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I. INTRODUCTION AND SUMMARY 

n:n denote the order statistics 

of a random sample of size n from a distribution with distribu-

the top k values in our sample. Sometimes this is referred 

to as directional selection. The difference between the 

average of the selected group and the population mean y 

expressed in standard deviation units represents a standard­

ized measure of the differences between the selected group 

and the entire population. This quantity is called the 

selection differential and may be written as 

"Selection differential" has long been a familiar term 

to geneticists and breeders who often refer to it as "in­

tensity of selection" (Falconer, 1960). It represents a 

measure of improvement in the X-trait due to selection. 

Hence, it is useful in the construction of suitable breeding 

plans and in the comparison of different plans in plant as 

well as animal breeding. However, no systematic study of 

the general theory of the selection differential appears in 

the literature. Most of the results, developed with genetic 

applications in mind, concentrate on normal parent popula­

tions. Recently, Burrows (1972, 1975) has discussed some 

2 
tion function F, mean y and variance a . Suppose we select the 

D 
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asymptotic results for the mean and variance of Dj^ ^ restric­

ting consideration essentially to normal and exponential 

populations. ^ also serves as a good test statistic in 

testing for outliers from normal populations. Our primary 

concern in this work is the study of distributional proper­

ties of ^ both in finite samples and in asymptotic 

cases. 

Sometimes the selection is based on an auxiliary vari­

able, and is then often called indirect selection. Suppose 

two characters X and Y are associated and selection on the 

X character is easier to practice than selection on Y. Hence, 

in order to improve the Y character one may have to choose 

those with high X values. This is essentially what is done 

by plant breeders. Animal breeders perform selection on 

the parent population with the aim of improving a particular 

trait for the offspring population. In this case also, the 

selection is based on a concomitant variable. This leads to 

the definition of the "induced selection differential". Let 

(Xi,Yi), i = 1 to n be a random sample from a bivariate 

population. Let X, < X~ < ... < X. _ be the order 
^ ̂  l:n — 2:n — — n;n 

statistics for the X-values and let Yr. i be the Y-value li:nj 

associated with X. . Then Yr- is termed the concomitant i;n li:nj 

of X. If we select the top k X-values, then 1 :n ^ 

—1 ^ k Z (Yr. „,-ij„)/a„ represents the difference between 
i=n-k+l ^ ^ 



the average of the Y-values for the selected group and the 

mean of the Y-population (Uy) expressed in the standard 

deviation units of the Y-population (a^). This quantity is 

denoted by D,, , and is called the induced selection dif-
IK/nj 

ferential. There is hardly any work in the literature on 

g e n e r a l  d i s t r i b u t i o n  t h e o r y  f o r  D D i s c u s s i o n  o f  
LK ,n J 

^[k n] also included in our study. 

This investigation is made up of five chapters apart 

from this introduction. Chapters II through IV deal with 

Dk ^ providing several small-sample and asymptotic results. 

In Chapter V we discuss D . The last chapter is devoted 

to a few miscellaneous results. Even though there are 

not many papers dealing with ^ directly, several results, 

especially of an asymptotic nature, are available for linear 

functions of order statistics. D, being one such func-jc,n ^ 

tion, we make considerable use of such results. These are 

brought in and discussed at convenient places and will not 

be elaborated on here. 

In Chapter II we assume that F is continuous and give 

an expression for the distribution function of Several 

bounds using the Cauchy-Schwarz technique and van Zwet's 

(1964) technique of convex transformation are given for 

These depend on the degree of restriction on F. 

Numerical comparison of these bounds are made for the 

standard normal population when the sample size is 10. 
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The last section considers the dependent sample case and 

develops bounds for £D, . It is shown there that SD, _ 
/ ** JC / n 

can never exceed /(n-k)/k. This indicates that the breeder 

can not expect to do any better than this quantity by 

selection alone. 

Chapter III deals with the basic asymptotic theory for 

D]c n' Here the following three cases have to be distinguished: 

(i) the extreme case where k, the number selected, is held 

fixed and n, the sample size, becomes infinitely large; 

(ii) the quantile case where k = [np], 0<p<l; {[x] stands 

for the greatest integer not exceeding x); (iii) the 

asymptotically extreme case where k-^, n-^» but k/n-»-0. In 

Section 3.1 the limiting distribution of D, is obtained in JC 

all three cases for the exponential population. For a general 

parent, the discussion is limited to the first two cases. 

In the extreme case, by use of the results of Lamperti (1964) 

and Hall (1978), possible nondegenerate limit laws for 

(D, -a )/b are given under the assumption that (X -a_)/b 
f Xi XX XI Xl # Xi XI XI 

has a nondegenerate limit law. The asymptotic distribution 

of ^ in the quantile case can be obtained through several 

different approaches. Apart from the direct approach, one can 

use the results of Stigler (1974) and Boos (1979) , since 

D, „ is a linear function of order statistics. It turns out JC / JX 

that the asymptotic distribution of D, properly normalized 
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is normal if and only if the (1-p)^^ guantile of the parent 

population is unique. 

Some degenerate limit laws for ^ are considered in 

Section 3.5. We establish some necessary and sufficient 

conditions for the existence of sequences of constants c^ 

and d_ such that D, _-c„ ^ 0 and D, _/d ? 1. The discussion IT IC/XXXL IC/XIIX 

owes much to de Haan (1970). An almost sure result for ^ 

is also given which requires F to be continuous. The last 

section investigates how the above asymptotic results apply 

when the parent distribution is normal, a situation of great 

practical importance. 

In Chapter IV we extend the results on nondegenerate 

limit laws for ^ obtained in Chapter III to the situations 

when some of our basic assumptions are violated. Also, an 

application of asymptotic theory to testing for outliers is 

discussed. When y and o are unknown and are estimated by the 

sample mean X and the sample standard deviation S, the 

/\ ^ 

asymptotic distribution of D. = k Z (X- -X)/S, the 
i=n-k+l 

sample selection differential is obtained. A similar exten­

sion is made to the case where the X^'s are independent, have 

the same first two moments but are not identically distributed. 

Section 4.5 considers two examples to show that these results 

may or may not hold for dependent samples. In the last 

section the problem of outliers is discussed and the use of 
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the asymptotic theory for constructing approximate percentage 

points for ^ when sampling from normal population is 

illustrated. Some comparisons of different asymptotic ap­

proaches are presented in the light of empirical percentage 

points obtained by Barnett and Lewis (1978). 

We turn to the induced selection differential ) in 

Chapter V and develop both finite-sample and asymptotic 

theory. Nondegenerate limit distributions of are ob­

tained in both the extreme and quantile cases. Using a result 

due to Bhattacharya (1976) we derive the asymptotic joint 

distribution of and Dj, ^ for the quantile case. The 

last section is devoted to the study of the simple 

linear regression model. This model is often used in 

biological selection problems and is referred to as the 

"response to selection" in these applications. 

The last chapter deals with two miscellaneous problems. 

First, we show that the asymptotic distribution of 

(^n:n-V/^n-- (^n-k+l:n-^n)/^n extreme case is the 

same as the distribution of the first k lower record values 

from one of the three extreme value distributions. This 

observation produces a new canonical representation for the 

limiting random variables and can be used to give new proofs 

of some asymptotic results due to Hall (1978). We then prove 

a bivariate extension of Stigler's (1974) result for linear 

functions of order statistics. This is applied to obtain the 
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asymptotic distribution of Hogg's (1974) Q statistic, a measure 

of tail length. As another application, the asymptotic 

distribution of a quick estimator of the regression coeffi­

cient in a simple linear regression model is obtained. 

Some well-known results repeatedly referred to in the 

text are collected in the Appendix for convenience and quick 

reference. Lemma Ai stands for the i^^ lemma in the Appendix. 
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II. SELECTION DIFFERENTIAL - FINITE 

SAMPLE CASE 

2.1. Basic Set-up 

Let be a random sample of size n from a 

2 continuous distribution with mean y variance a and distribu­

tion function (df) F. Let X, < < < X denote 
l:n — 2;n — — n:n 

the order statistics of this sample. Suppose we select the 

-1 ̂  
top k X-values. Then k Z (X. -y) represents the average 

i=n-k+l 
difference between the selected group and the population 

mean. This quantity expressed in standard deviation units 

is called the selection differential and may be written as 

1 * 
D (k,n) = ^ Z (X. „-u)/a. (2-1.1) 

^ i=n-k+l 

In a genetic context D^(k,n) is often termed "in­

tensity of selection" (Falconer, 1960). For simplicity, 

D (k,n) will be denoted by D, ^ from here on. We usually 
A X / n 

assume that y and a are known and without loss of generality 

(WLOG) tcike y = 0, a = 1. When y and/or o are replaced by 

X and/or S, the sample mean and the sample standard deviation, 

the resulting quantity will be called the sample selection 

differential. It will be denoted by ^ if both y and o are 

estimated and by Û. (a) if only y is estimated. 
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2.2. Distribution Function of D, jc^n 

^ ^ ' Vk+1 :n+---+XB 

P<Xn-k+l:n+---+%n:nlkx|Xn-k:n="'aPx (u) 
' n-k:n 

where F„ is the df of From Lemma Al it follows 
Vk:n 

that given form the order 

statistic 

given by 

statistics from a random sample of size k from the df 

f O r  t<u 

G (t) - < 

Hence, 

rx 
P(Dk^nl^^ = G ( k x ) d F .  ( u ) ,  ( 2 . 2 . 1 )  

J-00 ^ n-k:n 

(k) 
where G^ is the k-fold convolution of G^; that is, the df 

of the sum of k independent identically distributed (iid) 

random variables (rvs) each with df G^. As is evident from 

(2.2.1), there is no closed form expression for the df of 

in general. However, in the case of the exponential 

distribution, an expression for the probability density 

function (pdf) of ^ can be given as discussed below. 
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Example 2.2.1; 

Let 

1-e ̂  x>0 
F(x) = 

0, x<0 

This is the df of an exponential rv with mean unity and 

hence the rv involved will be called Exp(l). From Lemma A2, 

one obtains, 

_ 1 ? ^ d ^2 , ^n-k 
"k,n - 3E iEn_k+i i:n " H" + "k+I 

+  ( 2 . 2 . 2 )  

where Z^'s are iid Exp(l) rvs. Hence, 

"k,n =^1 +---+ ^n-k + 

_T 
where Z| Exp(À^ ) , = (n-i+1) and Z*, the sum of k iid 

Exp(l) rvs, is Gamma (k,l), and are mutually independent. 

Consequently, 

. z«+...+z* («-xlfz»/kWdx, 
0 1 n-k 

From Feller (1966), p. 40, problem 12, it follows that 

n-k -A. (u-x) 

^Z*+...+Z* ^ ̂ 1^2* *'^n-k^^^ '^i,n-k® 1 n-k 1=1 

u-x>0 
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where 

= (Xi-Xi) ... 

Therefore, 

n-k ru -A.(u-x) 

(k-1)! 

^k n-k -X.u 

(k-1) I^1^2' • '^n-k .^/i,n-k® 
1—JL 

u x(X.-k) 
e X dx, u>0. 

For a given k the integral can be evaluated explicitly 

and hence an explicit expression for the pdf of ^ is 

available, since ^ = (M^ ̂ -1). 

2.3. Bounds on the Sample Selection 
Differential 

Let X, „<x_ _<...<x_ _ be the order statistics from an 1 : n— 2 : n— — n : n 

observed sample x^,x2,...,x^. Mallows and Richter (1969) 

—1 ̂  
have established sharp bounds for v, = k Z x. , which 

^ i=n-k+l ^ 
is the sample selection differential except for a change of 

location and scale. Their Corollary 6.1 (p. 1931) states 

that 
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X + ^ < V, < X + s (2.3.1) 
^ >/iPÎ - ^ - ^ 

2 1 ^ 2 where t = max(k,n-k) and s = — Z (x.-x) so that 
" i=l ^ 

S = s . Assuming that S^O (i.e., x^'s are not all equal), 

we obtain 

n-k 1 ^ ̂ k ̂  _ A ^^-k yH-T 
— - —s" = °k,n I'TT *—• 

These bounds are sharp. 

2.4. Bounds on ^ - Cauchy-Schwarz 

Technique 

rl 
Since y = 0,a = 1, -1 F (u)du = 0 and 

0 J 0 
(u) ] ̂du = 1. 

ni 2 1 , 
0 i=n-k+l^ 

u^"l(1-u)^"^-1](u)du 

< { 
1 n 
[ Z g<?"i)ui"l(l-u)*"i-l]2du}l/2 

0 i=n-k+x ^ ̂  

[F l(u)]2du}l/2^ 

by the Cauchy-Schwarz inequality. Hence, 
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Of course, £Dj^ ^ ̂  0. Equality in (2.4.1) is attained if and 

only if (iff), for some constant c, 

F"^(U) = c[g. Z (J"hu^"^(l-u)^~^-l] . (2.4.2) 
^ i=n-k+l 

n 1 ' T " 
First we note that for k<n, Z (? (1-u) ^ 

i=n-k+l 

represents the df of (n-k)^^ order statistic from a random 

sample of size (n-1) from "UiO ,1) distribution, that is, 

laniform distribution over (0,1) . Hence, the right hand 

side (RHS) in (2.4.2) is increasing if c>0 and consequently 

there exists an F satisfying (2.4.2). For this F, 

is the bound given in (2.4.1). However, a closed form 

expression for such an F is not possible. But, since 

f^[F"^(u)]^du = 1, 
J 0 

_ /n-1. ,n—1. 

Also, F ̂  (0) = -c and F ^(1) = c.(n-k)/k. Hence, this 

extremal F has bounded support, and is nonsymmetric. 
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Remarks : 

1. The above technique has been employed for finding 

bounds for l;^i^n in David (1970, p. 51) where it is 

noted that the bounds are attained only when j=n. But, 

in the case of the selection differential, or equivalently 

in the case of the average of ,..,X the bound is 
^ n-x+l:n n:n 

attainable for all k. 

2. Let h{X) and g{X) be two functions of a rv X where 

erh(X)]^ and e[g(X)]^ are finite. Let £h(X) = 0. Then 

sharper bounds can be obtained for £h(X)g(X) by using the 

Cauchy-Schwarz inequality for e(h(X)-£h(X))(g(X)-£g(X)) 

instead of the given expectation even though the two 

integrals are essentially the same. This procedure would 

yield a tighter bound than the one obtained by direct applica­

tion of the Cauchy-Schwarz inequality. 

3. We can obtain sharper upper bounds for &D, as-jc ,n 

Sliming a symmetric parent distribution and using similar tech­

niques. The Cauchy-Schwarz inequality applied to some 

orthonormal systems can be used to obtain tighter bounds and 

approximations for ^. These would closely follow Section 

4.3 of David (1970, pp. 54-57) and are omitted. But, some 

nontrivial extensions of his Section 4.4 are possible and we 

pursue this in the next section. 
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2.5. c-Comparison and s-Comparison 

Let 3 be the class of all dfs which have positive con­

tinuous derivatives on their supports. If F and F* are in 

? then we say that F< F* iff F* F is convex on I, the 

support of F, and in such a case F is said to c-precede F*. 

Van Zwet (1964) has shown that if F< F*, then 
c 

F(ex^.^) 1 F* (2.5.1) 

for all r = 1,2,...,n, and for all n for which and 

exist (see David, 1970, p. 60). We assume that both F 

and F* have finite variances. Since c-ordering is independent 

of location and scale, WLOG we take both F and F* to be 

standardized dfs. 

From (2.5.1) we have 

g(ex^.^) < ex*,^, r = 1,2,...,n 

where g = F* F is a convex function on I. Hence, 

Let Y be a rv which takes values ex„ ,6X 
n-k+l:n' n:n 

with probability 1/k each. Since g is a convex function on 

I and these expectations belong to I, we have, by Jensen's 

inequality 
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1 ^ 9(c z ex.. ) = g(ey) < eg(y) 
i=n-k+l 

Hence, we have 

1 ^ < e(i Z Xf.). (2.5.3) 
~ ^ i=n-k+l 1'* 

Recalling that F and F* are standardized dfs it follows that 

9<2°k,n' 1 & 1 " 
i=n-Jc+l 

That is, 

1 ^ F(eD ) < F*(i Z g(ex. ^)) <F*(eD* ). (2.5.4) 
Jc i=n-k+l ~ K,n 

Again, from (2.5.1) , we have 

"r:n 1 9"^(CXr:n'-

Hence, proceeding on similar lines as above, and using 

the fact that g ^ is concave, one obtains, 

T ^ 1 
F (60, ) < F(i Z g ^(CXf. )) < F* (SD* ). (2.5.5) 

Jc,n - JC i=n-k+l ~ 

(2.5.4) can be used to give lower bounds for whereas 
JCy n 

(2.5.5) is handy if we are interested in an upper bound for 
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£D, , However, note that the intermediate bounds are not 
-K,n 

easy to compute. If any of F and F* is not standardized, the 

corresponding selection differential has to be replaced by 

the average of the top k order statistics. In that case, one 

does not even need the finiteness of the mean, just the 

existence of expectations appearing in (2.5.4) or (2.5.5). 

Applications: (i) c-Comparison with the 2<(0,1) df gives, 

for any (standardized) convex F, 

for any concave F, the inequalities are reversed. 

(ii) For a standardized df F having increasing failure 

rate, that is for which F'(x)/(1-F(x)) is nondecreasing, 

we get 

F(eD, ) < F(i Z (i/Cn+1))) < (2n-k+l)/2(n+l) ; 
^ i=n-k+l 

on c-comparison with Exp(l) distribution. Here M. is as 

given by (2.2.2) and hence 

,n+l/2 
X dx + 1 

k+1/2 

Consequently, F(eD, ) < 1 - (2k+l)/e (2n+l) . 
K ,n — 
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(iii) For the standard normal parent with df 0(x), 

1/0 (x) is convex. Hence, with F(x) = -1/x, x<-l and F*(x) = 

-1 —1 0(x), F F* is concave. Consequently, g = F* F is convex 

since g is increasing and its inverse function is concave. 

Also, note that F does not have a mean but ^ exists for 

k<n. ~ -n/(r-l), r>l (David, 1970, p. 61) and hence 

from (2.5.4) we have 

1 ^ 1 
4 ( 6 0 *  „ )  >  0(r Z *"^((i-l)/n)) 

k+1 

n n-1 T 

That is, 

eo* > i Z (^) > )/ k<n. (2.5.6) 
- K i=n_k+i ^ .-1 

n Z 1 
i=n-k 

s-Comparison: 

Now, we consider a subclass & of symmetric distributions 

in Let F(Xq-X) + F(Xq+X) = 1 for some Xq and all x if 

FeS. If F and F* are in S, then F < F* iff g = F* ^F is 

convex for X>Xq, xel, the support of F. From van Zwet (1964), 

we have, whenever F < F*, 

9<eXr:n> i 

for all (n+l)/2 < r < n and all n for which £X* ̂  exists 
— — r :n 

(see David, 1970, p. 63). We assume that both F and F* are 
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standardized. Consequently, Xq=0 and g(0) = 0. Now, noting 

that >0 for r > (n+l)/2 and that g is convex for x > 0, 

we get, on using arguments similar to those leading to 

(2.5.3) , 

1 ^ 9(&D. ^ z g(ex. ) < eD* , k < (n+i)/2. 
Jc,n - jc i=n-k+l K'* 

(2.5.8) 

We now show that (2.5.8) is true even when k > (n+l)/2. 

Since F is symmetric about zero, for k > (n+l)/2, 

(2.5.9) 

From (2.5.7), since k > (n+l)/2, 

1 ^ 1 ^ i  z  g { e x .  ) < |  z  e x f  .  ( 2 . 5 . 1 0 )  
^ i=k+l " i=k+l 

Define a rv Z which takes values 0, fiX, ,, _,...,6X Ktx :n li .-ii 

with probabilities (2k-n)/k, l/k,...,l/k, respectively. 

Since g is convex on the support of Z, by Jensen's in­

equality, it follows that 

° + I •L/='i=n' 
i=k+l 

< eg(Z) 

= 9(0) ^ Z g(ex.. ) 
^ ^ i=k+l 
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= I 

since g is antisymmetric about 0. Now recalling (2.5.9) 

and (2.5.10) we conclude that (2.5.8) is true for 

k> (n+l)/2 also. This is recorded as a theorem below; 

Theorem 2.5.1: 

If F and F* are standardized dfs in S, and F< F*, then 

1 «"ere t = 
1— u 

max(k+l, n-k+1). 

One can also show that 

1—t 

For nonstandardized dfs, the selection differential has 

to be replaced ^ the average of the top k order 

statistics. 

s-Comparison of the standard normal df(F) with the 

logistic distribution (F*), where F*(x) = (1 + exp(-x)) , 

-co<x<a> shows that F< F* (see David, 1970, p. 63) and hence 

from (2.5.11) we have 

®°k,n 1 k 1 *-!(?* («*%,%)). (2-5.12) 
1—t 
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It is known from David (1970, p. 64), 

i ^ for r > (n+l)/2 and hence 

n 
g M *  = k 

r 

= < 

n-l ̂  
Z k = 1 

i=l ̂  

I ^ i=n-k+l 

1 1 r. 
3 -  +  Z  l < k < y  
^ i=l 

# "V i- : 

v. 

n 

^ i=n-k ^ i=n-k 2-
< k < n 

(2.5.13) 

on simplification. 

Now we compare some of the bounds discussed so far when 

the parent distribution is standard normal and the sample 

size is 10. For this define the following: 

1 ^ - 1  UBl = ̂  Z $ •^(F*{ex|.^) ) of (2.5.12) 
i=t 

UB2 = 0 ^(F*(6M^ ̂ ) ) of (2.5.12) where ^ is given 

by (2.5.13) 

UB3 = Bound given by (2.4.1) using the Cauchy-Schwarz 

technique. 
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X ^ i""l LB = n- Z $ (——) , an improved version of the inter-
^ i=t * 

mediate bound of (2.5.6) which exploits the 

symmetry of the normal distribution. 

SDj^ ^ was computed using the table of expected values given 

by Teichroew (1956). Table 4.4 of David (1970) was used to 

compute UBl. All these bounds and ^ are given for 

k = 1(1)9, n = 10 in the following table. 

Table 2.5.1. Bounds for CDj. ̂  for n = 10 

k CDk,n UBl UB2 UB3 LB 

1 1.539 1.591 1.591 2.065 1.282 

2 1.270 1.309 1.321 1.526 1.062 

3 1.065 1.096 1.115 1.211 0.883 

4 0.893 0.918 0.942 0.987 0.725 

5 0.739 0.760 0.787 0.810 0.580 

6 0.595 0.612 0.641 0.658 0.483 

7 0.457 0.470 0.499 0.519 0.378 

8 0.318 0.328 0.354 0.381 0.265 

9 0.171 0.177 0.196 0.229 0.142 

Of the upper bounds, the ones obtained using s-comparison 

perform well in comparison with the one which uses the 

Cauchy-Schwarz technique. The lower bound is too low to 
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be useful. 

2.6. Dependent Sample Case 

In this section we first consider bounds on the expec­

tation of any linear function of order statistics when the 

variables are dependent and possibly nonidentically 

distributed. While doing so, we improve a result due to 

Arnold and Groeneveld (1979). Then, we discuss the case of 

the selection differential. 

Suppose X^,X2,...,X^ are possibly dependent rvs with 

2 
£X. = y . and Var(X. )= a- . Let X. <X« „ be the 
11 11 l:n— 2;n— — n:n 

order statistics with y. = 6x• . Let X be the sample 
^ i:n i:n 

2 1 — 2 
mean and s = — Z (X.-X) . 

^ i=l ^ 

p ^ O _9 1 ^ o 
es  = i  z ex.  -  ex^ < -  z ex.  -  (ex)  ,  

* i=i 1 ^ i=i 1 

since Var (X) ̂  0 

1—X 

1 ^ 2  —  2  =  ^  Z  [ a . ^  +  ( y . - y ) ^ ]  
* i=l 1 ^ 

and the equality holds iff X =constant almost surely (a.s.). 

Also, 

=  [ e ( X i:n- X ) r :  £  
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and hence 

2(y.  „-û)^ < ze(x .  „-x)^ = e(Z(x. -x)2)  = nes^ 
^ X • XI ^ X • XI ^ i 

where the equality holds iff X. _-X = c. a.s. with Ec. = 0. 
i:n 1 1 

Hence, we have the following: 

Z (y. „-y)^ < ms^ < Z [C.2 + (y (2.6.1) 
i=l ~ - i=l 1 1 

Arnold and Groeneveld (1979, pp. 220-221) have shown that: 

^  — 2 ^ 2  —  2  
z (Wi.n-U) < Z [a/ + (U.-U)^] 
i=l i=l ^ ^ 

and hence, for constants X., l<i<n, that 

|ZXi(iii:n-ïr) I 1 [Z(Xi-Â)2]l/2[Z(%._^_û)2]l/2 

< [Z(X,-Â)2]l/2[z(a 2 + (li -y)^)]^/^. 
— 1 XX 

( 2 . 6 . 2 )  

However, using the first inequality in (2.6.1), we obtain 

!zXi(Pi:n-y) 1 < /n[Z(Xi-T)2]l/2(es2)l/2 (2.6.3) 

which is strictly better than (2.6.2) unless the sample mean 

is a constant a.s. Also, if we start with 

instead of ZX^, use the Cauchy-Schwarz inequality, 

and take expectations at the end, we end up with still 

better bounds. To be precise, consider 
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= l2(X^-r) (X^.^-X) 1 

< [Z(Xi-T)2]l/2[Z(Xi,^-X)2]l/2 

= /n [Z(Xi-T)2]l/2g^ 

Therefore, 

= leZA. (X..^-X) i < el2Xi(X^.j^-X) I 

< v^[z (x^-A)^]^/^es. 

That is, 

lZXi(Pi:n-û) I < »^[Z(X^-X)^]^/^es. (2.6.4) 

Noting that £s^ ^ [£(s)]^ we see that (2.6.4) gives a 

sharper bound than (2.6.3), with equality of bounds 

2 
occurring only when s is a constant a.s. The only short-

2 
coming of (2.6.3) or (2.6.4) is that we need to know fis 

or es in order to compute the bound. But, at the same time, 

2 one can dispense with the knowledge of a^ 's which are 

needed in (2.6.2). 

Finally, we consider a special case of dependence 

where X^'s are uncorrelated. Then, it can be shown that 

ne(s^) = Z[(%i-w)2 + a^^(2^)] 

and hence (2.6.3) reduces to 
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l2Xi(yi;n-y) 1 < 

indicating clearly the improvement over (2.6.2). The above 

inequality is dealt with in Exercise 4.5.1 of David (1980). 

Now we can assume that X^'s have the same mean y and 

2 
the same variance a and turn our attention to the selection 

differential. Here, sharp bounds can be obtained by dealing 

with (2.3.1), rather than appealing to any of the in­

equalities derived above. Taking expectations in (2.3.1), 

we get 

where t = max(k, n-k). Therefore, 

n-k ^ ^ . (2.6.5) 
max (k,n-k) a — k,n —ko 

Since the bounds in (2.3.1) are sharp, these bounds are 

also sharp. (A necessary condition is that s is constant 

a.s.). If £s is unknown, the fact that &s < o can be used 

to replace the upper bound in (2.6.5) by /(n-k)/k. In 

addition, if X^'s are uncorrelated. 

&s £ y&s^ = a/ (n-l)/n 

gives a slightly better upper bound, namely /(n-k)(n-l)/kn. 

But, a good lower bound for S-s/a is not possible without 

additional conditions on the parent distribution. 
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III. SELECTION DIFFERENTIAL - BASIC 

ASYMPTOTIC THEORY 

In this chapter we investigate the asymptotic proper­

ties of D, . We derive nondegenerate limit laws for D, 
iC /21 jC / 

as well as degenerate limit laws when k is a fixed integer and 

when k is a fixed proportion of n. Most of these results 

do not require the basic assumption of continuity made in 

Chapter ii. More general results in this direction such as 

when the iid assumption is violated or when y and a are 

unknown and are estimated by X and S, are reported in 

Chapter IV. 

3.1. Nondegenerate Limit Laws -
Exponential Case 

As in Example 2.2.1, let the X^'s be iid Exp(1) rvs, 

Define 5%^^ - ̂ n-k+lrn +•••+ %n:n 

^^n-k+l;n ^^n-k+2 :n~^n-k+l :n^ 

l(%n:n-%n_l:n) 

= +•••+ say. 

It is known that the Z.'s and X„ , _ are mutually inde-1 n—Jc+l:n 

pendent and 'v Exp (i 

parent distribution. 

pendent and Z^^Exp(l). Since y = 1, a= 1 for the 



28 

(3.1.1) 

We obtain the asymptotic distribution of ^ in the 

following cases: 

(i) k is a fixed integer and n^ (extreme case) 

(ii) k = [np], 0<p<l, and n-^ (guantile case) 

(iii) k-H» and k = o(n) (asymptotically extreme case) . 

Case (i): 

It is well-known (see e.g., Galambos, 1978, p. 102) 

that converges in law to a rv A whose 

df is given by 

-X - ix F (x) = exp(-e ) Z e / i l  

^ i=0 

(We will elaborate on this and related results later in 

Section 3.2). 

Also, Z^+Zg +•••+ = 3 'V' Gamma (l,k-l) and hence 

£ 
^ - log n ^ A + (B/k - 1) 

where A and B are independent. The df of A + (B/k-1) can 

be written explicitly and is dealt with in Theorem 3.2.2. 

Case (ii): 

In this case (n-k+l)/n -»• 1-p = g, say. Let Cg be the 

qth guantile, that is F(Ç^ = g. Here Çg = -log p. Also, 

if X^Exp(l), the conditional distribution of (X-a) given 
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X>a is also Exp(l) for any a>0. Consequently, e(X-Çglx>Çg) = 

1 and Var(X-Cg1X>Çg) = 1. 

Let Up = e(x|x>Sg) and a= Var(x|x>{ ). Then 

Up = e(X-Çg|X>îg) + Sg = 1 + Sg 

and 

= Var(x-Sg!x>5g) = 1. 

Recalling (3.1.1) we have 

(°k,n-'p' = <Vk+l:n-5g' + (T Vl-" 

where is the mean of the Z^'s. Therefore, 

"z  

= An + Bn + say. 

By the Central Limit Theorem (CLT) for iid rvs, we have 

,  Z  
/k-l(Z^_^-l) -»• N(0,1) as n-K» 

and hence 

®n • /i^(Zj^_^-l) 5 N(0,1). 

Also, 

C„ 5 0 since Z, , ̂  1. 
n k-1 

From Lemma A3 it follows that 

'Vk+lzn-V " K'O'l) 

since f(Sg) = p in the Exp(l) case. 
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Hence 

\ = /E(Xn-k+l:n-(g) = 4 ' '^'^n-k+lzn'^g' 
f c 
->• N(0,p- j) = N(0,q), as n ->•<*>. 

Since and are independent for every n, 

£ 
-»• N(0,l+q) 

and hence 

= Ah + + Cn 

£ 
N(0,l+q) . 

Case (iii): 

Sk,n ^ Zi+...+Zj^-i 

k n-k+l:n k 

Also, from Lsirsaa A2, 

Vk+l:n = é"* él*---* = ®n' 

where Exp(l) rvs and are independent. Hence is 

the sum of independent rvs. Now, 

Var(Sn) " ^^n^ " i=k^^^^" ~ 

so that /ka (S^) ->-1. Therefore, 
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a(S^) i=k 

2 + Sr Î ,1,2 + 5, r ^ 1 "^"'5/2 
= eiE^-ir^"[ 2 • [ 2 

^ i=k ^ i=k X 

- a{-L— 1 , ,1 _ 1.-1-6/2 
(^i+a'^i+a^^k 

;^(l_ (^5.) (1 - 6.) 6/2 
%6/2 n" n' 

= c/k^/2 

->• 0, since k-x» and k/n -> 0. 

Therefore, CLT holds for (see Lemma A4) and hence 

S_—£S_ 

n 

Since v^a(S^) ->-1 and 

n. rn . n ^ n _ 

° 1 - 1°9 E = 4r - L f 1 r " iLl^ 

£S^ and o(S^^ can be replaced by log (n/k) and k , 

respectively in CLT. That is, 

j* 
/k(S^-log(n/k)) ̂  N(0,1). 

Also, 

— - 1) " N(0,1) 
Z^+...+Z%_^ 2 
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as in case (ii). By the independence of and Z^'s for 

all n, we obtain 

^  Z 
- log(n/k)) ̂  N(0,2). 

Section 3.2  is concerned with the extreme case, that 

is case (i) where k is a fixed integer and the sample size 

n approaches infinity, for a general distribution. Sections 

3.3 and 3.4 deal with the quantile case, that is case (ii), 

in general, ife we shall see later, the absence of the special 

properties enjoyed by the exponential distribution makes our 

proofs longer and more involved. The asymptotically extreme 

case, where k-»^ with k/n-*-0, for an arbitrary distribution 

is not pursued in this work. 

3.2 .  Nondegenerate Limit Laws -
Extreme Case 

Suppose that there exist constants a^, and b^>0 such 

that for a df F, 

P((x -a )/b^ < x) = F^(a +b x) -»-G(x) (3 .2 .1)  
XI •11 x l  Ii ~ 11 11 

as n-»^, where G is a nondegenerate df. In such a case, we 

say that F is in the domain of attraction of G and we 

write FeD(G). Gnedenko (1943) has shown that G can be one 

of the three types of distributions 0^, and A, and has 

derived necessary and sufficient conditions for F to be in 
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D(G) in each of the three cases. F need not be continuous 

for (3.2.1) to hold. Appropriate sequences a^ and b^ which 

would facilitate convergence, are also known. Of course, 

the maximum from a given df F, need not have a nondegenerate 

limit distribution, whatever the normalization. 

Lamperti (1964) has shown that if (3.2.1) holds, then 

for each k>l, the vector ((X^_^-a^)/b^, (Xn-l:n"*n)/^n''''' 

(-n"^n^ /^n^ ^ limiting joint distribution of 

(Ti,T2,...,Tk) which again can be only one of three types. 

In this situation Tj^ has one of the following distributions; 

( 0, x^O 
f^(!c:k) =/ _ k_i 

L exp(-x ) Z X /ii, x>0, a>0 (3.2.2a) 
i=0 

k-1 
fexp(-|x|^) Z jx| /il, x<0 

Y (x;k) =4 i=0 
1 , x>_0, a>0 (3.2.2b) 

k-1 _. 
A(x;k) = exp(-e *) Z e ^^/i!, -=<x<™ (3.2.2c) 

i=0 

Dwass (1966) gave the joint pdf of (T^,T2,— ,T^J. 

Hall (1978) has provided a canonical representation of the 

stochastic process {T^, k^l} in terms of exponential rvs. 

First we use this representation to obtain the possible 

limiting distributions for Later we sketch a direct 

proof without using his representation. In Section 6.1, 

we take a closer look at T\'s to discover that they are in 
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fact, lower record values from 0^, or A. 

Lemma 3.2.1; (Hall, 1978) 

If FGD(O^), then 

/•] \ J -] (Z-"1) n 1 , 
T_ = = exp{-[ Z — + Y_ Z 4]}, n>l (3.2.3a) 

j=n n n ^ a 3 ' j=l : 

If FED(Y^)f then 

(0 \  A  1 °° Z.-l T 
?n = ?n = - exPf- ^ - Y " .2 j] >, n>l 

j-n j=l (3.2.3b) 

If FeD(A), then 

/9\ ^ " Z.-l n-1 _ 
T = ' = Z -̂ -R- + Y - Z 4, n>l (3.2.3c) 
^ ^ i=n 3 j=l ] 

0 
where Z.'s are iid Exp(l) rvs and Z 1/j is interpreted 

3 j=i 
as zero. 

As usual, we take % = 0, o = 1. Suppose (3.2.1) holds. 

Then we know that 

,^n;n *n-k+l:n ^n. 4. /n, m > 
5 r • • • / • 

1 ^ 
Since (Dk,n-^n)/^n = F 'Vi+1 ® continuous 

1—J-
function of the above components, it is immediate that 

Hence we will try to find the distribution of using (3.2.3). 

As we shall see later, only in the A-case can the df and pdf 
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of be found explicitly. 

If FeD($^), using (3.2.3a) we have 

exp(Z^/ia) 

and hence 

d (1) 1^"^ ^4 1 
Ti +...+ = T™(e=cp(j £ U) + exp(i Z 

3 —X 1  — ]=1 " j=2 

+ ...+ exp(g. -^2%) + 1) 
r l  ^ k -1 .  

= (1 + ?! + +...+ Y^Y; ... Y^_^) 

where = exp(Z^_j/a(k-j)) is a Pareto rv with parameter 

a (k-j). That is, 

P(Y.<u) = 1 - *-&(%-]), u>i. 
]— — 

Also, note that , ̂ l'***'^k-l mutually inde­

pendent. One can obtain the df of Y^Y2...Yj either by in­

duction or from Feller (1966, p. 40, Problem 12), recalling 

the relation between Pareto and exponential rvs. It turns 

out that 

i-1 
. I (-1) 

i=l 
p(V2---Yj>u) = j( j q. pu  

u>l, j_<k-l. 

However, this is of no help in the evaluation of the df of 

°k-

If FeDCi'^), the situation is essentially the same as 
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above, and +...+ (l + Y* + Y*Y* +...+ Y*Y*.. 

Y*_i), where Y| = yT^. 

If FeD(A), it follows that 

+ Ti+i = ••• = +---+ -cEr + 

and hence that 

^1+^2 +•••+ = Z1+Z2 ^k-l 

Hence = A + B/k where B Gairjna (l,k-l) and A has the 

df A(x;k) and A and B are independent. 

The above discussion leads to the following theorem. 

Theorem 3.2.1: If (X -a_)/b^ has a nondegenerate limiting 
n:n n n 

distribution, then (D^ n~^n^'^n converges in distribution 

to a rv where 

(i) (1 + Y^ + YjY^ +...+ ?!...%%_!)/% 

if FeD(0 ) (3.2.4a) 

(ii) = T^2)(i + Y* + Y*Y* +...+ 

if FeD(¥^) (3.2.4b) 

(iii) = B/k + T^3) if Fed(A)  (3.2.4c) 

where Y^ 'v Pareto (a(k-i)), Y| = 1/Y^, B 'b Gamma (l,k-l) , 

and T^^^, i = 1,2,3 have the dfs given by (3.2.2a), (3.2.2b) 

and (3.2.2c) respectively. Furthermore, the rvs on the RHS 
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in each of the three cases are mutually independent. 

The next result provides the df, pdf and the charac­

teristic function of when FeD(A) . 

Theorem 3.2.2: If FeD(A) , then (Dj^ ^-a^)/b^ converges in 

law to a rv Dj^ with the df, pdf and characteristic function 

given by (3.2.5), (3.2.6) and (3.2.7), respectively: 

k-1 k-1 f® 

(k-2); j_Q jl Jq 

(3.2.5) 

k>2, -oo<x«» 

^k^^^ " (k-1)! (k-2) i ® 
(3.2.6) 

k>2 , -œ<x<<» 

itD. k _ r(k-it) , k ,k-l 
r(k) (k-it^ (3.2.7) 

Proof: 

The pdf of B/k in (3.2.4c) is 

since B ~ Gamma (l,k-l). For k>_2, 

P(Dj^<x) = P(T^3) + B/k < x) 

#00 
= P(T/^^ £ x-u I B/k = u)f(u)du 

J q  ^  

r  ( 3 )  
= P(T^ < x-u)f(u)du 

Jo ^ ~ 

since and B/k are independent. Now, recalling (3.2.2c) 
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and substituting the pdf of B/k, we obtain 

f" k-1 -j(x-u) , , _2 
P(Dj^<x) = I j^exp(-exp(u-x) ) jj e u du 

kk-l k-1 g-Xi 

(k-2)! j_Q jI 
exp(-exp(u-x))e ^^u^ ^du, 

0 
-oo<x<oo. 

This establishes (3.2.5). Differentiating F^(x), after 

several cancellations, one obtains f^(x) as given by (3.2.6). 

Direct derivation of the pdf using a transformation is 

also easy. 

itD. itT(3) i{t/k)B 
(p  ( t )  = fie = Se ' ee  

_ r(k-it) _ it,-(k-i) 
- ~rn^i— T) 

since 

" (k-1) ] 
e^^^e"^* exp(-exp(-x)) dx 

(pdf comes from (3.2.2c)) 

~ ̂ -u^k-it-ldu 
(k-1)I 

= r(k-it)/r(k). 

Therefore, tp is given by (3.2.7), and hence the proof 
k 

of the theorem. 

Some percentage points of for k£5 are given in 

Table 3.2.1 below. (x) = exp(-exp(-x)) yields these points 
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directly for k=l. For the integral in (3.2.5) was 

evaluated using the IMSL DECADRE subroutine and increasing 

the upper limit of integration until the increase in the 

calculated value was insignificant. Dr. W. Q. Meeker 

provided an efficient iterative algorithm to obtain the 

solution of F^^x) = p. 

_% 
Table 3-2.1. Values of Ç, = F, (p) for some selected p 

2 
p 

k 0.50 0.95 0.99 

1 0.366513 2.970195 4.600149 

2 -0.037107 1.799911 2.812969 

3 -0.334556 1.154068 1.932540 

4 -0.565820 0.714566 1.363627 

5 -0.754310 0.384305 0.949440 

Table 3.2.2a exhibits f^(x), for x = -2.50(0.25)3.50 

and Table 3.2.2b lists the modal points and corresponding 

fj^ values for k = 2,3,4,5. 
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Table 3.2. 2a. Values of f%(x) for some selected x 

X 

k 2 3 4 5 

-2.50 .00012 .00023 .00044 .00084 

-2.25 .00131 .00248 .00463 .00835 

-2.00 .00814 .01484 .02626 .04454 

-1.75 .03163 .05506 .09180 .14518 

-1.50 .08513 .14050 .21885 .31983 

-1.25 .17187 .26675 .38481 .51509 

-1.00 .27683 .40065 .53055 .64470 

-0.75 .37319 .49933 .60163 .65794 

-0.50 .43708 .53594 .58248 .56847 

-0.25 .45784 .51003 .49582 .42840 

0.00 .43877 .44029 .37977 .28830 

0.25 .39157 .35103 .26659 .17656 

0.50 .32996 .26216 .17404 .09988 

0.75 .26541 .18549 .10692 .05285 

l.Cû .20555 .12546 .06239 .02641 

1.25 .15432 .08171 .03485 .01256 

1.50 .11292 .05155 .01875 .00573 

1.75 .08089 .03164 .00977 .00252 

2.00 .05691 .01898 .00495 .00107 

2.25 .03945 .01116 .00245 .00044 

2.50 .02700 .00645 .00119 .00018 

2.75 .01827 .00367 .00056 .00007 

3.00 .01225 .00206 .00026 .00003 

3.25 .00815 .00114 .00012 .00001 

3.50 .00539 .00063 .00005 .00000 
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Table 3.2.2b. Modal points of the distribution of D, when 
FeD(A) 

k max fjç(x) mode 

2 0.45784 -0.25 

3 0.53603 -0.49 

4 0.60494 -0.68 

5 0.66705 -0.85 

Figure 3.2.1 describes f^(x) for k = 2,...,5. Ail 

these four distributions are positively skewed and as k 

increases the pdf becomes more peaked. 

Now we sketch briefly a direct but long approach which 

also proves Theorem 3.2.1. To fix the ideas we assume FeD(A) 

since the remaining cases can be handled by means of a 

transformation. 

P( Z 
j=n-k+l n 

P(? - u) 
j =n-k+l n n 

which can be written, following the approach leading to 

(2.2.1) as 
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-2.50 -1.25 
X VALUES 

0-00 

Figure 3.2.1. Probability density function of D, for k = 
2(1)5, when FcD(A) 
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where stands for the (k-l)-fold convolution df of 

^ / x<u 

F(a^+b^x)-F(an+b^u) 

1-F (a„+b u) n n 

Since F^(a^+b^x) -»• exp(-exp (-x) ) , n [1-F (a^+b^x) ] -»-exp(-x) 

for all X. Consequently, 

0, u>x/2 

FCa +b (x-u) )-F(a +b u) 

I 1 - F(a .b u) 
v n n 

f0, u>x/2 
- G„(x-u) =/ (x-u) 

That is I- f u<x/2 
e"^ -

0, u>x/2 
(x-u) = 

u<x/2. 

For a fixed x, l-G^(x-u) and 1-G^ ̂ (x-u) both behave as 

continuous dfs as functions of u, the former being the limit 

of the latter as n-x». since l-G^(x-u) is continuous, the 

convergence is uniform (Lemma A5). Hence, from Lemma A6, 

it follows that 

-»• I [1-G^ (x-u) ] dF ,?^(u). 
T(3) 

Hence, we have shown that 
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-> (x-u)dF (u) (3.2.8) 

when k=2. 

Also, for a fixed u, G (x-u) behaves as a df con-
^ / i* 

verging to a continuous df G^(x-u) as a function of x. 

Hence, the convergence is also uniform in x. We had earlier 

shown that convergence is uniform in u for a given x. Using 

these facts inductively, one can show that for j^2 G^^^(x-u) 

G^^ (x-u) as n-x» with uniform convergence in u for a given (X-. 

x (and the same in x for a given u). An appeal to Lemma 

A6 would then complete the proof of (3.2.8) for k>2. 

Now, note that if Y has the df G^, Y = u+Z, where 

Z Exp(l). Hence, 

(x-u) = P(Z^+Z2 +...+ < x-ku) 

with independent Z^'s and consequently 

lim P(k{D, 
n-x» ^ 

= jp(Z^+Z2 + + Zj^_i 1 X -ku)dF (u) 

= PfZ^+Zg +...+ + kT^3) < x). 

2  f 3^ 
Hence, » (Z]+...+Z%_il/k + 
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which is {3.2.4c). 

Remarks : 

Had we conditioned on _ instead of X _ in n-jc:n n-Jc+i:n 

the above discussion we would have ended up showing that 

" (Zl+^Z \>A + 

which in view of Hall's representation (3.2.3c) is equiva­

lent to (3.2.4c). 

3.3. Nondegenerate Limit Laws -
Quantile Case 

Here we assume that k = [np], 0<p<l where [ ] is the 

greatest integer function and derive the asymptotic distribu­

tion of appropriately normalized, as n-Ko. in Section 

3.1 it was shown that for the exponential parent distribution, 

the limiting distribution is normal. Now we will show 

this indeed is the case in a fairly general set-up. In 

the next section, using different approaches we derive all 

the possible limiting distributions. 

Let F be absolutely continuous with pdf f and let 

be the quantile with f(%g) ^ 0. Also assume that the 

(2+6)^^ moment exists for F. Let y and a be the mean and 
P P 

the standard deviation when F is truncated below at 

Then, as we shall see in the following steps, it follows that 
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^ N(0, + g(yp-Çg)^) 

Step 1; From Lemma A3 (due to Ghosh, 1971), we have, as 

n-xa, 

^k,n = <Vk=n-5q'7^f<5g' ' "(0,1). (3.3.1) 

Let €>0 be given. Then there exists a constant c such that 

d4> (u) < e/8 (3.3.2) 

|ul > c 
Z 

where $ is the standard normal df. Since ^ •* N(0,1) , 

there exists a positive integer N^(€) such that for all 

n>N^(€) 

dF (u) < e/4. 
^k,n 

(3.3.3) 

u >c 

Step 2: 

Fix X and consider 

^(D, „-y„) 
P(- ^p < x) = 

S, —ky 
p(Jii£ P < x{Y =u)dF 
/K ^k,n 

(u) . 

(3.3.4) 

From Lemma Al, given Y, „ = u, S, „ is distributed as the 
iC/ li iZ  fT i  

sum of k iid rvs, say Aj ̂  having mean ^ r standard 

deviation ^, where F = 1-F, u^ = + /pg/n-u/f(g^), 

and df 
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•0, x<u^ 

) F(x)-F(u^) 

1-F(u ) ' ̂-^n* 
n 

Define Zj ̂  "piu )' : ^ 
n n 

{Z. , j = 1 to k, n = 1,2,...} is a double sequence of inde-
] f II 

pendent rvs, Z. 's being iid for a given n. £Z. = 0 
V J f^ J 

2 and Z a ( Z . ) == 1. 

CjZ. j = : < » since (2+6) moment 
.1+5/2^ 2+6 

"Ftu^) 

exists for the parent distribution. 

,2+6 
2e|Z. *c^"i,n-*F(Ua)l 1 

2+6 kClA^ 

~ -577 ° 

n-^. Hence, from the CLT (Lemma A4) , it follows that, 

given = u. 

N(0,1). (3.3.5) 

Step 3 ; 

-00 ^ fOO 

^F(u) = I wdF(w) = u + 
F(u) Ju F(u) 

F (w)dw. 
u 
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Therefore 

u -u 
F(u^) F(Cg) 

F (w) dw 

F(w)dw . 

From the Mean Value Theorem of Integral Calculus, there 

exists a v between Ç and u„ such that n q n 

f^n -F{w)dw = (u -Ç )F(v ) . 
J - n II 

Also 

I F (w) dw = P(Up-Sg). 

Hence, 

^F(Un)"^F(Çg) 

F(Sq)-F(i 

That is 
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^ F(*n)-F(Sq) 

*n"^q F(u^) 

p/q fj^) + — p ^ • f(Çg)-l} as n-H». 

Therefore, 

»^(Up(u )-Up) /q u(Pp-Sg) as n-w. (3.3.6) 

Step 4: 

Sk,n-k"p ^k,a-k;'p(u^) °F(V ^'^"'f(U„)-V 

"p »P(u^) °P °P 

From (3.3.6) and the fact that j -»• as n-x» it follows 

from (3.3.5) that given ^ = u, 

S 

/k Qp P 

That is, for a fixed x. 

n"^^D . /q'u(u_-C_) 
H (u) = P ( 2. < X Y, = u) -> $ (x --2—2_) 
^ /k a_ ~ 

P 

as n-M=. 

Now we will show that the convergence is in fact uniform in 

u. For this, first note that P(S, < x|x , = u) is a 
f Xi • XX 

continuous decreasing function of u for every n, for a fixed 
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X .  Hence P(S. ^ + x /k  ^ _ = u )  is a decreasing x,n — p p n—K:n ^ 

continuous function of u. Also, u^ is an increasing con­

tinuous function of u and consequently, (u) is a de­

creasing continuous function of u. The limit function 

$*(u) = $(x-/g u(Up-Sg)/a^) is also a decreasing continuous 

function of u. Hence, we have a sequence of uniformly 

bounded decreasing continuous functions (u) converging 

to a decreasing continuous function $*(u) on [-c,c]. Then 

it can be shown on lines similar to the proof of Lemma A5, 

that the convergence is uniform in u. 

Step 5; 

H^(u) -»-$*(u) uniformly in ue[-c,c], from Step 4. 

Also, Then, from Lemma A6 we conclude that 
k,n 

C  f C  

H^(u)d?y (u) $*(u)d$(u). 
•'-c k,n -c 

Hence, there exists an integer such that for n>N2(e) 

r C  r C  

1 H„(u)dF^ (u) - **(u) d$(u) I < e/2. (3.3.7) 
J-c ^ =k,n ;-c 

Step 6; 

For n>N(c) = max(N^,N2,N2), 
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f H (u)dF„ (u) - f **(u)d*(u)| 
J-co " =k,n J-" 

r C  r C  
<_ 1 H (u)dF (u) - $*(u)d$(u) 

•'-c k,n •'-c 

dp (u) + d $(u) 
uj >c jc,n •' I u| >c 

< e/2 + e/4 + c/8 

from (3.3.7, 3.3.4, 

and 3.3.2). 

Hence, 

^k,n '0° 
lim P ( £ x) = 
n^ /k a 

P 

$(x - /g 2—2_)d$(u) 

P 

for all X .  

The RHS is the df of where and W2 are 

N(0,1) rvs. Hence, we have shown that 

i .,0,1 + 
°p /E Op Gp" 

This will be stated as: 

Theorem 3.3.1; 

Let the parent df F be absolutely continuous and have 

finite (2+6)^^ moment. Let its pdf be positive at 

the guantile. Then for k = [np], 0<p<l, 

^(Dk^n"^p) ̂  N{0, + q(Up-Sg)^) (3.3.8) 
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2 where y and a are the mean and variance of the distribution 
P P 

obtained by truncating F below at Cg-

3.4. Alternative Approaches in the 
Quantile Case 

Several approaches are available for finding the 

limiting distribution of ^ in the quantile case, since it 

is a linear combination of order statistics with a smooth 

weight function. These approaches besides being more general, 

have fewer conditions than demanded by Theorem 3.3.1. How­

ever, the proofs involved are more complicated appealing to 

deeper results in the literature. We examine two of them, 

and make some comparisons among all three approaches. Finally, 

we make use of a result on the trimmed mean, due to Stigler 

(1973), to give the most general version of Theorem 3.3.1. 

Boos' Approach (1979): 

Let us introduce a weight function J on (0,1) and define 

= Z ( J(u)du)X 
^ i=l (i-l)/n 

where F is the empirical df. Let y(J,F) 
n 

and 

q(t)  = [t(l-t)]l /2-a o<ô<l/2. (3.4.1) 
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Lemma 3.4.1: (Boos, 1979, p. 958) 

Let J be bounded and continuous a.e. Lebesgue and 

a.e. F and let fq(F(x))dx < Define 

a^(J,F) = 1 j J(F (u) ) J{F (v) ) [F (inin(u,v) ) 

- F{u)F(v) ]dudv (3.4.2) 

2 
and assume that 0 < a (J,F) < ». If the parent df is F, 

then 

Z o 
/nXTn - W(J,F))-» N(0, a (J,F)) (3.4.3) 

and 
/n(T -y(J,F)) 

lim sup = 1 with probability 1. 

(J,F) log log n (3.4.4) 

The J function for the selection differential is 

fl, u>q 
J(u) =< (3.4.5) 

lO, u<q. 

This J is bounded and is also continuous a.e. F ^ if 

the q^^ quantile of F, is unique. We assume this from here 

onwards. 

n i/n 

= ^/n if np is an integer 

= ^ /n + (np-[np] )X^_j^,^/n if np is not an integer. 

Hence, 

IT -
' n n ' — n 

and consequently ^ 0 since, being unique. 



54 

^n-k-n (Smimov, 1952, p. 12). Therefore, 

would have the same asymptotic distribution as 

/n(T^-%(J,F)). That is 

•n(5s^ - y (j,F) ) i N(0, a^(J,F)) (3.4.6) 

using (3.4.3). We now prove the following lemma. 

Lemma 3.4.2: 

For the J function given by (3.4.5), when Eg is unique, 

y(J,F) = pu and 
2 2 2 (3.4.7) 

a (J,F) = pOp + pg(Wp-Sg) 

2 where y and a are the mean and variances of the df G 
P P 

given by 

G(x) = 

(F(x)-q)/p, x>Ç 
— 4 

0 , x<5q 

Proof : 

y(J,F) = jF"^(t) J(t)dt = 
1 
F"^(t)dt 

udF (u) 

'q 

= p-y„-
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From (3.4.2) we have 

• 00 fCO 
a (J,P) = L [F(min(x,y)) - F (x)F(y) ]dxdy. V«q 

F(inin(x,y)) - F(x)F(y) = (F (min (x,y) )-q) - (F (x)-q) (F (y)-g) 

+ q(p-(F(x)-g)-(F(y)-q) ) 

= pG(min(x,y) )-p^G (x) G (y)+pq (1-G (x)-G (y) ) 

over the regron of integration-

= p[G(min(x,y) )-G(x)G(y) ]+pq(l-G{x) ) (l-G(y)) 

Hence, 

a  (J,F) = p [G(min(x,y) ) -G(x)G(y) ]dxdy 

+ pq [1-G{x)]dx • [l-G(y)]dy. 

The first term is pa^ from a well-known representation 

for the variance due to Hoeffding (1948). Also, 

xdG(x) = - xd [l-G(x) ] = + (l-G(x))dx 

and hence 

Ç (1-G(x))dx= (Up-Çg) . 

Therefore, we obtain 

a^(J,F) = pcTp^ + pqCUp-Cg)^ 

which completes the proof. 
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From (3.4.6) and (3.4.7) it follows that 

/5p(%S. _ u ) i N(0, a^(J,F)), or 
up p 

" "p' " H(0, + q(Wp-Sg)2). 

P 
This implies that S, ^/np and hence 

jc /H P 

.«PI^ - -^I 1 S 0-!Pj,I =0 as n»=. 

Also, i/np/Zk 1 and hence combining all these we conclude 

that 

Hence, we have proved Theorem 3.3.1 under fewer assumptions, 

namely we have now assumed that is unique instead of the 

much stronger assumption of absolute continuity and non­

zero pdf at Cg. However, as the following lemma shows, 

the existence of the (2+6)^^ moment for some 6>0 and the 

existence of g(F(x))dx for some 0<ô<l/2 are equivalent. 

liemma 3.4.3: The following statements are equivalent; 

A. ||x|^*^dF(x) < «> for some ô>0 

B. I (F(x) (1-F(x) ))^'^^ ^ dx < ™ for some 0<S'<l/2, 
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Proof : (A) ̂  f (x) < «, 

x^"*"^ (1-F (x) ) -»• 0 as X-*-» . 

Therefore, 

^(2+6) (1/2-6') J1/2-6' ̂  0 if 6' < 1/2. 

That is 

xl^^*(l-F(x))l/2-G' ̂  0 where 6* = 6/2 - 66' - 26' > 0 

if 6' < 6/(2(6+2) ) . 

Hence, if 6' < 6/(2(6+2)), then (1-F (x) ) ' = o( ^^.*) , 

x-*^ 

In other words, q(F(x)) = o ( / x-w. 

/•*" <ix 
Since f X < «>, we have 

1 xï^ 
g{F(x))dx < ®. Similarly, 
1 

by looking at the negative real axis, we obtain 

-1 rl 
g(F(x))dx < ®. Also, g(F(x))dx, being a definite 

-o J-L 

integral, is finite. This concludes the proof of the 

fact that A:5>B. 

Now B implies 

00 

(i) 

and 
- 0  

[F(x)] 1/2-5'ax < OS. 

[1-F(x)]l/^ ^ dx < 00,  

0 

(ii) 

Let l-G(x) = [1-F(X)]1/2 ^ . G(x) is a df and from (i) 
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[ [1-G(x)]dx < ». 
Jo 

Also 

l-G(x) > l-F(x) 

since 

J - Ô' < J < 1 and 0<1-F(x)<l. 

Hence, G(x) < F(x) < (F(x))^/^ ^ , which in light of 

fO 
(xi) implies that G(x)dx < ®. 

i —00 
It is known that for a df H, x!dH(x) is finite iff both 

0 
H(x)dx and 

—CO 

00 

[1-H(x)]dx are finite (see problem 18, p. 
0 

xldG(x) < ® and hence 

49, Chung, 1974). 

Therefore, we conclude 

x(l-G(x))-»-0 as x-+<». That is 

x ( l - F ( x))l/2-a' ̂  0 

or in other words x^^^^ ^ ̂  (l-F(x))-»-0 as x-^». (3.4.8) 

Now , (i - 6')"^ = ,2 , = 2(1+26') >2(1+26') since 0<26'<1. 
/. J.-ZÙ 1-45'^ 

Therefore, 

x(l/2 ^ ^ , for x>l and consequently from 

(3.4.8) we have 

x2+46'(i_p(x)) ̂  0. 

Hence if 6<46', 

x2+5(l_F(x)) 0. (3.4.9a) 
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Also, since 

xi+4(i-F(x)) = 0(^(44._a)+i) 

and 

00 

dx yrTT < ®° for 0*>0, it follows that 
- 1  *  

00 

j x^*^(l-F(x))dx < 00 whenever û<46'. (3.4.9b) 
Jl 

(3.4.9a) and (3.4.9b) together imply that 6(X^)< » for 

ô<4ô'. Now taking G(x) = [F(x)]^'^^ ^ , and proceeding on 

lines similar to the above discussion, we can show that 

(Xx")2+*<». Hence e 1x1^"^'^ <00. 

Stigler's approaches; 

To begin with, we state an important result due to 

Stigler (1974) for which the parent df F need not be con­

tinuous . 

Theorem 3.4.1: (Stigler) 
n 

tet Sa = ,Z: 
i=l 

where the weight function J is bounded and continuous a.e. 

F . If the population variance is finite, 

2 2 2 
(i) lim na (S^^) = a (J,F) , where a (S^) is the variance 

n-»^ 
2 

of S and a (J,F) is given by (3.4.2) 
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2 S -es a 
(ii) If G^(J,F) > 0, + N(0,1) 

(iii) Suppose further that [F (x) (1-F (x) ) ] < » 

and that J(u) satisfies a Lipschitz condition with index 

a > 1/2 except possibly at a finite number of points of 

-1 F measure zero. Then 

/n(es^-%(J,F)) 0 

where y(J,F) = jF ^(t)J(t)dt. Consequently 

X 9 
/n(S^-y(J,F)) N(0, a (J,F)). 

The above three parts appear as Theorems 1, 2 and 4, 

respectively in Stigler (1974). However, his proof of 

Theorem 4 was later discovered to be incomplete. But re­

cently Mason (1979) has been able to prove it without any 

additional conditions by connecting S^ to the statistic 

T introduced earlier. 
n 

For the selection differential with y = 0, a = 1, the 

J function, given by (3.4.5) satisfies the Lipschitz condi­

tion also along with other conditions if is unique. 

Consequently, if j[F(x)(l-F(x))]^/^dx<* and is unique, 

then (3.3.8) holds. Of course, as was done in the Boos 

approach, one has to show that /n(S^ ̂ n - S^) S o, which is 
2 

not difficult. Also, recall that a (J,F) was computed in 

Lemma 3.4.2. Hence, we can replace the assumption of the 

finiteness of the (2+6)^ moment by a milder assumption that 
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[F (x) (l-F(x))]^/^dx is finite. But, this is stronger 

than just assuming finite variance. Now, Theorem 3.3.1, 

with these relaxed conditions can be restated as -

Theorem 3.4.2: 

Let [F(x)(l-F(x))]^/^dx be finite and Ç be unique. 
J 9 

Even when F is not continuous, (3.3.8) holds. 

Finally, we use an asymptotic result by Stigler (1973) 

for trimmed means, since ^ is essentially a trimmed mean, 

all the trimming being done on the left side. On examining 

the bivariate rv with D, and the number of sample points JC / H 

less than the (nonunique) q^^ quantile as its components, and 

proceeding exactly as in his paper we obtain the following 

result. In fact, our case is simpler than his, because there 

is only one-sided trimming here. 

Theorem 3.4.3: 

Let a = sup{x: F(x) < q} and A = a - inf{x:F(x) ̂  q}. 

Then as n-^», 

Z 
V^(DJ^,^-LIP) ^ + (A-UP)Y2 - A MAXFO/YG) (3.4.10) 

2 
where Y^ N(0, ), Y2~N(0,q) and Y^, Yg are independent. 

Remarks : 

2 
Stigler's (1973) approach would require finite , 

but our basic assumption a = 1 ensures this. Hence, we 

have imposed absolutely no more conditions than our basic 
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assumptions. In fact, the results in this section are not 

limited to continuous distributions. 

(ii) If A = 0, a = €g, the unique quantile, and 

(3.4.10) reduces to (3.3.8). 

(ii) When is not unique the asymptotic distribution 

of D, is not a normal distribution. 
K,n 

Before closing this section we investigate the case 

when k is not exactly [np] but is fairly close. To be 

precise, when /n(p-k/n) -»-c, a constant, we find the 

asymptotic distribution of 

Theorem 3.4.4: 

If /n(p-k/n) c, when c is a finite constant, then 

- N(^(yp-5^), ap2+q(Up-Cg)2) 

if Çg is unique. 

Proof : 

WLOG we take k [np] always in the proof. 

Hence, <tnp]-k)V[np]+1:n 1 S[np].n " ®k,n 

< (rnp]-k)Xn_k.n. 
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Therefore, 

f < Y < ^[np3 ,n"Sk,n , ̂ 
n-[np];n — n-[np]+l:n — [np] -k — n-k:n' 

if k<[np3-

Similarly, 

%n-k:n - ^k-[np]^^' - ̂n-[np]:n * 

Hence 

Tninrv X 1 < [np] 
^ n-k:n' n-[np]:n' — k- [np] 

< Xn-[np]:n' • 

If Ç is unique, 5 and Xn-[np^rF «g (Si"irnov, 'g ^ ' n-k:n "q 

1 9 5 2 ,  p .  9 ) .  

Therefore, 

^k,n"^[np],n P ^ 
k-[np] 

and consequently as n-*^, 

S,. _-Sr__, _ _-S 

Now 

k,n"^ [np] ,n ^ ̂ k,n [np] ,n . k- [np] /n $ 
/S k- [np] /5 /k g 

(3.4 

^k.n'^lnpl ,n [np] [np] ,n _ , 
^ ^ I"Pl P 

+ — ( [np]-k)u 
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where the first term converges to -$^c//p in probability 

from (3.4.11), the second term converges in law to 

2 2 
N(0, a + q(iJ -Ç_) ) and the last term tends to 

P P % 

cUp/Vp as n-Kc. Hence, 

'^^°k,n"^p^ ^ N(c(Up-Sg)//p, + q(yp-Cg)^). 

Note: This does nôt hold when is not unique except 

when c = 0 in which case one obtains (3.4.10). This is be­

cause even though does not converge to any value in 

probability it would be bounded in probability. Then 

c = 0 ensures that (S, -Sr_ ^ _)//k converges to zero in 
jc,n InpJ ,n 

probability. 

3.5. Degenerate Limit Laws 

Weak laws - extreme case; 

Following Galambos (1978, p. 206) we start with two 

definitions : 

Definition 3.5.1; 

A sequence of rvs {Y^} is said to satisfy an additive 

weak law (AWL) if there is a sequence of constants {a^} 

such that Y^-a^ ̂  0, as n-^-». We write (Y^, a^) obeys AWL. 
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Definition 3.5.2: 

A sequence of rvs {Y^} is said to satisfy a multiplica­

tive weak law (MIVL) if there exists a sequence of nonzero 

p 
constants b such that Y /b_ 1. We say (Y^, b ) obeys 

n n n n n 

MWL. 

We will examine conditions under which D, _ obeys AWL 
K,n 

or MWL. We do not need the continuity of F in this 

—1 P 
section also. If x^ = P (1) is finite, then ^ x^ 

(in fact a.s.ly) and hence (D^ x^) obeys both laws 

except that when x^ = 0, MWL does not hold for (D^ 0). 

But MWL for Dj^ ^ in this case will be the same as AWL for 

-log(-D, ) which has upper bound +<». Hence we take 
iC / li 

XQ = +" and obtain some necessary and sufficient conditions, 

and some sufficient conditions for AWL and MWL to hold. 

First, we state an interesting lemma. 

Lemma 3.5.1: 

Let k be a fixed nonnegative integer, x^O and {p^^ a 

sequence of real numbers with 0<p^<l. Then 

iff np^^-x, finite or infinite. 

The proof can be found in Leadbetter (1978, p. 55), 

where only x>0 is considered. The same arguments hold when 

x=0 and +œ and when x=0 or +» the RHS is interpreted as 1 or 
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0, respectively. 

Theorem 3.5.1: 

Let = +00. Then for k, any fixed positive integer, 

(D, , a ) obeys AWL iff (X , a ) obeys AWL. 
JV f li H XI * XX XI 

Proof: 

Suppose first that (D^ a^) obeys AWL. Then 

c: 
x< 0 

P(D, „<a„+x) (3.5.1) 
n 1 1 x>0. 

^n-k+l:n — ^k,n — ^n:n 

P(X _<a„+x) = F^(a +x) -i-0, x<0 (3.5.2) 
n:n— n n 

and 
Ic—1 

j.v\ 1 3 r-p/=. 
j=0 

k-1 
^'Vk+l:niV' = .£ (pll-Fta^+xjl-TFCaj^+x)]" •'-1, 

x<0. (3.5.3) 

Now fix x>0 and let p^ = l-F(a^4-x). Then (3.5.2) implies 

that 

E (^Ip i(l-p )^"i 1 = e° Z as n-x». 
j=0 ] ^ ^ j=0 ]' 

Hence, fiom Lemma 3.5.1, we have np^ = n[l-F(a^+x)] ̂  0 as 

n^. That is, F(a^+x) = 1 + o(l/n) so that 

F^ (a^+x) = (1 + e^ = 1, for x>0. 

Hence, we have 
^0, x<0 from (3.5.2) 

F^(a +x) (3.5.4) 
L1, x>0 from the above line. 
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Therefore, a^) obeys AWL. 

Now, to prove the converse, suppose that (3.5.4) holds. 

Again, observing that ^ — ̂ n-n have P(D^ ̂ <a^+x) -+1, 

x>0. For x<0, letting p^ - l-F(a^+x), we see that (1-

np^/n)^ -^0. Therefore, np^-»- +». By Lemma 3.5.1, we would 

then have 

P(Xn-k+l:nlan+x ' = 
j=0 

^n-k+l:nl°k,n then imply that 

P(D^ ̂ ^a^+x) ->• 0, x<0. 

This proves that (3.5.1) holds. That is, (D^ a^) obeys 

AWL. 

de Haan (1970) has obtained several necessary and suf­

ficient conditions for (X^_^, a^) to obey AWL (see pp. 119-

120). He has shown that if (X^^^, a^) obeys AWL, a^ can be 

taken to be = inf {x{l-F(x) £ 1/n}. As a consequence of 

his results and in view of Theorem 3.5.1, we have the fol­

lowing result. 

Theorem 3.5.2: 

Let x^ = +». Then the following are equivalent: 

a. There exists a sequence of constants a^ such that 

a^) obeys AWL. 

b. (D^ â^) obeys AWL. 
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c. lim = 0 for all x>0. 

00 

[1-F(t)]dt < -H» and lim 6(X-x|X>x) = 0. 
0 X-X» 

Theorem 2.9.4 of de Haan (1970) gives a sufficient condi­

tion for (X^_^, a^) to obey AWL which also holds when 

is replaced by We do not state it here formally 

except to mention that the sufficient condition is that 

F' exists for large x and F' (x)/(1-F(x) ) -»• -H» as x-«°. 

For the MIVL for the following fact (see de Haan, 

1970, p. 120) establishes an important relationship between 

distributions obeying AWL and MWL and consequently trans­

forms every result on AWL into a corresponding result on 

MWL; 

X from df F has AWL iff X* from df F* obeys MWL, n:n n:n 

where 
f O ,  x£0 

F*(x) =< (3.5.5) 
^F(log x), x>0. 

However, to exploit the above relation and relevant results 

of de Haan (1970) , we need the equivalent of Theorem 3.5.1: 

Theorem 3.5.3: 

(D, , b_) obeys MWL iff (X , b ) obeys MWL. iv / jx il XI • n n 

The proof, being similar to that of Theorem 3.5.1, is omitted. 

Now, if F and F* are related as given by (3.5.5), from 

Theorems 3.5.1 and 3.5.3 and the statement preceding (3.5.5), 
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we have 

(D. , a_) has AWL <=>(X , a ) has AWL 
f Xl Xx il # Xx Xl 

<=X='5:n' has MWL<=>(DjJ_„, aj) 

has MWL. 

This relation leads to the following result (cf. de Haan, 

1970, p. 116): 

Theorem 3.5.4: 

Let = +a>. The following are equivalent: 

a. There exists a sequence of constants a^ such that 

(D. 'k n' ̂ n^ obeys MWL. 

b. (D^ a^) has MWL where a^ = inf{x{l-F(x) £ 1/n} 

c. lim = 0 for all x>0. 
t-M» 

d. [1-F(t)]dt <oo and lim ^ 2. 
0 x-x» ^ 

de Haan (1970) has given two sufficient conditions for 

X to obey MWL, one obtained as a parallel to the suf-
n;n 

ficient condition for AWL mentioned earlier and the other 

in terms of the domain of attraction to A (see p. 117). 

The latter, in view of Theorem 3.5.3, leads to our next 

result. 

Theorem 3.5.5: 

If FeD(A) and x^ = +=», then (D^ â^) obeys MWL. 
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An almost sure result - extreme case: 

Unlike the preceding results in this chapter, the 

following theorem is applicable only to a subclass of con­

tinuous distributions. 

Theorem 3.5.6; 

Let F be a continuous df with 

lim (l-F(t))^/^ = d, finite or infinite 
t-x» 

Then 

13^ —' - ^here k is any fixed integer. 

Proof : 

(l-F(t))l/t ̂  d iff t/[-log(l-F(t))3 -> l/(-log d) = c, 

say. From Nagaraja (1978), it then follows that 

=' 3 = 1.2 k. 

This implies that D, /log n c, completing the proof 
ic / n 

of the theorem. 

Quantile case: 

Equation (3.4.4) implies that when k = [np], and is 

unique, D, 'A and hence also in probability if the JC/Il p 

(2+5)^ moment is finite. In fact, it provides a much 

stronger result of iterated logarithm for In view of 

Theorem 3.4.3, D, _ ^ y_ even when £ is not unique. 
"K f n p <3 
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3.6. Concluding Remarks 

This chapter deals with asymptotic results for D, 
K /H 

in the iid situation when y=0, a=l (i.e., both parameters 

known). An important point is that no major result here 

except for Theorem 3.5.6 required continuity of F. Hence, 

even if our assumption of continuity for F, as mentioned in 

Section 2.1 does not hold, these results are still applicable. 

The next chapter deals with more general situations when y 

and/or a are estimated, and with certain non-iid cases. 

Before closing, we will examine the implication of the 

above results when the parent population is standard normal, 

to illustrate their applicability. 

When k is fixed, since OcDCA), (D, -a )/b B/k + T. 
iC  ̂II II II  ̂

of (3.2.4c) and hence its asymptotic df is given by (3.2.5). 

It is also known that one choice of a and b is (see 
n n 

Galambos, 1978, p. 65) 

a^ = /2 log n - (log log n + log 4n)/2/2 log n 

and 

b^ = 1/-/2 log n. (3.6.1) 

A more detailed study of (a) the choice of a^ and b^ and (b) 

approximate percentage points for Dj^ ^ is postponed to the 

next chapter. 

When k = [np], from Theorem 3.3.1, we have 
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^ N(0' + S(%p-5q)^) 

2 
where u and a are given by 

P P 

Up = <?(Cp)/P and = l-%p(Up-Sg). (3.6.2) 

Here ({> represents the standard normal density. 

2 2 
Burrows (1972, 1975) has tabulated and + q(iip-Ç^) 

for several values of p. 

As far as the degenerate limit laws are concerned, 

since /2 log n) obeys AWL (see David, 1980, p. 321) , 

so does (D^ /2 log n). The pair also obeys MWL. 

From the well-known fact that 

1 - $(x) = ^ $(x)[l + 0 (iy) ] ,  X - M t > ,  

it follows that 

-log (1-$ (x) ) _ log X ^ log /ZF _ log (1+0 (1/x^) ) x 
X XX X 2 

-»• <» as X 

Hence c = 0 in Theorem 3.5.6 and therefore D /log n 
V - n k,n 
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IV. ASYMPTOTIC THEORY - EXTENSIONS AND 

APPLICATIONS 

In Chapter III we assumed that our sample is a random 

sample from a distribution with known first two moments. 

Now, we relax some of these assumptions and examine possible 

limit laws for or its estimate both in the extreme 

and in the guantile case. In the extreme case, we give suf­

ficient conditions which ensure the validity of Theorem 

3.2.1 for obtained by replacing y and a by their 

best sample estimates X and S. In the quantile case, our 

approach allows us to obtain the limiting distribution of 

Dk ^(o), where y is estimated by X and a is assumed to be 

known. The independent nonidentically distributed situation 

is also dealt with in both the cases. Limit laws for D, _ k,n 

in some special dependent situations are also discussed. 

The last section deals with the application of the asymptotic 

theory in the construction of percentage points for ^, 

which is of use in testing for outliers. 

4.1. Asymptotic Distribution of 6^ ̂  
in the Extreme Case ' 

We now suppose that y and a are estimated by X and S, 

/\ 

and find the asymptotic distribution of D, _ = 
-1 = 
k Z (X. -X)/S. Since the distribution of D, does 

i=n-k+l 
not depend on y or a, we take y = 0, a = 1 WLOG. We assume 
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that there exist constants a^, and > 0 such that 

(X -a_)/b has a nondegenerate limit law as n-w. in a 
n :n n n 

series of lemmas we show that if a^//n b^ 0, then ^ 

also has one of the nondegenerate limit laws established 

2 
in Theorem 3.2.1. In our discussion S is the unbiased 

2  - 1 ^ — 2  
estimator of a given by (n-1) Z (X.-X) . 

i=l ^ 

Lemma 4.1.1: 

If a^//n ^ 0 then a^(l-S)/b^ ̂  0 as n-^». 

Proof : 
a b 

P( l--2-(l-S) I > € )  = P(|l-S| > |^|e) 
^n ^n 

< (4.1, 

\ 2 
(1^10^ 

2 2 
by Chebychev's inequality. Now, SS = a =1 and 

es = [a+0(i)] (Cramer, 1946, p. 353) 

It follows that 

e(i-s)^ = i-2es + es^ 

= 0(l/n) . 

Therefore, from (4.1.1) we have 

lim sup P( lc^(l-S) I >€) £ lim{—-—|^- — 
n-w n n->«> /n b e 

n 

= 0 for all €>0. 

That is, a„(l-S)/b„ ? 0. n ' n 
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Lemma 4.1.2: 

If (X -a_)/b has a nondegenerate limiting distribu-
n:n n ' n 

tion, then a^//n b^ + 0 iff b^ ? 0. 

Proof: 

£ 
We know that (see Section 3.2) , (X^_^-a^)/b^ T^/ 

a real rv and hence (X^_^-a^)//n b^ ̂  0; that is. 

Therefore, ^ 0 iff a^/Zn b^-> D. 

Lemma 4.1.3: If (X -a )/b has a nondegenerate limit 
n:n n n 

law and X^,^//n b^ ̂  0 then l/Zn b^ 0 if = F ^(1) is 

nonzero. 

Proof : 

We consider each of the three possible limiting dfs 

G, separately. 

(i) G = 0^: Here = +«> and one can take a^ = 0, 

b^ = Hence, /n b^-x» and consequently l//n b^->0. 

(ii) G = One can take a^ = x^ < +«>, b^ = x^-Ç(l-l/n). 

Since X /v^ b $ 0, from Lemma 4.1.2 it follows that 
n :n n 

X //n b 0, where x is assumed to be nonzero. Therefore, 
on o 

l//n b^ Q. 

(iii) G = A: 

If x^ is finite proceed as in (ii). If x^ = +», 

P n 
X^^^/t/n b^ -»• 0 implies that F (/n b^e) -»• 1 as n-voo for any 
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positive € and hence /n B^€ -+ -H». Therefore, l//n 0. 

Note: 

The above proof does not assume anything about y, even 

its existence. Lemma 4.1.3 has been proved by Berman (1962) 

assuming y = 0 in which case x^>0. Hence, the above 

result is, in a sense, more general than Berman's. 

Lemma 4.1.4; 

Let F£D(G) and have zero mean and finite variance. 

Then X/b^ 5 O iff l/Zn b^ 0, as n^. 

Proof : 

_ <C 
WLOG, take a = 1. Then /n X N(0,1). Hence, if 

l//n b^ 0 then X/b^ = /n X//n b^ ̂  0. Conversely, if 

X/b^ 5 0, for a fixed positive ç, P(X<|b^|€) 1 and 

consequently P(/n X < /n|b^|€) 1. Since /xx X converges 

in law to an unbounded rv, one can conclude that 

/n|b^le or l//n b^ 0. 

Now we are in a position to answer the main question of 

Z 
interest. We have assumed that (X -a )/b + T.. We are 

il • XX XX Xi ^ 

interested in knowing whether 

= E-1%- - " ̂1-
n 

since S 5 1 (recall that a = 1), the above convergence is 

equivalent to 
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y. = i T,. 
n b 1 

n 

Theorem 4.1.1: 

Z 
Let (X^,^-a^)/b^ and let a = 1. If a^//n b^->- 0, 

Z 
then Y„ T,. n 1 

Proof : 

Z 
We show that Y ' -»• T,. 

n 1 
X a_ V a (1—S) _ n:n n X , n 

and hence 

, ^n:n'^n _ ^ 

" ''n ' "n "n 

Now 

a„ Lemma 4.1.2 X^ „ _ 
-IL. 0 <=^ _5i5_ F 

/n h /n n n 

Lemma 4.1.3 1 q 
=> /E b 

n 

Lemma 4.1.4 » 
<==> 5 0. 

^n 

Also, from Lemma 4.1.1 it follows that a^(l-S)/b^5 0. Hence, 

Y'-(X -a )/b 5 0. Using Lemma A7 with k=l, the result 
1% I* * XX Xx Jx 

now follows. 
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Remarks : 

(i) Berman (1962) has proved this result but our argument 

is new. Further, Herman's approach tacitly assumes the 

finiteness of the fourth moment since he uses the fact 

that /n(1-S) is asymptotically normal to show that 

p 
a^(l-S)/b^ 0. Our approach does not require this assump­

tion. 

(ii) The proof of Theorem 4.1.1 involved showing that 

K - Since Y^-Y^ = Y^d-Sj/S * 0, it 

follows that Y - (X -a )/b ? o. Repeating this tech-
Xi • Tl Xx 

nique we will show that, if a^//n b^ 0, then 

"here Y, = ( (X^ /S-a„)/b„, 

j = n,...,(n-k+1). 

Define = SY^. Then 

" X/b„ Ï 0 if a„//n b^^O. 

s. P 
Therefore, Y^ ->• and hence (Yj-Yj) = Yî(l-S)/S -»• 0. 

Consequently, 

Yj — (Xj a^^/b^ 5 0, j = n,n-l,... ,n—k+1. (4.1.2) 

This fact is used in establishing the following result. 

Theorem 4.1.2; 

Let the parent df F be standardized and let FeD(G). 

If a^/Zn b^ 0 as n-n», then 

XN ^^N'• • *'^N-K+1^ (T^ ,T2 , .  ../TJ^) = T 
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where T^'s are as described in Section 3.2, and = 

((X.^^-X)/S-a„)/b^. 

Proof; 

If (X -a )/b T,, then from Lamperti (1964), it 
Xx • Xx XI Xi JL 

follows that 

X = ( —-) i T. (4.1.3) 
^ °ii ''n 

From (4.1.2) and Lemma A8 we have Y - %. ^ 0. It now —n —n — 
£ 

follows from Lemma A? and (4.1.3) , that Y_ T. 
—n — 

Corollary 1: 

Under the conditions of Theorem 4.1.2, . 

X 
k(D^^^-a^)/b^ (Tj^+T^ +...+ T^) . Hence, if a^//n 0, 

Theorems 3.2.1 and 3.2.2 continue to hold when D, is 
n 

replaced by D, , where D, = k Z (X. -X)/S. 
K,n jc,n i=n-k+l 

Corollary 2: 

If a(=l) is known and 6^ ̂ ^a) is defined to be 

n _ 
k Z (X. -X), Theorems 3.2.1 and 3.2.2 hold when D, 

i=n-k+l 
is replaced by ^(c) if l//n b^ 0. 

Lemmas 4.1.2 and 4.1.3 indicate that a^//n b^-»- 0 

implies that l//n b^-»• 0 for a standardized df. The con­

verse statement does not seem to be true. Hence, it appears 

that conditions imposed in the theorem when a is unknown are 

stronger than those imposed in Corollary 2, where a is 

assumed to be known. 
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4.2. Asymptotic Distribution of ^ in the 

Independent, Nonidentically 
Distributed, Extreme Case 

If we relax the assumption of identical distribution of 

X^'s, but retain the independence assumption, the asymptotic 

theory developed in Section 3.2 holds with some additional 

assumptions. This is possible because of the extensions 

of Lamperti's (1964) results by Weissman (1975) to the 

case of independent but nonidentically distributed variates. 

Using Weissman's Theorem 3 we conclude the following: 

Let X^'s be a sequence of independent rvs. For 

t>0 define 

M^(t) = (X2-a^)/b^ ' 

if [nt] ̂  1 and (t) = -» if [nt] < 1. Suppose that there 

exists a family of dfs {G^, t>0}, not all identical, such 

that 

P(M^(t) < X) + G. (x) for all t>0. (4.2.1) 
n — u 

Then 

.^n:n ^n ^n~k+l;n"^n. & 
\ / • • • r ^ 1' k 

as in the iid case. Hence, if we assume that the X^'s 

have common mean zero and common variance unity and that 

(4.2.1) holds, then Theorem 3.2.1 holds for these independent, 

not necessarily identically distributed X^'s. 
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4.3. Asymptotic Distribution of D, (c) in 
the Quantile Case ' 

Assuming that a is known and k = [np], 0<p<l, we derive 

the asymptotic distribution of the sample selection dif­

ferential ^(a). Since the discussion here follows 

closely Stigler's results discussed in Section 3.4, we 

briefly sketch our steps omitting routine details. The 

distribution of ^(o) does not depend on u and a, and 

hence WLOG we take y = 0, a = 1. Then 

-1 * Hence, pD, (a) = n Z J{i/n+l)X. = S , say, where 
Jfc m XI " m J# # Xi XI ' 1=1 

r-p, u<q 
J (u) = / 

L q, 

We assume that the quantile of the parent distribu­

tion is unique. Then, one can show that »/n(p6^ ^(o) -

p —1 
S^) 0. Also, J is continuous a.e. F and satisfies a 

Lipschitz condition with a>l/2. Further, we assume that 

[F(x) (l-F(x))]^/^dx is finite. From Theorem 3.4.1, it then 

follows that, if 0<a^{J.F)«», 

S, 2 
>^(S^-y(J,F) ) N(0, cr(j,F)) 
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where 
•1 

y (J,F) = J(u)P ^(u)du 
0 

1 -1 rl 
F (u)du - p F ^(u)du 

= pUp, since y = 0, 

2 
and a (J,F) is as given in (3.4.2). 

Dividing the region of integration into four subregions, 

viz., 

{x<?g, y<Sg}, {x<Çg,y>Çç}, {x>Çg, y<Gg}, {x>Çg, y>Çg} 

and using the approach employed in Lemma 3.4.2 one obtains 

o^(J,F) = pg(p0g^ + + (pûg+gUp-Çg)^) 

2 
on simplification. Here and are the mean and the 

variance of the df G* given by 

F(x)/g, x<Ç^ 

x>S, 

rF(x)/, 

i 1, G*(x) ^ 

2 2 
and ijp and are as described in Lemma 3.4.2. a (J,F) 

is indeed a finite positive quantity. Now, recalling that 

/n (pD^^ ^(a) -S^) $ 0 and that k = [np], we have proved the 

following result. 
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Theorem 4.3.1; 

Let Çg, the quantile of the parent df F, be unique 

and j [F (x) (1-F (x))] be finite. Then 

/s ^ 2 2 
N(0, q(pôq + qa^ 

+ (pôq+qWp-Cq)^)) (4.3.1) 

2 __ 2 
where Up/ are as described above. 

2 2 2 
The quantities y and , a satisfy the fol­

lowing relations: 

U = pyp + qPg 

= p(Cp^ + (Up-p)^) + q(âg^+(Ûg-v)^). 

Since we have y = 0, c = 1, it follows that = -pUp/q, 

— 2 2 2 qa = 1-pa - py /q. Hence, the limiting variance in 

2 2 
(4.3.1) can be written as p + (q-piCp + q(yp-Cg) 

2py^(y -Ç ); that is, the limiting variance of 
f P 9 

2 
i/5c ^(a) can be written as a function of yp, Op and 

From (3.3.8) , we know that the limiting variance of /k ^ 

2 2 
is dp 4- g(yp~Cçj) • Hence the limiting variance of 

/k D, (a) is smaller than that of /k D, iff 
JC f XX iC / XX 

p + (q-p)Gp2 - 2pyp(yp-Sg) < , 

that is, if 

+ "P(WP-SG) > 1/2-
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2 From (3.6.2), for a standard normal parent, =1 

and hence in this case Var(/ïc D, (a)) < Var(/k D, ) 
/ n X ̂ XI 

asymptotically. 

Note : 

One can show that, when a is also replaced by its 

estimate S, 

N(0,q(pGg^+qOp2+(p%g+gPp-Cg)^) 

whenever is unique. However, our approach does not 

permit us to replace the stochastic centering quantity 

(SB^ j^(o))/S by a nonrandom quantity. 

4.4. Asymptotic Distribution of ^ in the 

Independent, Nonidentically Distributed, 
Quantile Case 

We start with Stigler's (1974) Theorem 6, which forms 

the basis of our discussion of the asymptotic theory for D, 
K / Zx 

when the variables involved are independent, not necessarily 

identically distributed. 

For each n^l, let Xinf%2n'''''*nn ^ independent rvs 

with (possibly different) dfs ^in'^2n'* * *'^nn the F\^'s 

are arbitrary dfs. Let X, „ <...< X denote the order 
1 :n — — n:n 

statistics of this sample and define S = n E J(i/(n+l))X. 
n 
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Theorem 4.4.1: (Stigler) 

Suppose that there is a df G with associated rv Y such 

2 
that £Y is finite and whenever y ^ -M, Fj^(y) <_ G(y) and 

whenever y ^ M, Pj^(y) ̂  G(y) where M is some constant. 

Assume that both 

1 ^ lim — Z F. (x) = F(x) (4.4.1a) 
n-M. ̂  j=l 

and 

1 ^ lim - 2 [F. (min(x,y)) - F. (x)F. (y)] = K{x,y) 

' (4.4.1b) 

exist for a.e. x, y wrt Lebesgue measure. Then, if J(u) is 

2 2 
bounded and continuous a.e. F , no (S^) a (J,F,K) , given 

2 
below, and if a (J,F,K) > 0, then 

£ 2 
/n (S^-es^) ̂  N(0,a (J,F,K)) (4.4.2) 

as n^. Here 

J (F (x) ) J (F (y) )K(x,y)dxdy. (4.4.3) a^(J ,F,K) = IJ 

If i/n(es^-y (J,F) ) ̂  0 as n^, 8S^ in (4.4.2) can be 

f —1 
replaced by y{J,F) = J(u)F (u)du. 

Stigler (1974) also points out that if S^ = 

n~ Z J (i/(n+l))X. , where the J 's are uniformly bounded, 12H H 
i—X 

and for every continuity point p^ of J there is an open 

neighborhood of p^ such that (u) -+ J(u) uniformly in this 

neighborhood, then the conclusion of Theorem 4.4.1 is true 

for S* also. n 
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Define 

"k,n = k 
n 
Z X. , where k = [np] 
i=n-k+l 

where 

1, u > (n-[np]+l)/(n+l) 

0, u < (n-[np]+l)/(n+l) . 

It is easy to see that (u) J(u), defined by (3.4.5), 

namely, 

(1/ û q 
J(u) =< 

LO, u<q 

and the convergence is uniform around every continuity point 

of J. Furthermore, the Ĵ 's are uniformly bounded. Condi­

tions imposed in the theorem also ensure that F is necessarily 

a df and if F has unique q̂  ̂quantile J will be continuous 

a.e. F Hence, from Theorem 4.4.1 and the succeeding 

observations, we conclude that under the assumptions of that 

theorem. 

or, in other words 

where â (J,F,K) is given by (4.4.3) with J as in (3.4.5). 
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Simplification in the expression for â (J,F,K) is 
n 

possible if we assume that ( Z F. (x) F. (y) )/n F(x)F(y) 
j=l J" J" 

as n-MX) instead of making the weaker assumption (4.4.1b). 

Then K(x,y) = F(min(x,y)) - F(x)F(y) and consequently 

2 2 
a  (J,F,K) = a (J/F) given by (3.4.7). To be precise, 

we obtain the following result. 

Theorem 4.4.2: 

For each n̂ l let %in'*2n'''''*hn  ̂independent rvs 

with dfs Fnn- Define "k,n = 

k = [np], 0<p<l. Suppose there exists a df G and an 

2 
associated rv Y such that CY is finite and whenever 

y £ -M, Fĵ (y) £ G (y) and whenever y M, Fĵ (y) ̂  G(y) 

where M is some finite constant. Assume also that 

1 * lim ̂  Z F.„(x) = F(x) 
n-M» " j=l 

and 

1  ̂
lim ̂  Z F.„(x)F.̂ (y) = F(x)F(y) (4.4.4) 
n-M»  ̂j=l 

exist for a.e. x,y wrt Lebesgue measure. If F has unique 

q̂  ̂quantile then 

2 
where u and a are as described in Lemma 3.4.2. 

P P 
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Remarks ; 

(i) If it can be shown that  ̂0, 

where  ̂corresponds to the iid case with the parent df F ,  

then it follows that /1c (8n~̂ p̂  » 0 if | [F (x) (l-F(x))]̂ /̂ dx 

is finite. This is because in that situation it is known 

from Theorem 3.4.1, that /xn~̂ p̂  Hence, with 

these additional assumptions one can replace  ̂by 

in the above result. 

(ii) If all the Fĵ 's have the same mean and variance, 

WLOG one can take the mean to be zero and the variance to be 

unity. Then the selection differential, takes the 

place of  ̂in the above theorem and in Remark (i). 

Example 4.4.1: 

Let one of F̂ ,̂F2n,..-,Fnn F* and the rest all be 

F where F*<F, i.e., one of the populations has slipped to the 

right. Let j (F(x) (1-F(x)))̂ '̂ d̂x be finite and let F have the 

unique guantile Assume that F* has finite variance. 

Define 

r F(y), y £ -M 

G(y) =< F(-M), -M<y<M 

< F* (y), y > M 

where M is such that F(-M)<F*(M). This is possible since 

both F and F* are dfs. Here it is immediate that (4,4.4) 

is satisfied. Hence, from Theorem 4.4.2, we have 
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i N(0, + g(Wp-Sg)̂ ) as n-n». 

P 
We will now show that /3c (8M̂  ̂ -6M̂  ̂ ) -> 0 in the following 

steps. 

The df of is (David and Shu, 1978), 

= Fr:n-l(*) + (̂ ij)(x) (1-F (x) ) ̂"̂ F* (x) , 

r = l,2,...,(n-l) (4.4.5) 

where F is the df of the ŝ  ̂order statistic from a 
s :m 

random sample of size m from the df F. Also, the df of 

r̂:n' satisfies 

(l-F(x) 

r = 1,2,—,(n-1) 

so that 

F̂ .„ (X)-Ĥ .„ (x) = (̂ Î )F̂ -l(x) [1-F{X)]̂ "̂ [F(X)-F*(X)] -
JL # XX JL # XI  ̂

This is true for r = 1,2,...,n. 

Since 

ex 
r :n 

0 
[l-Ĥ .̂ (x)]dx - Ĥ ,̂ (x)dx, it follows that 
0 

e(Xr:n-X̂ :n) = L[̂ r=n<'"-''r=n<'=> 

Hence 

n- f { ̂  ("Ciipi (̂x) (l-F(x))* :} 
K,n K,n K j_̂  4=n-k+l  ̂  ̂

[F (x) -F* (x) ] dx. 
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Since F*<F and Z (̂ "n (x) (1-F (x) ) < 1 
j=n-k+i 

we have 

° 1 l| |_̂ [F(x)-F'(x)Jdx 

= (F)-y(F*)) . 

Therefore 

Hence, from Remark (i) above, it follows that: 

 ̂N(0, + S(Up-Sq)̂ )' 

Note : 

This example can be generalized to handle the case when 

we have more than one slipped population. Then we will have 

to write general versions of (4.4.5). Except for messier 

algebra, we do not expect any other problem here. But, 

if we have a proportion of the populations slipped, replacing 

£Mĵ  ̂  by a fixed centering constant does not appear to be 

possible even though Theorem 4.4.2 holds in this situation. 

4.5. Some Special Dependent 
Cases 

Under the assumptions of independence we obtained the 

asymptotic distribution of  ̂both in the extreme and the 

guantile cases. We obtained the same results for the inde­

pendent case as for the iid case, but of course, under some 
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additional assumptions. The following two situations show 

that these results are not necessarily true for dependent 

samples. 

Equicorrelated Normal Case: 

Let X̂ , i = 1,2,..., be equicorrelated standard normal 

arvs with the common correlation coefficient p(>0). Then it 

is well-known that the ' s can be represented as 

= /p U + Ŷ , i>l 

where U, are all mutually independent standard 

normal rvs. When k is fixed, since OeD(A), 

i=n-k+l 

as given by (3.2.4c}. Also, â  and b̂  can be chosen to 
n 

satisfy (3.6.1). D (k,n) = ( Z X. )/k here and 
 ̂ i=n-k+l 1:* 

Dx(k,n)-a* _ /̂  u Dy(k,n)-a* 

K  ̂ b* + IbJ • 

/p U/b* has a nondegenerate limit law iff b* converges to a 

nonzero finite number. For (/1-p DY(k,n)-a*)/b* to have a 

nondegenerate limit law one has to take b* 'v (/2 log n) ̂  

which converges to zero. Hence, if (â ,b̂ ) are the 

appropriate norming constants in the iid normal case, 

(/1-p â fb̂ ) would not normalize D̂ (k,n) to yield a non-

degenerate limit law. However, DY(k,n) - /2 log n 5 0 (see 
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Section 3.6), and hence 

—Z  
(D̂ (k,n) - /2 (i-p) log n)//p -»• N(0,1). 

Therefore, (/2(l-p)log n, /p) can be used as a pair of norming 

constants and the only possible nondegenerate limit law 

is normal. 

P 
In the quantile case, since D̂ (3c,n)  ̂

£ 
D̂ (k,n) = /p U + /1-p Dy(k,n) N(/l-p ŷ , p) .  

That is, (Dy(k,n) - /1-p y_)//F is asymptotically standard 
A p 

normal. As a contrast, if the X̂ 's were independent also, 

one would obtain /E(Dy(k,n)-y ) to be asymptotically normal. 
A p 

Stationary Gaussian Process: 

Let {X̂ , i = 0, + 1, + 2,...} be a stationary Gaussian 

sequence with 8X̂  = 0, = r̂ . If r̂  log n -> 0 as 

n-»-oo, Welsch (1973) has shown that, when k is fixed, the 

asymptotic distribution of :n~̂ n̂ ^̂ n̂ n̂-k+1 :n~̂ n̂  

is the same as in the iid standard normal case. The same 

norming constants â , b̂  work in both cases. (He has shown 

this for k=2; but the result is true in general.) Hence, 

agreeing with the independent standard normal case. 
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4.6. Application of the Asymptotic Theory to 
Testing for Outliers 

In this section we obtain approximate percentage points 

for  ̂for large n when the parent population is normal 

using the asymptotic theory developed in Chapter 3. This 

is of considerable interest in the outlier testing problem 

which is described below. 

2 
Let X̂ ,X2,-..,X̂  be independent rvs,  ̂ a ). 

Consider the problem of testing the hypothesis 

K: 2̂ = 2̂ " ~ '̂ n ~ ̂  

against the alternative 

A: k of these ŷ 's are equal to y+ô(ô>0) and the re­

mainder are equal to y. 

Then, + - - - + /o = 

(S, -ky)/a = kD, can be used as a test statistic, when 
JC / li jZ fil 

y and a are known. In fact, when y and/or a are estimated 

by X and/or S, Barnett and Lewis (1978) point out that the 

test which rejects H for large values of (Ŝ  ̂ -kX)/S is the 

likelihood ratio test for a location slippage alternative 

in which k observations arise from a common normal distribu-

2 
tion N(y+Ô, a ), 6>0, i.e., the alternative A, above. For 

this alternative it has the optimal property of being the 

scale and location invariant test of given size which 

maximizes the probability of identifying the k contaminants 

as discordant (pp. 95-96, 112). Early work on this 
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statistic, due to Murphy (1951) , was later followed up 

by McMillan (1971) . 

Because of the above motivation, considerable atten­

tion has been given to the distribution of  ̂and its 

percentage points. We assume that y and a are known and 

WLOG take % = 0, a = 1. Then, we compare the approximate 

percentage points for D, under H obtained using the JC / n 

asymptotic theory assuming: (a) k fixed, (b) k = [np], 

0<p<l, and (c) Table IXg of Barnett and Lewis (1978), which 

is based on simulation. 

Approach (a): 

When k is fixed, since $£D(A), the percentage points 

of the limiting distribution of (D̂  n'̂ n̂ '̂ n' are 

given by Table 3.2.1. But now, the problem is to use "good" 

choices of â  and b̂ . Often these are given by (3.6.1), 

namely 

â  = /2 log n - (log log n + log 4n)/2/2 log n 

and 

b̂  = 1//2 log n. (4.6.1) 

It is worth recalling that any other sequence â  and b̂  

such that b̂ /b̂  -> 1 and (â -â )/b̂  0 as n̂  would serve 

asymptotically. Recently, Hall (1979) , has shown that the 

best rate of convergence of 
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sup 10̂ (a +b x)-A(x)| 
-oo<X<» 

is achieved when a and are chosen such that 
n n 

2Trajĵ  exp(â )̂ = n̂  and b̂  = 1/â , (4.6.2) 

the rate being of the order of 1/log n. 

Let a* and b* be the solutions of (4.6.2). The fol­

lowing table illustrates the differences in a and b 
 ̂ n n 

as given by (4.6.1), and a*, b*. 

Table 4.6.1. Values of the norming constants for selected n 

n a b a* b* 
n n n n 

30 1.8882 .3834 1.9146 .5223 

50 2.1009 .3575 2.1118 .4735 

100 2.3663 .3295 2.3753 .4210 

500 2.9075 .2836 2.9080 .3439 

1000 3.1165 .2690 3.1153 .3210 

The approximate percentage points of  ̂are then given 

by _ and a* + b*Ç, for the two choices of n n Jc,p n n K,p 

constants, and are labeled Ext(â ,b̂ ) and Ext(a*,b*), 

respectively. 
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Approach (b): 

For given n and k, we can take k/n = p and use the 

asymptotic theory of the quantile case. Then, from Theorem 

3.3.1, it follows that 

 ̂ (4.6.3) 

2 2 2 
where + q(]ip-?g) is tabulated by Burrows (1975) 

for various values of p. Also, = (f>(Çg)/p makes it easy 

to compute in the standard normal parent case. Burrows 

(1972) has also obtained a good approximation of  ̂which 

converges to at the rate of 1/n. Hence, we may also use 

his approximation, namely 

2p = "p - 2ÊWIT • ̂  

instead of u in (4.6.3). These give another pair of 
? 

percentage points for D, , namely y + z Cp̂ /Zk and 
iv J Xi p 0* 

yp + ẑ cTg/yE where is the upper a percentile point for 

N(0,1). These are labeled Qnt(yp) and Qnt(yp), respectively. 

Approach (c): 

This is the simulation approach used in the construc­

tion of Table IXg of Bamett and Lewis (1978) , and the per­

centage points so obtained are labeled Sim (B&L). We com­

pare these five approximate percentage points for  ̂for 

k = 2,3,4, n = 20,30,40,50,100 at the 95% and 99% level in 

Table 4.6.2 below. 



Table 4.6.2. Five approximations to the percentage iX)ints of ^ for the normal parent 
population ' 

95% points 99% points 
Ext Ext gnt(p ) Qnt(p ) Sim(BGL) Ext Ext Qnt(vi ) Qnt(0~j Sim(D&L) 

K'K'' " " 
k - 2 
20 2.44 2.78 2.46 2.34 2.37 2.86 3.36 2.76 2.64 2.72 
30 2.58 2.85 2,61 2.50 2.51 2.97 3.38 2.89 2.78 2.84 
40 2.67 2.92 2.70 2.50 2.62 3.05 3.42 2.97 2.85 2.93 
50 2.74 2.97 2.78 2.67 2.68 3.10 3.45 3.04 2.93 3.02 
100 2.96 3.13 3.00 2.90 2.92 3.29 3.56 3.23 3.13 3.20 

k = 3 

20 2.18 2.41 2.17 2.08 2.10 2.50 2.85 2.43 2.34 2.39 
30 2.33 2.52 2.33 2.25 2.26 2.63 2.92 2.57 2.49 2.54 
40 2.43 2.60 2.44 2.36 2.38 2.72 2.98 2.67 2.59 2.63 
50 2.51 2.66 2.52 2.44 2.45 2.79 3.03 2.74 2.66 2.72 

100 2.75 2.86 2.76 2.69 2.70 3.00 3.19 2.96 2.89 2.94 

k = 4 
20 2.00 2.15 1.96 1.89 1.90 2.26 2.53 2.20 2.13 2.16 
30 2.16 2.29 2.14 2.08 2.08 2.41 2.63 2.36 2.30 2.32 
40 2.27 2.38 2.26 2.20 2.21 2.51 2.70 2.46 2.40 2.43 
50 2.36 2.46 2.34 2.28 2.28 2.59 2.76 2.54 2.48 2.53 
100 2.60 2.68 2.60 2.54 2.55 2.82 2.95 2.78 2.72 2.78 
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Observations and comments: 

(i) Ext{â ,b̂ ) does much better than Ext(a*,b*) for 

all n, k and the percentages considered, in the sense that 

it is much closer to Sim(B&L) than the latter. Even though 

a* and b* are supposed to make the convergence of the df 

of X faster in the sense of the supremum over the entire 
n :n 

real line, Ext(a*,b*) does not perform well at the 95th 

and 99th percentile points of 

(ii) At the 95 percent level, QntfOp) comes closest 

to Sim(B&L) being within 0.01 of the latter for k̂ 3, n̂ 30. 

However, QntCŷ ) < Sim(B&L). This suggests that one could 

use QntCŷ ) to find 95 percent points when k ̂  3, n > 30. 

It may be noted also that Ext(â ,b̂ ) and Qnt(Up) approach 

each other as n increases for k̂ 3, even though both are off 

from Sim (B&L) . 

(iii) At the 99 percent level Qnt (iî ) does very well 

indeed, doing better with increased k for a given n. 

We now consider some large values of n in an attempt 

to search for a trend which can be of some help in de­

termining which of these approaches is desirable. 

These do not seem to give much insight except to show 

that for k=4, the Qnt(Up) and Ext(â ,b̂ ) actually coincide 

at 95 percent level as is evident from Table 4.6.3 below. 

In conclusion, the empirical evidence expressed in 

Table 4.6.2 seems to suggest that OntCŷ ) provides a close 
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Table 4.6.3. Approximate 95% points for large n 

k=2 k=4 
n Ext (â ,b̂ ) Ont(%p) Qnt Ext(â ,b̂ ) Ont(Up) 

200 3.16 3.30 3.21 2.83 2.83 

400 3.36 3.39 3.30 3.04 3.04 

500 3.42 3.45 3.37 3.11 3.11 

1000 3.47 3.63 3.56 3.31 3.31 

approximation at the 95 percent level whereas QntCŷ ) 

does well at the 99 percent level. For extremely small 

p (<.005) it might be safer to use Ext(â ,b̂ ) rather than 

the rest. 

So far, in our discussion, it was assumed that y and a 

are known. When these are estimated by X and S, since 

â //n b̂  -i- 0, from Corollary 1 to Theorem 4.1.2, it follows 

that the percentage points of the asymptotic distribution 

of (6̂  ̂ -â )/b̂  are the same as those corresponding to 

(D, _-a }/b . Hence, our approximations Ext(a„,b ), 
f Xl Xl XI Xx XI 

Ext(a*,b*), obtained using the "extreme case" approach 

remain the same. However, these values fall far away from 

the simulated percentage points of  ̂given by Table IXa 

of Bamett and Lewis (1978). The quantile case can be used 

only when a is known (see Section 4.3). Using Theorem 

4.3.1, in this case, one obtains a different set of values 
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for Qnt(ŷ ) as an approximation to the percentage points 

of (̂o). The actual computations and comparisons with 

the simulated percentage points given by Table IXe of 

Barnett and Lewis (1978) will not be presented. 
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V. GENERAL DISTRIBUTION THEORY FOR THE INDUCED 

SELECTION DIFFERENTIAL 

In plant and animal breeding, quantity of interest is 

the "response to selection", i.e., the difference between 

the mean phenotypic value of the offspring of the selected 

parents and the mean of the entire population. In breeding 

problems we select the top p fraction of the parental popu­

lation and are interested in the performance of their off­

spring , compared to that of the whole population • A 

natural measure of performance is provided by the induced 

selection differential, that is the selection differential 

based on "concomitants". We study this quantity in the 

present chapter. 

5.1. Finite Sample Theory for the Induced 
Selection Differential (D̂  ̂ ) 

Let (X̂ ,Yĵ ) , i = 1 to n, be iid rvs each having df 

F (x,y) where the X.'s are assumed to be continuous with 
A f Y X 

df F,,. Let X be the rth order statistic of the X 
X r :n 

values and let be the Y variate paired with X̂ ^̂ ' 

Then is called the concomitant of X̂ .̂ . Let viy and 

2 
Cy be the mean and variance of the distribution of Ŷ 's. 

Then the induced selection differential, Dis defined 

by 
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n 

Ik-nl k 

If Fy (x,y) is an absolutely continuous df, then from 
A, Y 

Yang (1977, p. 997), we have 

fy Y (y1'''•/Yv) 
[̂n-Jc+l:n] '••••'̂ [n:n]  ̂  ̂

- rXk X. k 
n f (y,- |xi)fx X 

-oo i=i n-k+l:n,..., n:n 

(x̂ , — ,x̂ )dx̂ dx2 — dXj 

nl 
• OO 

'̂ k 
(n-k)I J 

— CO. —00 *. 

x_ k 
n f(y.|x,) 

-œ i=l  ̂  ̂

I n-k [F̂ (x̂ ) ] f ̂ (x̂ ) • • • f ̂{x̂ ) dx̂  • • • dXĵ ' 

This can be used to obtain the distribution of even 

though a closed form expression may not be possible. 

Bounds on CD̂  : 
lk,nj 

From (6.1) of Mallows and Richter (1969) we have 

(M| 

where M, 

•[k,n]"̂ ^̂  - ̂  
n 

•[k,n] - k + "̂ Ŷ Ik̂ n] ' ̂ 

2 1 ^ 2 
mean of the Y values and ŝ  = — Z (Y.-Y) . That is, 

 ̂ * i=l 1 
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Y - Vr ̂  1 M[k,n] 1 ̂   ̂• 

2 1/2 
Hence, taking expectations and noting that CSy £ (6Sy ) ' £ 

we obtain 

"ï - ̂  °Y • l««tk,nl i •'y • 

Since ~ n]' follows that 

-y(n-., (n-l) , . ,5.1.1, 

2 1/2 If our sample were not random then (£s-, ) ' <â  and hence 
i — i 

one obtains 

-J^ t 1 ̂  

in the dependent sample case. 

So far, we have not made use of the fact that the 

Y's are the concomitants of the order statistics. To 

exploit this fact, we further assume that £(Y|X = X) = m(x) 

is a monotonie function of x. WLOG take m(x) to be increasing. 

Let X* = m(X) . Then &Ŷ ,̂  = 6m(X̂ _̂ ) = Noting that 

X | . , X * . ^  a r e  t h e  o r d e r  s t a t i s t i c s  f r o m  t h e  d i s t r i b u t i o n  

of m(X), we can use the bounds for obtained in 

Section 2.6. Using (2.6.5), we have 

Cm'X) + 1 em(X) + ̂  
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where t = max(k,n-k). Note that £s <  a  /(n-l)/n, 
miA; — miAj 

£m(X) = ŷ . Hence, the above inequality can be rearranged 

to yield 

n-k ^̂ m(X) /(n-k) (n-1) ̂ m(X) 
inax(k,ri—k)  ̂ — [k,n] — ̂  nk 

Y < r *! O 

Since 

= Var(e(Y|X)) + e(Var(Y|X)) 

= Var(m(X)) + e(Var(Y|X)) 

- *m(X) ' 

the upper bound in (5.1.2) is better than the one in (5.1.1). 

The same is the case with lower bounds. Of course we have 

used the fact that £(Y|X) is increasing in obtaining (5.1.2). 

With the same assumptions, one can obtain tighter bounds 

for £Dp, , using the techniques of Section 2.4 and 2.5. 
LK,nj 

The details are omitted. 

5.2. Asymptotic Distribution of D,, , 
in the Extreme Case ' 

Let (X̂ ,Y£) , i = l to n, be iid bivariate absolutely con­

tinuous rvs with pdf f(x,y) and df F(x,y). WLOG we take 

= 0 and 0y = 1. We consider the cases where x̂  = 

(1) < oo and where x̂  = +<» separately. 
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Case A: X <«>: 
o 

From Yang (1977) we have 

F(̂ n̂-k+l:n] - ̂l"--''̂ [n:n] -

r r ^ 
= 1 — I 11 P (Ŷ  <y.. ! =X; ) 

<Xĵ ''i=x - • 

•dF„ y (x,,».«/)« 
n-k+l:n'•••' n:n  ̂  ̂

(%n-k+l:n'---'Xn:n) ' ® 

fixed integer. Hence, following Yang's (1977) Theorem 

2.1 we have 

^̂ [̂n-k+l:n] - ̂l'---'̂ [n:n] -  ̂

k 
= ,n r(Y iy.|x.=x ). 

1=1 

n 
Therefore, D„„T =  ( Z  Y r .  „ , ) A  c o n v e r g e s  i n  l a w  t o  t h e  

lk,nj i=n-k+l 

average of k iid rvs each having the pdf f(y|x̂ ). 

Case B: x =+»: 
o 

Theorem 5.2.1: 

Let (Xĵ ,Ŷ ) , i = 1 to n be a random sample from a bi-

variate absolutely continuous distribution. Let x̂ =" and 

Fjĵ (â +bĵ x) -+ G(x) , a nondegenerate df; that is, F2.ED(G). 

If 

P(Y, < + B u|x, = a„+b_z) = T (u,2) ̂  T(u,z) 
1  —  n  n ' l  n n  n  
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uniformly in 2, then 

P(Y. + B„u) T(u) = |T(u,z)dG(z) 
i,n:nj — n n 

Proof : 

First, fix u and note that T̂ (u,z) is a sequence of 

bounded continuous functions converging uniformly in 2 to 

T(u,z). Since F̂ f̂â +b̂ x) -»• G(x) , a df, from Lemma A6 

we have 

Tn(u,z)dp/(a„+bnZ) 

T(u,2)dG(2) as n-M» 

= T(u) . 

Note : 

(i) Conditions imposed in the above theorem are suf­

ficient to ensure that 

^̂ [̂n:n] - ̂n ®n̂ l' "̂ [n-l:n] - \ "" 

'[n-k+l-n] n̂*k) (û ) H2 (U2) .. (Uĵ ) 

where 

(u) = |T(u,2)dG(x;i). Here G(x;i) is one of the 

distributions represented by (3.2.2a-c). Hence, under the 

conditions of Theorem 5.2.1, n]~'̂ n̂ '̂ ®n converges in 

distribution to that of the mean of k independent rvs, the 

î  ̂one having the df Ĥ . 
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(ii) Galainbos (1978) has given the limiting distribu­

tion of (Yr -.-A )/B under a different set of conditions 
• XX J XX XX 

when G = 0̂ , (see his Theorem 5.5.1, which we are paralleling) 

But his proof appears to be incomplete since the use of the 

dominated convergence theorem is not justified. 

Example 5.2.1: 

Let Exp(l) and = x ̂  N(x,l) . Then F̂ ED(A) 

with a = log n and b =1. Also, x = +<*> and if we take 
n n o 

A = log n and B = 1 we have 
n n 

= $(u-z) = T(u,z) 

and the convergence is uniform in z. Then, from Theorem 

5.2.1 we have 

P(Y[n.n] 1 log n + u) |o (u-z) dA (z). 

5.3. Asymptotic Distribution of Dr, , in 
the Quantile Case ' 

We use the results of Bhattacharya (1976) and Yang 

(1979) to obtain the asymptotic distribution of D̂ ĵ  when 

k = [np], 0<p<l. WLOG we take y = 0, a = 1. 
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Bhattacharya's (1976) approach: 

Bhattacharya has essentially obtained the asymptotic 

distribution of D-, , under the following conditions : 
LK/nj 

Bl. is continuous. 

B2. S(x) = £[ (Y-m(x))̂ 1X=x] is bounded. (5.3.1) 

2 
B3. c (x) = Var(Y{ x =x) is of bounded variation. 

B4. h(t) = m(Cĵ (t)) is a continuous function where 

m(x) = C(Y| x =x) and Syft) = Fŷ (t). 
^  f t  

Define H (t) = n Z Y,. , and H(t) = h(s)ds. 
i=l JQ 

Then, from Bhattacharya (1976, p. 622) it follows that, for 

0<a<b<l, 
ft 
n(s)dh(s), on [a,b] (5.3.2) 

jQ 

where 

(t) = 

motion and n is a Brownian bridge independent of ç. 

Here => stands for the convergence of a stochastic process. 

Therefore, = ;(̂ t̂)) ~ N(0, ̂ (t)). 

0 

2 
a (x)dFĵ (x) , Ç is a standard Brownian 

rt 
n(s)dh(s) is also normal because n is a normal 

0 
process and the integral of such a process is again normal 

ft 
(recall that h is continuous). Further SB, = £(n (s) ) dh (s) = 

 ̂ J 0 
0, and 
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Var(B̂ ) = 2 
t 'U 

6(n (U)TI (V) )dh(u)dh(v) 
u=OJ v=0 

= 2 
u 

u=OJ v=0 
v(l-u)dh(u)dh(v) (from Billingsley, 

1968, p. 65) 

rZ.  

u=0-' v=0 
[min (u,v)-uv]dh(u)dh(v) . 

Hence, 

2 _ 
Og = j j [Fjj{min(x,y) )-Fĵ (x)Fjj(y) ]dm(x)dm(y) 

making the transformation u = (x) and v = F̂ (y). 

Therefore, from (5.3.2) we have 

2 2 
/n(H_(t)-H(t)) ̂  N(0, #(t)+0* ) 

since and are independent. 

Djk is the average of the concomitants of the top 

k X-values whereas Ĥ (t) corresponds to the bottom X-values, 

Hence, we define 

h*(t) = m(Ç̂ (l-t)) 

and 

H*(t) = h*(s)ds = 
1-t 

m(Çĵ (s))ds. 

Then, under the conditions B1-B4 of (5.3.1) we have 

_ f 2 
/n(H*(t)-H*(t)) N(0, V*(t) + a=*), 0<t<l 

n B*'  
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where 

fOO 
V*(t) = I a (x)dF (x) 

Û a-t) 

and 

[Fy(min(x,y)) 

(5 .3 .3 )  

- F̂ (x)F%(y)]dm(x)dm(y). 

n 
°[k,n] = H*(p) and hence 

= /n(H*(p)-H*(p)) 

+ yiï H*(p) • HPziEEli N(0, **(p) + Cg*) 
 ̂ P 

as n-H», since the second term on the right tends to zero. 

Therefore, 

•C 2 
^̂ °̂[k,n] ~ N(0, (̂ *(p) + OgaJ/p). 

Now 

H*(p)  _  1  
P P  J  

mCxjdFyfx) = £(m(X) I X>Ç„ (q) ) 
Ŝ (q) 

= Um(X)(P)' where q = 1-p. 

Formally, we state this as a theorem. 
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Theorem 5.3.1: 

Let Uy = 0, Oy = 1 and k = [np], 0<p<l. Under the 

conditions B1-B4 of (5.3.1), as n-̂ », 

" K(°' **(P) + "b.' 

2 
where and Og* are defined by (5.3.3). 

P 

Remarks : 

(i) Bhattacharya's expression for the limiting vari­

ance of /n(Ĥ (t)-H(t)) as given on the top of page 623, 

namely, D(t) + t(l-t) - 2(1-t)h(t)H(t) - (t), is wrong. 

For the bivariate normal parent case one can show that the 

above representation does not give the right answer. 

(ii) His proof can be used to obtain the joint limit 

distribution of the selection differential and the induced 

selection differential. This will be done in the next 

section. 

Yang's (1979) approach: 

Recently, Yang, paralleling the work of Stigler (1974) , 

has obtained the asymptotic distribution of linear functions 

of the concomitants of order statistics. He makes the fol­

lowing assumptions : 

Yl. is continuous (same as Bl). 

Y2. £ŷ  < +» (follows from B3). 
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Y3. in(x) is a right continuous function of bounded 

variation in any finite interval (implied by B4) 

Y4. J is bounded and continuous a.e. mfP̂  )(implied 

by B4 for the particular J there). 

1  ̂ i 
Let, S = — Z J(;rTT-)"̂ r-: .r.1 • Under this set-up, Yang has 

n  l i  i " !  L ^ J  

shown the following: 

lim es = = 
n-x»  ̂  ̂

m (x) J (F̂  (x) ) dP̂  (x) 

lim n Var(S ) = ô (J,F ) 
n-Hx,  ̂  ̂

= I Ĵ (Fjj(x) )â (x)dFjj(x) 

[FjjCmin (x,y) ) 

- Fjj(x)Fĵ (y) ] J(Fjj(x) ) J(Fjj(y) )dm(x)dm(y). 

The first term is comparable with ̂ (t) whereas the second 

2 corresponds to in Bhattacharya's approach. 

p  ̂ -g 
If 0 (JrF̂ ) > 0, then (ŝ -eŝ )//Var(Ŝ ) ̂ N(0,1) as n+<». 

Equivalently 

£ 2 
/n(ŝ -eŝ ) ̂  N(0, o (J,Fjj)). (5.3.5) 

Remarks ; 

Bhattacharya (1976) had a particular J function, namely 

f 1/ u<t 
J(u) = < 

V 0, u>t 
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and had more conditions than Yang. But, his result is 

stronger than Yang's in three respects: (i) He has a fixed 

centering constant, H(t) whereas Yang's SŜ , depends on n. 

If /n(6S_-%(J,Fv)) 0 then can we replace by yCJ,F„) 
IX A 11 A 

in (5.3.5). (ii) Bhattacharya's result deals with the con­

vergence of the process /n(Ĥ (t)-H(t)) and hence gives the 

asymptotic distribution of any finite dimensional law 

from this process. (iii) Bhattacharya decomposes the limiting 

process into two independent normal components which is not 

presented in Yang's results. 

Under some additional assumptions we extend Yang's 

(1979) result as given by (5.3.5) to include a fixed 

centering constant. Assume that 

Y3': m(x) is a continuous monotonie function of x. 

Y5. J satisfies a Lipschitz condition of order 

a > 1/2 except perhaps at a finite number of 

continuity points of m(F̂ )̂. 

Y6. I [F (x) (1-F (x))]̂ /̂ dx < 0° where F is the df of 
J in in m 

m(X) . 

WLOG we take m to be monotonically increasing. Then 

n 

1—X 

where m(X̂ .̂ ) is the î  ̂order statistic from the 

distribution of m(X) . Conditions Y4, Y5 and Y6, in view 

of Mason (1979) imply that 
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/n(eŝ -u(j,Fx)) 0 

as n-«». Hence, under Yl, Y 2 ,  Y3', Y4-y6, 

£ 2 
/n(Sn-%(J,Fx)) - N(0, a { J , F ^ ) ) .  

For the induced selection differential, 

f  1 ,  u > 1-p 
J(u) = < 

< 0, u < 1-p 

Hence, Y5 is satisfied and Y3' implies Y4 here. Also, 

•S(Drv _,/p-S_) can be shown to tend to zero in probability t jc / nj II 

as n-«». Combining all these we have the following result. 

Theorem 5.3.2: 

Under the assumptions Yl, Y2, Y3', Y6, the asymptotic 

distribution of is given by (5.3.4) . 

5.4. Asymptotic Joint Distribution of Dr, , 
and D̂  ̂  in the Quantile Case ' 

Using Bhattacharya*3 (1975) methods we now obtain the 

limiting distribution of the bivariate random variable with 

the induced selection differential and the selection dif­

ferential as its components. To start with, we assume the 

following in addition to assumptions B1-B4 of the previous 

section: 

2 
B5. %2̂ t) = F~ (t) is continuous and is finite. 

Following Bhattacharya's notation we define 
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[nt] 
V^tt) = /5(G„(t)-t) , 

V n 1—1 

where with being the empirical df of the 

X̂ 's. 

It then follows from Bhattacharya (1976, p. 622) that 

(Un̂ Vn) =>(U,V) 5 (;(40,n) (5.4.1) 

Sx(t) 2 
a (x)dF (x), Ç is a standard Brownian 

—00 

where (̂t) = 

motion and r. is a Brownian bridge independent of ç 

Let 
1 [nt] •t 

«n't) = E H(t) = 
1—1 . 

h (s)ds 
0 

-, [nt] rt 
= k \ :n-  Kit) = 

1=1 
Sy(s)ds 

0  ̂

and define 

Ĉ (t) = /n(Ĥ (t)-H(t) ) and D̂ (t) = »̂ (K̂  (t)-K(t) ). 

It can be shown that (see Bhattacharya, 1976, p. 621), 

ft 
Ĉ (t) = Û (t) - J V̂ (s)dh(s) + R̂ (̂t) 

(•t ° (5.4.2) 
Dn(t) = -Î V̂ fsidSxts) + 

where 

sup IR, (t)| 5 0 and sup {R_ (t)| $ 0 
5<t<b  ̂a<t<b 

for [a,b] C (0,1). 
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Theorem 5.4.1: 

Under the conditions B1-B5, 

(Cn(t) , D̂ (t) ) => (C(t) , D(t) ) 

= (C(̂ (t)) + J r, (s)dh(s). 
0 t 

n (s)dÇ„(s) ) , 
0 X 

where te[a,b]C (0,1), and ç, n and (̂t) are as described 

above. 

Proof : 

•t 
(u(t) - . -v(s)dh(s), - v{s)dÇ„{s)) is a continuous 

0 Jo  ̂

function of u and v. Hence, recalling (5.4.1) and (5.4.2) 

it follows that 

(C (t) , D (t) ) ̂ >(c(̂ (t)) - n(s)dh(s), 
n n 10 

n (s)dÇ„(s) ) 
-

Now note that -ri(s) = n(s) to conclude the proof of the 

theorem. 

Theorem 5.4.2; 

Whenever Theorem 5.4.1 holds, 

Cov(C(t) ,D(t) ) = [Çĵ {t)-tÇĵ (t)+K(t)] [th(t)-H(t) ] 

t 
K{u)dh(u). 

0 
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Proof : 

Since Ç and n are independent. 

Cov(C(t), D(t)) = Cov( n (s)dh(s) , 

!: 
t 

n (s)dÇ„(s) ) 

u 
V (1-u) dh (u) dĈ  (v) 

u=OJ v=0 

+ I [ u(l-v)dh(u)dÇ (v) 
u=0'' v=u 

•t 

u=0 

t 

u=0 

(1-u) [uÇ̂ (u)-K(u) ]dh(u) 

unsx(t)-gx(u)) 

- (tÇjj(t)-uÇjj(u) ) + K(t)-K(u) ]dh(u) 

on integration by parts of one of the integrals. Hence, 

Cov(C(t) ,D{t) ) = C%(u)[u-û -u+û ]dh(u) 

K(u)[-1+u-u]dh(u) 

+ j ̂ u[Cx(t)-tSx(t)+K(t)]dh(u) 

= [Çjj(t)-tÇĵ (t)+K(t)]| udh(u) 

K (u) dh (u) . 
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t 
udh(u) = th(t)-H(t) and hence the proof is over. 

0 

Remarks : 

Both C(t) and D(t) are normal. Noting that â C(t) + 

â Dft) is univariate normal for all real â  and a.2, we 

conclude that (C(t), D(t)) is a bivariate normal rv. 

Hence, C(t) and D(t) are independent iff they are un-

correlated. In view of Theorem 5.4.2, this is true iff 

[Çjj(t)-tCjj(t)+K(t) ] [th(t)-H(t)] -
t 
K(u)dh(u) = 0. 

0 

The natural question is whether this is possible at 

all. The following example shows that the answer is in the 

affirmative. 

Example 5.4.1: 

Let X -v 2<(0,1) so that = u and let Y|X = s ~ 

2 2 
N(s-3s ,1). Then, m(s) = s-3s = m(Cĵ (s)) = h(s) . Condi­

tions B1-B5 are satisfied. H(t) = 

K(t) = 

t 2 3 
h(s)ds = tV2 - f̂ . 

^  2  " 3 4  
xdx = t /2 and K(u)dh(u) = (2t -9t )/12. 

0 0 
Hence, 

Cov(C(t),D{t)) = (t-t̂ +t̂ /2)(t̂ -3t̂ -t̂ /2+t̂ ) 

- (2t̂ -9t'̂ )/12 = 0 

=> t̂ (6t̂ -9t+2) = 0. 

t = (9-/3?)/12 = 0.2719 is the only solution of this 

equation in (0,1). Hence, for this value of t Ĉ t̂) and 
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D̂ (t) are asymptotically independent. 

Now we assume that = Wy = 0, = 1, and find 

the asymptotic joint distribution of and  ̂when 

k = [np], 0<p<l, after appropriate normalization. For this 

we define the following: 

1  ̂H*(t) = i Z 
n i=n-[nt] 1-t 

h(s)ds. 

n 

1-t 
Çjj(s)ds = tyjj(t) 

Then, under the conditions B1-B5, exactly on the lines of 

Theorem 5.4.1 one can show that 

(/n(H*(p)-H*(p)), v̂ (K* (p)-pû {p) ) ) + 

(;(V*(p)) -
1-p 

n (s)dh(s) r 
J 1-p 

n (s)dç„(s) ). 

where 

r" 2 
*̂(p) = ! o (x)dF„(x). 

JÇjjd-p) 

Also ; one can show that 

/k̂ D[%̂ n]-H*(p)/p) - v̂ HTp. (H* (p)-H* (p) ) 5 0 

and 

/]<(D̂ ^̂ -Ŵ (p)} - /n/p. (K* (p) - pUy(p)) ̂  0. 
X 

This proves the following result. 
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Theorem 5.4.3: 

Under the assumptions B1-B5, when k = Inp], 0<p<l 

£ 

1 
(-[Ç (4;*(p)) -
/ p  

n (s)dh(s) ], 
1-P 

(- n(s)dç„(s)). 
J 1—p 

Hence, the asymptotic distribution is bivariate normal. 

Also, in view of Example 5.4.1, it is possible to have 

asymptotic independence of  ̂and for some p, 

even though and are not independent. 

5.5. Linear Regression Model 

Suppose Y = a +gX + E where X amd E aire mutually inde­

pendent rvs with finite variance and ŷ . = 0. Let (X̂ ,Ŷ ) , 

i=lton, bea random sample from this simple linear 

regression model. Then, it is known that a + Ê ^̂  = 

[̂i-n]"̂ î-n' i = 1 to n, are iid rvs independent of 

(Xl:n' ̂ 2:n'***'̂ n:n̂ * therefore, 

°[k,n] °k,n - ̂  

where ̂  is the average of k iid rvs each having the same 

distribution as E and is independent of 

Note that the coefficient of correlation between X and Y 5 

p = Bâ j/ay. We will find the limit distribution of 



121 

•under this model in various cases. The guantile case leads 

to the asymptotic distribution of selection to response, a 

quantity used in breeding problems. 

Quantile case: k = [np], 0<p<l: 

Using (5.5.1) and CLT, we have 

\ V=Y " "EW' 

as k-«o. Assuming that ç̂ (q), the q̂  ̂quantile of the distribu­

tion of X, is unique, it follows from Theorem 3.4.3 that 

®k ~ N(0, (p)+q(û (p) 

- Cx(q))̂ )/Gx̂ ), 

2 
where ŷ Ĉp) and (p) are the conditional mean and variance 

of the distribution of X when truncated below at ^̂ (q). 

Since Aĵ  and are independent (this is because Ej, and 

X̂ .̂ 's are independent), we conclude that 

/E(D[k,n]-p(Wx(P)-Wx)/*x) = Ak + P*k 

i N(0, + B̂ (â (̂p) + q(px(p)- Sx(q))̂ )]/oŷ ). 

(5.5.2) 

The results of Section 5.3 can also be used to obtain this 

result after imposing some additional conditions. Even if 

Çĵ (q) is not unique, the limit distribution of 

/k(D[̂  n]"P(̂ x(P)"̂ x)/*x) exists, but will not be normal. 

This is because the limit distribution of is not normal 

when SyXq) is not unique (see Theorem 3.4.3). 

In a genetic context the term is often called 
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average selection response (Burrows, 1975) or response to 

selection (Falconer, 1960) where we assume that and 

Oy = 1. Hence (5.5.2) shows that if the top p fraction of 

the parents is selected from an infinite population under 

the commonly used linear regression set-up, the average 

selection response, appropriately normalized, is normal. 

This can be used to make inferences about improvement due to 

selection. 

Also, 

i (Ak+PBk'Bk) 

£ , 
(A+pB,B) 

2 2 
where A and B are independent and A N ( 0, /â  ) , and 

B N(0, (p)+q(|iĵ (p)-Çĵ (g) ) ̂]/ajĵ ) . Hence, the limiting 

covariance is pVar(B). Consequently, Dand 

appropriately normalized are asymptotically independent 

iff p = 0. 

Extreme case: k fixed: 

If x̂  = then  ̂̂  hence 

from (5.5.1) it follows that 

°[k,n] ^̂ k B (x̂ -yjj) j/â . 
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If X = +00 then the situation is more involved and is 
o 

analyzed further below: 

(i) If  ̂has AWL, i.e., there exists a sequence of 

constants such taht n~̂ n ̂  then 

= P(Dk,n"Cn) +  ̂̂ k̂ Ŷ ' (5.5.3) 

(ii) If FyCD($ ) then F̂ (a +b x) 0 (x) where a and 
JL ci n n ci n 

b̂  can be taken to be 0 and S%(l-l/n), respectively. Hence, 

from (5.5.1), 

0[k.n]/bn = P\,n/̂ n +  ̂ P°k 

since b̂  ̂  Here has the representation given by 

(3.2.4a). 

(iii) If F^eD(A)  we  have to examine further-

a. If b̂ ^̂ , then  ̂has AWL and hence (5.5.3) holds 

where c can be taken to be a„. n n 

b. If then (D[,j,nj-pan)/b„ Ï pD̂ . 

£ _ 
c. If b̂ ->b  ̂0, then (Djk̂ n]b(pD̂ +E%/Oy). 

In both b and c, the df of D, is given by (3.2.5). 
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VI. MISCELLANEOUS RESULTS 

In this final chapter we consider two problems which 

came up while pursuing the asymptotic theory of the selection 

differential, but were not connected directly with the 

selection differential. In Section 3.2, it was seen that if 

F£D{G) where G can be or A, then 

 ̂̂ n̂:n"̂ n̂ /̂ n'* • • ' ̂̂n-k+l:n"̂ n̂ /̂ n̂  (T̂ ,...,Tĵ ) 

where the df of was given by (3.2.2a-c). We consider the 

joint distribution of T̂ ,T2, -. - ,Tĵ f called the k-dimensional 

extremal distribution and connect it to record value theory. 

This is done in Section 6.1 and can be used to give new 

proofs of some of the results of Hall (1978). Section 6.2 

deals with the bivariate extension of Stigler's (1974) re­

sult (Theorem 3.4.1) for linear functions of order statistics. 

Two applications of this extension in finding the asymptotic 

distribution of Hogg's Q statistic and the asymptotic 

distribution of a quick estimator of the regression coeffi­

cient in a simple linear regression model are also given. 
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6.1. Extremal Distributions and Lower Record 
Values 

Dwass (1966) defines a k-dimensional extremal distribu­

tion as follows: A random vector (Ŷ ,...,Ŷ ) is said to have 

a k-dimensional extremal distribution with parameter G 

(a df) if 

a. G~̂ (0) £ _ £ Ŷ  £ G~̂ (l) with probability 1 and 

b. if G (̂0) 1 < %% < "̂ k-1 k̂-1 < < 

< G"̂ (1), then 

k k-1 
P(Q [v.<y.<u.]) = [G(u, )-G(v, )] H (-log(G(v.)/G(u. ))) 
i=l  ̂  ̂ i=i  ̂ 1 

(6.1.1) 
0 

where H El. Further, it follows from Lamperti (1964) 
i=̂  

that if (â +b̂ x) » G(x), a nondegenerate df, i.e., 

FED(G), then 

/̂ n:n"̂ n %h-k+l:n"*n . T T  ̂
I g /-••/ / 1' 2'*""' k 

where T̂ 's replace Ŷ 's above and G is one of or 

A. 

Now, suppose G is any absolutely continuous df with 

pdf g and (Ŷ ,...,Ŷ ) satisfies (6.1.1). Then the 

joint pdf of (Yĵ ,Y2r ,Ŷ ) is given by 
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k 
p(,n [yi<Yiiyi+hi]) 

g(yi/Yo/-• •/yi,) = lim ———c 
ĥ -̂ 0+ 

i=l to k 

G(y,+h, )-G(y, ) k-1 log G(y.+h. )-log G (y.) 
= lim — n lim 2̂  h. 
ĥ 0̂+ k̂ i=l ĥ ->0+ 

k-1 c[logG(y.)] 
= 9'yic'.®, ay: ' 

1=1 1 

k-1 g(y.) 

S'yk'jji G(yTT ' < - < yjc 

0, otherwise. 

But, from record value theory, it is immediate that this is 

the joint pdf of the first k lower record values from the 

df G (see, e.g.. Chandler, 1952). 

We exploit this relationship between extremal distribu­

tions and lower record values from one dimensional extremal 

distributions to : 

(i) give a different canonical representation of the 

T̂ 's in the three cases and to 

(ii) reprove the limit laws of Hall (1978) for using 

record value theory. 
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Let the Ŷ 's be the upper record values from Exp(l) 

distribution. Then, it is known (see e.g., Resnick (1973, 
j i 

p. 69) that Y- = Z Z., where Z.'s are iid Exp(1) rvs. Now, 
j=l  ̂  ̂

let be lower record values from a continuous df G. Then 

G(T̂ ) form lower record values from 1̂ (0,1) and conse­

quently, -log G(T̂ ) are upper record values from Exp(l) 

distribution. 

That is, -log G(T.) = Y. = Z Z. and hence, 
1 1 j=l ] 

-1 i 
T. = G (exp(- Z Z.) ). 
^ 3=1 ^ 

Therefore, 

T. = ( Z if G = 0 (6.1.2a) 
1 i=i ] G 

= -( Z Z.)l/* if G =  ̂ (6.1.2b) 
j=l ̂  

 ̂ i 
i - log( Z Z.) if G = A (6.1.2c) 

j=l ] 

These representations involve only a finite number of 

exponential rvs whereas. Hall's (1978) representations, 

given by (3.2.3a-c), consist of an infinite number of 

exponential rvs. The above representations have also been 

obtained by Weissman using a Poisson process approach 

(personal communication). 

Using (6.1.2a-c) we study the asymptotic behavior of 

T-. It is evident that for this purpose we have to study 
 ̂ i 

the behavior of S. = Z Z.. But, from the classical limit 
^ j=i : 
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theory it is easy to see that, for an Exp(1) parent, 

£ 
—— N(0,1) (CLT) 

 ̂llM-- 1 (SLLN) 

and 
Sĵ -k 

liiri sup ——2̂  = 1 a.s. 
k-MX) /2k log log k (LIL) 

S,-k 
lim inf = -1 a.s. 
k-Mo /2k log log k 

We can now take G to be one of the three extreme value 

distributions. To fix the ideas, we take G = A. From 

{6.1.2c) it follows that 

Tĵ  = -log and hence 

+ log k = -log(S^/k) -log 1 = 0 as k-x*>. (6.1.3) 

Now to prove CLT for T̂ , we recall the following result 

(Rao, 1973, p. 385): If 

2  2  
/E(Û -G) N(0, a (6)) and g is a differentiable function, 

then 

S> 0 2 
/E(g(U%)-g(8)) N{0, a {e)[g*(6)] ), as k-w. 

Take = Ŝ yk,8 =1, â (6) = 1, g(x) = -log x so that 

/E(T̂  + log k) = /E(-log(S%/k)-0) ̂  N(0,1). (6.1.4) 

We can also prove LIL for T̂  using elementary analytical 

methods by exploring the concept of limit superior and limit 
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inferior and the relation between and We do not 

present this long but conceptually simple derivation here. 

It turns out that 

log log k'V̂ °g = +1 a-s-

log lô 'V̂ °̂  a s- (6.1.5) 

(6.1.3)-(6.1.5) have been obtained by Hall (1978) using a 

different canonical representation for T̂ /s as given by 

(3.2.3a-c) and some martingale convergence theorems. One 

can also use the general asymptotic theory for record values 

to obtain these results. 

6.2. Bivariate Extension of Stigler's 
(1974) Result with Applications 

As in Section 3.4, let X_ < X_ „<...< X  ̂be the x:n — 2:n — — n:n 

order statistics of a random sample of size n from a 

distribution with df F with finite variance. Put 

Sin = I .Vl'5Tr>̂ i=r.' =2. - I .V̂ 'slr'̂ izn 
1=1 1=1 

-1 
where and J2 are bounded and continuous a.e. F . Let, 

â (Ĵ ,F) = I Ĵ (F(x))Ĵ (F(y)) [F(min(x,y)) 

- F(x)F(y)]dxdy, i = 1,2, 

be positive. Also, let 



130 

O2^2 ^2— 
(F(x) ) J2 (F(y) ) [F(min{x,y)) 

- F(x)F(y) ]dxdy. 

Theorem 6.2.1: 

Under the above assumptions, 

(i )  n  V a r ( S ^ ^ )  o ^ ( J ^ , F ) ,  i  =  1 , 2  

n Cov(S2̂ fS2̂ ) ̂  ̂  2_2, ' ̂2 

(6.2.1) 

( 6 . 2 . 2 )  

(ii) (/n(Sin-eSin), (Ŝ ySg) (6.2.3) 

where (3̂ ,82) is a bivariate normal random variable with 

mean vector (0,0) and covariance matrix 

( a  (Ĵ fF) 1̂2(̂ 1'̂ 2'̂ ) 

^  C ? 2 ^ 2  ( '  *^2  ' C f  (J ^ f F )  j  

(iii) Suppose further that (F(x)(l-F(x)))̂ /̂ dx is 

finite and that and J2 satisfy Lipschitz conditions with 

indices > 1/2 and QL2 > 1/2, respectively, except pos­

sibly at a finite number of points of F  ̂measure zero. Then 

/n(eSin-y (Ji,F)) -̂ 0, i = 1,2 (6.2.4) 

where u(Ĵ ,F) = F (t)Ĵ (t)dt. Consequently, one can 

replace by y(Ĵ ,F), i = 1,2 in (6.2.3). 
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Proof: 

Since cind J2 are bounded and continuous a.e. F , 

from part (i) of Theorem 3.4.1, (6.2.1) follows. To show 

the asymptotic bivariate normality we show that 

/nfĉ Ŝ̂ -̂CŜ )̂ + converges in law to a uni­

variate normal distribution for all real ĉ  and C2. For 

this, let J = + '̂ 2̂ 2 n̂ ~ ̂ l̂ ln 2̂̂ 2n* ^̂ en, 

applying Theorem 3.4.1 for we conclude that 

£ ? 
»̂ (Sn-eSn) -̂ N(0, a (J,F)), 

wnere 

â (J,F) = [ĉ Ĵ  (F (x) ) +C2J2 (F (x) ) 3 [ĉ Ĵ  (F (y) ) 

+ C2J2(F(y))] 

*[F(min(x,y) ) - F (x)F(y) ]dxdy 

= ĉ â̂ (Ĵ ,F)+C2̂ â (J2,F)+2ĉ C2â (Ĵ ,J2,F). 

(6.2.5) 

Since ĉ  and C2 are arbitrary, (6.2.3) follows. Also, 

using (6.2.1), (6.2.5) and the fact that n Var(Ŝ ) -»• â (J,F) 

we obtain (6.2.2). Applying part (iii) of Theorem 3.4.1, 

for both Sand S2̂ , (6.2.4) follows. Therefore, one can 

replace 6Ŝ  ̂by y(Ĵ ,F) in (6.2.3). 
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Corollary; 

Under the above conditions, and 

»̂ (S2ĵ -y (J2/F) ) are asymptotically independent iff 

= 0 or iff lim n Cov(Ŝ  ̂62̂ ) = 0. 

Example 6.2.1: 

1 * Following Hogg (1974) , define U (p) = 7—-r Z X. 
[npi  ̂i=n-(npl̂ l " = 

and L (p) = r •• Z X. . Let 0<p<0.5. Then, using the 

n 

theorem above, one can show that /[np](Û (p)-ŷ ) and 

/[np](L̂ (p)-Up) are asymptotically bivariate normal when 

and Çg, the p̂  ̂and quantile are unique. Here, 

1 
P J 

xdF(x) and y = ̂  f x̂dF(x). Further, the limiting 
Ç_ r P 'q _ 

covariance is (Sp-Wp)(Up-Sg)/ a positive quantity. Hence, 

L̂ (p) and (p) are not asymptotically independent. This is 

in contrast to the independence of 5̂ ^̂ 1-n'* *'-n̂  and 

g2 — '̂ n-n̂  when k/n̂ O (Rossberg, 1965, David, 

1980, p. 306). 

Example 6.2.2; 

Let F be symmetric about zero and let the median be 

unique. Define 
r-1, u<p 

J, (u) =1, 0<u<l; J-, (u) = \ 
^ - - 2 1, u>l_p 

Then, S.̂  = X and Sg. = (p) - L (p)}. Because of 

symmetry, Cov(Ŝ ,̂S2n) = 0 for every n. Hence, /n X and 
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/n(S2n-2Wp) are both asymptotically normal and asymptotically 

independent from the theorem and the corollary above. 

Asymptotic distribution of Hogg's Q statistic: 

Hogg (1974) suggested the following statistic as a good 

indicator of tail length in symmetric populations : 

g  ̂"n'Pl' - _ 

In fact, he toox p̂  = 0.05, 0.2 and P2 = 0.5 in his study. 

We use Theorem 6.2.1 to obtain the asymptotic distribution 

of Q̂ . Define 

1, u>l-p̂  

Ji(u) = < -1, u<p̂  , i = 1,2 

0, otherwise 
îc 3c 

where = [npu] 

= Sln/®2n where 

S2n = 

On = [np2]Ŵ /[np̂ ]. 

Under the assumptions of Theorem 6.2.1, it follows that 

(î n (Ŝ y (Jl ,F) ) , /n (S2ĵ ii (J2 fF) ) converges in law to a bi-

variate normal distribution. Hence 
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În U(Ji,P) /n(Sĵ -̂y (Ĵ ,F))y (J2,F)-/Ey(Jĵ ,F) (S2ĵ -U(J2rF)) 

SznW (Jj ,F) 

being a continuous function of these components converges 

2 
in law to N(0, a (W,F)) where 

ŷ (J2,F)â (Ĵ ,F)+ŷ (Ĵ ,F)â (J2,F) 

- - 2u(J F)%(J_,F)c .(J ,J_,F) 
o (W,F) i — . 

(J?,?) 

p 
Here we have also made use of the fact that 82̂ , -*• u(J2,F). 

We do not need symmetry for this result to be true. How­

ever, under Hogg's assumption of symmetry some simplifi-

2 cations in the expression for a (W,F) is possible . WLOG 

we assume F is symmetric about zero and p̂ <p2. Then 

one can show, after some algebra, that 

}i(Ĵ ,F) = 2p̂ %p , i = 1,2 

â (J.,F) = 2p.û̂  + 2p. (q.-p.) (p )̂ , i = 1,2 
1 i 1 1 1 p̂  

a,2(Ĵ ,J2,F) = c2(Ji,P| + 2p̂ (. ) 

2 
A s  usual, y and a are the mean and variance of the df 

Pi Pi th 
obtained by truncating F below at Ç , the q. quantile 

Si 
point. Of course, the above have to be substituted in the 

2 
expression for a (W,F). Now 

and 
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y(J, ,F) 

ïïljJTFT) hence 

Î N(0, P2̂ â (W,F)/p̂ )̂ . ( 6 . 2 . 6 )  

The assumptions which ensure (6.2.6) are apart from the 

symmetry that the quantiles concerned are unique and that 

have also considered the asymptotic distribution of Q̂ . 

It appears that their use of Moore's (1968) result in 

establishing the asymptotic normality is questionable. 

This problem was brought to my attention by Dr. Robert 

Stephenson and reference to de Wet and van Wyk (1979) was 

indicated by Dr. Robert Hogg. 

Simple linear regression model ; 

As another application of Theorem 6.2.1 we obtain the 

asymptotic distribution of a quick estimator of the re­

gression coefficient in a simple linear regression model. 

The asymptotic distribution of this estimator in the 

bivariate normal case has been obtained by Barton and 

Casley (1958). Let (X̂ ,Ŷ ), i = 1 to n be a random sample, 

from the simple linear regression model described in Section 

5.5. Let 

S = (Yĵ -Ŷ ) / where k = [np], 0<p<l/2 and 

j (F (x) (l-F(x) ))̂ d̂x is finite. De Wet and van Wyk (1979) 
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% = ̂  iLx+i'i-' ^ J/i-' 

We obtain the asymptotic distribution of 6. To start 

with, we prove some general results for the linear re­

gression model using Theorem 6.2.1. 

Under our model it is known that a + -

SX., , i = 1 to n are iid rvs and are independent of 

^̂ l:n'-••'̂ n:n̂ ' 

Define the following linear functions of X̂ .̂ 's and 

V ' c . 

"[i:n] 

"n = k = » i  ̂  (sir'=n 
1—X 1—X 

1—-L 

= SŜ  + say; 

•̂ n = E . V"2'Hlr'̂ i:n 
1=1 

-1 
where and J2 are bounded and continuous a.e. . Note 

that S and R are independent and S_ and T„ play the 
n n n n 

role of and 82̂  in Theorem 6.2.1. 
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Theorem 6.2.2: 

In addition to the above assumptions, let be 

integrable and < <» for some 6>0. Let 

be positive and finite. Then 

Z 
(/n(û -eû ) , /n(T̂ -eT̂ ) ) -> (R + SS, T) 

2 
where R N ( a, 

1 2 
J, (x)dx), (S,T) has the distribution 

0 
of (5̂ ,82)of Theorem 6.2.1 with F = P̂ . Further R and 

(S,T) are independent. 

Proof : 

(/n(û -eû ), .̂ (T̂ -eT̂ )) = (/Kcr̂ -SR̂ ) + g/Efŝ -eŝ ), 

/n(T̂ -6T̂ )). First note that /nCR̂ -SR̂ ) and (/n(Ŝ -eŜ ), 

/n(T_-8T_)) are independent. The convergence of the bi-
11 Z1 

variate rv follows from Theorem 6.2.1. R is the mean of 
n 

independent nonidentically distributed rvs. < «> 

implies Using CLT (Lemma A4), and 

the fact that is integrable, one can show that 

Z 2 rl 2 
/n(R -£R„) R ~ N(0, J, {u)du) . 

n n £. J Q 1 

This completes the proof. 

One can show that if satisfies a Lipschitz condi­

tion with index a > 1/2 except at a finite number of 

points, then 

/n(eR̂ - a J, (u)du) ̂ 0 as n-x». Hence, if in addition 
0  ̂

to the assumptions of Theorem 6.2.2, Ĵ , and J2 satisfy 
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Lipschitz conditions with indices bigger than 1/2 except 

possibly at a finite number of points of measure 

1/2 
(F„(x)(1-F„(x))) dx is finite, then one can 
' XX 

replace and by 6%(Ĵ ,Fx) + aj Ĵ (u)du and u(J2rF̂ ) 

respectively. 

To obtain the asymptotic distribution of S, take 

T-i, u<p 

Ĵ (U) = JjCu) = ( 

L 0, otherwise 
and assume that ^̂ (p) and ?jf(q) are unique. 

Then 

 ̂ % 
Sn = 9 = s; ' 

rl 
/n(U -SS ) = /n R = /n (R -a J, (u)du) 

il li II II j Q X 

ofl 
N(0, a 

E 
J, (u)du) 

0 

= N(0, 2pâ ), 

Also, since /n (S —li (J, ,F„) ) converges in distribution. 

P _ 
 ̂u(Jt,F ) = p(u -y ). Hence 

a. A P F 

2 
u_-gŝ  Z 2po_ 
—-) = /n(B-g) ̂  N(0,-2— 2̂  ' 
 ̂ P (Wp-Up) 

that is, -
£ 20-

v̂ (0-B) N(0, 5-). 
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This proof has not made any explicit use of Theorem 6.2.2. 

But, one can write a proof using that theorem on the 

lines similar to those used in obtaining the asymptotic 

distribution of Hogg's Q statistic. 
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IX. APPENDIX 

Lemma Al; For a random sample of n from a continuous parent, 

the conditional distribution of X̂ ,̂  given X̂ ,̂  = x (s>r) , 

is just the distribution of the (s-r) ̂  order statistic in 

a random sample of (n-r) drawn from the parent distribution 

truncated on the left at x. 

Proof: See David (1980, p. 20). 

Lemma A2: Let X. _ < X- _ < ... < X. _ be the order 
l:n — 2;n — — n:n 

statistics in a random sample of size n from the Exp(l) 

distribution. Then Y_ = (n-r+1)(X -X , ), r = l,2,...,n 
r JL * xa X «L # xi 

with Xg 5 0, are iid Exp(l). Consequently, X̂ ,̂  = 

Z y./Cn-i+l), r = l,2,...,n, where the Y.'s are iid 
i=l ̂  d 
Exp(l) rvs. Here = stands for the identical distribution 

of the rvs on either side of this symbol. 

Proof; See David (1980, pp. 20-21). 

Lemma A3; Let 0<f(Çp) <«, 0<p<l, where is the p̂  

quantile and f is tl-'e parent pdf. If p̂ -p = 0(l//n) then 

='[np„l=n = S + IP-P„(5p)l/f(ep) + 

where F̂ (̂ )̂ is the empirical df of X2,X2,...,X̂  evaluated 

at Çp and where /E S o as n̂ . (this is a weaker version of 

Bahadur's representation). 
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2 2 
Consequently, /n(X.̂ p  ̂ -> N(0, p(l-p)/f (Cp))-

This result is due to J. K. Ghosh (1971). 

Lemma A4 (CLT): Suppose that for each n, the sequence of 

2 
rvs —'̂ nr independent. Let 6X̂  ̂= 0, = 

Var(X̂ ĵ̂ ), = z" Cnk- Suppose that 
K—-L 

exists for some o>0 and that Lyapounov's condition 

r̂  

2, -hs " 
n-s-oo k=l s 

n 

is satisfied. Then, 

n z 
Z X. ./s N(0,1) . 
i=l 

A proof is given, e.g., in Billingsley (1979, pp. 310-312). 

Lemma A5; If (x) is a sequence of dfs converging to a 

continuous df G(x) then the convergence is uniform in x. 

This is known as Polya's lemma. For a proof see e.g., 

Galambos (1978, p. 111). 

Lemma A6: If Ĝ  (x) is a sequence of dfs converging to a 

df G(x) and if the ĝ 's are bounded continuous functions 

converging uniformly to g, then 

lim 
n-»-oo 

ĝ dGn = jgdG. 
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This appears in Chung (1974, p. 93). 

P "C 
Lemma A7: If X. -Y_  ̂0 and Y -»• Y where all the rvs in-

—n —n —n — 
X 

volved are of k dimensions, then X.  ̂Y. 
—11 — 

A proof for the case k=l is given in Rao (1973, p. 123). 

A similar proof can be written for k>l. 

Lemma A8: Let X = (X . ,X and X = (X . ,X ̂^̂  ) 
—n n n — 

be k-dimensional rvs. Then, with the usual Euclidean distance 

function in the definition of convergence in probabilitŷ  

X^) ? j = 1 to k, iff X - X. 
n —Î1 — 

The proof is easy. 


