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Abstract

The primary plant cell wall is a complex matrix composed of interconnected polysaccharides

including cellulose, hemicellulose, and pectin. Changes of this dynamic polysaccharide sys-

tem play a critical role during plant cell development and differentiation. A better understand-

ing of cell wall architectures can provide insight into the plant cell development. In this study,

a Raman spectroscopic imaging approach was developed to visualize the distribution of

plant cell wall polysaccharides. In this approach, Surface-enhanced Raman scattering

(SERS through self-assembled silver nanoparticles) was combined with Raman labels (4-

Aminothiophenol. 4ATP) and targeted enzymatic hydrolysis to improve the sensitivity, spec-

ificity, and throughput of the Raman imaging technique, and to reveal the distribution of pec-

tin and its co-localization with xyloglucan inside onion epidermal cell (OEC) wall. This

technique significantly decreased the required spectral acquisition time. The resulted

Raman spectra showed a high Raman signal. The resulted Raman images successfully

revealed and characterized the pectin distribution and its co-localization pattern with xyloglu-

can in OEC wall.

Introduction

Polysaccharides are the main components of the plant cell wall. The complex network of poly-

saccharides consists of cellulose, hemicelluloses and pectin [1]. Cellulose is a linear

unbranched polysaccharide formed of β-1-4-D-Glucose residuals. Hemicellulose is a group of

heterogeneous polysaccharides that have β-(1,4)-linked backbones of various base units. Pectin

is a group of complex polysaccharides formed with α-(1,4)-D-galacluronic acid residuals. The

α-(1,4)-D-galacturonic acid is a unique monosaccharide due to its carboxylic group ester.

Approximately 70% of pectin is comprised of α-(1,4)-D-galacturonic acid residues [2]. Some

side chains of hemicelluloses and plant cell wall proteins contain a limited number of carbox-

ylic groups as well. The main polysaccharides in the pectin group include homogalacturonan
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(HG), rhamnogalacturonan I (RG I), rhamnogalacturonan II (RG II), and xylogalacturonan

(XGA) [1, 2]. Pectin fulfills many important plant biological functions, including growth,

development, cell-cell adhesion, signaling, and enzyme modulation, etc [2]. The polysaccha-

rides network defines the biomechanical properties of the plant cell wall [3], it is also the first

line of defense that plant cells have against pathogen invasion [4]. However, our understanding

of their structures, functions, and interactions with each other is still limited. The proposed

plant cell models have been evolved in the past several decades [5–9]. Many studies paid partic-

ular interests to the interactions between pectin and xyloglucan, because the xyloglucan and

pectin complexes would play important role in plant cell wall assembly and metabolism. Evi-

dence has shown that there are covalent linkages between xyloglucan and pectin. An early

plant cell wall model proposed the existence of covalent linkages between xyloglucan and RG-I

based on the chromatographic co-elution of Xly residues and uronic acid residues [5]. Further

evidence for xyloglucan-pectin complexes was provided through labelling 14C the pectic oligo-

[14C]galactan chains, and observing the affinity change of 14C-labelled product after endo-

1,4-glucanase treatment, which digests xyloglucan [10]. A later study showed that xyloglucan-

pectin covalent complexes were found in a broad variety of cell-suspension cultures [7].

Although these studies provided insight into the pectin-xyloglucan complexes, more details of

their distribution in the plant cell wall and their interactions with enzymes are still needed.

Several microscopic techniques have been employed to visualize the polysaccharides in the

plant cell wall. The popular microscopic techniques including transmission electron micros-

copy (TEM) [11], confocal laser scanning microscopy (CLSM), fluorescence microscopy [12],

and atomic force microscopy (AFM) [13]. None of them can yield detailed chemical images to

reveal polysaccharide distribution and organization patterns in plant cell walls with microme-

ter resolution [14]. The confocal Raman microspectroscopy [15] is a non-invasive method,

which could be utilized to obtain chemical images of polysaccharides in plant cell walls with

micrometer resolution and beyond. The lignin and cellulose distribution in black spruce wood

has been studied with Raman imaging [16]. The distribution of lignin and cellulose [17, 18] as

well as phenolics and lipids [19] in Arabidopsis plant cell wall were studied with Raman imag-

ing technique. The polysaccharides distribution and changes in plant cell wall during apple

fruit development and senescence [20], fruit infected by Alternaria alternate [21], fruit lignifi-

cation [22] have also been reported. However, Raman scattering is a weak phenomenon, long

data acquisition time is often required to obtain Raman spectra with high signal-to-noise ratio

(S/N). Moreover, the long spectral acquisition time could also lead to photo-damage to the

samples under investigation [23, 24]. Surface-enhanced Raman scattering (SERS) provides a

powerful solution to the low S/N problem [25]. In SERS, it has been shown that a signal

enhancement of 104−108 could be achieved in comparison with normal Raman scattering [26,

27] for biological samples. To achieve such enhancement factor, Au or Ag nanostructures are

commonly used as enhancers because their surface plasmons could resonate with electromag-

netic wave in the same wavelength range as most of the commercially available lasers used for

Raman excitation [28]. The effectiveness of SERS is distance-dependent. The strength of the

resonated plasmonic electromagnetic field could decrease 10 times when the distance between

the analytes and the SERS nanoenhancers increased by 2.8 nm [29]. Consequently, to achieve

the highest enhancement factor, the target molecules need to be within a few nanometers dis-

tance from the nanoenhancers surface. Further enhancement to SERES signals could be gener-

ated by utilizing Raman labels in biological and molecular imaging [30–33], the Raman labels

are molecules with large Raman scattering cross-section that would have strong Raman scat-

tering signals when in resonance with the excitation laser. To ensure the Raman labels can be

located close to the nanoenhancer, the Raman labels chosen usually contain sulfur or nitrogen

atoms to be able to form covalent bonds with the nanoenhancers [34]. The combination of
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Raman labels and surface enhancement could achieve a level of enhancement of 1014 com-

pared with the normal Raman scattering [29]. Different approaches have been explored to

apply SERS combined with Raman labels in plant study. The distribution of a triplex Au-Ag-C

core-shell NPs incorporated with the report molecule was monitored in a living plant leaf with

SERS [35]. SERS image of report molecules attached to silver nanoparticles was utilized in

onion plant cells to study the heterogeneous chemical structures and pH value inside the cells

[15]. However, only limited number of research were conducted to characterize the cell wall

polysaccharides distribution with SERS.

In most of these previous studies, the polysaccharide distribution was analyzed via Raman

images constructed by the signature peaks of the polysaccharide itself, where each peak was

correlated to a specific chemical bond in the polysaccharide. However, due to the similarity of

the chemical bonds in most of the polysaccharides, this approach did not provide enough spec-

ificity to allow differentiation between different polysaccharides. Consequently, the Raman

images constructed in these studies usually only differentiate polysaccharides such as cellulose

from lignin [17, 18], but rarely among pectin molecules themselves.

In this study, we developed a new approach to improve the specificity of SERS imaging. We

used a Raman tag (RT) 4-Aminothiophenol (4ATP) to label the α-(1,4)-D-glacluronic acid

residuals on pectin backbone in onion epidermal cell (OEC) wall through covalent binding,

and silver nanoparticles (AgNP) were layer-by-layer self-assembled onto the onion cell wall to

form AgNP-4ATP conjugation which allowed chemical images to be created via the strong

SERS signal of 4-ATP. The onion epidermal consists of a single layer cells surrounded by pri-

mary cell walls, which makes it a good system to be used for imaging. In addition, two

enzymes, endo-polygalacturonase (EPG) and xyloglucan-specific endo-1,4-glucanase (XEG)

were introduced to further improve the specificity. The Raman signal changes before and after

the enzymatic hydrolyze are correlated to the enzymatic hydrolysis of the pectin and hemicel-

lulose, respectively. Hence, the SERS images of the 4-ATP distribution in the cell walls were

collected before and after EPG and XEG hydrolysis. The resulted changes in Raman signal

(i.e., decrease) reflected the changes in the respective polysaccharides contents caused specifi-

cally by the enzymes. Through this analysis, the pectin distribution and its co-localization with

xyloglucan could be characterized to reveal the sites of possible interaction between pectin and

xyloglucan, which would help further our understanding of the cell wall structures.

Materials and methods

Chemical and biological materials

4-Aminothiophenol (4ATP, 97%), silver nitrate (AgNO3), sodium borohydride (NaBH4),

Phosphate-buffered saline (PBS) 1× concentration, 1-ethyl-3-(-3-dimethylaminopropyl) car-

bodiimide hydrochloride (EDC), N-Hydroxysuccinimide (NHS) were all analytical grade, pur-

chased from Sigma-Aldrich (St. Louis, MO) and used without further purification. The endo-

polygalacturonanase M2 (Aspergillus aculeatus) enzyme was purchased from Megazyme (Bray,

Ireland). The xyloglucan-specific endo-β-1,4-glucanase (XEG) was purchased from Novo-

zymes (Copenhagen, Denmark). The silver enhancement reagent, R-Gent SE-LM electron

microscopy grade silver enhancement reagent, was purchased from Aurion (Wageningen, The

Netherlands). 18.2 MO E-pure water was used throughout the experiments.

Preparation of onion skin to obtain single-layer epidermal cells

To prepare the single-layer OEC samples, a white onion was cut into a rectangular piece, and

the inner onion skin was peeled with a pair of tweezers. The 4ATP was then used as the RT to

label the polysaccharides, which was subsequently conjugated to AgNPs for SERS imaging.
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The process to prepare the AgNP-4ATP conjugated OEC (AgNP-4ATP-OEC) was shown in

Fig 1. Briefly, the peeled OEC was soaked in a freshly made mixture of 5 ml DI water, 5ml etha-

nol, 8 mg EDC, 6 mg NHS and 4 mg of 4ATP, and incubated for 30 minutes to prepare the

4ATP labeled OEC (4ATP-OEC). Another OEC sample was soaked in the solution with only 5

ml DI water, 5ml ethanol and 4 mg 4ATP and incubated for 30 minutes to prepare the 4ATP

soaked OEC. The carbodiimide crosslinker chemistry with EDC-NHS induced peptide bond

was well established [36, 37]. In our scheme, it assisted bond formation between amino group

of the 4ATP and carboxylic group of the galacturonic acid in pectin. After the labeling process

was finished, the samples were rinsed thoroughly with ethanol and DI water to wash off the

unbound 4ATP. The AgNP-4ATP-OEC was prepared by drop coating the silver enhancement

reagent onto the 4ATP-OEC to form the self-assembled silver nanoparticles layer for subse-

quent SERS imaging. In short, R-Gent SE-LM electron microscopy grade silver enhancement

reagents, including the developer agent and enhancer agent, were mixed at equal parts at room

temperature. The mixture was then applied onto the samples in a moisture chamber to form

AgNPs in situ. Freshly peeled onion skin was directly reacted with the silver enhancement

reagent to prepare the control (AgNP-OEC). After 30 minutes of incubation with silver

enhancement reagents in the moisture chamber, all samples were extensively washed with DI

water. The labeled onion samples were then cut into 5mm x 5mm pieces and fixed by water-

proof tapes on gold slides for the following experiments. The 4ATP was mixed with AgNP to

form the AgNP-4ATP complex. The AgNP was synthesized with NaBH4 as follow. A 5 x 10-3

M AgNO3 10 mL was added drop by drop to ice-cold 2 x 10-3 M NaBH4 with vigorous stirring.

The 4ATP-AgNP complex was formed by mixing 10 μL 1 μM 4ATP ethanol solution with 10

μL freshly made AgNP and air dry on glass slides before Raman spectral acquisition. The nor-

mal Raman spectra of bulk 4ATP and SERS spectrum of 4ATP-AgNP complex were collected

to demonstrate the 4ATP SERS behavior.

Enzymatic hydrolysis of cell wall polysaccharides (pectin and xyloglucan)

The EPG was diluted to 25 U/mL, and the XEG was used at 0.5 mg/mL. All enzyme solutions

were diluted with phosphate buffer (PBS, 10 mM, pH = 7.4). Series of enzyme-hydrolyzed

AgNP-4ATP-OEC samples were prepared. For EPG hydrolysis, each sample was subject to 30

min hydrolysis. For the sequential hydrolysis, each sample was hydrolyzed with XEG for 30

Fig 1. Experiment scheme. Layer-by-layer assemble of AgNP-4ATP-OEC and enzyme Hydrolysis of AgNP-

4ATP-OEC.

https://doi.org/10.1371/journal.pone.0250650.g001
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minutes, followed by EPG for 30 minutes. Then, the samples were placed on a hot plate at

90˚C for 20 minutes to denature the enzymes and terminate the hydrolysis reaction.

All hydrolysis was done at room temperature. After each treatment, samples were exten-

sively rinsed with ethanol and DI water to remove unbound RTs and nanoparticles. All treat-

ments were conducted in triplicate.

SERS imaging

A dispersive Raman microscope (DXR, Thermo Scientific, Madison, WI) was used for Raman

spectra acquisition with 532 nm excitation laser, 10mW laser power, 20x objectives, and 50 μm

pinhole. The laser exposure time and the number of accumulation were varied for different

samples. The OMNICTM suite (Thermo Scientific, Waltham, MA, USA) was used for spectral

acquisition and Raman mapping. For the Raman chemical image collection, each sample was

scanned with a 2 μm step size, and the pseudo-color image based on the RT 4ATP signature

peak at 1573 cm−1 [38] was generated.

Results

Covalent binding of 4ATP onto the pectin and xyloglucan in OEC walls

An active Raman scatter, 4ATP [14], was used as the RT to label the polysaccharides in the

OEC walls. The 4ATP contains a thiol group, which provides strong surface affinity to AgNP;

an amino group that can form a peptide bond with carboxylic group on pectin molecules

through the carbodiimide crosslinker chemistry and a benzene ring with high Raman cross-

section. Approximately 70% of pectin is comprised of α-(1,4)-D-galacturonic acid as base unit

[2]. Through the carbodiimide crosslinker chemistry, these carboxylic groups reacted with the

EDC to form an activated ester named O-acylisourea. Since the EDC activated ester is unsta-

ble, NHS was introduced to convert the EDC activated ester into a relatively stable NHS-ester.

The NHS-ester then crosslinked with the amine groups on 4ATP and form the covalent pep-

tide bond [39].

To illustrate the Raman covalent bonding of 4ATP on OECs, the Raman spectra from the

freshly peeled onion skin sample, the onion skin sample soaked in 4ATP solution (4ATP

soaked-OEC) and the onion skin sample that covalently bonded by 4ATP (4ATP-OEC) were

collected. All samples were placed on gold-coated slides and air-dried at room temperature to

improve their Raman signals. The laser exposure time was set at 30 s for these tests, and 2 accu-

mulations were acquired to improve the S/N. However, this exposure time was not suitable for

Raman imaging, as the sample could be overheated or burned due to the long exposure to the

laser [23, 24].

As shown in Fig 2, the Raman spectra of these three samples are similar, indicating not

much loss of polysaccharides due to the 4ATP binding procedure. The spectra collected from

4ATP-soaked onion showed nearly no 4ATP signature peaks, suggesting that no noticeable

4ATP-OEC binding occurred without carbodiimide crosslinker chemistry being in place. In

comparison, the Raman spectrum collected from the ATP-OEC shows a clear 4ATP signature

peak at 1590 cm−1. Clearly, 4ATPs were covalently bound to the OECs in this case.

Self-assembly of silver nanoparticles onto 4ATP-OEC

The self-assembly of silver nanoparticles that conjugated onto 4ATP labeled OECs to form

AgNP-4ATP-OEC is depicted in Fig 1. The Raman tag 4ATP was covalently bond to the pec-

tin, and the in situ formed AgNPs were self-assembled on to the 4ATP-OECs. The AgNPs

were self-assembled onto the 4ATP-OECs through the thiol bond to form AgNP-4ATP-OECs.
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The 4ATP bonding AgNPs hence served as strong Raman surface enhancers to significantly

enhance the SERS signal intensity of the 4ATP. The self-assembled AgNPs were characterized

with AFM as shown in Fig 3. A 5 μm x 5 μm area of each sample was scanned with AFM for

AgNP-4ATP-OEC, AgNP-4ATP soaked OEC, AgNP-OEC, OEC, respectively, as shown in

Fig 3a–3d. The samples with in situ AgNP formation from the silver enhancer reagents showed

rough surface with clustered nanostructures on the surface, while the OEC sample showed

Fig 3. The AFM images of samples with different treatments. The AFM images of 5 μm x 5 μm areas (a)-(d) and

zoomed-in 3D AFM images of 1 μm x 1 μm areas collected from AgNP-4ATP-OEC,AgNP-4ATP soaked-OEC,

AgNP-OEC and freshly peeled OEC, respectively.

https://doi.org/10.1371/journal.pone.0250650.g003

Fig 2. The Raman spectra of samples with different Raman tag binding methods. The Raman spectra collected

from OEC, 4ATP soaked OEC, 4ATP-OEC, and bulk 4ATP powder.

https://doi.org/10.1371/journal.pone.0250650.g002
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smooth surface. The zoomed-in AFM images of 1 μm x 1 μm areas were scanned for AgNP-

4ATP-OEC, AgNP-4ATP soaked OEC, AgNP-OEC, OEC, respectively, as shown in Fig 3e–

3h. As shown in Fig 3e, the AgNP on AgNP-4ATP-OEC were smooth hemispherical nano-

structures scatter on the surface with a size range from 40 nm to 120 nm. The AgNP nano-

structure formed a thin layer on AgNP-4ATP soaked OEC, AgNP-OEC surface. The AgNPs

appears to be mounds with rough surfaces that are uniformly distributed with diameters ran-

ged from 60 nm to 90 nm.

The 4ATP SERS behavior was demonstrated in Fig 4a. The normal Raman spectrum of

bulk 4ATP, and SERS spectrum of 4ATP-AgNP complex on glass slides were collected. The

4ATP-AgNP complex was formed by mixing 10 μL 1 μM 4ATP ethanol solution with 10 μL

freshly made AgNP and air dry on glass slides before Raman spectral acquisition. The laser

exposure time was set at 1 s for these tests, and 3 accumulations were acquired to improve the

S/N. The normal Raman spectrum of bulk 4ATP and SERS spectra of 4ATP absorbed on the

AgNPs are significantly different. Two strong Raman bands at 1078 and 1589 cm−1 are

observed in normal Raman spectra of bulk 4ATP, which are assigned to the vibration modes

of νCS(a1) and νCSC(a1). The SERS spectrum of 4ATP-AgNPs complex shows multiple

strongly enhanced bands at 1077, 1140, 1390 and 1440 cm−1 and multiple weakly enhanced

bands at 1190, 1306, 1472, 1573 cm−1, which are commonly assigned to b2 modes of 4ATP.

The selectively and strongly enhanced b2 bands of 4ATP could be explained by the charge

transfer enhancement [40]. The SERS behavior of 4ATP is also observed in other plasmonic

nanostructures [41]. The AgNP can strongly enhance the Raman signal of 4ATP by forming

Fig 4. The Raman spectra and Raman images of samples with different treatments. The typical Raman spectra

collected from bulk 4ATP, AgNP-4ATP complex, AgNP-4ATP-OEC, AgNP-OEC, 4ATP-OEC and freshly peeled

OEC (a). The optical images and Raman images of scanned area created from AgNP-4ATP-OEC (b),(c), AgNP-OEC

(d), (e), 4ATP-OEC (f), (g) freshly peeled OEC (h), (i), respectively. The Raman images were created with the

4ATP-AgNP complex signature peak at 1573 cm−1. Only the AgNP-4ATP-OEC samples produced images with good

resolution.

https://doi.org/10.1371/journal.pone.0250650.g004
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the AgNP-4ATP complex. When mixed with the AgNP, the diluted 4ATP can show a 100

times stronger Raman signal than bulk 4ATP. Thereby, through the 4ATP labeling and SERS

signaling, the pectin distribution could be characterized from the AgNP-4ATP complex

formed in situ on OEC with significantly shortened Raman acquisition time, from 30 seconds

to less than 1 second for each Raman spectral acquisition. This is critically important for

Raman mapping as the acquisition time for each spectrum dictated the total time needed to

acquire one Raman image. In this study, Raman map of a 30 μm x 36 μm area was collected

from each of the AgNP-4ATP-OEC, AgNP-OEC, 4ATP-OEC and fresh OEC samples. All

samples were placed on the gold-coated slides, covered by cover glass and immersed in DI

water to maintain the cell shape and integrity. The excitation laser focused at the top of the

onion skin samples. The wet onion skin thickness range from 0.391 mm to 0.827 mm [42]

which is much thicker than the confocal Raman spectroscopy’s focus length in Z direction

[43]. Thereby the signal from Au substrate is minimal. The Au glass slides with 1000 Å au coat-

ing, is used to suppress the fluorescent from glass substrate. The exposure time for each spec-

tral acquisition was set at 0.5 s, and 2 accumulations were acquired to improve the signal-to-

noise ratio. The typical Raman spectrum of each sample is shown in Fig 4a. While all other

samples showed no significant Raman signal, the AgNP-4ATP-OEC spectrum showed a strong

SERS signal of the RT: 4ATP. The strongly enhanced Raman bands at 1140, 1380 and 1432

cm−1 indicate the covalent bonds between 4ATP and AgNP. The strongly enhanced bands at

1077, 1140, 1390 and 1440 cm−1 and weakly enhanced bands at 1190, 1306, 1472, 1573 cm−1

are all assigned to b2 mode of 4ATP. However, no SERS Raman bands of pectin could be iden-

tified from the spectrum collected from AgNP-4ATP-OEC. It could be explained by the 4ATP

that is closely located at the hot spots on the surface of AgNP with high Raman cross-section,

which enabled the strong enhancement of the 4ATP Raman signal. On the other hand, pectin

is located further from the hot spots with a smaller Raman scattering cross-section, thereby the

Raman signal of pectin is only weakly enhanced and difficult to identify in the AgNP-

4ATP-OEC spectrum with the current Raman acquisition setting. Fig 4b, 4d, 4f and 4h showed

the optical images of the AgNP-4ATP-OEC, AgNP-OEC, 4ATP-OEC and fresh OEC samples,

respectively. The areas marked by the rectangular boxes were subject to SERS mapping.

Raman chemical images were constructed for the marked areas for each of the four samples

based on the 4ATP SERS spectrum signature peak at 1573 cm−1, as shown in Fig 4c, 4e, 4g and

4i, respectively. The areas in red represent the areas with high Raman intensities and the areas

in purple showed the areas with low Raman intensities. Since 4ATP molecules were covalently

bound to pectin, the Raman map of 4ATP actually reflected the pectin distribution in the

OECs. As shown in Fig 4b, the Raman peak intensity is the highest over the cell corner, middle

lamella and the out layer of the cell wall that connected to the middle lamella which is consis-

tent with the current understanding of plant cell wall pectin distribution in the plant cell wall

[44]. However, the Raman images of the other three samples showed no structures that corre-

lated to polysaccharide distribution in sampled areas. Clearly, the chemical labeling with 4ATP

and the signal enhancement through SERS were both needed to create informative chemical

images that reveal polysaccharide distribution inside the OEC wall. The Raman map of a

46 μm x 50 μm area was also collected from AgNP-4ATP soaked-OEC sample that placed on

the gold-coated slides, covered by cover glass and immersed in DI water. The Raman spectra

of bulk 4ATP, 4ATP-AgNP, AgNP-4ATP-OEC, AgNP-4ATP soaked-OEC were compared (S1

File). No significant Raman signal was observed in AgNP-4ATP soaked-OEC, which further

proved that there is no 4ATP residual in 4ATP soaked-OEC after the rinsing with ethanol and

DI water. It further validates that the carbodiimide crosslinker chemistry helped forming the

covalent bonds between 4ATP and pectin in OEC. The Raman image of AgNP-4ATP soaked-
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OEC was shown in S1 File, no structures that correlated to polysaccharide distribution in sam-

pled area was shown in the image.

Polysaccharides organization and co-localization revealed by enzymatic

hydrolysis-induced chemical changes

The Raman images of AgNP-4ATP-OEC samples before and after enzymatic hydrolysis reac-

tions were constructed to illustrate the polysaccharides distribution and the effect of enzymatic

treatment in the OEC wall. The optical microscopic images of the sample that was treated with

EPG and the sample is shown in Fig 5a. The areas marked by blue rectangular is the area

where the Raman images collected. A 40 μm x 66 μm area on EPG treated AgNP-4ATP-OEC

was scanned before and after the treatment. The optical image of AgNP-4ATP-OEC that was

treated with XEG and EPG sequence are shown in Fig 5b. The area marked by red rectangular

is the areas where the Raman images were collected. A 58 μm x 66 μm area AgNP-4ATP-OEC

treated with XEG and EPG sequence was scanned before and after the treatment.

The overlapping images of constructed Raman images and the optical image of the AgNP-

4ATP-OEC sample before and after EGP treatment are shown in Fig 5c and 5d. The 4ATP sig-

nature peak intensity at 1573 cm−1 was used to generate Raman images. Fig 5c shows the

Raman image before the EPG hydrolysis, Fig 5c shows the Raman image after 30 minutes of

treatment with EPG, the areas in red represent the areas with higher Raman intensities and the

areas in purple showed the areas with lower Raman intensities. As shown in the figures, the

peak intensity decreased significantly after the sample reacted with EPG. Fig 5e shows the

Raman intensities differences before and after hydrolysis. As shown in the figure, the Raman

intensity decrease at the cell corner is significantly higher than other areas, the out layer of the

cell wall that connects to the middle lamella and middle lamella also showed a high Raman

intensity decrease.

Fig 5. The Raman images of samples after enzymatic treatments. (a), (b) showed the optical image of sampled areas

of samples that were treated with EPG enzyme only, and the sample treated with XEG and EPG in sequence,

respectively. (c), (d) showed the Raman images of the sample before and after the EPG treatment. (e) shows the Raman

image of Raman intensity differences before and after the EPG treatment. (f), (g), (h) showed the Raman image of the

sampled area before the treatments, after XEG treatment, and after EPG treatment, respectively. (i), (j), (k) showed the

Raman intensities change before and after XEG treatment, before and after EPG treatment, and the total intensity

change after XEG and EPG treatment. All the Raman images were constructed based on the 4ATP signature peak at

1573 cm−1.

https://doi.org/10.1371/journal.pone.0250650.g005
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To further reveal co-localization of a key hemicellulose, xyloglucan, with pectin, the AgNP-

4ATP-OEC sample was subject to a sequential treatment of XEG and EPG. The results are

shown in Fig 5f–5k. The Raman images are constructed based on the 4ATP signature peak at

1573 cm−1. The Raman image obtained before the enzymatic treatments are shown in Fig 5f.

The sample was then treated with XEG for 30 minutes and the Raman image collected after

the XEG treatment is shown in Fig 5g. The hydrolysis reaction with XEG enzyme results in the

Raman peak intensity decrease. The sample treated with the XEG was then treated with EPG

for 30 minutes, and a Raman image was collected and shown in Fig 5h. Clearly, the sample

treated with XEG/EPG combined shows a much greater Raman intensity decrease compared

to the sample only treated EPG. The changes in 4ATP signal which are tied to the hydrolysis of

pectin and xyloglucan were reflected in the pseudo color images shown in Fig 5i–5k, with

respect to Raman intensities differences before and after XEG hydrolysis, before and after EPG

hydrolysis, and the overall decrease after the XEG and EPG treatment combined. As shown in

Fig 5i, after the XEG hydrolysis, the highest Raman intensity decrease happened over the out

layer of the cell wall that connects to the middle lamella area, while no Raman intensity

decrease could be observed over the cell corner. It is also shown by Fig 5j that after treated by

XEG, the EPG treatment caused the Raman intensity to significantly decrease at the cell cor-

ner, where from the earlier experiment it was already known that these areas have high pectin.

There are also Raman intensity change at the middle lamella and the out layer of the cell wall

that connects to the middle lamella area, as shown in Fig 5j. The overall Raman intensity

change is shown in Fig 5k. Compared to the sample that was only treated by EPG, the sample

that was first treated with XEG and then treated with EPG shows a higher Raman intensity

decrease at the middle lamella area.

Discussion

The polysaccharides distribution and their degradation by exogenously applied specific glyco-

syl hydrolases in the OEC wall were illustrated by the Raman images of different AgNP-

4ATP-OEC samples before and after enzymatic hydrolysis reactions. The differences between

the sample before and after treated with EPG would reveal where pectins are more abundant

in the cell wall. The main polysaccharides in the pectin group include homogalacturonan

(HG), rhamnogalacturonan I (RG I) and rhamnogalacturonan II (RG II) [1, 2]. The EPG

hydrolysis can specifically hydrolyze the α-1,4-polygalacturonic acid backbone of HG and

RG-II. After the sample treated with EPG, the peak intensity decreased significantly. The peak

intensity decrease indicated that the pectin backbone in the OEC wall was hydrolyzed, and the

soluble fragments containing the α-1,4-polygalacturonic residues were released into the solu-

tion, resulting in the decline of the in situ SERS signal. The differences in Raman intensities

before and after EPG hydrolysis showed the Raman signal decrease at the cell corner and mid-

dle lamella between two cells was significantly higher than in other areas. The intercellular

space over the cell corner mainly consists of low or partially methyl-esterified HG [45, 46], and

the HG over middle lamella is partially esterified [47, 48]. HG is a linear polymer of alpha-

1,4-polygalacturonic acid [1]. The carboxylic group rich backbone of HG allows a higher den-

sity of tagged AgNP-4ATP conjugation, and the linear molecular conformation allows better

accessibility for EPG hydrolysis, which explains the higher Raman signal decrease at these

areas. Additionally, the out layer of the cell wall that connects to the middle lamella also shows

a high Raman intensity decrease, indicating that these are the locations of higher pectin accu-

mulation within the cell wall.

The sequential treatment of XEG and EPG of the AgNP-4ATP-OEC sample further reveals

the co-localization of xyloglucan, one of the main hemicellulose polysaccharide, with pectin.
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Some xyloglucans side chains cross-link with pectin, most likely RG-I [5, 6, 49, 50], to form a

pectin-xyloglucan complex, which is possibly present in all primary cell walls [10]. A wide vari-

ety of angiosperm cell-suspension cultures show 30% to 70% of xyloglucan is associated with

the forming of xyloglucan-pectin complexes [7]. Xyloglucan, cellulose, and pectin can further

form an integrated complex as the load-bearing structure in the primary plant cell wall [1].

However, the distribution of co-localized pectin and xyloglucan is still unknown. The XEG

treatment would break xyloglucan exposing more pectin for EPG hydrolysis. It was reasoned

that differences between XEG/EPG treated samples and EPG only treated samples would

reveal where co-localization of pectin and xyloglucan is more abundant in the cell wall. The

hydrolysis reaction with XEG enzyme results in the Raman peak intensity decrease. This inten-

sity decreases could be explained by the hydrolysis of the xyloglucan increases accessibility of

pectin molecules to plant EPG localized in the cell wall. The sample reacted with the XEG was

then reacted with EPG for 30 minutes. Clearly, the sample treated with XEG/EPG combined

shows a much greater Raman intensity decrease compared to the sample treated with EPG

only. This suggested the co-localization and interaction between pectin and xyloglucan in

those specific locations within the onion cell wall. When the sample was treated only by EPG,

the co-localized xyloglucan limited the accessibility of the enzyme to the pectin. However,

when the sample was treated by the XEG first, the xyloglucan that co-localized with the pectin

was hydrolyzed by the XEG and released to the media, and the exposed pectin molecules could

be better exposed to the subsequent EPG hydrolysis.

The changes in 4ATP signal due to the hydrolysis of pectin and xyloglucan are presented as

the pseudo color images reflecting the differences in Raman signal intensities observed before

and after XEG hydrolysis, before and after EPG hydrolysis, and the overall decrease after the

XEG and EPG combined treatment.

After only XEG hydrolysis, the highest Raman intensity decrease was observed in the outer

layer of the cell walls closest to the middle lamella area, suggesting that there are areas with

higher xyloglucan content co-localize with pectin. The interaction between pectin and xyloglu-

can plays a role in the cell to cell adhesion. Since the cellulose microfibrils are largely absent

from the middle lamella, the cell to cell adhesion is mainly achieved by the pectins within the

middle lamella and their interactions with the pectin, hemicellulose, and cellulose in the adja-

cent primary cell wall [51]. Specifically, the RG-I and/or RG-II side chains of covalently

bonded RG-I, HG, and RG-II in the middle lamella are covalently bonded or hydrogen-

bonded with the pectin, xyloglucan and cellulose in the adjacent primary cell wall [10, 52–55].

The highest Raman intensity decrease observed in the outer layer of the cell walls the closest to

the middle lamella reflects the extensive interaction of xyloglucan with pectin at these areas. It

provides evidence for pectin and xyloglucan’s role in the cell to cell adhesion. There is little

Raman signal decrease over part of the cell surface area, suggesting these areas have limited

pectin xyloglucan interaction, or/and firm pectin and cellulose association. No Raman signal

decrease over the cell corner area could be observed, which could be explained by the absence

of xyloglucan. After pretreatment with XEG, sequential treatment with EPG was conducted.

The sequential EPG treatment caused the Raman intensity to significantly decrease at the cell

corner, the out layer of the cell wall that connects to the middle lamella area and middle lamella

area, the locations of higher accumulation of pectins according to our results shown in Fig 5g,

whereas no much change was observed at the cell inner surface. When compared to the sample

that was treated with EPG only, the sample treated sequentially with XEG and then with EPG

shows higher overall Raman intensity decrease at the primary cell wall outer surface that is

adjacent to middle lamella area and the middle lamella, indicating that these areas are where

co-localization and interaction between xyloglucan and pectin occur the most. Most likely,

xyloglucan bundled up with pectin at these areas limited access of pectin to hydrolysis by EPG.
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Current data based on immunolabelling gives contradictory conclusions about xyloglucan dis-

tribution in the middle lamella. Some studies showed that xyloglucan was distributed through-

out the cell wall and middle lamella [56], while others reported that the xyloglucan was either

absent or rarely exist in the middle lamella area [57]. The lack of xyloglucan in the middle

lamella could be explained by either the lack of xyloglucan or the existence of different kinds

of xyloglucan at the middle lamella, thereby the specificity of the immunolabelling could be

limited by the specificity of the antibodies. With our method, we visualized the xyloglucan that

co-localized with the pectin in the plant cell wall and middle lamella with the specificity pro-

vided by the enzymes instead of antibodies. However, since the areas of the middle lamella is

too narrow, at this point it is difficult to conclude the presence of xyloglucan specifically in

that area. In the future, this problem could be resolved by further improving the resolution of

the Raman imaging through decrease the scanning step size.

Conclusion

In this study, a novel Raman chemical imaging method was developed to employ SERS imag-

ing to characterize polysaccharide distribution and organization in onion epidermal cell wall.

The utilization of this new method to visualize polysaccharide distribution was assisted by the

application of highly specific glycosyl hydrolases to degrade hemicellulose and pectin mole-

cules in cell wall in situ. Using this combined approach, the colocalization patterns of pectin

and xyloglucan in onion epidermal cell wall were characterized. This method enables SERS

imaging to be applied to cell wall polysaccharides which are not sensitive to SERS methods in

general. The Raman images showed that the polysaccharide distribution is consistent with the

current understanding of plant cell walls organization. The Raman images indicated that there

are interactions between pectin and xyloglucan at the outer layer of the cell wall that connects

to the middle lamella area, and in the middle lamella area, while no significant pectin and xylo-

glucan interaction could be observed at the cell corner and in the cell inner surface. We pro-

pose that by expanding the number of glycosyl hydrolases with diverse specificity this

approach can also be applied to analyze the distribution of the different pectin molecules,

including the HG, RG I and RG II. The resolution of the Raman image could be further

improved by using near field microscopy to get to sub-micron or even nanometer level. The

method can potentially be used to generate the detailed chemical image to reveal polysaccha-

ride distribution and interconnected patterns in the plant cell wall to increase our knowledge

about cell wall molecular organization and improve existing cell wall structural models.
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