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Abstract

Modern mobile terminals produce massive small data packetsthese short-length packets, it
is inefficient to follow the current multiple access schenesllocate transmission resources due to
heavy signaling overhead. We propose a non-orthogonal taecsss scheme that is well suited for the
future communication systems equipped with many receiversias. The system is modeled as having
a block-sparsity pattern with unknown sparsity level (ilmknown number of transmitted messages).
Block precoding is employed at each single-antenna tratesnto enable the simultaneous transmissions
of many users. The number of simultaneously served actigesus allowed to be even more than the
number of receive antennas. Sparsity-aware recovery igrts at the receiver for joint user detection
and symbol demodulation. To reduce the effects of chanrdihdaon signal recovery, normalized
block orthogonal matching pursuit (BOMP) algorithm is aduced, and based on its approximate
performance analysis, we develop interference canamildiased BOMP (ICBOMP) algorithm. The
ICBOMP performs error correction and detection in eactatten of the normalized BOMP. Simulation
results demonstrate the effectiveness of the proposedrgcie small packet services, as well as the

advantages of ICBOMP in improving signal recovery accuraicgt reducing computational cost.

Index Terms

small packet, non-orthogonal many access, precodingkisiparsity, error correction and detection,

order statistics

I. INTRODUCTION

Intelligent terminals such as smart phones and tablets aelywused nowadays, and their

numbers are expected to grow in the near future. It is likagt tmany applications in these
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intelligent terminals are simultaneously requesting tongwnicate with a same base station
(BS). The resulting data packets to be delivered over aleelhetwork are usually very short,
i.e., small packets [1][ [2]. Mobile applications such ast@amt messaging are the main producers
of small packets. In the services of small packet, the nurobesers simultaneously requesting
services may even be comparable with the length of codingkblahich makes the channel
a many-access channél [3],! [4]. On the other hand, the seméquests of small packet are
frequent and irregulaf [12]. Although many users may siemébusly have packets to send, they
represent only a small percentage of the total users cosuhéotthe network.

In current systems, small packet services put great burdegheocellular network. One factor
is due to the low efficiency of the transmitted packet. Every\ghort conversation packet is
accompanied by regular overhead such as identity infoomatVlore importantly, for frequent
and random transmission requests, when following the iagishultiple access schemes that
allocate orthogonal resources for different transmissisignaling overhead related to scheduling
these packets is very heavy. For example, even the schgehdised schemes which are widely
deployed in systems such as long term evolution (LTE) to enste quality of services, will
produce massive overhead in dynamic resource programriurngre wireless communication
systems, e.g., 5G network [11], are required to offer a Iatuah connections, which draws much
attention from academia and industry to propose flexible effidient protocols, e.g.! [3]=[10]
and references therein.

In this paper, for the services of small packet, we propos@raanthogonal many access
scheme for uplink. The proposed scheme is based on precatlthg transmitters and sparsity-
aware recovery at the receiver. The main motivation is tovallor a large number of users to
transmit simultaneously, although each user may transnijt @ small amount of data. Block
precoding is employed to enable the simultaneous tranems®f many users. The sparsity-
aware recovery is designed to detect the user activity acolveg the transmitted data jointly.
We say a user isctiveif the user is transmitting data. The user activity, inchglthe number
of active users and the identities of active users, is noivknat the BS. Besides frame-level
synchronization, no competition for resources or otherdioation are required. This saves the
signaling overhead related to allocating resources farstrassion, and improves the resource
utilization efficiency.

The contributions of our work are as follows:
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1) Block precoding and block-sparse system modeliwg: apply block precoding to short-
length message at each transmitter, and by considering Sie activities, we develop a
block-sparse system model with unknown sparsity level. @$tablished model takes full
advantages of the block transmission behavior and is deiti@p sparse recovery based
algorithms.

2) Block-sparse recovery algorithmSignal recovery includes user detection and the symbol
demodulation in our scenario. To mitigate the influences lednnel state on recovery,
we modify the existing BOMP algorithm into a normalized BOMRjorithm. And then
based on the normalized BOMP, we develop an interferenceettahon (IC) based BOMP
(ICBOMP) algorithm. The ICBOMP improves upon the normalizBOMP by taking
advantage of the availability of error correction and deteccoding. By the ICBOMP
algorithm, we achieve better signal recovery accuracy ameid computational cost. The
price is a slightly decreased data rate due to coding.

3) Signal recovery analysisiWe approximately analyze the performance of signal regover
by the normalized BOMP algorithm. Considering the charstie of the sparse recovery,
order statistics [34] is used for the approximate analysisong many mutually-exclusive
cases of successful user detection, we choose the most tikelto analyze its probability.
The obtained probability is used to serve as the approxifoater bound for the probability
of successful detection. Based on the successful detest®mperform analysis for symbol
error rate (SER).

Thanks to the precoding operation and the designed spansdye recovery, our scheme
enables the system to serve many active users simultayed& number of active users can
be even more than the number of antennas at the BS. When BS&ifged with a large-scale
antenna array [13][.[14], it can offer small packet servitesa very large number of users. At
the same time, as demonstrated by the sparse-recoveryviaia [19], our scheme can also
provide benefits in saving the identity information and @dg the decoding delay. Therefore,
the proposed scheme is especially suitable for the futuresys@em.

The most related works to our proposed scheme are spavgityearecovery based multi-
user detection studied in papers such(as [3]-[5]] [15]-g8] references therein. In most of
the referred works, sparse transmissions have been coegifter the detection task. Some of

the works address the problem of user detection and thenaifteés symbol demodulation. A
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new notion of capacity related to many-access channel iedated in[[3], [4]. Full duplex is
virtually realized in [5], where on and off slots are respaay assigned for transmitting to and
receiving from neighbors, and finally sparse recovery isedanthe receiver when one frame
transmission completes. 10 [15], based on convex optinoaathe authors introduce sparsity-
aware detectors for the multi-user detection in code-aimisnultiple access (CDMA) systems.
The fact that sparse recovery algorithms such as OMP canderdyetter performance than
single-user detection is demonstrated [in] [17]. WorksL[in],[J21], [23] show that, compared
with some well known schemes, the CS based multiple accdssms can save the identity
information overhead and reduce the decoding delay. A C8doaunulti-user detection scheme
for machine-to-machine (M2M) communication can be foundlil]. Particularly, authors in
[18] establish a block-sparse system model and adopt a modéhg scheme to improve the
user detection accuracy.

Our work differs from the above referred works. All works BJ[5], [15]-[1€], [21], [22] are
about scenario of single-antenna receiver. Works in [&1],[[19]-[23] establish sparsity model
where nonzero coefficients to detect are just randomly éetaimong all possible positions in
a sparse vector, which neglects the fact that the transmnissi a message could last for a
few symbol slots, i.e., block transmission. Block transsiua is considered ir_[5][ [18]. BOMP
algorithm is adopted in_[18] for the data recovery and anviagtaware channel coding is used
to improve the recovery performance, but coding scheme iginbt fully incorporated into the
greedy algorithm to reduce the computational cost.

The rest of the paper is organized as follows. In Sedfibrh#,dystem model of block sparsity
is given. In Sectionll, we introduce the normalized BOMBalithm to recover the transmitted
signals and analyze its performance. Improved algorithreige ICBOMP is proposed in Section
V] Section presents the numerical simulation result$ tieemonstrate the effectiveness of the
proposed scheme. Some issues are discussed in SectionndllyfFconclusions are presented
in Section[VII.

Notation: Vectors and matrices are denoted by boldface noage and uppercase letters,

respectively. The 2-norm of a vector is denoted ag|v|[,, and vI' denotes its transpose.

The identity matrix of sizen x n is denoted ad,,. For a matrixA, its conjugate transpose
is denoted asA”. The (i, j)-th entry of a matrixA is denoted agA]; ;. Operationvec(A)

denotes vectorization oA by column stacking. For a subsétc [N] := {1,2,---,N} and
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matrix A := [A;, Ay, .-+, Ay] consisting of N sub-matrices (blocks), where each sub-matrix
has an equal sizeA; stands for a sub-matrix aA whose block indices are in; for a vector

v = [vi, vl - vL]T, v; is similarly defined. ValudI| stands for the cardinality of set
Given two sets/; and [y, I,\I, := I, N I5. For a real number, || and [r] respectively stand
for its floor and ceiling. Operatorg, Tr and E respectively stand for the Kronecker product,
the trace of a matrix and the expectation of a random varialdestands for taking the real
part from a complex number, ar@‘) is the binomial coefficient forn > k. The real Gaussian

PDF with mearny and variancer? is denoted as

1 x — u)?
s exp <—7( 205) ) ) Q)

1. SYSTEM MODEL

£ (alu, o) =

Consider an uplink system witly mobile users, each with a single antenna, and a BS with
M antennas. When a terminal is admitted to the network, it imesoanonline user. We assume
that there areV, activeusers, out of the totaV online users, that simultaneously have data to
transmit. It is not requiredV, be knowna priori or N, < M. Actually in practical systemsy,
is usually unknown and it is possible that, > M.

We make the following additional assumptions on the systensidered.

1) The channels are block-fading. They remain constant fartain duration and then change

independently.

2) The transmissions are in blocks and the users are syrizhtb@at the block level. We
assume that each frame of transmission consists sfymbols, which all fall within one
channel coherent interval. Valdé depends on the communication standard.

3) The antennas at the BS, as well as the antennas amongargessifficiently apart to yield
spatially independent channels.

4) The BS always has perfect channel state information (GSdnline users.

Since the lengths of small packets are usually shorter fhawe extend their lengths by

precoding to fully utilize the available resources. kgte C%*! denote the symbol vector to be

transmitted by usen, with d < T, n=1,2,--- | N. Usern applies a precoding ts, to yield

x, = Pys, (2)



whereP,, is a complex precoding matrix of siZzé x d. We assume thd®,, is normalized such
that each column has 2-norm equal to 1. The entries,odre transmitted irf” successive time

slotsil The received signals at the receiver within one frame can tittew as

N N
Y =Y hx!+Z=/pY h,s P +7Z (3)
n=1 n=1

where p, is the signal to noise ratio (SNR) of the uplink] is the noisy measurement of
size M x T, Z € CM*T represents the additive Gaussian noise matrix of compaéed, and

h, € CM*! represents the complex channel response from ugerthe BS. Without loss of
generality, each element &f,, Z and nonzeras,, is assumed to have a zero mean and a unit
variance. Using the linear algebra identityc(ABC) = (CT @ A)vec(B), we can rewrite the

received signal as
N
vee(Y) = /po »_ (P, @h,)s, + vec(Z). (4)
n=1

Definey := vec(Y), B, :== P, ®h,, B := [B},B,,--- ,By] ands := [s] s ... %],
Then [4) can be rewritten as
y = /poBs + z. (5)

In the above formulation, we have assumed that all messayesdn equal lengtih. We view
d as the maximum length of the messages for all users withiramdr For the users whose
message lengths are less thiarwe assume their messages have been zero-paddetdiore
precoding. For those users that are not active, we view thansmitted symbols as all zeros.
Throughout this paper, we say is a block ofs andB,, is a block of B.

Since typically only a small percentage of the online usees active, nonzero signals are
only located in a small fraction of blocks ¥and all other blocks are zero. WhédT > Nd,
the receiver design is easy. Our consideration is limitedaseMT < Nd, where [[5) has the
same form as an overloaded CDMA system. The equivalent dimge@ahip sequences iB no
longer have constant amplitude and are generated by camgbprecoding codes and channel

gains. When precoding matriR,, is well designed, matriB can meet the restricted isometry

1 In fact, T can be generally regarded as the number of resource unitmén frequency and code domains. For examfle,

resource units can be composedmoefsubcarriers and7’/m| successive time slots for each subcarrier.



property (RIP) requirement for measurement matrix in theli@®ature [24], [25]. Therefore,
from the viewpoint of signal recoveny,](5) can be viewed adaglsparsity CS model [27].
Although the information of active users is unknown at the, BSs assumed that the BS
knows the sparsity of transmission, so that it can perforarsfy-aware recovery. Let be the
set containing the unknown indices of active users, With= N, < Nan.x. This means that the
unknown number of active users is at mogt,,... We assumeV, .« 1S known at the receiver.
Remark 1:The precoding scheme is proposed because in redliig, usually longer than the
lengths of small packets. Also, the precoding scheme darigs to solving the signal recovery
problem in the situation wherd’, > M.
Remark 2:Each user knows its own precoding matrix and the BS knowssatsl precoding
matrices. Since any two precoding matrices are not allowdetidentical, each precoding matrix
represents a unique user. Therefore, no additional igeinfiormation of users is required.
Remark 3:The precoding matrix should have full column rank for dateoxery. Additionally,

we assume each column of the precoding matrices is norrdaiiz@ave unit energy.

[1I. NORMALIZED BOMP ALGORITHM FOR SIGNAL RECOVERY

Sparsity-aware recovery has been widely studied in thedramrk of CS [24], [25]. Initial
work in CS treats sparse weighting coefficients as just rarigldocated among all possible
positions in a data vector, i.e., random sparsity. Whenksgparsity of the vector is taken into
account, it is possible to obtain better recovery perforreaand reduce the number of required
measurements [26]—[29].

As for signal recovery algorithm to be used at the BS, we fimgtlhyathe known BOMP
algorithm and modify it to our problem. The normalized BOM&aaithm is therefore introduced.
Then, we analyze the performance of the normalized BOMRjdmg user detection and signal

demodulation. The order statisti¢s [34] is essential far analysis.

A. Normalized BOMP algorithm

The main idea of BOMP is that, at each iteration, it chooses lnck from B which has
the maximum correlation with the residual signal. Aftertthia will use all the previously
selected blocks to update the signals by solving a leastreq(LS) problem[[27]. Due to
B, = P, ® h,, and to mitigate the negative influence lof on user detection, it is beneficial
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to use the norm oh,, to normalize the columns dB,  when calculating the correlation value.
Idea of similar modification can also be found in][18] to comttee influences of channels in a
CDMA system. Detailed iterations of normalized BOMP is r@ed in the Algorithm 1, where
ik = || B re_1]|3/|hy]l3 is the squared correlation coefficient of normalized.

Algorithm 1 normalized BOMP
1: Input: B, y, po, all channel vectors, iteration& (necessarilykK < L%J or directly

K = Namax)
2: Initialization: index setA, = ¢, residual signat, =y
3 for all ke{1,2,--- K} do
1) calculate ther; ;. for j € {[N]\Aw_1}: ¢jn = ||BJ r—1l3/(hy][3
2) find the index\;: A\, = argmax;c(n)\a, 1} Cjik
3) augment the index sek;, = Ax_; U {\}

4) update the signals by LS algorith®k, = argming, ||y — /poBa,so|l2
5) update the residual signals; =y — /poBa, 54,
4: end for

5: Output: sk: the reconstruction of most likely signal-bearing blockgthe index sef\

With the reconstructed coefficients, we will then demodulde transmitted messages.

B. Analysis of group user detection probability

Since the identities of the active users are unknown to thetBSBS need to first perform
detection of the active users’ identities before symbol déutation can be performed. At the
th iteration, in order to guarantee that an inactive useoidaisely added to the list of users to be
demodulated, we neadax;c; c; > max;¢; c; .. In our analysis below, we will use group user
detection success rate (GUDSR) as the performance metnichvis defined as the probability
that all active users are selected by the recovery algoritten 7 € Ax. When K > N,, as
many asK — N, non-active users will be falsely selected as active, thisngvoidable for our
normalized BOMP algorithm because the numbgrof active users is unknown and no other
side information is available or utilized to decide whetharser is actually active. The situation

can be greatly improved when error control coding is used &ectiorL V).

8



Exact active user detection probability analysis is diffidor several reasons, including
1) the distribution of the entry oB is difficult to characterize because it involves both the
linear precoding code and the channel fading, and 2) erropggation in the normalized
BOMP iterations cannot be avoided. To make the analysigatose; we make the following
approximations:

1) We assume that the entries of precoding matrices are caohplex Gaussian variables,
with zero mean and varianc)é. Whend and T are large enough, such approximation is
reasonable for the analysis of the statistics of the cdroglaoefficients.

2) Although the normalized BOMP algorithm works with the ohal realizations, we evaluate
the performance by averaging over channel fading stagistdhich makes the analysis
tractable. The result will therefore depend on the chanteistics rather than specific
channel realizations.

3) We approximate the distributions of tle, for both j ¢ I andj € I as Gaussian. Even
though by definitiort; ;. is non-negative, the approximation is reasonable wtieis large.

In the following, we will analyze the performance of useredion by several steps. The order
of selecting active users is firstly studied and then ordatistics is applied for the analysis.

1) User selection orderAt the start of thet-th iteration, the residual signal from the previous

iteration is
ry—1 =Y — +/PoBa, .54, , (6)
=y~ VB, (BY B ) By ™)
=/ro Z B;s; + z (8)
ieN\Ag_;

wherez, =z — B,, (BEHBA,C?J B BY | <\/% diena,, Bisi+ z), and the second term
of z, is the propagating error of the normalized BOMP resultingrfrprevious iterations. We
will first evaluate the means of the squared correlation faoefts c; , between the residual
signalr,_; and the normalized signature sequenﬁ%?;Bj for both active and inactive users.
Let o x,; and i, ; denote the mean values of, for j ¢ I (inactive user) ang € I (active

user), respectively. Let, be the number of active users that have been selected by shé fir



iterations. Leta,ﬁ denote the variance of each elemen&zf Then we have

pod” 2
tokj ~ (Na— Sk—l)T + doj;, 9)
pod H d? 2
Pk R T(d +T — 1)E{hi'h;} + po(Na— sp—1 — I)T + doy,. (10)

Results in [[P) and[(10) have been obtained by averaging dethannel realizations. See
Appendix A for the derivations of_ {9) and ({10) and the appmeadions involved. Generally
speaking, among the remaining active users that have natdmected, the one with the largest
hf h; is expected to be selected at each iteration. This can alsbdmrved from[(10) — if the
channels are random, then the one with the largest eri@r{ggg’fhj} will result in the largest
mean in the squared correlation coefficient. Next, we wilblgporder statistics to derive the
distributions ofh/'h; for different active users.

2) Order statistics of channel coefficient®Vithout loss of generality, we assunie= [N,
andh{’h; > hf'h, > --- > h{ hy,. Indices fromN, + 1 to NV are for the inactive users. For
each userj, the unorderedrandom variableh!'h; follows a chi-squared distribution with)/

degrees of freedom. The PDRx) and CDFF(z) of the unorderech/’h; are given as follows:

l’J\/[_l
f(z) = exp (—ﬁ)m (11)
M-1 ,I'k
F(z)=1—exp(—2) Z o (12)
k=0
both of which hold forz > 0, and are zero whem < 0. By order statistics [34], the PDF of
the orderedh’h,,,n = 1,2,--- , N,, is given as
_ Na' Na—n n—1

for x > 0. The meank {h{jhn} can then be computed based on the above PDF.

3) Variance of residual errorWith K iterations, there are many cases for a successful group
user detection. To simplify the study of GUDSR, we considdly @ne case for simplicity: the
first IV, iterations select all thé/, active users and the selection order is based on the deagendi
order of theirh/’h,,. Since there are other cases where the active users canrbetiyoidentified,
the GUDSR we obtain by considering only one case of the safidedetection will serve as
a lower bound to the true GUDSR. The assumed selection osdier line with a similar idea

used to analyze the performance of successive IC in [34]t,Nexwill analyze the probability
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of the occurrence of the considered case. Our analysis of &JMill just involves the firstV,
iterations. At thek-th iteration, the algorithm selects theth active user, i.e., the active user
with hiThy.

When the above selection order is considered in the analigsid < k < N, and after the

previousk — 1 iterations, the variance; of z; (c.f. (8)) is given by

1
1 -1
= —F {ZH |:IMT ~By,, (BY_Ba, ) Bfkl} z} (15)
p Na _
0
—T Z_; E {SnHBnHBAkl (BfkﬂBAk—l) Bfk1B"S"} (16)
1 —1
~ = Tr {E {IMT _B,, . (B,I{kleA%l) BY }} (17)
pod -1 -
+ - T {E{B,, (BfkleAhl) BY ¢ E{nhn,} (18)
M?2T n=~k
o (k=1d  pol SN
=1 M2T2 ZE{h h,} (19)

where the identityB”B,, = (P” @ h/’) (P, @ h,) = (PYP,) ® (h/h,) = (PZP,) (hfh,)
has been used in the above derivation.

4) Statistics of the squared correlatiomst the £-th iteration, by our previous assumption on
the active user selection order, the algorithm will seléet #-th active user ranked according
to channel strengths. Since the statistics of the squareelabon coefficientc;; for inactive
user;j ¢ I does not depend on the inactive user index, wejuseandag , to denote the mean

and variance for;;, for j ¢ I. For ¢, which corresponds to the-th active user, we denote
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its mean and variance as , ando? ,, respectively. We have the following reslts

AL
MOkNWZE{hHh }+doy (20)
Ug,k ~d(d + 1)U§k,1 - Mg,k (21)
pod pod? 2
Pod o H H 2
i, & T (d+T —1)E {hf hk}+MT n;IE{hnhn}erak (22)
o 2
ot~ (@ + d)(d+ T — 1R { (bfhe)*} + d(d + 1), 23)
3 24> d d?
whereaflH is the variance of each elements of the residual sigpal, given by
1
O‘Ekil MTE {rk 1T 1} (25)
p 1y
= M—OT > sUBIB.s, + ngf 7y (26)
nEI\Ak,1
pod
MTZE{h{jhn} + o} (27)
n==k
and o%k is the variance of each elementsigf:=r,_; — \/poBysi, given as
pod =
0
LS T E{h'h,} + o}, (28)
n=k+1

which is reduced tofgk = o7 whenk = N,. The derivations of[(20)-(24) are presented in the
Appendix B. With the Gaussian assumption@n in general and;, ; in particular, the PDF of
cr.x for the k-th active user isf, . (z) = f™ (|14, aik). The PDF ofc;, for a generic inactive
userj ¢ I is given by fo(z) = f™(2|uok, 03 ), Which does not depend on the index of the
inactive user.

5) Successful user detection probabilifyalse alarm in the detection is generated in the first
N, iterations of the normalized BOMP algorithm when an inaetisser has a larger squared

correlatione;;, than an active user. Using order statistics, the PDF ofithe;¢; c; ;. is given by

Fosema(®) = (N — Na) [Fo ()]~ fo(2) (29)

2Whenk = N,, the ag,k can be more precisely given by using the result{ ol (48) as ¢serslary moment.
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where Fy, ;(z) is the CDF ofc;, for j & I.
Let £, denote the event that theth active user is selected at theth iteration, i.e..c; , >

max;¢7 ¢ 5, Whose probability is given by

“+oo T
P(Ey) :/_ [/_ fo,k,max(xo)dxo} Jre(21)dwy, (30)

The successful group user detection of the considered derodder has a probability as follows

Na Na
P(u) = HP(Ek|E17 EQ, s 7Ek—1) ~ HP(Ek) (31)
k=1 k=1

where the last approximation is valid when the probabilityes, . . ., £)_; is high, namely when
the correct detection probability is high.

Remark 4:Due to the approximations made in the derivation/$f, it can be used as an ap-
proximate lower bound of the true GUDSR only. In the simalasi section, we will demonstrate
the usefulness of the derived lower bound using numericaiinges, when the SNR is not too
small.

Remark 5:The above analysis about GUDSR shows that, la¥gend N are not good for user
detection when other parameters are given. It is becaugaribke the gap between normalized
correlation coefficients of the last active user and nonaaiser small, which is quantified by
the order statistics.

Remark 6:Probability of successful detection widividual active users is another useful perfor-
mance metric. However it is more difficult to analyze. We wébkort to numerical simulations
for their evaluations. The error rate of group detectionaturally typically higher than that of

individual detection because any individual detectiorenauses the group detection failure.

C. Symbol error rate analysis

For the analysis of symbol demodulation error probabilitg, assume that quadrature phase
shift keying (QPSK) modulation is used as an example. Othedutation schemes can be
similarly considered.

When all theN, active users and& — N, non-active users have been selectedibiterations
of normalized BOMP, signal update is finally as follows

_ 1 -1
SAx = SAx +—— (B/I{(KBAK) B/I{KZ (32)

NG
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whereB,, is MT x Kd matrix composed of{ selected blocks.

When the entries aB,,. are i.i.d. complex Gaussian variables, the demodulatiofopeance
of (32) has been analyzed through an upper bound_ih [35]. Cademmis different in several
aspects: 1) each column B, ,. is a Kronecker product of a precoding vector and a singledtinp
multiple-output channel response vector; 2) evérgolumns ofB,, share the same channel
vector; 3) the precoding vectors are normalized. Despiésehdifferences, we can obtain an
approximated SER expression by assuming that the entriés, pfare i.i.d. complex Gaussian
variables with zero mean and variantgl’. Under this assumption, all symbols of all active
users have the same average (ergodic) performance, whegvéinage is over channel fading
and noise statistics. As a result we can focus on the anadyseny one symbol, say the first
symbol of the first (unordered) active user.

Assuming without loss of generality that the first columnBY, belongs to an active user.
LetG =1/ [(BKKBAK)_l} o which is a random variable that affects the SNR of the useful
symbol. Letb, be the first column 0B, .. Using the result in[35, Appendix A], we can express

G as
MT—-Kd+1

G= > |l (33)

m=1

whereb,,, m = 1,...,MT — KT + 1, are i.i.d. and they have the same distribution as the
entries ofb;, namely zero-mean, circularly symmetric complex Gaussiéth variancel/T.
As a result,G is a scaled chi-squared distributed random variable withreks of freedom

2(MT — Kd+ 1), with PDF given as follows:

TJ\/[T—Kd+1

fG(g) = m . e—ngMT—Kd. (34)

Conditioned onG = g, the SER of the symbol of interest is given by

SER(g) = erfc(W) — Berfc(Wﬂz. (35)

The average SER can then be evaluated as

SER= | SERY)- Jul9)dy (36)
0
Remark 7.When MT — Kd+ 1> 1, G is well approximated by a constant
MT — Kd+1 Kd—-1
= =M — 7
GO T T ) (3 )
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according to the law of large numbers. The average SER isdgivem by SEF@g)\g:GO. That is,
compared to a single user QPSK transmission scheme, therperice for a multi-user system
as we proposed suffers an multiplicative SNR loss factar@fLarge M is preferred for better
performance as expected. However, there is an effect ofnéihing returns based of (37).
Intuitively, a large K is preferred for increasing user detection probability. tB& other hand,
large K causes more SNR degradation. Whi€r approaches\/T, symbol error probability is

expected to be large.

IV. ICBOMP ALGORITHM FOR SIGNAL RECOVERY

The previous analyses of normalized BOMP indicate that dlesmiéeration numberk can
provide a lower SER. However, sinc¥, is unknown at the BSK must be large enough
to accommodate a possibly larg€,. As Kd approachesMT, the performance of symbol
demodulation may degrade significantly. During the iteradi many blocks are expected to have
only a few demodulation errors, which can be corrected ifraor€ontrol code is employed. Error
control coding is widely used for correcting demodulatioroes due to noise and interferences,
and error detection codes such as cyclic redundancy cheRiC)Y@odes can be utilized to
indicate whether the decoded packets are error-free.

This motivates us to consider error control coding at thesmaitters and an improved ICBOMP
algorithm for recovery. The ICBOMP algorithm makes use @becorrection and detection to
carry out perfect interference cancellation in each iterabf the normalized BOMP. Perfect
interference cancellation means that if some blocks ofadgyare correctly recovered before the
iterations have been finished, they are regarded as irdaderto the following iterations and
will be canceled to end their update. The idea of interfezetancellation can be found in [34].

The ICBOMP is presented in Algorithm 2.

A. ICBOMP algorithm

In Algorithm 2, s} is thei-th block of s,, obtained by the LS reconstruction. Since some
blocks of signals may have been correctly recovered and ¢haneled by the previous — 1
iterations, it hasl < i < |A;_;| +1 < k. Vectors,, is the output ofs,, after error correction

and detection. Lef\, denote the index set for error-free blocks at thth iteration.
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Algorithm 2 ICBOMP
1: Input: the same as as normalized BOMP

2: Initialization: index setA, = ¢, residual signat, =y
3 for all ke {1,2,---,K} do
1) initialize a temporary index sef; = ¢
2) calculate the:;, for j € {[N]\{Ak_l Ap_y- ~A1}}: ciw = | BHre_y[3/|hy2
3) find the index\,: A\, = arg MAX; ¢ (N\{Ag_y Apr-Ar}} ik
4) augment the index sek;, = Ax_; U {\}
5) update the signals by LS algorithgy, = argming, [y — 1/poBa,Soll2
6) for all i € {1,2,--- ,|Ax|} do the following error correction and detection:
6a) If s}, after error correction and detection is error-free, thignis the decoded version
of éj\k; the original index of thig-th block should be added intdy,.
6b) If s, after error correction and detection is not error-freentig is the same as

s}, without correction.
7) end for
8) perform perfect cancellatiory. =y — \/poBj, 83,
9) update the index setd;, = A, \{A;}
10) update the residual signals; =y — /poBa,8x,
4: end for

5: Output: sk and the already correctly recovered signal blocks

It can be observed from the comparison of ICBOMP and norredlROMP algorithms that,
their main difference occurs after signals have been uddatéhe LS method. The ICBOMP will
perform error correction and detection for each bloclsin. And when some blocks of signals
are decided to have been correctly recovered, ICBOMP wilfope the perfect cancellation.
When perfect cancellation is allowed, ICBOMP can offer thiofving benefits:

1) Higher user detection successful rate and signal demoruma@ccuracy:By error correction
and detection, the accuracy of signal demodulation is ivgatpand this will reduce the
error propagation which is the main drawback of the (normeal) BOMP. In turn, this is

beneficial for the detection of remaining users and themalg) demodulation. Additionally,
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since error correction and detection are performed imably iteration for signals that are

not previously error-free, the signals have a higher priibalbo be correctly recovered.

2) Lower computational costvhen some blocks of signals have been exactly recovered, The

ICBOMP regards them as interference to the following iieret and no longer update these
signals. For the LS update, more blocks indicate more coatipntal cost. Therefore, the

ICBOMP can reduce the computational cost.

The benefit of ICBOMP is from the perfect interference calatiein after error correction and
detection. The price paid is a slightly decreased data na¢etd coding and a certain amount
of additional calculations in decoding. However, the remtlicomputational cost outweighs the
additional computational cost of decoding. As demonstirbtesimulations, when the SNR is not
too small and under the same condition, by the BCH codingresehéhe ICBOMP recovery runs
much faster than the normalized BOMP. The performance aisalyy the ICBOMP recovery

will require a lot of future work.

V. NUMERICAL RESULTS

The simulation studies for verifying the proposed scheneepaesented in this section. In all
simulations, QPSK is applied for data modulation. Chanmeeltors are i.i.d. complex Gaussian
with zero-mean and unit-variance for each element. Mgeactive users are chosen uniformly
at random among alN online users. We will choose the frame lengthto be a multiple of
the maximum length of short messag#s= 5d in all our presented simulations. All packets
are assumed to have 100 nonredundant message-bearinglsyn#p200 information bits. As
for precoding design, we simply generate a complex Gaussiainix and then normalize its
columns to produc®,, n=1,2,---, N.

In our simulations, the SNR is defined &5/N,, where £, is the symbol energy and/,
is the noise spectral density. The SER is computed as folleen a demodulated symbol
of an active user is different from its original symbol, weioh an error; if an active user is
missed to detect, then all itssymbols are treated as erroneous. When an active user cseskle
before algorithm finishes, we claim one successful detectaad the number of all successful
detections divided by, is UDSR.
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A. Simulations with normalized BOMP

In the first two experiments, we have the simulations of ndized BOMP (labeled as

NBOMP) when BS are equipped with 8 antennas.
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Fig. 1. performance of the normalized BOMP and the BOMW, N, d, K) = (8, 80, 100, 30)

Test Case 1Figure[1l compares the performance of normalized BOMP and B@lgorithms. As
we can see, for both algorithms, when the number of activesusereases, lower UDSR occurs.
Obviously, the normalization approach contributes to almhigher UDSR, which directly results
in a much lower SER, especially whé¥, is large like N; > 24. We also observe that, as long
as UDSR exceeds a certain value, for example, UDSR5%, SERs of different numbers of

active users are very close.
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Fig. 2. performance of the normalized BOMR/, N, d) = (8, 80, 100)

Test Case 2iInfluences of iteration numbeKk on the performance of USDR and SER are

given in the Figuré 2. It can be drawn from the results that,SBDperformance is improved
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with a larger K, see Figuré ]2 (a). While Figufé 2 (b) shows that, a lafifewill degrade the
performance of symbol demodulation, which is also indiddig our previous analysis result of

SER. Additionally, it is noted that, whefA,/N, = 4dB, even 30 iterations are enough to select

30 active users.

B. Simulations with ICBOMP

In this part, we report results on ICBOMP algorithm. Charcading BCH(255,223) that can
correct at most 4 erroneous bits and CRC of 16 bits are actiregrar correction and detection
codes. With necessary zero padding, we map 200 raw datartuitd & CRC bits into 248 bits.
Therefore, it hasl = 124 andT = 5d = 620. BCH(255,223) still offers a high coding rate. It
should also be stated that BCH coding is not the only choi@can use other more efficient
coding schemes. Compared with the previous simulatiogsiB)reduction inE;/N, is caused

due to channel coding at the raj&.
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Fig. 3. performance of the ICBOMP and the normalized BOKW, N, K, d) = (8, 80, 30, 124)

Test Case 3Figurel3 depicts the performance when ICBOMP is exploiten@arison with nor-
malized BOMP is also made, where the same error correctidrdatection are only performed
at final iteration of the normalized BOMP. As we can see, ICB®hproves the performance,
especially in symbol demodulation whéfy /N, increases. In fact, whether correction and detec-
tion coding is used when iterations finish almost makes rferdifice for the normalized BOMP.
However, for ICBOMP, since error correction and detectioa performed at each iteration,
each block of signals has a much higher probability to beectiyr recovered. Interestingly, we

observe that, when almost all active users can be selectadyex NV, offers a lower SER for a
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Fig. 5. performance of the ICBOMP when there are differemhbers of online userg,M, K, d) = (8, 30, 124)

sameN. This result cannot be obviously deduced from analysis. i¢lated to the order statistics
of powers of channel vectors. Such phenomenon is also egbéotappear in the normalized

BOMP when there are not too many active users.

Test Case 4in Figure[4 we have the simulation results when BS is equippitd different
numbers of antennas, respectively with 4, 8, and 16 antefioasave a fair comparison, we set
different parameters to guarantee the ratiog/af: N : N, : K) at a same level, and to show
the benefits of\/ = 16, one additional result of largeN,/M (i.e., N; = 56) is presented. The
results show that, more antennas at BS can offer remarkabiefits, both in user detection and
symbol demodulation, and these benefits are much more thearlwith the antenna number
M.

Test Case 51t is desirable that a system can accommodate many onlins.udéhen BS is

equipped with 8 antennas, the UDSRs and SERs of differenbetsof online users are depicted
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in the (a) and (b) of Figurél5. As we can see, although a largenber of online usersv
decreases the UDSR, the degradation fidm- 80 to N = 2560 is not very obvious for a same
Na. When N, is not large, likeN, = 8 in our simulation, such degradation can be neglected.
SERs of different numbers of online users are rather classhawn in the Figurigl 5 (b). It means
that our proposed scheme with ICBOMP receiver for user tieteand symbol demodulation

is applicable for a system with many online users. As the samfeigure[3, when all active
users can be selected in the higher SNR regime, SER of |a/ges lower.

Combination of the results in Figuté 4 and Figlie 5 gives esdbnfidence that, when BS
is equipped with many antennas, e.g., in massive MIMO systenore online users and active
users are allowed to exist. This makes the proposed schepeeiaky suitable for the future
5G systems to support massive connections.

Different frame lengths also offer different performanées a conclusion, sinc& acts as
block length in channel coding, largé&r offers better performance in the relatively high SNR

regime.

C. Computational cost reduction by ICBOMP

Test Case 6:In this part, we cite one example to demonstrate the benefiCBIOMP in
computational cost reduction. The results are shown in tigaré&[6 and they are obtained
when E; /N, = 4.6dB. The ordinate is the number of blocks for signal updateaahéeteration,
which is directly related to the computational cost. Theultesf the (nhormalized) BOMP is
also presented. It shows that under the given conditiongdolocks of signals can be correctly
recovered before the iterations finish. For example,Ngr= 30 under the given condition, the
maximum number of blocks of signals to update is about 22,adtedt that, the number quickly
decreases. However, for the (normalized) BOMP, since nokBlavill be canceled, its number
of blocks for update increases linearly with the iteratiarmter. The benefit of ICBOMP in

reducing the computational cost is therefore demonstrated

D. Results of the approximate analysis

Test Case 7In this part, we show two examples to compare our analysds twé simulations,
including the user detection in Figuré 7 (a) and the symbaiattulation in Figurél7 (b). User
detection performance is quantified using GUDSR.

21



30 T T T T T

—s— ICBOMP:N_=8
—o6— ICBOMP:N =24
—&— ICBOMPCN =28
—%— ICBOMP:N_=30
—<— (normalized) BOMP

N
o
T

N
o
T

=
o
T

blocks of signals to update
o &
T T

o
o
o
[
o

15 20 25 30
iteration

Fig. 6. computational cost reduction by the ICBOMP/, N, K, d) = (8, 80, 30, 124)

o
7y [ —o— numericN_=8 |
A 0.6 /, —7— humeric: a
8 / —&— numeric:N_=24
0.5 /'/ —&— numeric:N_ =28 | —s— numeric:N_=8 "\\
0.4 / - — theoretic:Nazs 1 —o— numeric:Na:24 NS
i —-©-— theoretic:N =24 —=&— numeric:N_=28
0.3¢ : ic:N =28 o
| —8- theoretie, 728 — v~ theoretic
0.2 : : : 102 ‘ : :
4 2 0 2 4 -4 -2 0 2 4
(a) Es/No (dB) (b) Es/No (dB)
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It can be observed from the Figuré 7 (a) that, our lower boumalyais about GUDSR of
the normalized BOMP has certain gap to the simulation resuten 2, /N, is below a certain
level. It is because in this regime, except the most likelsecaie considered for successful user
detection, other possible cases also contribute a highapility for the GUDSR. ASE,/N,
increases, since the cited case plays a more and more ddmglanin the successful user
detection, gradually, this gap narrows and the analysisgmts a tighter lower bound. On the
other hand, our approximate analysis about the SER showte gp@rformance, abodit.5dB
better than the simulation result. Since our SER analysisaged on the case that all active
users have been successfully identified, it remains the $andifferent numbers of the active

users. That is why only one analytical curve is presented.
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E. Probabilistic transmission

Test Case 8iIn order to exactly test the influences of different paramse®ich as)M and

N on the performance, we have assumed a constarfor each set of parameters. However,
random transmission with certain active probabilitythakes more sense for certain applications.
In this part, we have simulations for random transmissioen&leach user sends a small packet
according to a probability. Since N = 1280, probabilitiesp = 0.625%, 1.875% are expected to
respectively producéV, = 8,24 active users. We sdt’ = 40 for this probabilistic transmission

case. See Figufd 8 for the results.
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Fig. 8. performance of the ICBOMP when each user transmitls aicertain probability(M, N) = (8, 1280)

Under the given condition, almost all results of differeativze probabilities show performance
degradation when compared with the results of gix@nactive users, especially wheris large.
Whenp = 0.625%, this degradation is not severe and SER degradation maarthes from a
larger iteration numbef’, which has been previously demonstrated. Such slightlfopaance
degradation is also the case wher- 1.25%, where N, = 16 is expected. Whep = 1.875%,
if we use Gaussian distribution to estimate the number afectsers, thenV, can be larger
than 47 with a probability 5.85%. Since the number of active users can be even larger &han
it will certainly make some active users missed to detects Tiissed alarm greatly harms the
performance of symbol demodulation. In fact, the ICBOMPereer can handle this practical
problem to some extent. When signals of one active user heee borrectly recovered, set
K = K+1. Then, there are more iterations for user detection. Fuedsatly, the most effective
technique to solve this problem is to equip the BS with moremmas to support more online

users and active users.
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VI. DISCUSSIONS

In this section, we discuss three issues that are relatedrtproposed scheme.

A. Comparison with known schemes

Our proposed scheme is different from the existing scheimegsare based on the orthogonal
access patterns, e.g., time-division multiple access (ARMDMA and single carrier orthogonal
frequency division multiplexing (SC-FDMA). TDMA is mostlfor the 2G wireless systems,
CDMA is deployed in the 3G wireless systems and SC-FDMA isppsed for the uplink in
the LTE systems [30]. To meet the requirements of future 5&less network, e.g., offering
massive connectivity, several non-orthogonal multipleeas schemes have been proposéd [6]-
[9], including sparse code multiple access (SCMA) [6], [Fince the number of resources are
strictly limited for orthogonal multiple access schemésg, number of users that can be served is
limited. Furthermore, resource scheduling is necessathd case of burst transmissions of many
small packets, dynamic resource scheduling leads to signifisignaling overhead. In contrast,
our scheme requires no such dynamic scheduling and henaeviegthe resource utilization
efficiency. During one frame interval, since different peéing codes are used for different
symbols and even the same symbol can be assigned diffeedding codes at different times,
the interferences among symbols are averaged. This isahloffor improving the recovery
performance. Our system also has robust performance intoegeiser activities by incorporating
error correction and detection into the recovery algoritiithe comparisons among TDMA,
CDMA, SC-FDMA, SCMA and our scheme are summarized in Tabl&dr the future 5G
network, our proposed non-orthogonal many access schegnenssing to address the challenges

produced by the transmissions of small packets.

B. Message segmentation for practical transmission

Although the length of small packet is short, block-spatig@ea recovery by ICBOMP still
requires heavy computations, especially whleis not very small and there are many receiving
antennas. To reduce such cost, messages of small packeecsegimented into shorter parts
further. These segments can be successively transmittgdsignal recovery is successively
performed for them. For different segments of one small paake can even pre-assign different

precoding matrices to them. There are several benefits afjumich segmented transmission.
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TABLE |

COMPARISONS OF DIFFERENT SCHEMES

TDMA/SC-FDMA CDMA SCMA Our Scheme
Coding Level / symbol bit frame
Codebook Design / independent of CS| dependent on CSI independent of CSI
Resource Scheduling necessary necessary necessary unnecessary
Massive Connectivity oML (e.g.,a > 0.7
support (Va per resource| limited, at most 1| limited, at most% unclear whenM > 2 | whenT = 5d, M = 16
block with T units) in Figure[4)

Firstly, it can reduce the computational cost for signabwecy. Secondly, it can alleviate the
length requirement for constant duration of the block{figdthannel. In scenario where channel
varies in short period, pilots can be inserted between tvgmeats for the CSI estimation or
renewal. Additionally, it can also avoid having highly calated blocks iB for large duration.

Highly correlated channel vectors can be essentially delzded at the BS when different

precoding matrices for different segmentation periodsuesed.

C. Sparsity level estimation

Since the receiver does not know the number of active uSgra large number of iterations
are set for the recovery algorithms. Whahg is small and user detection can be successful with
less number of iterations. However, unnecessary iteratiart only increase the computational
cost but also weaken the ability for an exact signal recoy@t}. Such phenomenon has also
been observed in our previous analysis and simulations.n@uomerical simulation indicate that,
when E,; /N, > 2.6dB and with the conditiond/ = 8, N = 2560, T' = 5d = 620, 24 iterations
for ICBOMP will correctly identify all the 24 active users tia probability exceeding 99.99%.
In this case, technique for sparsity level (i.8,) estimation will provide benefits. For example,
work to estimate the random sparsity level can be found ih [B2]. However for block-sparsity

scenario, more effective technique will be useful.

VIlI. CONCLUSIONS

In this paper, we proposed an uplink many access schemedaetirices of small packet. The
proposed scheme combines the techniques of block precaditite transmitters and sparsity-

aware recovery at the receiver. The proposed non-orthog@msmission scheme is applicable
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to future wireless communication systems with many receingennas. The reason is that in
the future communications, small packets play a more ancnmoportant role due to the rapid
development of the mobile Internet. The overall througlgdsuch systems is currently hampered
by small packets because of the heavy signaling overheatdeio transmitting them. Designed
to solve this problem, our scheme can greatly reduce theaksngnoverhead and therefore
guarantees a high throughput. Besides, future commuaricaystems are supposed to have
massive antennas at receiver, which enables the propokethedo offer massive connections

for the frequent and random transmissions of small packets.

APPENDIX A

BRIEF DERIVATIONS OF (@) AND (10)

Due to the space limitation, we only present the importagpsiof the following derivations.
The derivations are based on the previously made approxinsat
At the k-th iteration, the residual signal vector is given by (8)r Fe* j, symbol vectors; is
independent of; and channel vectds; is independent oh;. Whenj ¢ I, we have that
oy = E{ P} m {fgne
5 R

PoYiena,_, St B BBl Bisi+z{/ B;B/ ),
hyhy (38)
po(Na— sp_1)E {Sf{PZHPijPiSZ-} + o2 Tr {E {Pij}}
~ po(Na— sk_1)§ + do?
where the identityB/B; = (P” @ h) (P; @ h;) = (PfP;) ® (h”h;) = (P¥P;) (hfh,),

the factE {z{/B;B!z,} = o} Tr {E {(P/P;) (h/'h;)}} and approximatiom{z%h}i} ~ Lt

= E

Q

have been used for the above derivatiansis assumed to be vector with i.i.d. variables. By the
assumption that entries of precoding matrices are O-me(aéa/rariance i.i.d. Gaussian variables,
E{s/'PIPPIPs} = E{S_ S0 0L sl P/ P PPy, b = £, wheres,, and
P,., respectively denote the-th element ofs; andn-th column ofP;.
Whenj; € I, we have
. B r,_1]3
Hikg = E{ th{hj 2}

pos; B BB B18i+00 Tien (a5

hTh;
~ poE{ [st (PHP;)"s;| (i) b+ po(Na— si1 = D)% + do?
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(39)
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where the result ofi,; in 38) is used, and}’ (P]’.{Pj)zsj is also expanded for the above

evaluation.

APPENDIX B
BRIEF DERIVATIONS OF (20)-(24)

The derivations are also based on the previously made ajppatgns.

It should be noted thaﬁ{%} ~ IE {hfh;}, which is I, when h/h; is not

ordered. In the derivations of Appendix A, by evaluating Bw{ah{{hi} for different active users
with order statistics, we can respectively obtaif, in (20) andyu, , in (22).
For j ¢ I, by the independence @; andr,_,, it has thaﬁ{w} =do2 . By

hfh g1

Hep ) . . :
this, we can assume that each eleme hHh is a complex Gaussian variable with a mean 0
j
. . 7 .B;Blr,_
and a variance? . The varlable(rkflhi,l; i)
- T,

then follows a chi-squared distribution with

2d degrees of freedom. Therefore, we can have the followintuatian

B e _1]3? v BBl >
E { (Bt) } ~E { (Tk) } ~d(d+ 1o (40)
which gives the result il (21).

Definert; := r,_; — /poBssk, each of whose zero-mean elements has a variance given by
(29). Then forj = k € I, we have

~ - - 2
B (|BJHrkl||§>2 - (pos'BYB,;BYB;s;+2,/poRe{s! BYB;Bl's; } +7/'B;BI's,)
hi'h; hITh;h1Th;
HBHB BHRB s\ 2 |s/BIB,B 5 |
) (SJM—J“> + 20 155 B BiPy Tk| 41
p(] { hJHh]. pO hHh hHh ( )

~ ~ 2 ~ ~
\E BB, 49 (szfBjBfBjsj)(rfBjBfrk)
h7h, Po hfh;h!Th; :

sIBIB;BIB;s;

With the same approach to evaluﬁe{T} in (38), we have

. o\ 2
E { Gy } ~ (@ + d)(d+ T - 1PE{ (bhy)}. (42)
Furthermore, we have the following result

E { (s{BHB;BIBs;) (/BB ) } _E { (s{BHB;BIB;s;) Tr{BYi, /B, }

h7h;h!Th; hh;hh;

g2 g J (SFPIPiPIPs;) (niihy )" T {PIP; } (hf'h;)
T, (43)

h'h;h/h;
= do? E{s!'PIP;PIP;s;} E {hi'h;}
~ 0} 4$(d+T—1)E{hi’h;}.

I'kT
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Similar to have[(40), we obtain

FHB, B, 2
E { ('“wiﬂ) } ~ d(d+1)o? . (44)
Besides, the following derivation holds fgre 1
|sHBHB;BHE|" | s/ BIB;BY§,i/B;BIB;s;
E{ hf'h;h/h; - E{ hfhjh;;fhj }
3
~ A E{[s/ (P/P))’s,| (n'h))] (“8)

= do} NE{h/'h;}
where \? is the expected eigenvalue @Pij)3.
Define 5 := % € (0,1), by the asymptotic result of Theorem 2.35 of random matreotky

in [33], which is also a good approximation for reasonablyalitecale matrix dimensions, the

eigenvalues o(Pij) have an empirical distribution

la) = 5=V T )6 =) (46)

for = € [a,b], wherea = (1 —/3)” andb = (1 + v/B)".
Then\? can be approximately evaluated as

¥~ féjgf 2;;96\/[3; (=B [+ VB el =t (3% - %), @D)

Similarly, by the eigenvalue approadE,{ [sf’ (P;’?’Pj)Qsj]} ~ &(d+ T), which is almost
the same as the achievédd + 7" — 1) in @3).

Finally, by substituting the results fromh _(42) to {47) intélj and by replacing’ with %
(indicating thek-th active user), we can have the derived resulfid (24).

It should be noted that, whén= N, theE <HB§,§7Z1”%
evaluated. As the same to have the final resultIzjlc (41), theemuoecise evaluation is obtained

) } for j ¢ I can be more precisely

by the expansion approach. It produces the following result

12 2 2
E{('Bi’ﬂ+“>} ~ [4(dT+1)+(d2—d)(dT+d+T)]E{(h%ahNa)2}

+2p0585(dT + d + T — DE {hf hy,} 0%, + d(d+ 1)ot,.

(48)
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