
1 

Title: Microbial linkages to soil biogeochemical processes in a poorly drained agricultural 1 

ecosystem 2 

Authors: Wenjuan Yu1, Nathaniel C. Lawrence1, Thanwalee Sooksa-nguan2, Schuyler D.3 

Smith2,3, Carlos Tenesaca1, Adina Chuang Howe2,3*, Steven J. Hall1*4 

1Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames,5 

Iowa, USA 6 

2Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa,7 

USA 8 

3Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa,9 

USA 10 

11 

*co-corresponding authors: adina@iastate.edu, stevenjh@iastate.edu12 



2 

Abstract 13 

Soil microorganisms mediate biogeochemical processes, but how microbial community 14 

composition influences these processes remains contested. We combined monthly sequencing 15 

of soil 16S rRNA genes and intensive measurements of nitrogen (N), carbon (C), and iron (Fe) 16 

cycling along a topographic gradient in a poorly drained intensive agricultural ecosystem 17 

(corn–soybean rotation) in the midwestern United States. Observed microbial composition 18 

changed little over time within and among years despite large differences in weather and crop 19 

type. Yet, microbial composition varied greatly with topographic location and correlated 20 

strongly with moisture, soil organic carbon (SOC), and especially pH. Microbial families, 21 

genera, and/or amplicon sequence variants often correlated significantly with measured 22 

biogeochemical processes or pools, yet different taxa within the same phylogenetic groups 23 

often responded in opposite ways, indicating a lack of ecological coherence among close 24 

relatives. Dominant phyla were generally similar across the topographic gradient but specific 25 

members showed consistent tradeoffs among locations. Ammonia oxidizing archaea and 26 

bacteria sequences varied oppositely with pH across the gradient, but their combined relative 27 

abundances remained similar, as did potential nitrification rates. Nitrospira sequences 28 

correlated positively with nitrous oxide (N2O) fluxes, suggesting a direct or indirect 29 

contribution of nitrification (or possibly comammox) to N2O production. We also found 30 

significant linkages between taxonomic groups and redox-sensitive Fe pools, indicating a role 31 

for redox variation in structuring microbial communities. Several globally dominant bacteria 32 

identified previously correlated significantly with measured biogeochemical variables, 33 

providing insights into their possible functional roles. Overall, microbial composition 34 

provided a coarse measure of several key biogeochemical functions and implicated taxa that 35 

possibly mediate these processes in a widespread agroecosystem of North America. 36 

37 
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1. Introduction40 

Microbes mediate soil biogeochemical processes, but whether the composition of the 41 

microbial community markedly influences process rates remains contested (E. K. Hall et al., 42 

2018). Furthermore, the ecological roles of many taxa (e.g. amplicon sequence variants, 43 

ASVs) remain poorly understood and difficult to characterize (Prosser, 2015). The increasing 44 

availability of 16S rRNA gene sequence (hereafter, 16S DNA) data provides a key 45 

opportunity for enhancing our understanding of whether and how soil processes might be 46 

linked to community composition, and further, for identifying the potential functional roles 47 

that globally ubiquitous microbes may play in ecosystems (Delgado-Baquerizo et al., 2018). 48 

Here, we evaluated spatiotemporal patterns in microbial community composition and their 49 

links to biogeochemical processes by combining frequent 16S DNA sampling with intensive 50 

trace gas and soil chemical measurements in an intensive agricultural ecosystem that spanned 51 

a broad gradient of soil properties. 52 

Advancing our understanding of microbial linkages to biogeochemical processes is 53 

particularly important in soils from intensive agricultural ecosystems, which cause 54 

disproportionate environmental impacts and where biophysical variables that influence 55 

microbial composition often vary tremendously within individual fields. The Midwestern 56 

United States Corn Belt receives the highest inputs of reactive nitrogen (N) of any North 57 

American region (Cao et al., 2018), a substantial fraction of which is lost via nitrate leaching 58 

or as the greenhouse gas nitrous oxide (N2O) emission following microbial nitrification and 59 

denitrification (Griffis et al., 2017; Jones et al., 2018). Much of this region is characterized by 60 

poorly drained soils on undulating post-glacial topography, which must be drained with 61 
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subsurface “tiles” to enable cultivation. Even where drainage infrastructure is present, 62 

low-lying topographic depressions within individual fields (former “prairie pothole” wetlands) 63 

may pond water for periods of days to weeks in most years while upslope soils remain 64 

non-flooded (Martin et al., 2019). In addition to large differences in moisture, soil pH may 65 

vary by several units across hydric depressions and adjacent upslope areas (tens of meters) as 66 

a consequence of carbonate dissolution and precipitation (Logsdon and James, 2014). Soil 67 

organic carbon (SOC) stock increases predictably from upslope areas to depressions in this 68 

landscape due to erosion (Li et al., 2018). Stark differences in moisture, pH, and SOC created 69 

by small elevation changes along topographic gradients provide a unique opportunity to 70 

investigate the role of biophysical factors in shaping microbial communities and their 71 

biogeochemical processes (Suriyavirun et al., 2019).  72 

Changes in moisture along topographic gradients alter the availability of oxygen (O2) 73 

and redox-sensitive iron (Fe) pools, which may also be linked to variation in microbial 74 

composition (Suriyavirun et al., 2019). Iron(III) is an important anaerobic electron acceptor 75 

even in nitrate-rich agricultural soils (Huang and Hall, 2017a). Reduced (Fe(II)) and oxidized 76 

(Fe(III)) forms of Fe are sensitive to O2 availability, which varies dynamically with soil 77 

moisture. Therefore, extractable Fe(II) serves as a relative metric of anoxia within a given 78 

soil sample (Hall et al., 2013). At low-lying locations experiencing more frequent redox 79 

fluctuations, larger pools of highly reactive Fe(III) may be formed relative to upslope 80 

locations (Suriyavirun et al., 2019). Redox traits provide a fundamental constraint on 81 

microbial community composition at global scales (Ramírez-Flandes et al., 2019). Yet, 82 

whether and how redox variation structures the composition of soil microbial communities 83 

remains understudied in terrestrial ecosystems (Pett-Ridge and Firestone, 2005; Suriyavirun 84 

et al., 2019). 85 

The high spatial and temporal variation in moisture and reactive nitrogen inputs 86 
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characteristic of Corn Belt agricultural ecosystems also provides an important opportunity to 87 

examine links between microbes and soil N-cycling processes such as N mineralization, 88 

nitrification, and N2O production. The abundance and diversity of functional genes encoding 89 

enzymes involved in nitrification and denitrification have often been compared with 90 

biogeochemical process rates (e.g. N2O production) or N pools (Domeignoz�Horta et al., 91 

2018; Petersen et al., 2012), but linkages between 16S community composition and process 92 

rates remain relatively poorly explored (Pitombo et al., 2016; Suriyavirun et al., 2019). For 93 

example, ammonia oxidizing archaea and bacteria (AOA and AOB) both oxidize ammonia to 94 

hydroxylamine using ammonia monooxygenase, but whether variation in these groups 95 

correlates with changes in nitrification rates or N2O production is unclear, especially in 96 

agricultural systems. In particular, the high temporal variability that characterizes most 97 

N-cycling processes in soils (Butterbach-Bahl et al., 2013) creates a challenge for linking 98 

pools or fluxes with microbial composition.  99 

Most biogeochemical process rates are seasonally dynamic, but we do not know if these 100 

will be recorded by seasonal variations in DNA sequences, and relatively few studies have 101 

sampled DNA with sufficient frequency to concretely assess within- or among-year variation. 102 

The 16S DNA extracted from soil provides an integrated measure of the taxonomic 103 

composition of living, dormant, and recently deceased microbes (Carini et al., 2016).  104 

Agricultural soil microbial communities may vary seasonally along with temperature and 105 

moisture (Bainard et al., 2016; Lauber et al., 2013). Apart from abiotic factors, crop type is 106 

also a primary driver of changes in soil microbial communities, through variation in quality 107 

and quantity of litter inputs and root exudates (Hsiao et al., 2019). Yet despite the widespread 108 

use of crop rotations, few studies have focused on interannual changes in soil microbes 109 

within rotation systems and both major (Hsiao et al., 2019) or minor (Smith et al., 2016) 110 

effects of crops have been reported. Most studies of microbial change in agricultural soils 111 
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focused on a single year (Lauber et al., 2013), or had sparse resolution among years (Smith et 112 

al., 2016; Upton et al., 2019), such that potential temporal variation in microbial communities 113 

could not be assessed along with other agroecological and biogeochemical processes in crop 114 

rotations.  115 

Finally, when assessing potential linkages among microbial community composition and 116 

biogeochemical processes, we are confronted with the question of taxonomic scale: are 117 

closely related taxa within broader taxonomic groups ecologically coherent (sensu Philippot 118 

et al., 2010)? On one hand, subpopulations of the same species might carry out different 119 

functions as indicated by genomic studies (Kashtan et al., 2014; Rasko et al., 2008). On the 120 

other hand, functional redundancy of lower taxonomic groups (e.g. ASV) and life-history 121 

coherence at high bacterial taxonomic ranks (e.g. phylum) have also been widely highlighted 122 

(García-García et al., 2019; Philippot et al., 2010). Examination of relationships among 123 

biogeochemical processes and particular ASVs and broader taxonomic groups would reveal if 124 

these relationships were consistent among closely related taxa. 125 

Here, we investigated spatio-temporal variation in soil microbial community 126 

composition, the dominant drivers of the variation, and linkages with biogeochemical 127 

processes by combining 16S rRNA gene analyses with soil trace gas fluxes and chemical 128 

extractions. We collected mineral soils along a topographic gradient in a corn (Zea mays) - 129 

soybean (Glycine max) rotation system in central Iowa, U.S.A., over two years on an 130 

approximately monthly basis when soils were not frozen. Meanwhile, we measured N2O and 131 

carbon dioxide (CO2) fluxes at high frequency (every 4 h) along the transect, leveraging a 132 

novel automated gas measurement system (Lawrence and Hall, 2020). Using measurements 133 

of greenhouse gas fluxes and soil chemical extractions, we explored associations among 134 

microbial community composition and several N- and C-cycling processes and 135 

redox-sensitive Fe pools, both at higher (family and genus) and low (ASV) taxonomic levels. 136 



 7  

 

We addressed the following questions: 1) Does microbial community composition vary along 137 

the field-scale topographic gradient and with time, and what are the dominant drivers of the 138 

variation? 2) are microbial taxonomic groups and ASVs linked to measurements of C, N, and 139 

Fe cycling?  140 

2. Materials and methods 141 

2.1. Study site and field sampling 142 

We established eight sampling locations at intervals of approximately 17 m along a 143 

topographic gradient spanning a depression to an adjacent upslope area in an agricultural 144 

field in central Iowa, USA (41.98° N, 93.69° W; Fig. 1a). The transect spanned 120 m with 145 

an elevation change of 2.25 m and included very poorly to moderately poorly drained 146 

Mollisols in the Okoboji, Canisteo, and Nicollet soil series in the U.S. Department of 147 

Agriculture classification. Elevation of each sampling location relative to the bottom of the 148 

depression was assessed using a digital elevation model (Gelder, 2015). Occasional flooding 149 

occurred in the lower half of the transect despite the presence of subsurface drainage tile and 150 

surface tile inlets (Martin et al., 2019). Flooding events caused partial crop mortality in 151 

locations 1–2 in 2017 and complete crop mortality in locations 1–4 in 2018 (location 1 is 152 

lowest and 8 is highest, respectively). Corn (Zea mays, planted 2017) and soybean (Glycine 153 

max, planted 2018) have been cultivated in annual rotation at this site for several decades. 154 

Agricultural management was typical for the region and included urea-ammonium-nitrate 155 

fertilizer applied in April and June 2017 for a total of 179 kg N ha-1 and tillage in November 156 

2017. Although our measurements were limited to a single transect and field due to the 157 

intensive nature of our sampling, corn-soybean rotations on poorly drained soils are a major 158 

land-cover type of the Midwestern U.S. (Martin et al., 2019).   159 
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Fig. 1. Environmental variables across eight sampling locations distributed at intervals of 161 

approximately 17 m along a topographic gradient in an agricultural field in central Iowa, 162 

USA. The transect spans 120 m length and 2.25 m elevation. Location 1 is lowest and 163 

location 8 is highest. NO3
-
initial and NO3

-
final represent initial and final concentrations of nitrate 164 

before and after incubation, respectively; NH4
+

initial and NH4
+

final represent initial and final 165 

concentrations of ammonium before and after incubation, respectively. 166 

 167 

We collected soils 12 times during the study period: April 2017, May 2017, June 2017, 168 

September 2017, March 2018, April 2018, May 2018, June 2018, July 2018, August 2018, 169 

September 2018, and October 2018. Soils were collected in a single morning during the latter 170 

half of each month. For each sampling, mineral soil cores were collected at 0–10 cm depth 171 

with a stainless-steel soil corer (7.3 cm diameter) from three places at each location along the 172 

transect: immediately adjacent to the crop row, a median position between two rows, and an 173 

intermediate position. The row spacing (76 cm) left approximately 17 cm between core 174 

midpoints. Soils were transported in a cooler to our laboratory immediately and soil 175 

processing was completed within 6 h. Visible plant material and stones were removed by 176 

hand. Approximately 10 g was subsampled from each soil and stored at -80°C for subsequent 177 

DNA extraction. 178 

2.2. Laboratory soil property analyses and field measurements 179 

 Soils collected in May 2018 were air-dried and sieved (2 mm) for analysis of selected 180 

soil properties. Soil pH was measured with a soil-to-water mass:volume ratio of 1:1. Soil bulk 181 

C and N concentrations were analyzed by a Vario Micro Cube elemental analyzer (Elementar, 182 

Langenselbold Germany). We calculated carbonate content by measuring CO2 produced from 183 

HCl-treated soils (Ye and Hall, 2020), and SOC was calculated as the difference between 184 

bulk C and carbonate C concentrations.  185 
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 Soil properties related to N- and Fe-cycling processes were analyzed using field-moist 186 

samples immediately following each collection date described above. Nitrate (NO3
-) and 187 

ammonium (NH4
+) were extracted by 2M potassium chloride (1:5 ratio of dry mass 188 

equivalent to solution) and their N concentrations were analyzed by colorimetric microplate 189 

assays (Doane and Horwáth, 2003; Weatherburn, 1967) and expressed as NO3
-
initial and 190 

NH4
+

initial, respectively. To calculate potential N mineralization, subsamples were placed in 191 

open vials in a humidified headspace and incubated at field moisture and lab temperature 192 

(~23°C) for 28 d. After incubation, these soils were extracted and analyzed using the same 193 

methods described above to quantify NO3
-
final and NH4

+
final, respectively. Net N mineralization 194 

was calculated as the change in the sum of NO3
--N and NH4

+-N pools, and net nitrification 195 

was calculated as the change in NO3
--N pool over 28 d. To measure Fe(II), which readily 196 

oxidizes to Fe(III) in the presence of O2, soil samples were briefly homogenized in a plastic 197 

bag within seconds of field collection and a subsample was immediately added to a 198 

pre-weighed centrifuge tube with 0.5 M HCl (target ratio of 1:15 soil to acid) to prevent 199 

oxidation of Fe(II), hereafter denoted Fe(II)HCl (Huang and Hall, 2017b). Once in the 200 

laboratory, samples were vortexed for 1 min, extracted for 1 h on a rotary shaker, and 201 

centrifuged for 10 min at 10,000 g. The supernatant solution was carefully decanted to a clean 202 

container and Fe(II)HCl and Fe(III)HCl were analyzed using a ferrozine method optimized for 203 

soil extractions (Huang and Hall, 2017b).  204 

In the field, we measured fluxes of N2O and CO2, along with soil moisture and 205 

temperature, at each location during the study period. During periods when living plants were 206 

present (May–October), CO2 flux includes both heterotrophic and autotrophic respiration. 207 

Soil moisture (~0–20 cm depth) was recorded in all locations every 10 min using CS616 208 

moisture probes installed at a 45º angle relative to the soil surface (Campbell Scientific, 209 

Logan UT). Soil temperature was recorded for several locations every 10 min using CS107 210 
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sensors (Campbell Scientific, Logan UT) at 10 cm depth. Soil N2O and CO2 fluxes were 211 

measured once every 4 h by an automated flux chamber at each location (a second chamber 212 

was added to each location in July 2018 and the flux data afterwards was an average of the 213 

two chambers per location). The chamber system was described in detail by Lawrence and 214 

Hall (2020). To match with microbial data, the values in the 15 d prior to soil sampling were 215 

averaged for each of the four variables. This timescale was chosen given the fact that 216 

microorganisms can turn over on timescales of weeks to months (Spohn et al., 2016). There 217 

were some data gaps caused by agricultural management and/or instrument failure. Two 218 

missing moisture values for one sampling time were filled by the averages of their respective 219 

adjacent locations. Missing temperature values in other locations were filled by the averages 220 

of the recorded locations. Missing flux data were not gap-filled.  221 

2.3. DNA extraction and 16S rRNA gene amplicon sequencing 222 

We extracted DNA from 285 samples (12 months × 8 locations × 3 cores; three samples 223 

from September 2017 could not be analyzed due to technical constraints). Subsamples of 250 224 

mg were extracted using the PowerSoil 96 Well DNA Isolation Kit (Qiagen, USA). 225 

Concentrations of DNA were measured using a DNA Quantification Kit Q33120 226 

(ThermoFisher, USA) to enable subsampling of a standard DNA mass for sequencing. 227 

Samples were diluted to 10 ng DNA μL-1 prior to sequencing; samples with concentration < 228 

10 ng DNA μL-1 were submitted directly. The V4 region of bacterial and archaeal 16S rRNA 229 

genes (254 bp in most species) was amplified using the 515F 230 

(GTGYCAGCMGCCGCGGTAA) / 806R (GGACTACNVGGGTWTCTAAT) primers. 231 

Before sequencing, a library was prepared following the EMP 16S Illumina Amplicon 232 

protocol (Caporaso, 2018). Sequencing of archaeal and bacterial amplicons was performed on 233 

an Illumina Miseq sequencer with Miseq Reagent Kit V2 (Illumina, USA) at Argonne 234 

National Laboratory, producing 2 × 150-bp reads. Sequences were deposited in the NCBI 235 
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Sequence Read Archive under BioProject accession number PRJNA678372. 236 

2.4. Bioinformatics 237 

We used the Divisive Amplicon Denoising Algorithm 2 (DADA2) pipeline (Callahan et 238 

al., 2016) to process the sequencing data in R statistical software version 3.6.1 (R Core Team, 239 

2019). Three samples were not included due to a small number of reads (≤ 32 sequences). 240 

Most functions were run using parameters suggested by the DADA2 pipeline tutorial (version 241 

1.16). During filtering, bases after 145 in both forward and backward reads were truncated 242 

after inspecting read quality. Merging each pair of truncated reads (145 bp) gave sequences of 243 

approx imately 254 bp, w ith 36 bp ov erlapping. Sequences > 256 bp or < 250 bp might result 244 

from non-specific priming and were removed. In the chimera removing step, the “pooled” 245 

method was applied as it produced more reasonable chimera detection results compared with 246 

the “consensus” method. The end product included an ASV table recording the number of 247 

times each exact ASV was observed in each sample, along with a taxa table recording 248 

taxonomy assigned to the ASVs from domain to genus levels, using the Ribosomal Database 249 

Project classifier algorithm and the Silva database version 132. 250 

Next, we trimmed the ASV and taxa tables using the “phyloseq” package version 1.30.0 251 

(McMurdie and Holmes, 2013) in R. Any ASVs from mitochondria, chloroplast, or 252 

eukaryotes were excluded from further analyses. Samples containing < 200 ASVs were 253 

removed (15 samples) and ASVs that did not have at least five sequences in at least two 254 

samples were also removed. Removal of rare taxa decreases noise in subsequent statistical 255 

analyses because their presence may reflect stochastic factors more than underlying biology; 256 

our approach resulted in slightly more taxa retained than in the example method for the 257 

phyloseq package. Before trimming, there were 15009 total ASVs and 3597687 total 258 

sequences across 282 samples; afterwards, there were 5633 total ASVs and 3477159 total 259 

sequences across 267 samples. There were 209 to 603 ASVs (mean = 433) and 5063 to 20904 260 
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sequences per sample (mean = 13023). Rarefaction curves showed that sequencing depths 261 

were adequate for all samples (data not shown). There were no apparent biases against 262 

location, core, or sampling month of the 18 omitted samples, although they were all collected 263 

in 2018. 264 

2.5. Statistical analyses 265 

All statistical analyses were performed in R software. Six environmental variables were 266 

log10 transformed to reduce skewness: N2O flux, NO3
-
initial, NH4

+
initial, NO3

-
final, NH4

+
final, and 267 

Fe(II)HCl. Three-way ANOVA analyses without interaction followed by Tukey’s multiple 268 

comparison tests (if needed) were used to test for differences in greenhouse gas fluxes, soil 269 

properties, relative abundances of AOA and AOB, and alpha diversity among locations, years 270 

(crops), and months. All three factors were fixed effects. Alpha diversity was assessed using 271 

chao1, Shannon, and inverse Simpson indices. Redundancy analyses (RDA) based on 272 

Bray-Curtis dissimilarities were performed using the “vegan” package (Oksanen et al., 2019) 273 

to visualize overall community composition and to identify correlated environmental 274 

variables. Seventeen explanatory variables, namely year, month, pH, SOC concentration, C/N 275 

ratio, soil temperature, soil moisture, relative elevation, NO3
-
initial, NH4

+
initial, NO3

-
final, 276 

NH4
+

final, net N mineralization, Fe(II)HCl, Fe(III)HCl, N2O flux, and CO2 flux, were used in the 277 

RDA analysis. We used single measurements of pH and SOC pooled by location (means of 278 

three replicates) because these variables change slowly relative to our microbial sampling 279 

interval (i.e., nearby soils showed no management impacts on SOC or pH after 10 y; Ye and 280 

Hall, 2020). All other predictor variables were measured along with each microbial sample, 281 

thus representing temporal as well as spatial variation. Permutational multivariate analysis of 282 

variance (PERMANOVA) based on Bray-Curtis dissimilarities was also performed using the 283 

“vegan” package to test effects of the above-mentioned 17 variables on community 284 

composition. In RDA and PERMANOVA analyses, we performed model selection by 285 
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removing insignificant variables (P < 0.01), starting with the variable with the highest 286 

P-value and F-value, respectively. The DESeq2 package (Love et al., 2014) was used to 287 

identify ASVs that differed significantly among topographic locations. To account for 288 

constant values of pH and SOC at each location over time, relationships among pH and SOC 289 

and dominant phyla and classes were explored by linear mixed model (LMM) analyses with 290 

location as a random effect using the “lme4” package (Bates et al., 2015). The associations 291 

among soil moisture and these microbial groups were explored by Spearman correlation 292 

analyses. The Spearman correlation analyses were also performed to study the relationships 293 

among N- and Fe-cycling processes and microbial groups that are reported to be associated 294 

with these processes (Esther et al., 2015; Guo et al., 2019; Kuypers et al., 2018; Philippot and 295 

Germon, 2005; Weber et al., 2006), as well as individual ASVs within these taxonomic 296 

groups, using the “phylosmith” package (Smith, 2019). Nine N- and Fe-cycling variables 297 

were included for the correlation analyses: N2O flux, NO3
-
initial, NH4

+
initial, NO3

-
final, NH4

+
final, 298 

net N mineralization, net nitrification, Fe(II)HCl, and Fe(III)HCl. The correlation analyses were 299 

also utilized to explore relationships of CO2 flux and the above-mentioned nine 300 

biogeochemical variables with ASVs that corresponded with globally dominant bacterial 301 

operational taxonomic units (OTUs) identified in a previous study (Delgado-Baquerizo et al., 302 

2018). Bonferroni adjustment was used for ANOVA and correlation/LMM analyses whereby 303 

individual P values were multiplied by the number of tests conducted to correct for multiple 304 

comparisons using the “p.adjust” R function with the “method” argument set to “bonferroni” 305 

(Jafari and Ansari-Pour, 2019). Due to the conservative nature of the Bonferroni adjustment, 306 

we defined a significance threshold for the Bonferroni-adjusted P values at 0.10. 307 

In a preliminary PERMANOVA analysis, sampling position of each core relative to the 308 

crop row was insignificant (P > 0.05) and only explained 0.5% of community composition. 309 

Therefore, we averaged all environmental and microbial data for the three replicate cores per 310 
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location per sampling date for statistical analyses (i.e., 267 total samples were reduced to 95 311 

mean samples). We used 74–87 and 94 mean samples when including N-cycling and 312 

Fe-cycling processes, respectively, due to missing values in the related soil properties. Alpha 313 

diversity indices were calculated on a per-sample basis prior to averaging by sampling 314 

location/date. Microbial analyses were conducted using relative abundances of ASVs or 315 

higher taxonomic groups, except for DESeq2 and alpha diversity analyses, which used 316 

absolute abundances of ASVs.  317 

3. Results  318 

3.1. Soil properties and greenhouse gas fluxes 319 

Soils across the topographic gradient differed strongly in pH (6.4–8.1) and SOC (24–38 320 

mg g-1), with smaller variation in soil C:N (11.0–12.5; Fig. 1; Table S1). Despite large 321 

temporal variation, location-level mean values also significantly differed in soil moisture 322 

(33.7–43.9%), Fe(III)HCl (0.34–1.05 mg g-1), and Fe(II)HCl (0.05–0.16 mg g-1). Soil pH was 323 

highest (7.7–8.1) in the intermediate locations (0.40–1.05 m relative elevation) and lowest 324 

(6.4) in the upslope locations (1.51–2.25 m relative elevation). SOC concentration decreased 325 

from the lowest to highest location (37.7 mg g-1 to 23.9 mg g-1), as did location-level mean 326 

soil moisture (43.9 ± 1.8% to 33.7 ± 1.6%). Location-level mean Fe(III)HCl was higher in the 327 

bottom of the depression (0.00–0.09 m relative elevation; 0.75 ± 0.11 to 1.05 ± 0.12 mg g-1) 328 

compared with other locations (0.34 ± 0.08 to 0.65 ± 0.07 mg g-1). However, the dynamic soil 329 

properties measured here differed more over time (months and years) than among 330 

topographic locations. For example, mean NO3
-
final was higher in 2017 (66.02 ± 10.09 μg N 331 

g-1) than in 2018 (4.22 ± 0.43 μg N g-1), as expected given that N fertilizer was applied during 332 

the corn phase. Monthly mean Fe(II)HCl was significantly higher in July (0.65 ± 0.36 mg g-1) 333 

than in other months (0.03 ± 0.004 to 0.05 ± 0.004 mg g-1). Fluxes of N2O (overall range: 334 
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-5.72–1315.47 μg N m-2 hr-1) and CO2 (overall range: 0.54–13.96 μmol m-2 s-1) also varied 335 

greatly over time (Fig. 1). 336 

3.2. Drivers of soil microbial community composition 337 

Microbial communities did not group strongly by year or month in RDA analysis based 338 

on Bray-Curtis dissimilarities (Fig. S1). However, RDA revealed a clear separation of 339 

microbial communities by topographic location, with locations 1, 2, and 3 (0.00–0.09 m 340 

relative elevation), locations 4 and 5 (0.40–0.67 m relative elevation), location 6 (1.05 m 341 

relative elevation), and locations 7 and 8 (1.51–2.25 m relative elevation) forming separate 342 

clusters (Fig. 2). The first two axes (PC1 and PC2) explained 85.1% of the variation of 343 

overall community composition and had significant relationships (P < 0.01) with six 344 

environmental variables (pH, relative elevation, SOC, C/N ratio, Fe(III)HCl, and moisture), 345 

which explained 52.1% of the composition variation (Fig. 2). Nine significant variables (P < 346 

0.01) explained 64.1% of the variation in microbial community composition as shown by 347 

PERMANOVA analysis (Table S2). Soil pH explained the most variation (28.3%), followed 348 

by relative elevation (12.5%), month (6.6%), soil moisture (6.4%), SOC concentration (3.0%), 349 

C/N ratio (2.3%), soil temperature (1.7%), Fe(III)HCl (1.7%), and year (1.6%). The other 350 

biogeochemical variables (e.g. N2O and CO2 fluxes) were not significantly related to 351 

community composition in the RDA. Microbial ASV richness (Chao1 index) and diversity 352 

(Shannon index) did not significantly differ between years or among months or locations (Fig. 353 

S2). Microbial evenness (inverse Simpson index) significantly differed among months and 354 

locations (P < 0.05); it was generally higher from July to October compared with March to 355 

June and was lower at location seven than the others.  356 
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 357 

Fig. 2. Redundancy analysis based on Bray-Curtis distance demonstrating differences in 358 

overall microbial community composition among topographic locations (1 is lowest, 8 is 359 

highest), which clustered in four groups. Only significant (P < 0.01) explanatory variables are 360 

shown in blue arrows. Moisture and Fe(III)HCl were measured along with each microbial 361 

community sample to capture temporal variation; the other variables were measured at a 362 

single timepoint. 363 

 364 

We further evaluated the relationships among pH, moisture, SOC concentration, and 365 

dominant phyla and classes (Fig. 3). Among the significant relationships (Bonferroni-adjusted 366 

P < 0.10), pH had negative relationships with relative abundances of Verrucomicrobia 367 

(standardized slope = -0.77) and Acidobacteria Acidobacteriia (-0.73) and positive 368 

relationships with Thaumarchaeota (0.67), Actinobacteria (0.50) and Acidobacteria subgroup 369 

6 (0.40). Soil moisture had positive relationships with relative abundances of Acidobacteria (r 370 

= 0.42), Chloroflexi (r = 0.32), Gemmatimonadetes (r = 0.44), Deltaproteobacteria (r = 0.48), 371 

and Acidobacteria subgroup 4 (r = 0.38) and negative relationships with Bacteroidetes (r = 372 

-0.39) and Verrucomicrobia (r = -0.44). SOC had negative relationships with 373 
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Verrucomicrobia (-0.76) and Bacteroidetes (-0.32) and a positive relationship with 374 

Chloroflexi (0.62). 375 

 376 
Fig. 3. The relationships between relative abundances of dominant phyla and classes and pH, 377 

moisture, and SOC concentration assessed using linear mixed models (for pH and SOC) and 378 

Spearman correlations (for moisture). A circle is present if Bonferroni-adjusted P is < 0.1, 379 

with circle size indicating strength of the relationship. The color indicates the direction of 380 

relationship (blue is positive, red is negative) and the number represents the standardized 381 

slope or correlation coefficient. Dominant phyla are arranged in order of decreasing relative 382 

abundance, and all three classes in Proteobacteria and three dominant classes in 383 

Acidobacteria comprising 88% of total sequences in the phylum are also included. 384 

 385 

3.3. Relationships among microbial groups and biogeochemical processes 386 

We identified several microbial groups that were significantly related to measurements 387 

of N-cycling processes (Fig. 4). Relative abundance of Cytophagaceae was positively 388 

correlated with NO3
-
initial, NH4

+
initial, and NO3

-
final. Nitrospiraceae was positively related to 389 

N2O fluxes. Ferruginibacter was positively related with NO3
-
initial and NH4

+
initial. Litorilinea 390 

was positively related with NH4
+
initial. Individual ASVs within some groups were consistently 391 

correlated with metrics of N transformation. For example, four ASVs within the 392 

Ferruginibacter genus all had a significantly positive correlation with NH4
+

initial 393 
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(Bonferroni-adjusted P < 0.10), leading to a significantly positive correlation between the 394 

genus and NH4
+

initial. Meanwhile, ASVs within some groups showed different relationships to 395 

N cycling. For example, two ASVs within the Nitrospiraceae family showed opposite 396 

relationships with NH4
+

initial, leading to a lack of significant correlation between the family 397 

and NH4
+

initial. Relative abundances of Fe-reducing Anaeromyxobacter and Fe-oxidizing 398 

Rhodomicrobium were positively correlated with Fe(II)HCl; Fe-reducing Bacillus and 399 

Fe-oxidizing Thermomonas were positively and negatively correlated with Fe(III) HCl, 400 

respectively (Fig. 5). Some ASVs within broader taxonomic groups (e.g. Anaeromyxobacter) 401 

showed consistent responses to Fe(II)HCl, while some (e.g. ASVs within Geobacter) showed 402 

opposing responses (i.e., both positive and negative) to Fe(III)HCl.  403 
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 404 

Fig. 4. Significant Spearman correlations between N-cycling processes and relative 405 

abundances of microbial groups and ASVs thought to participate in N-cycling. Correlations 406 

reflect both spatial and temporal variation, as microbes and biogeochemical variables were 407 
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measured in each sample over time. A circle is present if Bonferroni-adjusted P is < 0.1, with 408 

circle size indicating strength of the relationship (and absence of circle indicating no 409 

significant relationship) and number in a circle indicating correlation coefficient. The color 410 

indicates the direction of relationship (blue is positive, red is negative). A family or genus 411 

followed by a number denotes that a particular ASV within that group exhibited a significant 412 

correlation with an N-cycling variable. NO3
-
initial and NO3

-
final represent initial and final 413 

concentrations of nitrate before and after incubation, respectively; NH4
+

initial represents initial 414 

concentration of ammonium before incubation. Net N mineralization, net nitrification, and 415 

final concentration of NH4
+ were not shown due to very few significant relationships between 416 

these processes and microbial groups or ASVs. 417 
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 418 

Fig. 5. Significant Spearman correlations between Fe-cycling pools and relative abundances 419 

of microbial groups and ASVs thought to participate in Fe-cycling. Correlations reflect both 420 

spatial and temporal variation, as microbes and biogeochemical variables were measured in 421 

each sample over time. A circle is present if Bonferroni-adjusted P is < 0.1, with circle size 422 

indicating strength of the relationship (and absence of circle indicating no significant 423 

relationship) and number in a circle indicating correlation coefficient. The color indicates the 424 

direction of relationship (blue is positive, red is negative). A genus followed by a number 425 

denotes that a particular ASV within the genus significantly correlated with Fe(II)HCl or 426 
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Fe(III)HCl.   427 

 428 

Beyond the groups and taxa described above, we also found that some of the globally 429 

dominant bacterial OTUs identified previously (Delgado-Baquerizo et al., 2018) that were 430 

present in our samples showed significant relationships with biogeochemical processes (Table 431 

S3). Relative abundances of many of these ASVs correlated with Fe(III)HCl, and most 432 

belonged to Chitinophagaceae (e.g. Flavisolibacter and Segetibacter) and had positive 433 

relationships with Fe(III)HCl. Two Haliangium ASVs had positive relationships with 434 

Fe(III)HCl, two Agromyces ASVs had negative relationships, and ASVs within Gaiella, 67-14, 435 

Sphingomonas, and Chthoniobacter had mixed relationships with Fe(III)HCl. Some ASVs 436 

within Chthoniobacter and Haliangium were also closely related to Fe(II)HCl. Several groups 437 

had an ASV significantly correlated with multiple N-cycling variables: Flavisolibacter 438 

(positive), Pseudarthrobacter (negative), and WD2101_soil_group (positive; Table S3). Two 439 

ASVs within Sphingomonas were either positively or negatively associated with CO2 flux. 440 

3.4 Tradeoffs among ASVs and groups 441 

Across all topographic locations, eight dominant prokaryote phyla had > 2% sequence 442 

relative abundance (Fig. S3). These included Proteobacteria (25.3%), Acidobacteria (21.3%), 443 

Bacteroidetes (16.3%), Actinobacteria (9.9%), Verrucomicrobia (8.7%), Chloroflexi (4.3%), 444 

Gemmatimonadetes (3.0%), and Thaumarchaeota (4.0%). These phyla accounted for 92.9% 445 

of total sequences and were dominant in each topographic location, with only minor changes 446 

in relative abundances among locations (Fig. S3). Despite the consistency in phylum-level 447 

abundance, Deseq2 analysis showed tradeoffs among ASVs within each phylum, i.e., some 448 

ASVs within each dominant phylum significantly (P < 0.01) increased with relative elevation 449 

while others significantly decreased (Fig. 6). Median log2-fold changes of Bacteroidetes and 450 

Verrucomicrobia with relative elevation were positive, while those of other phyla were 451 
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negative. A tradeoff in relative abundance among sampling locations was also observed 452 

between archaeal and bacterial ammonia-oxidizing groups, which together comprised a large 453 

mean proportion of sequences at each sampling location (4.6–7.2%; Fig. 7; multiple 454 

comparison tests are shown in the figure). Relative abundance of Nitrososphaeraceae (AOA) 455 

was significantly highest (5.5–5.7%) in locations 4 and 5 and lowest (1.8%) in location 8. In 456 

contrast, relative abundance of Nitrosomonadaceae (AOB) was lowest (1.5%) in locations 4 457 

and 5 and highest in location 8 (2.8%). Nitrososphaeraceae had a strong positive relationship 458 

with pH (r = 0.67; P < 0.05) while Nitrosomonadaceae had a negative relationship with pH (r 459 

= -0.43; P < 0.05). 460 

 461 
Fig. 6. Log2-fold change in ASV abundance with relative elevation for dominant phyla, 462 

assessed using DESeq2 analysis. Each circle represents an ASV that significantly varied with 463 

relative elevation (Benjamini and Hochberg-adjusted P < 0.01). Circle size indicates the 464 

average of the normalized abundances, dividing by size factors, taken over all samples. A 465 
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pink circle represents the median response of log2-fold change to relative elevation for a 466 

phylum. 467 

 468 

Fig. 7. Relative abundances of (a) Nitrososphaeraceae, (b) Nitrosomonadaceae, and (c) sum 469 

of the two groups across topographic locations. Values are mean ± standard error (n = 11–12). 470 

Letters not shared across locations represent significantly (P < 0.01) different means via 471 

Tukey's multiple comparison test. 472 

 473 
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4. Discussion 474 

In a humid corn-soybean rotation system, the dominant ecosystem type in the 475 

midwestern United States, we assessed variation in microbial community composition along 476 

a field-scale topographic gradient over time. We also investigated dominant drivers of this 477 

microbial variation and associations with measured biogeochemical processes. At a relatively 478 

high sampling frequency (approximately monthly), we found little change in microbial 479 

community composition over time despite large differences in weather and crop type (Fig. S1 480 

and 2). Contrary to the small temporal variability, we found that microbial community 481 

composition varied greatly with topographic location and correlated strongly with soil 482 

moisture, SOC, and especially pH (Fig. 2 and 3). We found significant associations among a 483 

number of microbial groups (families and genera) and biogeochemical processes or pools, yet 484 

different ASVs within taxonomic groups often responded in opposite ways (Fig. 4 and 5; 485 

Table S3). Tradeoffs in specific ASVs among sampling locations (Fig. 6) likely contributed to 486 

relatively stable abundances in broader taxonomic groups across the gradient (Fig. S3), and 487 

tradeoffs in specific groups (Fig. 7) may explain similarities in rates of processes such as 488 

nitrification (Fig. 1).  489 

4.1. Soil properties shaping microbial communities along the topographic gradient 490 

Microbial community composition differed greatly across the topographic gradient and 491 

co-varied strongly with pH, SOC, and moisture (Fig. 2; Table S2). Soil pH related most 492 

strongly to bacterial composition (Table S2), consistent with previous findings at local and 493 

regional scales (Rousk et al., 2010; Griffiths et al., 2011). SOC and soil moisture are also 494 

well-known drivers of microbial community composition (Fierer et al., 2007; Maestre et al., 495 

2015). The associations of these three factors with the microbiome were evident even at very 496 

broad (phylum and class) taxonomic levels (Fig. 3). Contrasting relationships between 497 
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relative abundances of Acidobacteria classes and pH, the relationships between 498 

Actinobacteria and pH, Acidobacteria and moisture, Chloroflexi and moisture, and 499 

Verrucomicrobia with all three variables are consistent with previous reports (Lauber et al., 500 

2009; Maestre et al., 2015; Rousk et al., 2010; Zhang et al., 2020). However, SOC was 501 

positively related to oligotrophic Chloroflexi (Davis et al., 2011) and negatively related to 502 

copiotrophic Bacteroidetes (Fierer et al., 2007). These unexpected relationships may reflect 503 

that much of the SOC in the clay-rich depression soil, where SOC concentration was greatest, 504 

is not readily accessible to microbial decomposers due to protective associations with 505 

minerals (Li et al., 2018).  506 

4.2. Associations among microbial groups and biogeochemical processes or pools  507 

We also observed significant relationships among microbial groups and ASVs and 508 

dynamic biogeochemical variables (Fig. 4 and 5; Table S3). These findings are interesting as 509 

the capacity of microbial community composition to predict ecosystem functions remains 510 

under debate (E. K. Hall et al., 2018). For example, a significant correlation between 511 

Nitrospira abundance and N2O emissions (Fig. 4) indicates a direct or indirect role of 512 

nitrification (or possibly comammox) as a control on N2O in this humid ecosystem. 513 

Nitrospira typically mediates oxidation of nitrite to nitrate; it can also completely oxidize 514 

ammonia to nitrate in the comammox process (Daims et al., 2015). Therefore, its correlation 515 

with N2O possibly reflects the importance of nitrate supply in controlling N2O production via 516 

denitrification. Some probable denitrifiers, e.g., Ferruginibacter, Litorilinea, and 517 

Cytophagaceae, were positively correlated with ammonium (NH4
+
initial) and/or nitrate 518 

(NO3
-
initial) concentrations (Fig. 4), indicating that these organisms may reflect or respond to 519 

mineral N availability. Although specific mechanisms linking individual ASVs and 520 

environmental variables were not always clear (e.g., significant correlations of Massilia and 521 

Phyllobacterium with N2O fluxes), our data illustrate the potential for 16S microbial 522 
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community composition data to provide an integrative measure of several ecosystem 523 

functions.  524 

We also found significant associations among HCl-extractable Fe pools and several 525 

microbial groups and ASVs thought to participate in Fe reduction and oxidation (Fig. 5). 526 

High concentrations of Fe(II)HCl indicate anoxic microsites where Fe reduction has occurred, 527 

whereas high concentrations of Fe(III)HCl may indicate spatial or temporal redox gradients 528 

where Fe(II) recently oxidized to form highly reactive Fe(III) phases. For example, 529 

Rhodomicrobium was positively related to Fe(II)HCl, consistent with its known metabolic role 530 

as an Fe(II) oxidizer. Fe(III)HCl was positively correlated with Fe reducer Bacillus and 531 

negatively correlated with Fe oxidizer Thermomonas, indicating their likely roles in driving 532 

and responding to Fe redox cycling in this system. Our data are thus consistent with the 533 

importance of oxygen availability and redox cycling in structuring the microbial communities 534 

of these upland soils, a phenomenon that has received relatively little attention (Suriyavirun 535 

et al., 2019; Yang and Liptzin, 2015). Furthermore, our data indicate that differences in 536 

redox-sensitive Fe pools among sampling locations and time points are reflected in 16S 537 

rRNA gene abundances of known Fe reducers and oxidizers.   538 

We also observed significant relationships among biogeochemical variables (Table S3) 539 

and ASVs corresponding to several globally dominant bacterial OTUs identified in a previous 540 

synthesis (Delgado-Baquerizo et al., 2018), indicating that they may provide microbial 541 

indicators of ecological functions or environmental conditions not only in this ecosystem but 542 

possibly elsewhere. Several ASVs belonging to these globally dominant OTUs showed 543 

relationships with Fe(III)HCl or Fe(II)HCl, potentially indicating their sensitivity to soil O2 544 

availability even if they did not directly participate in Fe reduction or oxidation. Many ASVs 545 

within the chitinolytic family Chitinophagaceae increased with Fe(III)HCl, such as the 546 

rarely-reported aerobic Flavisolibacter and Segetibacter. Similarly, Haliangium, known to 547 
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produce antifungal compounds, and rhizobacteria in the Agromyces genus showed positive 548 

correlations with Fe(III)HCl. A Ferruginibacter ASV within Chitinophagaceae was positively 549 

related to both Fe(III)HCl and NH4
+

initial. Combining microbial community composition data 550 

with biogeochemical covariates provides a method for screening taxa for subsequent study as 551 

potential microbial drivers of poorly understood biogeochemical processes. For example, in 552 

Feammox, NH4
+ oxidation is coupled to Fe(III) reduction, yet the microbial catalysts remain 553 

poorly described (Yang et al., 2012). The roles of Flavisolibacter, Pseudarthrobacter, and 554 

WD2101_soil_group in N-cycling also deserve further study given their relationships with 555 

NH4
+, NO3

-, and/or N2O flux. Although further evidence is needed for these findings, 556 

significant relationships among microbial ASVs or groups and biogeochemical variables 557 

indicate possible microbial linkages to particular ecosystem processes. 558 

4.3. Trade-offs among microbial groups and ASVs across topographic locations 559 

We found similar rates of several N-cycling processes across the topographic gradient 560 

(Fig. 1; Table S1) despite large differences in moisture, pH, and total soil N, variables which 561 

are known to influence N transformations in this ecosystem (S. J. Hall et al., 2018). This 562 

finding might be partially explained by abundance trade-offs between different microbial 563 

groups performing similar N-cycling functions. For example, both AOA (e.g., 564 

Nitrososphaeraceae) and AOB (e.g., Nitrosomonadaceae) are important ammonia oxidizers 565 

in soil. Consistent with the commonly reported niche separation of ammonia oxidizers with 566 

pH (Hu et al., 2014; Nicol et al., 2008), the relative abundances of these two groups showed 567 

contrasting responses to location (Fig. 7a and 7b) and pH, suggesting that they segregated by 568 

pH along the topographic gradient. Yet, their combined relative abundance remained 569 

relatively consistent (Fig. 7c), possibly contributing to similar observed rates of net 570 

nitrification across the gradient (Fig 1).  571 

Notably, AOA had a strong positive relationship with pH while AOB had a negative 572 
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relationship with pH; AOA abundance and pH were highest in locations 4 and 5. Our findings 573 

agree with previous reports that AOA amoA gene abundance increased with pH 574 

(Gubry-Rangin et al., 2011; Hu et al., 2014). Opposite results have also been reported whereby 575 

AOA and AOB amoA gene abundances decreased and increased with pH, respectively (Fan et 576 

al., 2019; Nicol et al., 2008; Prosser and Nicol, 2012). These inconsistent findings suggest that 577 

soil niche specialization between AOA and AOB might also be affected by factors other than 578 

pH, e.g., availability of ammonium and organic carbon (Prosser and Nicol, 2012). We did not 579 

find significant correlations between AOA and AOB abundances and ammonium 580 

concentrations (P > 0.50). However, we found a positive relationship between AOA abundance 581 

and SOC (r = 0.44; P < 0.05) and no significant relationship between AOB abundance and SOC 582 

(P > 0.05), suggesting that greater C availability might have contributed to increased 583 

competitiveness of AOA over AOB at locations 4 and 5 if some of these organisms were 584 

heterotrophic or mixotrophic (Prosser and Nicol, 2012).   585 

We also observed abundance trade-offs among ASVs within particular phyla across 586 

topographic locations (Fig. 6) even while overall phyla abundances remained similar across 587 

the gradient (Fig. S3). Other studies have also reported similar phyla abundances across 588 

topographic gradients within a site (Schlatter et al., 2019; Suriyavirun et al., 2019), but here, 589 

we found strong shifts in individual ASVs among sampling locations that were masked by 590 

general similarities at the phylum level (Fig. S3). Furthermore, ASVs nested within broader 591 

taxonomic groups often correlated in opposite ways with biogeochemical variables (Fig. 4 592 

and 5), challenging the idea that ASVs from the same OTUs are functionally equivalent 593 

(García-García et al., 2019). These results suggest that closely related taxa may respond 594 

differently to environmental variation (Bier et al., 2015). This conclusion is supported by 595 

observations of distinct genomic contents and unique features among subpopulations of the 596 

same species in two genomic studies (Kashtan et al., 2014; Rasko et al., 2008). Taken 597 
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together, our observational results are consistent with the hypothesis that individuals from the 598 

same families or genera are not necessarily functionally or ecologically coherent. 599 

4.4. Little change in community composition over time 600 

Few studies have assessed inter-annual variations in agricultural soil microbial 601 

communities on a monthly basis (Hsiao et al., 2019). With this relatively high temporal 602 

sampling frequency, we found that microbial evenness (inverse Simpson index) was 603 

significantly higher at the peak and the end of the growing season (July to October) than in 604 

the early-growing season (March to June); microbial richness (Chao1 index) showed a similar 605 

but insignificant trend (Fig. S2). Bacterial richness and diversity were also higher in the 606 

peak-growing season (August) than in the early-growing season (late May to early June) in 607 

prairie and continuous corn soils located several km from our site (Upton et al., 2019), 608 

possibly driven by greater litter inputs and exudates during this period (Lauber et al., 2013).  609 

Different from microbial evenness, microbial community composition changed little 610 

over time within and among years, despite large variation in weather and crop type (Fig. S1). 611 

Moderate (Bainard et al., 2016; Hsiao et al., 2019; Lauber et al., 2013) or minor (Bainard et 612 

al., 2016; Smith et al., 2016; Yu et al., 2011) temporal changes in microbial community 613 

composition have been reported for agricultural soils. Three reasons might explain why 614 

sampling month and year had minor effects on microbial community composition in our 615 

study. First, SOC contents were high in these soils relative to many other agroecosystems 616 

(Bainard et al., 2016; Lauber et al., 2013), and stable isotopes indicated that C derived from 617 

the most recent crop residues accounted for a small fraction of total soil respiration in nearby 618 

soils under similar management (Ye and Hall, 2020). Therefore, these communities may be 619 

more temporally stable because most soil metabolic activity is focused on processing 620 

slower-cycling C pools (with turnover times of years to decades) as opposed to the most 621 

recent litter inputs. Second, a large pool of relic DNA persisting in soil for weeks to years 622 
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after cell death may buffer temporal changes, a phenomenon that may be especially 623 

pronounced in neutral and alkaline soils such as those examined here (Carini et al., 2016). 624 

Third, strong spatial variability in soil properties such as pH are strong determinants of 625 

bacterial community composition (Fig. 1 and Table S2) and may mask temporal/crop 626 

variability across broad gradients in soil properties (Bainard et al., 2016; De Gruyter et al., 627 

2020; Fierer and Jackson, 2006). Overall, community composition was quite constant over 628 

time, despite the fact that some individual taxonomic groups and ASVs correlated with 629 

spatiotemporal variation in biogeochemical processes.  630 

5. Conclusion 631 

Here, we found that microbial community composition varied greatly with topographic 632 

location but changed little among months and years despite large differences in weather and 633 

crop type in a corn-soybean rotation. Tradeoffs in specific ASVs or groups such as AOA vs 634 

AOB among topographic locations may explain relatively similar abundances of dominant 635 

taxonomic groups and process rates such as nitrification. We found significant associations 636 

among many microbial groups and ASVs with metrics of N, Fe, and C cycling, which varied 637 

more over time than over space. Notably, different ASVs within the same families or genera 638 

often had opposite relationships with biogeochemical variables, challenging previous 639 

statements that closely related taxa are functionally redundant. Our results indicate that 640 

spatial and temporal variation in microbial composition among samples can potentially 641 

provide insights into ecosystem processes.  642 

Acknowledgements 643 

This research was supported in part by USDA-AFRI award 2018-67019-27886 and the Iowa 644 

Nutrient Research Center.   645 



 33  

 

References 646 

Bainard, L.D., Hamel, C., Gan, Y., 2016. Edaphic properties override the influence of crops 647 

on the composition of the soil bacterial community in a semiarid agroecosystem. 648 

Applied Soil Ecology 105, 160–168. doi:10.1016/j.apsoil.2016.03.013 649 

Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models 650 

using lme4. Journal of Statistical Software 67, 1–48. doi:10.18637/jss.v067.i01 651 

Bier, R.L., Voss, K.A., Bernhardt, E.S., 2015. Bacterial community responses to a gradient of 652 

alkaline mountaintop mine drainage in Central Appalachian streams. The ISME 653 

Journal 9, 1378–1390. doi:10.1038/ismej.2014.222 654 

Butterbach-Bahl, K., Baggs, E.M., Dannenmann, M., Kiese, R., Zechmeister-Boltenstern, S., 655 

2013. Nitrous oxide emissions from soils: how well do we understand the processes 656 

and their controls? Philosophical Transactions: Biological Sciences 368, 1–13. 657 

doi:10.1098/rstb.2013.0122 658 

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 659 

2016. DADA2: High-resolution sample inference from Illumina amplicon data. 660 

Nature Methods 13, 581–583. doi:10.1038/nmeth.3869 661 

Cao, P., Lu, C., Yu, Z., 2018. Historical nitrogen fertilizer use in agricultural ecosystems of 662 

the contiguous United States during 1850–2015: application rate, timing, and fertilizer 663 

types. Earth System Science Data 10, 969–984. doi:10.5194/essd-10-969-2018 664 

Caporaso, J.G., 2018. EMP 16S Illumina Amplicon Protocol. 665 

Carini, P., Marsden, P.J., Leff, J.W., Morgan, E.E., Strickland, M.S., Fierer, N., 2016. Relic 666 

DNA is abundant in soil and obscures estimates of soil microbial diversity. Nature 667 

Microbiology 2, 1–6. doi:10.1038/nmicrobiol.2016.242 668 

Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., 669 



 34  

 

Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R.H., von Bergen, M., Rattei, 670 

T., Bendinger, B., Nielsen, P.H., Wagner, M., 2015. Complete nitrification by 671 

Nitrospira bacteria. Nature 528, 504–509. doi:10.1038/nature16461 672 

Davis, K.E.R., Sangwan, P., Janssen, P.H., 2011. Acidobacteria, Rubrobacteridae and 673 

Chloroflexi are abundant among very slow-growing and mini-colony-forming soil 674 

bacteria. Environmental Microbiology 13, 798–805. 675 

doi:10.1111/j.1462-2920.2010.02384.x 676 

De Gruyter, J., Weedon, J.T., Bazot, S., Dauwe, S., Fernandez-Garberí, P.-R., Geisen, S., De 677 

La Motte, L.G., Heinesch, B., Janssens, I.A., Leblans, N., Manise, T., Ogaya, R., 678 

Löfvenius, M.O., Peñuelas, J., Sigurdsson, B.D., Vincent, G., Verbruggen, E., 2020. 679 

Patterns of local, intercontinental and interseasonal variation of soil bacterial and 680 

eukaryotic microbial communities. FEMS Microbiology Ecology 96, fiaa018. 681 

doi:10.1093/femsec/fiaa018 682 

Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-González, A., Eldridge, 683 

D.J., Bardgett, R.D., Maestre, F.T., Singh, B.K., Fierer, N., 2018. A global atlas of the 684 

dominant bacteria found in soil. Science 359, 320–325. doi:10.1126/science.aap9516 685 

Doane, T.A., Horwáth, W.R., 2003. Spectrophotometric determination of nitrate with a single 686 

reagent. Analytical Letters 36, 2713–2722. doi:10.1081/AL-120024647 687 

Domeignoz�Horta, L.A., Philippot, L., Peyrard, C., Bru, D., Breuil, M.-C., Bizouard, F., 688 

Justes, E., Mary, B., Léonard, J., Spor, A., 2018. Peaks of in situ N2O emissions are 689 

influenced by N2O-producing and reducing microbial communities across arable soils. 690 

Global Change Biology 24, 360–370. doi:10.1111/gcb.13853 691 

Esther, J., Sukla, L.B., Pradhan, N., Panda, S., 2015. Fe (III) reduction strategies of 692 

dissimilatory iron reducing bacteria. Korean Journal of Chemical Engineering 32, 1–693 

14. doi:10.1007/s11814-014-0286-x 694 



 35  

 

Fan, X., Yin, C., Chen, H., Ye, M., Zhao, Y., Li, T., Wakelin, S.A., Liang, Y., 2019. The 695 

efficacy of 3,4-dimethylpyrazole phosphate on N2O emissions is linked to niche 696 

differentiation of ammonia oxidizing archaea and bacteria across four arable soils. 697 

Soil Biology and Biochemistry 130, 82–93. doi:10.1016/j.soilbio.2018.11.027 698 

Fierer, N., Bradford, M.A., Jackson, R.B., 2007. Toward an ecological classification of soil 699 

bacteria. Ecology 88, 1354–1364. doi:10.1890/05-1839 700 

Fierer, N., Jackson, R.B., 2006. The diversity and biogeography of soil bacterial 701 

communities. Proceedings of the National Academy of Sciences of the United States 702 

of America 103, 626–631. doi:10.1073/pnas.0507535103 703 

García-García, N., Tamames, J., Linz, A.M., Pedrós-Alió, C., Puente-Sánchez, F., 2019. 704 

Microdiversity ensures the maintenance of functional microbial communities under 705 

changing environmental conditions. The ISME Journal 13, 2969–2983. 706 

doi:10.1038/s41396-019-0487-8 707 

Gelder, B.K., 2015. Automation of DEM cutting for hydrologic/hydraulic modeling. 708 

Technical Report to the Iowa State University. Institute for Transportation, Ames, 709 

Iowa. 710 

Griffis, T.J., Chen, Z., Baker, J.M., Wood, J.D., Millet, D.B., Lee, X., Venterea, R.T., Turner, 711 

P.A., 2017. Nitrous oxide emissions are enhanced in a warmer and wetter world. 712 

Proceedings of the National Academy of Sciences 114, 12081–12085. 713 

doi:10.1073/pnas.1704552114 714 

Griffiths, R.I., Thomson, B.C., James, P., Bell, T., Bailey, M., Whiteley, A.S., 2011. The 715 

bacterial biogeography of British soils. Environmental Microbiology 13, 1642–1654. 716 

doi:10.1111/j.1462-2920.2011.02480.x 717 

Gubry-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B.C., James, P., Schloter, M., 718 

Griffiths, R.I., Prosser, J.I., Nicol, G.W., 2011. Niche specialization of terrestrial 719 



 36  

 

archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences 108, 720 

21206–21211. doi:10.1073/pnas.1109000108 721 

Guo, J., Cong, Q., Zhang, L., Meng, L., Ma, F., Zhang, J., 2019. Exploring the linkage 722 

between bacterial community composition and nitrous oxide emission under varied 723 

DO levels through the alternation of aeration rates in a lab-scale anoxic-oxic reactor. 724 

Bioresource Technology 291, 121809. doi:10.1016/j.biortech.2019.121809 725 

Hall, E.K., Bernhardt, E.S., Bier, R.L., Bradford, M.A., Boot, C.M., Cotner, J.B., Del 726 

Giorgio, P.A., Evans, S.E., Graham, E.B., Jones, S.E., Lennon, J.T., Locey, K.J., 727 

Nemergut, D., Osborne, B.B., Rocca, J.D., Schimel, J.P., Waldrop, M.P., Wallenstein, 728 

M.D., 2018. Understanding how microbiomes influence the systems they inhabit. 729 

Nature Microbiology 3, 977–982. doi:10.1038/s41564-018-0201-z 730 

Hall, S.J., McDowell, W.H., Silver, W.L., 2013. When wet gets wetter: Decoupling of 731 

moisture, redox biogeochemistry, and greenhouse gas fluxes in a humid tropical forest 732 

soil. Ecosystems 16, 576–589. doi:10.1007/s10021-012-9631-2 733 

Hall, S.J., Reyes, L., Huang, W., Homyak, P.M., 2018. Wet spots as hotspots: Moisture 734 

responses of nitric and nitrous oxide emissions from poorly drained agricultural soils. 735 

Journal of Geophysical Research: Biogeosciences 123, 3589–3602. 736 

doi:10.1029/2018JG004629 737 

Hsiao, C.-J., Sassenrath, G.F., Zeglin, L.H., Hettiarachchi, G.M., Rice, C.W., 2019. Temporal 738 

variation of soil microbial properties in a corn–wheat–soybean system. Soil Science 739 

Society of America Journal 83, 1696–1711. doi:10.2136/sssaj2019.05.0160 740 

Hu, B., Liu, S., Wang, W., Shen, L., Lou, L., Liu, W., Tian, G., Xu, X., Zheng, P., 2014. 741 

pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese 742 

agricultural soils. FEMS Microbiology Ecology 90, 290–299. 743 

doi:10.1111/1574-6941.12391 744 



 37  

 

Hu, H.-W., Chen, D., He, J.-Z., 2015. Microbial regulation of terrestrial nitrous oxide 745 

formation: understanding the biological pathways for prediction of emission rates. 746 

FEMS Microbiology Reviews 39, 729–749. doi:10.1093/femsre/fuv021 747 

Huang, W., Hall, S.J., 2017a. Elevated moisture stimulates carbon loss from mineral soils by 748 

releasing protected organic matter. Nature Communications 8, 1–10. 749 

doi:10.1038/s41467-017-01998-z 750 

Huang, W., Hall, S.J., 2017b. Optimized high-throughput methods for quantifying iron 751 

biogeochemical dynamics in soil. Geoderma 306, 67–72. 752 

doi:10.1016/j.geoderma.2017.07.013 753 

Jafari, M., Ansari-Pour, N., 2019. Why, when and how to adjust your P values? Cell Journal 754 

20, 604–607. doi:10.22074/cellj.2019.5992 755 

Jones, C.S., Nielsen, J.K., Schilling, K.E., Weber, L.J., 2018. Iowa stream nitrate and the 756 

Gulf of Mexico. PLOS ONE 13, e0195930. doi:10.1371/journal.pone.0195930 757 

Kashtan, N., Roggensack, S.E., Rodrigue, S., Thompson, J.W., Biller, S.J., Coe, A., Ding, H., 758 

Marttinen, P., Malmstrom, R.R., Stocker, R., Follows, M.J., Stepanauskas, R., 759 

Chisholm, S.W., 2014. Single-cell genomics reveals hundreds of coexisting 760 

subpopulations in wild Prochlorococcus. Science 344, 416–420. 761 

doi:10.1126/science.1248575 762 

Kuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. The microbial nitrogen-cycling 763 

network. Nature Reviews Microbiology 16, 263–276. doi:10.1038/nrmicro.2018.9 764 

Lauber, C.L., Hamady, M., Knight, R., Fierer, N., 2009. Pyrosequencing-based assessment of 765 

soil pH as a predictor of soil bacterial community structure at the continental scale. 766 

Applied and Environmental Microbiology 75, 5111–5120. 767 

doi:10.1128/AEM.00335-09 768 



 38  

 

Lauber, C.L., Ramirez, K.S., Aanderud, Z., Lennon, J., Fierer, N., 2013. Temporal variability 769 

in soil microbial communities across land-use types. The ISME Journal 7, 1641–1650. 770 

doi:10.1038/ismej.2013.50 771 

Lawrence, N.C., Hall, S.J., 2020. Capturing temporal heterogeneity in soil nitrous oxide 772 

fluxes with a robust and low-cost automated chamber apparatus. Atmospheric 773 

Measurement Techniques 13, 4065–4078. doi:10.5194/amt-13-4065-2020 774 

Li, X., McCarty, G.W., Karlen, D.L., Cambardella, C.A., Effland, W., 2018. Soil organic 775 

carbon and isotope composition response to topography and erosion in Iowa. Journal 776 

of Geophysical Research: Biogeosciences 123, 3649–3667. 777 

doi:10.1029/2018JG004824 778 

Logsdon, S.D., James, D.E., 2014. Closed depression topography Harps soil, revisited. Soil 779 

Horizons 55, sh13-11–0025. doi:10.2136/sh13-11-0025 780 

Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion 781 

for RNA-seq data with DESeq2. Genome Biology 15, 550. 782 

doi:10.1186/s13059-014-0550-8 783 

Maestre, F.T., Delgado-Baquerizo, M., Jeffries, T.C., Eldridge, D.J., Ochoa, V., Gozalo, B., 784 

Quero, J.L., García-Gómez, M., Gallardo, A., Ulrich, W., Bowker, M.A., Arredondo, 785 

T., Barraza-Zepeda, C., Bran, D., Florentino, A., Gaitán, J., Gutiérrez, J.R., 786 

Huber-Sannwald, E., Jankju, M., Mau, R.L., Miriti, M., Naseri, K., Ospina, A., Stavi, 787 

I., Wang, D., Woods, N.N., Yuan, X., Zaady, E., Singh, B.K., 2015. Increasing aridity 788 

reduces soil microbial diversity and abundance in global drylands. Proceedings of the 789 

National Academy of Sciences 112, 15684–15689. doi:10.1073/pnas.1516684112 790 

Martin, A.R., Kaleita, A.L., Soupir, M.L., 2019. Inundation patterns of farmed pothole 791 

depressions with varying subsurface drainage. Transactions of the ASABE 62, 1579–792 

1590. doi:10.13031/trans.13435 793 



 39  

 

McMurdie, P.J., Holmes, S., 2013. phyloseq: An R package for reproducible interactive 794 

analysis and graphics of microbiome census data. PLOS ONE 8, e61217. 795 

doi:10.1371/journal.pone.0061217 796 

Nicol, G.W., Leininger, S., Schleper, C., Prosser, J.I., 2008. The influence of soil pH on the 797 

diversity, abundance and transcriptional activity of ammonia oxidizing archaea and 798 

bacteria. Environmental Microbiology 10, 2966–2978. 799 

doi:10.1111/j.1462-2920.2008.01701.x 800 

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, 801 

P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., 802 

Wagner, H., 2019. Vegan: community ecology package. R package version 2.5-4. 803 

Ouyang, Y., Norton, J.M., 2020. Nitrite oxidizer activity and community are more responsive 804 

than their abundance to ammonium-based fertilizer in an agricultural soil. Frontiers in 805 

Microbiology 11, Article 1736. doi:10.3389/fmicb.2020.01736 806 

Petersen, D.G., Blazewicz, S.J., Firestone, M., Herman, D.J., Turetsky, M., Waldrop, M., 807 

2012. Abundance of microbial genes associated with nitrogen cycling as indices of 808 

biogeochemical process rates across a vegetation gradient in Alaska. Environmental 809 

Microbiology 14, 993–1008. doi:10.1111/j.1462-2920.2011.02679.x 810 

Pett-Ridge, J., Firestone, M.K., 2005. Redox fluctuation structures microbial communities in 811 

a wet tropical soil. Applied and Environmental Microbiology 71, 6998–7007. 812 

doi:10.1128/AEM.71.11.6998-7007.2005 813 

Philippot, L., Andersson, S.G.E., Battin, T.J., Prosser, J.I., Schimel, J.P., Whitman, W.B., 814 

Hallin, S., 2010. The ecological coherence of high bacterial taxonomic ranks. Nature 815 

Reviews Microbiology 8, 523–529. doi:10.1038/nrmicro2367 816 



 40  

 

Philippot, L., Germon, J.C., 2005. Chapter eight - Contribution of bacteria to initial input and 817 

cycling of nitrogen in soils, in: Buscot, F., Varma, A. (Eds.), Microorganisms in Soils: 818 

Roles in Genesis and Functions. Springer, Berlin, Heidelberg, pp. 159–176. 819 

Pitombo, L.M., Carmo, J.B. do, Hollander, M. de, Rossetto, R., López, M.V., Cantarella, H., 820 

Kuramae, E.E., 2016. Exploring soil microbial 16S rRNA sequence data to increase 821 

carbon yield and nitrogen efficiency of a bioenergy crop. GCB Bioenergy 8, 867–879. 822 

doi:10.1111/gcbb.12284 823 

Prosser, J.I., 2015. Dispersing misconceptions and identifying opportunities for the use of 824 

“omics” in soil microbial ecology. Nature Reviews Microbiology 13, 439–446. 825 

doi:10.1038/nrmicro3468 826 

Prosser, J.I., Nicol, G.W., 2012. Archaeal and bacterial ammonia oxidisers in soil: the quest 827 

for niche specialisation and differentiation. Trends in Microbiology 20, 523–531. 828 

doi:10.1016/j.tim.2012.08.001 829 

R Core Team, 2019. R: A language and environment for statistical computing. R Foundation 830 

for Statistical Computing, Vienna, Austria. 831 

Ramírez-Flandes, S., González, B., Ulloa, O., 2019. Redox traits characterize the 832 

organization of global microbial communities. Proceedings of the National Academy 833 

of Sciences 116, 3630–3635. doi:10.1073/pnas.1817554116 834 

Rasko, D.A., Rosovitz, M.J., Myers, G.S.A., Mongodin, E.F., Fricke, W.F., Gajer, P., 835 

Crabtree, J., Sebaihia, M., Thomson, N.R., Chaudhuri, R., Henderson, I.R., Sperandio, 836 

V., Ravel, J., 2008. The pangenome structure of Escherichia coli: Comparative 837 

genomic analysis of E. coli commensal and pathogenic isolates. Journal of 838 

Bacteriology 190, 6881–6893. doi:10.1128/JB.00619-08 839 



 41  

 

Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., 840 

Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an 841 

arable soil. The ISME Journal 4, 1340–1351. doi:10.1038/ismej.2010.58 842 

Schlatter, D.C., Reardon, C.L., Johnson-Maynard, J., Brooks, E., Kahl, K., Norby, J., 843 

Huggins, D., Paulitz, T.C., 2019. Mining the drilosphere: Bacterial communities and 844 

denitrifier abundance in a no-till wheat cropping system. Frontiers in Microbiology 845 

10, Article 1339. doi:10.3389/fmicb.2019.01339 846 

Smith, C.R., Blair, P.L., Boyd, C., Cody, B., Hazel, A., Hedrick, A., Kathuria, H., Khurana, 847 

P., Kramer, B., Muterspaw, K., Peck, C., Sells, E., Skinner, J., Tegeler, C., Wolfe, Z., 848 

2016. Microbial community responses to soil tillage and crop rotation in a 849 

corn/soybean agroecosystem. Ecology and Evolution 6, 8075–8084. 850 

doi:10.1002/ece3.2553 851 

Smith, S., 2019. phylosmith: an R-package for reproducible and efficient microbiome 852 

analysis with phyloseq-objects. Journal of Open Source Software 4, 1442. 853 

doi:10.21105/joss.01442 854 

Spohn, M., Klaus, K., Wanek, W., Richter, A., 2016. Microbial carbon use efficiency and 855 

biomass turnover times depending on soil depth – Implications for carbon cycling. 856 

Soil Biology and Biochemistry 96, 74–81. doi:10.1016/j.soilbio.2016.01.016 857 

Suriyavirun, N., Krichels, A.H., Kent, A.D., Yang, W.H., 2019. Microtopographic 858 

differences in soil properties and microbial community composition at the field scale. 859 

Soil Biology and Biochemistry 131, 71–80. doi:10.1016/j.soilbio.2018.12.024 860 

Upton, R.N., Bach, E.M., Hofmockel, K.S., 2019. Spatio-temporal microbial community 861 

dynamics within soil aggregates. Soil Biology and Biochemistry 132, 58–68. 862 

doi:10.1016/j.soilbio.2019.01.016 863 



42 

Weatherburn, M.W., 1967. Phenol-hypochlorite reaction for determination of ammonia. 864 

Analytical Chemistry 39, 971–974. doi:10.1021/ac60252a045 865 

Weber, K.A., Achenbach, L.A., Coates, J.D., 2006. Microorganisms pumping iron: anaerobic 866 

microbial iron oxidation and reduction. Nature Reviews Microbiology 4, 752–764. 867 

doi:10.1038/nrmicro1490 868 

Yang, W.H., Liptzin, D., 2015. High potential for iron reduction in upland soils. Ecology 96, 869 

2015–2020. doi:10.1890/14-2097.1 870 

Yang, W.H., Weber, K.A., Silver, W.L., 2012. Nitrogen loss from soil through anaerobic 871 

ammonium oxidation coupled to iron reduction. Nature Geoscience 5, 538–541. 872 

doi:10.1038/ngeo1530 873 

Ye, C., Hall, S.J., 2020. Mechanisms underlying limited soil carbon gains in perennial and 874 

cover-cropped bioenergy systems revealed by stable isotopes. GCB Bioenergy 12, 875 

101–117. doi:10.1111/gcbb.12657 876 

Yu, Z., Wang, G., Jin, J., Liu, J., Liu, X., 2011. Soil microbial communities are affected more 877 

by land use than seasonal variation in restored grassland and cultivated Mollisols in 878 

Northeast China. European Journal of Soil Biology 47, 357–363. 879 

doi:10.1016/j.ejsobi.2011.09.001 880 

Zhang, X., Gao, G., Wu, Z., Wen, X., Zhong, H., Zhong, Z., Yang, C., Bian, F., Gai, X., 881 

2020. Responses of soil nutrients and microbial communities to intercropping 882 

medicinal plants in moso bamboo plantations in subtropical China. Environmental 883 

Science and Pollution Research 27, 2301–2310. doi:10.1007/s11356-019-06750-2 884 



• Several microbial groups correlated significantly with N- or Fe-cycling 

processes 

• Different taxa within the same phylogenetic groups often responded in 

opposite ways 

• Microbial composition varied with topographic location but changed little 

over time 

• Ammonia-oxidizing archaea and bacteria varied inversely but their sum was 

similar 

• Composition tradeoffs might maintain similar process rates across soil 

gradients 
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