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ABSTRACT

This dissertation focuses on statistical issues arising in survey data and item nonresponse. In

particular, it covers topics on nonparametric calibration in survey data, kernel ridge regression

imputation and density ratio estimation in propensity score approach.

The first project is about nonparametric calibration in survey sampling. Estimation of a finite

population mean or total is important in survey sampling. Calibration estimation is a popular

method to address this issue by adjusting the sampling weights to match the unknown population

totals of auxiliary variables. When the auxiliary vairbales are observed for all units in the finite

population, one can apply the model calibration using the working outcome model. Traditional

parametric calibration approach might not be robust in practice. We develope a nonparametric

calibration method employing infinite-dimensional reproducing kernel Hilbert space (RKHS) that

does not require an explicit outcome model. Under mild assumptions, the proposed calibration

estimator attains the Godambe-Joshi lower bound asymptotically.

The second project is about handling missing data using kernel ridge regression method. Miss-

ing data is frequently encountered in practice. In some cases, missingness is planned to reduce

the cost or the response burden. Ignoring the cases with missing values can lead to misleading

results. To avoid the potential problem with missing data, imputation is commonly used. Kernel

Ridge Regression (KRR) is a modern nonparametric regression technique based on the theory of

Reproducing Kernel Hilbert Space, which enjoys the model robustness. We consider such method

to imputation. Specifically, we establish the root-n consistency of the KRR imputation estimators

and show that it is optimal in the sense that it achieves the lower bound of the semiparametric

asymptotic variance. We further consider propensity score weighting method using kernel ridge

regression and discuss its asymptotic properties.
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The third project is about propensity score estimation using density ration function approach.

The propensity score approach is also a popular tool for handling item nonresponse. The propen-

sity score is often developed using the model for the response probability. In practice, regression

models for binary response, e.g., logistic regression, can be utilized to model the response prob-

ability given the observed auxiliary information. An inverse probability weighting estimator can

then be constructed to get an unbiased estimation of the target parameter. We consider an al-

ternative approach of estimating the inverse of the propensity scores using density ratio function.

Density ratio estimation can be obtained by applying the maximum entropy method which uses the

Kullback-Leibler distance measure. By including the covariates for the outcome regression models

only into the density ratio model, we can achieve efficient propensity score estimation. We further

extend the proposed approach to handling the multivariate missing case.
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CHAPTER 1. GENERAL INTRODUCTION

In this dissertation, we develope nonparametric approaches to address some issues in survey

data and item nonresponse. Specifically, the whole dissertation includes three papers, the first one

covers the topic on nonparametric calibration, the second one is about nonparametric imputation

and the third one is related to density ratio estimation in propensity score approach.

An important topic on survey sampling is estimation of a finite population mean or total.

Horvitz-Thompson (HT) estimator, in addition with a probability sample, can be used to achieve

the design-based unbiased estimation and does not require any model assumptions although it is

not efficient. We can improve the efficiency of the HT estimator in the estimation stage by using

auxiliary information available in the population level. One approach is parametric calibration

and it has been well studied in the literature. Due to the strong assumption of such parametric

form, it might not be robust in practice. Chapter 2 presents a functional calibration employing

infinite-dimensional reproducing kernel Hilbert space (RKHS). Due to the infinite-dimensional

space, the traditional calibration equations can no longer work in this scenario. As a twist, we

utilize a validity measure to quantify the distance between a nonlinear transformation of auxiliary

information within sample and that in the finite population in a RKHS and construct a

finite-dimensional objective function to solve the optimization problem. Numerical algorithms are

developed and implemented to solve the optimization problem in the functional calibration.

Furthermore, under the nonparametric working model, the proposed calibration estimator attains

the Godambe-Joshi lower bound asymptotically.

Chapter 3 consider an issue in item nonresponse. Missing data is very common in practice.

Imputation is a popular technique to avoid the potential problem with missing data. After

imputation, the imputed dataset can serve as a complete dataset that has no missing values,

which in turn makes results from different analysis methods consistent. How to make statistical
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inferences with imputed point estimators is an important statistical problem. On the other hand,

Kernel Ridge Regression (KRR) is a modern regression technique based on the theory of

reproducing kernel Hilbert space. In this chapter, we consider KRR as a nonparametric

imputation method. Under regularity conditions, we establish the root-n consistency of the KRR

imputation estimators and show that it is optimal in the sense that it achieves the lower bound of

the semiparametric asymptotic variance. A nonparametric propensity score estimator using the

KRR method is also developed by the maximum entropy method of the density ratio function.

Variance estimation for KRR imputation estimator is then developed using the nonparametric

propensity score weights.

Propensity score (PS) is a popular approach to handling the missing data problem using

inverse weighting. However, correct specification of the propensity score model can be challenging

and we often do not have a good understanding of the response mechanism to specify the

propensity model correctly. The existing methods for propensity score estimation are either based

on maximum likelihood method or calibration method with some penalization in the calibration

equation. The calibration method gives a doubly robust flavour, but the choice of the objective

function for calibration estimation is not fully agreed. In Chapter 4, we consider an alternative

approach of estimating the inverse of the propensity scores using density ratio function. By

partitioning the sample into two groups based on the response status of the elements, we can

apply the density ratio function estimation method and obtain the inverse propensity scores.

Density ratio estimation can be obtained by applying the maximum entropy method essentially

do the maximization of the lower bound of the Kullback-Leibler distance measure. We can

achieve efficient propensity score estimation by including the covariates for the outcome regression

models only into the density ratio model. We also extend this framework to the high dimensional

scenario where redundant covariates present. We further extend the proposed approach to the

multivariate missing case.
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CHAPTER 2. NONPARAMETRIC FUNCTIONAL CALIBRATION

ESTIMATION IN SURVEY SAMPLING

Hengfang Wang, Jae Kwang Kim and Zhengyuan Zhu

Iowa State University

Modified from a manuscript to be submitted to Scandinavian Journal of Statistics

2.1 Abstract

Calibration estimation, a technique of adjusting the sampling weights to match the unknown

population totals of auxiliary variables, is a popular method of estimation in survey sampling.

When the auxiliary vairbales are observed for all units in the finite population, one can apply the

model calibration of Wu and Sitter (2001) using the working outcome model. In this paper, we

develope a kernel-based nonparametric calibration method that does not require an explicit

outcome model. The proposed method achieves the approximate calibration for all functions in

the infinite-dimensional reproducing kernel Hilbert space (RKHS). Numerical algorithms are

developed and implemented to solve the optimization problem in the function calibration, and

some asymptotic results are presented as well. Furthermore, under the nonparametric working

model, the proposed calibration estimator attains the Godambe-Joshi lower bound

asymptotically. Simulation results are presented to compare the proposed method with other

calibration methods. Empirical study illustrates the performance of our proposed estimator.

2.2 Introduction

Estimation of finite population means or totals is an important problem in survey sampling.

Horvitz-Thompson (HT) estimator combined with a probability sample is used to achieve the

design-based unbiased estimation which does not require any model assumptions. However, HT
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estimator is not necessarily efficient. Using auxiliary information available in the population level,

we can improve the efficiency of the HT estimator in the estimation stage. To incorporate the

auxiliary information, one idea is to use a relationship between the study variable y and the

auxiliary variable x to construct a prediction-type estimator. Generalized regression (GREG)

estimator, discussed by Cassel et al. (1976) and Huang (1978), is a classical example of using the

regression model to improve the efficiency of the HT estimator. Deville and Särndal (1992)

viewed the GREG estimator as a special case of the calibration estimator whose weights are

obtained by minimizing a distance measure between the design weights and the final weights

subject to calibration equations. See Fuller (2009)(Chapter 2) for a more rigorous treatment of

the GREG and calibration estimation.

Calibration estimation involves a working model either implicitly or explicitly. The GREG

estimator implicitly uses a linear regression model for calibration. Isaki and Fuller (1982)

developed a unified theory of regression estimator under a linear regression model. Firth and

Bennett (1998) used non-linear regression models in the calibration estimation. Wu and Sitter

(2001) formalized the idea and developed the so-called model calibration estimation and

established its design consistency. Kim and Park (2010) generalized the idea further to discuss

the functional-form calibration.

For nonparametric case, Breidt and Opsomer (2000) introduced the local polynomial

regression estimator as a nonparametric calibration estimator, which uses nonparametric basis

functions in the calibration estimation. The idea is further extended by Breidt et al. (2005) using

penalised spline method. Also, Goga (2005) proposed B-spline approach as a nonparametric

calibration estimation. Meanwhile, Montanari and Ranalli (2005) imposed neural network

method and developed a second stage calibration procedure to get an efficient estimator. Most of

the aforementioned nonparametric calibration methods involve the choice of bandwidth selection

(or model complexity parameter) to obtain the best prediction (or best selection for the

calibration functions), which implicitly assume that the study variable is univariate. For the

multivariate case, each study variable will have different models and a single choice of the
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bandwidth parameter cannot achieve the optimality uniformly. Breidt and Opsomer (2017)

provided a comprehensive overview of he modern prediction methods for calibration.

In this paper, rather than using a prespecified calibration equation, we employ an

infinite-dimensional RKHS in the optimization problem for calibration. Due to the

infinite-dimensional space, the traditional calibration equations can no longer work in this

scenario. As a twist, borrowing the idea of Wong and Chan (2018), we utilize a validity measure

to quantify the distance between a nonlinear transformation of auxiliary information within

sample and that in the finite population in a RKHS and construct a finite-dimensional objective

function to solve the optimization problem. Also, if we use a kernel ridge regression as a working

model, under mild conditions, the proposed method can achieve the Godambe-Joshi lower bound

asymptotically.

Compared with other nonparametric approaches, our proposed estimator has the following

advantages: (i) there is no need to pre-specify the form of calibration equation; (ii) multivariate

case can be easily handled; (iii) our proposed estimator usually performs better than other

nonparametric calibration estimators under complex settings and are comparable with other

methods under simple settings.

2.3 Basic Setup

Suppose that we have a finite population of size N and we denote the population as

FN = {(xi, yi) : i ∈ UN}, where xi ∈ Rd and UN = {1, . . . , N} is the index set of the finite

population. Here, yi is the study variable and xi is the corresponding covariate for unit i.

Further, we assume that xi’s are available throughout the finite population. We are interested in

estimating the finite population mean E(Y ) = θ.

From the finite population, suppose we select a probability sample with index set SN ⊂ UN of

size nN . Let πiN = P(i ∈ SN ) be the first order inclusion probability of unit i. For simplicity, we

will suppress subscript N for nN , SN , UN and πiN from now on. Moreover, we can define

δi = I{i ∈ S} as the sample membership indicator for unit i. To estimate E(Y ), Horvitz-Tompson
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estimator can be used as

Ê(Y ) =
1

N

N∑
i=1

1

πi
δiyi.

The Horvitz-Tompson estimator is design unbiased but is not necessarily efficient. To improve

efficiency, Deville and Särndal (1992) proposed using

Ê(Y ) =
1

N

N∑
i=1

δiwiyi,

where wi’s are determined to minimize QN (w,d), a distance measurement between w and d,

subject to

1

N

N∑
i=1

wiδiU(Xi) =
1

N

N∑
i=1

U(Xi), (2.1)

where U(·) = (u1(·), . . . , uL(·))T and uj(·) : X → R is measurable for j = 1, . . . , L such that

E[u(XXX)] is finite. If we use

QN (w,d) =
1

N

N∑
i=1

δi
(wi − di)2

diqi
, (2.2)

the resulting calibration estimator is algebraically equivalent to the following GREG estimator.

θ̂greg = tyπ + (tx − t̂xπ)TB̂s

where tyπ = N−1
∑N

i=1 δidiyi, t̂xπN
−1 =

∑N
i=1 δidixi, tx = N−1

∑N
i=1 xi and

B̂s = (
∑N

i=1 δidiqixix
T
i )−1

∑N
i=1 δidiqixiyi. Equation (2.1) forms the constraints in the

optimization problem for calibration. A good choice of the calibration function U(·) can improve

the efficiency of the resulting calibration estimator. For example, Isaki and Fuller (1982) used a

model yi = xT
i β + εi and showed that the generalized regression estimator using u(xi) = xi

achieves the Godambe-Joshi lower bound, which is the lower bound of the anticipated variance

under the superpopulation model. The nonparametric calibration estimator, considered in Breidt

et al. (2005) and Montanari and Ranalli (2005), implicitly assume that m(X) = E(Y |X) is well

approximated by a linear combination of the L calibration functions.
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Suppose we have the additional superpopulation model ξ assumption: m(X) = E(Y |X),

yi = m(xi) + εi for i = 1, . . . , N . Then we have the following decomposition:

1

N

N∑
i=1

δiwiyi −
1

N

N∑
i=1

yi =
1

N

N∑
i=1

δiwi {m(xi) + εi} −
1

N

N∑
i=1

{m(xi) + εi}

=
1

N

N∑
i=1

{(δiwi − 1)m(xi)}︸ ︷︷ ︸
:=T1

+
1

N

N∑
i=1

δi(wi − di)εi︸ ︷︷ ︸
:=T2

+

{
1

N

N∑
i=1

(δidi − 1)εi

}
︸ ︷︷ ︸

:=T3

. (2.3)

If we can control T1 and T2, then consistency of the calibration estimator can be obtained by the

consistency of term T3. As we can see, the term T1 is negligible if the function m(·) lies in HL

where HL =: span{u1, . . . , uL}. In addition, for term T2, we can control it by minimizing

QN (w,d). Once T1 and T2 are controlled, T3 is the leading term in (2.3).

To facilitate our description, we first consider the simple setup of m ∈ HL. Define the

empirical validity measure for calibration estimator which satisfies (2.1) as the following,

SN (w, u) =

{
1

N

N∑
i=1

(δiwi − 1)u(XXXi)

}2

, (2.4)

where w = (w1, . . . , wN )T and u(·) is known. If HL has finite basis with L� n, there always

exists wu such that SN (wu, u) = 0, i.e., minw supu∈HL SN (w, u) = 0.

Note that the calibration estimation of Deville and Särndal (1992) can be written in the

following optimization problem version

(ŵ, λ̂) = arg min
(wT,λT)T

QN (w,d) +

L∑
j=1

λjSN (w, uj)

 , (2.5)

where λ = (λ1, . . . , λL)T is a vector of Lagrange multipliers. The consistency of calibration

estimator obtained from (2.5) can be found in Deville and Särndal (1992) and Fuller (2009). If

m(·) lies in HL, T1 in this scenario equals to 0, while T2 = op
(
n−1/2

)
and T3 is the main term.

Note the T3 is design unbiased to zero and the variance of T3 is equal to the Godambe-Joshi lower

bound (Isaki and Fuller, 1982).
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Literally, if m(·) is unknown, both number of L and form of {uj : j = 1, . . . , L} remain high

flexibility and are hard to be predetermined. Also, as pointed out by Hellerstein and Imbens

(1999), such finite approximation by HL might not be consistent without additional assumptions

on the superpopulation model. Here we adopt the covariate functional balancing idea from Wong

and Chan (2018) to do such calibration via an approximation by RKHS.

2.4 Proposed Method

Rather than employing a finite-basis functional space HL, we relax the functional space to be

an infinite-dimension functional space H. In this case, the quantity minw supu∈H SN (w, u) can be

larger than 0. To discuss the Hilbert space property, we denote its inner product 〈·, ·〉H and the

induced norm ‖·‖H. One canonical example of such a space is the Sobolev space. Specifically,

assuming that the domain of such functional space is [0, 1], the Sobolev space of order l can be

denoted as

W l
2 =

{
f : [0, 1]→ R | f, f (1), . . . , f (l−1) are absolute continuous and f (l) ∈ L2[0, 1]

}
.

One possible norm for this space can be

‖f‖2Wl
2

=

l−1∑
q=0

{∫ 1

0
f (q)(t)dt

}2

+

∫ 1

0

{
f (l)(t)

}2
dt

Readers can refer to Wahba (1990) for a thorough treatment of the RKHS technique. In this

section, we employ the Sobolev space of second order as the approximation space. Given the

Hilbert space H, the objective function for calibration estimation in the spirit of (2.5) is

min
w

sup
u∈H
{QN (w; d) + λSN (w, u)} , (2.6)

where SN (w, u) is defined in (2.4).

However, two issues would appear if we wish to optimize (2.6) directly. The first one is the

scaling issue, i.e., for a constant c, we would have: SN (w, cu) = c2SN (w, u). To get out of this

dilemma, we can do the standardization procedure by scaling SN (w, u) with the corresponding
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empirical norm. By the following Cauchy-Schwarz inequality, we have

SN (w, u) =

{
1

N

N∑
i=1

(δiwi − 1)u(Xi)

}2

≤ ‖u‖2N

{
1

N

N∑
i=1

(δiwi − 1)2

}
,

where ‖u‖2N = 1
N

∑N
i=1 u(Xi)

2. Therefore, we can restrict our interest of u(·) within a normed

sphere: H̃N = {u ∈ H : ‖u‖N = 1}. The other issue is the overfitting problem. The

infinite-dimensional reproducing kernel Hillbert space is too broad to measure such a distance and

is very sensitive to the observations we have in the sample. Such issue can be handled by a

penalized method. Specifically, we can penalize ‖·‖H to control the possible overfitting of u. As

long as the original survey weights do not wiggle too much, such penalization would work well.

All discussions above lead to the following mini-max type optimization:

min
w≥ν

[
QN (w; d) + λ sup

u∈H̃N

{
SN (w, u)− τ ‖u‖2H

}]
, (2.7)

where λ, τ > 0 are two tuning parameters. Here, w ≥ ν indicates wi ≥ ν, for i ∈ I. ν is a small

positive value to ensure the positiveness of {wi : i ∈ I}. The equation (2.7) shows the similarities

and differences between our proposed method and the original calibration method in (2.5).

Roughly speaking, the traditional calibration approach can be understood as ‘hard calibration’,

and our proposed method is similar to ‘soft calibration’, as mentioned in Davies (2018). If we

divide (2.7) by λ, which would not affect the opimized result, and reparameterize the tuning

paramters, we would have:

min
w≥ν

[
sup
u∈H̃N

{
SN (w, u)− λ1 ‖u‖2H

}
+ λ2QN (w; d)

]
, (2.8)

where λ1, λ2 > 0 are 2 tuning parameters. We’ll focus on (2.8) to formulate our estimator.

2.4.1 Theoretical Results

First of all, we’ll list the technical assumptions for our theoretical results.The first four

assumptions are about design part and the last three assumptions are relavant to superpopulation

model.
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(A1) Under Poisson sampling, for the survey weight, we assume that for i ∈ S,

di = O
(
N

n

)
.

(A2) We assume that for any u ∈ H,

1
N

∑
i∈S diu(Xi)− 1

N

∑
i∈U u(Xi)

‖u‖N
= Op

(
1√
n

)
.

(A3) The quantity d
l < 2, where d is the dimension of x and l is the order of H =W l

2.

(A4) The regression function m(·) ∈ H.

(A5) The error terms {εi}Ni=1 are uncorrelated, E(εi) = 0 and var(εi) = σ2
i ≤ σ2. In addition,

{εi}Ni=1 are independent with {xi}Ni=1 and {δi}Ni=1.

Remark 2.1. The first condition is a regular condition for survey weights order. The second

condition is general for Horvitz-Tompson estimator. In our scenario, it’s reasonable to assume

the normalized difference between HT estimator the population mean is of Op(n−1/2)

Remark 2.2. The third condition is a regularity condition which facilitates our technical proof

with entropy theory. The forth condition is for the superpopulation model, which lies in a

reproducing kernel Hilbert space. The last assumption is a quite mild assumption for residuals.

Theorem 2.1. Suppose (A1) ∼ (A5) hold, if λ1 � n−1 and λ2 � nε−1, then

1

N

N∑
i=1

δiŵiYi − E(Y ) = Op
(

1√
n

)
. (2.9)

where ε is a constant larger than 0.

During the derivation of Theorem 4.1, we get the following two facts:

T1 =
1

N

N∑
i=1

{(δiŵi − 1)m(Xi)} = Op

(
1√
n

)
, (2.10)

T2 =
1

N

N∑
i=1

δi(ŵi − di)εi = op

(
1√
n

)
(2.11)

where (2.10) indicates the nonparametric approximation order and (2.11) shows the strengh of

our proposed method. The resulting Op(n−1/2) is due to the consistent survey design.
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2.4.2 Nonparametric Regression Estimator

We can utilize the superpopulation model to extend the original estimator with more

efficiency. In order to ensure the superpopulation model m(·) is in a reproducing-kernel Hilbert

space, kernel ridge regression or smoothing spline mentioned in Gu (2013) might be a good

candidate. Follow the difference estimator idea of Särndal et al. (2003), a modified estimator can

be written in the form:

θ̂Nreg :=
1

N

[∑
i∈S

ŵi {Yi − m̂(Xi)}+
∑
i∈U

m̂(Xi)

]
. (2.12)

Note that

θ̂Nreg −
1

N

N∑
i=1

yi =
1

N

N∑
i=1

(δiŵi − 1){m(xi)− m̂(xi)}︸ ︷︷ ︸
:=T ∗1

+
1

N

N∑
i=1

δi(ŵi − di)εi︸ ︷︷ ︸
:=T2

+

{
1

N

N∑
i=1

(δidi − 1)εi

}
︸ ︷︷ ︸

:=T3

. (2.13)

Thus, it remains to show (or investigate) the order of

T ∗1 =
1

N

N∑
i=1

(δiŵi − 1)h(xi) = op(n
−1/2) (2.14)

where h(xi) = m(xi)− m̂(xi).

Theorem 2.2. Suppose assumptions (A1) ∼ (A5), (B1) and the tuning parameter assumption in

Lemma 2.6 hold, further assume λ1 � nk, λ2 � nε−1, where −2l2+ld+d
(2l+1)d < k < −1, and ε < 2l

2l+1 .

Then t̃y asymptotically attains Godambe-Joshi lower bound in the sense that

nE

(
θ̂Nreg −

1

N

N∑
i=1

Yi

)2

=
n

N2

∑
i∈U

σ2
i

1− πi
πi

+ o(1). (2.15)

By (2.15), the asymptotic variance of θ̂Nreg is approximated by

V (êHT ) =
1

N2

∑
i∈U

∑
j∈U

(πij − πiπj)
εi
πi

εj
πj
,
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where εi = yi −m(xi). Thus, we can obtain the following linearization variance estimator

V̂ (θ̂Nreg) =
1

N2

∑
i∈A

∑
j∈A

(πij − πiπj)
πij

ε̂i
πi

ε̂j
πj
,

where êi = yi − m̂(xi), as a consistent variance estimator of θ̂Nreg.

2.5 Computational Details

2.5.1 Optimization

Specifically, the inner part of (2.8) can be rewritten as:

sup
u∈H

{
SN (w, u)

‖u‖2N
− λ1

‖u‖2H
‖u‖2N

}
. (2.16)

By representer theorem in Wahba (1990), we can easily arrive the conclusion that the optimization

of the above objective function have finite-dimensional representation by span{K(Xj , ·) : j ∈ U}.

In addition, we can define the Gram matrix: M = (K(Xi,Xj))N×N ∈ RN×N . For notational

convenience, we further have the eigenvalue decompostion for M :

M =

(
P1 P2

)Q1 0

0 Q2


PT

1

PT
2

 ,

where Q1 is the diagonal matrix with all r non-zero diagonal elements. In addition, Q2 = 0. Also

notice that if r = N , such Q2 would disappear.

By representer theorem, we can express (2.16) as:

sup
α=(α1,...,αN )T∈RN

SN
{

w,
∑

j∈U αjK(Xj , ·)
}

αTM2α/N
− λ1

αTMα

αTM2α/N

 . (2.17)

In addition, the empirical validity measure in this case can be represented as:

SN

w,
∑
j∈U

αjK(Xj , ·)

 =
1

N2
αTMA(w)Mα,

where A(w) = a(w)a(w)T with a(w) = (δ1w1 − 1, . . . , δNwN − 1)T. Additionally, define

β = Q1P
T
1 α, the optimization problem in (2.17) can be expressed as:

sup
β∈Rr:‖β‖≤1

βT

{
1

N
PT

1 A(w)P1 −Nλ1Q
−1
1

}
β.
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Therefore, the final optimization problem can be rewritten as:

min
w≥ν

[
σmax

{
1

N
PT

1 A(w)P1 −Nλ1Q
−1
1

}
+ λ2QN (w; d)

]
. (2.18)

It should be noted that we only do the optimization for {wi : i ∈ I}. In addition, as P T1 a(w) is an

affine transformation of w, Slater’s condition and convexity analysis can confirm the global

minimum of the above function. If we only have largest eigenvalue with multiplicity 1, the inner

part of (2.18) is differentiable and the corresponding gradient has a closed form. As a reult, the

limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with bound constraints

(L-BFGS-B) can be directly applied. Further, mathematically there might be two largest

eigenvalues. A two-part computational strategy can be employed. Further computational details

can be found in Overton (1992) and Wong and Chan (2018).

2.5.2 Tuning Parameter Selection

We modify the tuning parameter selection idea from Wong and Chan (2018). First of all, to

lower the computational burden, we won’t tune a 2D grid for λ1 × λ2. Comparing with the

traditional calibration Lagrangian multiplier, we would set λ2 = nε−1, where ε = 0.1. After the

above argument, what we need to tune is just the parameter λ1. As a result, we might use the

functional approximation measure to find a reasonable solution.

Still, consider the inner optimization part in (2.8): supu∈H̃N

{
SN (w, u)− λ1 ‖u‖2H

}
. The

Largrangian multiplier implies that the above optimization is equvalent to

sup{u∈H̃N :‖u‖H≤γ}
SN (w, u) for some γ and there’s relationship between λ1 and γ. The following

functional approximation measure:

BN (w) = sup
{u∈H̃N :‖u‖H≤γ}

SN (w, u) (2.19)

can be viewed as the measure of errors on the set Aγ := {u ∈ H̃N : ‖u‖H ≤ γ} given w. When γ

is large, i.e., λ1 is small, Aγ is fairly large. Therefore, in this scenario, doing the maximization

over large set implies that BN (w) is also fairly large. On the other hand, as γ goes down towards

0, BN (w) also goes down to 0, where λ1 goes to ∞. Therefore, we can select a λ1 such that
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BN (w) is closed to 0 enough. Additionally, suppose the above situation happens, further decrease

of γ or increase of λ won’t bring us significant balancing results. Therefore, practically, we can

select a sequence of λ1 : 0 < λ
(1)
1 < λ

(2)
1 < · · · < λ

(J)
1 and the optimal index j∗ can be select as:

j∗ = inf
j

{
j ∈ {1, . . . , J − 1} :

BN (ŵ(j+1))−BN (ŵ(j))

λj+1 − λj
≥ α

}
, (2.20)

where ŵ(j+1) is the optimization results from (2.18) whose λ1 = λ
(j)
1 , for j = 1, . . . , J . In our

numerical experiment, we set α = −10−6.

2.6 Simulation Study

Simulation studies have been done to measure the finite sample performance of the proposed

estimator. In this section we basically have three simulation setups. The first part is in favor of

traditional calibration approach. In the second simulation study, we compare the results between

the two aforementioned estimators when the traditional calibration estimators are jeopardized to

show the robustness of our kernel-based method.

2.6.1 Simulation Setting I

Specifically, we assume the finite poplation size N = 2000, the expectation of probability

sample size is n = 100 and n = 200. In addition, assume our superpopulation model:

yi = 270 + 27.4xi1 + 13.7xi2 + 13.7xi3 + 13.7xi4 + σεi, i = 1, . . . , N, (2.21)

where Xi = (Xi1, Xi2, Xi3, Xi4)T i.i.d∼ N (0, I4×4). Also, such ε
i.i.d∼ N (0, 1) and σ = 5. The

parameter we’re interested in is µy = N−1
∑N

i=1 yi. For the corresponding probability sample S,

we generate them by Poisson sampling with inclusion probability πi = n
N .

2.6.2 Simulation Setting II

In this simulation setup, we keep the same population size and sample size as above. Here we

assume our superpopulation model as:

yi = 210 + 27.4m1(xi) + 13.7m2(xi) + 13.7m3(xi) + 13.7m4(xi) + σεi, i = 1, . . . , N, (2.22)
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where Xi = (Xi1, Xi2, Xi3, Xi4)T i.i.d∼ N (0, I4×4). Additionally, {εi}Ni=1 and σ is choosen the same

as before. Additionally, we have

m1(xi) = exp(xi1/2),m2(xi) = xi2
1+exp(x1i)

,m3(xi) =
(
xi1xi3

25 + 0.6
)3

, and m4(xi) = (xi2 + xi4 + 5)2.

For the corresponding probability sample S, we generate them by Poisson sampling method

with inclusion probability same as the previous simulation settings.

2.6.3 Simulation Results

The simulation results are presented at the following table 2.1:

Table 2.1: Results for Simulation I and II: bias, standard error, and root mean square error for

nonlinear case based on sample of size n = 100 and n = 200 of a fixed population of size N = 2000

Simulation Estimator

n

100 200

Bias SE RMSE Bias SE RMSE

I

HT 0.1649 3.4999 3.5038 0.1115 2.3206 2.3233

Calibration 0.0304 0.5254 0.5263 0.0123 0.3414 0.3417

µ̂1 0.0299 0.6516 0.6523 0.0121 0.4686 0.4687

µ̂2 0.0394 0.6453 0.6465 0.0160 0.4676 0.4679

Neural Net 0.0171 0.7821 0.7823 0.0058 0.4532 0.4532

Smoothing 0.0335 0.5262 0.5272 0.0142 0.3435 0.3438

II

HT 0.3527 20.4784 20.4814 0.4447 13.7036 13.7108

Calibration -0.5080 3.7909 3.8248 -0.1923 2.6303 2.6373

µ̂1 -0.6216 1.0380 1.2099 -0.2199 0.5463 0.5889

µ̂2 -0.4460 0.7370 0.8614 -0.1725 0.4924 0.5218

Neural Net -0.7990 3.1193 3.2200 -0.3498 1.6897 1.7255

Smoothing -0.1520 3.2435 3.2471 -0.0175 2.0224 2.0225

where HT denotes the Horvitz-Tompson estimator, Calibration denotes the traditional

calibration estimator. µ̂1 denotes the estimator generated by (2.18) and µ̂2 denotes the estimator

generated by (2.12). Neural Net denotes the neural network estimator mentioned in Montanari

and Ranalli (2005) tuned with five-fold cross validation. Smoothing denote the penalized splines

estimators in Breidt et al. (2005), where we applied generalized additive model with cubic spline

with knots min{n/(4d), 35} for each covariate.
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As we can see, in first simulation setting, as it’s in favor of traditional calibration method,

also, the true model is a sub-model of penalized spline method, that’s why Calibration and

Smoothing behave best. Our proposed estimators are fairly comparable with those best two in

the sense of RMSE. Also, for HT estimator, as there are no auxiliary information, it behaves

worst among them. Also, the neural network method behaves worst except HT estimator. In

second simulation setting, which is a more general case, the true underlying model is additive

with respect to unknown nonlinear transformation of each dimension of the auxiliary information

we have. In the sense of RMSE, the smoothing spline method behaves best, while our method is

comparable. In third simulation setting, which is a more complex case, the true underlying model

is unknown nonlinear transformation of the auxiliary information we have. In the sense of RMSE,

our proposed estimators behave best.

2.7 Application

We compare our proposed method with other methods in Swiss municipalities population

dataset, which was collected in 2003. We use Poisson sampling method with equal probability

with expectation sample size 500 to sample from 2896 municipalities. We are interested in

estimating the total population of the whole nation with other covariates. In particular, for each

municipality, we have their municipality area, wood area, area under cultivation, mountain

pasture area, area with buildings and industrial area. Table 2.2 shows the estimated national

population and the corresponding 95% confidence interval via each method. The true population

is 7288010. Correspondingly, Figure 2.1 shows the results graphically. Nearly all methods covers

this number except smoothing spline method. Additionally, our proposed method show less bias

and narrower confidence interval, which indicates the possibly nonlinear relationship among

population and other covariates.
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Table 2.2: Esimated national population

Estimator Estimate 95%Confidence Interval

Hortvitz-Tompson 8369370 (4299597, 12439144)

Calibration 7466609 (6809103, 8124114)

Smoothing 6624187 (6348489, 6899886)

Neural Net 7196561 (6612246, 7780877)

µ̂2 7255057 (7063286, 7446827)

Figure 2.1: Esimated national population with 95% confidence interval, where horizontal red line

is the true population.
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2.9 Appendix: Technical Details

For convenience, we’ll use c with subscript as a constant that is larger than 0. Lemma 2.1

would automatically hold after we get Lemma 2.5. Then Theorem 2.1 can be obtained naturally.

The proof of Theorem 2.2 is at the end of this document.

2.9.1 Proof of Theorem 2.1

Lemma 2.1. Let ŵ be the solution to (2.8). Assume λ1 � n−1 and λ2 � nε−1 for some ε > 0.

Then, under assumptions [A1] ∼ [A4], we have

1. SN (ŵ,m) = Op( 1
n) ‖m‖N .

2. There exist constants W > 0 and S2 > 0 such that E {nεQN (ŵ; d)} ≤W and

E {nSN (ŵ,m)} ≤ S2.

Lemma 2.1 states the convergece rate for (T1) in (2.3), and the boundedness of expectation

for (T2) therein. Literally, Lemma 2.1 just makes all ingredients ready for derivation of Theorem

4.1. To prove Lemma 2.1, we use the following Lemmas.

Lemma 2.2. Suppose λ1 = O
(
n−1

)
and λ2 � nε−1 for ε > 0, a legitimate solution {ŵi : i ∈ S}

should satisfy

ŵi = di + op

(
N

n

)
. (2.23)

Moreover, we have ŵi = di +Op(n−ε/2−1N)
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Proof of Lemma 2.2. First of all, we claim that {di : i ∈ S} is a good candidate of our solution.

Define the function FN,λ1,λ2(·) as the following form:

FN,λ1,λ2(w) = sup
u∈H̃N

{
SN (w, u)− λ1 ‖u‖2H

}
+ λ2QN (w; d) (2.24)

Then, we have

FN,λ1,λ2(d) = sup
u∈H̃N

{
SN (d, u)− λ1 ‖u‖2H

}
. sup

u∈H

SN (d, u)

‖u‖2N
+O

(
1

n

)

= sup
u∈H

[
1
N

∑
i∈S diu(Xi)− 1

N

∑
i∈U u(Xi)

‖u‖N

]2

+O
(

1

n

)
= O

(
1

n

)
, (2.25)

where the last inequality holds by Assumption 3. However, suppose for any w satisfying have

wi = di +Op
(
n−1N

)
, we would have

λ2QN (w; d) = O
(
nε−1

)
× 1

N
×O (n)×Op

(
N

n

)
= Op

(
nε−1

)
,

which implies that such w is not a good solution compared with (2.25) , whose effect cannot

match with d. Therefore, we arrive the conclusion that ŵi = di + op
(
n−1N

)
, for i ∈ S.

Specifically, one can observe that a good candidate w has to satisfy λ2QN (w; d) . Op
(
n−1

)
,

which implies ŵi = di +Op
(
n−ε/2−1N

)
.

Lemma 2.3. Suppose assumptions [A1] ∼ [A3] hold. Let

w? = (w?1, . . . , w
?
N )T = (1/π(x1), . . . , 1/π(xN ))T. Then there exists a constant c > 0 such that

∀T ≥ c,

P

 sup
u∈H̃N

NSN (w∗, u)

‖u‖
d
l
H

≥ T 2

 ≤ c exp

(
−T

2

c

)
. (2.26)

Proof of Lemma 2.3 . For given w∗, let γi = δiw
∗
i − 1, for i = 1, . . . , N . Then, we have

E(γi|Xi) = E(δiw
∗
i − 1|Xi) = 0. Further, by Poisson sampling scheme, we have the conditional
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independence between In addition, by the order of di and w∗i , we may assume that there exists

constant c̃1 and c̃2 such that P(δi = 1) ≤ c̃1n/N and supi=1,...,N w
∗
i ≤ c2N/n. Then we have

E(γ2k
i ) = EXi

[
E
{

(δiw
∗
i − 1)2k|Xi

}]
= EXi

[
E
{

(δiw
∗
i )

2k|Xi

}]
= EXi

[
P(δi = 1)E

{
(w∗i )

2k
}]

≤ c̃1c̃
2k
2

(
N

n

)2k−1

≤ (2k)!

2kk!

{
N

n
(c̃1 ∨ 1)(c̃2 ∨ 1)

}2k

(2.27)

Therefore, {γi}Ni=1 are uniformly subgaussian. Thus, there exists constants K and σ2
0, such

that:

max
i∈U

K2

[
E
(
e
γ2i
K2 | {Xi}Ni=1

)
− 1

]
≤ σ2

0 (2.28)

By (A4) and Birman and Solomyak (1967), there exists a constant A, for any ξ > 0, s.t:

H∞(ξ, {u ∈ H : ‖u‖H ≤ 1}) ≤ Aξ−
d
l , (2.29)

where H∞(δ,G) is the δ − uniform entropy of G, a set of functions. Specifically, let δ > 0 and

N∞(δ,G) be the smallest values of N such that there exists {gj}∞j=1 ⊂ G such that

supg∈G minj=1,...,N |gi − gj |∞ ≤ δ, then H∞(δ,G) = logN∞(δ,G). Thus, by Lemma 2.1 of (Lin,

2000) and lemma 8.4 in (van de Geer, 2000), for some constants, w.l.o.g., we can obtain that there

exists a positive constant c, depending on A, d, l, R,K, σ2
0, for all T > 0, satisfy

P

sup
g∈H

| 1√
N

∑N
i=1 γig(Xi)|

‖g‖1−
d
2l

N

≥ T
∣∣∣∣ {Xi}Ni=1

 ≤ c exp

(
−T

2

c2

)
. (2.30)

Further, as {Xi}Ni=1 is independent of c, we have

P

sup
g∈H

| 1√
N

∑N
i=1 γig(Xi)|

‖g‖1−
d
2l

N

≥ T

 = P

sup
g∈H

| 1√
N

∑N
i=1 γig(Xi)|

‖g‖1−
d
2l

N

≥ T
∣∣∣∣ {Xi}Ni=1

 . (2.31)
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Additionally, by definition of {γi, i ∈ S}, H̃N and SN (·, ·), we have,sup
g∈H

| 1√
N

∑N
i=1 γig(Xi)|

‖g‖1−
d
2l

N

≥ T

 =

 sup
u∈H̃N

| 1√
N

∑N
i=1 γiu(Xi)|

‖u‖
d
2l
H

≥ T


=

 sup
u∈H̃N

1
N

{∑N
i=1(δiw

∗
i − 1)u(Xi)

}2

‖u‖
d
l
H

≥ T 2


=

 sup
u∈H̃N

NSN (w∗, u)

‖u‖
d
l
H

≥ T 2

 . (2.32)

Lemma 2.4. Suppose assumptions [A1]∼[A4] hold, and λ1 � n−1 and λ2 � nε−1, for ε > 0, we

have SN (ŵ, u) = Op(n−1) and QN (ŵ; d) = op(1). Then, there exists a constant W > 0, s.t.

E {nεQN (ŵ,d)} ≤W .

Proof of Lemma 2.4 . First of all, we introduce the basic inequality for our penalized method.

Let u∗ = arg maxu∈H̃N

{
SN (w∗, u)− λ1 ‖u‖2H

}
. For f ∈ H̃N , we have

SN (ŵ, f)− λ1 ‖f‖2H + λ2QN (ŵ; d) ≤ FN,λ1,λ2(ŵ)

≤ FN,λ1,λ2(w∗)

≤ SN (w∗, u∗)− λ1 ‖u∗‖2H + λ2QN (w∗; d) (2.33)

Additionally, if ‖u‖N = 0, we would have: SN (ŵ, u) = 0 for any u ∈ H. Therefore, ∀u ∈ H, we

would have

SN (ŵ, u)− λ1 ‖u‖2H + λ2QN (ŵ; d) ‖u‖2N ≤
{
SN (w∗, u∗)− λ1 ‖u∗‖2H + λ2QN (w∗; d)

}
‖u‖2N(2.34)

The basic inequality (2.33) can be rearranged as:

SN (ŵ, f) + λ1 ‖u∗‖2H + λ2QN (ŵ; d) ≤ SN (w∗, u∗) + λ1 ‖f‖2H + λ2QN (w∗; d). (2.35)
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We’ll define a few events partition for the whole event space. First of all, let

G̃N,1 = {SN (w∗, u∗) is the largest among SN (w∗, u∗), λ1 ‖f‖2H and λ2QN (w∗; d)}

G̃N,2 = {λ1 ‖f‖2H is the largest among SN (w∗, u∗), λ1 ‖f‖2H and λ2QN (w∗; d)}

G̃N,3 = {λ2QN (w∗; d) is the largest among SN (w∗, u∗), λ1 ‖f‖2H and λ2QN (w∗; d)}

(2.36)

Additionally, we define GN,1 = G̃N,1, GN,2 = G̃N,1 \ G̃N,2, GN,3 = G̃N,3 \
(
G̃N,1

⋃
G̃N,2

)
We’ll

further divide GN,1 into two parts:

GN,1,T = GN,1
⋂{

SN (w∗, u∗) ≤ 1

N
T 2 ‖u∗‖

d
l
H

}
G̊N,1,T = GN,1

⋂{
SN (w∗, u∗) >

1

N
T 2 ‖u∗‖

d
l
H

}
Finally, we arrive a partition of the whole space Ω = GN,1,T

⋃̇
G̊N,1,T

⋃̇
GN,2

⋃̇
GN,3

Then, we’ll discuss 3 scenarios on GN,1,T , GN,2 and GN,3.

Case 1. On GN,1,T , by (2.35), we have

λ1 ‖u∗‖2H ≤ 3SN (w∗, u∗) ≤ 3
1

N
T 2 ‖u∗‖

d
l
H

⇔ ‖u∗‖H ≤ 3
l

2l−d (λ1N)
l

d−2l T
2l

2l−d

⇔ ‖u∗‖
d
l
H ≤ 3

d
2l−d (λ1N)

d
d−2l T

2d
2l−d

:= c1 (λ1N)
d

d−2l T
2d

2l−d (2.37)

On the other hand, we have

SN (ŵ, f) ≤ 3SN (w∗, u∗)

≤ 3N−1T 2 ‖u∗‖
d
l
H

≤ 3c1λ
− d

2l−d
1 N

2l
d−2lT

4l
2l−d

:= c2λ
− d

2l−d
1 N

2l
d−2lT

4l
2l−d (2.38)

Similarly, we have:

λ2QN (ŵ; d) ≤ c2λ
− d

2l−d
1 N

2l
d−2lT

4l
2l−d (2.39)
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Case 2. In a similar fashion, on GN,2, we would have:

SN (ŵ, f) ≤ 3λ1 ‖f‖2H

‖u∗‖H ≤
√

3 ‖f‖H

λ2QN (ŵ; d) ≤ 3λ1 ‖f‖2H (2.40)

Case 3. On GN,3, we have:

SN (ŵ, f) ≤ 3λ2QN (w∗; d)

λ1 ‖u∗‖2H ≤ 3λ2QN (w∗; d)

λ2QN (ŵ; d) ≤ 3λ2QN (w∗; d) (2.41)

By Lemma 2.3, for some constant c > 0, ∀T ≥ c, we have:

P
{
SN (w∗, u∗) ≤ 1

N
T 2 ‖u∗‖

d
l
H

}
≥ 1− c exp

(
−T

2

c2

)
. (2.42)

Therefore, we would have:

P
[
SN (ŵ, f) ≤ max

{
c2λ
− d

2l−d
1 N

2l
d−2lT

4l
2l−d , 3λ1 ‖f‖2H , 3λ2QN (w∗; d)

}]
=

3∑
i=1

P
([
SN (ŵ, f) ≤ max

{
c2λ
− d

2l−d
1 N

2l
d−2lT

4l
2l−d , 3λ1 ‖f‖2H , 3λ2QN (w∗; d)

}]⋂
GN,i

)
≥ P(GN,1,T ) + P

[{
SN (ŵ, f) ≤ c2λ

− d
2l−d

1 N
2l
d−2lT

4l
2l−d

}⋂
G̊N,1,T

]
+ P(GN,2) + P(GN,3)

= 1− P
[{
SN (ŵ, f) > c2λ

− d
2l−d

1 N
2l
d−2lT

4l
2l−d

}
∩ G̊N,1,T

]
= 1− P(G̊N,1,T )

≥ 1− P
{
SN (w∗, u∗) >

1

N
T 2 ‖u‖

d
l
H

}
≥ 1− c exp

(
−T

2

c2

)
. (2.43)

Further, by Lemma 1, it is reasonable to assume that nεQN (w∗; d) ≤M , as n→∞ and

N →∞ for a constant M . Therefore, under the condition that λ1 � O
(
n−1

)
and λ2 = O

(
nε−1

)
,

by (2.43), we would arrive the conclusion that:

SN (ŵ, f) = Op
(

1

n

)
. (2.44)
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Also, with similar arguments to λ2QN (ŵ; d) as above and if λ1 � n−1 and λ2 � nε−1 we

would arive the conclusion that

λ2QN (ŵ; d) = Op
(

1

n

)
⇔ QN (ŵ; d) = Op

(
n−ε
)

(2.45)

Now, we consider E [nεQN (ŵ; d)]. As λ1 � n−1 and λ2 � nε−1, we would have:

B1n
−1 ≤ λ1 ≤ B̄1n

−1

B2n
ε−1 ≤ λ2 ≤ B̄2n

ε−1 (2.46)

for some positive constants B̄1 > B1 > 0, B̄2 > B2 > 0. Then we might have the following

decomposition:

E {nεQN (ŵ; d)} = E {nεQN (ŵ; d)|GN,1}P(GN,1)︸ ︷︷ ︸
(S1)

+E {nεQN (ŵ; d)|GN,2}P(GN,2)︸ ︷︷ ︸
(S2)

+E {nεQN (ŵ; d)|GN,3}P(GN,3)︸ ︷︷ ︸
(S3)

For term S1, we might choose: c3 = max{c, 2B
− d

2l−d
1 B−1

2 , 2} and sufficiently small a > 0 such that

c3 > B
− d

2l−d
1 B−1

2 c
4la
2l−d
3 c2 and 4la

2l−d < 1. The above also implies that a fulfills

min

 (2l−d) log(
c3
c2
B

d
2l−d
1 B̄2)

4d log c3
, 2l−d

4l

 > a > 0 . Then, we’ll have

E {nεQN (ŵ; d)|GN,1}P(GN,1)

=

∫ ∞
0

P {nεQN (ŵ; d) > t|GN,1}P(GN,1)dt

=

∫ ∞
0

P {nεQN (ŵ; d) > t ∩GN,1} dt

≤ c3 +

∫ ∞
c3

P {nεQN (ŵ; d) > t ∩GN,1,ta} dt+

∫ ∞
c3

P
{
nεQN (ŵ; d) > t ∩ G̊N,1,ta

}
dt

(2.47)

Specifically, we have ∫ ∞
c3

P {nεQN (ŵ; d) > t ∩GN,1,ta} dt

≤
∫ ∞
c3

P
{
t

4la
2l−dB

−d
2l−d
1 B−1

2 c2 ≥ nεQN (ŵ; d) > t

}
= 0 (2.48)
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In addition, we have∫ ∞
c3

P
{
nεQN (ŵ; d) > t ∩ G̊N,1,ta

}
dt ≤

∫ ∞
c3

P(G̊N,1,ta)dt

≤
∫ ∞
c3

c exp

(
− t

2a

c2

)

= −c
c

1
aΓ
(

1
2a ,

t2a

c2

)
2a

|∞t=c3 ≤ c4 (2.49)

The last inequality is implied by the fact: Γ(s,x)
xs−1e−x → 1 as x→ 1. As a result, we have:

E {nεQN (ŵ; d)|GN,1}P(GN,1) <∞ (2.50)

As for term S2, we have:

E {nεQN (ŵ; d)|GN,2}P(GN,2) ≤ 3B̄1B
−1
2 ‖f‖

2
H <∞ (2.51)

Also, for term S3, we have:

E {nεQN (ŵ; d)|GN,3}P(GN,3) ≤ 3B̄2E {nεQN (w∗; d)|GN,3}P(GN,3)

≤ 3B̄2E {nεQN (w∗; d)}

≤ 3B̄2M <∞ (2.52)

Combining the above results, we finally arrive the conclusion that there exists a constant W > 0

such that E {nεQN (ŵ; d)} ≤W .

Lemma 2.5. Suppose assumptions [A1] ∼ [A5] hold, if λ1 � n−1 and λ2 = O
(
nε−1

)
, then

SN (ŵ,m) = Op
(
n−1

)
‖m‖N . Further, if λ2 � nε−1, there exists constant S > 0, such that

E {nSN (ŵ,m)} ≤ S2.

Proof of Lemma 2.5 . By (2.34), we have

SN (ŵ,m) + λ1 ‖u∗‖2H ‖m‖
2
N + λ2QN (ŵ; d) ‖m‖2N

≤SN (w∗, u∗) ‖m‖2N + λ1 ‖m‖2H + λ2QN (w∗; d) ‖m‖2N

By Lemma 2.1 in Lin (2000), we have: SN (w∗, u∗) = Op
(
n−1

)
‖u∗‖

d
l
H. Similarly, we’ll discuss each

scenarios in (2.53) as in Lemma 2.5.
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Case 1. SN (w∗, u∗) ‖m‖2N is the largest of the right hand side of (2.53). If ‖m‖N 6= 0, we would

have:

λ1 ‖u∗‖2H ≤ Op
(
n−1

)
‖u∗‖

d
l
H

⇔ ‖u∗‖H ≤ λ
− l

2l−d
1 Op

(
n

l
d−2l

)
⇔ ‖u∗‖

d
l
H ≤ λ

− d
2l−d

1 Op
(
n

d
d−2l

)
. (2.53)

Thus, we have

SN (ŵ,m) ≤ λ
− d

2l−d
1 Op

(
n

2l
d−2l

)
‖m‖2N . (2.54)

Also, if ‖m‖2N = 0, we natually have the above inequality.

Case 2. Suppose λ1 ‖m‖2H is the largest in the right hand side, we have:

SN (ŵ,m) ≤ 3λ1 ‖m‖2H . (2.55)

Case 3. Suppose that λ2QN (w∗; d) ‖m‖2N is the largest in the right hand side of (2.53), we can

obtain that:

SN (ŵ,m) ≤ 3λ2n
−εM ‖m‖2N (2.56)

Due to Lemma 2.1 in Lin (2000), we have: ‖m‖N ≤ R ‖m‖H <∞.

Therefore, we have

SN (ŵ,m) = Op
[
max

{
λ
− d

2l−d
1 n

2l
d−2l ‖m‖2N , λ1 ‖m‖H , λ2n

−εM ‖m‖2N
}]

(2.57)

Since SN (ŵ,m) = 0 if ‖m‖N = 0, we have SN (ŵ,m) = Op
(

1
n

)
‖m‖2N .

Based on the Lemma 2.3, with similar arguments in Lemma 2.4, we might have that there

exists a constant S̃2 > 0 such that E
{
n2S̃2

N (ŵ,m)
}
≤ S̃2, where

S̃N (ŵ,m) =


SN

(
ŵ, m
‖m‖N

)
, if ‖m‖AB 6= 0

0, Otherwise

(2.58)
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Moreover,

E {nSN (m̂,m)} = E
{
nS̃N (m̂,

m

‖m‖N
) ‖m‖2N

}
≤ 1

2

[
E
{
n2S̃2

N (ŵ,m)
}

+
n
∫
m4dP
N2

+
n(N − 1)

N2

(∫
m2dP

)2
]

≤ 1

2

{
S̃2 +

n

N

∫
m4dP +

n

N

(∫
m2dP

)2
}

(2.59)

By Lemma 2.1 of Lin (2000), we have
∫
m4dP <∞ and

(∫
m2dP

)2
<∞. That is, E {nSN (m̂,m)}

is bounded.

Proof of Theorem 1. Recall the decomposition:

1

N

N∑
i=1

δiwiYi −
1

N

N∑
i=1

Yi =
1

N

N∑
i=1

{(δiwi − 1)m(Xi)}︸ ︷︷ ︸
(T1)

+
1

N

N∑
i=1

δi(wi − di)εi︸ ︷︷ ︸
(T2)

+

{
1

N

N∑
i=1

(δidi − 1)εi

}
︸ ︷︷ ︸

(T3)

(2.60)

By Lemma 2.1 of Lin (2000), we have ‖m‖22 =
(∫
m2dP

)2
<∞. Since XXX1, . . . ,XXXN are i.i.d, we

can show that

‖m‖N =

∫
m2dP + op(1) (2.61)

Therefore, the term T1 can be bounded by∣∣∣∣∣ 1

N

N∑
i=1

{(δiwi − 1)m(Xi)}

∣∣∣∣∣ =
√
SN (ŵ,m) = Op

{(
1

n

) 1
2

}
‖m‖2 + op

{(
1

n

) 1
2

}
(2.62)

via Lemma (2.4). In addition, E {nSN (ŵ,m)} <∞. As for term T2, we first define

ψ̂i = δi(ŵi−di). By assumption, we have E[εi|ψ̂1, . . . , ψ̂N ] = 0. By EVVE formula, we would have:

Var

(
1

N

N∑
i=1

ψ̂iεi

)
= E

[
Var

{
1

N

N∑
i=1

ψ̂iεi

∣∣∣∣∣ ψ̂1, . . . , ψ̂N

}]

= E

E

(

1

N

N∑
i=1

ψ̂iεi

)2
∣∣∣∣∣∣ ψ̂1, . . . , ψ̂N




.
σ2

N
E {QN (ŵ; d)}O(di) .

σ2Wn−ε

n
= o

(
1

n

)
. (2.63)



29

Therefore, we have N−1
∑N

i=1 δi(ŵi − di)εi = op
(
n−1/2

)
, which implies

E
{
n1/2N−1

∑N
i=1 δi (ŵi − di)2 εi

}2
<∞. Finally, term T3 can be directly handled by sample

design assumption (A1), i.e., N−1
∑

i∈S diεi −N−1
∑

i∈U εi = Op
(
n−1/2

)
. In a nutshell, we have

N−1
∑N

i=1 δiŵiYi − E(Y ) = Op
(
n−1/2

)
.

2.9.2 Proof of Theorem 2.2

The additional assumption for Theorem 2 is

[B1 For some k ≥ 2, there is a constant ρ <∞ such that E[φj(X)2k] ≤ ρ2k for all j ∈ N, where

{φj}∞j=1 are orthonormal basis by expansion from Mercer’s theorem.

Lemma 2.6. Suppose assumptions [A4], [A5] and [B1] hold, and the kernel ridge regression for a

`-th order Sobolev space H with tuning parameter of order n−2`/(2`+1), then

E(‖m− m̂‖2N ) = O

{(
σ2

n

) 2`
2`+1

}
. (2.64)

Proof of Lemma 2.6. The proof can be found in Corollary 4 in Zhang et al. (2013).

Lemma 2.7. Suppose assumptions (A1) ∼ (A5), (B1) and the tuning parameter assumption in

Lemma 2.6 hold, further assume λ1 � nk, λ2 � nε−1, where −2`2+ld+d
(2l+1)d < k < −1, and ε < 2l

2l+1 ,

then SN (ŵ, h) = op
(
n−1

)
.

Proof of Lemma 2.7. Let h = m− m̂. Obviously, as m, m̂ ∈ H. we have h ∈ H. By Lemma 2.6,

we have ‖h‖N = Op(n−`/(2`+1)) = op(1). It is also easy to verify that λ−1
1 ‖h‖

2(2l−d)
d

N = op (n) and

λ2 ‖h‖2N = op(n
−1).

Rearranging the terms in (2.34), we would immediately get:

SN (ŵ, h) + λ1 ‖u∗‖2H ‖h‖
2
N + λ2QN (ŵ; d) ‖h‖2N

≤SN (w∗, u∗) ‖h‖2N + λ1 ‖h‖2H + λ2QN (w∗; d) ‖h‖2N . (2.65)

The proof is similar to Lemma 2.4 and Lemma 2.5.
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Proof of Theorem 2.2. We have the following decomposition

1

N

[∑
i∈S

ŵi {Yi − m̂(Xi)}+
∑
i∈U

m̂(Xi)

]
− 1

N

∑
i∈U

Yi

=
1

N

N∑
i=1

(δiŵi − 1)h(Xi)︸ ︷︷ ︸
:=aN

+
1

N

N∑
i=1

δi(ŵi − di)εi︸ ︷︷ ︸
:=bN

+
1

N

N∑
i=1

δidiεi︸ ︷︷ ︸
:=cN

(2.66)

Apparently, we have

nE

(
t̃y
N
− 1

N

N∑
i=1

Yi

)2

= n
{
E(a2

N ) + E(b2N ) + E(c2
N ) + 2E(aNbN )

+2E(aNcN ) + 2E(bNcN )} (2.67)

By Lemma 2.7, the first term is op(n
−1/2). By dominated convergence theorem and Skorohod

representation theorem, we have

E(a2
N ) = n−1E(nSN (ŵ, h)) = o(n−1) (2.68)

Therefore, nE(a2
N ) = o(1). Moreover, with similar argument in Theorem 2, we have

bN = op(n
−1/2), which implies nE(b2N ) = o(1). Next,

nE(c2
N ) =

n

N2

∑
i∈U

1− πi
πi

σ2
i (2.69)

Additionally, the cross terms can be handled by Cauchy-Schwarz inequality. Therefore, we arrive

the conclusion that our estimator attains Godambe-Joshi lower bound.
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CHAPTER 3. STATISTICAL INFERENCE AFTER KERNEL RIDGE

REGRESSION IMPUTATION UNDER ITEM NONRESPONSE

Hengfang Wang and Jae Kwang Kim

Iowa State University

Modified from a manuscript to be submitted to in Biometrika

3.1 Abstract

Imputation and propensity score weighting are two popular techniques for handling missing

data. We consider a fully nonparametric approach to these methods using kernel ridge regression.

Kernel ridge regression is a modern regression technique based on the theory of reproducing

kernel Hilbert space. We first use the kernel ridge regression to develop imputation for handling

item nonresponse. While this nonparametric approach is potentially promising for imputation, its

statistical properties are not fully investigated in the literature. Under some conditions on the

order of the tuning parameter, we first establish the root-n consistency of the kernel ridge

regression imputation estimators and show that it achieves the lower bound of the semiparametric

asymptotic variance. A nonparametric propensity score estimator using the kernel ridge

regression is also developed by a novel application of the maximum entropy method for the

density ratio function estimation. The resulting propensity score estimator is shown to achieve

the same asymptotic variance as the kernel ridge regression imputation estimator. Results from a

limited simulation study are also presented to confirm our theory.

3.2 Introduction

Missing data is a universal problem in statistics. Ignoring the cases with missing values can

lead to misleading results (Kim and Shao, 2013; Little and Rubin, 2019). Two popular approaches
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for handling missing data are imputation and propensity score weighting. Both approaches are

based on some assumptions about the data structure and the response mechanism. In the

statistical point of view, instead of using strong parametric model assumptions, nonparametric

approaches are more attractive as they does not depend on explicit model assumptions.

In principle, any prediction techniques can be used to predict missing values using the

responding units as a training sample. However, statistical inference with imputed estimator is

not straightforward. Treating imputed data as if observed and applying the standard estimation

procedure may result in misleading inference, leading to underestimation of the variance of

imputed point estimators. How to incorporate the uncertainty of the estimated parameters in the

final inference is challenging especially for nonparametric imputation because the model

parameter is implicitly defined.

For nonparametric imputation, Cheng (1994) used the kernel-based nonparametric regression

for imputation and established the root n-consistency of the imputed estimator. Wang and Chen

(2009) employed the kernel smoothing approach to do empirical likelihood inference with missing

values. Kim et al. (2014) proposed Bayesian multiple imputation using the Dirichlet process

mixture. Sang et al. (2020) proposed semiparametric fractional imputation using Gaussian

mixtures.

For nonparametric propensity score estimation, Hainmueller (2012) proposed the so-called

entropy balancing to find the propensity score weights using the Kullback-Leibler information

criterion. Chan et al. (2016) generalize this idea further to develop a general calibration weighting

method that satisfies the covariance balancing property with increasing dimensions of the control

variables. They further showed the global efficiency of the proposed calibration weighting

estimator. Zhao (2019) generalized the idea further and developed a unified approach of covariate

balancing propensity score method using tailored loss functions. Tan (2020) developed regularized

calibrated estimation of propensity scores with high dimensional covariates.

In this paper, we consider kernel ridge regression as a tool for nonparametric function

estimation for imputation and propensity score estimation. Kernel ridge regression (Friedman
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et al., 2001; Shawe-Taylor and Cristianini, 2004) is a modern regression technique which can

alleviate the effect of model assumption. By using a regularized M-estimator in reproducing

kernel Hilbert space, kernel ridge regression can estimate the regression mean function with

complex reproducing kernel Hilbert space while a regularized term makes the original infinite

dimensional estimation problem viable (Wahba, 1990). van de Geer (2000); Mendelson (2002);

Zhang (2005); Koltchinskii (2006); Steinwart et al. (2009) studied the error bounds for the

estimates of kernel ridge regression method.

While the kernel ridge regression is a promising tool for handling missing data, its statistical

inference is not fully investigated in the literature. Specifically, we obtain root-n consistency of

the kernel ridge regression imputation estimator under some popular functional Hilbert spaces.

Because the kernel ridge regression is a general tool for nonparametric regression with flexible

assumptions, the proposed imputation method can be used widely to handle missing data without

employing parameteric model assumptions. Variance estimation after the kernel ridge regression

imputation is a challenging but important problem. To the best of our knowledge, this is the first

paper which considers kernel ridge regression technique for imputation and discusses its variance

estimation rigorously.

The kernel ridge regression is also used to obtain nonparametric propensity score weights for

handling missing data. To do this, we use a novel application of density ratio function estimation

in the same reproducing kernel Hilbert space. Maximum entropy method of Nguyen et al. (2010)

is used for density ratio estimation, which is further applied to get the kernel ridge

regression-based propensity score estimators. We further show the asymptotic equivalence of the

resulting propensity score estimator with the kernel ridge regression-based imputation estimator.

These theoretical findings can be used to make valid statistical inferences with the propensity

score estimator.
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3.3 Kernel Ridge Regression Imputation

Consider the problem of estimating θ = E(Y ) from an independent and identically distributed

sample {(xi, yi), i = 1, · · · , n} of random vector (X, Y ). Instead of always observing yi, suppose

that we observe yi only if δi = 1, where δi is the response indicator function of unit i taking values

on {0, 1}. The auxiliary variable xi are always observed. We assume that the response mechanism

is missing at random in the sense of Rubin (1976).

Under missing-at-random, we can develop a nonparametric estimator m̂(x) of

m(x) = E(Y | x) and construct the following imputation estimator:

θ̂I =
1

n

n∑
i=1

{δiyi + (1− δi)m̂(xi)} . (3.1)

If m̂(x) is constructed by the kernel-based nonparametric regression method, we can express

m̂(x) =

∑n
i=1 δiKh(xi,x)yi∑n
i=1 δiKh(xi,x)

(3.2)

where Kh(·) is the kernel function with bandwidth h. Under some suitable choice of the

bandwidth h, Cheng (1994) first established the root-n consistency of the imputation estimator

(3.1) with nonparametric function in (3.2). However, the kernel-based regression imputation in

(3.2) is applicable only when the dimension of x is small.

In this paper, we extend the work of Cheng (1994) by considering a more general type of the

nonparametric imputation, called kernel ridge regression imputation. The kernel ridge regression

can be understood using the reproducing kernel Hilbert space theory (Aronszajn, 1950) and can

be described as

m̂ = arg min
m∈H

[
n∑
i=1

δi {yi −m(xi)}2 + λ ‖m‖2H

]
, (3.3)

where ‖m‖2H is the norm of m in the Hilbert space H and λ(> 0) is a tuning parameter for

regularization. Here, the inner product 〈·, ·〉H is induced by such a kernel function, i.e.,

〈f,K(·,x)〉H = f(x), ∀x ∈ X , f ∈ H,
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namely, the reproducing property of H. Naturally, this reproducing property implies the H norm

of f : ‖f‖H = 〈f, f〉1/2H . Scholkopf and Smola (2002) provides a comprehensive overview of the

machine learning techniques using the reproducing kernel functions.

One canonical example of such a functional Hilbert space is the Sobolev space. Specifically,

assuming that the domain of such functional space is [0, 1], the Sobolev space of order ` can be

denoted as

W`
2 =

{
f : [0, 1]→ R|f, f (1), . . . , f (`−1) ⊂ C[0, 1], f (`) ∈ L2[0, 1]

}
,

where C[0, 1] denotes the absolutely continuous function on [0, 1]. One possible norm for this

space can be

‖f‖2W`
2

=
`−1∑
q=0

{∫ 1

0
f (q)(t)dt

}2

+

∫ 1

0

{
f (`)(t)

}2
dt.

In this section, we employ the Sobolev space of second order as the approximation function space.

For Sobolev space of order `, we have the kernel function

K(x, y) =
`−1∑
q=0

kq(x)kq(y) + k`(x)k`(y) + (−1)`k2`(|x− y|),

where kq(x) = (q!)−1Bq(x) and Bq(·) is the Bernoulli polynomial of order q. Smoothing spline

method is a special case of the kernel ridge regression method.

By the representer theorem for reproducing kernel Hilbert space (Wahba, 1990), the estimate

in (3.3) lies in the linear span of {K(·,xi), i = 1, . . . , n}. Specifically, we have

m̂(·) =

n∑
i=1

α̂i,λK(·,xi), (3.4)

where

α̂λ = (∆nK + λIn)−1 ∆ny,

∆n = diag(δ1, . . . , δn), K = (K(xi,xj))ij , y = (y1, . . . , yn)T and In is the n× n identity matrix.

The tuning parameter λ is selected via generalized cross-validation in kernel ridge regeression,

where the criterion for λ is

GCV(λ) =
n−1 ‖{∆n −A(λ)}y‖22
n−1tr(∆n −A(λ))

, (3.5)
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and A(λ) = ∆nK(∆nK + λIn)−1∆n. The value of λ minimizing the criterion (3.5) is used for

the selected tuning parameter.

Using the kernel ridge regression imputation in (3.3), we can obtain the imputed estimator

in(3.1). Because m̂(x) in (3.4) is a nonparametric regression estimator of m(x) = E(Y | x), we

can expect that this imputation estimator in (3.1) is consistent for θ = E(Y ) under missing at

random, as long as m̂(x) is a consistent estimator of m(x). Surprisingly, it turns out that the

consistency of θ̂I to θ is of order Op(n
−1/2), while the point-wise convergence rate for m̂(x) to

m(x) is slower.

We aim to establish two goals: (i) find the sufficient conditions for the root-n consistency of

the imputation estimator θ̂I in (3.1) and give a formal proof; (ii) find a linearization variance

formula for the imputation estimator θ̂I using the kernel ridge regression imputation. The first

part is formally presented in Theorem 3.1 in Section 3.4. For the second part, we employ the

density ratio estimation method of Nguyen et al. (2010) to get a consistent estimator of

ω(x) = {π(x)}−1 in the linearized version of θ̂I . Estimation of ω(x) will be presented in Section

3.5.

3.4 Main Theory

Before we develop our main theory, we first introduce Mercer’s theorem.

Lemma 3.1 (Mercer’s theorem). Given a continuous, symmetric, positive definite kernel

function K : X × X 7→ R. For x, z ∈ X , under some regularity conditions, Mercer’s theorem

characterizes K by the following expansion

K(x, z) =

∞∑
j=1

λjφj(x)φj(z),

where λ1 ≥ λ2 ≥ . . . ≥ 0 are a non-negative sequence of eigenvalues and {φj}∞j=1 is an

orthonormal basis for L2(P).

Furthermore, we make the following assumptions.
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Assumption 3.1. For some k ≥ 2, there is a constant ρ <∞ such that E[φj(X)2k] ≤ ρ2k for all

j ∈ N, where {φj}∞j=1 are orthonormal basis by expansion from Mercer’s theorem.

Assumption 3.2. The function m ∈ H, and for x ∈ X , we have E[{Y −m(x)}2] ≤ σ2, for some

σ2 <∞.

Assumption 3.3. The response mechanism is missing at random. Furthermore, the propensity

score π(x) = pr(δ = 1 | x) is uniformly bounded away from zero. In particular, there exists a

positive constant c > 0 such that π(xi) ≥ c, for i = 1, . . . , n.

The first assumption is a technical assumption which controls the tail behavior of {φj}∞j=1.

Assumption 3.2 indicates that the noises have bounded variance. Assumption 3.1 and Assumption

3.2 together aim to control the error bound of the kernel ridge regression estimate m̂.

Furthermore, Assumption 3.3 means that the support for the respondents should be the same as

the original sample support. Assumption 2.4.1 is a standard assumption for missing data analysis.

We furhter introduce the following lemma. Let Sλ = (In + λK−1)−1 be the linear smoother for

the kernel ridge regression method. That is, m̂ = Sλy be the vector of regression predictor of y

using the kernel ridge regression method.

Lemma 3.2 (modified Lemma 7 in Zhang et al. (2013)). Suppose Assumption 3.1 and 3.2 hold,

for a random vector z = E(z) + σε, we have

Sλz = E(z | x) + an,

where an = (a1, . . . , an)T and

ai = Op
(
λ1/2 + {γ(λ)}1/2n−1/2

)
, (3.6)

for i = 1, . . . , n, as long as E(‖zi‖H) and σ2 is bounded from above, for i = 1, . . . , n, where ε are

noise vector with mean zero and bounded variance and

γ(λ) =

∞∑
j=1

(1 + λ/µj)
−1,

is the effective dimension and {µj}∞j=1 are the eigenvalues of kernel K used in m̂(x).
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The first term in (3.6) denotes the order of bias term and the second term denotes the square

root of the variance term. Specifically, we have the asymptotic mean square error for m̂,

AMSE(m̂) = O(1)×
{
λ ‖m‖2H + n−1γ(λ)

}
. (3.7)

For the `-th order of Sobolev space, we have µj ≤ Cj−2` and

γ(λ) =
∞∑
j=1

(1 + j2`λ)−1 ≤ O
(
λ−1/(2`)

)
. (3.8)

Note that (3.7) is minimized when λ � γ(λ)/n, which is equivalent to λ � n−2`/(2`+1) under (3.8).

The optimal rate λ � n−2`/(2`+1) leads to

AMSE(m̂) = O(n−2`/(2`+1)) (3.9)

which is the optimal rate in Sobolev space, as discussed by Stone (1982).

To investigate the asymptotic properties of the kernel ridge regression imputation estimator,

we express

θ̂I =
1

n

n∑
i=1

{δiyi + (1− δi)m̂(xi)}

=
1

n

n∑
i=1

m(xi)︸ ︷︷ ︸
Rn

+
1

n

n∑
i=1

δi {yi −m(xi)}︸ ︷︷ ︸
Sn

+
1

n

n∑
i=1

(1− δi) {m̂(xi)−m(xi)}︸ ︷︷ ︸
Tn

.

Therefore, as long as we show

Tn =
1

n

n∑
i=1

δi

{
1

π(xi)
− 1

}
{yi −m(xi)}+ op(n

−1/2), (3.10)

then we can establish the root-n consistency. The following theorem formally states the

theoretical result.

Theorem 3.1. Suppose Assumption 3.1-3.3 hold for a Sobolev kernel of order `, as long as

nλ→ 0, nλ1/2` →∞, (3.11)

we have

n1/2
(
θ̂I − θ

)
L−→ N(0, σ2),
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where

σ2 = var{E(Y | x)}+ E{var(Y | x)/π(x)} = var(η)

with

η = m(x) + δ
1

π(x)
{y −m(x)} . (3.12)

Remark 3.1. Note that the optimal rate λ � n−2`/(2`+1) does not satisfy the first part of (3.11).

To control the bias part, we need a smaller λ such as λ = n−κ with κ > 1. Similar conditions are

used for bandwidth selection for nonparametric kernel regression

nh→∞ and n1/2h2 → 0.

for dim(x) = 1. See Wang and Chen (2009) for details.

Remark 3.2. Theorem 1 is presented for a Sololev kernel. For sub-Gaussian kernel whose

eigenvalues satisfy that

µj ≤ c1 exp(−c2j
2),

where c1, c2 are positive constants, we can establish similar results. To see this, note that

γ(λ) =
∞∑
j=1

µj
µj + λ

≤ c−1/2
2 {− log(λ)}1/2 +

1

λ

∫
c
−1/2
2 {− log(λ)}1/2

exp(−c2z
2)dz

≤ c−1/2
2 {− log(λ)}1/2 +O(1),

where the second term in the last equation can be obtained by the Gaussian tail bound inequality.

Therefore, as long as nλ→ 0 and n{− log(λ)}−1/2 →∞, we have n−11T
nan = op(n

−1/2) and the

root-n consistency can be established.

Note that the asymptotic variance of the imputation estimator is equal to n−1σ2, which is the

lower bound of the semiparametric asymptotic variance discussed in Robins et al. (1994). Thus,

the kernel ridge regression imputation is asymptotically optimal. The influence function in (3.12)
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can be used for variance estimation of θ̂I . The idea is to estimate the influence function

ηi = m(xi) + δi{π(xi)}−1 {yi −m(xi)} and apply the standard variance estimator using η̂i. To

estimate ηi, we need an estimator of π(x). In the next section, we will consider a version of kernel

ridge regression to estimate ω(x) = {π(x)}−1 directly. Once ω̂i(x) is obtained, we can use

V̂ =
1

n

1

n− 1

n∑
i=1

(η̂i − η̄n)2

as a variance estimator of θ̂I in (3.1), where

η̂i = m̂(xi) + δiω̂i(xi) {yi − m̂(xi)}

and η̄n = n−1
∑n

i=1 η̂i.

3.5 Propensity Score Estimation

We now consider estimation of ω(x) = {π(x)}−1 using kernel ridge regression . In order to

estimate ω(x) = {π(x)}−1, we wish to develop a nonparametric method of estimating ω(x) using

the same reproducing kernel Hilbert space theory. To do this, first define the following density

ratio function

g(x) =
f(x | δ = 0)

f(x | δ = 1)
, (3.13)

and, by Bayes theorem, we have

ω(x) =
1

π(x)
= 1 +

n0

n1
g(x)

where n0 = n− n1. Thus, to estimate ω(x), we have only to estimate the density ration function

g(x) in (3.13). Now, to estimate g(x) nonparametrically, we use the maximum entropy method

(Nguyen et al., 2010) for density ratio function estimation.

For convenience, let fk(x) = f(x | δ = k), for k = 0, 1. To explain the kernel ridge estimation

estimation of g(x), note that g(x) can be understood as the maximizer of the Kullback-Leibler
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divergence between f0 and f1, i.e.,

DKL(f0, f1) ≥ arg max
g>0

Q(g)

= arg max
g>0

∫
log {g(x)} f0(x)dµ(x)−

∫
g(x)f1(x)dµ(x)

= arg max
g>0

∫
g(x)[log {g(x)} − 1]f1(x)dµ(x). (3.14)

That is, by (3.14), a sample version of Q(g) can be written as

Q̂(g) =
1

n1

n∑
i=1

δig(xi)[log{g(xi)} − 1],

where n1 =
∑n

i=1 δi.

Since g(x) is unknown, we want to impose constraints to formulate an M-estimation problem

for g(x). Given m̂(·), using the idea of model calibration (Wu and Sitter, 2001), we would like to

use

1

n1

n∑
i=1

δig(xi)m̂(xi) =
1

n0

n∑
i=1

(1− δi)m̂(xi)

as a constraint for density ratio estimation. Note that it is algebraically equivalent to

1

n

n∑
i=1

δi

{
1 +

n0

n1
· g(xi)

}
m̂(xi) =

1

n

n∑
i=1

m̂(xi).

Now, as we have m ∈ H, and by the representer theorem in kernel ridge regression, we know

that m̂ ∈ span{K(·,x1), . . . ,K(·,xn)}. Thus, the calibration constraint is

1

n1

n∑
i=1

δig(xi)(K(·,x1), . . . ,K(·,xn))T =
1

n0

n∑
i=1

(1− δi)(K(·,x1), . . . ,K(·,xn))T. (3.15)

This calibration property is also called covariate-balancing property (Imai and Ratkovic, 2014).

Further, we want to incorporate with the normalization constraint
∑n

i=1 δiω(xi) = n, i.e.,

1

n1

n∑
i=1

δig(xi) =
1

n0

n∑
i=1

(1− δi). (3.16)

Minimizing Q̂(g) subject to (3.15) and (3.16) is called the maximum entropy method. Using

Lagrangian multiplier method, the solution to this optimization problem can be written as

log{g(x)} ≡ log{g(x;φ)} = φ0 +
n∑
i=1

φiK(x,xi) (3.17)
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for some φ = (φ0, . . . , φn)T ∈ Rn+1. Thus, using the parametric form in (3.17), the optimization

problem can be expressed as a dual form

Q̂0(φ) =
1

n0

n∑
i=1

(1− δi) log{g(xi;φ)} − 1

n1

n∑
i=1

δig(xi;φ),

to formulate a legitimate estimation of g(·). Further, define h(x;φ1) = log{g(x;φ)− φ0}, where

φ1 = (φ1, . . . , φn)T. In our problem, to ensure the Representer theorem, we wish to find h that

minimizes

−Q̂0(g;φ) + τ ‖h‖2H (3.18)

over φ.

Hence, using the representer theorem again, the solution to (3.18) can be obtained as

min
φ1∈Rn

{
1

n1

n∑
i=1

δig(xi;φ)− 1

n0

n∑
i=1

(1− δi) log{g(xi;φ)}+ τφTKφ

}
(3.19)

and φ0 is a normalizing constant satisfying

n1 =
n∑
i=1

δi exp{φ0 +
n∑
j=1

φ̂jK(xi,xj)}. (3.20)

Thus, we use

ĝ(x) = exp{φ̂0 +
n∑
j=1

φ̂jK(x,xj)}

as the maximum entropy estimator of the density ratio function g(x) using kernel method. Also,

ω̂(x) = 1 +
n0

n1
ĝ(x)

is the maximum entropy estimator of ω(x) = {π(x)}−1. The estimator of ω(x) satisfies the

calibration property by construction. That is, for any function f(x) ∈ H, we have

n−1
n∑
i=1

δiω̂(xi)f(xi) = n−1
n∑
i=1

f(xi).

The tuning parameter τ is chosen to minimize

D(τ) =

∥∥∥∥∥ 1

n

n∑
i=1

δi

{
1 +

n0

n1
· ĝτ (xi)

}
m̂(xi)−

1

n

n∑
i=1

m̂(xi)

∥∥∥∥∥ ,
where m̂(x) is determined by kernel ridge regression estimation. Thus, we can use the following

two-step procedure to determine the tuning parameter τ .
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1. Use the kernel ridge regression to obtain m̂(x).

2. Given m̂(x), find τ̂ that minimizes D(τ).

As the objective function in (3.19) is convex, we apply the limited-memory

Broyden-Fletcher-Goldfarb-Shanno algorithm to solve the optimization problem with the

following first order partial derivatives:

∂U

∂φ0
=

1

n1

n∑
i=1

δi exp

φ0 +

n∑
j=1

φjK(xi,xj)

− 1,

∂U

∂φk
=

1

n1

n∑
i=1

δiK(xi,xk) exp

φ0 +

n∑
j=1

φjK(xi,xj)

− 1

n0

n∑
i=1

(1− δi)K(xi,xk)

+ 2τ
n∑
i=1

K(xi,xk)φi, k = 1, . . . , n,

where U is the objective function in (3.19).

Further, we can also obtain the propensity score estimator based the above procedure, i.e.,

θ̂PS =
1

n

n∑
i=1

δiω̂(xi)yi. (3.21)

We have

Theorem 3.2. Under regularity conditions stated in the supplementary material, we have

n1/2
(
θ̂PS − θ

)
L→ N(0, σ2), (3.22)

where σ2 = var(η) and

η = m(x) + δ

{
1 +

n0

n1
g(x)

}
{y −m(x)}.

Theorem 3.2 implies that shown the propensity score estimator in (3.21) using the above

procedure achieves the same asymptotic variance as the kernel ridge regression imputation

estimator. The regularity conditions and the sketch of proof of Theorem 3.2 are presented in the

Appendix. We can use a linearized variance estimator to get a valid variance estimate based on

Theorem 3.2, similar to Theorem 3.1.
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3.6 Simulation Study

To evaluate the performance of the proposed imputation method and its variance estimator,

we conduct a limited simulation study. We consider the continuous study variable with three

different data generating models. In the three models, we keep the response rate around 60% and

var(Y ) ≈ 10. Also, xi = (xi1, xi2, xi3, xi4)T are generated independently element-wise from the

uniform distribution on the support (1, 3). In the first model A, we use a linear regression model

yi = 3 + 2.5xi1 + 2.75xi2 + 2.5xi3 + 2.25xi4 + σεi to obtain yi, where {εi}ni=1 are generated from

standard normal distribution and σ = 31/2. In the model B, we use

yi = 3 + (1/35)x2
i1x

3
i2xi3 + 0.1xi4 + σεi to generate data with a nonlinear structure. The model C

for generating the study variable is yi = 3 + (1/180)x2
i1x

3
i2xi3x

2
i4 + σεi.

In addition to {(xi, yi), i = 1, . . . , n}, we consider two response mechanisms. The response

indicator variable δ’s for both mechanisms are independently generated from the Bernoulli

distribution. In the first missing mechanism, the probability for the Bernoulli distribution is

logit (xT
i β + 2.5), where β = (−1.1, 0.5,−0.25,−0.1)T and logit(p) = log{p/(1− p)}. In the

secondthe probability for the Bernoulli distribution is

logit (−0.3 + 0.7x2
1 − 0.5x2 − 0.25x3 − 0.25x4). We considered two sample sizes n = 500 and

n = 1, 000 with 1,000 Monte Carlo replications. The reproducing kernel Hilbert space we

employed in the simulation study is the second-order Sobolev space. From each sample, we

consider four imputation methods: imputation and propensity score methods related to kernel

ridge regression and the others are B-spline and linear regression. For B-spline method, we employ

the generalized additive model by R package ‘mgcv’ (Wood, 2012) . Specifically, we used cubic

spine with 15 knots for each coordinate with restricted maximum likelihood estimation method.

The simulation results in Figure 3.1 and Figure 3.2 show that four methods show similar

results under the linear model (model A), but both kernel ridge regression imputation estimators

and propensity score estimators show robust performance under the nonlinear models (models B

and C). All kernel ridge regression related methods provide neglgible biases in all scenarios.
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Figure 3.1: Boxplots with four estimators for model A ((a) for n = 500 and (b) for n = 1000), model

B ((c) for n = 500 and (d) for n = 1000) and model C ((e) for n = 500 and (f) for n = 1000) under

first response mechanism with true values (dashes). KRR IM, kernel ridge regression imputation

estimator; KRR PS, kernel ridge regression propensity score estimator.
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Figure 3.2: Boxplots with four estimators for model A ((a) for n = 500 and (b) for n = 1000), model

B ((c) for n = 500 and (d) for n = 1000) and model C ((e) for n = 500 and (f) for n = 1000) under

second response mechanism with true values (dashes). KRR IM, kernel ridge regression imputation

estimator; KRR PS, kernel ridge regression propensity score estimator.
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Table 3.1: Relative biases (R.B.) of the proposed variance estimator, coverage rates (C.R.) of

the 90% and 95% confidence intervals for imputed estimators and propensity score estimators

under kernel ridge regression with second-order Sobolev kernel and Gaussian kernel for continuous

responses

First Missing Mechanism Second Missing Mechanism

KRR IM KRR PS KRR IM KRR PSModel Criteria

n=500 n=1000 n=500 n=1000 n=500 n=1000 n=500 n=1000

R.B(%) 0.09% -2.8% 0.15% -3.14% 3.4% 2.74% -1.68% -1.9%

A C.R.(90%) 90.3% 89.95% 90.3% 89.75% 90.25% 90.6% 89.15% 89.85%

C.R.(95%) 95.5% 94.95% 95.7% 95% 95.2% 95.45% 94.65% 94.8%

R.B(%) -2.77% -5.42% -5.77% -6.6% -6.07% -3.42% -11.25% -6.23%

B C.R.(90%) 89.55% 89.7% 89.2% 89.2% 88.05% 90.05% 87.75% 89.3%

C.R.(95%) 94.25% 94.55% 93.85% 94.1% 94.15% 94.7% 93.35% 94.1%

R.B(%) -7.43% -3.97% -12.24% -6.22% -9.38% -2.29% -13.62% -4.34%

C C.R.(90%) 87.95% 88.7% 86.7% 88.75% 88.8% 89.5% 87.5% 89.75%

C.R.(95%) 93.35% 94.2% 92.35% 93.7% 93.95% 95.15% 93.25% 94.7%

In addition, we have computed the proposed variance estimators under kernel ridge regression

imputation with the corresponding kernel. In Table 3.1, the relative biases (in percentage) of the

proposed variance estimator and the coverage rates of two interval estimators under 90% and 95%

nominal coverage rates are presented. The relative bias of the variance estimator are relatively

low, which confirms the validity of the proposed variance estimator. Furthermore, the interval

estimators show good performances in terms of the coverage rates.

3.7 Application

We applied the kernel ridge regression with the kernel of second-order Sobolev space to study

the PM2.5(µg/m3) concentration measured in Beijing, China (Liang et al., 2015). Hourly weather

conditions: temperature, air pressure, cumulative wind speed, cumulative hours of snow and

cumulative hours of rain are available from 2011 to 2015. Meanwhile, the averaged sensor

response is subject to missingness. In December 2012, the missing rate of PM2.5 is relatively high

with missing rate 17.47%. We are interested in estimating the mean PM2.5 in December with

both imputed and propensity score kernel ridge regression estimates. The point estimates and
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their 95% confidence intervals are presented in the Table 3.2. As a benchmark, the confidence

interval computed from complete cases and confidence intervals for the imputed estimator under

linear model (Kim and Rao, 2009) are also presented there. In addition, KRR IM denotes the

kernel ridge regression imputation estimator and KRR PS denotes thes kernel ridge regression

propensity score estimator.

Table 3.2: Point estimates (P.E.), standard error (S.E.) and 95% confidence intervals (C.I.) for

imputed mean PM2.5 in December, 2012 under kernel ridge regression

Estimator P.E. S.E. 95% C.I.

Complete 109.20 3.91 (101.53, 116.87)

Linear 99.61 3.68 (92.39, 106.83)

KRR IM 101.92 3.50 (95.06, 108.79)

KRR PS 102.25 3.50 (95.39, 109.12)

As we can see, the performances of kernel ridge regression imputation estimators are similar

and created narrower 95% confidence intervals. Furthermore, the imputed PM2.5 concentration

during the missing period is relatively lower than the fully observed weather conditions on

average. Therefore, if we only utilize the complete cases to estimate the mean of PM2.5, the

severeness of air pollution would be over-estimated.

3.8 Discussion

We consider kernel ridge regression as a tool for nonparametric imputation and establish its

asymptotic properties. The proposed kernel ridge regression imputation can be used as a general

tool for nonparametric imputation. By choosing different kernel functions, different

nonparametric imputation methods can be developed. Asymptotic properties of the propensity

score estimator are also established. The unified theory developed in this paper can cover various

type of the kernel ridge regression imputation and enables us to make valid statistical inferences

about the population means.

There are several possible extensions of the research. First, the theory can be directly

applicable to other nonparametric imputation methods, such as smoothing splines (Claeskens
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et al., 2009) or deep kernel learning (Bohn et al., 2019). Second, instead of using ridge-type

penalty term, one can also consider other penalty functions such as the smoothly clipped absolute

deviation penalty (Fan and Li, 2001) or adaptive lasso (Zou, 2006). Also, the proposed method

can be used for causal inference, including estimation of average treatment effect from

observational studies (Morgan and Winship, 2014; Yang and Ding, 2020). Developing tools for

causal inference using the kernel ridge regression-based propensity score method will be an

important extension of this research.
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3.10 Appendix: Technical Details

3.10.1 Proof for Theorem 3.1

To prove our main theorem, we write

θ̂I =
1

n

n∑
i=1

{δiyi + (1− δi)m̂(xi)}

=
1

n

n∑
i=1

m(xi)︸ ︷︷ ︸
Rn

+
1

n

n∑
i=1

δi {yi −m(xi)}︸ ︷︷ ︸
Sn

+
1

n

n∑
i=1

(1− δi) {m̂(xi)−m(xi)}︸ ︷︷ ︸
Tn

.

Therefore, as long as we show

Tn =
1

n

n∑
i=1

δi

{
1

π(xi)
− 1

}
{yi −m(xi)}+ op(n

−1/2), (3.23)

then the main theorem automatically holds.

To show (3.10), note that

m̂ = K (∆nK + λIn)−1 ∆ny

= K
{(

∆n + λK−1
)
K
}−1

∆ny

=
(
∆n + λK−1

)−1
∆ny,

where m̂ = (m̂(x1), . . . , m̂(xn))T. Let Sλ = (In + λK−1)−1, we have

m̂ =
(
∆n + λK−1

)−1
∆ny = C−1

n dn,

where

Cn = Sλ
(
∆n + λK−1

)
,

dn = Sλ∆ny.

By Lemma 2, we obtain

Cn = E(∆n | x) + an

= Π + an,
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where Π = diag(π(x1), . . . , π(xn)) and γ(λ) is the effective dimension of kernel K. Similarly, we

have

dn = E(∆ny | x) + an

= Πm + an.

Consequently, by Taylor expansion, we have

m̂ = m + Π−1 (dn −Cnm) + op (an)

= m + Π−1
{
Sλ∆ny − Sλ

(
∆n + λK−1

)
m
}

+ op (an)

= m + Π−1Sλ∆n (y −m) +Op(an),

where the last equality holds because

SλλK−1m = Sλ
{(

In + λK−1
)
− In

}
m

= m− Sλm = Op(an).

Therefore, we have

Tn = n−11T
n (In −∆n) (m̂−m)

= n−11T
n (In −∆n) Π−1Sλ∆n (y −m) +Op(n

−11T
nan)

= n−11T
n (In −Π) Π−1∆n (y −m) +Op(n

−11T
nan)

= n−11T
n

(
Π−1 − In

)
∆n (y −m) +Op(n

−11T
nan).

For `-th order of Sobolev space, we have

γ(λ) =

∞∑
j=1

1

1 + j2`λ

≤ λ−
1
2` +

∑
{j:j>λ−

1
2` }

1

1 + j2`λ

≤ λ−
1
2` + λ−1

∫ ∞
λ−

1
2`

z−2`dz

= λ−
1
2` +

1

2`− 1
λ−

1
2`

= O
(
λ−

1
2`

)
.
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Additionally,

n−11T
nan = Op

(
λ1/2 + n−1{γ(λ)}1/2

)
,

which implies that, as long as nλ→ 0 and nλ1/2` →∞, holds, we have n−11T
nan = op(n

−1/2) and

(3.10) is established.

3.10.2 Regularity Conditions and Proof for Theorem 3.2

To prove Theorem 3.2, we need the following lemma for consistency of our propensity score

estimation.

Let P0 be the distribution of whose pdf is f(x | δ = 0), P1 be the distribution of whose pdf is

f(x | δ = 1) and

g?(x) =
f(x | δ = 0)

f(x | δ = 1)
.

Let ĝ be the estimated density ratio function generated by (3.18) in the main article. Further, let

G = {exp(h) : h ∈ H} be the function space generated by H. Let G = supg∈G |g(x)|.

Lemma 3.3 (modified Theorem 1 in Nguyen et al. (2010)). Suppose the Kullback-Leibler

divergence DKL(P0||P1) is bounded. Further, suppose that there exists a g ∈ G such that g = g?

almost surely. Additionally, assume the envelope condition∫
GdP1 <∞,

and further for all δ > 0,

1

n
Hδ(G − g?, L1(P1,n))

P1→ 0,

1

n
Hδ
(

log
G + g?

2g?
, L1(P0,n)

)
P0→ 0,

where Hδ(M, L1(Q)) denotes the δ-entropy of M for the L1(Q)-metric and P0,n is the empirical

distribution for P0. Then hP1(g?, ĝ)→ 0 almost surely, where hP1(g?, ĝ) is the Hellinger distance

between g?.
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The proof of Lemma 3.3 is presented in Nguyen et al. (2010). Thus, the convergence of

propensity score is obtained.

The regularity conditions for Theorem 3.2 are essentially the conditions for Theorem 3.1 and

Lemma 3.3 in addition with n1/2τ → 0, ‖m‖H = Op(1) and ‖h‖H = Op(1). Still, we take Sobolev

space of order ` as an example, the results for other kernels can be modified accordingly. Now we

introduce the proof of Theorem 2.

Proof. We have

θ̂PS =
1

n

n∑
i=1

m(xi) +
1

n

n∑
i=1

δiŵ(xi)ei +
1

n

n∑
i=1

{δiŵ(xi)− 1}m̂(xi)

+
1

n

n∑
i=1

{δiŵ(xi)− 1}{m(xi)− m̂(xi)}

= Pn +Qn +Rn + Sn.

Due to monotone transformation among g, h and w, the convergence of ĝ in Lemma 3.3 implies

the convergence of ĥ and ŵ. As E(ei|xi) = 0, by convergence of ŵ, we have

Qn =
1

n

n∑
i=1

δiw(xi)ei + op(n
−1/2).

Note that

δiŵ(xi)− 1 =
n0

n1
r̂(xi)− (1− δi),

by construction of propensity score estimator, the Fréchet derivative of (3.18) must satisfy

1

n

n∑
i=1

{δiŵ(xi)− 1}ξxi +
n0

n
ĥ = 0, (3.24)

where ξxi is the reproducing kernel Hilbert space evaluator function. That is, for any function

f ∈ H, we have 〈f, ξxi〉H = f(xi). Take the inner product in H of (3.24) with m̂, we have

1

n

n∑
i=1

{δiŵ(xi)− 1}m̂(xi) = −τ n0

n
〈ĥ, m̂〉H

= −τ n0

n
{〈h,m〉H + op(1)}

= τ
n0

n
×Op(1),
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where the second inequality holds due to the convegence of m̂ and ĥ, the last equality holds due to

Cauchy–Schwarz inequality. Thus, as long as τ = o(n−1/2), we have Rn = op(n
−1/2). Further, by

Lemma 2 and the derivation in Theorem 1, m(xi)− m̂(xi) = Op
(
λ1/2 + n−1/2{γ(λ)}1/2

)
= op(1),

where the last equality is implied by the regularity condition for λ. Thus, we have

Sn = n−1
∑n

i=1{δiŵ(xi)− 1}{m(xi)− m̂(xi)} = op(n
−1/2). Therefore, we have established

θ̂PS =
1

n

n∑
i=1

m(xi) +
1

n

n∑
i=1

δiw(xi)ei + op(n
−1/2).
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4.1 Abstract

Missing data is frequently encountered in practice. Propensity score estimation is a popular

tool for handling such missingness. The propensity score is often developed using the model for

the response probability which can be subject to model misspecification. In this paper, we

consider an alternative approach of estimating the inverse of the propensity scores using density

ratio function. By partitioning the sample into two groups based on the response status of the

elements, we can apply the density ratio function estimation method and obtain the inverse

propensity scores for nonresponse adjustment. Density ratio estimation can be obtained by

applying the so-called maximum entropy method which uses the Kullback-Leibler divergence

measure under calibration constraints. By including the covariates for the outcome regression

models only into the density ratio model, we can achieve efficient propensity score estimation.

The proposed method can be extended to soft calibration in the kernel-based functional space.

We further extend the proposed approach to the multivariate missing case. Some limited

simulation studies are presented to compare with the existing methods.

4.2 Introduction

Missing data is frequently encountered in practice. The missingness can occur when the

observational unit does not comply with the measurement or when the measurement tool does
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not work for some mechanical reason or by mistake. In some cases, missingness is planned to

reduce the cost or to reduce the response burden. Causal inference can be viewed as a missing

data problem. Making valid statistical inference in spite of the missing data is a fundamental

problem in statistics. (Kim and Shao, 2013; Little and Rubin, 2019).

Propensity score (PS) approach is a popular approach to handling the missing data problem

using inverse weighting. The propensity score is often developed using the model for the response

probability. In principle, regression models for binary response, e.g., logistic regression, can be

utilized to model the response probability given the observed auxiliary information. An inverse

probability weighting estimator can then be constructed to get an unbiased estimation of the

target parameter. However, correct specification of the propensity score model can be challenging

and we often do not have a good understanding of the response mechanism to specify the

propensity model correctly. Furthermore, the final estimation can be unstable when some

propensity scores are close to zero. The variance and bias of the resultant estimator are likely to

be amplified by the nature of such ‘inverse’ fashion.

The existing methods for propensity score estimation are either based on maximum likelihood

method (Rosenbaum and Rubin, 1983; Robins et al., 1994; Tan, 2006) or calibration method

(Folsom, 1991; Tan, 2010; Graham et al., 2012; Hainmueller, 2012; Imai and Ratkovic, 2014; Kim

and Haziza, 2014; Vermeulen and Vansteelandt, 2015; Chan et al., 2016; Tan, 2020) with some

penalization in the calibration equation. The calibration method gives a doubly robust flavour,

but the choice of the objective function for calibration estimation is not fully agreed.

In this chapter, we propose an alternative framework for inverse propensity weighting without

modeling the response mechanism directly. By using density ratio representation of the inverse

propensity scores, we now estimate the density ratio function directly. By including the covariates

for the outcome regression models only into the density ratio model, we can achieve efficient

propensity score estimation. The proposed method provides a unified framework for developing

calibrated propensity score estimation.
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Under the new framework for propensity score method employing the density ratio

representation, we propose a two-step procedure for propensity score estimation. In the first step,

we select important features from the outcome model and form a finite dimensional set of basis

functions for modeling the log density ratio function. In the second step, we estimate the density

ratio function using maximum entropy method (Nguyen et al., 2010) with the basis functions

selected from the first step.

The first step is important in reducing the variance which might be caused by including

nuisance variables into DRE. That is, the PS estimator can be inefficient when there are more

auxiliary variables than we actually need (Shimodaira, 2000; Shortreed and Ertefaie, 2017). By

including only important covariates for the outcome model to the log density model, we can

obtain efficient PS estimation. We consider two main approaches to do the dimension reduction,

one is variable selection and the other is sufficient dimension reduction (SDR). Given the observed

study variable and the corresponding auxiliary variables, penalization methods (Tibshirani, 2011)

can be implemented to select important covariates. For SDR, we wish to find sparse

transformation of covariates such that the study variable and observed indicator are independent

under such transformation(Fukumizu et al., 2004; Stojanov et al., 2019). We present some

asymptotic theory of the resulting PS estimator. Variance estimation of the PS estimator can be

implemented using either linearization method or bootstrap.

Furthermore, using the density ratio framework, the PS estimation can be easily extended to

handle multivariate missing data. In multivariate missing patterns, we can partition the sample

into multiple groups and apply the DRE method to obtain the inverse propensity scores. The

proposed method under multivariate missing data setup can be used to combine information from

multiple sources.

4.3 Basic Setup

Suppose that the parameter θ of interest can be written as a solution to E{U(θ; X, Y )} = 0,

where Y is the study variable that is subject to missingness and X is the auxiliary variable that is
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always observed. Suppose we have an n i.i.d. realization of (X, Y ), denoted as

{(xi, yi) : i = 1, . . . , n}. Since Y is subject to missingness, the actual dataset we usually have is

{(xi, δiyi, δi) : i = 1, · · · , n} where δi is the response indicator variable defined as

δi =


1 if yi is observed

0 otherwise.

We assume that the response mechanism is missing at random (MAR) in the sense of Rubin

(1976). That is,

Y ⊥ δ | X. (4.1)

To introduce the density ratio function, we use f(·) to denote generic density functions. In

particular, let f(x) to denote the density f(X = x). Further, let fj(x) denote the conditional

density of f(X = x | δ = j) for j = 0, 1. Using this notation, we define the following density ratio

function:

r(x) =
f0(x)

f1(x)
.

By Bayes theorem, we obtain

P(δ = 0 | X)

P(δ = 1 | X)
=

P(δ = 0)

P(δ = 1)
× r(X).

Assuming c = P(δ = 0)/P(δ = 1) is known, we can express

1

P(δ = 1 | X)
= 1 + c · r(X)

and use

wi =
1

P(δi = 1 | xi)
= 1 + c · r(xi) (4.2)

as the propensity score weight for unit i with δi = 1. So, our PS weighting problem reduces to

density ratio estimation. Note that we can easily estimate c by ĉ = n0/n1, n1 =
∑n

i=1 δi and

n0 = n− n1. The PS estimator of θ can be defined as the solution to ÛPS(θ) = 0, where

ÛPS(θ) =
1

n

n∑
i=1

δi {1 + ĉ · r(xi)}U(θ; xi, yi) (4.3)
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Traditionally, the PS estimator is justified under the response mechanism, which is based on

the assumption that P(δi = 1 | Xi) is correctly specified. Note that the unbiasedness of ÛPS(θ) in

(4.3) can also be justified without relying on the response mechanism. Under MAR in (4.1), we

have

E{r(X)U(θ; X, Y ) | δ = 1} = E
{
f0(X)

f1(X)
U(θ; X, Y ) | δ = 1

}
=

∫
f0(x, y)

f1(x, y)
U(θ; x, y)f1(x, y)dµ(x, y)

=

∫
U(θ; x, y)f0(x, y)dµ(x, y)

= E {U(θ; X, Y ) | δ = 0} , (4.4)

where µ(·) is the dominating measure of (X, Y ). Thus, we can obtain

E{ÛPS(θ) | δ} = E{Ûn(θ) | δ}, (4.5)

where

Ûn(θ) =
1

n

n∑
i=1

U(θ; xi, yi) =
1

n

n∑
i=1

{δiU(θ; xi, yi) + (1− δi)U(θ; xi, yi)}

and δ = (δ1, · · · , δn)T. Since Ûn(θ) is an unbiased estimating function, ÛPS(θ) is also unbiased by

(4.5). Note that the reference distribution in (4.5) is the joint distribution of (X, Y ) conditional

on δ. This is the reverse of the classical approach to PS estimation which uses the response

mechanism, the conditional distribution of δ given (X, Y ). Thus, the proposed density ratio

approach to PS estimation is a totally different framework.

4.4 Proposed Method

4.4.1 Density Ratio Model

To motivate the proposed method, let b(x) be an integrable function of x and consider the

density ratio function using the density function of b(x). That is,

r̃(x) =
f(b(x) | δ = 0)

f(b(x) | δ = 1)
. (4.6)
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We can use r̃(x) to construct a propensity score estimator of θ = E(Y ) as follows:

θ̂PS2 =
1

n

n∑
i=1

δi

{
1 +

n0

n1
r̃(xi)

}
yi, (4.7)

where r̃(x) is the density ratio function using the density function of b(x). The density ratio

function is derived from the reduced propensity model π̃(x) = P(δ = 1 | b(x)). That is, similarly

to (4.2), we can obtain

{π̃(x)}−1 = 1 + c · r̃(x). (4.8)

Thus, if the MAR condition holds conditional on b(X), that is,

Y ⊥ δ | b(X), (4.9)

then θ̂PS2 in (4.7) is also unbiased under the response probability model using (4.8).

Condition (4.9) can be called reduced MAR as the MAR condition holds for given a summary

statistic b(x). Rosenbaum and Rubin (1983) called b(x) in (4.9) as a balancing score and discuss

a propensity score method using a parametric model for π̃(x) = P(δ = 1 | b(x)). Apparently,

under MAR in (4.1), a sufficient condition for (4.9) is

P(δ = 1 | x) = P(δ = 1 | b(x)).

The following lemma provides another sufficient condition for (4.9).

Lemma 4.1. If MAR condition in (4.1) holds and the reduced model for y holds such that

f(y | x) = f(y | b(x)), (4.10)

then (4.9) holds.

As long as the reduced outcome model in (4.10) is true, θ̂PS2 is unbiased. Further, the

following lemma gives another insight on r̃(x).

Lemma 4.2. Let r̃(x) be the density ratio function in (4.6). If (4.9) holds, then we obtain

r̃(x) = E {r(x) | b(x), y, δ = 1} , (4.11)

where r(x) = f0(x)/f1(x) is the true density ratio function.
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Note that result (4.11) implies that

E{θ̂PS1 | b(X), Y, δ} = θ̂PS2,

where θ̂PS1 = n−1
∑n

i=1 δi{1 + ĉ · r(xi)}yi. Because θ̂PS2 is based on r̃(x), the smoothed density

ratio function, it is called the smoothed propensity score estimator. Therefore, we can establish

the following theorem.

Proposition 1. Under (4.9), we obtain

Var(θ̂PS1) ≥ Var(θ̂PS2). (4.12)

To estimate the smoothed density ratio function from the sample, we introduce the maximum

entropy method in the following subsection.

4.4.2 Maximum Entropy Estimation

We have seen that the propensity score estimation problem reduces to the density ratio

estimation problem. Density ratio estimation (DRE), the problem of estimating the ratio of two

density functions for two different populations, is a fundamental problem in machine learning

(Sugiyama et al., 2012). By partitioning the sample into two groups based on the response status,

we can apply the DRE method and thus obtain the inverse propensity scores. One important

method of DRE is so called the maximum entropy method which minimizes the Kullback-Leibler

(KL) divergence (or negative entropy) subject to the normalization constraint (Nguyen et al.,

2010).

To explain the proposed DRE method, suppose that we have 2 probability distributions

P0,P1, with P0 absolutely continuous with respect to P1. For simplicity, we also assume that Pk

are absolutely continuous with respect to Lebesgue measure µ, with density fk with support

X ⊂ Rp, for k = 0, 1. The KL divergence between P0 and P1 is defined by

DKL(P0,P1) =

∫
log

(
dP0

dP1

)
dP0 =

∫
log

(
f0

f1

)
f0dµ.
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We are interested in estimating density ratio functions r = f0/f1 from the sample.

By Nguyen et al. (2010), we have a variational representation for the KL divergence, i.e.,

DKL(P0,P1) = sup
r>0

{∫
r log (r) dP1 −

∫
rdP1 + 1

}
,

so that the density ratio function can be understood as the maximizer of

Q(r) =

∫
r log (r) f1dµ−

∫
rf1dµ. (4.13)

The sample version objective function is

Q̂(r) =
1

n1

n∑
i=1

δir(xi) [log{r(xi)} − 1] . (4.14)

The maximizer of Q̂(r) is an M-estimator of the density ratio function r.

To find the constraints for M-estimation of r̃, note that, by the definition of r̃(x),

E{r̃(X)b(X) | δ = 1} =

∫
r̃(x)b(x)f(b(x) | δ = 1)dµ

=

∫
b(x)f(b(x) | δ = 0)dµ

= E{b(X) | δ = 0}. (4.15)

Thus, from the integral equation in (4.15), we can construct an estimating equation for the

density ratio function as

1

n1

n∑
i=1

δir̃(xi)b(xi) =
1

n0

n∑
i=1

(1− δi)b(xi), (4.16)

which is a finite-sample version of the integral equation in (4.15). Note that constraint (4.16) is

equivalent to

n∑
i=1

δi

{
1 +

n0

n1
· r̃(xi)

}
b(xi) =

n∑
i=1

b(xi), (4.17)

which is called the calibration property (Deville and Särndal, 1992) or the covariate-balancing

property (Imai and Ratkovic, 2014). The choice of the control function b(x) will be discussed in

Section 3.3.



65

We propose to obtain an estimator of r̃(x) by solving the optimization problem using Q̂(r) as

the objective function with constraint (4.17). Using Lagrange multiplier method, we maximize

Q̂λ(r) =
1

n1

n∑
i=1

δiri {log(ri)− 1}+ λ′

[
1

n1

n∑
i=1

δirib(xi)−
1

n0

n∑
i=1

(1− δi)b(xi)

]
.

Note that

∂

∂ri
Q̂λ(r) =

1

n1
δi log(ri) + λ′

1

n1
δib(xi).

The solution ∂Q̂λ(r)/∂ri = 0 gives the form of the solution to the constrained optimization

problem. Thus, we obtain that the solution satisfies the log-linear model for the density ratio

function:

log{r(x;φ)} = bT(x)φ (4.18)

for some φ ∈ Rl+1. Roughly speaking, the calibration property means r(x) ∈ H⊥ , where H⊥ is

the orthogonal complement space of H = span{b(x)}. Thus, the solution r̂(x) that is obtained by

maximizing Q̂(r) in (4.14) subject to the calibration constraint in (4.17) can be viewed as a

low-dimensional projection of r(x) onto the space H⊥.

Based on the fact ∫
r {log(r)− 1} p1dµ =

∫
log(r)p0dµ−

∫
rp1dµ,

the objective function (4.14) can be simplified as

Q̂(r) =
1

n0

n∑
i=1

(1− δi) log(ri)−
1

n1

n∑
i=1

δiri. (4.19)

Combining (4.18) and (4.19), the optimization problem reduces to maximizing

Q̂(φ) =
1

n0

n∑
i=1

(1− δi){bT(xi)φ} −
1

n1

n∑
i=1

δi exp{bT(xi)φ}. (4.20)

The maximizer of Q̂(φ) satisfies ÛDR(φ) = 0, where

ÛDR(φ) =
1

n1

n∑
i=1

δi exp{b(xi)
Tφ}b(xi)−

1

n0

n∑
i=1

(1− δi)b(xi). (4.21)

Note that the estimating equation using (4.21) leads to the covariate balancing property in (4.17).
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4.4.3 Asymptotic Properties

We now develop the main asymptotic properties of the PS estimator

θ̂PS =
1

n

n∑
i=1

δi

{
1 +

n0

n1
r̂(xi)

}
yi, (4.22)

where r̂(x) is the maximum entropy estimator of the density ratio function under model (4.18).

That is, r̂(x) = exp{bT(x)φ̂} and φ̂ is the solution to the estimating equations using ÛDR(φ) in

(4.21). Let φ? be the maximizer of Q(r) in (4.13) in the parametric class in (4.18) such that

exp{bT(x)φ?} = r̃(x). Note that

E{ÛDR(φ?) | δ} = E

{
1

n1

n∑
i=1

δir̃(xi)b(xi)−
1

n0

n∑
i=1

(1− δi)b(xi) | δ

}
= E{r̃(x)b(x) | δ = 1} − E{b(x) | δ = 0}

= E{b(x) | δ = 0} − E{b(x) | δ = 0} = 0,

where the third equality follows from (4.4). Note that the reference distribution is the conditional

distribution of X given δ. The unbiasedness of ÛDR(φ?) can also be derived under the response

probability model associated with (4.18). That is, under the response model

P(δ = 1 | x) =
exp{bT(x)φ?}

1 + exp{bT(x)φ?}
:= π̃(x), (4.23)

then we can also obtain E{ÛDR(φ?)} = 0.

Thus, as long as the sufficient conditions for E{ÛDR(φ?)} = 0 are satisfied, we can establish

the weak consistency of φ̂ and apply the standard Taylor linearization to obtain the following

Theorem. The regularity conditions and the proof are presented in the Appendix.

Theorem 4.1. Under the regularity conditions in the Appendix, we have

θ̂PS =
1

n

n∑
i=1

d(xi, yi, δi;φ
?) + op(n

−1/2), (4.24)

where

d(xi, yi, δi;φ) = bT(xi)β̃ + δi{1 + (n0/n1)r̃(xi;φ)}(yi − bT(xi)β̃),
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r̃(xi;φ) = exp{bT(xi)φ} and β̃ is the probability limit of the solution to

n∑
i=1

δir̃(xi;φ)b(xi)
{
yi − bT(xi)β

}
= 0. (4.25)

By Theorem 4.1, under the response probability model satisfying (4.23), we can establish

√
n
(
θ̂PS − θ0

)
L−→ N(0, Vr), (4.26)

where

Vr = V(Y ) + c · E(r̃(X;φ?){Y − bT(xi)β̃}2).

Instead of assuming (4.23), one can obtain (4.26) using the outcome regression model. If

E(Y | x) satisfies

E(Y | x) ∈ span{b(x)}, (4.27)

then we have bT(xi)β̃ = E(Y | xi). In this case, we have the following results.

Corollary 4.1. Suppose that the assumptions for Theorem 4.1 hold. If b(x) in (4.18) satisfies

(4.27), we can also establish the asymptotic normality in (4.26) where

Vr = V(Y ) + c · E[r̃(X;φ?)V(Y | X)]. (4.28)

Remark 4.1. We have presented two different sufficient conditions for (4.26). One is the

response probability model in (4.23). The other is the outcome regression model in (4.27). Either

one of the two models is sufficient to establish the asymptotic unbiasedness of the proposed PS

estimator in (4.22). Thus, the proposed PS estimator can be understood as a doubly robust

estimator (Bang and Robins, 2005; Tsiatis, 2007; Cao et al., 2009; Han and Wang, 2013). As

long as either one of the two models: the outcome regression model such as (4.27) or the response

propensity model (4.23), the resulting estimator satisfies (4.26). However, the outcome regression

model assumption in (4.27) is more useful in developing an efficient PS estimator. Note that we
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can express Vr in (4.28) as

Vr = V{E(Y | X)}+ E[{π̃(X)}−1V(Y | X)]

= V{E(Y | b(X))}+ E[{E(π(X) | b(X))}−1V(Y | b(X))]

≤ V{E(Y | b(X))}+ E
(
E
[
{π(X)}−1 | b(X)

]
V(Y | b(X))

)
= V{E(Y | X)}+ E

(
{π(X)}−1V(Y | X)

)
where the last inequality is based on Jensen’s inequality applied to the concave function g(x) = 1/x

for x ∈ (0, 1). This is essentially an alternative proof for (4.12).

Remark 4.2. Condition (4.27) is the first moment version of the reduced model

f(y | x) = f(y | b(x)). (4.29)

Recall that, by Lemma 4.1, condition (4.29) implies the balancing score assumption (4.9), which

in turn implies that the efficiency of the smoothed PS estimator using r̃(x) in (4.6). The

constrained optimization problem discussed in the maximum entropy method is a computational

tool for implementing the smoothed PS estimator. If the space H = span{b(x)} is large enough,

then (4.27) is likely to be satisfied and result (4.11) will hold. However, if H is too large, then we

can find H0 ⊂ H such that E(Y | x) ∈ H0. In this case, we can construct a smoothed density ratio

function using the basis functions in H0 only and obtain a more efficient PS estimator. Therefore,

including unnecessary constraints in the calibration equation will increase the variance. This is

consistent with the empirical findings of Brookhart et al. (2006) and Shortreed and Ertefaie

(2017). We will discuss this result further in Section 4.5.

By (4.24), the PS estimator is approximated by the sample mean of di = d(xi, yi, δi;φ
?). The

function d(xi, yi, δi;φ
?) is referred to as an influence function of θ̂PS . The phrase influence

function used by Hampel (1974) and is motivated by the fact that to the first order

di = d(xi, yi, δi;φ
?) is the influence of observation (xi, yi, δi) on the estimator θ̂PS . One direct

result of Theorem 4.1 is that the variance estimation of θ̂PS can be constructed by a standard
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linearization method. In particular, let

d̂i = bT(xi)β̂ + δi{1 + (n0/n1)r̃(xi; φ̂)}{yi − bT(xi)β̂},

where β̂ is the solution to (4.25) evaluated at φ = φ̂. Then, the variance estimator can be written

as

V̂ar(θ̂PS) = V̂ar(d̄n) =
1

n
S2
d̂
,

where

S2
d̂

=
1

n− 1

n∑
i=1

(
d̂i − ¯̂

dn

)2
,

where
¯̂
dn = 1/n

∑n
i=1 d̂i.

4.5 Dimension Reduction

4.5.1 Introduction

In Section 4.4, we have seen that the log-linear DR model (4.18) is enough to obtain the PS

estimation. The consistency of the PS estimator of θ0 = E(Y ) depends on whether E(Y | x) lies in

the linear space H = span{b(x)} generated by the basis functions in the log-linear DR model. If

the linear space H is large enough to satisfy E(Y | x) ∈ H, the consistency can be established.

However, as pointed out in Remark 2, including other x-variables outside the outcome model into

H may lead to efficiency loss.

To explain the idea further, we assume that b(x) = xM, where M is an index set for a subset

of x. The following lemma presents an interesting results, which is a natural corollary from

Lemma 4.1.

Lemma 4.3. If MAR condition in (4.1) holds and the reduced model for y holds such that

f(y | x) = f(y | xM) (4.30)

for x = (xM,xMc), then we can obtain MAR given xM. That is,

Y ⊥ δ | XM. (4.31)
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Note that (4.31) is a special case of the reduced MAR in (4.9) using b(x) = xM as the

balancing score function. In the spirit of Proposition 1, we can see that the PS estimator using

b(x) = xM in (4.18) is more efficient than the PS estimator using b(x) = x in (4.18). Therefore,

it is better to apply a model selection procedure to select the important variables (i.e., xM here)

which satisfies (4.27).

4.5.2 Variable Selection Method

We utilize two-stage estimation strategy to complete DRE in propensity score approach,

• Step 1: Use penalized regression method to select the basis functions for the regression of y

on x.

• Step 2: Use the basis functions in Step 1 to construct the log-linear density ratio model in

(4.18). Apply the proposed maximum entropy method to obtain

r̂(x) = r̃(x; φ̂) = exp{bT(xi)φ̂}.

If we use the penalized regression method satisfying the oracle property, such as the SCAD

penalty (Fan and Li, 2001), we can safely ignore the uncertainty due to model selection.

In the first stage, we adapt the penalized estimating equations (Johnson et al., 2008) to do the

variable selection. To be more general, we utilize an Z-estimator as a working model and we

denote the corresponding score function as U(α). For example, U(α) can be written as

U(α) =
2

n1

n∑
i=1

δixi(x
T
i α− yi) (4.32)

in traditional least squares estimation, where α ∈ Rd+1. The penalized estimating equations can

be written as

UP (α) = U(α)− qλ(|α|)sgn(α), (4.33)

where qλ(|α|) = (qλ(|α0|), . . . , (qλ(|αd|))T, qλ(·) is a continuous function and qλ(|α|)sgn(α) is an

elementwise product between two vectors. Further, let pλ(x) =
∫
qλ(x)dx. In M-estimation
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framework, pλ(x) usually performs as penalization functions. Various penalization functions can

chosen and the one we specify here is the smoothly clipped absolute deviation function (SCAD)

(Fan and Li, 2001). In particular,

qλ(α) = λ

{
I(|α| < λ) +

(aλ− |α|)+

(a− 1)λ
I(|α| ≥ λ)

}
, (4.34)

where (x)+ = max{x, 0}, I is the indicator function and a is constant specified as 3.7 in Fan and

Li (2001). Further, we let M̂ to denote the variable index set selected after SCAD procedure.

Here we use a working model to select the variables. By Assumption 4.7, 4.8 in the Appendix and

Theorem 1 in Johnson et al. (2008), we have

P(α̂j 6= 0)→ 1, for j ∈M;

P(α̂j = 0)→ 1, for j ∈Mc, (4.35)

which constructs the model selection consistency. After the first stage, we now obtain the

important variable set M̂.

In the second stage, we use the selected variables to perform the maximum entropy method

for the density ratio estimation. That is, we maximize

Q̂(φ) =
1

n0

n∑
i=1

(1− δi)(xT
i φ)− 1

n1

n∑
i=1

δi exp{xT
i φ}

subject to φk = 0 for all k ∈ M̂c. The resulting PS estimator is then computed by (4.22) with

r̂(x) = exp(xTφ̂), where φ̂k = 0 for all k ∈ M̂c.

Corollary 4.2. Suppose that the assumptions for Theorem 4.1 hold. Also, the additional

assumptions listed in the Appendix hold. If xM satisfies E(Y | x) = E(Y | xM), with probability

goes to 1,

√
n
(
θ̂PS − θ0

)
L−→ N(0, Vr), (4.36)

where

Vr = V(Y ) + E[(n0/n1)r(XM)V(Y | XM)]. (4.37)
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Remark 4.3. Note that we apply a two-stage procedure to perform the estimation. The

asymptotic results in (4.36) is based on the model selection consistency in (4.35), whose probability

goes to 1. That is, if we define Dn = {M = M̂} where M̂ is obtained from the first stage

procedure, the linearization in (4.36) is conditional on Dn. By (4.35), we obtain P (Dn)→ 1 and

the limiting distribution of Tn ≡
√
n(θ̂PS − θ) given M̂, denoted by L(Tn | M̂), is asymptotically

equivalent to L(Tn | M). See also Theorem 1 of Yang et al. (2020) for a similar argument.

4.5.3 Sufficient Subspace Construction

Apart from variable selection, another popular approach to reduce covariates is the sufficient

dimension reduction (SDR) (Li, 1991; Cook, 1994, 2009). Sufficient dimension reduction finds a

subspace H0 with minimal dimension such that

Y ⊥ X | PH0X (4.38)

holds, where PH0 is the projection operator to H0. In particular, our goal is to find W ∈ Rl×d

with

b(x) = Wx (4.39)

such that b(x) spans H0 satisfying (4.38), where l < d and d = dim(x). Once b(x) in (4.39) is

chosen, we can apply the maximum entropy method using model (4.18).

To find W in a function space, we employ the method in Stojanov et al. (2019). For a positive

semi-definite kernel function k, let Hk denote the induced reproducing kernel Hilbert space

(RKHS). In particular, there exists a feature map ψ : Rd → Hk, which maps the previous

covariates to an abstract space Hk. On the other hand, the kernel t may induce a map R→ Ht

for the response variable. Further, let u induces a map Rl → Hu for sufficient dimension reduction

variable b(x). For ξ ∈ Hu, ζ ∈ Ht, the cross-covariance operator from Hu to Ht is defined as

〈ζ, CY,b(X)ξ〉Ht ≡ EY,b(X) {ξ(b(X))ζ(Y )} − Eb(X) {ξ(b(X))}EY {ζ(Y )} .
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In addition, the conditional covariance operator can be defined as

CY Y |b(X) ≡ CY Y − CY,b(X)C−1
b(X),b(X)Cb(X),Y .

Intuitively, the above operator can depict the conditional indepedence between Y and X given

b(X) (Fukumizu et al., 2004), i.e.,

Y ⊥ X | b(X)⇐⇒ CY Y |b(X) = CY Y |X.

Also, Theorem 7 in Fukumizu et al. (2004) shows that CY Y |b(X) ≥ CY Y |X. Thus, the SDR

problem can be transformed into the following optimization problem on Grassmann manifold for

the data with δi = 1:

arg min
W

Trace
{
ĈY Y |b(X)

}
s.t. WWT = I. (4.40)

For convenience, we use the Euclidean distance as the inner product for each space. The

computational details for the aforementioned optimization problem can are presented in the

Appendix.

Remark 4.4. In the two-step procedure for estimation of the PS model, we have two sources

uncertainty. The first one comes from the step one, which is essentially estimating W to form the

new basis functions. The second step is the parameter estimation given the basis functions. Now,

to fully account for the uncertainty associated with the two-step procedure, we can use the

following bootstrap methods mimicking the two-step procedure for estimation.

1. Use the bootstrap sample to apply the same dimension reduction technique treating the

estimated dimension (l) is fixed. After that, we obtain a bootstrap version of the reduced

basis functions.

2. Use the bootstrap basis functions to apply the same estimation procedure to obtain the

bootstrap replicate of the parameter estimate and its density ratio estimates.

3. Finally, the bootstrap replicate of the PS estimator can be obtained using the bootstrap

sample and the bootstrap replicate of the parameter estimates for the propensity scores.
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4.6 Multivariate Missing Data

The proposed method in Section 4.5 is based on the assumption that θ = E(Y ) is the

parameter of interest for a single study variable Y . If there are multiple parameters of interest

and only a single set of propensity weights is used, (4.27) is no longer applicable. We now

consider the case of multivariate study variables, denoted by Y1, · · · , Yp, and they are subject to

missingness. There are 2p possible missing patterns with p study variables. Let T ≤ 2p be the

realized number of different missing patterns in the sample. Thus, the sample is partitioned into

T disjoint subsets with the same missing patterns.

Let St be the t-th subset of the sample from this partition. We assume that S1 consists of

elements with complete response. Without loss of generality, we may define δi,t = 1 if i ∈ St and

δi,t = 0 otherwise. Let ft(x,y) be the density function f(x,y | δt = 1) and define

rt(x,y) =
ft(x,y)

f1(x,y)

be the density ratio function that we are interested in estimating. We further assume that

log{rt(x,y)} = φt0 + φT
t1x + φT

t2yobs(t), (4.41)

where yobs(t) is the observed part of y in St.

We can apply the maximum entropy method to estimate the parameters in (4.41). That is,

the sample-version objective function for estimating rt is

Q̂t(rt) =
1

nt

∑
i∈St

log{rt(xi,yi)} −
1

n1

∑
i∈S1

rt(xi,yi).

Under model (4.41),

Q̂t(φt) =
1

nt

∑
i∈St

{φt0 + φT
t1xi + φT

t2yi,obs(t)} −
1

n1

∑
i∈S1

exp{φt0 + φT
t1xi + φT

t2yi,obs(t)}.

The estimating equation maximizing Q̂t(φt) is obtained by Ût(φt) = ∂Q̂t(φt)/∂φt. Thus, we

have only to solve

Ût(φt) ≡
∑
i∈S1

wi(φt) (zi − z̄t) = 0, (4.42)
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where zi = (xT
i ,y

T
i,obs(t))

T and

wi(φt) =
exp(φT

t1xi + φT
t2yi,obs(t))∑

i∈S1
exp(φT

t1xi + φT
t2yi,obs(t))

(4.43)

and z̄t = n−1
t

∑
i∈St zi. Also, the intercept term φt0 is determined to satisfy

1

n1

∑
i∈S1

exp
(
φt0 + φT

t1xi + φT
t2yi,obs(t)

)
= 1. (4.44)

Now, to estimate θ defined through E{U(θ; x,y)} = 0, one can use

n∑
i=1

U(θ; xi,yi) = 0

as an estimating equation under complete response. Under the above multivariate missingness,

the PS estimator can be obtained by solving

∑
i∈S1

wiU(θ; xi,yi) = 0

where

wi = 1 +

T∑
t=2

nt
n1
r(xi,yi,obs(t); φ̂t). (4.45)

Let zi,t = (1,xT
i ,y

T
i,obs(t))

T, φt = (φt0,φ
T
t1,φ

T
t2)T. As a result, the density ratio for missing

pattern t can be simplified as rt(zi,t;φt), for t = 2, . . . , T . Define δi,t as the indicator function for

unit i and missing pattern t. Let the true parameter of interest be θ0 and the true parameter for

density ratio be φ0 = (φT
2 , . . . ,φ

T
T )T. Then we have the following theorem

Theorem 4.2. Under the regularity conditions, for multivariate missing case, we have the

asymptotic expandsion

√
n
(
θ̂ − θ0

)
=

1√
n

n∑
i=1

d(xi,yi, δi;φ0) + op(1),

where

d(xi,yi, δi;φ0) = −
[
E
{
∂

∂θ
U(θ0; x,y)

}]−1

×

[
δi,1Ui +

T∑
t=2

δi,tβ̃tzi,t + δi,1

T∑
t=2

nt
n1
rt(zi,t;φt)

{
Ui − β̃tzi,t

}]
+ op(1),
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where Ui = U(θ; xi,yi) and β̃t is the probability limit to the solution of

n∑
i=1

δi,1rt(zi,t;φt) {U(θ0; xi,yi)− βtzi,t} zT
i,t = 0.

The above theorem depicts the asymptotic behavior of our proposed estimators in

multivariate missing case.

Table 4.1: Missing Pattern Example

x y1 y2 y3

S1 X X X X
S2 X X X
S3 X X X
S4 X X

Example 4.1. For illustration, suppose that we have a missing data pattern in Table 4.1. The

parameter of interest is defined through E{U(θ | X, Y1, Y2, Y3)} = 0. For example, θ can be the

regression coefficients for the regression of y3 on (x, y1, y2). We have bivariate missingness, with

the response indicator functions δk for yk, k = 1, 2, 3. In this particular example, y1 is completely

observed which is often the case with longitudinal survey data.

We are interested in finding the propensity weights for subset S1 such that

∑
i∈S1

wiU(θ; xi, yi1, yi2, yi3) = 0

is approximately unbiased for θ. We also wish to include all the partial observations in S2, S3, S4

into the propensity weights.

To do this, we consider three density ratio function

rt(x,yobs(t)) =
ft(x,yobs(t))

f1(x,yobs(t))
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where yobs(t) is the observed part of y = (y1, y2, y3)T with missing pattern St, for t = 2, 3, 4. We

assume a log-linear model for rt(x,yobs(t)). Thus, we assume

log r2(x,yobs(2)) = φ20 + xTφ2x + φ21y1 + φ23y3

log r3(x,yobs(3)) = φ30 + xTφ3x + φ31y1 + φ32y2

log r4(x,yobs(4)) = φ40 + xTφ4x + φ41y1

so that MAR holds. We can use (4.42) and (4.44) to estimate the model parameters and then use

(4.45) to obtain the propensity weights for the final estimation.

4.7 Simulation Study

4.7.1 Simulation for MAR

A limited simulation study is performed to compare the PS methods. The setup for the

simulation study employed a 2× 2 factorial structure with two factors. The first factor is the

outcome regression (OR) model that generates the sample. The second factor is the response

mechanism (RM). We generate δ and x = (x1, x2, x3, x4)T based on the RM first. We have

• RM1 (Logsitic model):

xik ∼ N(2, 1), for k = 1, . . . , 4,

δi ∼ Ber(pi),

logit(pi) = 1− xi1 + 0.5xi2 + 0.5xi3 − 0.25xi4.

• RM2(Gaussian mixture model):

δi ∼ Bern(0.6)

xik ∼ N(2, 1), for k = 1, 2, 3,

xi4 ∼


N(3, 1), if δi = 1

N(1, 1), otherwise.
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Once x and δ are generated, we can generate y from OR1 and OR2. That is, we generate y

from

• OR1: yi = 1 + xi1 + xi2 + xi3 + xi4 + ei.

• OR2: yi = 1 + 0.5xi1xi2 + 0.5x2
i3x

2
i4 + ei.

Here, ei ∼ N(0, 1). Further, we compare four other estimators:

• Maximum likelihood estimator (MLE) with Bernoulli distribution with parameter

logit(pi) = xT
i ζ.

• Covariate balancing propensity score method (CBPS) from Imai and Ratkovic (2014) using

calibration variable (1, x1, x2, x3, x4)T.

• Improved covariate balancing propensity score method (iCBPS) from (Fan et al., 2016)

using calibration variable (1, x1, x2, x3, x4)T.

• Entropy balancing method from Hainmueller (2012) using calibration variable

(1, x1, x2, x3, x4)T.

We use the sample size N = 5000 with 5000 Monte Carlo samples. The results are presented in

Table 4.2, where DR is our proposed method. When we use (1, x1, x2, x3, x4) as the calibration

variable, OR1 matches with the working outcome model and RM1 matches with the working

response model. Hainmueller (2012) method also shows good performances when OR1 or RM1 is

true (doubly robust), but when both models fail (i.e. OR2RM2 setup), the performance is really

poor. Our proposed method is also doubly robust and it performs reasonably well even when both

models fail.

4.7.2 MAR under High-dimensional Case

We further test our proposed method in high-dimension case. We test another 2× 2 factoral

structure simulations. We first generate x = (x1, . . . , x100) with each xk∼N(2, 1), and generate y

from
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Table 4.2: Relative bias (R.B.), standard error (S.E.) and root meam square error (RMSE) for the

model with 4 covariates

Model Method R.B. (%) S.E. (×102) RMSE (×102)

OR1RM1

DR 0.00 3.52 3.52

Hainmueller 0.00 3.46 3.46

CBPS -0.24 6.85 7.17

iCBPS 0.02 3.58 3.58

MLE -0.01 7.02 7.02

OR2RM1

DR 0.00 5.45 5.45

Hainmueller 0.18 5.31 5.49

CBPS -0.22 7.53 7.73

iCBPS -0.07 5.92 5.95

MLE -0.02 7.66 7.66

OR1RM2

DR -0.00 5.39 5.39

Hainmueller 0.00 4.07 4.07

CBPS -0.67 22.50 23.34

iCBPS 0.12 5.75 5.85

MLE -0.07 28.61 28.62

OR2RM2

DR -0.36 9.34 9.87

Hainmueller -5.42 7.00 48.72

CBPS -0.61 23.58 24.19

iCBPS 0.26 10.24 10.49

MLE -0.07 33.08 33.08
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1. OR3: yi = 1 + xi1 + xi2 + xi3 + ei.

2. OR4: yi = 1 + 0.5xi1xi2 + 0.5xi1xi3 + ei.

Here, ei ∼ N(0, 1). We consider two different response mechanism,

• RM3:

δi ∼ Ber(pi),

logit(pi) = 1− xi1 + 0.5xi4 + 0.5xi5 − 0.25xi10.

• RM4:

pi =

 0.95 if xi5 ≥ 2,

0.25 if xi5 < 2.

In this setup, the response mechanism does not follow a logistic regression model. But, the MAR

assumption still holds. We set the sample size as N = 1000 and response rate around 60%. We

conduct the simulations for 1000 Monte Carlo samples. The simulation results for different

estimator behaviors are presented in Table 4.3. The variance estimation results of our proposed

estimators are presented in Table 4.4. Note that we apply the linearized variance estimation

procedure to get the valid variance estimation by Corollary 4.1. We also test different variable

cases in the density ratio model. In particular, we use ‘DR Full’ to denote that all variables are

considered. ‘DR VS’ denotes the case that variables in the model are selected based the

procedure described in Subsection 4.5.2. We use ‘DR SDR’ to denote the sufficient dimension

reduction method results.

From Table 4.4, the variance estimation relative biases dimension reduction approach for all

scenarios are all under 8%, which verifies our proposed variance estimation procedure. Due to

nuisance variable presentation, the variance estimation procedure for our proposed method with

all variables won’t work, which reflects the necessity of dimension reduction. As for point

estimation , our proposed method DR SDR and DR VS perform best in the sense of RMSE.

Aside from this, Hainmueller’s method is also competitive, followed by DR Full and iCBPS.
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4.7.3 Simulation for Multivariate Missing Case

Suppose we have the data structure in Table 4.1. Now let xi = (x1i, x2i, x3i)
T. Further, we use

θ2 and θ3 to denote the mean of Y2 and Y3 correspondingly. For model D, we consider continuous

variables. Specifically, we have

yi1 = 1 + xi1 + x2
i1 + xi2 + xi3 + εi1,

yi2 = 2 + 2xi1 + 2xi2 + x2
i2 + xi3 + εi2,

yi3 = 1 + 0.5yi1 + 0.5yi2 + εi3,

where εi,1, εi,2, εi,3
i.i.d∼ N(0, 1) and

δi2, δi3
i.i.d∼ Ber(pi),

logit(pi) = 0.35− xi1 + xi2 − 0.25xi3 + 0.25yi1.

For comparison, we can consider three methods additionally. One is naive CC method, which uses

only full respondents. That is, use the set of units with δi = 1 for estimating θ, where

δi = δi1δi2δi3. The other method is a simple propensity score method using a logistic regression

model of δi on (xi, y1i). In fact, we can apply the maximum entropy method for parameter

estimation. That is, we are estimating the density ratio function based on δi = 1 and δi = 0. We

use θ2 to denote the mean of Y2, θ3 to denote the mean of Y3 and θ4 to denote the quantity

P(Y2 ≤ Y3). The corresponding results are presented in Table 4.5. In Table 4.5, CC Sample

method denotes the CC method, Entropy Detail denotes the method illustrated in Section 4.6,

Entropy Rough denotes entropy methods described in this paragraph, Logistic to denote the

aforementioned logistic regression. As we can see, the method Entropy Detail behaves best

among them for all three parameters in the sense of RMSE.
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Table 4.3: Relative bias (R.B.), standard error (S.E.) and root meam square error (RMSE) for

seven methods under 4 models

Model Method R.B. (%) S.E. (×102) RMSE (×102)

OR3RM3

DR Full -0.01 7.74 7.74

DR VS 0.00 7.13 7.13

DR SDR 0.06 6.72 6.73

Hainmueller 0.00 7.35 7.35

CBPS -2.98 12.81 24.50

iCBPS -0.80 7.29 9.18

MLE 0.22 27.13 27.17

OR3RM4

DR Full -0.02 8.01 8.01

DR VS 0.02 7.11 7.11

DR SDR -0.01 6.97 6.98

Hainmueller -0.01 7.49 7.49

CBPS -1.92 12.70 18.51

iCBPS -0.02 7.49 7.49

MLE 37.65 283.65 387.21

OR4RM3

DR Full 0.01 9.97 9.97

DR VS 0.04 9.41 9.42

DR SDR -0.08 8.98 8.98

Hainmueller 0.01 9.60 9.60

CBPS -4.86 13.16 27.62

iCBPS -2.33 9.81 15.21

MLE 0.40 29.65 29.72

OR4RM4

DR Full -0.01 10.61 10.61

DR VS 0.00 9.46 9.46

DR SDR -0.03 9.47 9.47

Hainmueller 0.00 9.96 9.96

CBPS -1.90 13.86 16.81

iCBPS -0.04 10.10 10.10

MLE 38.40 225.38 296.06
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Table 4.4: Monte Carlo variance (M.C.V.), variance esimation (V.E.) and variance estiamtion

relative bias (V.E.R.B.) for 4 models.

Model Method M.C.V.(×103) V.E. (×103) V.E.R.B. (%)

OR3RM3

DR Full 5.99 4.67 -21.97

DR VS 5.09 4.90 -3.60

DR SDR 4.51 4.48 -0.72

OR3RM4

DR Full 6.41 5.10 -20.43

DR VS 5.05 4.66 -7.72

DR SDR 4.86 4.81 -1.18

OR4RM3

DR Full 9.95 8.27 -16.80

DR VS 8.86 8.84 -0.24

DR SDR 8.06 7.83 -2.77

OR4RM4

DR Full 11.26 9.00 -20.00

DR VS 8.95 8.50 -5.04

DR SDR 8.97 8.62 -3.87

Table 4.5: Relative bias (R.B), standard error (S.E.) and root meam square error (RMSE) for 4

methods under multivariate missing simulation setup.

Parameter Method R.B (%) S.E. (×102) RMSE (×102)

θ2

CC Sample 20.95 8.16 63.38

Entropy Detail -0.83 7.21 7.63

Entropy Rough -2.44 7.88 10.77

Logistic -3.80 8.24 14.07

θ3

CC Sample 24.02 6.87 84.38

Entropy Detail -0.31 6.30 6.39

Entropy Rough -1.03 6.65 7.56

Logistic -2.01 8.08 10.71

θ4

CC Sample 5.75 0.99 3.61

Entropy Detail 0.40 1.83 1.85

Entropy Rough 1.55 1.65 1.90

Logistic -2.10 1.40 1.89
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4.8 Real Data Application

We apply our methods mention in Section 4.6 for the multivariate missing case to Beijing

pollution dataset (Zhang et al., 2017). As an illustrative example, we take the 5 stations’ hourly

data in January, 2016. The station contains Dongsi, Guanyuan, Nongzhanguan, Tiantan and

Wanliu. There are 774 hourly records for each location in that month, there are 12 records with

missing data and we exclude them and keep others as full sample. For each record, we fully

oberseved weather conditions like temperature (◦C), air pressure (hPa), dew point (◦C) and

cumulative wind speed (m/s). On the other hand, we artificially create missingness for the

pollutant SO2 (µg/m3) and PM2.5 (µg/m3). Let (Yij,1, Yij,2) be the measurement of SO2 and

PM2.5, respectively, for location i in j-th hour. Further, let xij be the covariate (temperature, air

pressure, dew point, cumulative wind speed) for the location i and hour j. We preprocess all the

weather variables by standarization, after which each covariate has zero mean and unit variance.

Further, we use the log transformation for PM2.5 due to its skewness. Then, we are interested in

the following linear model

log(yij,2) = µi + xT
ijβ1 + yij,1β2 + eij ,

where eij
i.i.d.∼ N(0, σ2) for unknown σ2 and µi is the fixed effect for each station. Here, xij is

always observed, but (yij,1, yij,2)T is subject to missingness. Specifically, we are interested in

estiamting the parameter β1 = (β11, β12, β13, β14)T and β2. The diagnostic plots for the above

linear regression using full sample is presented in Figure 4.2.

We mannually create missingness with the following missing machanism:

δij,1 ∼ Ber(pij,1), δij,2 ∼ Ber(pij,2),

logit(pij,1) = 0.5 + 0.1xij,1 + 0.1xij,2 + 0.1xij,3 + 0.1xij,4,

logit(pij,2) = 0.5 + 0.1xij,1 + 0.1xij,2 + 0.1xij,3 + 0.1xij,4 + 0.3yij,2,

where the marginal missing rates for SO2 and PM2.5 are around 0.6. The regression parameters

can be estimated by solving the weighted least square equations where the weights can be
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(a) Q-Q plot (b) Residual plot

Figure 4.2: Diagnostic plots for the regression log(yij,2) given yij,1 and xij : (a) for Q-Q plot and

(b) for residual plot.

estimated with the approach proposed in Section 4.6. In particular, we compare CC method, and

the proposed PS estimation methods and logistic regression. We run 1000 Monte Carlo

simulations to get the results, which are presented in Table 4.6.

From Table 4.6, we can see that our proposed method Entropy Detail has relatively low

relative bias for parameters compared with other methods. Although CC method has relatively

low Monte Carlo standard error, it essentially suffers severe bias problem for β11. In the sense of

RMSE, Entropy Detail also perfoms well.
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Table 4.6: Relative bias (R.B.), Monte Carlo standard error (S.E.) and root meam square error

(RMSE) for 4 methods for Beijing pollution dataset.

Criteria Parameter CC Entropy Detail Entropy Rough Logistic Regression

R.B. (×100%)

β11 -104.14 -15.96 -74.21 -69.37

β12 -10.82 2.49 -8.50 -6.04

β13 -1.03 -5.32 -11.91 -12.50

β14 19.84 -4.52 -4.20 -4.57

β2 -23.05 -2.98 -12.04 -11.44

S.E. (×103)

β11 14.20 26.05 28.22 36.20

β12 12.59 25.25 23.23 26.73

β13 12.75 24.14 19.44 19.79

β14 19.82 38.87 45.86 54.05

β2 0.60 1.06 0.85 0.99

RMSE (×102)

β11 29.82 17.12 26.20 26.22

β12 14.00 15.96 16.14 16.74

β13 11.78 19.28 25.72 26.32

β14 20.56 19.95 21.57 23.40

β2 8.16 3.70 5.97 5.86
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4.10 Appendix: Technical Details

4.10.1 Proof of Lemma 4.1

We wish to show that, under (4.1) and (4.10), we have

P(Y ∈ A | b(x), δ) = P(Y ∈ A | b(x)),

for any measurable set A. Now, for any b0 = b(x0), where x0 ∈ H.

P(Y ∈ A | b(X) = b0, δ) =

∫
A

∫
b−1(b0) f(y|x, δ)f(δ|x)f(x)dµ(x, y)∫

Y
∫
b−1(b0) f(y|x, δ)f(δ|x)f(x)dµ(x, y)

(i)
=

∫
A

∫
b−1(b0) f(y|x)f(δ|x)f(x)dµ(x, y)∫

Y
∫
b−1(b0) f(y|x)f(δ|x)f(x)dµ(x, y)

(ii)
=

∫
A

∫
b−1(b0) f(y|b(x))f(δ|x)f(x)dµ(x, y)∫

b−1(b0) f(δ|x)f(x)dµ(x)

=

∫
b−1(b0) P(Y ∈ A|b(X) = b0)f(δ|x)f(x)dµ(x)∫

b−1(b0) f(δ|x)f(x)dµ(x)

(iii)
= P(Y ∈ A | b(X) = b0),

where (i) follows from (4.1), (ii) equality follows from (4.10) and (iii) follows from the fact that

P(Y ∈ A | b(X) = b0) is a constant on the set b−1(b0) = {x ∈ H : b(x) = b0}.
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4.10.2 Proof of Lemma 4.2

Note that

(n0/n1)E{r(x) | y,b(x), δ = 1}

= E
{
P(δ = 0 | x)

P(δ = 1 | x)
| y,b(x), δ = 1

}
= E

{
P(δ = 0 | x,b(x), y)

P(δ = 1 | x,b(x), y)
| y,b(x), δ = 1

}
,

where the last equality holds by the MAR condition in (4.1). Also,

E
{
P(δ = 0 | x,b(x), y)

P(δ = 1 | x,b(x), y)
| y,b(x), δ = 1

}
=

∫
f(x | y,b(x), δ = 0)P(δ = 0 | y,b(x))

f(x | y,b(x), δ = 1)P(δ = 1 | y,b(x))
f(x | y,b(x), δ = 1)dµ(x)

=
P(δ = 0 | y,b(x))

P(δ = 1 | y,b(x))

∫
f(x | y,b(x), δ = 0)

f(x | y,b(x), δ = 1)
f(x | y,b(x), δ = 1)dµ(x)

=
P(δ = 0 | y,b(x))

P(δ = 1 | y,b(x))

=
P(δ = 0 | b(x))

P(δ = 1 | b(x))
(by (4.9))

= (n0/n1)r̃(x).

Thus, Lemma 4.2 is established.

4.10.3 Regularity Conditions and Proof of Theorem 4.1

We have the following regularity conditions for Theorem 4.1.

Assumption 4.1. Assume that there exists constants C1 and C2 such that

0 < C1 ≤ λmin

(
1

n

n∑
i=1

b(xi)b
T(xi)

)
≤ λmax

(
1

n

n∑
i=1

b(xi)b
T(xi)

)
≤ C2 <∞,

where λmin and λmax are the smallest and largest eigenvalues of a specific matrix.

Assumption 4.2. Assume the parameter space G for φ is compact and the set

{
φ 6= 0 : b(xi)

Tφ ≤ 0 if δi = 1 for i = 1, . . . , n and E
{

(1− δ)b(x)Tφ
}
≥ 0
}

is empty.
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Assumption 4.3. The matrix E[∂/∂φ{ÛDR(φ)}|φ=φ? ] defined in (4.21) is nonsingular.

The detailed proof for Theorem 4.1 is presented as follows.

Proof. By Assumption 4.2 and Proposition S1 in Tan (2020), Q̂(φ) is concave in φ and is strictly

concave and bounded from above, therefore has a unique maximizer φ̂. By the weak law of large

numbers, we have Q̂(φ)
P−→ Q(φ). Further, as G is compact, we have the uniform convergence of

Q̂(φ) to Q(φ). By Theorem 5.7 in Van der Vaart (2000), we have

φ̂− φ? = op(1).

Then, by mean value theorem, we have

ÛDR(φ̂)− ÛDR(φ?) =
∂

∂φ
ÛDR(φ̃)

(
φ̂− φ?

)
, (4.46)

where φ̃ is a point between φ? and φ̂. Apparently, ∂ÛDR/∂φ and E[∂ÛDR/∂φ] are continuous

within the set G. Therefore, using the similar technique as above, we can arrive at

∂

∂φ
ÛDR(φ̃) = E

{
∂

∂φ
ÛDR(φ?)

}
+ op(1). (4.47)

Combine (4.46), (4.47) and the fact that ÛDR(φ̂) = 0, we have

−
√
nÛDR(φ?) =

√
nE
{
∂

∂φ
ÛDR(φ?)

}
(φ̂− φ?) + op

(√
n
∥∥∥φ̂− φ?∥∥∥) . (4.48)

Then, by Cauchy-Schwarz inequality, we have

√
n
∥∥∥φ̂− φ?∥∥∥ ≤∥∥∥∥∥E

{
∂

∂φ
ÛDR(φ?)

}−1
∥∥∥∥∥
∥∥∥∥√nE{ ∂

∂φ
ÛDR(φ?)

}
(φ̂− φ?)

∥∥∥∥
=

∥∥∥∥∥E
{
∂

∂φ
ÛDR(φ?)

}−1
∥∥∥∥∥∥∥∥√nÛDR(φ?) + op

(√
n
∥∥∥φ̂− φ?∥∥∥)∥∥∥

=Op(1) + op

(√
n
∥∥∥φ̂− φ?∥∥∥) ,

which implies the root-n convergence of φ̂. Therefore, (4.48) can be written as

φ̂− φ? = −
[
E
{

∂

∂φ′
ÛDR(φ?)

}]−1

ÛDR(φ?) + op(n
−1/2), (4.49)
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where

n0

n
ÛDR(φ) =

n0

n

[
1

n1

n∑
i=1

δi exp{bT(xi)φ} −
1

n0

n∑
i=1

(1− δi)

]
b(xi)

=
1

n

n∑
i=1

[
δin0

n1
exp{bT(xi)φ} − (1− δi)

]
b(xi)

=
1

n

n∑
i=1

(δi − 1) b(xi) +
1

n
· n0

n1

n∑
i=1

δir̃(xi;φ)b(xi)

=
1

n

n∑
i=1

[
δi

{
1 +

n0

n1
r̃(xi;φ)

}
− 1

]
b(xi).

By Taylor expansion and similar technique we used above, we have

θ̂PS(φ̂) =θ̂PS(φ?) + E
{
∂

∂φ
θ̂PS(φ?)

}(
φ̂− φ?

)
+ op

(
φ̂− φ?

)
+O

(∥∥∥φ̂− φ?∥∥∥2

2

)
=θ̂PS(φ?) + E

{
∂

∂φ
θ̂PS(φ?)

}(
φ̂− φ?

)
+ op(n

−1/2)

(i)
=θ̂PS(φ?)− E

{
∂

∂φ
θ̂PS(φ?)

}[
E
{

∂

∂φ′
ÛDR(φ?)

}]−1

ÛDR(φ?) + op(n
−1/2)

=ȳπ + (b̄n − b̄π)Tβ̃ + op(n
−1/2),

where

(b̄T
π , ȳπ) =

1

n

n∑
i=1

δi

{
1 +

n0

n1
r̃(xi;φ

?)

}
(bT(xi), yi)

and b̄n = n−1
∑n

i=1 b(xi), and equality (i) follows from (4.49), which completes the proof of

(4.24).

4.10.4 Regularity conditions and Proof of Theorem 4.2

We have the following regularity conditions for Theorem 4.2.

Assumption 4.4. Assume that there exists constants C1,t and C2,t such that

0 < C1,t ≤ λmin

(
1

nt

n∑
i=1

δi,tzi,tz
T
i,t

)
≤ λmax

(
1

nt

n∑
i=1

δi,tzi,tz
T
i,t

)
≤ C2,t <∞,

where λmin and λmax are the smallest and largest eigenvalues of a specific matrix, for t = 2, . . . , T .
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Assumption 4.5. Assume the parameter space Gt for φt is compact and the set

{
φ 6= 0 : zT

i,tφt ≤ 0 if δi,1 = 1 for i = 1, . . . , n and E
{
δi,tz

T
i,tφt

}
≥ 0
}

is empty, for t = 2, . . . , T .

Assumption 4.6. The matrix E[∂/∂φt{ÛDR,t(φt)}] is nonsingular, where

ÛDR,t(φt) =
1

n1

n∑
i=1

{
δi,1 exp(zT

i,tφt)− δi,t
}

zi,t,

for t = 2, . . . , T .

Proof. We present the main steps for expansion of n1/2(θ̂ − θ0), the details are similar to that in

Theorem 4.1. First of all, by mean value theorem, there exists θ̃ between θ0 and θ̂, φ̃ between φ0

and φ̂ such that

√
n
(
θ̂ − θ0

)
= −

[
1

n

n∑
i=1

∂

∂θ
δi,1U(θ̃; xi,yi)wi(φ̂)

]−1

×

{
1√
n

n∑
i=1

δi,1U(θ0,xi,yi)wi(φ̂)

}

= −

[
1

n

n∑
i=1

∂

∂θ
δi,1U(θ̃; xi,yi)wi(φ̂)

]−1

[
1√
n

n∑
i=1

δi,1U(θ0,xi,yi)wi(φ0) +
1

n

n∑
i=1

δi,1

{
∂

∂φ
wi(φ̃)

}{√
n
(
φ̂− φ0

)}]
.

(4.50)

Note that

wi(φ0) = 1 +

T∑
t=2

nt
n1
rt(zi,t;φt),

we then have

∂

∂φ
wi(φ0) = (

n2

n1
r2(zi,2;φ2)zT

i,2, . . . ,
nT
n1
rT (zi,T ;φT )zT

i,T ). (4.51)
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Meanwhile, we have

√
n
(
φ̂− φ0

)
=
√
n


−
[
E
{

∂
∂φ2

ÛDR,2(φ2)
}]−1

· · · 0

...
. . .

...

0 · · · −
[
E
{

∂
∂φT

ÛDR,T (φT )
}]−1




ÛDR,2(φ2)

...

ÛDR,T (φT )

+ op(1).

(4.52)

Further, we have

nt
n

ÛDR,t(φt) =
1

n

n∑
i=1

{
δi,1

nt
n1
rt(zi,t;φt)− δi,t

}
zi,t, (4.53)

and

nt
n

∂

∂φt
ÛDR,t(φt) =

1

n

n∑
i=1

{
δi,1

nt
n1
rt(zi,t;φt)

}
zi,tz

T
i,t, (4.54)

for t = 2, . . . , T .

Now, plug (4.51), (4.52), (4.53) and (4.54) into (4.50), we have

√
n
(
θ̂ − θ0

)
= −

[
E
{
δ1w(φ0)

∂

∂θ
U(θ0; x,y)

}]−1

× 1√
n

[
n∑
i=1

δi,1U(θ0; xi,yi)wi(φ0)−

{
δi,1

T∑
t=2

nt
n1
rt(zi,t;φt)β̃tzi,t

}
+

T∑
t=2

δi,tβ̃tzi,t

]
+ op(1),

(4.55)

= −
[
E
{
∂

∂θ
U(θ0; x,y)

}]−1

× 1√
n

n∑
i=1

[
δi,1Ui +

T∑
t=2

δi,tβ̃tzi,t + δi,1

T∑
t=2

nt
n1
rt(zi,t;φt)

{
Ui − β̃tzi,t

}]
+ op(1),

where Ui = U(θ0; xi,yi) and β̃t is the probability limit to the solution of

n∑
i=1

δi,1rt(zi,t;φt) {U(θ0; xi,yi)− βtzi,t} zT
i,t = 0.

4.10.5 Proof of Lemma 4.3

We have only to prove that

f(y | xM, δ) = f(y | xM).
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Now, using Bayes formula,

f(y | xM, δ) =

∫
f(y | x, δ)P(δ | x)f(xMc | xM)f(xM)dxMc∫ ∫
f(y | x, δ)P(δ | x)f(xMc | xM)f(xM)dxMcdy

=

∫
f(y | xM)P(δ | x)f(xMc | xM)f(xM)dxMc∫ ∫
f(y | xM)P(δ | x)f(xMc | xM)f(xM)dxMcdy

=
f(y | xM)

∫
P(δ | x)f(xMc | xM)dxMc∫

f(y | xM)
∫
P(δ | x)f(xMc | xM)dxMcdy

=
f(y | xM)P(δ | xM)∫
f(y | xM)P(δ | xM)dy

= f(y | xM),

where the second equality follows by MAR assumption and the reduced model assumption.

4.10.6 Proof for Corollary 4.1

Apparently, we only need to compute the asymptotic variance Vr. Without loss of generality,

the (4.27) is equivalent to that there exists a β? ∈ Rl+1, such that E(Y | X) = bT(X)β?. From

Theorem 4.1, we can directly calculate the variance of the influence function

d(X, Y, δ;φ?) = E (Y | x) + δ{1 + (n0/n1)r̃(X;φ?)}{Y − E (Y | x)}.

That is,

Vr = V[E{d(X, Y, δ;φ?) | δ,X}] + E[V{d(X, Y, δ;φ?) | δ,X}]

where the conditional expectation E(· | x, δ) is with respect to Y conditional on x and δ. In

particular, we have

V[E{d(X, Y, δ;φ?) | X, δ}] = V{E(Y | X)}, (4.56)

by MAR. Further, note that

π̃(x) ≡ P(δ = 1 | b(x)) =

{
1 +

n0

n1
r̃(X;φ?)

}−1

,

we have

E[V{d(X, Y, δ;φ?) | X, δ}] = E(V[δi{π̃(x)}−1{Y − E(Y | X)} | X, δ])

= E
[
δi{π̃(x)}−2V(Y | X)

]
= E

[
{π̃(x)}−1V(Y | X)

]
. (4.57)
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Combine (4.56) and (4.57), we arrive the conclusion in Corollary 4.1.

4.10.7 Regularity Conditions for Corollary 4.2

Assumption 4.7. For any constant M , there exists non-singular matrix D such that

sup
|α−α0|≤Mn−1/2

∣∣∣n−1/2U(α)− n−1/2U(α0)− n1/2D(α−α0)
∣∣∣ = op(1).

Additionally, n−1/2U(α0)
L→ N(0,F) for a positive definite matrix F.

Assumption 4.8. The tuning parameter λ in (4.33) satisfies

λ→ 0,
√
nλ→∞

as n→∞.

4.10.8 Computational Details for SDR

Define the sample operator for a matrix as SΩ,M : Rn×d → Rn1×d. That is, all rows in a n× d

matrix with δi = 1 form as the image, where i is the index for rows. Naturally, we have

SΩ,M (Xn) ∈ Rn1×d, where Xn = [xT
1 ; . . . ; xT

n ]. Further, we define the normalized sample operator

for a matrix as S̃Ω,M (M) = SΩ,M (M)− {n−1
1 1T

n1
SΩ,M (M)} ⊗ 1d which ensures the matrix

S̃Ω,M (M) is a column mean zero n1 × d matrix for M ∈ Rn×d. Similarly, let the sample operator

for a vector be SΩ,V : Rn → Rn1 . We have the observed vector of y as SΩ,V (y) ∈ Rn1 . Define the

normalized sample operator for vector as S̃Ω,V (v) = SΩ,V (v)− n−1
1 {1T

n1
SΩ,V (v)}1n1 for a vector

v ∈ Rn. As a result, we have ĈY Y = n−1
1 S̃T

Ω,V (y)S̃Ω,V (y), Ĉb(X),Y = n−1
1 WS̃T

Ω,M (Xn)S̃Ω,V (y),

Ĉb(X),b(X) = n−1
1 WS̃T

Ω,M (Xn)S̃Ω,M (Xn)WT. Also, in case of singularity of matrix during

iteration algorithm, the objective function in (4.40) can be written as

Trace

[
1

n1
S̃T

Ω,V (y)S̃Ω,V (y)− 1

n2
1

S̃T
Ω,V (y)S̃Ω,M (Xn)WT

×
{

WS̃T
Ω,M (Xn)S̃Ω,M (Xn)WT + εn1In1

}−1
WS̃T

Ω,M (Xn)S̃Ω,V (y)

]
,
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where ε = 0.01. We solve the optimization problem (4.40) with the limited-memory Riemannian

Broyden–Fletcher–Goldfarb–Shanno (LRBFGS) algorithms (Huang et al., 2015).

Another important aspect for SDR is the choice of l. For a given l, let the minimizer of (4.40)

be Ŵ(l). Like the idea in Subsection 4.5.2, we employ a working model by assuming a linear

model for Y given Ŵ(l)b(X). The optimal l̂ can be chosen to minimize the following Bayesian

information criterion

BIC(l) = n1 ln(σ̂2
(l)) + (l + 2) ln(n1),

where σ̂2
(l) is the estimated error variance for linear model Y | Ŵ(l)b(X).
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CHAPTER 5. GENERAL CONCLUSION

In this dissertation, we consider the problems related to survey sampling and missing data.

For survey sampling, we propose a kernel-based functional calibration method to estimate the

population mean with fully observed auxiliary information. The root-n consistency of our

proposed estimator is studied. Further, under regularity conditions, our proposed the proposed

calibration estimator attains the Godambe-Joshi lower bound asymptotically. As for missing data

problem, we first proposed imputation and propensity score methods using kernel ridge regression

to estimate the population mean, which is more robust than parametric approach. The root-n

consistency of the proposed estimators is shown and valid variance estimators are proposed.

Further, we propose a new framework with density ratio estimation to handle missing data

problem based on propensity approach. The asymptotic property of our proposed estimators is

studied. We further extend our proposed method to multivariate missing scenario.
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