (Ra ≤ 106). These comparisons are shown in Table 2.2 and

illustrate excellent match with previous work.

We next compare our results with reported data for the turbulent cases with Ra ≥ 107. Here, we

compare our results with reported solutions that were computed using both RANS models [9, 12]

and LES models [39,40] to indicate the difference between them, as shown in Table 2.3. We see that

once Ra goes beyond 108, the RANS models start to produce increasingly diverging results from

the more accurate LES models. Our results of Nu compare well with the LES models across the

21

Table 2.2: Comparisons of Nu and maximum velocities and locations along median lines from Ra = 103 to
Ra = 106.

Ra [38] [12] This work
103 Umax(y) 0.136(0.813) 0.153(0.806) 0.138(0.815)

Vmax(x) 0.138(0.178) 0.155(0.181) 0.139(0.180)
Nu 1.118 1.114 1.118

104 Umax(y) 0.192(0.823) 0.193(0.818) 0.194(0.825)
Vmax(x) 0.234(0.119) 0.234(0.119) 0.235(0.12)

Nu 2.243 2.245 2.245
105 Umax(y) 0.153(0.855) 0.132(0.859) 0.132(0.855)

Vmax(x) 0.261(0.066) 0.258(0.066) 0.259(0.065)
Nu 4.519 4.51 4.516

106 Umax(y) 0.079(0.850) 0.077(0.859) 0.078(0.850)
Vmax(x) 0.262(0.038) 0.262(0.039) 0.263(0.040)

Nu 8.799 8.806 8.810

complete range of Ra, as expected. We also compare the maximum velocities and corresponding

locations in Table 2.4. Our results compare well with other reported LES results for Ra = 107 and

Ra = 108. For Ra = 109, our results generally agree with [41] along the horizontal median line,

but exhibit a discrepancy for the maximum horizontal velocity. We speculate that this could be

due to an under-resolved boundary layer, which may result in different point-wise estimates even

though the Nu shows converged behavior. To test this speculation, we use a clustered mesh that

concentrates elements near the boundaries so that the boundary layer is well resolved (while using

the same number of degree of freedoms). We employ a hyperbolic tangent stretching function to

cluster the uniform mesh. The hyperbolic function is xnew = 1
2

(
1 +

tanh(a(x
L−

1
2))

tanh(a
2)

)
, where x is the

original coordinate in the uniform mesh, xnew is the new coordinate in the stretching direction, L is

the domain size in the corresponding stretching direction, and a (= 5) is the stretching factor. The

stretched mesh is show in Figure 2.3. The comparison with the stretched mesh on the vertical

median line is shown in Table 2.5. We can see that the stretched mesh produces results that are

closer to the previously reported results.

22

Figure 2.3: Stretched mesh.

Table 2.3: 2D comparisons of Nu from Ra = 107 to Ra = 1010.

Ra RANS [9] RANS [12] LES [39] LES [40] This work
107 16.47 - 17.2 16.76 16.49
108 32.05 32.3 31.2 30.43 30.1
109 74.96 60.1 58.1 51.25 54.29
1010 156.85 134.6 - 99.96 97.29

Table 2.4: 2D comparisons of the maximum velocities and locations along median lines from Ra = 107 to
Ra = 1010.

Ra [9] [41] [42] [43] This work
107 Umax(Y) - 0.0621(0.851) 0.0562(0.879) 0.0548(0.92) 0.0564(0.878)

Vmax(X) - 0.265(0.020) 0.264(0.021) 0.270(0.021) 0.264(0.023)
108 Umax(Y) 0.0615(0.941) 0.0466(0.937) 0.0385(0.928) 0.0353(0.94) 0.0399(0.930)

Vmax(X) 0.217(0.0135) 0.268(0.0112) 0.266(0.012) 0.274(0.013) 0.266(0.0125)
109 Umax(Y) - 0.0190(0.966) - - 0.0270(0.937)

Vmax(X) - 0.258(0.0064) - - 0.267(0.00667)
1010 Umax(Y) 0.0278(0.9625) 0.0278(0.94) - - 0.0143(0.956)

Vmax(X) 0.202(0.0055) 0.257(0.49) - - 0.270(0.00375)

Table 2.5: 2D comparison of the maximum horizontal velocity and the location along the vertical median line
for Ra = 109.

Ra [41] This work (uniform) This work (stretching)
109 Umax(Y) 0.0190(0.966) 0.0270(0.937) 0.0207(0.943)

23

2.4.1.3 Comparisons of mean profiles

We perform comparison with ref [12] of the mean profiles for a laminar case with Ra = 105,

and a turbulent case with Ra = 109. We plot the mean temperature and vertical velocity along

the horizontal median line and the mean temperature and horizontal velocity along the vertical

median line in Figure 2.4, and 2.5. We see that the overall comparisons for the laminar case are

excellent (indicating that the VMS treatment essentially vanishes in the laminar case, when the full

physics is accurately captured by the coarse scale). For the turbulent case, shown in Figure 2.5,

the comparisons are good 3, except for the horizontal velocity along the vertical median line. We

also plot the result from the stretched mesh as seen in Figure 2.5 (d). As anticipated, the stretched

mesh improves the result. In the latter part of the results section, we show that using weak boundary

conditions produces accurate results even when using a uniform mesh. We conclude this sub-section

by plotting 2D contours of temperature and velocities of the laminar case and turbulent case in

Figure 2.6.

2.4.2 3D case

2.4.2.1 Mesh convergence studies

We start this sub-section by performing mesh convergence studies for two cases: a laminar case

with Ra = 1.89 × 105, and a turbulent case with Ra = 1.5 × 109. To compare with available results,

the laminar case is simulated in a unit cubic cavity, while the turbulent case is simulated in a cuboid

with an aspect ratio of 1 × 1 × 0.32, which is identical to the experimental geometry reported in

ref [18]. For the turbulent case, we employ the clustered mesh discussed earlier (with a = 5). We

report convergence results of Nu in Table 2.6. We notice that, for both cases, the convergence of

the surface averaged Nusselt number is rapid.

3Note that we compare our results at Ra = 109 with 2D LES results in ref [18] which is computed at Ra = 1.5 × 109.

24

x coordinate

T
e

m
p

e
ra

tu
re

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Present 2D

[11]

(a)

x coordinate

v
­V

e
lo

c
it

y

0 0.2 0.4 0.6 0.8 1
­0.4

­0.3

­0.2

­0.1

0

0.1

0.2

0.3

0.4

Present 2D

[11]

(b)

u­Velocity

y
 c

o
o

rd
in

a
te

­0.4 ­0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

Present 2D

[11]

(c)

Figure 2.4: Mean profile comparisons of present 2D and [12] at Ra = 105. (a) Temperature along the
horizontal median line. (b) Vertical velocity along the horizontal median line. (c) Horizontal velocity along
the vertical median line.

25

x coordinate

T
e

m
p

e
ra

tu
re

0 0.02 0.04 0.06
0.4

0.5

0.6

0.7

0.8

0.9

1

Present 2D

LES 2D

(a)

x coordinate

v
­V

e
lo

c
it

y

0 0.01 0.02 0.03 0.04 0.05 0.06
­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Present 2D

LES 2D

(b)

Temperature

y
 c

o
o

rd
in

a
te

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

Present 2D

LES 2D

(c)

u­Velocity

y
 c

o
o

rd
in

a
te

­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06
0

0.1

0.2

0.3

0.4

0.5

Present 2D
LES 2D
Present 2D stretch

(d)

Figure 2.5: Mean profile comparisons for present 2D at Ra = 109, and 2D LES at Ra = 1.5 × 109 in [18].
(a) Temperature along the horizontal median line. (b) Vertical velocity along the horizontal median line. (c)
Temperature along the vertical median line. (d) Horizontal velocity along the vertical median line.

26

(a) (b)

(c) (d)

Figure 2.6: Visualizations of present 2D cases. (a) Streamline and velocity magnitude contour at Ra = 105

(b) Temperature contour at Ra = 105. (c) Streamline and velocity magnitude contour at Ra = 109 (d)
Temperature contour at Ra = 109.

27

Table 2.6: 3D mesh convergence results for Nu.

Mesh Ra = 1.89 × 105 Ra = 1.5 × 109

50 × 50 × 50 5.221 60.2
70 × 70 × 70 5.252 60.7

100 × 100 × 100 5.265 60.8

Table 2.7: 3D comparisons of Nu for Ra = 1.89 × 105.

This work [44] [45]
Ra Overall Mid-plane Overall Mid-plane Overall Mid-plane

1.89 × 105 5.265 5.535 5.252 5.537 5.31 5.71

2.4.2.2 Comparisons of averaged Nusselt numbers

We compare the converged value of Nu for the laminar case with available experimental and

LES results in Table 2.7. We get good agreement with the numerical correlation result in [44], as

well as the experimental results reported in [45]. For the turbulent case, we compare the Nu with

the 3D DNS result reported in [18]. This comparison is shown in Table 2.8 and exhibit good match.

2.4.2.3 Comparisons of mean profiles

We perform mean profile comparisons for Ra = 1.89 × 105 with numerical results in [44]

and experimental results in [46]. We plot the mean temperature and vertical velocity along the

horizontal median line, and mean temperature and horizontal velocity along the vertical median

line, as shown in Figure 2.7. The overall comparisons are good as seen in Figure 2.7 (a), (b).

Along the vertical direction, bigger discrepancies are found (between the numerical solutions and

experimental result) for the temperature near the top and bottom walls as seen in Figure 2.7 (c).

Note that both our numerical solution as well as the numerical solutions from [44] match but differ

from the experimental results. This is because it is very difficult to physically maintain a perfect no-

Table 2.8: 3D comparison of Nu for Ra = 1.5 × 109 on the median plane at the hot wall.

Ra This work DNS in [18]
1.5 × 109 60.8 60.1

28

heat-flux boundary condition in experiments, which can be clearly seen by the non-perpendicular

slope to those walls in the experimental result 4. For horizontal velocity along the vertical direction,

the comparison is again good as seen in Figure 2.7 (d).

For the turbulent case of Ra = 1.5 × 109, we impose the experimental values of temperature

from [18] at top and bottom walls as Dirichlet boundary condition, and compare our results with

the experimental results, as well as 3D DNS and 3D LES results with the same boundary condition

in [18] as shown in Figure 2.8. We can see that in the horizontal direction, all the numerical results

are nearly identical, but slightly underestimate the temperature compared to the experimental results.

For vertical velocity, our 3D result matches the 3D LES result, with minor variations with the 3D

DNS results and experimental results. In the vertical direction, all the numerical results are close,

but differ from the experimental result for temperature. We speculate that this could again be due

to the difficulty in maintaining a constant temperature at these large Ra numbers in the experiment.

The horizontal velocity compares very well, with our 3D result matching both the experiment as

well as the 3D DNS results.

2.4.2.4 Comparisons of fluctuation profiles

The comparisons of the fluctuation quantities with [18] are shown in Figure 2.9. Along the

horizontal direction, our fluctuation results best match the experimental results for temperature as

compared with other numerical results 2.9(a). The velocity fluctuations are reasonably captured

in 2.9(b). Note, however, that the scale of these fluctuations is two orders of magnitude smaller

than the corresponding fluctuations of the horizontal velocity component in the vertical direction

in 2.9(d), which is well captured by our framework. Finally, the temperature fluctuations in the

vertical direction are shown in 2.9(c), with all numerical results overestimating the magnitudes.

In this case too, the magnitude of the temperature fluctuations is one order magnitude lower than

that in the horizontal direction in 2.9(a). Overall, these results suggest that the fluctuations in both

temperature and velocity are reasonably well captured by the VMS based approach.

4One way to fix this discrepancy is to specify the experimental values of temperature on top and bottom walls as
Dirichlet boundary conditions

29

x coordinate

T
e

m
p

e
ra

tu
re

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

[33]

[36]

Present 3D

(a)

x coordinate

v
­V

e
lo

c
it

y

0 0.2 0.4 0.6 0.8 1
­0.4

­0.3

­0.2

­0.1

0

0.1

0.2

0.3

0.4

[33]

[36]

Present 3D

(b)

Temperature

y
 c

o
o

rd
in

a
te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

[33]

[36]

present 3D

(c)

u­Velocity

y
 c

o
o

rd
in

a
te

­0.4 ­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

[33]

[36]

Present 3D

(d)

Figure 2.7: Mean profile comparisons for present 3D at Ra = 1.89 × 105, numerical result at Ra = 105

in [44], and experimental result at Ra = 1.89× 105 in [46]. (a) Temperature along the horizontal median line.
(b) Vertical velocity along the horizontal median line. (c) Temperature along the vertical median line. (d)
Horizontal velocity along the vertical median line.

30

x coordinate

T
e

m
p

e
ra

tu
re

0 0.01 0.02 0.03 0.04 0.05 0.06
0.4

0.5

0.6

0.7

0.8

0.9

1

Exp

DNS 3D

LES 3D

Present 3D

(a)

x coordinate

v
­V

e
lo

c
it

y

0 0.01 0.02 0.03 0.04 0.05 0.06
­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Exp
DNS 3D

LES 3D
Present 3D

(b)

Temperature

y
 c

o
o

rd
in

a
te

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

Exp

DNS 3D
LES 3D

Present 3D

(c)

U­Velocity

y
 c

o
o

rd
in

a
te

­0.1 ­0.08 ­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06 0.08
0

0.1

0.2

0.3

0.4

0.5

Exp

DNS 3D
LES 3D

Present 3D

(d)

Figure 2.8: Mean profile comparisons for present 3D and [18] at Ra = 1.5 × 109. (a) Temperature along
the horizontal median line. (b) Vertical velocity along the horizontal median line. (c) Temperature along the
vertical median line. (d) Horizontal velocity along the vertical median line.

31

x coordinate

’
’

0 0.02 0.04 0.06
0

0.001

0.002

0.003

0.004

0.005

0.006

Exp

DNS 3D

LES 3D

Present 3D

(a)

x coordinate

v
’v

’

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0.0055

Exp

DNS 3D

LES 3D

Present 3D

(b)

’ ’

y
 c

o
o

rd
in

a
te

0 0.0002 0.0004 0.0006 0.0008 0.001
0

0.05

0.1

0.15

0.2

Exp
DNS 3D
LES 3D

Present 3D

(c)

u’u’

y
 c

o
o

rd
in

a
te

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
0

0.05

0.1

0.15

0.2

Exp
DNS 3D
LES 3D

Present 3D

(d)

Figure 2.9: Fluctuation distribution comparison for present 3D and [18]. (a) Temperature along horizontal
direction. (b) Vertical velocity along horizontal direction. (c) Temperature along vertical direction. (d)
Horizontal velocity along vertical direction.

32

Table 2.9: 2D mesh convergence results for Nu with weak BC.

Ra (Laminar) Ra (Transition) Ra (Turbulent)
Uniform mesh 103 104 105 106 107 108 109 1010

50 × 50 1.117 2.241 4.503 8.765 16.35 29.63 61.94 157.1
100 × 100 1.118 2.244 4.514 8.801 16.44 29.96 53.54 104.3
200 × 200 1.118 2.245 4.515 8.815 16.48 30.10 54.17 96.08
400 × 400 - - - - - - 54.41 97.46

2.4.3 2D case with weakly imposed boundary condition

2.4.3.1 Mesh convergence studies

In this sub-section, we weakly impose Dirichlet boundary conditions (weak BC), and re-

simulate the 2D cases for Ra from 103 to 1010 with a uniform mesh. Since the Prandtl number

Pr is close to unity, the thickness of the thermal boundary layer will be comparable with that of the

fluid boundary layer. As a result, we apply weak BC for both velocity and temperature. We compute

Nu on the hot wall where weak BC is imposed as Eq. (2.39), following the same theory of traction

computation for weak BC of velocity in [47].

Nu =

∫
ΓH
∇∇∇∗θ · n dΓ −

∫
ΓH
τB

E
∗
·
(
θ − θg

)
dΓ

AΓH

, (2.39)

where τB
E
∗ is now non-dimensionalized as τB

E
∗

= CB
E/h

∗, and h∗ and θg are the non-dimensional

wall-normal element size and prescribed Dirichlet temperature at the hot wall respectively. The

mesh convergence results for Nu are shown in Tab. 2.9. As expected, for the laminar cases, the weak

BC performs similar to the strong BC (since the strong BC already performed well well at coarse

meshes). However, for high Ra, weak imposition of Dirichlet BC shows significant advantages

in accurately capturing the thermal boundary effects, even with coarse meshes. For example, the

strong BC implementations required a mesh of 400 × 400 and 600 × 600 to produce reasonable Nu

for Ra = 109 and Ra = 1010 respectively, while weak BC only needs a mesh of 100 × 100 and

200 × 200 for these cases. These results strongly point to the computational advantages of weak

imposition of Dirichlet boundary conditions.

33

Table 2.10: 2D comparisons of maximum velocities and locations along median lines for strong BC and weak
BC at Ra = 109.

Ra Strong BC Weak BC
109 Umax(Y) 0.0270(0.937) 0.0191(0.93)

Vmax(X) 0.267(0.00667) 0.273(0.01)

2.4.3.2 Comparisons with strong BC for the turbulent case

We select a turbulent 2D case with Ra = 109, and perform detailed comparisons of weak BC

with a uniform mesh density of 100×100 and strong BC with a uniform mesh density of 600×600.

The maximum velocities and corresponding locations on median lines for strong BC and weak BC

are shown in Table 2.10. We can see in the vertical direction, weak BC with the mesh density of

100 × 100 is able to fix the mismatch of the maximum horizontal velocity in strong BC, which

is caused by the insufficient mesh density in the boundary layer even with the mesh density of

600 × 600. Similar results are observed in the horizontal direction.

Comparisons of mean profiles along median lines are shown in Figure 2.10. In the horizontal

direction, since we only plot results within a thin layer 0.06 from the hot wall, the weak BC case

only has a few points because of the mesh density. However, we can still observe a good agreement

between strong BC and weak BC. In the vertical direction, both cases produce close results for

temperature as seen in Figure 2.10(c). For the horizontal velocity, we remind the reader that we had

to resort to a clustered mesh for the strong BC, but are able to get identical results with a uniform

mesh for the weak BC case, as seen in Figure 2.10(d).

2.5 Conclusions

We have extended the variational multiscale method to buoyancy-driven flow, and verified and

validated the framework with a Rayleigh–Bénard convection problem for both 2D and 3D cases.

We show excellent comparisons for 2D across a wide range of Rayleigh numbers, without any

special treatments. We also successfully compared simulation results with 3D experimental results

as well as other LES results for both laminar and turbulent conditions. We also extended the weak

34

x coordinate

T
e

m
p

e
ra

tu
re

0 0.02 0.04 0.06
0.4

0.5

0.6

0.7

0.8

0.9

1

Strong BC

Weak BC

(a)

x coordinate

v
­V

e
lo

c
it

y

0 0.01 0.02 0.03 0.04 0.05 0.06
­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Strong BC
Weak BC

(b)

Temperature

y
 c

o
o

rd
in

a
te

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

Strong BC

Weak BC

(c)

u­Velocity

y
 c

o
o

rd
in

a
te

­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06
0

0.1

0.2

0.3

0.4

0.5

Strong BC
LES 2D in [18]
Weak BC

(d)

Figure 2.10: Mean profile comparisons of uniform mesh for 2D strong BC and weak BC at Ra = 109.
Strong BC mesh: 600 × 600; Weak BC mesh: 100 × 100. (a) Temperature along the horizontal median line.
(b) Vertical velocity along the horizontal median line. (c) Temperature along the vertical median line. (d)
Horizontal velocity along the vertical median line.

35

imposition of boundary condition idea to the buoyancy-driven flow case. We are able to show the

significant computational advantage of weak imposition of boundary conditions. This suggests that

the VMS framework with weak imposition of Dirichlet boundary conditions is a computationally

efficient approach to model buoyancy-driven flow physics in complex indoor environments. Our

future work involves deploying this framework to complex indoor environments to study energy

characteristics as well as contaminant transport in the built environment [48, 49].

2.6 References

[1] J. D. Kelso. Buildings energy data book. US Dept. of Energy, 2011.
[2] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder, V. Stauch, B. Lehmann,

and M. Morari. Use of model predictive control and weather forecasts for energy efficient
building climate control. Energy and Buildings, 45:15–27, 2012.

[3] S. Petersen and S. Svendsen. Method for simulating predictive control of building systems
operation in the early stages of building design. Applied energy, 88(12):4597–4606, 2011.

[4] S. Privara, J. Cigler, Z. Váňa, F. Oldewurtel, C. Sagerschnig, and E. Žáčeková. Building
modeling as a crucial part for building predictive control. Energy and Buildings, 56:8–22,
2013.

[5] S. Privara, J. Širokỳ, L. Ferkl, and J. Cigler. Model predictive control of a building heating
system: The first experience. Energy and Buildings, 43(2):564–572, 2011.

[6] C. V. Rao and J. B. Rawlings. Linear programming and model predictive control. Journal of
Process Control, 10(2):283–289, 2000.

[7] T. Salsbury, P. Mhaskar, and S. J. Qin. Predictive control methods to improve energy efficiency
and reduce demand in buildings. Computers & Chemical Engineering, 51:77–85, 2013.

[8] M. Santamouris and F. Allard. Natural ventilation in buildings: a design handbook. Earthscan,
1998.

[9] N. C. Markatos and K. A. Pericleous. Laminar and turbulent natural convection in an enclosed
cavity. International Journal of Heat and Mass Transfer, 27(5):755–772, 1984.

[10] R. A. W. M. Henkes, F. F. Van Der Vlugt, and C. J. Hoogendoorn. Natural-convection flow
in a square cavity calculated with low-reynolds-number turbulence models. International
Journal of Heat and Mass Transfer, 34(2):377–388, 1991.

[11] A. M. Lankhorst and C. J. Hoogendoorn. Numerical computation of high rayleigh number nat-
ural convection and prediction of hot radiator induced room air motion. Applied Scientific
Research, 47(4):301–322, 1990.

[12] G. Barakos, E. Mitsoulis, and D. Assimacopoulos. Natural convection flow in a square cavity
revisited: laminar and turbulent models with wall functions. International Journal for
Numerical Methods in Fluids, 18(7):695–719, 1994.

[13] K. J. Hsieh and F. S. Lien. Numerical modeling of buoyancy-driven turbulent flows in enclo-
sures. International Journal of Heat and Fluid Flow, 25(4):659–670, 2004.

[14] S. Tieszen, A. Ooi, P. Durbin, and M. Behnia. Modeling of natural convection heat transfer.
In Proceedings of the Summer Program, pages 287–302, 1998.

36

[15] Z. Zhai. Application of computational fluid dynamics in building design: aspects and trends.
Indoor and built environment, 15(4):305–313, 2006.

[16] Y. Li and P. V. Nielsen. Cfd and ventilation research. Indoor Air, 21(6):442–453, 2011.
[17] D. Etheridge. A perspective on fifty years of natural ventilation research. Building and En-

vironment, 91(Supplement C):51 – 60, 2015. Fifty Year Anniversary for Building and
Environment.

[18] J. Salat, S. Xin, P. Joubert, A. Sergent, F. Penot, and P. Le Quéré. Experimental and numer-
ical investigation of turbulent natural convection in a large air-filled cavity. International
Journal of Heat and Fluid Flow, 25(5):824–832, 2004.

[19] S.-H. Peng and L. Davidson. Large eddy simulation for turbulent buoyant flow in a confined
cavity. International Journal of Heat and Fluid Flow, 22(3):323–331, 2001.

[20] A. Sergent, P. Joubert, and P. Le Quéré. Development of a local subgrid diffusivity model
for large-eddy simulation of buoyancy-driven flows: application to a square differentially
heated cavity. Numerical Heat Transfer: Part A: Applications, 44(8):789–810, 2003.

[21] C. Van Treeck, E. Rank, M. Krafczyk, J. Tölke, and B. Nachtwey. Extension of a hybrid
thermal lbe scheme for large-eddy simulations of turbulent convective flows. Computers
& Fluids, 35(8):863–871, 2006.

[22] T. J. R. Hughes, L. Mazzei, and K. E. Jansen. Large eddy simulation and the variational
multiscale method. Computing and Visualization in Science, 3:47–59, 2000.

[23] T. J. R. Hughes, L. Mazzei, A. A. Oberai, and A. Wray. The multiscale formulation of large
eddy simulation: Decay of homogeneous isotropic turbulence. Physics of Fluids, 13:505–
512, 2001.

[24] Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational
multiscale residual-based turbulence modeling for large eddy simulation of incompressible
flows. Computer Methods in Applied Mechanics and Engineering, 197(1):173–201, 2007.

[25] Y. Bazilevs and I. Akkerman. Large eddy simulation of turbulent Taylor–Couette flow using
isogeometric analysis and the residual-based variational multiscale method. Journal of
Computational Physics, 229:3402–3414, 2010.

[26] Y. Bazilevs, K. Takizawa, T. E. Tezduyar, M.-C. Hsu, N. Kostov, and S. McIntyre. Aero-
dynamic and FSI analysis of wind turbines with the ALE–VMS and ST–VMS methods.
Archives of Computational Methods in Engineering, 21:359–398, 2014.

[27] K. Takizawa, Y. Bazilevs, T. E. Tezduyar, M.-C. Hsu, O. Øiseth, K. M. Mathisen, N. Kos-
tov, and S. McIntyre. Engineering analysis and design with ALE–VMS and Space–Time
methods. Archives of Computational Methods in Engineering, 21:481–508, 2014.

[28] K. Takizawa, Y. Bazilevs, T. E. Tezduyar, C. C. Long, A. L. Marsden, and K. Schjodt. ST and
ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Mathe-
matical Models and Methods in Applied Sciences, 24:2437–2486, 2014.

[29] Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid
mechanics. Computers & Fluids, 36:12–26, 2007.

[30] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Isogeometric variational multiscale
modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on
unstretched meshes. Computer Methods in Applied Mechanics and Engineering, 199:780–
790, 2010.

[31] M.-C. Hsu, I. Akkerman, and Y. Bazilevs. Wind turbine aerodynamics using ale–vms: Vali-
dation and the role of weakly enforced boundary conditions. Computational Mechanics,
50(4):499–511, 2012.

37

[32] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Weak Dirichlet boundary con-
ditions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and
Engineering, 196(49):4853–4862, 2007.

[33] C. Johnson. Numerical solution of partial differential equations by the finite element method.
Cambridge University Press, Sweden, 1987.

[34] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, 2nd ed.
Springer, 2002.

[35] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung
von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, 36:9–15, 1971.

[36] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,
W. Gropp, D. Kaushik, et al. Petsc users manual revision 3.8. Technical report, Argonne
National Lab.(ANL), Argonne, IL (United States), 2017.

[37] G. Karypis, K. Schloegel, and V. Kumar. Parmetis: Parallel graph partitioning and sparse
matrix ordering library. Version 1.0, Dept. of Computer Science, University of Minnesota,
page 22, 1997.

[38] G. de Vahl Davis. Natural convection of air in a square cavity: a bench mark numerical
solution. International Journal for numerical methods in fluids, 3(3):249–264, 1983.

[39] H. Sajjadi, M. Gorji, S. F. Hosseinizadeh, G. R. Kefayati, and D. D. Ganji. Numerical anal-
ysis of turbulent natural convection in square cavity using large-eddy simulation in lattice
boltzmann method. Iranian Journal of Science and Technology. Transactions of Mechani-
cal Engineering, 35(M2):133, 2011.

[40] S. Chen, H. Liu, and C. Zheng. Numerical study of turbulent double-diffusive natural con-
vection in a square cavity by les-based lattice boltzmann model. International Journal of
Heat and Mass Transfer, 55(17):4862–4870, 2012.

[41] H. N. Dixit and V. Babu. Simulation of high rayleigh number natural convection in a square
cavity using the lattice boltzmann method. International journal of heat and mass transfer,
49(3):727–739, 2006.

[42] P. Le Quéré. Accurate solutions to the square thermally driven cavity at high rayleigh number.
Computers & Fluids, 20(1):29–41, 1991.

[43] D. C. Wan, B. S. V. Patnaik, and G. W. Wei. A new benchmark quality solution for the
buoyancy-driven cavity by discrete singular convolution. Numerical Heat Transfer: Part
B: Fundamentals, 40(3):199–228, 2001.

[44] T. Fusegi, J. M. Hyun, K. Kuwahara, and B. Farouk. A numerical study of three-dimensional
natural convection in a differentially heated cubical enclosure. International Journal of
Heat and Mass Transfer, 34(6):1543–1557, 1991.

[45] G. D. Mallinson and G. De Vahl Davis. Three-dimensional natural convection in a box: a
numerical study. Journal of Fluid Mechanics, 83(1):1–31, 1977.

[46] R. J. Krane and J. Jessee. Some detailed field measurements for a natural convection flow in a
vertical square enclosure. In Proceedings of the First ASME-JSME Thermal Engineering
Joint Conference, 1983, volume 1, pages 323–329, 1983.

[47] Y. Bazilevs and I. Akkerman. Large eddy simulation of turbulent taylor–couette flow using
isogeometric analysis and the residual-based variational multiscale method. Journal of
Computational Physics, 229(9):3402–3414, 2010.

38

[48] A. Fontanini, M. G. Olsen, and B. Ganapathysubramanian. Thermal comparison between
ceiling diffusers and fabric ductwork diffusers for green buildings. Energy and Buildings,
43(11):2973–2987, 2011.

[49] A. Fontanini, U. Vaidya, and B. Ganapathysubramanian. A methodology for optimal place-
ment of sensors in enclosed environments: A dynamical systems approach. Building and
Environment, 100:145–161, 2016.

39

CHAPTER 3. IMMERSOGEOMETRIC ANALYSIS OF MOVING OBJECTS IN

INCOMPRESSIBLE FLOWS

This chapter includes a manuscript titled ”Immersogeometric analysis of moving objects in

incompressible flows”, in preparation for submission to Computers & Fluids journal, authored by

Songzhe Xu, Fei Xu, Ming-Chen Hsu and Baskar Ganapathysubramanian

Abstract

We deploy the immersogeometric method for moving objects. The method immerses objects

into non-boundary-fitted meshes and weakly enforces Dirichlet boundary conditions on the object

boundaries. The object evolution is driven by integrated surface force and external force (grav-

ity). The finite element formulation is stabilized by the variational multiscale method. Adaptively

refined quadrature rules are used to better capture the geometry of the immersed boundary and ac-

curately integrate the background elements that intersect the immersed boundary. Treatment for

the freshly-cleared nodes is considered. We assess the accuracy of the method by analyzing object

motion in different flow structures including freely dropping objects in viscous fluids and particle

focusing in unobstructed and obstructed micro-channels. We show that quantities of interest are in

very good agreements with analytical, numerical and experimental solutions. We also show a much

better computational efficiency than Fluent with the body-fitted method. The framework of mov-

ing immersogeometric method is capable to be deployed in further applications of particle inertia

migration in microfluidic channels.

3.1 Introduction

Control and localization of finite-size particles (e.g., cells and precipitates) in aqueous flow is

useful in biological processing, chemical reaction control, and for creating structured materials.

40

Some examples include fast identification of E. coli in water, robust removal of circulating tumor

cells from the blood plasma, and fast separation of cells types for rapid flow cytometry. The pre-

cise, efficient and cheap localization of a heterogeneous collection of cells in a fluid medium is an

important challenge with multiple engineering and health applications. Most current approaches to

particle localization in microfluidic devices are predominantly active, i.e., some external stimuli,

such as electric field, permeate flow, and stirrer, are used to create flow conditions that encourage

particle separation and localization. However, active control of particles in microfluidic devices

results in device designs that are potentially more expensive, with multiple moving parts that can

fail more frequently, and that require operation and transport in controlled environments. A general

strategy for passive control of particle localization and focusing in microfluidic channels will be

transformative to this field.

Studies suggest that such a passive flow control paradigm is possible by utilizing the notion of

inertial migration and focusing of particles in microfluidic channels [1]. Segre and Silberberg [2,3]

first experimentally observed the phenomena of focusing of particles in a straight channel (or tube)

flow. Under conditions where inertial effects are non-negligible (i.e. channel Reynolds number

≥ 5), particles undergo a lateral motion across the flow streamlines until they reach a stable equilib-

rium located between the channel centerline and the confining walls. Subsequent theoretical studies

provided a general understanding of the lift forces and how the structure of lift forces depends on

the particle size, channel dimensions and flow rate (or Reynolds number). Recent studies have fur-

ther shown that placing bluff obstacles, such as micropillarsin the microchannel produces a particle

size/inertia dependent effect, thus providing additional knobs for passive control. While the local-

ization (or focusing) of particles in unobstructed microfluid channels is well known, the behavior

(and control) of localization of particles in obstructed microfluidic channels is a very novel problem

with a rich physical underpinning. The ability to exploit these phenomena (for separation, concen-

tration, and sorting of cells and biomolecules with high specificity) requires highly accurate force

and trajectory calculations. This serves as the primary motivation for the current work.

41

Tracking finite-size particle motion in inertial flows (especially in obstructed geometries) is

a computationally challenging problem. Approaches to simulate such a system include boundary-

fitted and non-boundary-fitted methods. In the boundary-fitted approach, the fluid problem is solved

on a mesh that conforms to the fluid–object (particle) interface and deforms around it. The fluid

problem on the deforming domain is written in an arbitrary Lagrangian–Eulerian (ALE) [4–6] or a

space–time (ST) [7,8] coordinate system. Boundary-fitted methods have the advantage of satisfying

kinematic constraints such as no-slip boundary conditions by construction. However, for situations

that involve large translational and/or rotational interface motions, the boundary-fitted mesh can

become severely distorted if it is continuously deformed from a single reference configuration,

harming both the conditioning of the discrete problem and the accuracy of its solution. Applying

boundary-fitted methods to complex moving-interface problems may therefore require specialized

solution strategies to maintain fluid mesh quality. One approach is remeshing, in which all or part

of the fluid domain is re-discretized when mesh distortion becomes too extreme [9–11]. Mesh

management is complicated further if the object moves into and out of contact with other objects,

changing the topology of the fluid domain [12, 13].

For these reasons, non-boundary-fitted approaches have become a popular alternative for the

simulation of moving-interface problems. Non-boundary-fitted methods approximate the solution

of boundary value problems on analysis meshes that do not necessarily conform to the boundary of

the domain. The analysis object is arbitrarily superimposed onto (or immersed into) a background

fluid mesh. Such methods have greater geometric flexibility than their boundary-fitted counterparts.

However, kinematic constraints such as Dirichlet boundary conditions at the immersed interface

can no longer be imposed strongly on the discrete solution space. To apply interface conditions,

one must devise a suitable method for weak enforcement. The first non-boundary-fitted approach

that became widely known for computational fluid dynamics (CFD) was the immersed boundary

method [14, 15]. Since then, immersed methods have been applied to a variety of flow prob-

lems [16–19]. In the context of finite elements, several adaptations of immersed methods were

explored in the 2000s for the simulation of fluid interacting with moving objects. Glowinski and

42

coworkers [20–22] simulated viscous flow interacting with rigid particles by enforcing the rigid-

body-motion constraint on the overlapping fluid mesh through a distributed Lagrange multiplier

field. Zhang, Liu and cowokers [23–26] developed the immersed finite element method (IFEM)

to use a flexible Lagrangian solid mesh that moves on top of a background Eulerian fluid mesh.

Casquero et al. [27] later enhanced IFEM by introducing non-uniform rational B-splines (NURBS)

as the basis functions to improve the robustness and accuracy of the immersed method. In addition,

Rüberg and Cirak [28] and Kadapa et al. [29] applied Nitsche’s method [30] at the immersed inter-

face with background B-spline finite elements for the simulation of moving-boundary problems.

While immersed methods show great flexibility in solving complex moving-boundary problems,

they typically suffer from reduced accuracy of the solution near the immersed boundary. Kamensky

et al. [31] and Xu et al. [32] found that the reduced accuracy is partially related to the representation

of the geometry in the immersed domain. The immersogeometric analysis (IMGA) was proposed

to alleviate this issue, to faithfully capture the immersed geometry in the intersected elements. The

method also alleviates the difficulties associated with CFD mesh generation around complex design

geometries. The immersogeometric method is comprised of the following main components. A

variational multiscale (VMS) formulation of incompressible flow [33–36] is used, which provides

accuracy and robustness in both laminar and turbulent flow simulations. The Dirichlet boundary

conditions on the surface of the immersed geometry are enforced weakly using an extension of

Nitsche’s method [37, 38]. This weak boundary condition formulation can be integrated over the

immersed object surface directly using its computer-aided design (CAD) boundary representation

(B-rep) [39,40]. An exact representation of the design geometry is therefore used in the simulation,

sharing the same philosophy with isogeometric analysis [41]. Adaptively refined quadrature rules

are used to accurately integrate the background elements cut by the immersed boundary. It was

found in Xu et al. [32] that improved quadrature in intersected elements is critical for obtaining ac-

curate flow solutions when using immersed methods. In this work, we apply the immersogeometric

method to the analysis of moving-particle problems.

43

Applying the IMGA to problems of moving objects raises some challenges, in which the most

significant one is the treatment of freshly-cleared nodes – the nodes that are previously inside the

object at one time step, but are outside (i.e. in the fluid domain) at the next time step due to object

motion. These nodes lack a time history of the fluid field. This may result in discontinuities and

divergences due to bad initial guesses. Udaykumar et al. [42] approximated the velocity and pressure

on those freshly-cleared nodes via interpolation of neighboring cells. We adopt this technique and

extend it into the context of finite element framework.

The paper is organized as follows. In Section 3.2, we summarize the numerical formulation of

the Navier–Stokes equations posed on a non-boundary-fitted discretization. Section 3.3 describes

the details of implementation of the framework. In Section 3.4, we verify and validate the devel-

oped methods by some cases, including freely falling cylinder/ball in viscous fluids, and particle

focusing and migration in (un)obstructed channels. We demonstrate the capability of the developed

framework on such applications of fluid–structure interaction. Finally, we draw conclusions and

motivate future research in Section 3.5.

3.2 Immersogeometric methodology

In this section, we summarize the variational formulation of the Navier–Stokes equations of

incompressible flow and its spatial and temporal discretizations. We also emphasize the weak en-

forcement of boundary conditions, which is an essential component of the IMGA framework.

3.2.1 Governing equations of incompressible flow

The Navier–Stokes equations of the incompressible flow are written as

ρ

(
∂u
∂t

+ u · ∇∇∇u − f
)
−∇∇∇ ·σσσ = 0 , (3.1)

∇∇∇ · u = 0 , (3.2)

44

where ρ, u, and f are the fluid density, the flow velocity and the external force per unit mass,

respectively. The stress and strain-rate tensors are defined respectively as

σσσ (u, p) = −p I + 2µεεε(u) , (3.3)

εεε(u) =
1
2

(
∇∇∇u +∇∇∇uT

)
, (3.4)

where p is the pressure, I is an identity tensor and µ is the dynamic viscosity. The problem (3.1)–

(3.4) is accompanied by suitable boundary conditions, defined on the boundary of the fluid domain,

Γ = ΓD
t ∪ ΓN:

u = ug on ΓD
t , (3.5)

−p n + 2µεεε(u) n = h on ΓN , (3.6)

where ug denotes the prescribed velocity at the Dirichlet boundary ΓD
t , h is the traction vector at the

Neumann boundary ΓN, and n is the unit normal vector pointing in the wall-outward direction.

3.2.2 Semi-discrete variational multiscale formulation

Consider a collection of disjoint elements {Ωe}, ∪eΩ
e ⊂ Rd, with closure covering the fluid

domain: Ω ⊂ ∪eΩe. Note that Ωe is not necessarily a subset of Ω because of the non-conforming

fluid–structure interface. Let Vh
u and Vh

p be the discrete velocity and pressure spaces of functions

supported on these elements. The strong problem (3.1)–(3.6) may be recast in a weak form and

posed over these discrete spaces to produce the following semi-discrete problem: Find uh ∈ Vh
u and

ph ∈ Vh
p such that for all wh ∈ Vh

u and qh ∈ Vh
p:

BVMS
(
{wh, qh}, {uh, ph}

)
− F

(
{wh, qh}

)
= 0 . (3.7)

The bilinear form BVMS and the load vector FVMS are given as

BVMS
(
{wh, qh}, {uh, ph}

)
=

∫
Ω

wh · ρ

(
∂uh

∂t
+ uh · ∇∇∇uh

)
dΩ +

∫
Ω

εεε(wh) : σσσ
(
uh, ph

)
dΩ (3.8)

+

∫
Ω

qh∇∇∇ · uh dΩ

45

−
∑

e

∫
Ωe∩Ω

(
ρuh · ∇∇∇wh +∇∇∇qh

)
· u′ dΩ

−
∑

e

∫
Ωe∩Ω

p′∇∇∇ · wh dΩ +
∑

e

∫
Ωe∩Ω

ρwh · (u′ · ∇∇∇uh) dΩ

−
∑

e

∫
Ωe∩Ω

ρ∇∇∇wh :
(
u′ ⊗ u′

)
dΩ, (3.9)

and

F
(
{wh, qh}

)
=

∫
Ω

wh · ρ f dΩ +

∫
ΓN

wh · h dΓ , (3.10)

where u′ is defined as

u′ = −τM

(
∂uh

∂t
+ uh · ∇∇∇uh − f −

1
ρ
∇∇∇ ·σσσ

(
uh, ph

))
, (3.11)

and p′ is given by

p′ = −ρτC∇∇∇ · uh . (3.12)

Eq. (3.8)–(3.12) feature the residual-based VMS formulation of Navier–Stokes equations of incom-

pressible flows [36]. The additional terms added onto the standard weak Galerkin form can be

interpreted as a combination of streamline/upwind Petrov Galerkin (SUPG) stabilization and VMS

large-eddy simulation of turbulence modeling [34–36, 43–46]. The stabilization parameters are de-

signed as

τM =

(Ct

∆t2 + u ·G u + CI ν
2 G : G

)−1/2
, (3.13)

τC = (τM tr G)−1 , (3.14)

where ∆t is the time-step size, CI is a positive constant [47–49], ν = µ/ρ is the fluid kinematic

viscosity, G is the element metric tensor calculated by the mapping from the isoparametric element

to its physical counterpart x(ξ):

Gi j =

d∑
k=1

∂ξk

∂xi

∂ξk

∂x j
, (3.15)

tr G is the trace of G, and the parameter Ct is typically set to 4 [36, 45].

46

3.2.3 Variationally consistent weak boundary conditions

The standard way of strongly imposing Dirichlet boundary conditions in Eq. (3.7) is not feasible

in IMGA. We thus employ the weak enforcement in the sense of Nitsche’s method [30] proposed by

Bazilevs et al. [38, 50, 51]. Assuming the fluid domain boundary Γ is decomposed into Neb surface

elements each denoted by Γb, the semi-discrete problem becomes

BVMS
(
{wh, qh}, {uh, ph}

)
− FVMS

(
{wh, qh}

)
−

∫
ΓD

t

wh ·
(
−ph n + 2µεεε(uh) n

)
dΓ

−

∫
ΓD

t

(
2µεεε(wh) n + qh n

)
·
(
uh − ug

)
dΓ

+

∫
ΓD

t

τBwh ·
(
uh − ug

)
dΓ = 0 . (3.16)

The detailed interpretation of different terms can be found in [38]. The only parameter, τB, is

a penalty-like stabilization parameter that helps to satisfy the no-slip condition on the boundary.

Bazilevs et al. [38, 50, 51] indicate that the stabilization parameter should be chosen as a com-

promise of the following conditions. If τB is too large, the penalty term dominates the formula-

tion, overshadowing the variational consistency that is responsible for the good performance of the

method, and can result in an ill-conditioned stiffness matrix. If τB is too small, on the other hand,

the solution is not stable, and the solver may confront convergence issues as well. In this paper,

we use the definition proposed in [52], which scales the stabilization parameter as τB = CBρh/∆t,

where CB is a positive constant. For simplicity, we choose h to be the wall normal size of the

whole cut element. This choice leads to a slight over-estimation of the penalty parameter, due to

the fact that only a part of an intersected element is inside the fluid domain. It was shown that ex-

cessive over-penalization in Nitsche type formulation on non-conforming meshes tends to produce

oscillatory coupling forces [53–57]. Local surface traction calculations would likely suffer from the

over-estimation of τB. In the present work, however, we are only interested in the overall fluid force

acting on the surfaces of immersed objects, where the force integral over the closed surfaces may

counteract the local over-estimation in opposite directions, which results in a reasonable net overall

47

force and smooths out the effect of local over-estimation. Our numerical experiments reveal that the

proposed formulation of penalty preserves the accuracy very well.

3.2.4 Time discretization and iterative method

We employ the backward Euler finite difference scheme to complete the discretization in time

∂u
∂t

=
un − un−1

∆t
= L(un, pn), (3.17)

where the operatorL(un, pn) represents all the other terms except the time-dependent term Eq. (3.1)

evaluated at the current time step. ∆t is selected to follow CFL condition. We implement the par-

allelized moving immersogeometric method within our in-house parallel finite element framework.

The domain decomposition is achieved via Parmetis [58]. The (non)linear solution procedure is

taken care of by PETSC [59]. We utilize the SNES construct (line search quasi-Newton), which

uses the KSP construct, specifically the BCGS solver, for the linearized system. For some time

steps, the SNES solver may diverge from prescribed relative tolerance of residual norm. We then

apply sub-preconditioner LU to the sub-blocks of the matrix and resolve those time steps. We en-

sure for each time step, the residual norm is decreased below prescribed criterions (absolute and

relative tolerances of SNES iterations, etc).

3.3 Implementation of moving B-rep

3.3.1 Modeling the rigid body motion

The objects are modeled as rigid bodies. We denote the velocities of the objects as vi, with

the subscript i indicating the ith immersed object, the motion of the objects can be described in the

Lagrangian reference frame by

dxc
i

dt
= vc

i ,
dvc

i

dt
=

Fi

mi
, (3.18)

dθθθc
i

dt
= ωωωc

i ,
dωωωc

i

dt
=

Ti

Ji
, (3.19)

48

where xc
i and θθθc

i are the linear and angular locations of the centroid of ith object, vc
i and ωωωc

i are

linear and angular velocities of the centroid of ith object, Fi and Ti are the overall force and torque

integrated over the surface of ith object, and mi and Ji are the mass and moment of inertia of the ith

object. Fi and Ti are computed from the solution of the fluid field, and defined as follows

Fi =

∮
Γi

σσσi (u, p) · nidΓ, Ti =

∮
Γi

ri × (σσσi (u, p) · ni) dΓ, (3.20)

Where Γi is the boundary of the ith object,σσσi (u, p) is the stress tensor acting on the surface of ith ob-

ject, ri is the distance vector from the centroid of ith object to the evaluated point on its surface, and

the coordinates xi and velocities vi of the evaluated point on the surface of ith object are computed

as

xi = xc
i + ri, vi = vc

i +ωωωc
i × ri. (3.21)

where ni is the unit normal vector at the evaluated point that points outward from the ith object. In

the discrete form, assuming the overall force and torque acting on the ith object surface are constant

during one time step, we have

(xc
i)n+1 − (xc

i)n

∆t
=

(vc
i)n+1 + (vc

i)n

2
,

(vc
i)n+1 − (vc

i)n

∆t
=

(Fi)n

mi
, (3.22)

(θθθc
i)n+1 − (θθθc

i)n

∆t
=

(ωωωc
i)n+1 + (ωωωc

i)n

2
,

(ωωωc
i)n+1 − (ωωωc

i)n

∆t
=

(Ti)n

mi
. (3.23)

(Fi)n and (Ti)n are discretized in space and computed with weakly imposed boundary condition as

follows

(Fi)n =

Neb∑
b=1

∫
Γb ⋂

Γi

σσσi(un, pn) · nidΓ −

Neb∑
b=1

∫
Γb ⋂

Γi

τB(un − vn
i)dΓ, (3.24)

(Ti)n =

Neb∑
b=1

∫
Γb ⋂

Γi

ri ×
(
σσσi(un, pn) · ni

)
dΓ −

Neb∑
b=1

∫
Γb ⋂

Γi

ri × τ
B(un − vn

i)dΓ (3.25)

Each object velocity is evaluated using an explicit forward Euler scheme, which requires small ∆t

to ensure accuracy and stability. Each object location is updated by the average velocities, which is

essentially Crank–Nicolson scheme, and therefore more stable and accurate. 1

1Some higher order schemes in explicit BDF family as well as implicit RK2 family are also tried. However, we found
they don’t improve the solution with a significantly bigger ∆t.

49

3.3.2 In-out test

The in-out test essentially returns a boolean value depending on if a certain point is inside-or-

outside the object. There are a variety of approaches for performing an in-out test, including the

ray-tracing algorithm. In our simulations, since we only consider analytical shapes for our objects,

we can determine if a query point is inside-or-outside an object using the geometry equation of the

object. The equation of an object geometry will change every time step because of the linear and

angular motion of the object. We transform the query point into the Lagrangian reference frame of

the object in the in-out test so that we can retain the consistency of the geometry equation to avoid

its computation in Euler reference frame every time step during the movement of the object.

3.3.3 Treatment of freshly-cleared nodes

Consider the nodes in the background mesh that are covered by the object at this time step. At

the next time step, some of these nodes may no longer be covered by the object due to the motion

of the object. We call these nodes ’freshly-cleared’. Note that we have no fluid history of the flow

field recorded on those nodes. 2 To obtain a reasonable solution on those nodes and complete the

fluid field solution, we interpolate using the solution of their neighbor nodes in the fluid domain

and boundary values of nearby points on the object surface. This provides a good guess to start the

solution process. We denote the union of the variables in fluid field as U = {u, p}, and the union

of the variables on the ith object surface as V = {vi, pi}. The union of interpolated variables on the

freshly-cleared nodes corresponding to the ith object is denoted as Ufreshly-cleared
i .

Ufreshly-cleared
i =

Nf∑
k=1

1
dk

f

Uk +
Ns∑

k=1

1
dk

s
Vk

i

Nf∑
k=1

1
dk

f

+
Ns∑

k=1

1
dk

s

(3.26)

2In fact, most of the freshly-cleared nodes should be on the intersected elements because ∆t is small, and therefore the
distance that an object can move in one time step would be small as well. We do solve for those nodes even if they are
inside the object, but the values on those nodes are adjusted to balance the corresponding intersected elements and ensure
the weakly imposed no-slip boundary condition on the object surface is satisfied, and therefore achieve the accuracy of
the solution on their neighbor nodes in the fluid field. As a result, the values on the freshly-cleared nodes are not the
correct solution of the fluid field.

50

Figure 3.1: Schematic of the interpolation of the freshly-cleared nodes.

where df and ds are the distances from neighbor nodes in fluid domain and nearby points on the

object surface to the freshly-cleared node, respectively, and Nf and Ns are their respective numbers.

All the nodes in fluid domain and points on object surface that are used to interpolate at one particu-

lar freshly-cleared node are set to be in the region centered at the freshly-cleared node with a radius

of O(h). 3 A schematic of this is shown in Fig. 3.1.

3.3.4 Work flow of the framework

We first solve for the fluid field solution Un at current time step tn, provided the updated coor-

dinates of surface points of each object xn
i and the updated boundary velocities on surface points of

each object vn
i , and fluid field solution Un−1 from last time step tn−1. Then we evaluate the overall

force and torque over each object surface, Fn
i and Tn

i , based on Un and vn
i . Then we update the

coordinates of surface points of each object xn+1
i at next time step tn+1. Then we check if there are

any freshly-cleared nodes in the fluid field, and interpolate for those nodes by Un at neighbor nodes

in fluid field, and Vn
i on nearby points on corresponding object surface. We need to compute the

boundary values of pressure on surface points of each object pn
i before the interpolation of pressure.

Finally, we update the velocities on surface points of each object vn+1
i as boundary conditions for

Un+1 at tn+1, and pass the fluid field Un to solve for Un+1. This procedure is shown in Fig. 3.2.

3We also ensure that Nf and Ns are comparable.

51

Given fluid field Un−1 = { un−1, pn−1 } and
{ xn

i , vn
i } on surface points of each object

Solve for fluid field Un

Compute { Fn
i , Tn

i } over each object surface

Update xn+1
i of surface points of each object

Check for freshly-cleared nodes

Compute pn
i on surface points of each object

and interpolate for freshly-cleared nodes

Update vn+1
i on surface points of each object

Pass fluid field Un to tn+1 with {xn+1
i , vn+1

i }

on surface points of each object

no

yes

Figure 3.2: Flow chart of the process of moving IMGA.

52

3.3.5 Non-dimensionalization

We non-dimensionalize the variables and parameters as follows

x∗ =
x

L0
u∗ =

u
u0

t∗ =
t

L0/u0
ρ∗ =

ρ

ρ f

p∗ =
p

u0µ/L0
g∗ =

g
u0µ/(ρ f L2

0)
(
viscous scaling

)
p∗ =

p
ρ f u2

0

g∗ =
g

u2
0/L0

(
inertial scaling

)
(3.27)

where L0 is the characteristic length and u0 is the characteristic velocity depending on the problem

of interests, ρ f is the fluid density, and g is the gravity. Reynolds number Re =
ρ f u0L0
µ . We employ

viscous scaling when Re � 1, and inertial scaling when Re is moderate.

3.4 Verification and validation

We illustrate the moving IMGA framework using several benchmark results.

3.4.1 Free falling cylinder with low Re (2D)

A freely dropping cylinder with diameter D and density ρs will reach an equilibrium state with

a constant terminal velocity VT in a sufficiently high channel filled with a viscous fluid. Drag force

FD, buoyancy Fb, and gravitational force Fg will eventually reach an equilibrium so that the net

force is zero, and the cylinder moves with the constant terminal velocity. For creeping flow with

low Re number (Re � 1), we have an analytical solution for the terminal velocity of a cylinder with

an infinite length [60].

VT =

(
ρs − ρ f

)
gD2

16µ

(
ln

(W
D

)
− 0.9157 + 1.7244

(D
W

)2
− 1.7302

(D
W

)4)
. (3.28)

Where W is the channel width, and g is the gravitational acceleration. The infinite cylinder length

allows us to perform 2D simulations to verify our moving immersogeometric framework. A mesh

convergence study is performed to show that the simulated terminal velocity converges to the an-

alytical solution with increasing mesh density. We choose ρ f = 103 kg/m3, ρs = 1.25 × 103

53

kg/m3, gravity acceleration g = 9.81m/s2, dynamic viscosity µ = 0.5 kg/(m · s), cylinder diameter

D = 5 × 10−3 m, channel width W = 0.04 m and channel height H = 0.06 m. With all these

parameters, we have the terminal velocity VT = 9.12 × 10−3 m/s, and Re = 0.0912 with VT to be

the characteristic velocity. Since Re � 1, we non-dimensionalize this problem with the viscous

scaling. Initial conditions are set as zero velocity and pressure in the whole fluid domain. No slip

boundary condition is imposed on the lateral and bottom walls, and no velocity gradient and zero

pressure boundary conditions are imposed on the top wall. The problem setup is shown in Fig. 3.3

(a).

The intersection region of the fluid domain and the object surface needs more refinement to

capture the immersed boundary and resolve the no-slip boundary condition. In this case, since

we know the cylinder trajectory is a straight line, we can fix the mesh by refining it all the way

along the trajectory to avoid any remeshing and interpolation between two meshes. Hsu et al. [39]

suggested that the ratio between the element size of the immersed surface and the element size of the

background mesh that intersects the immersed surface needs to be at most 1/2. We choose the ratio

to be 1/2 for all the simulations in this paper. In addition, we also keep the ratio between the sizes of

the largest and smallest background elements to be around 4 as a reasonable maximum aspect ratio

of any background elements in the fluid domain. The fixed stretched mesh for this case is shown in

Fig. 3.3 (b). The dimensionless element size across the fluid–structure interface is set to be 0.1,

0.05, and 0.025, which results in a total element number of 35 × 120, 70 × 240, and 140 × 480. The

dimensionless time step ∆t is set to be 2 × 10−3 to retain the stability of the framework.

The result of the mesh convergence study with the analytical terminal velocity is presented in

Fig. 3.4. We can clearly see our numerical terminal velocity is converging to the analytical result

as increasing mesh density. The relative error compared with the analytical terminal velocity is

3.84%, 1.26%, and 0.1% for the mesh of 35 × 120, 70 × 240, and 140 × 480, respectively. The

mesh density of 70 × 240 (dimensionless element size across the interface to be 0.05) has already

produced a very accurate result. We also present the velocity magnitude contour along with the

streamlines at time t = 1 after the cylinder reaches the terminal velocity in Fig. 3.5. We can see two

54

(a) (b)

Figure 3.3: Free falling cylinder with low Re (2D). (a) Problem setup. (b) Cluster mesh.

large vortices caused by the downward motion of the cylinder as physically expected in this case.

Similar velocity magnitude contour and streamlines are also observed in [61].

3.4.2 Free falling sphere with moderate Re

In this case, we compare the moving immersogeometric framework with experimental bench-

mark results. We employ a similar case as the last section, but replace the 2D cylinder to a 3D

sphere, and simulate a freely dropping sphere to compare with the experimental results in [62]. The

size of the domain is 0.1 m × 0.16 m × 0.1 m. The diameter of the sphere is D = 0.015 m, and it is

released at rest at the height where its bottom apex is 0.12 m away from the bottom wall. The work-

ing fluid has a density ρ f = 960 kg/m3, and a dynamic viscosity µ = 0.058 kg/(m · s). The density

of the sphere is ρs = 1120 kg/m3. This results in a Reynolds number Re = 31.9 with the character-

istic velocity to be V0 = 0.128 m/s. Since Re is moderate in this case, we non-dimensionalize the

equation with inertial scaling. The dimensionless element size across the interface is set to be 0.05,

and the dimensionless ∆t is set to be 0.01. The same initial conditions and boundary conditions as

in the last section are imposed.

55

0 0.2 0.4 0.6 0.8 1
Non-dimensional time

0

0.2

0.4

0.6

0.8

1

1.2

N
on

-d
im

en
si

on
al

 te
rm

in
al

 v
el

oc
ity

Figure 3.4: Mesh convergence results compared with the analytical solution.

Figure 3.5: Velocity magnitude contour and streamlines at t = 1.

We show the comparison of the dimensionless height of the sphere bottom apex away from the

bottom wall, as well as the dimensionless sedimental velocity of the sphere in Fig. 3.6. We can

see a very good agreement in both the trajectory as well as the sedimental velocity between our

numerical results and the experimental results. In addition, we can observe that sedimental velocity

magnitude drastically decreases as the sphere approaches the bottom wall. This is because when

the sphere moves closer towards the bottom boundary, the boundary will generate a so-called wall-

effect force to prevent the sphere moving closer, and this force turns out to be much larger than the

gravity in this case. Wall-effect force is also a dominating force in particle focusing problems. We

56

0 3 6 9 12
0

2

4

6

8

10

Time

H
ei

gh
t

Measurement
Present3D

(a)

0 3 6 9 12
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Time

S
ed

im
en

ta
l v

el
oc

ity

Measurement
Present3D

(b)

Figure 3.6: Comparison of the sphere trajectory and velocity. (a) Height of the sphere bottom apex. (b)
Sedimental velocity.

Figure 3.7: Velocity magnitude contour at different heights.

also show the contour of the velocity magnitude at different heights of the sphere bottom apex away

from the bottom wall during the sedimentation as shown in 3.7. The heights are 7.15, 4.88 and 0.41

respectively. Similar contours can be found in experimental studies [62].

3.4.3 Neutral buoyant circular particle focusing in a straight channel

In the last two cases, the ambient fluid is quiescent, and the motion of the object is caused

by gravity and further causes the motion of the fluid. In this case, we would like to deploy our

framework to model more complex flow physics. A circular particle moving in a straight channel

will focus at unique locations in the channel cross-section. In such a case, the motion of the particle

57

is driven by the fluid flow in a fully developed channel (parabolic fluid velocity profile). The fluid

velocity profile is disturbed locally by the particle, which leads to a more complicated velocity

gradient (i.e. more complicated viscous force) on the particle surface, and therefore results in a

more intricate interaction between the particle and fluid. According to Amini et al. [63], there are

two dominant forces in this case, shear-gradient force and wall-effect force, that eventually laterally

push the object to a unique focusing position. From the numerical result of Feng et al. [64] at

Re = 40, if we release a particle with a diameter of D = 0.25, at a position w < 0.5, it will focus at

the position w = 0.272. To observe the focusing phenomena, a sufficiently long channel is needed.

We choose a 2D channel with a dimensionless size of 40× 1, and release the particle at the position

w = 0.225, with an initial horizontal velocity V0 = 0.66. The dimensionless element size across

the interface is set to be 0.05, and the dimensionless ∆t is set to be 5 × 10−4. The initial conditions

of the fluid are set as parabolic velocity and linear pressure distributions based on Re in a fully

developed channel. The boundary conditions are the same parabolic velocity profile at the inlet, and

zero velocity gradient and zero pressure at the outlet. No slip boundary condition is imposed on

channel walls.

In this case, remeshing has to be performed during the particle motion, and we utilize the mesh-

ing code Gmsh. We refine a bounding circle that contains the particle. The radius of the bounding

circle is set to be three times the radius of the particle. We can let the particle move for a while in

the bounding circle to avoid remeshing and interpolation between two meshes every time step. We

remesh and interpolate when the horizontal or lateral movement in the bounding sphere is more than

a distance of particle radius, and reset the bounding sphere center to be the particle centroid after

remeshing. Between the refined and unrefined region, Gmsh is able to relax the mesh to avoid a

steep change of the mesh density. The problem setup and an unstructured mesh example are shown

in Fig. 3.8. We present the particle trajectory in Fig. 3.9. The criterion we employ to verify the

focusing is that the lateral position doesn’t change across 5 dimensionless seconds (out of totally

simulated 32.8 dimensionless seconds), which is sufficiently long. From the Fig. 3.9, we can see

our framework is able to show the focusing phenomena, and it shows a similar trajectory compared

58

(a)

(b)

Figure 3.8: Neutral buoyant circular particle focusing in a straight channel. (a) Problem setup. (b) A mesh
example.

with Feng et al.’s result. Our result shows a focusing position at the position w = 0.280, which is

slightly higher than Feng et al.’s result, with a relative error of 0.8% scaled by the channel width.

3.4.4 Circular particle focusing in a straight channel with pillar

We simulate a 2D channel with a circular pillar as the obstruction in the channel. The origin is set

to be the bottom left corner of the channel. Buoyancy is considered in this case. All of the following

parameters are in dimensionless form. The size of the channel (L × H) is 30 × 5, the diameter of

the pillar is D = 2.5, and it is centered at (5, 2.5). The diameter of the particle is d = 1, and it is

released at (0.6, 1.25) at rest. The density ratio between particle and fluid is 1.01. Reynolds number

is Re = 20, scaled by the diameter of the particle and maximum inlet velocity. ∆t = 3 × 10−3, and

inertia scaling is used. The initial condition for velocity and pressure is parabolic and linear profile

respectively, as a fully developed flow in a straight channel without obstruction. The boundary

condition is parabolic velocity at the inlet, and zero velocity gradient and zero pressure at the outlet.

In this case, we have a fixed pillar in the channel, and we can also immerse the pillar. Gmsh is able

59

Figure 3.9: Comparison of the particle trajectory.

to refine a ring shaped region with a given center and band width for the fluid–structure interface.

The case setup and unstructured moving meshes at different times are shown as Fig. 3.10.

For this case, since we lack other numerical results to verify our framework, we also simulate an

equivalent dimensional case using Fluent with the body-fitted method. The detailed problem setup

in Fluent is shown in Appendix. Mesh convergence study for the particle trajectory is performed

for these two methods, and they both produce converged trajectory of the particle. The convergence

result of moving IMGA is shown in Fig. 3.11. All the mesh densities produce similar results, which

indicates the coarsest mesh would be able to reasonably predict the particle motion. However, we

observed that using Fluent with the body-fitted method, the particle trajectory doesn’t converge until

the finest mesh. It demonstrates that our moving IMGA would spend a cheaper computational cost

to predict the trajectory in this problem. Since the mesh will change during the particle motion,

which is noticeable for the moving IMGA caused by the topology change of the refinement region,

we report time-weighted average mesh densities for the moving IMGA. We choose the finest

meshes in both moving IMGA framework and body-fitted Fluent to illustrate the computational

efficiency. The comparison is shown in Table 3.1. Our moving IMGA is about 8 times faster than

body-fitted Fluent at the same mesh density.

We present the dimensionless particle trajectory and velocity comparisons with the finest meshes

in both simulations as shown in Fig. 3.12 and 3.13. We can see they match well. The final vertical

60

(a)

(b)

Figure 3.10: Circular particle focusing in a straight channel with pillar. (a) Problem setup. (b) Moving
meshes at different times.

Table 3.1: Comparison of computational effort.

Moving IMGA Body-fitted Fluent
Average number of elements 28268 28182
Number of cores 16 16
Total simulation time (min) 199 1446

position from our framework and Fluent is 1.12 and 1.08 respectively. The relative error between

them is 0.8% of the channel height. In addition, our framework shows the horizontal velocity

eventually reaches a steady value of 0.646, which is 92.9 % of the undisturbed fluid velocity at the

same height, and the vertical velocity eventually reaches about zero.

A more detailed comparison is shown in Fig. 3.14. We plot the velocity contour and streamlines

at three locations (2.59, 1.05), (4.95, 0.566), and (7.17, 0.776). We can see the particle starts to

disturb the symmetry of the downstream wake region when it passes below the pillar, and completely

distorts the wake region during its further movement. The lower circulation in the wake region

almost disappears. The upper circulation also shrinks and reorients, and detaches from the pillar

surface. Our future goal is to explore how the particle with different sizes and releasing positions

61

Figure 3.11: Mesh convergence results of the particle trajectory.

Figure 3.12: Comparison of particle trajectory.

would affect the flow structure, and how the flow structure would affect the trajectory of the particle.

In addition, when the particle passes below the pillar, two boundaries, the pillar and the bottom wall,

will play a role on the particle motion. They will both generate wall-effect forces, but with opposite

direction to prevent the particle moving closer to them. The two wall-effect forces would compete

along with the inertia from the fluid motion. It would also be with interests to investigate the

consequent effect on the particle trajectory.

62

(a) (b)

Figure 3.13: Comparison of particle velocities. (a) Horizontal velocity. (b) Vertical velocity.

Figure 3.14: Comparison of contours of fluid velocity magnitude and streamlines. (upper) Moving IMGA.
(lower) Body-fitted Fluent.

63

3.5 Conclusions and future work

Mesh convergence study is performed to verify the moving immersogeometric method with a

2D freely dropping cylinder. The terminal velocity of the cylinder is verified with the analytical so-

lution as well. A 3D freely dropping sphere is further simulated. The sphere sedimental height and

velocities are validated by experimental results. Reasonable contours of fluid velocity at different

heights are observed as well. For the particle focusing problems, which have more complex inter-

actions between fluid and particle, we are able to predict the particle trajectory in an unobstructed

channel. For an obstructed channel decorate with a pillar, we also produce good agreements of par-

ticle trajectory and velocities as well as flow structures compared with body-fitted method simulated

using Fluent, while we have advantages in computational cost and efficiency. This framework of

moving immersogeometric method is concluded to be capable to predict the object evolution and

resulting flow field in problems of fluid–structure interaction, and to be deployed to applications of

particle inertia migration in microfluidic channels.

3.6 Appendix: Fluent simulation setup

The simulation of particle moving in an obstructed (pillar) channel with body-fitted method was

done on ANSYS Fluent 16.1 using the built-in Dynamic Mesh (DM) module. The Navier–Stokes

equations are solved by the default solver using the SIMPLE algorithm. The particle evolution is

calculated in the 6 Degree-of-Freedom (6 DOF) solver for rigid-bodies. An implicit mesh update

feature is enabled – the dynamic mesh is updated during the course (convergence) of the solution

of flow fields in one time-step [65], which results in a stable mesh update and better tracking of

the particle positions. The remeshing is automatically determined by the solver based on the worst

element skewness due to the particle motion and controlled by given remeshing parameters. The

flow fields are projected from the previous mesh to the current mesh upon remeshing. The flow-

fields are solved over a dimensional domain, 0.05 m ×0.3 m, where the fluid properties of density

and dynamic viscosity measure, 1000 kg/m3, and 0.1 kg/m3, respectively. The particle is released

at x = 0.006 m, and, y = 0.0125 m, with the origin set at bottom left corner. The particle mass, and

64

moment-of-inertia about the z-axis are externally supplied through a User-Defined Function (UDF)

using the DEFINE SDOF PROPERTIES macro, and measure, 0.0793 kg, and 1 × 10−6 kg·m2. The

buoyant-force on the particle is imposed as an external force, prop[SDOF LOAD F Y] = 0.770 N.

The weight of the particle is computed by enabling the gravity option under the 6DOF solver with

the value of 9.81 m/s2. The initial conditions are taken as fully-developed profiles of velocity and

pressure, in the absence of the particle, and pillar, whose maximum values measure, 0.2 m/s, and

19.2 Pa. The boundary conditions include parabolic-velocity inlet, and zero-pressure outlet. The

remeshing parameters are guided by the default mesh-sizes from the initial undeformed domain.

In addition, a constant-factor of 0.5 is chosen under the spring-based smoothing-parameters of the

dynamic mesh.

3.7 References

[1] D. Di Carlo. Inertial microfluidics. Lab on a Chip, 9(21):3038–3046, 2009.

[2] G. Segré and A. Silberberg. Behaviour of macroscopic rigid spheres in poiseuille flow part
1. determination of local concentration by statistical analysis of particle passages through
crossed light beams. Journal of fluid mechanics, 14(1):115–135, 1962.

[3] G. Segré and A. Silberberg. Behaviour of macroscopic rigid spheres in poiseuille flow part 2.
experimental results and interpretation. Journal of fluid mechanics, 14(1):136–157, 1962.

[4] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian–Eulerian finite element
formulation for incompressible viscous flows. Computer Methods in Applied Mechanics
and Engineering, 29:329–349, 1981.

[5] J. Donea, S. Giuliani, and J. P. Halleux. An arbitrary Lagrangian–Eulerian finite element
method for transient dynamic fluid–structure interactions. Computer Methods in Applied
Mechanics and Engineering, 33(1-3):689–723, 1982.

[6] J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran. Arbitrary Lagrangian–Eulerian
methods. In Encyclopedia of Computational Mechanics, Volume 3: Fluids, chapter 14.
John Wiley & Sons, 2004.

[7] T. E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite element computations involving
moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure:
I. The concept and the preliminary numerical tests. Computer Methods in Applied Me-
chanics and Engineering, 94(3):339–351, 1992.

[8] T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou. A new strategy for finite element computations
involving moving boundaries and interfaces – the deforming-spatial-domain/space–time
procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting
cylinders. Computer Methods in Applied Mechanics and Engineering, 94(3):353–371,
1992.

[9] A. A. Johnson and T. E. Tezduyar. Parallel computation of incompressible flows with complex
geometries. International Journal for Numerical Methods in Fluids, 24:1321–1340, 1997.

65

[10] A. A. Johnson and T. E. Tezduyar. 3D simulation of fluid-particle interactions with the number
of particles reaching 100. Computer Methods in Applied Mechanics and Engineering,
145:301–321, 1997.

[11] A. A. Johnson and T. E. Tezduyar. Advanced mesh generation and update methods for 3D
flow simulations. Computational Mechanics, 23:130–143, 1999.

[12] K. Takizawa, T. E. Tezduyar, A. Buscher, and S. Asada. Space–time interface-tracking with
topology change (ST-TC). Computational Mechanics, 54:955–971, 2013.

[13] K. Takizawa, T. E. Tezduyar, A. Buscher, and S. Asada. Space–time fluid mechanics compu-
tation of heart valve models. Computational Mechanics, 54:973–986, 2014.

[14] C. S. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002.
[15] R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid Mechanics,

37:239–261, 2005.
[16] D. M. McQueen and C. S. Peskin. Computer-assisted design of butterfly bileaflet valves for the

mitral position. Scandinavian journal of thoracic and cardiovascular surgery, 19(2):139–
148, 1985.

[17] R. P. Beyer. A computational model of the cochlea using the immersed boundary method.
Journal of Computational Physics, 98(1):145–162, 1992.

[18] R. Dillon, L. Fauci, and D. Fogelson, A.and Gaver III. Modeling biofilm processes using the
immersed boundary method. Journal of Computational Physics, 129(1):57–73, 1996.

[19] L. J. Fauci and C. S. Peskin. A computational model of aquatic animal locomotion. Journal
of Computational Physics, 77(1):85–108, 1988.

[20] R. Glowinski, T.-W. Pan, T. I. Hesla, and D. D. Joseph. A distributed Lagrange multiplier/-
fictitious domain method for particulate flows. International Journal of Multiphase Flow,
25(5):755–794, 1999.

[21] R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Périaux. A fictitious domain approach
to the direct numerical simulation of incompressible viscous flow past moving rigid bodies:
Application to particulate flow. Journal of Computational Physics, 169(2):363–426, 2001.

[22] R. Glowinski and Y. Kuznetsov. Distributed Lagrange multipliers based on fictitious domain
method for second order elliptic problems. Computer Methods in Applied Mechanics and
Engineering, 196:1498–1506, 2007.

[23] L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu. Immersed finite element method. Com-
puter Methods in Applied Mechanics and Engineering, 193:2051–2067, 2004.

[24] W. K. Liu, D. W. Kim, and S. Tang. Mathematical foundations of the immersed finite element
method. Computational Mechanics, 39(3):211–222, 2007.

[25] X. S. Wang, L. T. Zhang, and W. K. Liu. On computational issues of immersed finite element
methods. Journal of Computational Physics, 228(7):2535–2551, 2009.

[26] X. Wang and L. T. Zhang. Modified immersed finite element method for fully-coupled
fluid–structure interactions. Computer Methods in Applied Mechanics and Engineering,
267:150–169, 2013.

[27] H. Casquero, C. Bona-Casas, and H. Gomez. A NURBS-based immersed methodology for
fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering,
284:943–970, 2015.

[28] T. Rüberg and F. Cirak. Subdivision-stabilised immersed B-spline finite elements for mov-
ing boundary flows. Computer Methods in Applied Mechanics and Engineering, 209–
212:266–283, 2012.

66

[29] C. Kadapa, W. G. Dettmer, and D. Perić. A stabilised immersed boundary method on hierar-
chical b-spline grids for fluid–rigid body interaction with solid–solid contact. Computer
Methods in Applied Mechanics and Engineering, 318:242–269, 2017.

[30] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung
von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, 36:9–15, 1971.

[31] D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks,
and T. J. R. Hughes. An immersogeometric variational framework for fluid–structure inter-
action: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics
and Engineering, 284:1005–1053, 2015.

[32] F. Xu, D. Schillinger, D. Kamensky, V. Varduhn, C. Wang, and M.-C. Hsu. The tetrahedral
finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex
geometries. Computers & Fluids, 141:135–154, 2016.

[33] T. J. R. Hughes, L. Mazzei, and K. E. Jansen. Large eddy simulation and the variational
multiscale method. Computing and Visualization in Science, 3:47–59, 2000.

[34] T. J. R. Hughes, L. Mazzei, A. A. Oberai, and A. Wray. The multiscale formulation of large
eddy simulation: Decay of homogeneous isotropic turbulence. Physics of Fluids, 13:505–
512, 2001.

[35] T. J. R. Hughes, G. Scovazzi, and L. P. Franca. Multiscale and stabilized methods. In E. Stein,
R. de Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics,
Volume 3: Fluids, chapter 2. John Wiley & Sons, 2004.

[36] Y. Bazilevs, V. M. Calo, J. A. Cottrel, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational
multiscale residual-based turbulence modeling for large eddy simulation of incompressible
flows. Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.

[37] J.A. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung
von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, 36:9–15, 1970.

[38] Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid
mechanics. Computers & Fluids, 36:12–26, 2007.

[39] M.-C. Hsu, C. Wang, F. Xu, A. J. Herrema, and A. Krishnamurthy. Direct immersogeometric
fluid flow analysis using B-rep CAD models. Computer Aided Geometric Design, 43:143–
158, 2016.

[40] C. Wang, F. Xu, M.-C. Hsu, and A. Krishnamurthy. Rapid B-rep model preprocessing for
immersogeometric analysis using analytic surfaces. Computer Aided Geometric Design,
52:190–204, 2017.

[41] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics
and Engineering, 194:4135–4195, 2005.

[42] H. S. Udaykumar, R. Mittal, and P. Rampunggoon. Interface tracking finite volume method
for complex solid–fluid interactions on fixed meshes. International Journal for Numerical
Methods in Biomedical Engineering, 18(2):89–97, 2002.

[43] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for con-
vection dominated flows with particular emphasis on the incompressible Navier–Stokes
equations. Computer Methods in Applied Mechanics and Engineering, 32:199–259, 1982.

[44] T. E. Tezduyar. Stabilized finite element formulations for incompressible flow computations.
Advances in Applied Mechanics, 28:1–44, 1992.

67

[45] T. E. Tezduyar and Y. Osawa. Finite element stabilization parameters computed from ele-
ment matrices and vectors. Computer Methods in Applied Mechanics and Engineering,
190:411–430, 2000.

[46] M.-C. Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. R. Hughes. Improving stability of
stabilized and multiscale formulations in flow simulations at small time steps. Computer
Methods in Applied Mechanics and Engineering, 199:828–840, 2010.

[47] C. Johnson. Numerical solution of partial differential equations by the finite element method.
Cambridge University Press, Sweden, 1987.

[48] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, 2nd ed.
Springer, 2002.

[49] A. Ern and J. L. Guermond. Theory and Practice of Finite Elements. Springer, Berlin, 2004.
[50] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Weak Dirichlet boundary con-

ditions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and
Engineering, 196:4853–4862, 2007.

[51] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Isogeometric variational multiscale
modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on
unstretched meshes. Computer Methods in Applied Mechanics and Engineering, 199:780–
790, 2010.

[52] M. C. H. Wu, D. Kamensky, C. Wang, A. J. Herrema, F. Xu, M. S. Pigazzini, A. Verma, A. L.
Marsden, Y. Bazilevs, and M.-C. Hsu. Optimizing fluid–structure interaction systems with
immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting
gear. Computer Methods in Applied Mechanics and Engineering, 316:668–693, 2017.

[53] N. Kikuchi. A smoothing technique for reduced integration penalty methods in contact prob-
lems. International Journal for Numerical Methods in Engineering, 18(3):343–350, 1982.

[54] J. D. Sanders, J. E. Dolbow, and T. A. Laursen. On methods for stabilizing constraints over
enriched interfaces in elasticity. International Journal for Numerical Methods in Engi-
neering, 78:1009–1036, 2009.

[55] F. Liu and R. I. Borja. Stabilized low-order finite elements for frictional contact with the ex-
tended finite element method. Computer Methods in Applied Mechanics and Engineering,
199:2456–2471, 2010.

[56] L. De Lorenzis, İ. Temizer, P. Wriggers, and G. Zavarise. A large deformation frictional
contact formulation using NURBS-based isogeometric analysis. International Journal for
Numerical Methods in Engineering, 87:1278–1300, 2011.

[57] R. A. Sauer and L. De Lorenzis. A computational contact formulation based on surface poten-
tials. Computer Methods in Applied Mechanics and Engineering, 253(0):369–395, 2013.

[58] G. Karypis, K. Schloegel, and V. Kumar. Parmetis: Parallel graph partitioning and sparse
matrix ordering library. Version 1.0, Dept. of Computer Science, University of Minnesota,
page 22, 1997.

[59] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,
W. Gropp, D. Kaushik, et al. Petsc users manual revision 3.8. Technical report, Argonne
National Lab.(ANL), Argonne, IL (United States), 2017.

[60] J. Happel and H. Brenner. Low Reynolds number hydrodynamics: with special applications to
particulate media, volume 1. Springer Science & Business Media, 2012.

[61] H. Casquero, C. Bona-Casas, and H. Gomez. A nurbs-based immersed methodology for fluid–
structure interaction. Computer Methods in Applied Mechanics and Engineering, 284:943–
970, 2015.

68

[62] A. Ten Cate, C. H. Nieuwstad, J. J. Derksen, and H. E. A. Van den Akker. Particle imaging ve-
locimetry experiments and lattice-boltzmann simulations on a single sphere settling under
gravity. Physics of Fluids, 14(11):4012–4025, 2002.

[63] H. Amini, W. Lee, and D. Di Carlo. Inertial microfluidic physics. Lab on a Chip, 14(15):2739–
2761, 2014.

[64] J. Feng, H. H. Hu, and D. D. Joseph. Direct simulation of initial value problems for the motion
of solid bodies in a newtonian fluid. part 2. couette and poiseuille flows. Journal of fluid
mechanics, 277:271–301, 1994.

[65] Ansys FLUENT. Theory guide release 16.1. Ansys Inc, 2015.

69

CHAPTER 4. TRACKING MOVING OBJECTS IN FLUIDS: A SCALABLE,

IMMERSED BOUNDARY METHOD ON OCTREES

This chapter includes a manuscript titled ”Tracking moving objects in fluids: a scalable, immersed

boundary method on octrees”, in preparation for submission to Computers & Fluids journal,

authored by Songzhe Xu, Alec Lofquist, Milinda Fernando, Ming-Chen Hsu, Baskar

Ganapathysubramanian and Hari Sundar

Abstract

Control and localization of particles (cells, precipitates) in microfluidic devices are useful in

biological processing, chemical reaction control, and for creating structured materials. It is known

that particles localize (or focus) to equilibrium positions in microfluidic channels in the inertial flow

regime. Our specific application problem of interest involves tracking the lateral motion (i.e. iner-

tial migration) of a single rigid particle (which is a good approximation of suspensions in the dilute

limit) as it traverses a microchannel decorated with obstacles. Numerically characterizing the tra-

jectory of a particle as a function of particle size, channel geometry and flow conditions will greatly

enable design of improved biomedical devices. This is challenging due to the full fluid–structure

coupling and associated small time steps and adaptive (re)meshing requirements. The full fluid–

structure coupling is due to the finite Reynolds number (10 ≤ Re ≤ 100) which necessitates solving

the full Navier-Stokes equations. We showcase a scalable, adaptively refined, octree based finite

element approach to track inertial migration of particles. Arbitrary particles are tracked by formu-

lating the fluid–structure interaction using the immersed boundary strategy. This enables using a

parallel, hierarchically refined octree mesh as the background mesh, with a variationally consistent

immersed boundary formulation tracking the particle motion on this background mesh. Our frame-

work is based on the DENDRO framework, which has previously shown excellent scaling behavior.

70

We show good scaling of the framework on Stampede2, TACC. This illustrates the potential of a

variationally consistent immersed boundary approach for tracking particles in flow – a problem with

a huge variety of applications.

4.1 Introduction

Control and localization of particles (cells, precipitates) in aqueous flow are useful in biological

processing, chemical reaction control, and for creating structured materials. The controlled motion

and localization of cells and particles can automate cellular sample preparation and bio-sensing.

Some examples include fast identification of e. coli in water, robust removal of circulating tumor

cells from the blood plasma and fast separation of cells types for rapid flow cytometry and subse-

quent identification/tagging for genomic analysis. The precise, efficient and cheap localization of a

heterogeneous collection of cells in a fluid medium is a foundational challenge in science and engi-

neering. A general (computationally informed) strategy for passive control of particle localization

in microfluidic channels will be transformative to this field.

Researchers have recently discovered [1] and demonstrated [2, 3] the ability to passively engi-

neer the cross-sectional shape of a fluid (without particles in it) using the notion of inertial flow

deformations induced by sequences of pillars that disrupt the flow. This is a purely passive ap-

proach for flow control that relies on flow physics around bluff bodies. Since these transformations

provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, one

can sequentially arrange pillars to apply the associated nested maps and therefore program complex

fluid structures. This idea has been rapidly picked up by the microfluidics and manufacturing com-

munity to make structured particles and fibers [4–7] and for reagent recovery in medical diagnostic

devices [8].

Studies have shown that this passive flow control paradigm can be extended to passively lo-

calize particles in fluid flow using a sequence of obstacles that differentially act on various sized

particles (based on size and location). While the localization (or ‘focusing’) of particles in unob-

structed microfluid channels is well known, the behavior (and control) of localization of particles

71

in obstructed microfluidic channels is a very novel problem with a rich physical underpinning.

Segre and Silberberg [9,10] first experimentally observed the phenomena of focusing of particles in

a straight channel (or tube) flow. Particles moving in such flows undergo a lateral motion across the

flow streamlines until they reach a stable equilibrium located between the channel centerline and the

confining walls. Subsequent theoretical studies provided a general understanding of the lift forces

and how the structure of lift forces structure depends on the particle size, channel dimensions and

flow rate (or Reynolds number). However, the precise calculation needed to design devices that can

exploit the migration of particles in flow, such as the separation, concentration, and sorting of cells

and biomolecules with high specificity requires highly accurate force calculations, which essentially

becomes a computational exercise.

Our particular problem of interest is to track the lateral migration of a single, rigid particle as

it traverses a microchannel that is decorated with a pillar obstacle (see Figure 4.1). Our intent is to

understand how initial release location, as well as particle size and pillar geometry affect migration

patterns.

Tracking particle motion in inertial flows (especially in obstructed geometries) is a computation-

ally daunting proposition. This is further complicated by that fact that the construction of migration

maps for particles (as a function of particle location, flow conditions, and particle size) requires

several thousands of simulations tracking individual particles. This calls for the development of

an efficient, scalable approach for single particle tracking in fluids. We bring together three distinct

elements to accomplish this: (a) a parallel octree based adaptive mesh generation framework, (b)

a variational multiscale (VMS) based treatment that enables flow condition agnostic simulations

(laminar or turbulent) [11], and (c) a variationally consistent immersed boundary method (IBM)

to efficiently track moving particles in a background octree mesh [12]. This project builds on our

existing codes for adaptive meshing (DENDRO) and Finite Elements (TalyFEM). These generic

names are used for the double-blind review policies. The real names along will be replaced for

the final version. In the next section, we give a brief introduction to the formulation of our target

problem followed by a brief introduction of the immersed boundary method. We then present our

72

adaptive meshing framework that is tailored for the immersed boundary method. We wrap up with

experiments demonstrating the scalability of our code.

4.2 Target problem

Figure 4.1: An illustration of the canonical target problem. Following standard practice in fluid dynamics,
we normalize length scales by the channel width, W, and consider all physical variables in dimensionless
quantities. This allows broad usability of the resulting computations, due to kinematic and dynamic similarity
principles. The canonical problem is parametrized by 5 variables: (a) the size of the particle (a), (b) the
location, δ and diameter, D of the pillar, (c) the flow speed, characterized in terms of the Reynolds number
(<), and (d) the height of the microchannel, h.

We are interested in tracking the motion and lateral forces acting on a single particle—of size

a—released at discrete points of the inlet (points shown in green in Figure 4.1). As an individual

particle flows down the channel (of width W), it is affected by the spatially varying flow field caused

by obstruction due to the pillar (of diameter D). Note that for typical particle sizes (a/W ≥ 0.1), the

moving particle itself causes changes to the flow field (so called blockage effect). We are particularly

interested in reporting the net lateral displacement as a function of initial release location at the

inlet. We consider a finite distance downstream (typically 6D downstream of the pillar, due to

manufacturability constraints) across which we track the particle motion. The particle displacement

is reported as a vector field (Figure 4.1). Additionally, the time history of the lateral forces acting

on the particle will be reported.

For each set of parameters (a,W,D,<, h), we hope to simulate the time evolution of the particle-

fluid interaction in the domain. Our preliminary results show that it is necessary to have a refined

73

mesh close to the pillar surface, the particle surface as well as the channel walls to fully resolve the

fluid velocity features. Based on the DENDRO framework, we anticipate requiring 256x256x1024

∼ 70 × 106 hexahedral elements to discretize the domain. Each time step requires solving the

Navier-Stokes equations with no-slip boundary conditions on the particle and the channel walls.

Once the velocity field (due to the interaction between the particle and pillar and fluid) is computed,

the inertial forces on the particle are computed by performing a surface integration of the fluid stress

on the particle surface. This is then used to update the location of the particle for the next time step.

The dimensionless Navier–Stokes equations for incompressible flow is written as(
∂u
∂t

+ u · ∇∇∇u − f
)
−∇∇∇ ·σσσ = 0 , (4.1)

∇∇∇ · u = 0 , (4.2)

where u and f are the flow velocity and the external force, respectively. The stress and strain-rate

tensors are defined respectively as

σσσ (u, p) = −p I + 2
1
<
εεε(u) , (4.3)

εεε(u) =
1
2

(
∇∇∇u +∇∇∇uT

)
, (4.4)

where p is the pressure, I is an identity tensor. The problem (4.1)–(4.4) is accompanied by suitable

boundary conditions, defined on the boundary of the fluid domain, Γ = ΓD ∪ ΓN:

u = ug on ΓD , (4.5)

−p n + 2
1
<
εεε(u) n = h on ΓN , (4.6)

where ug denotes the prescribed velocity at the Dirichlet boundary ΓD, h is the traction vector at the

Neumann boundary ΓN, and n is the unit normal vector pointing in the wall-outward direction.

Consider a collection of disjoint elements {Ωe}, ∪eΩ
e ⊂ Rd. The fluid domain is covered by the

closure of the collection: Ω ⊂ ∪eΩe. Note that Ωe is not necessarily a subset of Ω with the immersed

boundary method. Let Vh
u and Vh

p be the finite-dimensional spaces of discrete test functions and

trial solutions for velocity and pressure, which are denoted as superscript h, and represent resolved

74

scales (coarse scale) produced by the finite element discretization. The strong problem (4.1)–(4.6)

may be recast in a weak form and posed over these discrete spaces to produce the following semi-

discrete problem (using the VMS modeling approach): Find uh ∈ Vh
u and ph ∈ Vh

p such that for all

wh ∈ Vh
u and qh ∈ Vh

p:

BVMS
(
{wh, qh}, {uh, ph}

)
− FVMS

(
{wh, qh}

)
= 0 . (4.7)

The bilinear form BVMS and the load vector FVMS are given as

BVMS
(
{wh, qh}, {uh, ph}

)
=

∫
Ω

wh ·

(
∂uh

∂t
+ uh · ∇∇∇uh

)
dΩ

+

∫
Ω

∇∇∇wh : σσσ
(
uh, ph

)
dΩ

+

∫
Ω

qh∇∇∇ · uh dΩ

−
∑

e

∫
Ωe∩Ω

(
uh · ∇∇∇wh +∇∇∇qh

)
· u′ dΩ

−
∑

e

∫
Ωe∩Ω

p′∇∇∇ · wh dΩ

+
∑

e

∫
Ωe∩Ω

wh · (u′ · ∇∇∇uh) dΩ

−
∑

e

∫
Ωe∩Ω

∇∇∇wh :
(
u′ ⊗ u′

)
dΩ, (4.8)

and

FVMS
(
{wh, qh}

)
=

∫
Ω

wh · f dΩ +

∫
ΓN

wh · h dΓ , (4.9)

where primes denote the unsolved scales (fine scale) that need to be modeled, and their effect needs

to be added onto the coarse scale. u′ is defined as

u′ = −τM

(
∂uh

∂t
+ uh · ∇∇∇uh − f −∇∇∇ ·σσσ

(
uh, ph

))
, (4.10)

and p′ is given by

p′ = −τC∇∇∇ · uh . (4.11)

75

u′ and p′ are approximated by the residuals of momentum equation and continuity equation, respec-

tively, and τM and τC are corresponding coefficients with the definitions in [11]. Equations (4.8)–

(4.11) feature the VMS formulation of Navier-Stokes equations of incompressible flows [11]. The

additional terms added onto the standard weak Galerkin form can be interpreted as a combination

of streamline/upwind Petrov Galerkin (SUPG) stabilization and VMS large-eddy simulation of tur-

bulence modeling.

The particle evolution is written as

m
dV
dt

= F

J
dω
dt

= T (4.12)

where V = [up, vp,wp]T and ω = [ωx, ωy, ωz]T are the particle linear and angular velocities, and

F = [Fx, Fy, Fz]T and T = [τx, τy, τz]T are the force and torque acting on the particle. The force is

computed as the surface integral of the fluid stress over the particle surface, and an explicit time-

stepper is used to update the particle location and velocity.

4.3 Immersed boundary method

The immersed boundary method (IBM) was first introduced by Peskin in the context of fluid-

structure interaction (FSI) for a heart simulation with associated blood flow to avoid remeshing

when the solid body deformed [13, 14]. The IBM embeds the solid geometry into a background

Cartesian mesh without conforming them to each other, and the effect of the immersed boundary on

the fluid field has to be formulated by imposing the boundary conditions of the immersed geometry

and distributed on the background Cartesian mesh. Since the IBM does not require a conforming

mesh, it becomes computationally convenient to track the motion of particles of arbitrary shape

while avoiding a cumbersome boundary fitted (re)meshing process.

The implementation of the IBM requires some refinement of the background mesh across the

immersed surface to better capture the shape of the interface as well as to resolve the no-slip bound-

ary condition. This is accomplished by using selective quadrature (i.e. only using those gauss

76

Figure 4.2: A schematic of the volume assembly in the IBM method. We loop over each element and each
Gauss point within each element. An in-out test is performed to identify whether that Gauss point is lies
inside the particle (red points) or inside the fluid (green points). Only the Gauss points in the fluid domain
are used to assemble the elemental matrices.

points that lie in the fluid and not inside the immersed particle). This necessitates performing an

in/out test to determine the Gauss points inside the fluid domain (red dots) on which we assemble,

while discarding the Gauss points inside the object (green dots), as shown in Figure 4.2.

The no-slip boundary condition (which is a Dirichlet boundary condition) is converted into an

equivalent Neumann condition (in the sense of the Nitsche method [15]). Thus, we perform a

surface integral over the immersed boundary to weekly impose the Dirichlet boundary condition

of the immersed boundary [16–18]. Assuming the immersed boundary ΓI is decomposed into Neb

surface elements each denoted by Γb
I , the semi-discrete problem becomes

BVMS
(
{wh, qh}, {uh, ph}

)
− FVMS

(
{wh, qh}

)
−

Neb∑
b=1

∫
Γb

I
⋂

ΓD

wh ·

(
−ph n + 2

1
<
εεε(uh) n

)
dΓ

−

Neb∑
b=1

∫
Γb

I
⋂

ΓD

(
2

1
<
εεε(wh) n + qh n

)
·
(
uh − ug

)
dΓ

+

Neb∑
b=1

∫
Γb

I
⋂

ΓD
τBwh ·

(
uh − ug

)
dΓ = 0 . (4.13)

The boundary terms added to the governing equation are the second, third and last line in Eq. 4.13,

and a detailed interpretation of different terms can be found in [16]. Only the penalty-like stabiliza-

77

tion parameter, τB, is a heuristic that has to be appropriately chosen. We use the definition proposed

in [19], which scales the stabilization parameter as τB = Ch/∆t, where C is a positive constant, h

is the size of the cut element, and ∆t is the time step. The boundary terms are imposed onto the

surface Gauss points, which are then interpolated by their background Cartesian grids as shown in

Figure 4.3. In this way we can apply the Dirichlet boundary condition on the immersed boundary

of the object to the fluid field.

Figure 4.3: Schematic showing how the surface assembly of IBM is performed. The triangulated surface
mesh is used to identify surface Gauss points (the ’X’ locations). The surface integral terms (i.e. the last three
terms in Eq. 3.16) are computed at these surface Gauss points, and then distributed to the nodal locations.

When we move an object, there would be some space that is previously occupied by the object

becoming the space of the fluid domain due to the object motion. We call nodes in such space as

freshly-cleared nodes. We have no fluid history on those nodes. As a result, we interpolate those

nodes using the solution of their neighbor nodes in the fluid domain and boundary values of nearby

points on the object surface to complete the solution of fluid field. We denote the union of the

variables of fluid field as U = {u, p}, and the union of the variables of the moving object surface as

V = {v, p}. The interpolation of the variables of freshly-cleared nodes is written as

Umoved-out =

Nf∑
k=1

1
df

k

Uk +
Ns∑

k=1

1
ds

k
Vk

Nf∑
k=1

1
df

k

+
Ns∑

k=1

1
ds

k

, (4.14)

78

Figure 4.4: Interpolation of freshly-cleared node.

where df and ds are the distances of corresponding nodes in fluid domain and points on the object

surface to the freshly-cleared node, and Nf and Ns are their numbers.

4.4 Scalable IBM on octree meshes

While the concept of adaptive space partitions is well studied, developing such methods for the

immersed boundary method on large distributed systems presents significant challenges. This work

builds on our existing methods for performing large-scale finite element computations using octree-

refined meshes. We have extended this work to support the particle localization simulations. We

provide a brief description on building the octree mesh in parallel and performing FEM computa-

tions and refer to [20] for additional details.

While the elemental matrix assemblies are done using TalyFEM described in the next section,

DENDRO provides the adaptive mesh refinement (AMR) and all parallel data-structures. For this

project, DENDRO was extended to support meshes with holes in it. This is because of the presence

of pillars in the channels where we do not need to solve. An example of such a mesh is shown in

Figure 4.5.

The main steps in building and maintaining an adaptive mesh in DENDRO are:

79

Figure 4.5: (top) An example of the adaptive mesh for the target geometry (§4.2) created by DENDRO.
(bottom) A slice through our 3D mesh to illustrate the refinement around the pillar and particle.

Refinement: The sparse grid is constructed based on the geometry. Proceeding in a top-down

fashion, a cell is refined if a surface (pillar/particle) passes through it. During the same step, we

also determine if the cell is completely inside the pillar, and eliminate it from the mesh in that case.

Since the refinement happens in an element-local fashion, this step is embarrassingly parallel. The

user passes a function that given coordinates, x, y, z returns the distance from the pillar(s). The

eight corners of an octant are tested using this function. If all 8 points have a positive distance

(outside), then we retain this element, but do not refine further. If all 8 points have a negative

distance (inside), then this element is removed from the mesh. If some of the corners of the octant

are inside and others outside, then this octant is refined. This is repeated till we reach the desired

level of refinement is achieved. In distributed memory, all processes start from the root and refine

until at least p octants requiring further refinement are produced. Then using a weighted space-

filling-curve based partitioning, we partition the octants. Note that we do not communicate the

octants as every process has a copy of the octants, and all that needs to be done at each process is

to retain a subset of the current octants and recurse. Since we use FEM, a 2:1 balancing is enforced

following the refinement operation.

80

2:1 Balancing: We enforce a condition in our distributed octrees that no two neighboring

octants differ in size by more than a factor of two. This makes subsequent operations simpler

without affecting the adaptive properties. Our balancing algorithm is similar to existing approaches

for balancing octrees [21–23] with the added aspect that it does not generate octants if the ancestor

does not exist in the input. This is done to ensure that the holes are not filled in. The algorithm

proposed by Bern [21] is easily extensible to support this case, as we simply need to skip adding

balancing octants that violate the criteria.

Partition: Refinement and the subsequent 2:1-balancing of the octree can result in a non-

uniform distribution of elements across the processes, leading to load imbalance. This is particularly

challenging in the presence of holes, as this can make the mesh heavily load-imbalance. The Hilbert

ordering enables us to equipartition the elements by performing a parallel scan on the number of el-

ements on each process followed by point-to-point communication to redistribute the elements. The

presence of holes in the domain, does not adversely affect this as the partition only tries to equally

divide the elements across the processes. The immersed boundary can affect the performance, as it

is likely localized on a small subset of processes. These processes will be the only ones that will

be performing the surface assembly (§4.4.2). This can be accommodated by estimating the relative

cost of volume vs. surface assembly and performing a weighted partition of the elements. This is

not currently done for the results presented in the paper, and we hope to have this completed soon.

Meshing: By meshing we refer to the construction of the (numerical) data structures required

for FEM computations from the (topological) octree data. DENDRO already has efficient imple-

mentations for building the required neighborhood information and for managing overlapping do-

mains between processors (ghost or halo regions). The key difference with our previous applications

is the requirement to handle meshes with holes, as all neighbors might not be present in the mesh.

This also complicates the process of applying boundary conditions. We added support for defining

subdomains within DENDRO. The subdomains are defined using a function that takes a coordinate

(x, y, z) as input and returns true or false depending on whether that coordinate is part of the

81

subdomain or not. The subdomain leverages the core mesh data-structure and additionally defines a

unique mapping for nodes that are part of the subdomain. It also keeps track of which nodes belong

to subdomain boundaries. Therefore, subdomains have a small overhead and store significantly less

data that the main mesh data-structure. For our target application, it is important to identify both

the external (domain) boundary as well as the internal boundary (the pillar surface). The subdomain

stores two bits to keep track of whether a node is non-boundary, external, or internal boundary.

4.4.1 Matvec - integration with TalyFEM

We previously developed code for calculating the elemental matrix and vector for solving

Navier-Stokes with IBM in our in-house FEM framework, TalyFEM, which is designed for arbitrary

unstructured meshes. We chose to integrate the core of our in-house framework with DENDRO to

avoid re-implementing the NS+IBM kernel.

Node coordinates and elemental connectivity are implicit in the octree’s structure, so DENDRO

recalculates these values on the fly as the octree is traversed. In order to adapt the TalyFEMmesh

data structure to DENDRO, we store these values explicitly. To do so in full requires extra memory

and a synchronization step after the octree mesh is (re)generated. To avoid the memory overhead, we

instead integrate these two meshes by considering a mesh containing a single hexahedral element.

As we iterate through the octree mesh for assembly we re-position the nodes in the hexahedral

element in TalyFEMto match the octree element from DENDRO, allowing us to use TalyFEM’s

routines to calculate the elemental matrix and vector. We also copy nodal data (velocity and pres-

sure) from DENDRO’s buffers to support the assembly code. This allowed us to reuse our existing

assembly implementation in TalyFEMwith almost no changes.

By default, TalyFEM recalculates the isoparametric to physical mapping at each integration

point, as these values change depending on the shape of the physical element. Since the octree mesh

has only one possible element shape, we pre-calculate and cache these values. During initialization,

we create a fake element at each level in the octree and evaluate the basis functions at the typical

82

Gaussian quadrature points. When the assembly code needs to access these values, we pull them

from the corresponding level in the cache instead of recalculating them at each element.

4.4.2 Sampling the immersed boundary & adding corrections

The object boundary is generated as a triangulated mesh. Surface integration points are then

calculated for each triangle element using standard Gaussian quadrature, as well as other necessary

parameters such as the unit normal and boundary value of velocity at each Gauss point. The surface

Gauss points are then sorted and distributed. This is done by associating each surface Gauss point

with corresponding bottom left node of an octree element with the maximum refinement. This

octree element can then be aligned on the space-filling curve, and the process that contains the

real element can be easily found by the partitioning of the space-filling curve. To find the actual

background element containing the Gauss point, we loop over all the elements in the process to

check if the element is an ancestor of the associated element of the Gauss point or if they are

exactly the same element. Boundary conditions weakly imposed on the Gauss points can be then

interpolated by (distribute to) the nodes of the background element. Since the elements and the

surface Gauss points are both sorted and aligned on the space-filling curve, we can loop over them

simultaneously with an efficiency of O(m+n) instead of a nested loop with an efficiency of O(m×n),

where m is the number of elements in the background mesh and n is the number of surface Gauss

points.

4.4.3 Timestepping and particle evolution

The time-dependent Navier–Stokes equation is solved with a fully implicit scheme (backward

Euler time-stepping). The backward Euler time-stepper for the NS equation is given as

∂u
∂t

=
un − un−1

∆t
= L(un, pn), (4.15)

where the operatorL(un, pn) represents all the other terms except the time-dependent term evaluated

at the current time step in the Navier–Stokes Eq (3.1). ∆t is selected to follow the CFL condition.The

(non)linear solution procedure is taken care of by PETSC [24]. We utilize the SNES construct (line

83

search quasi-Newton), which uses the KSP construct , specifically the BCGS solver. An additive

Schwarz preconditioner (asm) is used to enable parallel preconditioning and solving on decomposed

sub-domains

Once the fluid field is solved, a surface integral over the immersed boundary is then performed

to calculate the surface force and torque (F and T) that is exerted on the object by the fluid.

F =

Neb∑
b=1

∫
Γb

I
⋂

ΓD
σσσ(uh, ph) · ndΓ (4.16)

−

Neb∑
b=1

∫
Γb

I
⋂

ΓD
τB(uh − ug)dΓ,

T =

Neb∑
b=1

∫
Γb

I
⋂

ΓD
r ×

(
σσσ(uh, ph) · n

)
dΓ (4.17)

−

Neb∑
b=1

∫
Γb

I
⋂

ΓD
r × τB(uh − ug)dΓ,

where r is the distance vector from the particle centroid to any point on its surface. The last terms in

Eq. 4.16 and Eq. 4.17 are the penalty-like term that are added onto the surface force calculation due

to the weak imposition of boundary conditions. The total force acting on the object is the summation

of the surface force and any external body forces (gravity & buoyancy).

The particle is modeled as a rigid body, and the motion is described as

dxc

dt
= vc,

dvc

dt
=

F
m
, (4.18)

dθθθc

dt
= ωωωc,

dωωωc

dt
=

T
J

, (4.19)

where xc and θθθc are the linear and angular locations of the centroid of patricle, vc and ωωωc are

linear and angular velocities of centroid of particle, and m and J are the particle mass and moment

of inertia, respectively. The coordinates x and velocities v at any point on the particle surface is

computed as

x = xc + r, v = vc +ωωωc × r. (4.20)

84

In the discrete form, assuming the integral of the force and torque over the particle surface are

constant during one time step, we have

(xc)n+1 − (xc)n

∆t
=

(vc)n+1 + (vc)n

2
, (4.21)

(vc)n+1 − (vc)n

∆t
=

(F)n

mi
, (4.22)

(θθθc)n+1 − (θθθc)n

∆t
=

(ωωωc)n+1 + (ωωωc)n

2
, (4.23)

(ωωωc)n+1 − (ωωωc)n

∆t
=

(T)n

mi
. (4.24)

The particle velocity is evaluated by an explicit forward Euler scheme, which requires small ∆t to

ensure accuracy and stability. Each object location is updated by the average velocities, which is

essentially Crank–Nicolson scheme, and therefore more stable and accurate.

4.4.4 Intergrid transfers

It is essential that we need to change the refinement of the mesh to capture the evolving solution.

In particular, the mesh has to be coarsened and refined with the moving particle. In the distributed

memory setting, this can also imply a need to repartition and restore load-balance. Every few time

steps, we remesh, based on the velocity of the moving particle. This is similar to the initial mesh

generation and refinement, except that it is based on the current position of the particle. This is fol-

lowed by the 2:1 balance enforcement and meshing. Once the new mesh is generated, we transfer

the evolution solution from old mesh to the newly generate mesh using interpolations as needed.

Since the intergrid transfers happen only between parent and child (for coarsening and refinement)

or are unchanged, this can be performed on the old mesh using standard linear interpolation, fol-

lowed by a simple repartitioning based on the new mesh. An example of the mesh for our target

problem is shown in Figure 4.5 and examples of the adaptive mesh refinement following the moving

particle are shown in Figure 4.6.

85

Figure 4.6: An example of the octree-grid along with the velocity along the y-axis being plotted at three
different time-points. Notice the balanced 2:1 refinement as we move closer to the particle surface.

4.5 Experiments & Results

We perform tests on a canonical example of a sphere dropping in a domain of size 8 × 8 × 8

with a constant downward force applied to it. For simplicity, we ignore the force of the fluid on the

sphere, only allowing it to move by the constant external force. Some preliminary results can be

found in Figure 4.6, and 4.7.

4.5.1 Implementation details

The DENDRO framework implemented in C++ using MPI for distributed memory parallelism

and OpenMP for shared memory parallelism. The TalyFEM framework is also implemented in C++

with MPI and is used in this work for evaluating basis functions and interpolating nodal data to

support assembly. Our code is tightly integrated with PETSc v3.7 [24]’s distributed matrix and

vector data-structures and utilizes its SNES and KSP solvers.

These tests were compiled and run on Stampede2’s Skylake nodes. DENDRO, TalyFEM,

and the main program were compiled with the Intel 17.0.4 compiler with the following flags:

-xCORE-AVX2 -axCORE-AVX512,MIC-AVX512 -O3 -DNDEBUG (targetting the AVX2 instruction

set, using static dispatch for AVX512 extension differences between Skylake vs KNL nodes, level

3 optimizations, and asserts disabled). We used the system PETSc 3.7 module, which was also

compiled with the Intel 17 compiler with debugging disabled and the following optimization

86

Figure 4.7: Representative streamlines around the moving sphere.

flags: -xCORE-AVX2 -axMIC-AVX512,CORE-AVX512 -O2. Timing information was reported us-

ing PETSc’s logging framework.

4.5.2 Meshes/domains

We focus on showing scaling of the framework. We collect timing for the case of a dropping

sphere (of size 1). The same domain size is employed. We run each case for 5 time steps, and

use the same time step for all tests. We adaptively refine the mesh around the interface of the

sphere three levels deeper than the rest of the background mesh, remeshing after each time step

as the sphere moves. Note that such frequent remeshing is one of the challenges of our target

application. The mesh is defined by a pair of minimum refinement l and maximum refinement h,

where the background mesh element size ranges from 8/2l to 8/2h at the interface. We adjust the

characteristic length of the surface mesh in sync with the refinement of the interface mesh, keeping

a ratio of 1:2 for the surface triangle size to the interface element size. We run this experiment on

five background/interface refinement levels: 4/7, 5/8, 6/9, 7/10, and 8/11. Each refinement level

has roughly seven to eight times more degrees of freedom to solve for than the previous level, with

4/7 having 29,000 degrees of freedom and 8/11 reaching 70.2 million. We note that given specific

l and h and the same sizes of domain and immersed object, the overall problem size is consistent

87

102 103

103

104

MPI Tasks

Ti
m

e
(s

)

Total Solve Time

r=6/9
r=7/10
r=8/11

Figure 4.8: Total time (assembly + solve), summation of each time step for various mesh refinements.

independent of the number of processes being used for the simulation. To this effect, we believe

presenting performance for different l/h combinations for different number of processes, in the

style of a strong scaling is appropriate. Weak scalability can be observed in our strong scaling plots,

across the different problem sizes. Unfortunately, we were unable to get additional sample points

for the results to be convincing. Based off the two sample points, the weak scalability appears to be

good, although additional sample points will allow us to make a stronger claim. Indeed, performing

weak scaling for such complex real-world applications is harder because it is difficult to ensure that

N/p (the grain size) stays relatively constant. Therefore, we ignore the analysis of weak scalability

in this work.

4.5.3 Parallel Scalability

For our target application, the key goal is to be able to perform the simulations quickly, given the

sheer number of simulations we need to perform. Given this, and the relatively moderate size of our

problems, the focus is on strong scalability. We first present strong scalability results for the overall

simulation, including the cost of remeshing in Figure 4.8 for three problem sizes. Overall our code

scales well, with continued reductions in solve time. We report additional results to get a deeper

88

102 103

102

103

MPI Tasks

Ti
m

e
(s

)

Matrix Assembly Time

r=6/9
r=7/10
r=8/11

Figure 4.9: Matrix assembly time (volume + surface assembly) for various mesh refinements.

understanding of the performance and scalability of the different parts of our code. We present

strong scalability results for Matrix assembly Figure 4.9 and Vector assembly Figure 4.10. Both

methods scale reasonably well, but the overall time for matrix assembly is more expensive compared

to the vector assembly. This is largely due to the complexity of the operator and we are working

on switching to a matrix-free approach. We also report just the time spent in the remeshing stage.

The remeshing stage refers to the combination of generating a new mesh, interpolating between two

meshes and reinitializing the matrix, vector and solver. Effectively, this is the overhead paid for

having good adaptivity. The scaling of remeshing, shown in Figure 4.13, is not as good as the other

parts of the code, but the magnitude of time it takes is much smaller than solving the NS equations.

Again, note that this is strong scaling, and the meshing code is sufficiently optimized (fast), making

it much harder to demonstrate strong scalability across the full range. The actual solving of the

linear system is implemented and optimized by PETSc depending on the KSP solver we choose,

and we don’t have much control of it. We observed it scales similarly as the total assembly.

89

102 103

101

102

MPI Tasks

Ti
m

e
(s

)

Vector Assembly Time

r=6/9
r=7/10
r=8/11

Figure 4.10: Vector assembly time (volume + surface assembly) for various mesh refinements.

102 103

101

102

103

MPI Tasks

Ti
m

e
(s

)

Volume Assembly Time

r=6/9
r=7/10
r=8/11

Figure 4.11: Volume assembly time (matrix + vector) for various mesh refinements.

90

102 103

101

102

103

MPI Tasks

Ti
m

e
(s

)

Surface Assembly Time

r=6/9
r=7/10
r=8/11

Figure 4.12: Surface assembly time (matrix + vector) for various mesh refinements.

102 103

100

101

MPI Tasks

Ti
m

e
(s

)

Total Remeshing Time

r=6/9
r=7/10
r=8/11

Figure 4.13: Total time for adaptive remeshing for various mesh refinements.

91

4.5.4 Overhead of immersed boundary corrections

As the geometry moves, we perform the in/out test in order to identify which background nodes

are to be solved. Nodes which are fully inside the geometry (not on elements that are outside and

intersect the object) are marked and set to have a Dirichlet boundary condition of zero. In addition,

we must also redistribute the surface Gauss points to the appropriate processes as the mesh has been

re-partitioned, which is difficult to achieve in an unstructured approach, as described in 4.4.2. In our

experiments, we see this total bookkeeping time taking up to 10% of our total solve time and scaling

poorly with the number of processes. This is due to a reliance on MPI all-gather routines in applying

zero Dirichlet boundary condition on the fully inside nodes to simplify our initial implementation

which we believe this can be improved, while the (re)distribution of surface Gauss points is fast in

our observation. However, this does not appear to affect our overall scalability.

Applying the actual IBM corrections to the matrix and vector takes a significant amount of time

- sometimes more than volume assembly, as shown in Figure 4.14 - but appears to scale better than

volume assembly. This is likely because we weight non-interface background mesh elements the

same as elements containing surface Gauss points when partitioning the mesh. This leads to a work

imbalance where processes all perform roughly equal parts of volume assembly, but only some

participate in surface assembly. We plan to introduce an elemental ”work factor” to the partitioning

algorithm to address this imbalance in the future. This issue is also associated with the surface

force integral over the immersed boundary, which we have ignored in these experiments by using a

constant external force on the sphere. Surface assembly also does not use the cached basis function

values (as volume assembly does), as each surface Gauss point may have a unique position relative

to its background element.

4.6 Conclusions & Future directions

We showcased the performance of a scalable, IBM framework based on octree meshes for track-

ing particle localization in complex geometry microfluid channels. This framework allows us to

efficiently construct the deformation maps for particles under a broad range of experimentally ac-

92

251 398 631

1,000

2,000

MPI Tasks

Ti
m

e
(s

)

Matrix Assembly for r=8/11

Volume
Surface

Figure 4.14: Total time spent in matrix assembly broken down by volume vs surface for refinement level
8/11.

251 398 631

100

200

MPI Tasks

Ti
m

e
(s

)

Vector Assembly for r=8/11

Volume
Surface

Figure 4.15: Total time spent in vector assembly broken down by volume vs surface for refinement level 8/11.

93

cessible parameters (as illustrated in Figure 4.1), which will result in a passive approach for particle

localization. Our approach demonstrates excellent strong scalability for the overall solve time, even

with frequent remeshing because our framework keeps the overhead of AMR relatively low, making

the overall approach scalable. The surface assembly required in immersed boundary corrections is

improved from the unstructured approach. Our immediate goals are to improve the performance for

the matrix assembly and incorporate a dynamic load balancing that accounts for the additional work

involved in the surface computations.

4.7 References

[1] H. Amini, E. Sollier, M. Masaeli, Y. Xie, B. Ganapathysubramanian, H. A. Stone, and
D. Di Carlo. Engineering fluid flow using sequenced microstructures. Nature commu-
nications, 4:1826, 2013.

[2] D. Stoecklein, C.-Y. Wu, K. Owsley, Y. Xie, D. Di Carlo, and B. Ganapathysubramanian.
Micropillar sequence designs for fundamental inertial flow transformations. Lab on a
Chip, 14(21):4197–4204, 2014.

[3] D. Stoecklein, C.-Y. Wu, D. Kim, D. Di Carlo, and B. Ganapathysubramanian. Optimization
of micropillar sequences for fluid flow sculpting. Physics of Fluids, 28(1):012003, 2016.

[4] J. K. Nunes, C.-Y. Wu, H. Amini, K. Owsley, D. Di Carlo, and H. A. Stone. Fabricating shaped
microfibers with inertial microfluidics. Advanced Materials, 26(22):3712–3717, 2014.

[5] K. S. Paulsen, D. Di Carlo, and A. J. Chung. Optofluidic fabrication for 3d-shaped particles.
Nature communications, 6, 2015.

[6] C.-Y. Wu, K. Owsley, and D. Di Carlo. Rapid software-based design and optical transient
liquid molding of microparticles. Advanced Materials, 27(48):7970–7978, 2015.

[7] K. S. Paulsen and A. J. Chung. Non-spherical particle generation from 4d optofluidic fabrica-
tion. Lab on a Chip, 16(16):2987–2995, 2016.

[8] H. Amini, W. Lee, and D. Di Carlo. Inertial microfluidic physics. Lab on a Chip, 14(15):2739–
2761, 2014.

[9] G. Segré and A. Silberberg. Behaviour of macroscopic rigid spheres in poiseuille flow part
1. determination of local concentration by statistical analysis of particle passages through
crossed light beams. Journal of fluid mechanics, 14(1):115–135, 1962.

[10] G. Segré and A. Silberberg. Behaviour of macroscopic rigid spheres in poiseuille flow part 2.
experimental results and interpretation. Journal of fluid mechanics, 14(1):136–157, 1962.

[11] Y. Bazilevs, V. M. Calo, J. A. Cottrel, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational
multiscale residual-based turbulence modeling for large eddy simulation of incompressible
flows. Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.

[12] F. Xu, D. Schillinger, D. Kamensky, V. Varduhn, C. Wang, and M.-C. Hsu. The tetrahedral
finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex
geometries. Computers & Fluids, 141:135–154, 2016.

94

[13] C. S. Peskin. Flow patterns around heart valves: a numerical method. Journal of computational
physics, 10(2):252–271, 1972.

[14] C. S. Peskin. Flow patterns around heart valves: a digital computer method for solving the
equations of motion. IEEE Transactions on Biomedical Engineering, (4):316–317, 1973.

[15] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung
von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, 36:9–15, 1971.

[16] Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid
mechanics. Computers & Fluids, 36:12–26, 2007.

[17] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Weak Dirichlet boundary con-
ditions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and
Engineering, 196:4853–4862, 2007.

[18] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Isogeometric variational multiscale
modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on
unstretched meshes. Computer Methods in Applied Mechanics and Engineering, 199:780–
790, 2010.

[19] M. C. H. Wu, D. Kamensky, C. Wang, A. J. Herrema, F. Xu, M. S. Pigazzini, A. Verma, A. L.
Marsden, Y. Bazilevs, and M.-C. Hsu. Optimizing fluid–structure interaction systems with
immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting
gear. Computer Methods in Applied Mechanics and Engineering, 316:668–693, 2017.

[20] H. Sundar, R. Sampath, and G. Biros. Bottom-up construction and 2:1 balance refinement of
linear octrees in parallel. SIAM Journal on Scientific Computing, 30(5):2675–2708, 2008.

[21] M. Bern, D. Eppstein, and S.-H. Teng. Parallel construction of quadtrees and quality triangula-
tions. International Journal of Computational Geometry & Applications, 9(06):517–532,
1999.

[22] H. Sundar, R. S. Sampath, S. S. Adavani, C. Davatzikos, and G. Biros. Low-constant parallel
algorithms for finite element simulations using linear octrees. In SC’07: Proceedings of
the International Conference for High Performance Computing, Networking, Storage, and
Analysis. ACM/IEEE, 2007.

[23] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive
mesh refinement on forests of octrees. SIAM Journal on Scientific Computing, 33(3):1103–
1133, 2011.

[24] E. Arge, A. M. Bruaset, and H. P. Langtangen, editors. Efficient Management of Parallelism
in Object Oriented Numerical Software Libraries. Birkhäuser Press, 1997.

95

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

We have deployed the VMS to buoyancy-driven flow and verified and validated the framework

with a Rayleigh–Bénard convection problem for both 2D and 3D cases in Chapter 2. Converged

results in terms of heat transfer on hot walls are shown for each case. It indicates the ability to

produce reasonable results with variation of seven orders of magnitude (103 to 1010) in Rayleigh

number covering laminar, transition and turbulent regime in 2D cases without any extra treatment.

3D comparisons for the turbulent case also show good agreement with some other LES and DNS

results for both mean and fluctuation profiles, and our results match the experimental data best for

the fluctuation profiles. Weak imposition of boundary condition for both velocity and temperature

is also extended to buoyancy-driven flow, and it is able to substantially reduce the computational

cost (36 times) while still produce reasonable results in a turbulent 2D case.

In addition to the flow fields, IMGA is deployed to moving objects in fluids in Chapter 3.

The moving IMGA framework is verified by the convergence study of a freely dropping cylinder

(2D) in a viscous fluid with low Reynolds number. We show a good agreement of the analytical

terminal velocity of the cylinder as well in this case. Experimental validations of object trajectory

and sedimental velocity are also carried out successfully by a freely dropping sphere with moderate

Reynolds number. 2D simulations of particle focusing in an unobstructed channel and an obstructed

channel decorated with pillar also reasonably predict the particle motion and resulting flow fields

compared with some other numerical results. Comparison with a body-fitted method using Fluent

indicates advantages of the moving IMGA regarding the computational cost and efficiency.

In Chapter 4, We further integrate the moving IMGA on the unstructured framework to the

octree-based adaptive refinement framework. We showcase a good strong scalability for the overall

solve time on the coupled framework using a dropping sphere case. The coupled framework also

96

improves the surface assembly. However, it indicates that the surface assembly still takes consider-

able time, which is caused by the imbalanced load in the traditional balancing process because the

elements that cut the immersed boundary involve additional work in the surface computations. The

overall solve time may be further substantially decreased by incorporating a dynamic load balancing

that accounts for this issue of surface assembly.

5.2 Future work

With the framework developed in this work, we suggest to solve potential problems directly in

following areas:

1. Naturally occurring coupled indoor (VMS for buoyancy-driven flow) and outdoor (static

IMGA for buoyancy-driven flow) air ventilation and heat transfer in a housing community to design

a more pleasant and healthy living environment.

2. Medical and biomechanical applications, such as designing obstructed micro-devices to con-

trol and manipulate particles in blood vessel, which can be used in embolism transport control, and

cancer cell separation (moving IMGA).

3. A CFD tool to model and adjust Maxey–Riley equation [1] in varied scenarios of physics.

Maxey–Riley equation is a one-way coupling method that assumes the flow field is not disrupted

by object motion. Assumptions and modeling have to be reasonably proposed for the variations

of Maxey–Riley equation based on its original form according to the physics. This work (mov-

ing IMGA on coupled framework) would be a good tool to fast supply accurate CFD data for the

modeling of Maxey-Riley equation.

4. Particle motion in non-isothermal flows (VMS for buoyancy-driven flow and moving IMGA).

This combines the two major topics in this work – buoyancy-driven flow and fluid-structure inter-

action with moving boundaries. Examples include seafloor rock movement caused by geothermal

and rock transport and sedimentation in volcano eruption.

97

5.3 References

[1] M. R. Maxey and J. J. Riley. Equation of motion for a small rigid sphere in a nonuniform flow.
The Physics of Fluids, 26(4):883–889, 1983.

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	INTRODUCTION
	Buoyancy-Driven Flows Using Finite Element Method
	Particle Focusing in Fluids with Application to Microfluidics
	Dissertation structure
	References

	A RESIDUAL-BASED VARIATIONAL MULTISCALE METHOD WITH WEAK IMPOSITION OF BOUNDARY CONDITIONS FOR INCOMPRESSIBLE BUOYANCY-DRIVEN CONVECTION PROBLEMS
	Introduction
	Variational multiscale formulation and discretization
	Strong and weak formulations of the continuous problem
	Semi-discrete variational multiscale formulation
	Weakly imposed boundary condition for both velocity and temperature

	Numerical method and implementation
	Time discretization and averaging over time
	Block iteration method
	Non-dimensional form
	Computational method

	Rayleigh–Bénard convection problem
	2D case
	3D case
	2D case with weakly imposed boundary condition

	Conclusions
	References

	IMMERSOGEOMETRIC ANALYSIS OF MOVING OBJECTS IN INCOMPRESSIBLE FLOWS
	Introduction
	Immersogeometric methodology
	Governing equations of incompressible flow
	Semi-discrete variational multiscale formulation
	Variationally consistent weak boundary conditions
	Time discretization and iterative method

	Implementation of moving B-rep
	Modeling the rigid body motion
	In-out test
	Treatment of freshly-cleared nodes
	Work flow of the framework
	Non-dimensionalization

	Verification and validation
	Free falling cylinder with low Re (2D)
	Free falling sphere with moderate Re
	Neutral buoyant circular particle focusing in a straight channel
	Circular particle focusing in a straight channel with pillar

	Conclusions and future work
	Appendix: Fluent simulation setup
	References

	TRACKING MOVING OBJECTS IN FLUIDS: A SCALABLE, IMMERSED BOUNDARY METHOD ON OCTREES
	Introduction
	Target problem
	Immersed boundary method
	Scalable IBM on octree meshes
	Matvec - integration with TalyFEM
	Sampling the immersed boundary & adding corrections
	Timestepping and particle evolution
	Intergrid transfers

	Experiments & Results
	Implementation details
	Meshes/domains
	Parallel Scalability
	Overhead of immersed boundary corrections

	Conclusions & Future directions
	References

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future work
	References

