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I. INTRODUCTION AND SUMMARY

Let Xl:n i-XZ:n < t.. i-xn:n denote the order statistics
of a random sample of size n from & distridbution with distribu-
tion function F, mean u and variance 02. Suppose we select the
the top k values in our sample. Sometimes this is referred
to as directional selection. The difference between the
average of the selected group and the population mean
expressed in standard deviation units represents a standard-
ized measure of the differences between the selected group
and the entire population. This guantity is called the

selection differential and may be written as

D -1 g‘ (xi:n-u)
k,n k i=n-k+1 ©

"Selection differential” has long been a familiar term
to geneticists and breeders who often refer to it as "in-
tensity of selection" (Falconer, 1960). It represents a
measure of improvement in the X-trait due to selection.
Hence, it is useful in the construction of suitable breeding
plans and in the comparison of different plans in plant as
well as animal breeding. However, no systematic study of
the general theory of the selection differential appears in
the literature. Most of the results, developed with genetic
applications in mind, concentrate on normal parent popula-

tions. Recently, Burrows (1972, 1975) has discussed some



asymptotic results for the mean and variance of Dk n restric-

’
ting consideraticn essentially to normal and exponential
populations. Dk,n also serves as a good test statistic in
testing for outliers from normal populations. Our primary
concern in this work is the study of distributional proper-

ties of Dk n both in finite samples and in asymptotic

’

cases.

Sometimes the selection is based on an auxiliary vari-
able, and is then often called indirect selection. Suppose
two characters X and Y are associated and selection on the
X character is easier to practice than selection on Y. Hence,
in order to improve the Y character one may have to choose
those with high X values. This is essentially what is done
by plant breeders. Animal breeders verform selection on
the parent population with the aim of improving a particular
trait for the offspring population. In this‘case also, the
selection is based on a concomitant variable. This leads to
the definition of the "induced selection differential". Let
(xi'Yi)’ i =1 ton be a random sample from a bivariate

population. Let xl:n < X2:n < oo < Xn:n be the order

statistics for the X-values and let Y be the Y-value

[i:n]

Then Y is termed the concomitant

associated with X. [i:n]

i:n”

of Xi-n' If we select the top k X-values, then
n

z (

i=n-k+1

x 1 ]-uY)/cY represents the difference between

Yli:n



the average of the Y-values for the selected group and the
mean of the Y-population (uY) expressed in the standard
deviation units of the Y-population (cY). This quantity is
denoted by D[k,n] and is called the induced selection dif-
ferential. There is hardly any work in the literature on
general distribution theory for D[k,n]‘ Discussion of
D[k,n] is also included in our study.

This investigation is made up of five chapters apart
from this introduction. Chapters II through IV deal with
Dk,n providing several small-sample and asymptotic results.
In Chapter V we discuss D[k,n]‘ The last chapter is devoted
to a few miscellaneous results. Even though there are
not many papers dealing with Dk,n directly, several results,
especially of an asymptotic nature, are available for linear
functions of order statistics. Dk,n being one such func-
tion, we make considerable use of such results. These are
brought in and discussed at convenient places and will not
be elaborated on here.

In Chapter II we assume that F is continuous and give
an expression for the distribution function of Dk,n' Several
bounds using the Cauchy-Schwarz technique and van Zwet's
(1964) technique of convex transformation are given for

e These depend on the degree of restriction on F.

Dk,n'
Numerical comparison of these bounds are made for the

standard normal population when the sample size is 10.



The last section considers the dependent sample case and
develops bounds for ankln. It is shown there that 8Dk,n
can never exceed v (n-k)/k. This indicates that the breeder
can not expect to do any better than this gquantity by
selection alone.

Chapter III deals with the basic asymptotic theory for
Dk,n' Here the following three cases have to be distinguished:
(i) the extreme case where k, the number selected, is held
fixed and n, the sample size, becomes infinitely large;

(ii) the cuantile case where k = [np], 0<p<l; ([x] stands

for the greatest integer not exceeding x); (iii) the
asymptotically extreme case where k+», n»» but k/n+0. 1In
Section 3.1 the limiting distribution of Dk,n is obtained in
all three cases for the exponential population. For a general
parent, the discussion is limited to the first two cases.

In the extreme case, by use of the results of Lamperti (19€64)
and Hall (1978), possible nondegenerate limit laws for

(D -a )/bn are given under the assumption that (Xn:n-an)/bn

k,n n

has a nondegenerate limit law. The asymptotic distribution
of Dk,n in the quantile case can be obtained through several
different approaches. Apart from the direct approach, one can
use the results of Stigler (1974) and Boos (1979), since

Dk n is a linear function of order statistics. It turns out
¥

that the asymptotic distribution of Dk n properly normalized
¥



h quantile of the parent

is normal if and only if the (l-p)t
population is unique.

Some degenerate limit laws for Dk,n are considered in
Section 3.5. We establish some necessary and sufficient
conditions for the existence of sequences of constants ¢

. P . . )
and dn such that Dk,n c, 0 and Dk,n/dn 2. The discussion

n

owes much to de Haan {(1970). An almost sure result for Dk,n
is also given which requires F to be continuous. The last
section investigates how the above asymptotic results apply
when the parent distribution is normal, a situation of great
practical importance.

In Chapter IV we extend the resuits on nondegenerate
limit laws for Dk,n obtained in Chapter III to the situations
when some of our basic assumptions are violated. Also, an
application of asymptotic theory to testing for outliers is
discussed. When p and ¢ are unknown and are estimated by the
sample mean X and the sample standard deviation S, the

;B

z (X. . _-X)/S, the

asymptotic distribution of ﬁk =k~ i:n
i=n-k+1 )

/D
sample selection differential is obtained. A similar exten-
sion is made to the case where the Xi's are independent, have
the same first two moments but are not identically distributed.
Section 4.5 considers two examples to show that these results
may or may not hold for dependent samples. In the last

section the problem of ocutliers is discussed and the use of



the asymptotic theory for constructing approximate percentage
points for Dk,n when sampling from normal population is
illustrated. Some comparisons of different asymptotic ap-
proaches are presented in the light of empirical percentage
points obtained by Barnett and Lewis (1978).

We turn to the induced selection differential (D[k,n]) in
Chapter V and develop both finite-sample and asymptotic
theory. Nondegenerate limit distributions of D[k,n] are ob-
tained in both the extreme and quantile cases. Using a result

due to Bhattacharya (1976) we derive the asymptotic joint

for the quantile case. The

édistribution of D{k,n] and Dk,n

last section is devoted to the study of D[k,n] in the simple
linear regression model. This model is often used in
biological selection problems and D[k,n] is referred to as the
"response to selection" in these applications.

The last chapter deals with two miscellaneous problems.
First, we show that the asymptotic distribution of
(xn:n-an)/bn,..,(Xn_k+l:n-an)/bn in the extreme case is the
same as the distribution of the first k lower record values
from one of the three extreme value distributions. This
observation produces a new canonical representation for the
limiting random variables and can be used to give new proofs
of some asymptotic results due to Hall (1978). We then prove

a bivariate extension of Stigler's (1974) result for linear

functions of order statistics. This is applied to obtain the



asymptotic distribution of KHogg's (1974) Q statistic, a measure
of tail length. As another application, the asymptotic
distribution of a quick estimator of the regression coeffi-
cient in a simple linear regression model is obtained.

Some well-known results repeatedly referred to in the
text are collected in the Appendix for convenience and gquick

reference. Lemma Ai stands for the ith lemma in the Appendix.



II. SELECTION DIFFERENTIAL - FINITE

SAMPLE CASE
2.1. Basic Set-up

Let Xl’XZ””'xh be a random sample of size n from a

. . . . . . 2 . .
continuous distribution with mean p variance ¢~ and distribu-

tion function (df) F. Let X; . < X, . < ... <X . denote

the order statistics of this sample. Suppose we select the
n

top k X-values. Then k 1 z (xi_n-u) represents the average
i=n-k+1 )

difference between the selected group and the population

mean. This quantity expressed in standard deviation units

is called the selection differential and may be written as

1 B
D, (k,n) = z (X, ..-u)/oc. (2.1.1)
X k i=n-k+1 0

In a genetic context Dx(k,n) is often termed "in-
tensity of selection" (Falconer, 1960). For simplicity,
Dx(k,n) will be denoted by Dk,n from here on. We usually
assume that u and ¢ are known and without loss of generality
(WLOG) take p = 0, ¢ = 1. Wwhen p and/or ¢ are replaced by
X and/or S, the sample mean and the sample standard deviation,

the resulting quantity will be called the sample selection

differential. It will be denoted by ﬁk n if both u and ¢ are
’

estimated and by ﬁk o(0) if only p is estimated.
14



2.2. Distribution Function of Dk;n

P(D, _<x) =P( +X . <kx)

k,n xn-k+l:n+"’

@

=j_wp(x +'"+Xn:n5kxlxn-k:n=u)dyx (u)

n-k+l:n -k :n

From Lemma Al it follows

where F is the df of X

xn-k:n k:n

that given X . =u, X ;. i.n7°--rX,.n fOrm the order

statistics from a random sample of size k from the d4df Gu

given by
r0, t<u
G, (t) =4
F(t)-F(u)
—I:FTET——y t>u.
Hence,

X (k)
P (D) ,<x) =f G, ’ (kx)dF, (w), (2.2.1)

- n-k:n
where Gék) is the k~-fold convolution of Gu; that is, the df
of the sum of k independent identically distributed (iid)
random variables (rvs) each with d4df Gu' As is evident from
(2.2.1), there is no closed form expression for the df of
Dk,n' in general. However, in the case of the exponential

distribution, an expression for the probability density

function (pdf) of D, , can be given as discussed below.
’
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Example 2.2.1:

Let

1-e X x>0
F(x) =
e, xio.

This is the df of an exponential rv with mean unity and
hence the rv involved will be called Exp(l). From Lemma A2,

one obtains,

n / z
Men = % iin-k+lxi:n g E£ N H%T Feoot il?
+zn'$l+...+i—n (2.2.2)
where Zi's are iid Exp(l) rvs. Hence,
Mk,n d 23 te..+ 22 0+ Z*/k
where 2% & Exp(i;Y), A; = (n-i+l) and z*, the sum of k iid

Exp(l) rvs, is Gamma (k,l), and are mutually independent.

Conseqguently,
£ (u) = J £ (u-x) £ (x)dx.
Mk,n o Z3+---*25 4 Z*/k

From Feller (1966), p. 40, problem 12, it follows that

n-k =i, (u-x)

= 1
fore. . 4z  (WX) = A1*2'""::1-1:[5_21 *i ,n-x® 1

1 n-X

u-x>0
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where
-1
Therefore,
n-k u -Ai(u-x)
ka n(u) = Aqhpee rx iilvi'n-kjoe
k
k ~kx k-
. TE:TTTve X ldx
k n-k -A.u
_ k i
= weDTM 2 M-k EY¥5 nex®
i=1
u x(A.-k) ,_
. J e 1 xk ldx, u>0.
0

For a given k the integral can be evaluated explicitly

and hence an explicit expression for the pdf of Dy 1 is

I 4

available, since Dk,n = (Mk,n-l)'

2.3. Bounds on the Sample Selecticn
Differential

Let x; <X, p<...<x .. be the order statistics from an
observed sample Xyr¥yreeosXp . Mallows and Richter (1969)
n
have established sharp bounds for Vi = k-l z X. . , which
i=n-k+1 *°0
is the sample selection differential except for a change of
location and scale. Their Corollary 6.1 (p. 1931) states

that
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X + (n;k) S_<v <X+ 3}:—]‘ s (2.3.1)
/n-1
2_1 %8 -2
where t = max(k,n-k) and s™ = I z (xi-x) so that
i=1
s? = B_ g2, Assuming that S#0 (i.e., x;'s are not all equal),

n-1
we obtain

x 1. VKX _ A ik /o-1
T =D, S Y

These bounds are sharp.

2.4. Bounds on 8Dk n - Cauchy-Schwarz

14

Technique
1 1 3 .2
Since y = 0,0 =1, [ F “(u)du = 0 and j [P " (u)]"du = 1.
0 0
n 1l n
1 J 1 n!
eD == Z ex. =] [ ¢ = —
ke K i_oppe1 30 Jg iopeper® (-1} i(n=1)l
cur - isF (wyau
1 = non-1, i-1 n-i ;. 2. ,1/2
0 i=n-k+1°
1 1 ..2..1/2
{J [F " (u)]"du} ,
0

by the Cauchy-Schwarz inequality. Hence,
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®Dx,n < U7 7T, L 57> - 1}77°. (2.4.1)
i,Jj=n-k+l (i+j-2)

Of course, 8Dk n > 0. Equality in (2.4.1) is attained if and

14

only if (iff), for some constant c,

n

Flw = el : Gherta-w P g, (2.4.2)
i=n-k+1
n 1. i-1 s
First we note that for k<n, Z (g_l)ul (l--u)n 1
i=n-k+1

represents the df of (n—k)th order statistic from a random
sample of size (n-1l) from %(0,1l) distribution, that is,
uniform distribution over (0,1). Hence, the right hand
side (RHS) in (2.4.2) is increasing if ¢>0 and consequently
there exists an F satisfying (2.4.2). For thisF, 8Dk,n
is the bound given in (2.4.1). However, a closed form

expression for such an F is not possible. But, since

1
Mrtwi2au = 1,

Jo
n-1, ,n-1
m2 1 n (1) G.7) -1/2
c = {(E AT z >5=73 - 1} .
i,j=n-k+1 (., .7,)
J i+j-2

Also, F 1(0) = -c and F +(1) = c.(n-k)/k. Hence, this

extremal F has bounded support, and is nonsymmetric.
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Remarks:

1. The above technique has been employed for finding
bounds for 8Xj-n' 1<j<n in David (1970, p. 51) where it is
ncted that the bounds are attained only wnen j=n. But,
in the case of the selection differential, or equivalently
in the case of the average of xn-k+l:n""xn:n the bound is

attainable for all k.

2. Let h(X) and g(X) be two functions of a rv X where
eh(x)1% and elg(X)1% are finite. Let eh(X) = 0. Then
sharper bounds can be obtained for €h(X)g(X) by using the
Cauchy-Schwarz inequality for &(h(X)-2h(X)) (g(X)-2g (X))
instead of the given expectation even though the two
integrals are essentially the same. This procedure would
yield a tighter bound than the one obtained by direct applica-
tion cf the Cauchy-Schwarz inequality.

.3. We can obtain sharper upper bounds for EDk,n as-
suming a symmetric parent distribution and using similar tech-
nigues. The Cauchy-Schwarz inequality applied to some
orthonormal systems can be used to obtain tighter bounds and
approximations for 8Dk,n‘ These would closely follow Section
4.3 of David (1970, pp. 54-57) and are omitted. But, some

nontrivial extensions of his Section 4.4 are possible and we

pursue this in the next section.
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2.5. c-Comparison and s-Comparison

Let § be the class of all dfs which have positive con-
tinuous derivatives on their supports. If F and F* are in
5 then we say that Fé F* iff F*-lF is convex on I, the
support of F, and in such a case F is said to c-precede F*.

Van 2Zwet (1964) has shown that if Fé.F*, then

= 9 oL 4 *
:(8Xr:n) < F \8Xr:n) (2.5.1)
for allr=1,2,...,n, and for all n for which 6xr-n and

8X;.n exist (see David, 1970, p. 60). We assume that both F
and F* have finite variances. Since c-ordering is independent
of location and scale, WLOG we take both F and F* to be

standardized dfs.

From (2.5.1) we have
g(eXr:n) < 8X§:n, r=1,2,...,n

-1 . .
where g = F* “F is a convex function on I. Hence,

1 n n
z 3 gex, ) <z = exs . (2.5.2)
®i=n-k+1 PR T X jopogsr 10

w

n

Let Y be a rv which takes wvalues 8xn—k+1:n""'8xn:n
with probability 1/k each. Since g is a convex function on

I and these expectations belong to I, we have, by Jensen's

inequality
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1 =
glg 2 €X;.n) = g(ey) < &g(¥)

Hence, we have

1 n
g(e(i z X
i=n~-k+1

)) <

-
II.M o]
Yo
‘8
]

i:n

n
<ex T Xt ). (2.5.3)
i=n-k+l1 ~°

Recalling that F and F* are standardized dfs it follows that

1 - )
g (€D ) <& I gi€x%. ) < &Df ,).
k.n kK o k+1 i:n k.
That is,
1 B
F(@D,_ ,) < F*(= I g(eX. . )) < F*(eD¥ ). (2.5.4)
k,n? — kK & on-k+1 i:n’’ — k,n

Again, from (2.5.1), we have

€Xpin £ 9 T@XZ )

Hence, proceeding on similar lines as above, and using
the fact thatg—l is concave, one obtains,
n

1
F(CDk,n) i F(E z

..l * . .
Z? (€XF..)) < F*(eDf ).  (2.5.5)

(2.5.4) can be used to give lower bounds for 8Di n whereas
r

(2.5.5) is handy if we are interested in an upper bound for
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8Dk’n. However, note that the intermediate bounds are not
easy to compute. If any of F and F* is not standardized, the
corresponding selection differential has to be replaced by
the average of the top k order statistics. 1In that case, one
does not even need the finiteness of the mean, just the
existence of expectations appearing in (2.5.4) or (2.5.5).
Applications: (i) c-Comparison with the %(0,1) d4f gives,
for any (standardized) convex F,
1 2 .
F(EDy n) < F(E .E (i/(n+1))) < (2n-k+1)/2(n+l);
’ i=n-k+1
for any concave F, the inequalities are reversed.
(i1) For a standardized &f F having increasing failure

rate, that is for which F'(x)/(1-F(x)) is nondecreasing,

we get
F(eDk,n) <1- exp(—BMkJn)

on c—-comparison with Exp(l) distribution. Here Mk n is as
4

given by (2.2.2) and hence

n+l/2 4
+ 1< f x "dx + 1
k+1/2

n

ey = 2

i=k+1

H

2n+l
lOg -Z—ETI‘F 1.

Consequently, F(&Dk n) < 1 - (2k+1l)/e(2n+l).
14
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(iii) For the standard normal parent with df ¢(x),
1/$(x) is convex. Hence, with F(x) = -1/x, x<-1 and F*(x) =
¢ (x), F-lF* is concave. Consequently, g = F*-lF is convex
since g is increasing and its inverse function is concave.
Also, note that F does not have a mean but 8Dk,n exists for
k<n. 8Xr:n = -n/(r-1), r>1 (David, 1970, p. 61) and hence
from (2.5.4) we have

1 2 -1
o(€Dg ) > e(p 2 6" ((i-1)/n))
! i=n-k+1
n-1
n 1
- k i=n-k *
That is,
n .
- - -
eng 2 f eThh > o ), k<n.(2.5.6)
! i=n-k+1 =1
nz 1
i=n-k

s—-Comparison:

Now, we consider a subclass 8 of symmetric distributions
in F. Let F(xo—x) + F(x0+x) = 1 for some X, and all x if
FeS. 1If F and F* are in 8, then F g F* iff g = F* °F is
convex for x>x0, xel, the support of F. From van Zwet (1964),

we have, whenever Fg F*,

g(ex_, ) < exx . (2.5.7)

:n
for all (n+l)/2 < r < n and all n for which 8X§_n exists

(see David, 1970, p. 63). We assume that both F and F* are
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standardized. Consequently, x0=0 and g(0) = 0. Now, noting
that 8Xr_n >0 for r> (n+l)/2 and that g is convex for x>0,
we get, on using arguments similar to those leading to

(2.5.3),

n
1
g(ep, ) < = g(exX; .} < epf ., k < (n+l)/2.
(2.5.8)

We now show that (2.5.8) is true even when k > (n+l) /2.

Since F is symmetric about zero, for k > (n+l)/2,

n n
1 2k-n 1
€D ==& Z X..) = —— "0+ I ex. .
kmo KTy _ke1 iR k K xep 1i:m
(2.5.9)
From (2.5.7), since k > (n+l) /2,
17 1 2
= Z g(€X. ) < z ex* . (2.5.10)
Kojoker 23R T K oy Tien

Define a rv 2 which takes values O, &Xk_;_l:n,...,an:.n
with probabilities (2k-n)/k, 1/k,...,1/k, respectively.
Sirnce g is convex on the support of Z, by Jensen's in-

equality, it follows that

n
2k-n 1
(<=2 .0+ © ex, )
k k i=k+1 1:n
< eg(2)
_ 2k-n . 1 2
-5 TR oz glex; )

i
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since g is antisymmetric about 0. ©Now recalling (2.5.9)
and (2.5.10) we conclude that (2.5.8) is true for

k> (n+l)/2 also. This is recorded as a theorem below:

Theorem 2.5.1:

If F and F* are standardized dfs in 8, and ngF*, then
. n
* (= * * =
P(&Dk'n) <F (k z g(&Xi:n)) <F (8Dk,n)’ where t

i=t
max (k+1, n-k+1l).
One can also show that

n
1 -1 .
F(ep, ) < Flg iitg (€x¥.)) <F*(eDf ). (2.5.11)

For nonstandardized dfs, the selection differential has
to be replaced by Mk n’ the average of the top k order
r
statistics.

s-Comparison of the standard normal df(F) with the

logistic distribution (F*), where F*(x) = (1 + exp(-x))-l,

-o<x<® shows that FgZF* (see David, 1970, p. 63) and hence

from (2.5.11) we have

o"Lrxiext ) < o

eD 5_%
t

k,n (Fx(eme ). (2.5.12)

[ B ]

i
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It is known from David (1970, p. 64),

r-1
exx = I il for r > (n+1)/2 and hence
: i=n-r+l -
1 n
8-* - - Zex*.
Mk,n k =t i:n
4 n-1 1
Iz, k=1
i=1
n-1 n-k
=é§»z T+ I, 1<x<} (2.5.13)
j=n-k+1 i=1
n-1 k
PR T- % T Feken
i=n-k i=n-k
\

on simplification.
Now we compare some of the bounds discussed so far when
the parent distribution is standard normal and the sample

size is 10. For this define the following:

1R
UBl = L o “(F*(eX* )) of (2.5.12)
k iot i:n

UB2 = Q-l(F*(eMi L)) of (2.5.12) where eM} _ is given
r r

by (2.5.13)
UB3 = Bound given by (2.4.1) using the Cauchy-Schwarz

technique.
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IB = 73 s

8Dk,n

by Teichroew (1956).

o3

t
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was computed using the table

Table 4.4 of

of expected values given

David (1970) was used to

é-l(igl), an improved version of the inter-

mediate bound of (2.5.6) which exploits the

symmetry of the normal distribution.

compute UBl. All these bounds and 8Dk,n are given for

k = 1(1)9, n = 10 in the following table.

Table 2.5.1. Bounds for 8Dk,n for n = 10
k 8Dk,n UB1 UB2 UB3 LB
1 1.53% 1.591 1.591 2.065 1.282
2 1.270 1.309 1.321 1.526 1.062
3 1.065 1.096 1.115 1.211 0.883
4 0.893 0.918 0.942 0.987 0.725
5 0.739 0.760 0.787 0.810 0.580
6 0.595 0.612 0.641 0.658 0.483
7 0.457 0.470 0.499 0.519 0.378
8 0.318 0.328 0.354 0.381 0.265
9 0.171 0.177 0.196 0.229 0.142

Of the upper bounds, the ones obtained using s-comparison
perform well in comparison with the one which uses the

Cauchy-Schwarz technique.

The lower bound is too low to
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be useful.

2.6. Dependent Sample Case

In this section we first consider bounds on the expec-
tation of any linear function of order statistics when the
variables are dependent and possibly nonidentically
distributed. While doing so, we improve a result due to
Arnold and Groeneveld (1979). Then, we discuss the case of
the selection differential.

Suppose xl'x2""’xn are possibly dependent rvs with

_ 2 <
and var(xi)— o5 - Let xl:n5x2:ni"'lxn:n be the

€X; =y
order statistics with u,  =8X, . Let X be the sample
n : :
mean and s =1 T (x.—i)z.
n . i
i=1l
n n
es® =1 rex,®-ex? <L rex?- (€n?
i=1 i=1
since Var(X) > 0
1 B 2 2 —2 -1 1
=7 I (ui + 05 ) - u°, where u== Eui = qui:n
i=1
n
1 2 A
i=1

and the equality holds iff X =constant almost surely (a.s.).

Also,

2 2

(u;, M2 = lex;, -B)1% < ex, %)
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and hence
-2 =2 _ 2y 2
i(ui:n-u) i ie(xi:n-x) = e(i (Xi X) ) = nés

where the eguality holds iff:xi_n-i = ¢; a.s. with Zc; = 0.

Hence, we have the following:

n n
L (mi-n-i)2 h nesz <z [Giz + (ui-f)zl . (2.6.1)
i=1 7 i=1

Arncld and Groeneveld (1979, pp. 220-221) have shown that:

n n
I (g, oM< o2+ (-
i=1 i=

and hence, for constants Ai, 1<i<n, that

2]l/2 211/2

[ZA  Quy, -0 | < [2GG-T) [Z(u;,-H)

2]l/2 l/2.

< 2T [Z(c,% + (u- )]

(2.6.2)

However, using the first inequality in (2.6.1), we obtain

13h; (s, -0 | < /A0 -D 2112 es?) /2 (2.6.3)

which is strictly better than (2.6.2) unless the sample mean
is a constant a.s. Also, if we start with ZAi(Xi:n-i)
instead of ZAi(ui:n-E), use the Cauchy-Schwarz inequality,
and take expectations at the end, we end up with still

better bounds. To be precise, consider
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P2 (X, =X = [20-0) (%5, -%) |
< 2004 022
= /n IZ(Ai-T)le/zs.
Therefore,
2h; (g o] o= fezrg (xy -0 < el xR
< /Ao -0 %s,
That 1is,
1235 (uy =0 | < VALZO;-D 21 %es. (2.6.4)

Noting that €s° > [&(s)]® we see that (2.6.4) gives a
sharper bound than (2.6.3), with equality of bounds
occurring only when s2 is a constant a.s. The only short-
coming of (2.6.3) or (2.6.4) is tnat we need to know 852
or &s in order to compute the bound. But, at the same time,
one can dispense with the knowledge of ciz's which are
needed in (2.6.2).

Finally, we consider a special case of dependence
where Xi's are uncorrelated. Then, it can be shown that

ne(s?) = zlt;-m? + 0,2 (@)
1

and hence (2.6.3) reduces to
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235 (g oD | < 120021 2 s~ %+ - o 5 12
indicating clearly the improvement over (2.6.2). The above
inequality is dealt with in Exercise 4.5.1 of David (1980).

Now we can assume that Xi's have the same mean p and
the same variance 02 and turn our attention to the selection
differential. Here, sharp bounds can be obtained by dealing
with (2.3.1), rather than appealing to any of the in-

equalities derived above. Taking expectations in (2.3.1),

we get

n
u o+ n;k . /Ei_.i 8(%- z lxi~n) <u +,/§§E-8s
n-1 i=n-k+ :

where t = max(k, n-k). Therefore,

n-k 1 ¢gs /oK es
max (k,n-k) —— 0 2eD p VT - (2.6.5)

Since the bounds in (2.3.1l) are sharp, these bounds are
also sharp. (A necessary condition is that s is constant
a.s.). If &s is unknown, the fact that €s < ¢ can be used
to replace the upper bound in (2.6.5) by Y (n=-k)/k. In

addition, if xi's are uncorrelated,

es < [es® = o/TB-DI/n

gives a slightly better upper bound, namely v (n-k) (n-1)/kn.

But, a good lower bound for €s/0 is not possible without

additional conditions on the parent distribution.
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III. SELECTION DIFFERENTIAL =~ BASIC

ASYMPTOTIC THEORY

In this chapter we investigate the asymptotic proper-

ties of Dk, . We derive nondegenerate limit laws for Dy n
as well as degenerate limit laws when k is a fixed integer and
when kK is a fixed proportion of n. Most of these results

do not require the basic assumption of continuity made in
Chapter II. More general results in this direction such as

when the 1id assumption is violated or when py and ¢ are

unknown: and are estimated by X and S, are reported in

Chapter 1IV.

3.1. Nondegenerate Limit Laws -
Exponential Case
As in Example 2.2.]1, let the Xi's be iid Exp(l) rvs.

£3n —
De.l.libe Sk’n xn-k+l:n +ooo+ Xn:n

= XX x+1:n Tt (k—l)(xn-k+2:n-xn—k+l:n)

+...+ 1(X )

n:n-xn—lzn

= kX + 2+ Zy 4.+ 2y 4, s2Y.

n-k+l:n

It is known that the 2.'s and X, -k+]1:pn are mutually inde-
pendent and Zi'bExp(l). Since u = 1, 0= 1 for the

parent distribution,
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S Z2,+Z,+...+2
_ Sk, oy L 1742 k-1 _
ko= (-1 =X + - 1).

(3.1.1)

We obtain the asymptotic distribution of Dk,n in the
following cases:

(1) k is a fixed integer and n+» (extreme case)

(1ii) k = [np], 0<p<l, and n+~ (quantile case)

(1ii) k-»» and k = o(n) (asymptotically extreme case).

Case (i):
It is well-known (see e.g., Galambos, 1978, p. 102)
that (xn—k+l:n-1°g n) converges in law to a rv Awhose
df is given by
k-1

F_(x) = exp(-e %) &
A i=0

e %/ i

(We will elaborate on this and related results later in

Section 3.2).

Also, zl+z2 +o..F Zk—l = B N~ Gamma (1,k-1l) and hence

£
D np-logn > A+ (B/k - 1)

where A and B are independent. The df of A + (B/k-1l) can

be written explicitly and is dealt with in Theorem 3.2.2.

Case (ii):
In this case (n-k+l)/n » 1-p = g, say. Let Eq be the
gth quantile, that is F(ga) = g. Here gq = -log p. &lso,

if XvExp(l), the conditional distribution of (X-a) given
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X>a is also Exp(l) for any a>0. Consequently, 8(X-£q[x>gq) =

1 and Var(x-gqlx>5q) = 1.

— : 2 _ -
Let Hp = 8(X]x>£q) and oy = Var(x]x>gq). Then
Hp = 8(x-gq[x>gq) TEg =1+ &g
and
2 = - =
oy = Var (X ;q[x>gq) 1.

Recalling (3.1.1) we have

Ly = ) k-1 = _
Oy ,n7¥p) = Fpoga1:n™8g) + (- Z™V

where Z, ; is the mean of the Z.'s. Therefore,

2
—_ k-1
-gq) + /‘E(zk_l-l) - —

= vk (X
3

/E(Dk,n-up) n-k+1:n

A, + B +C_, say.

By the Central Limit Theorem (CLT) for iid rvs, we have

vk-1(zZ,

<
x-1"1) > N(0,1) as n+

and hence
_/ kK . R=T(Z. .- £
Bn m k- (Zk_l l) > N(O,l).
Also,

Ch 2 0 since k=1 2.

From Lemma A3 it follows that

£
p‘/p'% (xn-k-l-l:n-gq) > N(oll)

since f(gq) = p in the Exp(l) case.
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Hence

N L jg ) /E(xn—k+1:n_€q)

£
+ N(0,p- %) = N(@,qg), as n »>=.

g

Since A, and B, are independent for every n,

Ly
Ah + Bn + N(0,1+qg)

and hence
/E(Dk,n-up) =R +B +C
S
+ N(0,1+qg).
Case (iii):
S Z.+...+2
k,n _ 1 k-1
% = *n-k+l:n T X .

Also, fyom Lemma A2,

E E E
) n-k+l _
Xa-k+l:n -7 T g=r *---t X~ Spr say

where Ei v Exp(l) rvs and are independent. Hence Sn is

the sum of independent rvs. Now,

Var(s.) = o2(s.) = 1 1722 (
R O S =

so that /Ec(sn)->l. Therefore,

1
- ﬁo

A
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-1)/i]%%6

1 n
.E 81(En-i+l

c(sn)2+5 i=k

245 . 2 1,246

. 1
- elzm P @ 1z L)
i= i=k i
, L -1-8/2
= c(kl+6"nl+6)(f -7
_ k,1+8 k,~1-8/2
- Sz a - 5
= c/kcs/2

+ 0, since k»» and k/n » 0.

Therefore, CLT holds for Sn (see

S_=-es $
n n
—37§;T + N(0,1).

Since /Eo(sr)~+l and

n
n 1
0 <8, - log = T (
€Sn and c(Sn) can be replaced by

respectively in CLT. That is,

/K (s_-log(n/k}) -1 N(0,1).
Also,

Byt oty g

/E (2 -1 3 x0,0

Lemma A4) and hence

éx . 3 L. 1
¥ Tisk * iska1?
log(n/k) and k /2,

-
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as in case (ii). By the independence of Sn and Zi's for

all n, we obtain

L
vk (D - log(n/k)) = N(0,2).

k,n

Section 3.2 is concerned with the extreme case, that
is case (1) where k 1is a fixed integer and the sample size
n approaches infinity, for a general distribution. Sections
3.3 and 3.4 deal with the quantile case, that is case (ii),
in general. 2 we shall see later, the absence of the special
properties enjoved by the exponential distribution makes our
proofs longer and more involved. The asyvmptotically extreme
case, where k>~ with k/n+0, for an arbitrary distribution
is not pursued in this work.

3.2. Nondegenerate Limit Laws -
Extreme Case

Suppose that there exist constants a,s and bn>0 such

that for a df F,

P((X,,,73,) /b < X) = F" (a +b x) »G(x) (3.2.1)

as n>»®, where G is a nondegenerate df. In such a case, we
say that F is in the domain of attraction of G and we
write FeD(G). Gnedenko (1943) has shown that G can be one
of the three types of distributions Qa’ ?a and A, and has

derived necessary and sufficient conditions for F to be in



33

D(G) in each of the three cases. F need not be continuous
for (3.2.1) to hold. Appropriate sequences a, and bn which
would facilitate convergence, are also known. Of course,
the maximum from a given df F, need not have a nondegenerate
limit distribution, whatever the normalization.

Lamperti (1964) has shown that if (3.2.1) holds, then
for each k>1, the vector ((xh:n-an)/bn’ (Xn-l:n-an)/bn""'
(Xp-k+1:n"2n
(Tl,TZ,...,Tk) which again can be only one of three types.

)/bn) has a limiting joint distribution of

In this situation Ty has one of the following distributions:

0, x<0
9o (Xik) = _ k1 i
exp(~x ) X x /il!, x>0, o>0 (3.2.2a)
i=0

k- .
exp(-1x]%) T [x|%/il, x<0
?a(x;k) = i=0
1 , x>0, a>0 (3.2.2b)

A(x:k) = exp(-e %) £ e **/i!, ~w<x<o (3.2.2¢)

Dwass (1966) gave the joint pdf of (Tl’TZ""'Tk)'
Hall (1978) has provided a canonical representation of the
stochastic process {Tk, kzl} in terms of exponential rvs.
First we use this representation to obtain the possible
limiting distributions for Dk,n' Later we sketch a direct

proof without using his representation. In Section 6.1,

we take a closer look at Ti‘s to discover that they are in
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fact, lower record values from Qa’ WQ or A.

Lemma 3.2.1: (dall, 1978)

I1f FED(QG), then

exp{al z 3 + vy~ Z fl}’ n>1 (3.2.3a)

j=n j=1

lle}}

T
n

- 2D

£ FaD(?a), then

© Z.-1 n-1

T, = T(Z) d . expi{- l[ z SEEENSY Yy - Z L]}, n>1
n L 3 i=1 3 -
J=n J (3.2.3b)
If FeD(A), then
0 z2.-1 n-1
T = Té3) g8 3 d_+y- 1 % m1 (3.2.3c)
j=n  J j=1 7
0
where 2.'s are iid Exp(l) rvs and I 1/j 1is interpreted
j=1
as zero.

As usual, we take y = 0, 0 = 1. Suppose (3.2.1) holds.

Then we know that

X n 3 Xn-k+1:n 23n, £
(_—_E_—_ recey ) ) > |

n n

k
. _1 _ . .
Since (Dk,n an)/bn = E-izl(xn_i+l:n an)/bn is a continuous

Tl,...,Tk).

function of the above components, it is immediate that
(D )/b : T.+ T =
k,n 2n’%®n > | 1te--t k)/k = Ygr S8Y

Hence we will try to f£ind the distribution of D, using (3.2.3).

As we shall see later, only in the A-case can the df and pdf
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of Dk be found explicitly.

If FeD(éa), using (3.2.3a) we have

T

=3
i

eXP(Zi/ia)

i i+l
and hence
k-1 z. k-l Z.
T, +...+ T (l)(exp(l z —1) + exp(— z elq
1 k k 3~1 3 3=2 3j

VA
1 “k-1
+.0.F exp(a —E:I) + 1)

— (1)
=T (1Y VY, bk Y, el Y )

vhere Yj = exp(zk_j/a(k—j» is a Pareto rv with parameter

a(k-j). That is,

P(Yjﬁp) =1-u a(k—J), u>l.

Also, note that Tél), ¥Yyre--,¥_; are mutually inde-

pendent. One can obtain the df of Yle...Yj either by in-
duction or from Feller (1966, p. 40, Problem 12}, recalling

the relation between Pareto and exponential rvs. It turns

out that
_ Lkl 3 (1) j ~a (ki)
i=1
u>1l, jik—l.

However, this is of no help in the evaluation of the df of

Dk.

If FeD(?a), the situation is essentially the same as
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d (2)
above, and Tl Feoot Tk = Tk (1 + Yi + YiY; Fooot Yiyg...

. -1
* —
Y,_l), where Y; = Yj .

If FeD(A), it follows that

2. Z. Z. Z

- _1 _ _ i i+l k=1
T, =17+ T = -7 *F 33 %t Tt %
and hence that
(3)

Feeet Ty = Zi+Zy Feoot Zy o + KT

173
Hence Dk Q A + B/k where B v Gamma (1,k-1) ané A has the
df A(x;k) and A and B are independent.

The above discussion leads to the following theorem.

Theorem 3.2.1: If (X —a,l)/bn has a nondegenerate limiting

n:n

distribution, then (Dk n—an)/bvl converges in distribution
r -

to a rv Dk where

4 g m(l)
(1) D = T7 (1 + ¥ + ¥ ¥, 4o+ Y, k-1)7%

if FeD(@a) (3.2.4a)
(ii) D d T(z)(l + ¥Y* + y*y* + + Y* Y* .)/k

k k 1 1-2 "°°~° 1°°° k-1

if FsD(Wa) (3.2.4Db)
... d (3) .
(iii) Dk = B/k + Tk if FeD(A) (3.2.4c)

where Yi ~ Pareto (a(k-i)), Yg = l/Yi, B v Gamma (1,k-1),
and ('), i = 1,2,3 have the dfs given by (3.2.2a), (3.2.2b)

and (3.2.2c) respectively. Furthermore, the rvs on the RHS
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in each of the three cases are mutually independent.
The next result provides the df, pdf and the charac-

teristic function of Dk when FeD(A).

Theorem 3.2.2: If FeD(A), then (Dk -a_)/b_ converges in
,A “n’/"n

law to a rv Dk with the df, pdf and characteristic function
given by (3.2.5), (3.2.6) and (3.2.7), respectively:

k-1 kol 73 u-x, -u(k-3) k-2

(=4
=X e -
Fk(x) = &=277 ;E 3T j exp(-e u,
=0 0
(3.2.5)
k>2, —o<x<e
k-1 o
_ k -kx _ u-x, k-2
fk(x) = =D T R=2)T © Joexp( e Ju~ “du, (3.2.6)
k>2, =o<x<e
itD .
k _ I'(k-it) , k k-1
¢ (t) =¢e = (=) . (3.2.7)
Dy T (k) k-1t
Proof:

The pdf of B/k in (3.2.4c) is

k-1

since B v Gamma (1,k-1). For k>2,

p(1i3) + B/k < x)

P(Dkix) Xk

J P(1°) < x-u[B/k = wf(uw)du
0

J P(Té3) < x-u)f(u)du
0 p
(3)

since Tk and B/k are independent. Now, recalling (3.2.2¢)
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and substituting the pdf of B/k, we obtain

k-2 = k-1_-3 (x~u)
k e ~ku_ k-2
P(Dy<x) = TE:-i-)--i-joexp(-exp(u-—x))jio———-ﬁ-———- e TTu “du

kk-l kgl e ~X3

k- = -u(k-3j) k-2
(k-2)! 5=0 3T u” “du,

J exp (-exp (u-x))e
0

-eo(x<co_

This establishes (3.2.5). Differentiating Fk(x), after
several cancellations, one obtains fk(x) as given by (3.2.6).
Direct derivation of the pdf using a transformation is

also easy.

. .o (3) )
1tD itT (t/k)B
¢Dk(t) —ee K=ee K .ge” &
_ I'(k-it) (1 - ig)-(k-l)
T (K) k
since
. (3)
1tT ® .
ee ko 2 TE%ITT [ ettXe kX exp (-exp(~x))dx

(pdf comes from (3.2.2c))

1 ® - it-1
BRCTISE f ¢
* o

r(k-it) /T (k).

Therefore, ¢D is given by (3.2.7), and hence the proof
k

of the theorem.
Some percentage points of Fk for k<5 are given in

Table 3.2.1 below. Fl(x) = exp(-exp(~x)) yields these points
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directly for k=1. For k>2, the integral in (3.2.5) was
evaluated using the IMSL DECADRE subroutine and increasing
the upper limit of integration until the increase in the
calculated value was insignificant. Dr. W. Q. Meeker

provided an efficient iterative algorithm to obtain the

solution of Fk(x) = p.

Table 3.2.1. Values of €k b = Fgl(p) for some selected p

« 0.50 0.95 0.99
1 0.366513 2.970195 4.600149
2 -0.037107 1.799911 2.812969
3 -0.334556 1.154068 1.932540
1 -0.565820 0.714566 1.363627
5 -0.754310 0.384305 0.949440

Table 3.2.2a exhibits fk(x), for x = -2.50(0.25)3.50
and Table 3.2.2b lists the modal points and corresponding

fk values for k = 2,3,4,5.



Table 3.2.2a.
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Values of fk(x) for some selected x

y k 2 3 4 5
~2.50 .00012 .00023 .00044 .00084
-2.25 .00131 .00248 .00463 .00835
-2.00 .00814 .01484 .02626 .04454
-1.75 .03163 .05506 .09180 .14518
-1.50 .08513 .14050 .21885 .31983
-1.25 .17187 .26675 .38481 .51509
-1.00 .27683 .40065 .53055 .64470
-0.75 .37319 .49933 .60162 .65794
-0.50 .43708 .53594 .58248 .56847
-6.25 .45784 .51003 .49582 .42840

0.00 .43877 .44029 .37977 .28830
0.25 .39157 .35103 .26659 .17656
0.50 .32996 .26216 .17404 .09988
0.75 .26541 .18549 .10692 .05285
1.20 .20555 .12546 .06239 .02641
1.25 .15432 .08171 .03485 .01256
1.50 .11292 .05155 .01875 .00573
1.75 .08089 .03164 .00977 .00252
2.00 .05651 .018586 .00495 .00107
2.25 .03945 .01116 .00245 .00044
2.50 .02700 .00645 .G0119 .00018
2.75 .01827 .00367 .00056 .00007
3.00 .01225 .00206 .00026 .00003
3.25 .00815 .00114 .00012 .00001
3.50 .00539 .00063 .00005 .00000
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Table 3.2.2b. Modal points of the distribution of Dk when

FeD(A)
k max fk(x) mode
2 0.45784 -0.25
3 0.53603 -0.49
4 0.60494 -0.68
5 0.66705 -0.85

Figure 3.2.1 describes fk(x) for k=2,...,5. Aall
these four distributions are positively skewed and as k
increases the pdf becomes more peaked.

Now we sketch briefly a direct but long approach which

also proves Theorem 3.2.1. To fix the ideas we assume FeD(A)

since the remaining cases can be handled by means of a

transformation.
n X.. . -a
P( g _l;%%_ﬂ.i x)
j=n-k+1 n
n X.. . -a X _ -
= IP( s J.g n < x| n k+i.n n _ )
j=n-k+1 n n
- dF _ (u)
(Xn—k+1:n an)/bn

which can be written, following the approach leading to

(2.2.1) as

(k-1) ,
G (x-u)dFr (u)
I n,u (Xn-k+1:n"2n)/Pn
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K=2
K=3
o K=4
© K=S
a

X+ p0O

é.50

Figure 3.2.1. Probability density function of Dy for k =
2(1)5, when FeD(A)
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where 6 ¥~1) stands for the (k-1) -fold convolution d4f of

14
0, =x<u

G (xF _
n,u F(an+bnx) F(an+bnu) ou
L l—F(an+bnu) _ -

. n
Since F (an+bnx) + exp(-exp(-x)), n[l-F(an+bnx)]-+exp(-x)

for all x. Consequently,

0, u>x/2
G, ,x-u) ={ p(a +b_(x-u))-F(a_+b_u)
’ ? nF +b_u) : r BE/2
- F(a +bu -
0, uwx/2
> Gy (x-w) = U~ (x-u) as mr-
That is ey ’ uix/z
0, u>x/2 ©
G _(x-u) = { -l
u 1-e~ (X Zu), u<x/2.

For a fixed x, l-Gu(x-u) and l-Gn'u(x—u) both behave as
continuous dfs as functions of u, the former being the limit
of the latter as n»»w. Since l-Gu(x—u) is continuous, the
convergence is uniform (Lemma AS5). Hence, from Lemma A6,

it follows that

f[l—Gn,u(x_u)]dF(x

(u)
n-k+1:n"2n’ /Pg

> f[l-Gu(x—u)]dFTé3)(u).

Hence, we have shown that
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n
P( L (X.. . -a )/b_<x)
j=n-k+1 7% BT
(k-1)
{G (x-u)dr (u
Jj n,u (X, x+1:n"3n) /2y )

> fc‘k'l’(x-u)dp (3.2.8)

()
u (3)
Ty

when k=2.

Also, for a fixed u, Gn’n(x—u) behaves as a df con-
verging to a continuous df Gu(x—u) as a function of x.
Hence, the convergence is also uniform in x. We had earlier
shown that convergence is uniform in u for a given x. Using
these facts inductively, one can show that for j>2 Gé?&(x-u)-+
Géj)(x-u) as n+»» with uniform convergence in u for a given
X (and the same in x for a given u). An appeal to Lemma
A6 would then complete the proof of (3.2.8) for k>2.

Now, note that if Y has the df Gu, Y = u+Z, where

Z ~ Exp(l). Hence,

(k-1) ;o\ — _
G, (x-u) = P(2;+2, +...+ Z; _; < x-ku)

with independent Zi's and consequently

lim P(k(Dk'n—an)/bnix)

>

= fP(Zl+Z2 teoot 2, 4 <X —ku)dPT(B)(u)
k

+ kTé3) < Xx).

W

P(2,+Zy +.o.¥ 2y g

(Zy+...42,_1) /k + 703

yta

Hence, (Dk,n-an)/bn
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which is (3.2.4c).

Remarks:

Had we conditioned on X _. . instead of X -k+l:n I

the above discussion we would have ended up showing that

g (3)
(Dk'n--an)/bn > (2942, +...+ 2 ) /k + Tl

which in view of Hall's representation (3.2.3c) is equiva-

lent to (3.2.4c).

3.3. Nondegenerate Limit Laws -
Quantile Case

Here we assume that k = [np], 0<p<l where [ ] is the
greatest integer function and derive the asymptotic distribu-
tion of Dk,n appropriately normalized, as n+~. In Section
3.1 it was shown that for the exponential parent distribution,
the limiting distribution is normal. Now we will show
this indeed is the case in a fairly general set-up. In
the next section, using different approaches we derive all
the possible limiting distributions.

Let F be absolutely continuous with pdf f and let Eq
be the qth quantile with f(iq) # 0. Also assume that the
(2+6)th moment exists for F. Let up and cp be the mean and
the standard deviation when F is truncated below at gq.

Then, as we shall see in the following steps, it follows that
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< 2 2
M) > N(O, o7 + qlu =8 )") .

vk (D D

k,n" p

Step l: From Lemma A3 (due to Ghosh, 1971), we have, as

nN»x,

Yk,n = (Xn_k .n¢ )/5_ f(& ) £ + N(0,1). (3.3.1)

Let €>0 be given. Then there exists a constant ¢ such that

jd@(u) < €/8 (3.3.2)

[a] > ¢
. . <
where ¢ is the standard normal df. Since Yk n~ N(0,1),
14

there exists a positive integer Nl(e) such that for all

n>Nl(€)
f dFY (u) < e/4. (3.3.3)
k,n
lul>c
Step 2:

Fix x and consider

vK(D, _=u_) Sy pku
PR TR ¢ =fp(kr_n_z>_ix[yk JSwdF,  (u).
P /EGP ' kln
(3.3.4)

From Lemma Al, given Y =u, S is distributed as the
k,n k,n
sum of k iid rvs, say Aj having mean HEF (u )’ standard
I
n

deviation OF (u ), where F = 1-F, u, = gq + /pq/n-u/f(Eq),

and df
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0, x<un
Hn,u(x) = F(x)-F(un)
T-F(ay) * Z'n°
Define Zj,n = (Aj,n-uflun))//i U§Yun)’ j=1,...,k.
{Zj ar J=1ltok, n= 1,2,...} isa double sequence of inde-
14
pendent rvs, Z. _'s being iid for a given n. ¢&2Z. =0
X 5 J.Z J.n
and I o7 (2. n) = 1.
=1
2+6
ela, n "F(u )]
: 2468 Js n . . th
€iZ. nl = < » since (2+§) moment
I K 1+6/2  2+8

of"(un)

exists for the parent distribution.

248
el z. ]2+6 kelAj,n-uf(u )l 1
.1 —_— = n N 372 + 0 as
2 1+8/2 1+8/2 2+96 k
(Zo (Zj,n)) k UF(un)

n+<, Hence, from the CLT (Lemma A4), it follows that,

given Yk,n = u,

Sk, n"KHF ()

2 3 N(0,1). (3.3.5)
/E Uf(un)
Step 3:
1 foo _ 1 Jco _
= wdF(w) = u + F(w)dw.
F(u) F(u) ‘u F(u) ‘u
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Therefore,

u - = (un-E ) +
5 F @ 7 Fa)
F(un) F(iq) F(u )’u

F(Eq) g
F(g )-F(u ) =
= (u ~§) + ——o Jf F (w) dw
T Fup)Fe) g
n
- 2 f F (w)aw -
F(u)) Eq

From the Mean Value Theorem of Integral Calculus, there
exists a Vg between €q and u, such that

u
f I F(w)aw = (un-gq)F(vn) .

*q

Also

fg F(w)dw = p(up-iq).

g
Hence ,
(p_-€ )
U= U (u_-€ ) {1+ —=2-Z
F(un) F(€q) n °g F(un)
FEFey  Foy)
un-aq flun)

That is,
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Kuz yHEe ) =l —= =

Flag)FEP  Flvy)

un_aq F(u))
e Frry { Bot g 1}
. - >0 |
-’qugq) 11 + D (Eq) as n

Therefore,

/E(uf(un)-up) -~ /g u(u,—g,)  as me. (3.3.6)
Steg 4:

- S, .~kuz o= YKuz,., y=u.)
sk,n ku27= k,n F(un) F(un)+ P(un) P
Iof g °
/K Y vk oﬁ(un) P o)

From (3.3.6) and the fact that o= + 0_ as n»» it follows

F(un) P
from (3.3.5) that given Yk n = U

- ] ‘/— (1! -
Senkdp g YA ul-E)
o 4
p

Yk o
b

N( 1).

That is, for a fixed x,

Now we will show that the convergence is in fact uniform in

u. For this, first note that P(S; , < x|X ., =u is a

continuous decreasing function of u for every n, for a fixed
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= u) 1is a decreasing

x. Hence P(sk,n < ku_ + x/k cp]xn

P -k:n

continuous function of u. Also, u, is an increasing con-
tinuous function of u and consequently, Hn(u) is a de-
creasing continuous function of u. The limit function

®*(u) = ¢ (x-/q u(u -gq)/co) is also a decreasing continuous

p
function of u. Hence, we have a sequence of uniformly
bounded decreasing continuous functions Hn(u) converging
to a derreasing continuous function ¢*(u) on [-c,cj. Then

it can be shown on lines similar to the proof of Lemma AS,

that the convergence is uniform in u.

Step 5:
Hn(u)-+¢*(u) uniformly in ue[-c,c], from Step 4.

+9. Then, from Lemma A6 we conclude that
k,n

Also, FY

c c
J Hn(u)dFY (u) - f o*(u)dod (u).
-C k,n -C

Hence, there exists an integer N3(€) such that for n>N3(e)

C c
]f Hn(u)dFYk (u) - j{ o*(u) dé(u) | < e/2. (3.3.7)
-C 3ol -C

Step 6:

For n>N(eg) = max(Nl,Nz,N3),



51

==}

(u) - J o* (u)do (u) |
n

-0

]f-mHn(u)dFYk,

[ ©
<) Hjwdry (@) - ex(wad(u)]

J-c k,n -C

+ f dFY (u) + f d ¢(u)
[u]>c k,n |u]>c

< €/2 + €/4 + €/8
from (3.3.7, 3.3.4,

< e and 3.3.2).
Hence,
S ~-ku
k,n ""p © up_-£_)
lim P(————— < X) =f o(x - /a—g-i)dwu)
n-+o vk cp - o)
for all x.

The RHS is the df of W; + Wz/a(up-gq)/op where W, and W, are

N(0,1) rvs. Hence, we have shown that

2
YK(D, _-u_) S, _~ku_ ¢ qlu_-¢_)
};’n P = /}:'n P -> N(or 1 + _——_p 2q )o
k
P op op

This will be stated as:

Theorem 3.3.1:

Let the parent df F be absolutely continuous and have
finite (2+<S)th moment. Let its pdf be positive at gq,
the qth quantile. Then for k = [np], O<p<1,

g 2, g2
/(D k) 3 N0, 0 + q(u-E)) (3.3.8)



52

where y_ and ¢ 2 are the mean and variance of the distribution

obtained by truncating F below at Eq.

3.4. Alternative Approaches in the
Quantile Case
Several approaches are available for finding the
limiting distribution of Dk,n in the quantile case, since it
is a linear combiration of order statistics with a smooth
weight function. These approaches besides being more general,
have fewer concditions than demanded by Theorem 3.3.1. How-
ever, the proofs involved are more complicated appealing to
deeper results in the literature. We examine two of them,
and make some comparisons among all three approaches. Finally,

we make use of a result on the trimmed mean, due to Stigler

(1973), to give the most general version of Theorem 3.3.1.

Boos' Approach (1979):

Let us introduce a weight function J on (0,1) and define
n i/n L
T = I ( J J(u)du)X, _ = JF- (t)J(t)dt
B i=1 (if1)/n i ’

where F_ is the empirical d4f. Let u(J,F) = IF-l(t)J(t)dt

and

qt) = [e-t)1%7% o0<s<1/2. (3.4.1)
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Lemma 3.4.1: (Boos, 1979, p. 958)

Let J be bounded and continuous a.e. Lebesgue and

a.e. F-l, and let {q(F(x))dx < o, Define

J

GZ(J,F) = fjJ(F(u))J(F(V))[F(min(u,V))

- F(u)F(v)ldudv (3.4.2)

and assume that 0 < GZ(J,F) < o, If the parent df is F,

then
< 2
/H(Tn - u(J,F)) > N(0, o7 (J,F)) (3.4.3)
and
/ﬁ(Tn-u(J,F))
lim sup = 1 with probability 1.
e 6% (3,F)log log n (3.4.4)
The J function for the selection differential is
1, u>q
J(u) = (3.4.5)
0, u<qg.
This J is bounded and is also continuous a.e. F © if Eqr
the qth quantile of F, is unique. We assume this from here
onwards.
n i{n
T = T 1 J(u)dulX.; .
B i=1 (£-1)/n 1:n
= S n/n if np is an integer
= Sk'n/h'i-(np—[np])xn_k:n/n if np is not an integer.
Hence,
S IX l
k,n n-k:n
| T, = < 5

and consegquently /H(Tn-sk n/h) 4 0 since, gq being unique,
14
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?

Xn-k:n - Eq (Smirnov, 1952, p. 12). Therefore,

/sy /a-u(3,F)) = /(T ~u(J,F))=/n(T -5, /n)
would have the same asymptotic distribution as

/E(Tn-u(J,F)). That is

S
/I_l( kr'ln - U(JIF)) i N(O, GZ(JIF)) (304-6)

using (3.4.3). We now prove the following lemma.

Lemma 3.4.2:

For the J function given by (3.4.5), when Eq is unique,

u(J,F) = pu_ and
P (3.4.7)

2 2 2
( ) p Pq(up €q)

P
where p_ and cp2 are the mean and variances of the df G
given by
(F(x)-q)/p, ngq
G(x) =
0 ’ x<£q.
Proof:
-1 1.
r(J,F) = JF (£)J(t)dt = j F ~(t)dt
® q
= f udf (u)
Eq
e pou .

P
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From (3.4.2) we have

UZ(JIF) = f f [F(m.in(XrY)) - F(X)P(Y)]dde’
Eq Eq

F(min(x,y)) - F(X)F(y) = (F(min(x,y))-qg) - (F(x)-q) (F(y)-q)

+ q(p=(F(x)-q) - (F(y)-q))
PG (min (x,¥) ) -p G (x) G (y) +pq (1-G (%) -G (y) )

over the regisn of integration.

plG(min(x,y))-G(x)G(y) J+pg (1-G(x)) (1-G(y)).

Hence,

GZ(J'F) = pJJ[G(min(x,y))-G(x)G(y)]dxdy

[ -] =]
+ PQI [1-G(x)]ldx - J [1-G(y)ldy.
Eq gq
The first term is pcpz from a well-known representation

for the variance due to Hoeffding (1948). Also,

-]

o = f xdG(x) = -J xd[1-G(x)] = &§_ + f (1-G(x) )dx
P Jg £ 94 Jg
q q q

and hence

(-~}

ng(l-c(x))dx = (up-Eq).

Therefore, we obtain

2 2 2
J,F) = + pg(u_-
o ( ) pcp (up Eq)

which completes the proof.
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Prom (3.4.6) and (3.4.7) it follows that

S kY
v’ﬁp(—%ﬁ - W) > N(O, o2 (3,F)), or

Sk,n

/75 (s

< 2 2
- N(O, + u_-& .
up) + N( cp q(Ap gq) )

P
This implies that S, n/np > uy and hence

S. S, S
—"k,n _ “k,n; /np X,np P 4. -
np| k np ! = [np]i np | 0 !upi =0 as m=.

Also, vYnp/Yk - 1 and hence combining all these we conclude

that

S
k,n < 2 2
/E(k_. - up) = /E(Dk,n-up) -> N\O, UP + q(up-gq) ) -

Hence, we have proved Theorem 3.3.1 under fewer assumptions,
namely we have now assumed that gq is unigue instead of the
much stronger assumption of absolute continuity and non-
zero pdf at Eq. However, as the following lemma shows,

the existence of the (2+6)th moment for some §>0 and the

existence of jq(F(x))dx for some 0<6<1/2 are equivalent.

Lemma 3.4.3: The following statements are equivalent:

A. f|x|2+6dF(x) < » for some §>0

B. {(F(x)(l-F(x)»l/z—éldx < » for some 0<§'<1l/2.
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Proof: (a) :[ 2T0GF (x) <

0

= x?*S(1_F(x)) + 0 as x+ .

Therefore,
x(2+6) (1/2—6')(1-5‘(}{))1/2-6"’ 0 if o' < 1/2.

That is

178 (1-F(x))1/%78" 4 0 where 5* = §/2 - 6§' - 28" > 0

if &' < 8/(2(6+2)).

1/2-8' _

Hence, if 6' < §/(2(8+2)), then (1~F(x)) = o(—%) &
X

X»>o

In other words, g(F(x)) = o(_T%E;)’ X+o,
X

«© «©
. dx ..
Since fl ;IIFT < «, we have qu(F(x))dx < o, Similarly,

by looking at the negative real axis, we obtain
-1 1
f g(F(x))dx < =, Also, f g(F(x))dx, being a definite

-3

integral, is finite. This concludes the proof of the

fact that A=>B.

Now B implies

-]

(i) fo [1-F (x)]/%78"

dx < =,

and
0

(i1) J [F(x)]

-0

1/2—6'dx < o,

Let 1-G(x) = [1-F(x)1Y/%7%". G(x) is a df and from (i)
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J [1-G(x)]ldx < =,

0
Also
1-G(x) > 1-F(x)
since
% -5 < % <1 and 0<1-F(x)<1.

_R]1
Hence, G(x) < F(x) < (F(x))>/27%", which in light of
0
(ii) implies that J G(x)dx < =,

It is known that for a é&f H, JlxidH(x) is finite iff both

0 )
J H(x)dx and f [1-H(x)]dx are finite (see problem 18, p.
-C0 0
49, Chung, 1974).

Therefore, we conclude f}x[dG(x) < ® and hence

x(1-G(x))»0 as x»~. That is

x (1-F(x)) /278" 5 ¢
-1
or in other words x(l/z—S) (L-F (x))>0 as x>, (3.4.8)
Now, (3 - 817 = o = 2#287) 5 5(14257) since 0<26'<1.
1-45"

Therefore,

_v-l ]
x(l/2 §') > x2+45 , for x>1 and consequently from

(3.4.8) we have

248" 1_r(x)) - 0.

Eence if 6<4§°,

2t (1-F(x)) » O. (3.4.9a)
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Also, since

) _ 1
and
w -
J T75% < » for 8§*>0, it follows that
1l x
[ 1+6 .
j X (1-F(x))dx < « whenever §<4§°'. (3.4.9b)
1
(3.4.9a) and (3.4.9b) together imply that e(x7)?"® < » for

6<48'. Now taking G(x) = [F(x)]l/z-s , and proceeding on

lines similar to the above discussion, we can show that

gx")°*S<w. Hence e|x]?* cw.

Stigler's approaches:

To begin with, we state an important result due to

Stigler (1974) for which the parent df F need not be con-

tinuous.

Theorem 3.4.1: (Stigler)

_ 1
Let Sn = 7 Z J(n-i—l)x :n
i=1
where the weight function J is bounded and continuous a.e.

F-l. If the population variance is finite,

(1) 1lim ncz(sn) = CZ(J,F), where cz(Sn) is the variance
n->

of S, and cz(J,F) is given by (3.4.2)
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.. 2 Sp=€S,
(ll) If o (J,F) > 0, —O_-zgn—)'* N(O,l)
P 2 1/2
(iii) Suppose further that | [F(x) (1-F(x))] dx < «
and that J(u) satisfies a Lipschitz condition with index
a > 1/2 except possibly at a finite number of points of

F measure zero. Then

/E{(esn-u (J,F)) - 0

where u(J,F) = JP-l(t)J(t)dt. Consequently

/I_I(Sn"l-'(JrF)) i N(ol 02 (J,F)).

The above three parts appear as Theorems 1, 2 and 4,
respectively in Stigler (1974). However, his proof of
Theorem 4 was later discovered to be incomplete. But re-
cently Mason (1979) has been able to prove it without any
additional conditions by connecting S, to the statistic
Tn introduced earlier.

For the selection differential with p = 0, ¢ = 1, the
J function, given by (3.4.5) satisfies the Lipschitz condi-
tion also along with other conditions if gq is unique.
Consequently, if [[F(x)(l--F(x))]l/‘?dxw° and gq is unique,
then (3.3.8) holds. Of course, as was done in the Boos
approach, one has to show that /H(Sk’n/n - Sn) 14 0, which is
not difficult. Also, recall that GZ(J,F) was computed in
Lemma 3.4.2. Hence, we can replace the assumption of the

finiteness of the (2+6)th moment by a milder assumption that
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{ [F (x) (1-F(x))1>/%dx is finite. But, this is stronger

than just assuming finite variance. Now, Theorem 3.3.1,

with these relaxed conditions can be restated as -

Theorem 3.4.2:

Let J[F(x)(l-F(x))]l/zdx be finite and &q be unique.
Even when F is not continuous, (3.3.8) holds.

Finally, we use an asymptotic result by Stigler (1973)
for trimmed means, since Dk,n is essentially a trimmed mean,
all the trimming being done on the left side. On examining
the bivariate rv with Dk,n and the number of sample points
less than the (nonunique) qth guantiie as its components, and
proceeding exactly as in his paper we obtain the following
result. In fact, our case is simpler than his, because there

is only one-sided trimming here.

Theorem 3.4.3:

Let a = sup{x: F(x) < g} and A = a - inf{x:F(x) > q}.

Then as n-c,

R e
(D )~ Y, + (a—up)Yz - A max(O,Yz) (3.4.10)

k,n Fp

2 . .
where Yl'bN(O, cp ), Yz'bN(O,q) and Yl’ Y2 are independent.

Remarks:
Stigler's (1973) approach would require finite opz,
but our basic assumption ¢ = 1 ensures this. Hence, we

have imposed absolutely no more conditions than our basic



62

assumptions. 1In fact, the results in this section are not
limited to continuous distributions.

(ii1) If A =0, a= gq, the unique quantile, and
(3.4.1G6) reduces to (3.3.8).

(i1) when gq is not unique the asymptotic distribution

of is not a normal distribution.

Dk,n
Before closing this section we investigate the case

when X is not exactly [npl but is fairly close. To be

precise, when vn(p-k/n) +c, a constant, we find the

asymptotic distribution of Dy -

14

Theorem 3.4.4:

If /n(p-k/n) »> ¢, when ¢ is a finite constant, then

< c
Dy ) 3 NEligmEg), o

2 2
+q(p_-£_)7)
5 P °9

P
if Eq is unique.
Proof:

WLOG we take k # [np] always in the proof.

n-k
- = X.._ if k<[npl.
“tnp) n "%k jin—[nn]+l jin E K<lnp]
Aence. ([np]_k)xn'[npl+l=n 2 Smpl,n ~ 5k,n

i ( [nP] "'k) xn-k -n°



63

Therefore,

% < x S [np] ,n"5k,n

n-[npl:n = “n-[npl]+l:n — [np]-k —“n-k:n’

if k<[np]-

Similarly,

X < Sk’n-s[np]’n < X if k>[np]

n-k:n — k-[np] — “n-[np]:n pl.
Hence

S -S
. k,n “[npl,n
mln(xn-k:n’ xn—[np]:n) < - k-[npl]

X ) .

< max (X

n-k:n’ “n-[np]:n

. . P, P .
If Eq is un:.que,X:n_k:n gq and xn-[inn. Eq (Smirnov,

1952, p. 9).

Therefore,

S -S
k,n “[npl,n
k-[npl] * gq

and consequently as n-»,

S, .-S S, _-S
k,n ~[npl,n k,n “[npl,n k-Inpl M2, /5
= — —- - P-
/K k-[np] J/a /; q
(3.4.11)
Now
/K(Dy p-uy) = (sk’n—kup)/fi
_ Sk,n”>[np] ,n + [DPI(S{npl,n -
JE Jk [npl] P

+ X (Inpl-k)u
/K P
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where the first term converges to -aqc//ﬁ in probability
from (3.4.11), the second term converges in law to
N(O, © 2 + q(up-éc)z) and the last term tends to

P
cup//§ as n+». Hence,

2

£ 2
/E(Dk'n-up) - N(c(up-F,q)//L_), o5 * q(up sq) ).

Note: This does not hold when Ec is not unigque except
when ¢ = 0 in which case one obtains (3.4.10). This is be-
cause even1:'.h.ol.1gh:»(n_k:rl does not converge to any value in
probability it would be bounded in probability. Then

¢ = 0 ensures that (Sk ) //k converges to zero in
14

n-s[np],n
probability.

3.5. Degenerate Limit Laws

Weak laws - extreme case:

Following Galambos (1978, p. 206) we start with two

definitions:

Definition 3.5.1:

A sequence ofrvs{Yh} is said to satisfy an additive
weak law (AWL) if there is a sequence of constants {a }

such that Yn--an i 0, as n*®. We write (Yn, an) obeys AWL.
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Definition 3.5.2:

A sequence of rvs {Yn} is said to satisfy a multiplica-
tive weak law (MWL) if there exists a sequence of nonzero
P
constants bn such that Yn/bn > 1. We say (Yn, bn) obeys

m.

We will examine conditions under which Dk n obeys AWL

r

or MWL. We do not need the continuity of F in this

LA

. - -1 . .
section also. If X, = F (1) is finite, then Dk,n X

(in fact a.s.ly) and hence (Dk n’ xo) obeys both laws

except that when Xy = 0, MWL does not hold for (Dk n’ 0).

But MWL for Dk n in this case will be the same as AWL for
r

—log(-Dk n) which has upper bound +«x. Hence we take

’

X, = and obtain some necessary and sufficient conditions,
and some sufficient conditions for AWL and MWL to hold.

First, we state an interesting lemma.

Lemma 3.5.1:

Let k be a fixed nonnegative integer, 7>0 and {p_} a
sequence of real numbers with 0<pn<l. Then
k : k 3

z Gp l1-p "7 5™ 2
j=0 7 3=0

-

ot
'™

iff np_-T, finite or infinite.
The proof can be found in Leadbetter (1978, p. 55),
where only 1>0 is considered. The same arguments hold when

7=0 and +« and when 7t=0 or +» the RHS is interpreted as 1 or
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0, respectively.

Theorem 3.5.1:

Let x = +=. Then for k, any fixed positive integer,

' an) obeys AWL iff (Xn ' an) obeys AWL.

(Dk,n tn

Proof:

Suppose first that (Dk n’ an) obeys AWL. Then

{O, x<0
P(D <a_+x) - (3.5.1)
k,n="n 1, x>0.
X-k+l:n < Dk,n <%
_.n
P(X.pS8,tx) = F(a +x) >0, x<0 (3.5.2)
and
e 3 n-j
P(X _x41:ns3pF%) = jio(j)[l-f‘(an-*-x)] [F(a_ +x)] >1,

x<0. (3.5.3)

Now fix x>0 and let P, = l-F(an+x). Then (3.5.2) implies
that
k-1

z
3=0

: : k=1 3
n 3,4 n-j - 0
(j)pn (1 pn) -1 e 50 3T as n-o,

o

J

Hence, from Lemma 3.5.1, we have np = n[l—F(an+x)] -+ 0 as

n+»o, That is, F(an+x) = 1 + o(l/n) so that

n
no(l/n)) ¢ _ 1, for x>0.

Fn(an+x) = (1 + = >e

Hence, we have
n 0, x<0 from (3.5.2)
F (an+x) <+{ (3.5.4)
l, x>0 from the above line.
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Therefore, (xn:n’ an) obeys AWL.

Now, to prove the converse, suppose that (3.5.4) holds.

Again, observing that Dk,n < Xn:n

x>0. For x<0, letting P, ~ 1-F(an+x), we see that (1-

we have P(Dk'n§;n+x)->l,

npn/n)n + 0. Therefore, np_+ +», By Lemma 3.5.1, we would

then have

k-1

P(X <az+x )y = Z

Ny 3 kep (P73
n-k+1 :n33n j—O(j)pn (k=p.) + 0, for x<0.

X <D would then imply that

n-k+l:n—"%,n

P(D ian+x) - 0, x<0.

k,n

This proves that (3.5.1) holds. That is, (Dk n’ an) obeys

AWL.

de Haén (1970) has obtained several necessary and suf-

ficient conditions for (X ’ an) to obey AWL (see pp. 119-

n:n

120). He has shown that if (Xn ’ an) obeys AWL, a, can be

:n
taken to be a_ = inf {x|1-F(x) < 1/n}. As a consequence of
his results and in view of Theorem 3.5.1, we have the fol-

lowing result.

Theorem 3.5.2:

Let X, = . Then the following are eguivalent:

a. There exists a sequence of constants a, such that

(Dk n’ a,) obeys AWL.

, -
‘Dk,n' an) obeys AWL.



68

c. 1lim lz—i%-gi)- = 0 for all x>0.

>0

d. J [1-F(t)]dt < +» and lim &(X-x[X>x) = 0.
0 X+

Theorem 2.9.4 of de Haan (1970) gives a sufficient condi-
tion for (Xn:n’ an) to obey AWL which also holds when Xn:n
is replaced by Dk . We do not state it here formally
r’

n
except to mention that the sufficient condition is that
F' exists for large x and F'(x)/(1-F(x)) » += as x»».

For the MWL for Dk,n’ the following fact (see de Haan,
1970, p. 120) establishes an important relationship between
distributions obeying AWL and MWL and consequently trans-
forms every result on AWL into a corresponding result on
MWL:

- > * *
xn:n from df F has AWL iff xn:n from df F* obeys MWL,

where

F* (x) ={

6, x<0
(3.5.5)

F(log x), x>0.

However, to exploit the above relation and relevant results

of de Haan (1970), we need the equivalent of Theorem 3.5.1:

Theorem 3.5.3:

’ bn) obeys MWL iff (X bn) obeys MWL.

(Dk,n n:n’

The proof, being similar to that of Theorem 3.5.1, is omitted.
Now, if F and F* are related as given by (3.5.5), from

Theorems 3.5.1 and 3.5.3 and the statement preceding (3.5.5),
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we have
(Dk,n, an) has AWL <=>(xn:n, an) has AWL

_ * * _ * *
<;xxn an) has MWL<;>(Dk’n, an)

:tn’
has MWL.
This relation leads to the following result (cf. de Haan,

1970, p. 116):

Theorem 2.5.4:

Let X, = +o. The following are equivalent:

a. There exists a sequence of constants a, such that

(Dk,n’ an) obeys MWL.

b. (Dk,n' a ) has MWL where a_ = inf{x|[1-F(x) < 1/n}.

. 1-F(tx)
c. lim = 0 for all x>0.
Eoreo I-F(x)
d. J [1-F(t)]dt <= and 1im X 3{‘”‘) = 1.
0 X+

de Haan (1970) has given two sufficient conditions for
Xn:n to obey MWL, one obtained as a parallel to the suf-
ficient condition for AWL mentioned earlier and the other
in terms of the domain of attraction to A (see p. 117).

The latter, in view of Theorem 3.5.3, leads to our next

result.

Theorem 3.5.5:

If FeD(A) and xo = 4o, then (Dk,n’ an) obeys MWL.
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An almost sure result - extreme case:

Unlike the preceding results in this chapter, the
following theorem is applicable only to a subclass of con-

tinuous distributions.

Theorem 3.5.6:

Let F be a continuous df with

1im (1-F(t))/t = 4, finite or infinite

£t
Then

Dk,n  a.s 1 . . .

loé = =3 - Tog a’ where k is any fixed integer.
Proof:

(1-F(£)) /" » @ iff t/[-log(1-F(t))] + 1/(~log d) = c,

say. From Nagaraja (1978), it then follows that

X .
n-j+l:n a.s. .
Tog & c, j=1,2,...,k.

This implies that Dk n/log n &-3- c, completing the proof
’

of the theorem.

Quantile case:

Equation (3.4.4) implies that when k = [np], and gq is
unique, Dk,n 2-3- “p and hence also in probability if the
(2+6)th moment is finite. In fact, it provides a much
stronger result of iterated logarithm for Dp o+ In view of

14

b4 . .
Theorem 3.4.3, Dk,n up even when Eq is not unique.



3.6. Concluding Remarks

This chapter deals with asymptotic results for Dk,n
in the iid situation when y = 0, ¢ =1 (i.e., both parameters
known). An important point is that no major result here
except for Theorem 3.5.6 required continuity of F. Hence,
even if our assumption of continuity for F, as mentioned in
Section 2.1 does not hold, these results are still applicable.
The next chapter deals with more general situations when u
and/or ¢ are estimated, and with certain non-iid cases.

Before closing, we will examine the implication of the
above results when the parent population is standard normal,
to illustrate their applicability.

When k is fixed, since ¢eD(A), (Dk,n-an)/bn“g» B/k + T, )
of (3.2.4c) and hence its asymptotic df is given by (3.2.5).
It is also known that one choice of a, and bn is (see

Galambos, 1978, p. 65)

a_ =+V2 logn -~ (log log n + log 47w)/2/Y2 log n
and

b = 1//2 Iog n. (3.6.1)

n

A more detailed study of (a) the choice of a, and bn and (b)

approximate percentage points for D is postponed to the
k,n

next chapter.

When k = [np], from Theorem 3.3.1, we have



By 2
KDy pug) > N0, oy p °g

where pp and cpz are given by

= 2 _ oy -
bp = 0(E)/p and 0" = l-p (umEL). (3.6.2)

Here ¢ represents the standard normal density.
Burrows (1972, 1975) has tabulated up and opz + q(up—gq)2

for several values of p.

As far as the degenerate limit laws are concerned,

since (Xn nt Y2 Tog n) obeys AWL (see David, 1980, p. 321),

so dces (D, ., v2 Tog n). The pair also obeys MWL.
’
From the well-known fact that
1-0(x) =x6(xI[1+ 01, x+o
X ;7 r r

it follows that

-log(l-¢(x)) _ log x
x T X

log /77 _ 1log(1+0(1/x°))
X X

-+

N

> ® as X > «»,

Hence ¢ = 0 in Theorem 3.5.6 and therefore Dk n/log n 3s%- 0.
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IV. ASYMPTOTIC THEORY - EXTENSIONS AND

APPLICATIONS

In Chapter III we assumed that our sample is a random
sample from a distribution with known first two moments.
Now, we relax some of these assumptions and examine possible
limit laws for Dk,n' or its estimate both in the extreme
and in the guantile case. In the extreme case, we give suf-
ficient conditions which ensure the validity of Theorem
3.2.1 for ﬁk,n’ obtained by replacing u and ¢ by their
best sample estimates X and S. In the quantile case, our
approach allows us to obtain the limiting distribution of
5k,n(o)' where ¥ is estimated by X and ¢ is assumed to be
known. The independent nonidentically distributed situation
is also dealt with in both the cases. Limit laws for Dk,n
in some special dependent situations are also discussed.

The last section deals with the application of the asymptotic
theory in the construction of percentage points for Dk,n’
which is of use in testing for outliers.
4.1. Asymptotic Distribution of ﬁk .
in the Extreme Case !
We now suppose that M and 0 are estimated by X and S,

A
and find the asymptotic distribution of Dk n =
14

n
x 1z (xi.n-f)/s. Since the distribution of D,  does
i=n-k+1 : !
not depend on u or o, we take u = 0, 0 = 1 WLOG. We assume
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that there exist constants ay and bn > 0 such that

(xn:n

-a,) /b_ has a nondegenerate limit law as n>=.

In a

series of lemmas we show that if an//H b +~ 0, then ﬁk n
14

also has one of the nondegenerate limit laws established

in Theorem 3.2.1. In our discussion 52 is the unbiased

: 2 . -1 2
estimator of ¢~ given by (n-1)

i=1

Lemma 4.1.1:

2
L (Xi—X) .

If an//ﬁ b - 0 then a_(1-S)/b 2 0 as n+=.

Proof:

an bn
P(|g=(1-s)|>e) = P(|1-s] > [=]¢)
n n

e(1-s)2

| A

b
n 2
(lg;le)

by Chebychev's inequality. Now, esz = 02 = 1 and
_ [n 1 -

€s = o-T [0+O(ﬁ')] (Cramér, 1946, p. 353)
It follows that

e(l-s)2 = 1-2es + es?

= 0(1l/n).
Therefore, from (4.1.1) we have
. a, 3, 2 ne(1l-s)?
lim sup P(|g—(1-S)| >€) < lim] [<-
n-o n n-+o yn bn €

= 0 for all e>0.

That is, a_(1-S)/b_ ®o.

(4.1.1)
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Lemma 4.1.2:

If (xn-n—an)/bn has a nondegenerate limiting distribu-

tion, then a_/Yi b ~ 0 iff X _ //A b, 2o.

Proof:

. £
We know that (see Section 3.2), (Xn:n--an)/bn - Tlr

P .
a real rv and hence (X . an)//ﬁ b, > 0; that is,

P
(Xn:n//ﬁ bn) - (an//ﬁ b)) =+ 0.

P .
Therefore, (Xn:n//ﬁ b)) >0 iff an//ﬁ b + 0.

Lemma 4.1.3: If (Xn_n-an)/bn has a nondegenerate limit

law and X___//E b_ % 0 then 1//A b_» 0 if x = rFl) is

nonzero.

Proof:

We consider each of the three possible limiting dfs
G, separately.

(i) G = @a: Here xo = +» and one can take a, = 0,
b = §(1-1/n)- Hence, /n b -« and consequently 1/v/a b, ~0.

(ii) G = ?a: One can take a, = x < +o, bn = xo-g(l-l/n).
Since Xn_n//ﬁ bn 2 0, from Lemma 4.1.2 it follows that
xo//H bn+ 0, where Xy is assumed to be nonzero. Therefore,
1//n bn->0.

(iii) 6= A: a = €(1-1/n) " and b = &(X;-a, [X;>a; ).
If X is finite proceed as in (ii). If X, = +o,

X .n//8 by o implies that F" (/@ b €) +~ 1 as n»e for any
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positive ¢ and hence /n b€ + +=. Therefore, 1//n b~ 0.

Note:

The above proof does not assume anything about u, even
its existence. Lemma 4.1.3 has been proved by Berman (1962)
assuming u = 0 in which case xo>0. Hence, the above

result is, in a sense, more general than Berman's.

Lemma 4.1.4:

Let FeD(G) and have zero mean and finite wvariance.

Then X/b_ o iff 1//a b, » 0, as n+e.

Proof:
— £
WLOG, take ¢ = 1. Then vn X - N(0,1). Hence, if

1//n b +0 then iybn = vn X/v/n b ®o. Conversely, if
—/bn P

consequently P (vn §<:/Hlbnl€) + 1. Since v/n X converges

0, for a fixed positive e, P(iklbn]e) + 1 and

in law to an unbounded rv, one can conclude that
/a|b_le »= or 1//n b -~ 0.
Now we are in a position to answer the main guestion of

. £
interest. We have assumed that (Xn:n-an)/bn > Tl. We are

interested in knowing whether

S - an) M Tl'
Since S 13 1 (recall that o = 1), the above convergence is

eguivalent to
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. n:n
Y - B -> Tlo
n
Theorem 4.1.1:
Iy
Let (xn:n-an)/bn > Ty and let 0 = 1. If an//ﬁ bn-» 0,

<
then Yn-rTl.

Proof:

v
3 % '
We show that Yn -> Tl'

y' = Xh:n"3n _X + a, (1-s)
n b b b
n n n
and hence
o - Xn:n-an _ an(l-S) _ g_
n b - b b_ °
n n n
Now
a Lemma 4.1.2 X .
n_ 50 <==> n:m_ % 0
/n b /n b
n n
Lemma 4.1.3 1 > 0
= /I b
n
Lemma 4.1.4 =
<= 1)'5_ -120.
n

Also, from Lemma 4.1.1 it follows that an(l-S)/bng 0. Hence,

Yx'l-(xn:n-an)/bn ®o. Using Lemma A7 with k=1, the result

now follows.
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Remarks:

(i) Berman (1962) has proved this result but our argument
is new. Further, Berman's approach tacitly assumes the
finiteness of the fourth moment since he uses the fact
that /n(l1-S) is asymptotically normal to show that

ap(l--s)/bn 2 0. Our approach does not require this assump-

tion.
(ii) The proof of Theorem 4.1.1 involved showing that
v _ )% . v o w1 P .
Yn (Xn -n an)/b > 0. Since Y Y = Yn(l s)y/s » 0, it
follows that Yn - (X - n-an)/b E 0. Repeating this tech-

nigue we will show that, if an/ n n -+ 0, then
Yj - (X 3 n—an)/b 0, where Yj = ((Xj:n-x)/S—an)/bn,
j =n,.0.,(n-k+1).

Define Yé = SYj. Then

¥! - (X, _-a)/b_=a_(1-S)/b_ - X/b_ % 0 if a_s/A b_~+0.

3 j:n "n
< P
Therefore, Y3 - Tj and hence (Yj-Yﬁ) = Y%(l—s)/s > 0.
Consequently,
- - 2o 4= - -
Yj (X j:n an)/b 0, 3 n,n-1,...,n-k+1. (4.1.2)

This fact is used in establishing the following result.

Theorem 4.1.2:

Let the parent df F be standardized and let FeD(G).

If an//ﬁ bn-+0 as n+», then

Iy -
I = Gpeeeer¥pgen) > (TprTyre- 0 Td 21
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where Tj's are as described in Section 3.2, and Yj =

((Xj_n-X)/S-an)/bn-

Proof:
kY

If (xn:n-an)/bn - Tl' then from Lamperti (1964), it

follows that
X -a X -a
_ n:n n n-k+l:n “n, <
Xy = (—p—— ,eeus =) > I. (4.1.3)
n n
- 4

From (4.1.2) and Lemma A8 we have Zn En 3'9. It now
follows from Lemma A7 and (4.1.3), that Xn-* T.

Corollary 1l:

Under the conditions of Theorem 4.1.2, .

A £
k(Dk -a_)/b_ =+ (T1+T2 +...+ T, ). Hence, if an//ﬁ bn + 0,

,n °n n
Theorems 3.2.1 and 3.2.2 continue to hold when Dk n is
n 4
~ A —l -—
replaced by D , where D =k z (X, .. -X)/S.
k,n k,n j=n-k+1 LD

Corocllary 2:

If o(=1) is known and ﬁk n(0) is defined to be

x1 s (X

i=mrk+1 ~
is replaced by D, (o) if 1/v/n b > 0.

i:n—i)’ Theorems 3.2.1 and 3.2.2 hold when Dk,n
Lemmas 4.1.2 and 4.1.3 indicate that an//ﬁ bn+ 0
implies that 1/v/n b_+0 for a standardized df. The con-
verse statement does not seem to be true. Hence, it appears
that conditions imposed in the theorem when ¢ is unknown are
stronger than those imposed in Corollary 2, where o is

assumed to be known.
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4.2. Asymptotic Distribution of D, . in the

’

Independent, Nonidentically
Distributed, Extreme Case
If we relax the assumption of identical distribution of
Xi's, but retain the independence assumption, the asymptotic
theory developed in Section 3.2 holds with some additional
assumptions. This is possible because of the extensions
of Lamperti's (1964) results by Weissman (1975) to the
case of independent but nonidentically distributed variates.
Using Weissman's Theorem 3 we conclude the following:
Let Xi's be a seguence of independent rvs. For

t>0 define
Mn (t) = Max{ (xl-an)/bn' (xz-an) /bnr ceesey (X[nt] -an)/bn} ’

if [nt] > 1 and Mn(t) = -o if [nt] < 1. Suppose that there

exists a family of dfs {Gt, t>0}, not all identical, such

that
P(Mn(t) < x) > Gt(x) for all t>0. (4.2.1)
Then
X -3 X -a
n:n n n~k+l:n “n, &£
( bn 7°e°y bn )+(T11T21°--.'Tk)

as in the iid case. Hence, if we assume that the Xi's
have common mean gero and common variance unity and that
(4.2.1) holds, then Theorem 3.2.1 holds for these independent,

not necessarily identically distributed Xi's.
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4.3. Asymptotic Distribution of ﬁk n(o) in
the Quantile Case !

Assuming that o is known and k = [np], 0<p<l, we derive
the asymptotic distribution of the sample selection dif-
ferential ﬁk"(c). Since the discussion here follows
closely Stigler's results discussed in Section 3.4, we
briefly sketch our steps omitting routine details. The
distribution of ﬁk,n(c) does not depend on u and o, and
hence WLOG we take p =0, 0 = 1. Then

n n-k

A 1 s . 1
D (c) =5 I X. _-X=z I (-p)X..
k,n kK jon-x+1 1°0 ki1 i:n
n
+ Z aX. . .
j=n-k+1 178
Hence, pDk,n(O) =n izfnl/n+l)xi=n = Sn, say, where
-P, Uu<g
J(u) =={ .
9, u=>g

We assume that gq, the qth quantile of the parent distribu-

tion is unique. Then, one can show that /H(pﬁk NG

s) 5 o. Also, J is continuous a.e. F 1 and satisfies a

n
Lipschitz condition with a>1/2. Further, we assume that

2

J[F(x)(l—F(x))]l/de is finite. From Theorem 3.4.1, it then
£ if 0<o” (J.F)<o»,

e

N(0, F(I,F))

5\

(Sn_ U(J,F) )
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where
1 -1
u(J,F) = j J(u)F “(u)du
0
1 1
= j FL(u)du - pj 1 (w)au
aq 0

= pup, since u = 0,
and cZ(J,F) is as given in (3.4.2).
Dividing the region of integration into four subregions,

viz.,

{x<Z _, y< , 1X<E_,y>E_1, >, y< , >, y>
{x<€, v €q} X<E,y2E ) {X_sq Y §q} {X_Eq y_Eq}

and using the approach employed in Lemma 3.4.2 one obtains

2 - 2 2 - 2
’ = + + -
" (J,F) pq(poq + qcp (puq qup Eq) )

on simplification. Here Eé and 5&2 are the mean and the
variance of the df G* given by

F(X)/ql xig
G* (x) ={ q
1, xX>§

q
and u_ and cp2 are as described in Lemma 3.4.2. cz(J,F)
is indeed a finite positive quantity. Now, recalling that

/H(pﬁk n(c) -Sn) E 0 and that k = [np], we have proved the
I

following result.
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Theorem 4.3.1:

Let gq' the qth quantile of the parent df F, be unique

and J[F(x)(l-F(x»]l/zdx be finite. Then

2

o < -2
/E(Dk’n(c)—up) +> N(O, q(poq + Qo

2 \
+ (P°q+qup‘5q) )) (4.3.1/

where u_, © 2 v, 0
p’ p " "g’" “¢q

are as described above.

The quantities up, ﬁé, u and cpz, Eéz, 02 satisfy the fol-

lowing relations:

= + qu
WS PH, g

2 2 2 -2 - 2
o° = + - + +(u_~ .
p(op (up u)7) q(oq (uq u)7)
Since we have u = 0, ¢ = 1, it follows that Eé = -pup/q,
qEéz = l—pop2 - pupz/q. Hence, the limiting variance in

(4.3.1) can be written as p + (q-p)cp2 + q(up-Eq)Z -
2pu“(up-£q); that is, the limiting variance of

vk ﬁk'n(c) can be written as a function of Mo opz and Eq.
From (3.3.8), we know that the limiting variance of vk Dy n
is ¢ 2 + q(up-gc)z. Hence the limiting variance of

P

vk Dk’n(c) is smaller than that of vk Dk,n iff
2

2
+ - [o] -2 - <
P + (g-P)o, PH, (y=Eg) < o7,

that is, if

2
cp + up(up £q) > 1/2.
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From (3.6.2), for a standard normal parent, opz + up(up—gq)==l
and hence in this case Var(vK D, _(5)) < Var(v/k D, _)
k,n k,n

asymptotically.

Note:

One can show that, when ¢ is also replaced by its

estimate S,
JE(B, - ed, (o)/s)) ~ N(0,q(po. 2+qo_+(ph_+qu_~£_)2)
k,n k,n 3 g P g P g

whenever Eq is unique. However, our approach does not
permit us to replace the stochastic centering quantity

(Eﬁk 4 (9)) /s by a nonrandom quantity.

4.4. Asymptotic Distribution of Dk n in the

’
Independent, Nonidentically Distributed,
Quantile Case

We start with Stigler's (1974) Theorem 6, which forms
the basis of our discussion of the asymptotic theory for Dk,n
when the variables involved are independent, not necessarily
identically distributed.

For each n>1, let Xln'XZn""'xnn be n independent rvs
with (possibly different) dfs FinrFonre--rFop where the Fin's
are arbitrary dfs. Let Xl:n Leo.< xn:n denote the order

_ln

z J(i/(n+l))Xi: .

statistics of this sample and define S, =n n
i=1
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Theorem 4.4.1: (Stigler)

Suppose that there is a df G with associated rv Y such
that ey’ is finite and whenever y < M, Fyp(y) < Gly) and
whenever y > M, an(y) > G(y) where M is some constant.

Assume that both

N R
I1im I .E an(x) = F(x) (4.4.1a)
n-+o j=1
and
1 n
l_i£ Y _El [an(min(x,y)) - an(x)an(y)] = K(x,y)
n 3= (4.4.1b)

exist for a.e. x, y wrt Lebesgue measure. Then, if J(u) is
bounded and continuous a.e. F_l, ncz(sn) -+ GZ(J,F,K), given

below, and if cz(J,F,K) > 0, then

)
/A (s -es_) + N(0,0%(J,F,K)) (4.4.2)
as n-ow, Here

GZ(J,F,K) = J[J(F(X))J(F(Y))K(X:Y)dXdY- (4.4.3)

If /H(esn-u(J,F)) > 0 as n»=, €S in (4.4.2) can be

replaced by u(J,F) = fJ(u)F-l(u)du.
Stigler (1974) also points out that if Sﬁ =

n
n—l'z Jn(i/(n+l))xi-r’ where the Jn's are uniformly bounded,

i=1
and for every continuity point Py of J there is an open
neighborhood of P, such that Jn(u) + J(u) uniformly in this
neighborhood, then the conclusion of Theorem 4.4.1 is true

T
for Sn also.
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Define
1 B
= z X.. , where k = [np]
Mem T K icn-k4l 1:R
n
_ 1
=r L Jn(n-f-l)x
i=1l
where
1, u > (n-[npl+l)/(n+l)
Jn(u) =
0, u < (n-[npl+l)/(n+l).

It is easy to see that Jn(u) + J(u), defined by (3.4.5),

namely,

1, u>g
J(u) ={
0, u<g
and the convergence is uniform around every continuity point
of J. Furthermore, the Jh's are uniformly bounded. Condi-
tions imposed in the theorem also ensure that F 1s necessarily
a df and if F has unique qth quantile gq, J will be continuous

a.e. F_l. Hence, from Theorem 4.4.1 and the succeeding

observations, we conclude that under the assumptions of that

theoremn,

)
5‘% Men %%Mk,n)) 3 N0, ¢%(J,F,K))

or, in other words

/"(Mk -6Mk ) + N (O, o (J,F,K)/p)

where 0 (J,F,K) is given by (4.4.3) with J as in (3.4.5).
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Simplification in the expression for GZ(J,F,K) is
possible if we assume that ( g F (x)F (y))/n + F(x)F(y)
as n+» instead of inaking the wéaker assumption (4.4.1b).
Then K(x,y) = F(min(x,y)) - F(x)F(y) and consequently
o®(3,7,K) = ¢ (J,F) given by (3.4.7}. To be precise,

we obtain the following result.

Theorem 4.4.2:

be n independent rvs
n

with dfs F,_,F, ,...,F__. Define =(Z )/k,
in’"2n nn Mk,n j=n-k+1 Xin

k = [np], O<p<l. Suppose there exists a df G and an

For each n>1 let xln’XZn”"’Xnn

associated rv Y such that 6Y2 is finite and whenever
y < -M, (y) < G(y) and whenever y > M, F (y) > G(y)

where M is some finite constant. Assume also that

1 n
lim = (x) = F(x)
n+oeo 2 j=1 Jn *
and
1 n
lim = (x)F a¥) = F(x)F(y) (4.4.4)

exist for a.e. x,y wrt Lebesgue measure. If F has unique

qth guantile aq’ then

< 2 2
vk (Mk,n'cmk,n) + N(O, op + q(up-iq) )

where u_ and opz are as described in Lemma 3.4.2.
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. . F

(i) If it can be shown that /?(emk'n-emk'n) -+ 0,
where Mi n corresponds to the iid case with the parent df F,

I
r
then it follows that /K@M,  -u ) > 0 if J[F(x)(l—F(x))]l/zdx
14
is finite. This is because in that situation it is known
from Theorem 3.4.1, that /i(emi -u_) » 0. Hence, with
P
these additional assumptions one can replace 8Mk n by up
14

in the above result.

(ii) If all the an's have the same mean and variance,
WLOG one can take the mean to be zero and the variance to be

unity. Then I the selection differential, takes the

place of M oq in the above theorem and in Remark (i).

Example 4.4.1:

Let one of Fln’FZn""'an be F* and the rest all be
F where F*<F, i.e., one of the populations has slipped to the
right. Let f(F(x)(l-P(x))}/zax be finite and let F have the
unigque guantile Eq. Assume that F* has finite variance.
Define
Fly), y < -M
Gly) =( F(-M), -M<y<M
F*(y), y > M
where M is such that F(-M)<F*(M). This is possible since
both F and F* are dfs. Here it is immediate that (4.4.4)

is satisfied. Hence, from Theorem 4.4.2, we have
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' 2 2
/E(Mk'n-ﬁMk,n) -+ N(O, O'p + q(up-gq) ) as n-+w.

We will now show that /E(&Mk n—eMi o) * 0 in the following
steps.

The df of Xr- is (David and Shu, 1978),

n

Ho, () = F___ () + CTDF L (x) (1-F (00) P Fr* (20,

r=1,2,...,(n-1) (4.4.5)

where Fs_m is the df of the sth order statistic from a

random sample of size m from the df F. Also, the df of

Xi.n, viz Fo.pn satisfies
n-1

STDFT (0 (1-F(x) T,

Fr:n(x) = Fr:n-l(X) +

r=1,2,...,(n-1)
so that

F_. G0-E_(x) = CIDFI 100 [1-F (0 17T [F () -F* ()] -

This is true for r = 1,2,...,n.

Since
0
[l—Hr:n(x)]dx - J Hr:n(x)dx, it follows that

-0

e (X -xf; )=f [F_, (0-H__ (x)]dx.

n

=1 -
6(Mk,n-Mfc‘,n) _]?f {2 G-

E LeI ) (1-F (x0) ™79}
-C0 J—_-n— -+

- [F(x)-F*(x)]dx.
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n n-1l, _Jj-1 n-j
Since F*<F and I GIDFITh e (-F ™ <1
j=n-k+1 I
we have

0 < 3‘Mk,n‘”i,n) <x f_m[r*(x)—y*(x)]dx

= F(u(F)-u(F*)) .
Therefore

vk & (M n-Mi L) >0 as nie.

Hence, from Remark (i) above, it follows that:
< 2 2
vk - -+ N(O, + - .
(Mk,n up) ( op q(up Eq) )

Note:

This example can be generalized to handle the case when
we have more than one slipped population. Then we will have
to write general versions of (4.4.5). Except for messier
algebra, we do not expect any other problem here. But,
if we have a proportion of the populations slipped, replacing
EMk,n by a fixed centering constant does not appear to be
possible even though Theorem 4.4.2 holds in this situation.

4.5. Some Special Dependent
Cases

Under the assumptions of independence we obtained the
asymptotic distribution of Dk,n both in the extreme and the
quantile cases. We obtained the same results for the inde-

pendent case as for the iid case, but of course, under some
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additional assumptions. The following two situations show

that these results are not necessarily true for dependent

samples.

Equicorrelated Normal Case:

Let Xi' i=1,2,..., be equicorrelated standard normal
rvs with the common correlation coefficient p(>0). Then it

is well-known that the Xi's can be represented as
X; =Yoo U+ /I-p ¥, i1

where U, Yl’YZ"" are all mutually independent standard
normal rvs. When k is fixed, since 9eD(A),
(x = ¥;. . -a)/b_ Lok o+ {3
i=n-k+1
as given by (3.2.4c). Also, ap and bn can be chosen to

n
satisfy (3.6.1). D_(k,n) =( Z X, n)/k here and
X i=n-k+1

b* = F 7 BF .
n n

Vo U/b; has a nondegenerate limit law iff b; converges to a
nonzero finite number. For (VI-p DY(k,n)-ag)/b; to have a
nondegenerate limit law one has to take bX v (V2 1og n)
which converges to zero. Hence, if (an,bn) are the
appropriate norming constants in the iid normal case,

(VI-p a,,b ) would not normalize Dy(k,n) to yield a non-

degenerate limit law. However, Dy(k,n) - V2 log n 20 (see
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Section 3.6), and hence

(Dy(k,n) - vY2({I-p)log n) /Yo 3 N(0,1).

Therefore, (/2{l-p)log n, /p) can be used as apair of norming
constants and the only possible nondegenerate limit law

is normal.

P
-’

Ho s

In the guantile case, since DY(k,n) D

“
Dy(k,n) = Vo U + ¥I-p Dy(k,n) > N(/I=p g, o).
That is, (Dy(k,n) - YI=p up)//E is asymptotically standard
normal. As a contrast, if the Xi's were independent also,

one would obtain /E(Dx(k,n)-up) to be asymptotically normal.

Stationary Gaussian Process:

Let {Xi, i=0,+1, +2,...} be a stationary Gaussian
sequence with 8xn =0, 6Xixi+n =r,. If r, logn~+ 0 as
n+«, Welsch (1973) has shown that, when k is fixed, the
asympteotic distribution of «xn:n-an)/bn"'°’(Xn—k+1:n-an)/bn)
is the same as in the iid standard normal case. The same
norming constants a, s bn work in both cases. (He has shown
this for k=2; but the result is true in general.) Hence,

iy
(Dk,n—an)/bn > B/k + Té3)

agreeing with the independent standard normal case.
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4.6. Application of the Asymptotic Theory to
Testing for Outliers

In this section we obtain approximate percentage points

for D for large n when the parent population is normal

k,n
using the asymptotic theory developed in Chapter 3. This

is of considerable interest in the outlier testing problem

which is described below.

. - 2
Let xl,xz,...,xn be independent rvs, xi " N(ui, g).

Consider the problem of testing the hypothesis

He ul=u2=...=un=u
against the alternative

A: k of these ui's are equal to u+6(6>0) and the re-

mainder are equal to u.

+ . . .+ X - kuy)/c =

Then, (X n:n

n-k+l:n

-ku)/c = kD can be used as a test statistic, when
k,n k,n

¢ and o are kncwn. In fact, when u and/or ¢ are estimated

(s

by X and/or S, Barnett and Lewis (1978) point out that the
test which rejects H for large values of (Sk’n-ki)/s is the
likelihood ratio test for a location slippage alternative

in which k observations arise from a common normal distribu-
tion N (u+§, 02), §>0, i.e., the alternative A, above. For
this alternative it has the optimal property of being the
scale and location invariant test of given size which
maximizes the probability of identifying the k contaminants

as discordant (pp. 95-96, 112). Early work on this
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statistic, due to Murphy (1951), was later followed up
by McMillan (1971).

Because of the above motivation, considerable atten-
tion has been given to the distribution cf Dk,n and its
percentage points. We assume that u and ¢ are known and
WLOG take u = 0, ¢ = 1. Then, we compare the approximate
percentage points for Dk,n under H obtained using the

asymptotic theory assuming: (a) k fixed, (b) k = [np],

0<p<l, and (c) Table IXg of Barnett and Lewis (1978), which

is based on simulation.

Approach (a):

When k is fixed, since ¢eD(A), the percentage points
of the limiting distribution of (Dk -a_)/b_, as n>», are
M n’’7n
given by Table 3.2.1. But now, the problem is to use "good"

choices of a, and bn‘ Often these are given by (3.6.1),

namely

a_ = V2 log n - (log log n + log 4w)/2/2 Tog n

and

b_ = 1//2 Iog 1. (4.6.1)

n

It is worth recalling that any other sequence aﬂ and bﬂ
such that bn/bﬁ + 1 and (an-aﬁ)/bn -+ 0 as n-+» would serve
asymptotically. Recently, Hall (1979), has shown that the

best rate of convergence of
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n
sup | (a_+b_x) ~A(x) |
mex<wm n n

is achieved when a_ and bn are chosen such that
&

2 2

2Ta 2 exp(an ) =n and bn = l/an, (4.6.2)

n

the rate being of the order of 1/log n.

Let a; and b; be the solutions of (4.6.2). The fol-
lowing table iilustrates the differences in a, and bn

as given by (4.6.1), and a;, b;.

Table 4.6.1. Values of the norming constants for selected n

n a, bn a; b;
30 1.8882 .3834 1.9146 .5223
50 2.1009 .3575 2.1118 .4735
100 2.3663 .3295 2.3753 .4210
500 2.9075 .2836 2.5080 .3439
1000 3.1165 .2690 3.1153 .3210

The approximate percentage points of Dk n are then given
[ 4
* * Y
by an+bn€k,p and as + bngk,p for the two choices of
constants, and are labeled Ext(an,bn) and Ext(a;,b;),

respectively.
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Approach (b):

For given n and k, we can take k/n = p and use the
asymptotic theory of the quantile case. Then, from Theorem

3.3.1, it follows that

< 2
/E(Dk’n-up) + N(O, 9 ) (4.6.3)
2 2 2 .
where 0y = cp + q(up-gq) is tabulated by Burrows (1975)
for various values of p. Also, up = ¢(£q)/p makes it easy

to compute ”p in the standard normal parent case. Burrows
(1972) has also obtained a good approximation of 8Dk,n which
converges to up at the rate of 1/a. HEence, we may also use
his approximation, namely

n-k L (4.6.4)
D

) =)
o
il
=
o
|
e}
+
=
L]
=

instead of yu_ in (4.6.3). These give another pair of
P

percentage points for Dk,n’ namely My F zacD//E and

ﬁp + zacD//E where Z, is the upper o percentile point for

N(0,1). These are labeled Qnt(up) and Qnt(ﬁp), respectively.

Approach (c):

This is the simulation approach used in the construc-
tion of Table IXg of Barnett and Lewis (1978), and the per-
centage points so obtained are labeled Sim (B&L). We com-
pare these five approximate percentage points for Dk,n for
k=2,3,4, n=20,30,40,50,100 at the 95% and 99% level in

Table 4.6.2 below.



Table 4.6.2,

Five approximations to the percentage points of D

for the normal parent

. k,n
population -
95% points 99% points
n EXt Ext Qnt(up) Qnt(ap) Sim(B&L) Ext Ext Qnt(up) Qnt(ﬁp) Sim(B&L)
(an.bn) (ag.b;) (an.bn) (a;,b;)
k=2
20 2.44 2.78 2.46 2.34 2,37 2.86 3.36 2.76 2.64 2.72
30 2,58 2.85 2.61 2.50 2.5} 2.97 3.38 2.89 2.78 2,84
40 2.67 2.92 2.70 2.58 2.62 3.05 3.42 2.97 2.85 2,93
50 2.74 2.97 2,78 2,67 2.68 3.10 3.45 3.04 2.93 3.02
100 2,96 3.13 3.00 2.90 2,92 3.29 3.56 3.23 3.13 3.20
k=3
20 2.18 2.41 2,17 2,08 2.10 2,50 2.85 2.43 2.34 2.39
30 2.33 2,52 2,33 2.25 2.26 2.63 2.92 2.57 2.49 2.54
40 2.43 2.60 2,44 2,36 2.38 2,72 2.98 2.67 2.59 2.63
50 2.51 2.66 2,52 2.44 2.45 2,79 3.03 2.74 2.60 2.72
100 2.75 2.86 2,76 2.69 2.70 3.00 3.19 2.96 2.89 2.94
k =4
20 2.00 2,15 1.96 1.89 1.90 2.26 2,53 2.20 2.13 2.10
30 2.16 2.29 2.14 2,08 2.08 2.41 2.63 2.36 2.30 2.32
40 2.27 2,38 2,26 2.20 2,21 2,51 2.70 2.46 2.40 2.43
50 2.36 2.46 2,34 2,28 2.28 2.59 2.76 2.54 2.48 2.53
100 2.60 2.68 2.60 2.54 2.55 2.82 2,95 2.78 2.72 2,78

L6
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Observations and comments:

(1) Ext(an,bn) does much better than Ext(a;,b;) for
all n, k and the percentages considered, in the sense that
it is much closer to Sim(B&L) than the latter. Even though
a; and b; are supposed to make the convergence of the df
of xn:n faster in the sense of the supremum over the entire
real line, Ext(a;,b;) does not perform well at the 95th
angd 99th percentile points of Dk,n'

(ii) At the 95 percent level, Qnt(ﬁp) comes closest
to Sim(B&L) being within 0.01 of the latter for k>3, n>30.
However, Qnt(ﬁp) < Sim(B&L). This suggests that one could
use Qnt(ﬁp) to find 95 percent points when k > 3, n > 30.
It may be noted also that Ext(an,bn) and Qnt(up) approach
each other as n increases for k>3, even though both are off
from Sim(B&L).

(1ii) At the 99 percent level Qnt(up) does very well
indeed, doing better with increased k for a given n.

We now consider some large values of n in an attempt
to search for a trend which can be of some help in de-
termining which of these approaches is desirable.

These do not seem to give much insight except to show
that for k=4, the Qnt(up) and Ext(an,bn) actually coincide
at 95 percent level as is evident from Table 4.6.3 below.

In conclusion, the empirical evidence expressed in

Table 4.6.2 seems to suggest that Qnt(ﬁp) provides a close
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Table 4.6.3. Approximate 95% points for large n

k=2 k=4
n Ext(an,bn) Qnt(usp Qnt(np) Ext(an,bn) Qnt(up)

200 3.16 3.30 3.21 2.83 2.83
400 3.36 3.39 3.30 3.04 3.04
500 3.42 3.45 3.37 3.11 3.11
1000 3.47 3.63 3.56 3.31 3.31

approximation at the 95 percent level whereas Qnt(up)
does well at the 99 percent level. For extremely small

p (<.005) it might be safer to use Ext(an,bn) rather than
the rest.

So far, in our discussion, it was assumed that y and o
are known. When these are estimated by X and S, since
an//H b, + 0, from Corollary 1 to Theorem 4.1.2, it follows
that the percentage points of the asymptotic distribution
of (ﬁk,n_an)/bn are the same as those corresponding to
(Dk’n-an)/bn. Hence, our approximations th(an,bn),
Ext(a;,b;), obtained using the "extreme case" approach
remain the same. However, these values fall far away from
the simulated percentage points of ﬁk,n given by Table IXa
of Barnett and Lewis (1978). The quantile case can be used
only when ¢ is known (see Section 4.3). Using Theorem

4.3.1, in this case, one obtains a different set of wvalues
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for Qnt(uD) as an approximation to the percentage points

of ﬁk q(c). The actual computations and comparisons with
,&

the simulated percentage points given by Table IXe of

Barnett ané Lewis (1978) will not be presented.
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V. GENERAL DISTRIBUTION THECORY FOR THE INDUCED

SELECTION DIFFERENTIAL

In plant and animal breeding, quantity of interest is
the "response to selection", i.e., the difference between
the mean phenotypic value of the offspring of the selected
parents and the mean of the entire population. In breeding
problems we select the top p fraction of the parental popu-
lation and are interested in the performance of their off-
spring , compared to that of the whole population. A
natural measure of performance is provided by the induced
seiection differential, that is the selection differential
based on "concomitants". We study this quantity in the

present chapter.

5.1. Finite Sample Theory for the Induced
Selection Differential (D[k n])
14

Let (Xi'Yi)’ i =1 ton, be iid rvs each having df
FX Y(x,y) where the Xi's are assumed to be continuous with
r

df Fx. Let X .., be the rth order statistic of the X

values and let Yf be the Y variate paired with X, .,-

r:nj

Then Y[ is called the concomitant of X Let Uy and

r:n] r:n"
OYZ be the mean and variance of the distribution of Yi's.

Then the induced selection differential, D[k n] is defined

by
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Prx,n1 =

A=
13

SR T e

If Fy Y(x,y) is an absolutely continuous df, then from

Yang (1977, p. 997), we have

f (Ve reeer¥y)
¥ n-k+1:n] ressr¥ 0] 1 k
® X, X k
k j 2 =
= ces 1 f(y.|x.)f
j—co f—co -0 3i=]1 12 xn-k+l:n, coe ,Xn :n

(xl”"’xk)dxldXZ"'dxk

© X X k
_ n! k 2 -

C [P ylx) 1P7RE () o £ (e ) ARy - o s

This can be used to obtain the distribution of D[k nj even
7

though a closed form expression may not be possible.

Bounds on CD[k,n}:

From (6.1) of Mallows anéd Richter (1969) we have

-2 -
-2 < nkk syzl
n

. = +
Zopepifim] Ty T 0Pk,
2

mean of the Y values and Sy =

Mx,n]
nl’ Y is the

=

where M[k,n]

S+

n =2
I (¥;-¥)°. That is,
i=1



103

S /n-k = n-k

Hence, taking expectations and noting that €sy 5.(8sY2)1/2 <

Jﬁgl, we obtain
ik . [T k. M1
My =Y Oy " V7 S8Mpy gy S Uy ¥V T Oy -

Since (8M[k’n]-uy)/cY = 8D[k,n]’ it follows that

9y

_f(n=-k) (n-1) n- n-1)
k< Pu,n) YTk (5-1.1)

If our sample were not random then (83Y2)1/2_<__aY and hence

one obtains
/n-E /n-k
~“% %X DPi,ny 2 ET

in the dependent sample case.

So far, we have not made use of the fact that the
Y's are the concomitants of the order statistics. To
exploit this fact, we further assume that &(Y|X = x) = m(x)
is a monotonic function of x. WLOG take m(x) to be increasing.
Let X* = m(X). Then €Yy ., =em(X . ) = 8Xﬁ:n' Noting that
xi:n""’x;:n are the order statistics from the distribution
of m(X), we can use the bounds for 8Dk,n’ obtained in

Section 2.€. Using (2.6.5), we have

Es
n-k m (X) [n-k
em(X) + T — i 8M[k,n] i 8m(X) + —k— 8Sm(x)
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where t = max(k,n-k). Note that €s_ 4 < cm(x)vzn—157n,

eém(X) = Hye Hence, the above inequality can be rearranged
to yield
n-k “nx . ep . ARED o
[k,n] - nk Oy -

- —-—-

Since
OYZ = Var(€(Y|X)) + &(Var(Yy ;X))
= Var(m(X)) + e(Var(y|X))
> g2
= "m(X)’

the upper bound in (5.1.2) is better than the one in (5.1.1).
The same is the case with lower bounds. Of course we have
used the fact that €&(Y|X) is increasing in obtaining (5.1.2).
With the same assumptions, one can obtain tighter bounds

for €D using the techniques of Section 2.4 and 2.5.

[k,n]
The details are omitted.

5.2. Asymptotic Distribution of D[k nj
in the Extreme Case !

Let (Xi,Yi), i=1 to n, be iid bivariate absolutely con-

tinuous rvs with pdf f(x,y) and éf F(x,y). WLOG we take

Hy = 0 and Oy = 1. We consider the cases where Xq

F;l(l) < = and where X, = + separately.
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Case A: x _<w=:
o

From Yang (1977) we have

PO nok+1:n] S Y17 ¥Yinuy S ¥

[ k
=0 ... [ I P(Y.<y.|X.=x;)
IRy < e<xy d 1=t

.dF (X4 ,000,%.) .
a1 k

n-k+1l:n’*°"'%n

geoerX ) 2 (X ,+..,X_ ), as n>» since k is a
n-k+1l:n n:n o o’ !

fixed integer. Hence, following Yang's (1977) Theorem

(X

2.1 we have

lim P(Y[n—k-l-l:n] f_yll°°~tY[n:n] i yk )

>
k
= I P(Y.<y.|X.=x).
i=1 i—“1i'71 To
n
Therefcre, D = (Zz Y ... +)/k converges in law to the
eonl — Yyon g4y [3:nl

average of k iid rvs each having the pdf f(y[xo).

Case B: X =+x:
o

Theorem 5.2.1:

Let (Xi,Yi), i =1 ton be a random sample from a bi-
variate absolutely continuous distribution. Let X = and
Fy (a_+b ¥) + G(x), a nondegenerate df; that is, FyeD(G).

If

P(Y; < A + Bul|X; =a +bz) = T (a,2) > T(u,2)
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uniformly in z, then

P(Y <A, +Bu) »T(u = IT(u,z)dG(z).

[n:n]

Proof: )
First, fix u and note that Tn(u,z) is a sequence of

bounded continuous functions converging uniformly in z to

T(u,z). Since Fxn(an+bnx) + G(x), a df, from Lemma A6

we have
_ n
P(Y[n:n] <A, +Bu) = an(u,z)dFX (a_+b,2z)
-> JT(u,z)dG(z) as n-o
= T(u).
Note:

(i) Conditions imposed in the above theorem are suf-

ficient to ensure that

P(Y[n:n] < An + Bnul’ Y[n—l:n] < An + BnuZ’ e
v <A_ + B_u,.) - H,(u,)H,(u,)...H_(u,)
[n-k+l:n] ~ ™ nk 171772772 k'k
where

Hi(u) = JT(u,z)dG(x;i). Here G(x;i) is one of the
distributions represented by (3.2.2a-c). Hence, under the
conditions of Theorem 5.2.1, (D[k,n]_An)/Bn converges in
distribution to that of the mean of k independent rvs, the

ith one having the 4df Hi’
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(ii) Galambos (1978) has given the limiting distribu-

tion of (Y[n:n]-An)/Bn under a different set of conditions

when G = ¢a' (see his Theorem 5.5.1, which we are paralleling).
But his proof appears to be incomplete since the use of the

dominated convergence theorem is not justified.

Example 5.2.1:

Let X; "~ Exp(1l) and Yilxi = x v N(x,1). Then FyeD(A)

with a, = log n and bn = 1. Also, X, = t® and if we take

Ah = log n and Bn = 1 we have

P(Y, < A +B ul[X; = a +b z) = ¢(A +B u-a -b z)

¢ (u-z) = T(u,z)

and the convergence is uniform in z. Then, from Theorem

5.2.1 we have

P(Y < iogn + u) ~» fé(u—z)dh(z).

[n:n]

5.3. Asymptotic Distribution of D[k nj in
the Quantile Case !

We use the results of Bhattacharya (1976) and Yang
(1979) to obtain the asymptotic distribution of D[k nj when

k = [np], 0<p<l. WLOG we take u, = 0, o, = 1.
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Bhattacharya's (1976) approach:

Bhattacharya has essentially obtained the asymptotic

distribution of D[k n] under the following conditions:
14

Bl. Fy is continuous.
B2. B8(x) = e{(v-m(x))?|X=x] is bcunded. (5.3.1)
B3. cz(x) = Var(Y|X=x) is of bounded variation.

B4. h(t) = m(EX(t)) is a continuous function where

m(x) = e(¥|X=x) and £,(t) = F;l(t).
' _l[nt] t
Define Hn(t) =n iil Y[i:n] and H(t) = [Oh(s)ds.

Then, from Bhattacharyva (1976, p. 622) it follows that, for
0<a<b<l,
t
fﬁ(Hn(t)-H(t)) = T(P(t)) + J n(s)dh(s), on [a,b] (5.3.2)
0
where
p(t) = f

motion and n is a Brownian bridge independent of Z.

Ex(t) 2
o (x)dFX(x), Z is a standard Brownian

-Q0

Here => stands for the convergence of a stochastic process.

Therefore, &, = c(u(t)) ~ N(O, ¥ (t)).

t
Bt = J n(s)dh(s) is also normal because n is a normal

0
process and the integral of such a process is again normal

t
(recall that h is continuous). Further €Bt = J e(n(s))dh(s) =
0

0, and
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t ru
var(s,) = 2 e(n ()1 (v)) &h () dh (v)

t u
2[ J v(l-u)dh(u)dh(v) (from Billingsley,
u=0"v=0 1968, p. 65)

o

t t
{ f [min (u,v)-uv]dh(u)dh(v).
u=0’v=0

Hence,
2 _ (5x(8) ey (D)

B = J—w i [Fy (min (x,¥) ) -Fy (x) Fy (y) Jdm (x) dm(y)

]

making the transformation u = Fx(x) and v = Fx(y).

Therefore, from (5.3.2) we have

R (5 (8)-H(8)) > N(O, w(t)+03i)
since At and Bt are independent.
D[k,n] is the average of the concomitants of the top
k X-values whereas Hn(t) corresponds to the bottom X-values.

Hence, we define

sy = L 7
H*(t) = = I Yoo v,
n n i=n-[nt]+1 [1:n]
h*(t) = m(EX(l—t))
and
t 1
H* (+) = [ h*(s)ds = f m(EX(s))ds.
0 1-t

Then, under the conditions Bl~-B4 of (5.3.1) we have

< 2
YR(HX (£)-H*(t)) > N(0, ¥*(t) + 0g4), 0<t<l
t
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where

pr(t) = | o2 (x)dF, (x)

JEx(l—t)

e w

2

Cpx = j [F, (min(x,y))
B g a-nlga-n X

(5.3.3)

- Fe(x)Fy(y)]dm(x)dm(y) .

_ n
D[k,n] = [Tp']— H; (p) and hence
[npl (p - Lux (o)) = /A (H (p)-H* (p))
/a [k,n] P < n

- <
+ "n H*(p) - ni.ﬁp_]- -> N(O’ w*(p) + 0'2*)

as n+», since the second term on the right tends to zero.

Therefore,
/Z (D - H*(p) /) % N(0, (v*(p) + 62,)/p)
{k,n] P)/P NAY, B% .
Now
E*(p) _ 1 [ _
5 =35 J m(x)dFy (x) = &(m(X) IX>€x(q))

Ex(a)
= um(x)(p), say where g = 1-p.

Formally, we state this as a theorem.
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Theorem 5.3.1:

Let My = 0, Oy = 1 and k = [np], 0O<p<l. Under the
conditions Bl1-B4 of (5.3.1), as n»x,

<
VRO g n1=Hm ey @) F N0, ¥*(p) + cﬁs) (5.3.4)

where y* and o3, are defined by (5.3.3).
p

Remarks:

(i) Bhattacharya's expression for the limiting vari-
ance of /H(Hn(t)-H(t)) as given on the top of page 623,
namely, D(t) + t(l-t) ~ 2(1-t)h(t)H(t) - H°(t), is wrong.
For the bivariate normal parent case one can show that the
above representation does not give the right answer.

(ii) His proof can be used to obtain the joint limit
distribution of the selection differential and the induced

selection differential. This will be done in the next

section.

Yang's (1979) approach:

Recently, Yang, paralleling the work of Stigler (1974),
has obtained the asymptotic distribution of linear functions
of the concomitants of order statistics. He makes the fol-
lowing assumptions:

Yl. FX is continuous (same as Bl).

Y2. 8Y2~<+w (follows from B3).
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Y3. m(x) is a right continuous function of bounded
variation in any finite interval (implied by B4).
Y4. J is bounded and continuous a.e. m(F;l)(implied

by B4 for the particular J there).
1 2 i
Let, Sn = H iilJ(m)Y

shown the following:

[i:n]" Under this set-up, Yang has

lim es, = u(J,FX) = Jm(x)J(FX(X))de(X)

n->ce

c‘(J,FX)

lim n vVar(s.)
n-o n

- JJZ(FX(X))OZ(X)dFX(X)
+ff[Fx(min(x,y))

- P (X)Fy (¥) 13 (Fy (%)) 3 (Fy (y) ) dm(x) dm(y).

The first term is comparable with ¥ (t) whereas the second

corresponds to cé in Bhattacharya's approach.
t

g
If 02(J,Fx) > 0, then (S_-€S_)//Vaz(s_) +N(0,1) as n»=.

Equivalently

< 2
/H(sn—esn) + N(0, © (J,Fx)). (5.3.5)

Remarks:

Bhattacharya (1976) had a particular J function, namely

1, u<t
J(u) =
0, u>t
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and had more conditions than Yang. But, his result is
stronger than Yang's in three respects: (i) He has a fixed
centering constant, H(t) whereas Yang's 8Sn, depends on n.
If /H(esn-u(J,Fx)) + 0 then can we replace €s_ by H(J,Fy)
in (5.3.5). (ii) Bhattacharya's result deals with the con-
vergence of the process /H(Hn(t)-H(t)) and hence gives the
asymptotic distribution of any finite dimensional law
from this process. (iii) Bhattacharya decomposes the limiting
process into two independent normal components which is not
presented in Yang's results.
Under some additional assumptions we extend Yang's
(1979) result as given by (5.3.5) to include a fixed
centering constant. Assume that
Y3': m(x) is acontinuous monotonic function of x.
Y5. J satisfies a Lipschitz condition of order
a > 1/2 except perhaps at a finite number of
continuity points of m(F;l).

6. f{?m(x) (l-Fm(x))}l/de < ® where F_ is the df of

m(X).
WLOG we take m to be monotonically increasing. Then

n
es. =~ 3

n 7 oj=1
where m(xi-n) is the ith order statistic from the

i
J(nTl)em (Xi :n)

distribution of m(X). Conditions Y4, Y5 and Y6, in view

of Mason (1979) imply that
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/ﬁ(&Sn-u(J,FX)) + 0

as n-»», Hence, under Y1, Y2, ¥Y3', Y4-Y6,
/a < 2
n(Sn-A(J,Fx)) + N(0, © (J,FX))-

For the induced selection differential,

1, u>1-p
J(u):{ -
0, u< 1l-p

Hence, Y5 is satisfied and Y¥3' implies Y4 here. Also,
»/H(D[k n]/p-sn) can be shown to tend to zero in probability

as n»», Combining all these we have the following result.

Theorem 5.3.2:

Under the assumptions Y1, Y2, Y3', Y6, the asymptotic

distribution of D is given by (5.3.4).
[k,n]

5.4. Asymptotic Joint Distribution of D[k n]

and Dk in the Quantile Case
,

Using Bhattacharya's (1276} methcds we now obtain the
limiting distribution of the bivariate random variable with
the induced selection differential and the selection dif-
ferential as its components. To start with, we assume the

following in addition to assumptions Bl-B4 of the previous

section:

X

Following Bhattacharya's notation we define

BS. Ex(t) = F (t) is continuous and o 2 is finite.
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1 [nt]
v (g)=—= Z (¥

-m(X.. )} and V_(t) = /n(G_(t)-t),
/n i=1 i’ n &

[i:n] n
where G_ = Fn(F'l) with F_ being the empirical df of the
Xi's.

It then follows from Bhattacharya (1976, p. 622) that

(T, ,v,) =>(@, V) = (c(y),n) (5.4.1)

€X(t) 2
J G (x)de(x), r is a standard Brownian

motion and n is a Brownian bridge independent of 7.

where Y(t)

Let

1 [nt] t
an(t) == iil Y[i:n]' H(t) = Joh(S)dS.
1 [nt] t
i=1 0

ané define

c, (t) /H(Hn(t)—ﬂ(t)) and Dn(t) = /E(Kn(t)-K(t)).

It can be shown that (see Bhattacharya, 1976, p. 621),

t
c (€) = U_(£) - Jovn(s)dh(s) + Ry_(£)
rt (5.4.2)
Dy(8) = -] V,(S)aeg(s) + Ry ()
where

L4 iy
sup |R_(t)] > 0 and sup |R, (t)] > O
d<t<b n a<t<b 2n

for [a,b] C (0,1).
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Theorem 5.4.1:

Under the conditions B1l-BS,

(C,(t), D (£)) =>(C(t), D(t))

"t
= (g(p(t)) + J n(s)dh(s),

£ 0
fon(s)dix(s)),

where tela,bjC (0,1), and 7, n and v (t) are as described
above.

Proof:
t

t
v(s)dh(s), - j v(s)dax(s)) is a continuous
0

(ul(t) - j
0

function of u and v. Hence, recalling (5.4.1) and (5.4.2)

it follows that

t
(C (8), D (t)) =>(T(v(t)) - f n(s)dh(s),
0
(t
- J n(s)dgy(s)).
0

Ly

Now note that -n(s) n(s) to conclude the proof of the

theoremn.

Theorem 5.4.2:

Whenever Theorem 5.4.1 holds,

Cov(C(t),D(t)) = [E,(t)-tE, (£)+K(t)] [th(t)-H(t)]

t
- f K{(u)dh(u).
0



117

Proof:

Since ¢ and n are independerni,

t
COV(J n{s)dh(s),
0

Cov(C(t), D(t))

t
!On(s)dax(s))

t u
J J v(l—u)dh(u)dgx(v)
u=0-v=0

e
[

t
+J j u(1-v) &h (u) &, (v)
0

t
- f (1-u) [u, (u) =K (u) 1dh (u)
u=0

t
+J uuix(t)-ix(u))
u=0

- (t&, (t)-ugy(u)) + K(t)-K(u)ldh(u)

on integration by parts of one of the integrals. Hence,

t 2 2
Cov(C(t),D(t)) = J £X(u)[u—u -u+u“]dh(u)
0

t
+J K(u) [-1+u-uldh(u)
0

t

+Jou[£x(t)-tgx(t)+K(t)]dh(u)
t

= [Ex(t)-tEx(t)+K(t)]I udh (u)
0

t
- f K(u)dh(u).
0
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t
But J udh (u) = th(t)-H(t) and hence the proof is over.
0

Remarks:

Both C(t) and D(t) are normal. Noting that alC(t) +
a2D(t) is univariate normal for all real a and a,, we
conclude that (C(t), D(t)) is a bivariate normal rv.
Hence, C(t) and D(t) are independent iff they are un-

correlated. In view of Theorem 5.4.2, this is true iff

t
[E4(t)-tE (L) +K(t) T [th(t)-H(t)] - [ K(u)dh(u) = 0.
‘0

The natural question is whether this is possible at
all. The following example shows that the answer is in the

affirmative.

Example 5.4.1:

Let X v %(0,1) so that £y (u) = u and let ¥|X = s v

N(s-352,l). Then, m(s) = s—352 = m(EX(s)) = h(s). Condi-
t

tions Bl-B5 are satisfied. H(t) = f h(s)ds = t2/2 - t3,

t 2 t O 3 4
K(t) = I xdx = t°/2 and J K(u)dh(u) = (2t~ -%t)/12.

0 0
Hence,

Cov(C(t),D(t)) = (t-t2+t/2) (£2-3t3-t%/2+t)

- 2t3-9tty/12 = 0

2_9¢+2) = 0.

> t3 (6t
t = (9-v/33)/12 £ 0.2719 is the only solution of this

equation in (0,1). Hence, for this value of t Cn(t) and
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Dn(t) are asymptotically independent.

Now we assume that Hy = Uy = 0, Oy = Oy = 1, and find
the asymptotic joint distribution of D[k,n] and Dk,n when
k = [np], 0<p<l, after appropriate normalization. For this

we define the following:

1 n 1l
H*(t) == I Y ..., H*(t) = J h(s)ds,
n n i=n-[nt]l+l [i:n] 1-t
1 n 1
K*X(t) == L X.., K*¥(t) = f E,(s)ds = tu,(t).
n B jon-[nt]+l 17D 1-t % X

Then, under the conditions Bl-B5, exactly on the lines of

Theorem 5.4.1 one can show that

L
(/H(H;(p)-ﬁ*(P)), /H(K;(p)-pux(P))) >

1 1
(z (v*(p)) - f n(s)dh(s), f n(s)dg,(s)).
1-p 1l-p
where
et 2
v*¥(p) = | c (x)de(x).

Jey(1-p)
Also, one can show that
/E(Dy 1=B*(P)/P) - /A/p.(BX(p)-H*(p)) > 0
and

/(D -uyg(P)) - /A/B- (KA (P) - pug(p)) & 0.

This proves the following result.
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Theorem 5.4.3:

Under the assumptions Bl-B5, when k = [np], 0<p<l

(RO o1=B*(0) /D), /E(Dy =uy (@)

1

[z (V*(p)) - [ n(s)dh(s)l,
1-p

L

(

)

1 (L
(= J n(s)agy(s)).
vYp J1-p

Hence, the asymptotic distribution is bivariate normal.

Also, in view of Example 5.4.1, it is possible to have
ic inde

asymptotic independence of Dk,n and D[k,n] for some p,

even though xi and Yi are not independent.

5.5. Linear Regression Model

Suppose Y =qa +8X + E where X and E are mutually inde-
pendent rvs with finite variance and Up = 0. Let (xi,yi),
i =1 ton, be a random sample from this simple linear
regression model. Then, it is known that o + E[i] =

Y[i:n]-sxi:n' i =1 ton, are iid rvs independent of

(Xy.qe %500 ¢X, ). Therefore,
s =
X a %
Pik,n1 TB5; Pk T Ty (5.5.1)

where Ek is the average of k iid rvs each having the same
distribution as E and is independent of (xl~n”"'xn-n)'
Note that the coefficient of correlation between X and Y =

p = ch/oy. We will find the limit distribution of D[k,n]
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under this model in various cases. The quantile case leads
to the asymptotic distribution of selection to response, a

guantity used in breeding problems.

Quantile case: k = [np], 0<p<l:

—

Using (5.5.1) and CLT, we have

_ - o
A = /KDy =D ) = /K E /0, % N0, cEz/oYZ)

h

as k—-~., Assuming that ax(q),the qt guantile of the distribu-

tion of X, is unique, it follows from Theorem 3.4.3 that

L
B = /ROy - (uy (P)=uy) /oy) & N(0, (0y° (D)+a(uy (p)

2 2
- EX(Q)) )/0X ),
where px(p) and cxz(p) are the conditional mean and variance
of the distribution of X when truncated below at gx(q).

k

Xi_n's are independent), we conclude that

Since Ay and B, are independent (this 1s because Ek and

/ROy 170 (g (P =uy) /o) € By + pBy

5 N0, [0 2 + 8200, 2 () + qluy(P) = Ex(@) ) 1/0y").

(5.5.2)
The results of Section 5.3 can also be used to obtain this

result after imposing some additional conditions. Even if
gx(q) is not unique, the limit distribution of
/E(D[k'n]—p(ux(p)-ux)/cx) exists, but will not be normal.
This is because the limit distribution of Bk is not normal

when gx(q) is not unique (see Theorem 3.4.3).

In a genetic context the term D[k n] is often called
4
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average selection response (Burrows, 1975) or response to
selection (Falconer, 1960) where we assume that Hy = Hy and
Oy = 1. Hence (5.5.2) shows that if the top p fraction of
the parents is selected from an infinite population under
the commonly used linear regression set-up, the average
selection response, appropriately normalized, is normal.

This can be used to make inferences about improvement due to

selection.

Also,

(VKD g 17P (g (P)=uy) /0y) s YR(Dy (= (uy (P)=Hy) /Oy))

lfo)

(Ak+ka'Bk)
<
+ (A+pB,B)

where A and B are independent and A~ N(O, cEz/oyz), and

BV N (O, [ze(p)+q(ux(P)-€x(Q))2]/0x2). Hence, the limiting
covariance is pvVar(B). Consequently, D[k,n] and Dk,n’

appropriately normalized are asymptotically independent

iff p = 0.

Extreme case: k fixed:

_ =1 o 4 -
If X, = Fx (1) < », then Dk,n (xo ux)/cx and hence

from (5.5.1) it follows that

[Ek + P(x -ux)]/oy.

<
D[kln] (o]
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If X, = +x then the situation is more involved and is

analyzed further below:

(1) If Dk n has AWL, i.e., there exists a seguence of
r
constants <, such taht Dk,n-cn B 0, then
S 5 E /oL 2 E 5.5.3
D[k,n} pep = P k,n cn) + Ek/UY Ek/GY ° (5.5.3)

.. . n
(ii) If FXeD(éa; then F (an+bnx) - ¢a(X) where a, and

b,1 can be taken to be 0 and &X(l-l/n), respectively. Hence,

from (5.5.1),
D /béD /b + E /o 2 D
[kx,n]1’"n ~ PP ,n’*n k Ybn PPy

since bn + o, Here Dk has the representation given by

(3.2.4a).

(iii) If Fst(A) we have to examine further-

a. If bn+0, then Dk n has AWL and hence {5.5.3) holds
where c, can be taken to be ag,-

£
b. If bn+w, then (D[k,n]-pan)/bn - pDk.
L —
c. 1If bn+b # 0, then (D[k,n]-pan) - b(pDk+nk/cY).

In both b and ¢, the df of Dk is given by (3.2.5).
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VI. MISCELLANEOUS RESULTS

In this final chapter we consider two problems which
came up while pursuing the asymptotic theory of the selection
differential, but were not connected directly with the
selection differential. 1In Section 3.2, it was seen that if
FeD(G) where G can ve Qa' wa or A, then

<

(X pmapg) Dpreeer Ky gi1:n73n) /) > (TpreeerTy)
where the d&f of T, was given by (3.2.2a-c). We consider the
joint distribution of Tl,Tz,...,Tk, called the k-dimensional
extremal distribution and cornect it to record value theory.
This is done in Section 6.1 and can be used to give new
proofs of some of the results of Hall (1978). Section 6.2
deals with the bivariate extension of Stigler's (1974) re-
sult (Theorem 3.4.1l) for linear functions of order statistics.
Two applications of this extension in finding the asymptotic
éistribution of Hogg's Q statistic and the asymptotic
distribution of a quick estimator of the regression coeffi-

cient in a simple linear regression model are also given.
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6.1. Extremal Distributions and Lower Record
Values

Dwass (1966) defines a k-dimensional extremal distribu-
tion as follows: A random vectér (Yl,...,Yk) is said to have
a k-dimensional extremal distribution with parameter G
(a df) 1if

a. G1(0) ¥ _...c¥, <G (1) with probability 1 and

k —

: -1
b. 1if G 7(0) S vy <y <V < Y g <ee< Vy<Uy

¢ 1 (1), then

i

k k-1
P() [vi<yy<uyl) = [G(uy)=G(vy)] T (-1og(G(v;)/G(u;)))
i=1 i=1
(6.1.1)
0
where II = 1. Further, it follows from Lamperti (1964)

i=1
that if Fn(an+bnx) + G(x), a nondegenerate 4f, i.e.,

FeD(G), then

X :n"2n X-k+l:n"3n . £
—_— e, )

b b

n n

( (Tl’TZ""'Tk)

where Ti's replace Yi's above and G is one of Qa’ wa or
A.

Now, suppose G is any absolutely continuous df with
pdf g and (Yl""’Yk) satisfies (6.1.1). Then the

joint pdf of (Yl,YZ,..., k) is given by
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k
P (iQ1 [y;<¥;<y;+h.])
g(¥Yyr¥pres-rs¥y) = lim -
i=1l to k
G(y,+h, )=-G(y,) k-1 log G(y.+h.)-log G(y.)
= lim k kh L I lim 1 ; =
hk+0+ k i=1 h.-»0+ i
i
k-1 CIlogG(yi)]
= gly,; I ¢ ¥1<Yy ... ¥
k' o1 ay; 1°92 X
k-1 g{y.)

i
g(Yk)iHl ET§;T P ¥1<Yy <eee< ¥y

0, otherwise.

But, from record value theory, it is immediate that this is
the joint pdf of the first k lower record values from the
df G (see, e.g., Chandler, 1952).

We exploit this relationship between extremal distribu-
tions and lower record values from one dimensional extremal

distributions to:

(i) give a different canonical representation of the
T.'s in the three cases and to
(1i) reprove the limit laws of Hall (1978) for Ty r using

record value theory.
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Let the Yi's be the upper record values from Exp(l)

distribution. Then, it is known (see e.g., Resnick (1973,
i

p. 69) that Y, d z Zj' where Zj‘s are iid Exp(l) rvs. Now,
J=1

let Ti be lower record values from a continuous df G. Then

G(Ti) form lower record values from %(0,1) and conse-

quently, -log G(Ti) are upper record values from Exp(l)

distribution.
. i
That is, -log G(Ti) g Yi d Z Z. and hence,
j=1
_1 i
T, = G " (exp(~ I 2.)).
j=1 7
Therefore, )
i
r. £tz Vi =0 (6.1.2a)
1 _ J o
j=1
I 1/
= -(Z 2.) if G = v (6.1.2b)
. a
j=1
i
= ~-1log( L 2.) if G = A (6.1.2¢c)
j=1

These representations involve only a finite number of
exponential rvs whereas, Hall's (1978) representations,
given by (3.2.3a-c), consist of an infinite number of
exponential rvs. The above representations have also been
obtained by Weissman using a Poisson process approach
(personal communication).

Using (6.1.2a~c) we study the asymptotic behavior of
T,. It is evident thaz for this purpose we have to study

the behavior of Si = I Zj' But, from the classical limit

j=1
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theory it is easy to see that, for an Exp(l) parent,

distributions.

-k

(CLT)

(SLLN)

l a.s.

S, -k

k

v2k log log k

(LIL)

= -1 a.s.

inf

We can now take G to be

To fix the ideas, we take G = A.

/2k log log k

(6.1.2c) it follows that

(Rao, 1973, p. 385):

then

T = -log Si and hence

Ty

Now to prove CLT for Tk’ we recall the

+ log k = -log(s,/k)

Qd.Se.

—3° -log 1 = 0 as k+».

If

From

one of the three extreme value

(6.1.3)

following result

/E(Uk-e) i N(O, 02(6)) and g is a differentiable function,

/E(g(Uk)-g(e))

Take Uk =

/E(T, + log k)

&

Sk/k,e

N0, o2(8)[g'(6)1%), as k+w.

=1, o%(8) = 1, g(x) =

/E(-log(sk/k)-O) i N(O0,1).

-log x so that

(6.1.4)

We can also prove LIL for T, using elementary analytical

methods by exploring the concept of limit superior and limit
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inferior and the relation between Tk and Sk' We do not
present this long but conceptually simple derivation here.

It turns out that

. K _
ilm sup‘/2 Tog log—k(Tk+l°g k) = +1 a.s.

L. k
lim 1nf/' (T, +log k) =-1 a.s. 6.1.5
; Z Tog Tog & 1x+109 K) ( )

(6.1.3)-(6.1.5) have been obtained by Hall (1978) using a
different canonical representation for Tk's as given by
(3.2.3a~c) and some martingale convergence theorems. One
can also use the general asymptotic theory for record values

to obtain these results.

6.2. Bivariate Extension of Stigler's
(1974) Result with Applications

As in Section 3.4, let xl:n < x2:n <ol xn:n be the

order statistics of a random sample of size n from a

distribution with 4df F with finite variance. Put

o~

1 B 1
S Y i qfn+l)xi:: SZn = n .

1
. I (5D %5 :n
i=1 1

1

where Jl and J2 are bounded and continuous a.e. F-l. Let,

02(Ji,P) = ffJi(F(x))Ji(P(y))[F(min(x,y))
- F(x)F(y)]ldxdy, 1= 1,2,

be positive. Also, let
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clz(Jl,JZ,F) = JIJI(F(X))JZ(F(y))[F(min(X.Y))
- F(x)F(y) ]dxdy.

Theorem 6.2.1:

Under the above assumptions,

. 2 .

(i) n Var(sin) > g (Ji,F), i=1,2 (6.2.1)
n COV(sln’SZn) - olZ(Jl,Jz,F) (6.2.2)

.. v

(11) (/H(sln-esln), /E(szn—eSZn)) -> (51'52) (6.2.3)

where (51'52) is a bivariate normal random wvariable with

mean vector (0,0) and covariance matrix

2
o (JlrF) Ulz(Jl’JZ'F)

2

(iii) Suppose further that J(F(x)(l-P(x)))l/zdx is
finite and that Jl and J, satisfy Lipschitz conditions with
indices oy > 1/2 and ay > 1/2, respectively, except pos-

sibly at a finite number of points of F-l measure zero. Then
/n(és; -u(3;,F)) »0, i=1,2 (6.2.4)

where u(Ji,F) = JF-l(t)Ji(t)dt. Consequently, one can

replace 8Sin by u(Ji,F), i=1,2 in (6.2.3).
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Proof:

Since Jl and J2 are bounded and continuous a.e. F-l,

from part (i) of Theorem 3.4.1, (6.2.1) follows. To show
the asymptotic bivariate normality we show that
/H[cl(sln—esln) + ¢, (S, =€S, )] converges in law to a uni-
variate normal distribution for all real cy and c,. For
this, let J = ¢,J, + c,J, and S, = ¢S1n * C,55n- Then,

171 1n
applying Theorem 3.4.1 for Sn we conclude that

Iy
/H(sn-esn)->N(o, cZ(J,F)),

wnere

62(J,F) f[[clJl(F(x))+c2J2(F(X))][clJl(P(y))

+ chz(F(y))]

+[F(min(x,y)) = F(x)F(y)ldxdy

2.2
cl c (Jl,F)+c2

2

2 2
o (JZ,F)+2clc20 (Jl,Jz,F).
(6.2.5)

Since ¢ and c, are arbitrary, (6.2.3) follows. Also,
using (6.2.1), (6.2.5) and the fact that n Var(s ) » o> (J,F)
we obtain (6.2.2). Applying part (iii) of Theorem 3.4.1,

for both Sln and SZn’ (6.2.4) follows. Therefore, one can

replace 8Sin by u(Ji,F) in (6.2.3).
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Corollary:

Under the above conditions, /E(Sln-U(Jl’F)) and
/H(SZn-u(JZ,F)) are asymptotically independent iff

615(31,3,,F) = 0 or iff lim n Cov(sln,SZn) = 0.

n->oo
Example 6.2.1:
n
. . = 1
Following Hogg (1974), define U_(p) = ToeT z X. .
[npj ? PP i=n-[np)+1 37
L L 2%, . et 0<p<0.5. Then, using the

and L_(pP) = 15 is
2 [ap] ;2 "i:n

theorem above, one can show that /[np](ﬁh(p)-up) and
/[np](ih(p)—ﬁb) are asymptotically bivariate normal when gp

and gq, the pth and qth guantile are unique. Here,

@ _ g
wo= J xdF(x) and ¥ = = [ PydF(x). Further, the limiting

covariancg is (Ep—ﬁp)(up-iq), a positive quantity. Hence,
fh(p) and ﬁﬁ(p) are not asymptotically independent. This is
in contrast to the independence of gl(xl:n""'xk:n) and
gz(xn-k+l-n”"’xn-n) when kx/n-»C (Rossberg, 1965, David,

1980, p. 306).

Example 6.2.2:

Let F be symmetric about zero and let the median be

unique. Define

-1, u<p
Jy(u) =1, 0<u<l; J,(u) = .
1, uwl-p
- F - 17 _T
Then, S; = X and 5, = E{Un(p) Ln(p)}. Because of

symmetry, Cov(Sln,SZn) = 0 for every n. Hence, v/n X and
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/n(s,

independent from the theorem and the corollary above.

—2up) are both asymptotically normal and asymptotically

Asymptotic distribution of Hogg's Q statistic:

Hogg (1974) suggested the following statistic as a good

indicator of tail length in symmetric populations:

U
n

(;) - T_(pp)

©n

Un(Pz)
In fact, he took Py

We use Theorem 6.2.

0.05, 0.2 and Py = 0.5 in his study.

1 to obtain the asymptotic distribution

of Qn' Define
1, u>l-pi
Ji(u) = -1, u<p; ’ i=1,2
0, otherwise
;. D kl 1 n k2
W o==(73Z X.. - £ X.. )/=(¢z X. . - IX._.)
non i=n-k,+1 1:m 4oy R n i=n-k,+1 1:0 4510
where k., = [npi]
_ _ i
_ i ]
Son = L9 (GFD) %5 .07

Q, = [npylW, /Inp,].
Under the assumptions of Theorem 6.2.1, it follows that
(/H(ShT“(Jl’F))' /H(Smfu(Jz,F)) converges in law to a bi-

variate normal distribution. Hence
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(3, F) /H(sln-u(Jl,F))u(JZ,P)-/Hn(Jl.F)(SZn—u(Jz,F))

ln
/n ( -
SZn A(JZ,F) SZnuTﬁz,F)

being a continuous function of these components converges
in law to N(0, o2 (W,F)) where
2 2 2 2
W35, F)o (3, ,F)+u7 (3, ,F) 07 (J,,F)
- ZIJ (Jl,F)U(JZ ’F)G].Z (Jl’JZ IF)

o% (W,F) = )
4 -
H (er:)

Here we have also made use of the fact that Szp B u(JZ,F).

ve dc not need symmetry for this result to be true. How-

}'1

ever, under Hogg's assumption of symmetry some simplifi-
cations in the expression for GZ(W,P) is possible . WLOG
we assume F is symmetric about zero and pl<p2. Then

one can show, after some algebra, that

w(d;,F) = 2Plbpl i=1,2
2 Al 2 _ L 2 s
(o (Ji,F) = 2#’ P + 2pl (ql pl) (le gqi) ’, i=1,2
and
_ 2
615(J31+3,,F) = ¢ (Jl,F) + 2pl(Hpl ay )[(E qu)

- 2p2(up2-€q2)].
As usual, u_  and 02_ are the mean and variance of the df
obtained by iruncati;g F below at Ec., the qﬁ? guantile
point. Of course, the above have tolbe substituted in the

expression for cz(W,F). Now
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U 1
pl . p2 J(JlrF)
/j(Qn - ) E 5= /n (w_ - I(7F)) and hence
Py 1 2
$ noo, p,20% (W,F) /p,°) . (6.2.6)

The assumptions which ensure (6.2.6) are apart from the

symmetry that the quantiles concerned are unique and that

»

[
J
have also considered the asymptotic distribution of Q-

(F(x) (1-F(x)))/%dx is finite. De Wetand van Wyk (1979)

It appears that their use of Moore's (1968) result in
establishing the asymptotic normality is questionable.

This problem was brought to my attention by Dr. Robert
Stephenson and reference to de Wet and van Wyk (1979) was

indicated by Dr. Robert Hogg.

Simple linear regression model:

As another application of Theorem 6.2.1 we obtain the
asymptotic distribution of a gquick estimator of the re-
gression coefficient in a simple linear regression model.
The asymptotic distribution of this estimator in the
bivariate normal case has been obtained by Barton and
Casley (1958). Let (xi,Yi), i =1 ton be a random sample,
from the simple linear regression model described in Section
5.5. Let

8= (¥,-Y,)/(X}-%,) where k = [npl, 0<p<l/2 and
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_ 1 n _ 1 k
''= = I X.., =—ZX-_I
k i op-x+1 1D % Tk j=3 1R
n k
= 1 = 1
Y = I Ye.. 1, Y% =5 ¥ . ..
k i=n-k+1 [1:n] k k i=1 [i:n]

We obtain the asymptotic distribution of B. To start
with, we prove some general results for the linear re-
gression model using Theorem 6.2.1.

Under our model it is known that a + Erjy = Y'i-n]
[

BX: .nr i =1 ton are iid rvs and are independent of

l:n""’xn:n)'

Define the following linear functions of Xi.n's and

(X

L -
Y[i:n] S:
1 B i 1 2 i
U = - zJ ('—)Y-. =8— ZJ(—,-)X..
n n i=1 1'n+l’ " [1i:n] n .4 1'n+l’"i:n
PR e,
noL2y 1'n+l [i]
= B8S_ + Rn say:
n .
_ 1 - i
T < 5'.5 I (G %
i=1
where Jl and J2 are bounded and continuous a.e. F;l. Note

that Sn and R.n are independent and Sn and Tn play the

role of Sln and 82n in Theorem 6.2.1.
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Theorem 6.2.2:

In addition to the above assumptions, let Jl be

integrable and 8]El2+6 < = for some §>0. Let cz(Ji,Fx)

be positive and finite. Then

(]
(/H(Un-eun), /H(Tn—eTn)) > (R + 8S, T)

1

where RV N(a, °E2J le(x)dx), ($,T) has the distribution

0
of (Sl's2)°f Theorem 6.2.1 with F = Fx. Further R and

(5,T) are independent.

Proof:

(/n(u_-8&u ), /n(T -€T)) = (/n(R -€R ) + B/n(S_-€sS_),
/(T -€T )). First note that /a(R -eR ) and (/n(S, -es,),
/H(TR-ST,)) are independent. The convergence of the bi-

variate rv follows from Theorem 6.2.1. Rn is the mean of

independent nonidentically distributed rvs. 8]E|2+° < @

implies &|J (—i—)E .-!2+6<w Using CLT (Lemma A4), and
== n+l’“{1] ° = ’

the fact that Jq is integrable, one can show that

1

g
/A(R_-ER) > R v N(O, 0E2 J le(u)du).

0
This completes the proof.

One can show that if Jl satisfies a Lipschitz condi-
tion with index a > 1/2 except at a finite number of

points, then
1

/H(&Rh- aJ Jl(u)du) - 0 as n»». Hence, if in addition
G

to the assumptions of Theorem 6.2.2, Jl' and J, satisfy
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Lipschitz conditions with indices bigger than 1/2 except
possibly at a finite number of points of F;I measure

zero, and [(Fx(x)(l-Fx(x)))l/zdx is finite, then one can
1

replace 8Un and 8Tn by Bu(Jl,FX) + aj Jl(u)du and u(Jz,FX),

0
respectively.

To obtain the asymptotic distribution of 8, take
-1, u<p

Jl(u) = Jz(u) = J/ 1, uwg
0, otherwise
and assume that ¢y (p) and &y(q) are unigue.

Then

1
/A(U_-85 ) = VA R = /I_l(Rn~och'0Jl (w) du)
& 1
< N0, cEZJOle (u)du)

I

. 2
N(O, ZPOE ).
Also, since /H(Sn—u(Jl,Fx)) converges in distribution,

P -
S, —* “(JI'FX) = p(up-up)- Hence

n
Un—BSn . g 2pUE2
/M(—5—) = /n(3-B) > N(0,—=——);
n P (up-np)
that is, 2
vk (B-B) = N(O, —————=).

— 2
(up up)
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This proof has not made any explicit use of Theorem 6.2.2.
But, one can write a proof using that theorem on the
lines similar to those used in obtaining the asymptotic

distribution of Hogg's Q statistic.
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IX. APPENDIX

Lemma Al: For a random sample of n from a continuous parent,
the conditional distribution of xs:n given xr:n = x (s>r),

is just the distribution of the (s-—:)th order statistic in

a random sample of (n-r) drawn from the parent distribution

truncated on the left at x.

Proof: See David (1980, p. 20).

< X < ... <X be the order

EEEEE-AE: Let X1:n — 2:n — n:n

statistics in a random sample of size n frcm the Exp(l)

}eN

with Xg = 0, are iid Exp(l). Consequently, X..n
r :
z Yi/(n-i'l'l)' r = 1,2,.-0,1’1, Where the Yi'S are iid
i=1

Exp(l) rvs. Here stands for the identical distribution

e

of the rvs on either side of this symbol.

Proof: See David (1980, pp. 20-21).

Lemma A3: Let 0<£(f ) <=, 0<p<l, where £, is the pth

quantile and f is the parent pdf. If p,-p = 0(1/v/n) then

X[ap 1:n = fp * PEp(B)I/E(E) + Ry

where Fn(gp) is the empirical df of xl,xz,...,xn evaluated

at Ep and where vn Rn 4 0 as n»~_. (this is a weaker version of

Bahadur's representation).
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Consequently, v/n(X - &) : N (0, p(l-p)/fz(ip))-

inp ]:n
This result is due to J. K. Ghosh (1971).

Lemma A4 (CLT): Suppose that for each n, the sequence of

. _ 2 _
rvs an,...,xnrn ;s independent. Let gxnk = 0, Oax =
2_ n 2 |2+6
var(X_,), s,” = kil C,x- Suppose that 6]Xnk,

exists for some 6>0 and that Lyapounov's condition

hey

nog
2+
n

o 1 248 _
c(ank! ) =0

lim =z
n+o k=1 s

is satisfied. Then,

n <

X /sn

1 ni N(0,1).

U e T

i

A proof is given, e.g., in Billingsley (1979, pp. 310-312).

Lemma AS5: If Gn(x) is a sequence of dfs converging to a
continuous df G(x) then the convergexnce is uniform in x.
This is known as Polya's lemma. For a prccf see e.g.,

Galambos (1978, p. 111).

Lemma A6: If Gn(x) is a sequence of dfs converging to a

éf G{x) and if the gn's are bounded continuous functions

converging uniformly to g, then

lim JgndGn = fgdG.

n->rw©
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This appears in Chung (1974, p. 93).

. v B < .
Lemma A7: If En Xn 0 and Xn + Y where all the rvs in
<
volved are of k dimensions, then En - Y.
A proof for the case k=1 is given in Rao (1973, p. 123).

A similar proof can be written for k>1.

\
enma A8: Let x = (x{*,....x) ana x= x@, . x

be x-dimensional rvs. Then, with the usual Euclidean distance
function in the definition of convergence in probability.
P

(3) B (3 . _ . P
X, X r J =1 to k, 1iff En X.

The proof is easy.



