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INTRODUCTION 

Landslides are defined as: the downward and outward movement of 

slope forming materials—natural rock, soils, artificial fills, or combi

nation of these materials (Eckel, 1958). They are one of the processes by 

which slopes adjust themselves to a particular set of environmental condi

tions. During the Quaternary, the environment has undergone repeated 

changes. Work by Carson (1976) indicates that landslides are controlled 

by changes in their environment. A significant contribution to geology is 

to determine how the landslides are distributed in space and time in re

sponse to these environmental changes. 

Knowledge of the distribution of landslides in time and space will 

enable a better prediction of regional slope stability. An important 

economic need exists for this type of information. It is estimated that 

total economic losses in California alone due to landslides between 1970 

and the year 2000 will total almost 10 billion dollars. A systematic 

evaluation of landslides on first a regional basis, then a tract or com

munity basis, and finally on a site basis has been estimated to reduce the 

damage that will be caused by landslides by 95 to 99 percent (Leighton, 

1976). 

This dissertation deals primarily with landslide phenomena on a 

regional scale. In the dissertation the word region is used to denote an 

area of the earth's surface ranging in size from a first order drainage 

basin to a physiographic province. As the region being dealt with becomes 

larger in size the level of detail at which it is studied must decrease. 

The time span over which the various environmental factors affecting that 
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region are considered, on the other hand, must increase (Schumm and 

Lichty, 1965). 

The purpose of this dissertation is threefold; first, to evaluate 

the important environmental factors which should control slope stability; 

second, to conduct a detailed field investigation to determine those en

vironmental factors which actually control regional slope stability in a 

specific area; and third, to develop a series of models, based in part 

on the field study, which will better predict regional slope stability. 

This dissertation is limited to the study of landslides that are 

likely to be caused by long term environmental changes. Landslides which 

can be definitely attributed to sudden intense periods of rainfall are 

excluded as are creep and solifluction phenomena. 
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ENVIRONMENTAL FACTORS CONTROLLING SLOPE STABILITY 

In this section the factors controlling slope stability are discussed 

using published literature. The primary concern is the distribution in 

space and time of landslides occurring on the earth's surface. The fac

tors that control the distribution of landslides have been dealt with by 

Terzaghi (1950) and Varnes (1958), and are; topography, mechanical prop

erties of materials involved, presence or absence of earthquakes, climate, 

structural configuration of the material involved, and the stratigraphy 

(homogeneity or inhomogeneity) of the material involved. As these factors 

vary either through time or space the relative stability of the slopes in

volved will change accordingly. 

More recent work has tended to confirm that of Terzaghi and Varnes 

and will be briefly summarized in the succeeding pages. While the factors 

controlling landslides are discussed individually the reader must keep in 

mind that landslides are seldom triggered by one single factor (Varnes, 

1958). 

Slope Stability Factors 

Topography 

All other factors being equal, landslides are more common in areas of 

high relief than low relief. On a regional scale, the steeper the slope 

the more likely a landslide is to occur (Cooke and Doornkamp, 1974), and 

as the slope angle increases both the size and number of landslides in

crease (Rice et al., 1969). For example, on the Cumberland Plateau of 

Tennessee where local relief is low (approximately 15 meters) landslides 
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are rare. In contrast, along the Cumberland escarpment where local relief 

is 183-366 meters landslides are common (Royster, 1973). 

On a site specific scale, unstable slopes are characterized by 

topographic profiles parallel to slope that are more concave than stable 

areas. Profiles at right angles to slope are less convex in the downslope 

direction than stable areas (Waltz, 1972). 

Mechanical properties 

On any slope, regardless of the topography, when the forces that 

drive a landslide become greater than those resisting it, failure occurs. 

The magnitude of the force necessary to cause failure is described by the 

Mohr-Coulomb criterion for failure, modified for effective stress 

(Terzaghi, 1950). The criteria is: 

s = c + (p - hw) tan (p 

where 

s = shearing resistance per unit of area at the observation point 

c = the cohesion value 

p = pressure per unit of area at a given point P of a potential 

surface of sliding, due to the weight of the solids and the water 

located above the surface 

h = the piezometric head at the point 

w = the unit weight of the water 

if) = the angle of sliding friction for the surface of sliding 

Whenever the actual shearing stress on a failure surface becomes greater 

than s failure will occur. It is critically Important to evaluate hw in 

determining slope stability. Most slope failures Involve at least a 
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partial saturation (a rise in hw) of the slide material (Spangler and 

Handy, 1973). A more unstable situation exists if artesion conditions are 

present in the slope, that is, (p - hw) becomes a negative value. 

Once the slope begins to fail, the manner in which it fails depends 

on the physical behavior of the material involved. This recognition is 

important because, in certain situations, slopes may fail with little 

prior warning. Likewise, the rate at which a landslide moves downslope is 

determined in part by the physical behavior of the material involved. 

Where slopes are made of hard, unweathered rock (sandstone, lime

stone, marble, granite, etc.) the stability of the slope is determined by 

physical defects in the rock, such as joints and faults and not by the 

strnegth of the rock itself (Terzaghi, 1962). Cohesion between joints is 

zero and the slope will behave mechanically as a mass of angular, irregu

larly, shaped blocks (Terzaghi, 1962). Failure in these slopes will be by 

sliding and the rate of movement may range from slow to very rapid 

(Varnes, 1958). 

Where interstratified sedimentary rocks are oriented into a valley, 

catastrophic landslides which go through a period of slow movement fol

lowed by sudden rapid movement of the material downslope may occur. This 

type of failure is a time dependent phenomenon and commonly passes through 

two stages in its development (Hsu, 1969). The first stage is character

ized by creep of the material (Figure 1, A to D). The driving force must 

overcome both cohesive strength and internal friction at the base of the 

sliding mass. The second stage is characterized by rapid movement of the 

material where the driving force must only overcome sliding friction 



Time 

Figure 1. Typical strain-time (creep) curve for a rock under constant 
differential stress. Instantaneous elastic strain to A; 
transient (decelerating) creep from A to B; pseudoviscous 
(steady) creep from B to C; teritary (accelerating) creep 
leading to rupture at D (after Handin, 1966). 
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(Figure 1, D). This phenomenon is very sensitive to changes in pore pres

sure (Hsu, 1969). 

Where low strength materials (soils, shales, etc.) are involved in 

landslides a conceptual model based on laboratory investigations of ma

terial behavior has been developed by Komamura and Huang (1974). The 

rheological state of the material involved changes gradually from a 

visco-plasto-elastic (solid) stage through a visco-plastic (plastic) stage 

to a viscous (fluid) stage with increasing water content (Figure 2). Ma

terial in the visco-plastic-elastic stage will theoretically not move 

rapidly. Sliding type movements (slumps, block glides) occur when the 

material is moving in this stage. When the material is in the viscous 

stage rapid movement (debris flows) may take place. For a discussion of 

landslide terminology see Appendix A. 

Earthquakes 

The effect of an earthquake on hillslopes is to increase the inci

dence of landslides. The ground accelerations during an earthquake in

crease the shearing stress along potential failure surfaces and landslides 

may result (Terzaghi, 1950). Surficial sediments, because of their lower 

strength, will fail more readily than bedrock (Leggit, 1939). 

In surficial sediments, the most susceptible areas are those with a 

geometrical configuration which tends to accentuate earthquake vibrations. 

Ground motions of large amplitude and long duration have been observed on 

thick, water-saturated, unconsolidated sediments (Borcherdt, 1970). The 

amplitude of the ground motion generally increases with increasing thick

ness of the unconsolidated material. The greatest effects are on hori-
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Viscous 
(debris flow) 

ViSCO-plastic 
(debris slide) 

ViSCO-plasto-elastic 
(slump) 

0 50 100 
Liquid limit, as a percentage 

Figure 2. Rheologlcal state of soil in accordance with water content 
(modified from Komamura and Huang, 1974; Carson, 1976). 
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zontal ground motion rather than vertical ground motion. Horizontal 

ground motion causes most earthquake damage (Borcherdt, 1970). The most 

susceptible of all materials to high amplitude ground motions are loose, 

saturated sands and highly sensitive clays. Both are very susceptible to 

liquefaction during earthquakes (Seed, 1967). 

At the present time, only relatively simple response models have been 

developed to explain the effects of valley shape on the amplification or 

attenuation of earthquake vibrations. No analytical solutions for three-

dimensional problems exist, even for cases where the topography may be 

described by relatively simple geometric forms (Singh and Sabina, 1977). 

Simple two-dimensional models for SH waves (S waves horizontally polar

ized) have been developed, however. In a narrow, steep-walled bedrock 

valley the amplitude of the SH waves is greatest on the side of the valley 

nearest the source of the SH waves, provided the SH waves strike the 

valley at a relatively shallow vertical angle (Trifunac, 1973). There

fore, the most severe risk of landsliding will be on the side of the 

valley nearest the source of the earthquake. In a bedrock valley filled 

with alluvium the pattern of vibrations during an earthquake is complex 

but standing waves may develop (Trifunac, 1971; Wong and Trifunac, 1974). 

This will make the valley areas particularly susceptible to liquefaction. 

In a valley cut into alluvium, the maximum amplitude for SH waves occurs 

at the edge of the valley. The thickness of the alluvium appears to be 

more Important in controlling the amplitude than the surface topography 

of the valley (Wong et al., 1977). 
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Climate 

Climatic changes affect hillslopes in two ways. First, the seepage 

forces within the slope change. Second, the climatic change may trigger 

base level changes at the toe of the slope. This will alter the stresses 

on that slope. 

The western U.S. has undergone numerous climatic changes during the 

Pleistocene, and periods of glaciation in that area appear to be asso

ciated with periods of increased landslide activity. This is due to in

creased effective precipitation and/or glacial oversteepening of valley 

sides during glaciation. Howe (1909), after studying Pleistocene land

slides in the San Juan Mountains of Colorado, states that the landslides 

took place "during or immediately after the first stage of glaciation." 

Waldrop and Hyden (1963) found three periods of landslide activity in the 

Gardner, Montana area and indicated that they were associated with glacial 

advances from the Yellowstone area. Pierce (1968) found two distinct 

periods of landslide activity in the Carter Mountain area near Cody, 

Wyoming. The older landslide deposits are associated with a glacial till 

of probable Bull Lake age. He attributes both periods of landslide activ

ity to periods of Increased precipitation which "may be associated with 

glaciofluvial events." 

Most types of landslides are controlled by their geologic or topo

graphic setting, rather than by the present day climate (Carson, 1976). 

However, landsliding as an agent of erosion is most effective in humid 

climates (Blumenstock and Thornthwaite, 1941). 
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Structure 

The structural orientation of discontinuities (bedding planes, joints, 

foliation, etc.) in slope forming material will control both the location 

and type of landslides occurring. As pointed out earlier, where slope 

forming materials are jointed, they are less stable than unjointed materi

al because the joints reduce the overall strength of the material and al

low easier access of ground water to the material (Varnes, 1958). The sta

ble slope angle depends on the nature of the joint pattern, whether random 

or regular, and the orientation of the joints relative to the slope (Car

son and Kirkby, 1972). Where the joints have a regular pattern, slopes be

come unstable when the joints dip downslope (Zaruba and Mend, 1969). 

Block glides, debris slides, rock avalanches, and rockfalls are the type of 

landslides that occur. The presence of other discontinuities, such as 

faults, shear zones, etc., in hillslopes will also make them more suscepti

ble to landslides (Zaruba and Mend, 1969; Cooke and Doornkamp, 1974). 

Where slopes consist of interstratified beds of material of differing 

strengths, the orientation of the beds relative to the slope determine the 

type of landslide (Figure 3). In such a case, the dip of the beds becomes 

the maximum angle at which the overlying slope is stable (Zaruba and Mend, 

1969). Where the beds dip steeply, greater than 20°, sudden catastrophic 

landslides result (Hsu, 1969), i.e., rock avalanches, soil avalanches, etc. 

Stratigraphy 

Landslides will occur more often on hillslopes composed of weak 

materials than on slopes in homogeneous, high strength materials. Where 

the slope material is weak and relatively homogeneous, slumps occur along 



Figure 3. Type of landslide that occurs in relation to structural 

orientation of bedding planes, joints, or faults (modified 
after Brawner, 1977). (A) Slump occurring in homogeneous 
rock, rock with random localized jointing, or in inter-
bedded sedimentary or metamorphic rocks where the bedding 
is horizontal or dipping gently away from the bank. (B) 
Debris slide with movement along joints or bedding planes. 
(C) Debris slide on the plane of a continuous fault, shear 
zone or joint. (D) Block glide on a weak layer bounded at 
the back by a joint or tension crack. (E) Failure as a 
wedge on two or more intersection discontinuities. (F) 
Failure by toppling. Most frequent where the major struc
ture dips steeply. 
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deep-reaching, curved surfaces (Zaruba and Mend, 1969). Where a thick 

layer of high strength material overlies a layer of low strength material 

rockfalls or soilfalls will occur. These conditions favor overhanging or 

oversteepened slopes (Ritchie, 1958). Slopes in heterogeneous materials of 

contrasting strength are susceptible to landslides due to the presence of 

the weak layers. The type of landslides that occur in this situation has 

already been covered in the section on structure. Slopes in homogeneous, 

high strength materials are relatively stable except when jointed. Where 

the joints are randomly oriented, the slopes are stable to an angle of 

about 70° (Terzaghi, 1962). If the joints form a continuous pattern in 

the high strength material then it will behave the same as the hetero

geneous material of contrasting strength (Terzaghi, 1962). 

The complex interaction of the various environmental factors con

trolling slope stability at a site are summarized in a model proposed by 

Carson (1976) (Figure 4). Landslides can seldom be attributed to any 

single cause, but are due to the complex interaction of the various en

vironmental factors controlling slope stability. Although the short term 

environmental changes illustrated in Figure 4, such as rainstorms, earth

quakes, etc., often trigger sudden, rapid landslides, their effectiveness 

is largely controlled by slow, cumulative changes over a longer period of 

time. 

In the next two sections the variation in time and space of the en

vironmental factors controlling regional slope stability is evaluated. 

Variations of the factors in time determine when a region is characterized 

by widespread slope stability or instability. Variations in space deter-



Figure 4. Interaction of environmental factors that control slope 

stability (Carson, 1976). Conventional triangle denotes 
increase in value of variable represented by symbol within 
triangle; inverted triangle denotes a decrease; dotted line 
denotes sudden, irreversible change; dashed line denotes 
slow, irreversible change; alternation of dots and dashes 
denotes sudden reversible change; solid line denotes change 
undifferentiated by type. The symbols used are: 

H = slope height 

i = slope angle 

p = bulk density 
T = shear force 
u = pore pressure 
w = intake of water 
e = void ratio 

Cjp= frictional component of strength 
f = friction developed on potential shear surfaces 
c = cohesion 
n = viscosity 
s = strength 
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mine what parts of a region are characterized by slope instability at a 

particular point in time. 
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STUDY AREA 

Shell and Tensleep Canyons are located on the west side of the Big

horn Mountains of north-central Wyoming (Figure 5). This mountain range 

is a broad anticlinal uplift flanked by Paleozoic sedimentary rocks with 

Precambrian igneous and metamorphic rocks exposed in the core (Darton, 

1906). Each canyon is bounded by cliffs of massive Paleozoic carbonates. 

Landslides in each canyon have occurred both in intact bedrock and in the 

brown colluvium derived from these cliffs. Both canyons contain deposits 

of glacial till in the upper reaches of the respective study areas. 

The present climate ranges from semiarid in the lower portion of each 

canyon to alpine in the upper portions. South facing slopes tend to be 

covered with a mixture of sage, prickly pear, and bunch grass at lower 

elevations. At higher elevations south facing slopes are covered by 

grass, sage, and generally "open" stands of pine trees. North facing 

slopes are generally covered by pine forests. 

Several reasons exist for choosing Shell and Tensleep Canyons for 

this type of study. Both areas have seen relatively little human develop

ment. Both canyons have the same lower Paleozoic rocks exposed. Because 

2 
of an inner Precambrian gorge, large areas of landslides, roughly 840 km 

in Shell Canyon, are not affected by base level changes. Here the effect 

of climatic changes may be studied. However, Tensleep Canyon lacks an 

inner Precambrian gorge and the landslides there may have been affected by 

base level changes. Both canyons have landslides occurring in the same 

type of material. 



Figure 5. Sketch map of the Bighorn Mountains. 

5 = Mesozoic and younger age bed rock 
4 = Paleozoic age bed rock 
PC = Precambrian age bed rock 
3 = Hunt Mountain lineament 

2 = Tensleep Canyon study area 
1 = Shell Canyon study area 

0 
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The dominant types of landslides developed in the study area are 

slumps, block glides, and debris slides. Slump is defined by the A.G.I. 

GLOSSARY OF GEOLOGY (Gary et al., 1974) as; 

A landslide characterized by a shearing and rotary movement 

of a generally independent mass of rock or earth along a curved 

slip surface (concave upward) and about an axis parallel to the 
slope from which it descends, and by backward tilting of the mass 

with respect to that slope so that the slump surface often exhibits 
a reversed slope facing uphill. 

Block glide is defined by the A.G.I. GLOSSARY OF GEOLOGY as: 

A translational landslide in which the slide mass remains 
essentially intact, moving outward and downward as a unit, most 
often along a preexisting plane of weakness, such as bedding, 
foliation, joints, faults, etc. In contrast to rotational land
slides, the various points within a displaced block-glide land
slide have predominantly maintained the same mutual difference 
in elevation in relation to points outside the slide mass. 

Debris slide is defined by the A.G.I. GLOSSARY OF GEOLOGY as: 

A landslide involving a slow-to-rapid downslope movement of 
comparatively dry and predominantly unconsolidated and incoherent 
earth, soil, and debris in which the mass does not show backward 
rotation (as in a slump) but slides or rolls forward, forming an 
irregular hummocky deposit resembling a moraine (Sharpe, 1938, p. 
74). It is often called an earth slide but this is incorrect 
because the moving mass of a debris slide is greatly deformed or 
consists of many small units. 

For a more detailed discussion of landslide classification see Appendix 

Slumps, debris slides, and block glides are types of landslides that 

are triggered by long term environmental changes, undercutting, unloading, 

and weathering, shown in Figure 4. They are listed as slides and slumps 

in Carson's (1976) nomenclature. 
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Structure and Stratigraphy 

Structure 

The structure of Shell Canyon is relatively simple. The major struc

tural feature in Shell Canyon is a monocline located at the mouth of the 

Canyon (Figure 7), Upstream from the mouth of the Canyon, Shell Greek 

flows diagonally across the strike of both the Paleozoic rocks and the 

Precambrian surface which have a regional dip from four to eight degrees 

to the southwest (Figures 6 and 7). 

Two important minor structural features occur in Shell Canyon. The 

first, herein named the Hunt Mountain lineament, extends a distance of 80 

kilometers from the headwaters of North Paint Rock Creek to a point 

approximately eight kilometers northwest of Five Springs Canyon along a 

line trending N55W (Figure 5). Where Precambrian crystalline rock is ex

posed at the surface the lineament shows up as a fault or fracture zone. 

Where Paleozoic sedimentary rocks are exposed at the surface the lineament 

appears as a monocline. 

The second minor fetaure is a fault, herein named the Cedar Creek 

Fault (Figure 7) trending along a line N90E following Cedar Creek. The 

south side is uplifted relative to the north. 

The effect of these two structures is to tilt a large area of Paleo

zoic bedrock, known as Copeman's Tomb, towards Shell Creek (Figure 9). 

This provides an ideal geometry for recurrent landslide activity. 

Tensleep Canyon has a simpler structural setting than Shell Canyon. 

The major structure is a homocline with an average dip of five degrees to 



Figure 6. Structure contour map of the top of the Precambrian rocks in Shell Canyon. Contour 
interval is 61 meters. 
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Figure 7. Structure contour map of the top of the Steamboat Point Member of the Bighorn Formation 
in Shell Canyon, Contour interval is 61 meters. 
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Figure 8. Structure contour map of the top of the Steamboat Point Member of the Bighorn Formation 
in Tensleep Canyon. Contour interval is 61 meters. 
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Figure 9. Cross section across Shell Canyon. See Figure 7 for location of traverse line N — S. 

PC = Precambrlan rocks undifferentiated 
Cy = Cambrian rocks undifferentiated 

OgM = Ordovician, Bighorn Fm., Steamboat Point Member 

My = Ordovician, Bighorn Fm., Leigh and Horsehoe Mtn. Members, Devonian, Jefferson 
Formation, and Mississippian, Madison Formation 

fy] = Block glide 

lui = slump 

= Debris slide 

I I = Talus 
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the southwest. Tensleep Creek in the lower part of the study area flows 

directly down dip (Figure 8). 

Stratigraphy, bedrock 

A composite section was measured in the area of Cottonwood Creek in 

the lower part of Shell Canyon (Figures 10 and 51). The basal sedimentary 

unit at this locality is the middle Cambrian age Flathead Formation. It 

consists of thirteen meters of well-indurated, arkosic sandstone. Where 

not covered by landslide debris the Flathead Formation forms a low scarp. 

The middle Cambrian age Gros Ventre Formation overlies the Flathead 

Formation. It is made up of 216 meters of thinly interbedded green, 

glauconitic shales and sandstones. The formation is capped by an eighteen 

meter thick sandstone unit. Where not covered, this sandstone unit is 

found throughout the Shell Canyon area. The formation as a whole is poor

ly indurated and a slope former. 

The Gros Ventre is overlain by the Gallatin Formation. The Gallatin 

ranges in age from upper Cambrian at the base to oldest Ordovician at the 

top (Cygan and Koucky, 1963). It consists of 252 meters of interbedded 

glauconitic shales (poorly indurated) and limestones (moderately well-

indurated) . The limestones frequently contain layers of flat pebble 

conglomerate. Individual beds of limestone gradually become thicker and 

shales thinner towards the top of the formation. The upper twenty-five 

meters of this formation frequently form a cliff whereas the remainder is 

poorly exposed. 

The overlying Ordovician age Bighorn Formation is separated from the 

Gallatin Formation by an unconformity. The Bighorn is composed of 112 



Figure 10. Generalized stratigraphie column for the lower end of 
Shell Canyon, thickness of the units is in meters. For 
location see Figure 51. 
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meters of extremely well-Indurated limestone-dolomite. The Steamboat Point 

Member of this formation is the first major cliff former encountered and 

is well exposed throughout the study area. 

Of the Devonian age rocks, only the Jefferson Formation is present in 

Shell Canyon (Sandberg, 1967). It overlies the Bighorn along a prominent 

unconformity. In places in Shell Canyon the relief on this unconformity 

reaches one and one-half meters. The formations consist of twenty meters 

of interbedded olive shales and limestones. Above the lowest five meters 

the shales thin to the point where they become shaley partings between the 

limestone beds. This formation is not as well indurated as the Bighorn 

and forms a noticeable break in slope at the base of the Madison cliff. 

Only the thickness of the overlying Mississippian age Madison Forma

tion was determined in Shell Canyon. The formation has previously been 

described by Darton (1906). It is made up of 290 meters of well-indurated 

limestone. This formation is well-exposed and is the major sedimentary 

rock, cliff former in the entire Bighorn Mountain Range (Darton, 1906). 

In places along the rim of Shell Canyon the Madison Formation is 

capped by the Pensylvanian age Amsden Formation (Figure 10). Only the 

thickness of the Amsden was determined. The formation has previously been 

described in the Shell Canyon area by Darton (1906). It is separated from 

the underlying Madison Formation by an unconformity. Where the entire 

formation has not been removed by erosion it consists of a discontinuous 

basal sandstone overlain by interbedded red shales and cream colored lime

stones. The Amsden has a total thickness in the Shell Canyon area of 53 

meters. 
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The bedrock stratigraphy in Tensleep Canyon is similar to that in 

Shell Canyon with two exceptions. The Jefferson Formation is thinner, a 

maximum of 1.7 meters thick. In the lower reaches of Tensleep Canyon the 

Tensleep Formation caps the Canyon rim. 

The Pennsylvanian age Tensleep Formation was described by Darton 

(1906). In the area of Tensleep Canyon it consists of over 90 meters of 

white to buff colored sandstone. Individual layers are cross-bedded, and 

the formation weathers to irregular pinnacled forms (Darton, 1906). 

Stratigraphy, surficial, glacial 

Moraines of four different ages are recognized in Shell Canyon. The 

moraines are differentiated on the basis of surface morphology, relative 

position in the valley with respect to other moraines, and soil profile 

development. The till making up the moraines consists of crystalline rock 

fragments in a sandy matrix. 

The oldest moraine recognized in the Canyon consists of one small 

deposit which is herein informally referred to as the Ruble Creek Moraine 

(Figure 52). No morainal surface morphology remains, rather the deposit 

consists of a bench developed on a till composed of crystalline boulders 

set in a sandy matrix. The Ruble Creek Moraine is located down valley 

from the outermost recognizable morainal ridge. 

The soil developed on the Ruble Creek Moraine is an Inceptisol. The 

A, B, and C horizons have developed under a grass-sage vegetation. The 

horizons may be distinguished from each other on the basis of color and 

structural development. The A horizon is dark greyish brown in color 

(10YR3/2) and has a granular structure. The B horizon is colored brown 
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(10YR4/3) and has a medium to coarse angular blocky structure. The C 

horizon is olive brown (2.5Y4/4) in color and massive. Little textural 

difference exists between the three horizons (Table 1). 

The next moraine upvalley is herein informally referred to as the 

Shell Creek Moraine. It lacks a distinct hummocky morainal topography, 

but the lateral moraines are still preserved as ridges. The soil horizons 

are similar in thickness and development to those on the Ruble Creek 

Moraine (Table 1). 

The next oldest moraine is herein informally referred to as the 

Ranger Station Moraine. It is located upvalley from the Shell Creek 

Moraine and has a well preserved hummocky surface morphology. Some of the 

depressions still contain lakes and ponds but they are at least partially 

filled with sediment. The end moraine of the Ranger Station Moraine has 

been breached by Shell Creek. The soils of the Ranger Station Moraine are 

texturally similar to the Shell Creek and Ruble Creek Moraines. However, 

the A horizon is somewhat thinner (Table 1). 

The youngest moraine in the study area in Shell Canyon is herein 

informally referred to as the Crooked Creek Moraine. The portion of the 

moraine under a grass-sage vegetation has a well-preserved hummocky sur

face morphology. Several of the depressions contain lakes, which show 

some evidence of filling. The lateral moraine in the area for which it is 

named has been breached by Crooked Creek. This moraine is located up

valley from the Ranger Station Moraine. The texture of the soil profile 

is similar to those of the older moraines. However, the Crooked Creek 
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Table 1. Summary of soil profile characteristics of glacial moraines in 
Shell Canyon; all soil pits were dug in areas of grass-sage 
vegetation 

Property 
Crooked Creek 

Moraine 
Ranger Station 

Moraine 
Shell Creek 
Moraine 

Ruble Creek 
Moraine 

A horiz. 
thickness 
in cm 13 18 22 23 

% sand 70 66 69 66 

% silt 23 28 27 21 

% clay 5 6 4 13 

B horiz. 
thickness 
in cm absent 32 32 28 

% sand absent 82 79 89 

% silt absent 13 13 7 

% clay absent 5 8 5 

C horiz. 
thickness 
in cm 

undeter
mined 

undeter
mined 

undeter
mined 

undeter
mined 

% sand 88 92 99 88 

% silt 9 7 0 8 

% clay 1 2 1 5 

Moraine may be easily distinguished from the older moraines by its lack of 

a B horizon (Table 1). 

The moraines in Shell Canyon have been correlated on the basis of 

topography, position in valley, and soil profile development with those in 

West Tensleep Canyon (Burggraf, 1978), and with the regional model pro
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posed by Richmond (1965) (Table 2). However, a regional correlation is at 

best speculative and subject to interpretation (Nelson, 1954). 

Table 2. Correlation of Shell Canyon moraines with those of West Tensleep 

(Burggraf, 1978) and with the regional model 

Shell Tensleep Regional 
Canyon Canyon Model Sources 

Mistymoon Late Richmond, 1965, 
Moraine Pinedale pp. 224-225 

Crooked 
Creek Tyrrell Middle Richmond, 1965, 

Moraine Moraine Pinedale pp. 224-225 

Ranger Squaw 
Station Creek Early Richmond, 1965, 
Moraine Moraine Pinedale pp. 224-225 

Shell Bald 

Creek Ridge Mears, 1974, 
Moraine Moraine Bull Lake I pp. 23-24 

Ruble Borrow 
Creek Pit Bull Lake II Mears, 1974, 

Moraine Drift or older pp. 23-24 

Stratigraphy, surficial, colluvial 

There are 42 different lithologie types of material in the colluvial 

landslides (key for Figures 18-26, pages 67-68). However, the two domi

nant materials consist of brown colluvium and green colluvium. Deposits 

of brown silt are also found but are not as abundant as the brown col

luvium. For detailed descriptions of all colluvial materials see Appendix 

C. 

The brown colluvium makes up the bulk of the colluvial landslide de

posits. It is formed from the weathering debris of the Bighorn, Jeffer
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son, and Madison Formations. The material contains 30 to 70 percent, 

angular, gravel to boulder size carbonate rock fragments in a loamy sand 

size matrix of carbonate rock fragments (Table 3). 

Table 3. Summary of soil textural data for less than 2 mm fraction of C 
horizon for colluviums and for depressional fills; for raw data 
see Appendix D 

Unstratified Stratified Stratified Depression 
Green brown brown brown fill 

colluvium colluvium colluvium silt modern 
Texture n=3 n = 49 n = 1 n = 2 n = 2 

% sand 31 78 75 2 65 

% silt 43 15 17 70 24 

% clay 26 7 8 28 11 

Along the north side of Tensleep Canyon (Figure 53) the brown col

luvium is crudely stratified (Figure 11). The stratification is due to 

textural differences, some layers contain a higher percentage of rock 

fragments than others (point A, Figure 11), and to the presence of buried 

horizons (point B, Figure 11). It is inferred that the deposits of 

brown colluvium along the north side of Tensleep Canyon have not been 

involved in landslide activity because the extensive deformation during 

landsliding would destroy the stratification. However, the stratification 

of the colluvium is horizontal and undisturbed, and no landslide surface 

morphology exists on the north side of Tensleep Canyon. 

The brown colluvium along the south side of Tensleep Canyon and in 

most of Shell Canyon is unstratified (Figure 12). The material is similar 

texturally to the stratified brown colluvium (Table 3). However, it lacks 



Figure 11. Roadcuts making up switchbacks along north side of Tensleep Canyon. TC77 - 6 is located 
near point A. (A) stratification due to presence of Cca horizon. (B) stratification 
due to textural differences. For location see Figure 53. 





Figure 12. RC4-76. The brown colluvium in this roadcut has no apparent stratification. For 
location see Figure 51. 
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any horizons, except for that forming In the present surface soil 

horizon. The lack of apparent stratification in this material is inferred 

to result from landslide activity, probably debris slides, and the conse

quent mixing action. 

The soils developed on the unstratified brown colluvium below 1890 

meters elevation are sandy, skeletal, carbonitic, mesic, typic torrior-

thents. For descriptions of individual soil profiles see Appendix E. The 

limestone parent material contains very little acid insoluble residue to 

provide clays for profile development. No statistically valid textural 

or depth to horizon differences exist between the soils developed on sur

faces of different ages in this material. The average texture of the C 

horizon is listed in Table 3. The A horizon averages 11.5 cm in thickness 

and the B 20 cm. The only consistent soil difference is the presence of a 

horizon on landslides that are pre-Bull Lake in age. Younger land

slide deposits lack these horizons. 

Above 1890 meters the soils on the unstratified brown colluvium may 

be ustic torriorthents. Vegetation is noticeably better developed than at 

lower elevations. However, the moisture regime of the soil during the 

summer growing months is unknown at present. 

Layers of stratified brown silt are often found interstratified with 

layers of brown colluvium. The stratification consists of laminations 

less than 0.5 cm thick, fine layers predominate. While somewhat finer 

textured than material accumulating in closed depressions on the modern 

surface (Table 3) the thickness of the laminations are similar. It 

appears that the brown silts also accumulated in closed depressions and 

were subsequently buried. 
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The green colluvium is derived from the weathering of the Gros Ventre 

and Gallatin Formations. It consists of rock fragments of flat pebble 

conglomerate set in a clay loam size matrix. The amount of rock fragments 

varies widely (10 to 80 percent of the total) but the longest dimension of 

the fragments is less than 50 cm. 

When involved in landslides, the green colluvium is found in two 

different situations. Where the canyons are bounded by cliffs of Bighorn 

and Madison limestone, landslides composed dominantly of unstratified 

brown colluvium occur. The green colluvium is found as individual layers 

of irregular masses within the brown colluvium. Where the Bighorn and 

Madison cliffs are not present, landslide deposits composed predominantly 

of green colluvium are found. Soils developed on these landslides are 

clay loamy, skeletal, carbonitic ustic torriorthents. 

Due to the highly friable nature of unstratified brown colluvium only 

field engineering tests were conducted on both the unstratified brown and 

the green colluvium. This was done to gain a better understanding of the 

physical properties of the materials. 

Penetrometer tests were run on both colluviums over a wide range of 

moisture contents (Figures 13 and 14). While some scatter in the data 

exists it is clear that as percent saturation for both materials in

creases, the resistance to penetration decreases. Resistance to penetra

tion and cohesion can only be related in a qualitative manner but the data 

indicates that the effective cohesion also decreases with increasing 

moisture content. This is an indication that hill slopes will be less 

stable during an interval of greater available moisture. 



13. Penetrometer blows normalized for dry bulk density, N/y^j, vs. percent saturation, S, 
for brown colluvium in Shell Canyon. r2 of N/y^ vs. S line is 0.57. 
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Figure 14. Penetrometer blows normalized for dry bulk density, N/yd. vs. percent saturation, S, 
for green colluvium in Shell Canyon. r2 of N/y^ vs. S line is 0.57. 
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The green colluvium is essentially Impermeable while the brown col

luvium is highly permeable. Field percolation tests showed that the green 

colluvium has a percolation rate less than 2.5 cm/60 min. The brown col

luvium has a percolation rate of 2.5 cm/6 min. Since these two materials 

are frequently interlayered (Figures 18-26) perched water tables can be 

expected beneath the slopes of Shell Canyon. 

The high percolation rate of the unstratified brown colluvium is also 

demonstrated by the nature of many of the small tributary streams and 

springs in both canyons. For example, in the area of Post Creek (Figure 

51), several springs issue from the top of the Bighorn Formation which 

here makes up the lower part of the canyon wall. However, they flow for a 

distance of less than three meters across the soils before the entire dis

charge has seeped into the ground. Post Creek itself has no surface flow 

below the Bighorn cliff either. Many of the other tributary streams in 

the canyons also appear to be influent, their discharge being noticeably 

less when they enter the main stream than when they flow over the cliffs 

surrounding each canyon. It thus appears that the high percolation rate 

of the unstratified brown colluvium allows the streams to become influent 

and causes the moisture falling on the uplands surrounding the canyons to 

rapidly build up seepage forces in the colluvial slopes below the lime

stone cliffs. 

Stratigraphy, surficial, landslides 

The landslide deposits in Shell Canyon have been subdivided into 

seven morphostratigraphic units based on the degree of preservation of 

their surface morphology. The relative age ranges from active, youngest. 
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to lnactive-3, oldest. The material making up the landslide deposits 

consists of either intact Paleozoic bedrock, or colluvium derived from the 

Paleozoic bedrock. The morphostratigraphic units will be described in 

greater detail in the section Activity of Landslides in Shell and Tensleep 

Canyons. 

Stratigraphy, volcanic ashes 

Several deposits of airfall volcanic ash occur both in Shell Canyon 

and Tensleep Canyon (Figures 12, 15A,B,C,D, 20, 22B and 25B). The ash 

deposits are white in color and appear to contain very little foreign 

material. For a detailed description see Appendix C. Since the ash de

posits occur among landslide, colluvial, and terrace deposits their 

correlation is important in working out the quarternary history of the 

area. 

Two stream terraces associated with volcanic ashes occur in the area 

of Shell Canyon (Figure 51). Both were deposited by Shell Creek. The 

basal gravels in each terrace have compositions similar to those of the 

modern Shell Creek gravels. 

The terrace deposit opposite the Wagon Wheel Cafe was first described 

by Heroy (1941) as a sequence of ashy sediments overlying a basal con

glomerate (Payton conglomerate). However, when this exposure was examined 

in detail it appears that there are three separate beds of volcanic ash 

present. They are separated by other types of surficial sediments, 

gravely sand, and red silts (Figure 15A). 

The base of the terrace deposit is 67 meters above the present Shell 

Creek floodplain. A projection of the approximate gradient of the Pre-



Figure 15. Volcanic ash deposits: 

A = Wagon Wheel exposure (RC17-76), along Shell Creek 

B = Field Camp exposure, along Shell Creek 

C = Tensleep Canyon exposure (TC5-77), along Tensleep Creek 

D = Tensleep Canyon exposure (TC6-77), along Tensleep Creek 

See also Figures 12 ,  20, 22B, and 25B. For locations see Figures 51, arid 53. 
For key to units see pages 67-68. 
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Cambrian surface in Shell Canyon into the Bighorn Basin intersects the 

base of the terrace (Figure 16). This relationship is interpreted to 

indicate that Shell Creek had cut down to the Precambrian surface within 

Shell Canyon prior to the deposition of the lowermost ash at the Wagon 

Wheel and that the base level of Shell Creek was stable in this locality 

until after the deposition of the uppermost ash. After the deposition of 

the upper ash Shell Creek again downcut. At this time the inner Pre

cambrian gorge was cut and base level for the landslides was frozen above 

the first 1.2 kilometers of Shell Canyon (Figure 52). 

The youngest terrace deposit associated with volcanic ash is found 

near the I.S.U. Field Camp (Figure 51). The base of this terrace is only 

seven meters above the level of the modern Shell Creek, and it contains 

a single deposit of volcanic ash (Figure 15B). Since this terrace is only 

2.4 kilometers from the one at the Wagon Wheel, and is in a topographical

ly lower position, the Field Camp ash deposit must be younger than the 

three ashes at the Wagon Wheel. 

The relative ages of the ashes associated with the landslide and 

colluvial deposits cannot be determined on the basis of their stratigraph

ie position as those among the terrace deposits can. The crystalline 

gravels found in Figures 15C and D and 25B can only be assumed to be Bull 

Lake or older. They occur topographically above the oldest Pinedale 

moraines. The ashes in Figures 12, 20, and 22B are found among landslide 

deposits which have no surface expression. They cannot be independently 

correlated with other ash deposits. 



Figure 16. Profile of Shell Creek and Precambrian surface of Shell Canyon from Shell Falls to the 
Payton Conglomerate. For location see Figure 51. 
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In order to be able to correlate the ash deposits in the landslides 

and colluvial material with those found in the terrace deposits at the 

Wagon Wheel and the Field Camp, the indices of refraction of the glass 

shards and the weight loss of ash samples on heating were determined for 

all known outcrops of ash in the study area. It has not yet been deter

mined whether this technique is applicable outside a local area. However, 

the technique has the advantage of being both rapid and inexpensive. 

Indices of refraction of the glass shards indicate that all ash de

posits in Shell and Tensleep Canyons are Pearlette type ashes (Table 4). 

Unfortunately the Yellowstone Caldera has produced three Pearlette ashes 

(Izett et al., 1971; Naeser, 1973) and nine younger ash beds (Richmond, 

1976). 

Table 4. Comparison of indices of refraction of glass shards from ash 
deposits in Shell and Tensleep Canyons with those of the type 
Pearlette ash (Swineford and Frye, 1946) and the Bishop ash 
(Izett et al., 1971) 

Shell and Tensleep 
Canyon ashes Type Pearlette Bishop ash 

range 1.499-1.50 range 1.498-1.50 range 1.492-1.499 

avg. 1.499 avg. 1.499 avg. 1.495-6 

The ash samples collected in Shell and Tensleep Canyons plus samples 

from Lovell and Riverton, Wyoming supplied by Richard Birdseye and classed 

as Type 0 Pearlette by Roy Wilcox were dried at 110°C for 24 hours and 

weighed. They were then heated at 1000°C for 30 minutes, cooled in a 

desiccator and reweighed. This allowed the calculation of a percent 
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weight loss (Table 5). The fusion temperature at atmospheric pressure was 

also determined (Table 5). Even though part of the weight loss may result 

from the loss of volatile elements, K, Na, etc., the losses in the ash 

samples from the Wagon Wheel and the Field Camp are consistent and repro

ducible. This is in agreement with the stratigraphie evidence which indi

cates that the four ash beds must be of different ages. Steen-Mclntyre 

(1975) found that all other factors being equal, the water content of 

volcanic glass shards increases with increasing age, the weight loss upon 

heating of the glass shards then will also increase with increasing age. 

The only problem encountered in using this method occurred in the two 

lower ash beds at the Wagon Wheel (Figure 15A). The ash in these beds has 

been nearly completely altered to clay. This evidently produces over

lapping weight losses and fusion temperatures. Based on weight loss and 

fusion temperatures a correlation chart (Figure 17) for the ash deposits 

was drawn. 

The upper ash at the Wagon Wheel correlates with the ash deposit at 

Lovell, Wyoming which Izett and and Wilcox have informally named the Kane 

ash (G. A. Izett and R. E. Wilcox, U.S.G.S., Denver, personal communica

tion, 1978). It is classed by them as type 0 Pearlette of the Midwest. 

The intermediate ash bed is informally named the Bluejacket ash. The 

lowest ash at the Wagon Wheel is informally named Dirty Sally's ash 

(after Dirty Sally's Wagon Wheel Cafe). Dirty Sally's ash and the Blue

jacket ash are correlated with the type B and type S Pearlette ashes of 

the Midwest, respectively, based on their stratigraphie position below the 

Kane ash. 
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Table 5. Weight loss on heating in % and fusion temperature of ash de
posits in Shell and Tensleep Canyons, Riverton and Lovell^ 

Location Weight loss % Fusion temp, in °C 

I.S.U. Field Camp 4.68 900-1000 

TC 76-1 4.24 900-1000 

TC 77-5 4.45 900-1000 

RC17-76 Lower Ash at base 8.41 1050+ 

RC17-76 Lower Ash 
.66m above base 9.90 1000-1050 

RC17-76 Middle Ash 8.83 1050+ 

RC17-76 Upper Ash at base 4.65 1000-1050 

RC17-76 Upper Ash 
1.3 m above base 4.69 1000-1050 

RC4-76 4.37 1000-1050 

RC8-76 3.91 1000-1050 

RC6-76 .3 m above base 3.92 1000-1050 

RC6-76 2.6 m above base 5.00 1000-1050 

RC6-76 5 m above base 7.83 1000-1050 

TC77-6 5.94 1000-1050 

Riverton 4.68 1000-1050 

Lovell 4.45 1000-1050 

^For location of ash deposits see Figures 51 and 53. 
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Figure 17. Correlation chart for ashes in Shell 
the Midwest. T-C stands for thermal 
stratigraphie position. Date stands 

and Tensleep Canyons with the Pearlette ashes of 
correlation. S-P stands for correlation by 
for location already dated. 
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The ash deposit found at the I.S.U. Field Camp is informally re

ferred to as the Field Camp ash. It correlates with two of the deposits 

of ash found in Tensleep Canyon (Figure 17). Since Pearlette time there 

have been at least nine different pumice and rhyolite flows deposited in 

Yellowstone National Park ranging in age from 266,000 years b.p. to 70,000 

years b.p. (Richmond, 1976). Any one of these eruptions could be the 

source of the Field Camp ash. The Field Camp ash in Tensleep Canyon is 

overlain by crystalline gravel deposits interpreted to be glacial outwash 

(Figures 15C and 25B). The Pinedale I terminal moraine is at the level of 

the modern Tensleep Creek. The gravels overlying the ash deposits are 37 

meters above stream level. Therefore, the youngest they can be is Bull 

Lake in age. Pierce et al. (1976) date the Bull Lake in Yellowstone 

National Park as older than the West Yellowstone Rhyolite flow (114,500± 

7,300 years b.p.). This would make the Field Camp ash either 266,000 or 

219,000 years old. These are the dates of the next two older ash de

posits. However, Richmond (1976) dates the Bull Lake moraines as ranging 

from pre-West Yellowstone rhyolite (114,500±7,300 b.p.) to post-Pitchstone 

Plateau rhyolite (70,000 years b.p.). Therefore, no date can as yet be 

assigned to the Field Camp ash. 

Heavy mineral analysis or chemical analysis of volcanic ashes are 

commonly used as means of correlating ash deposits in the published 

literature. In the ash deposit at RC6-76 (Figure 20), it was observed in 

the field that there were alternating layers of coarser and finer ash. 

Also some individual layers had a noticeably higher content of dark mafic 

minerals than others. There may be significant variations in the heavy 
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mineral content and chemical composition vertically through an ash bed. 

This may be due either to changes during the airfall or to the introduc

tion of foreign material during later reworking (R. E. Wilcox, U.S.G.S., 

Denver, personal communication, 1978). The most useful data for the 

correlation of ash deposits comes from the microscopic and chemical 

analyses of each specific primary constituent, not the analyses of the 

bulk sample. This requires a careful preparation of each sample, in

cluding cleaning, gravimetric and magnetic separation to isolate the con

stituents (R. E. Wilcox, U.S.G.S., Denver, personal communication, 1978). 

Time did not permit this; therefore, these methods were not used. 

Internal Structure of Landslides 

Two basic types of material behavior, brittle and plastic, are shown 

by the internal structures of the landslides in Shell Canyon. The in

ternal structures of the landslides are interpreted from detailed roadlogs 

of roadcuts in Shell Canyon. Most of the roadcuts appear to be oriented 

at right angles to the long axis of the landslides. Roadlogs located near 

the heads of former landslides indicate brittle behavior. Roadlogs indi

cating plastic behavior are probably located near the toes of former land

slides. Analysis of the roadcuts indicate, especially where volcanic 

ashes are present, that at least three distinct episodes of landslide 

movement occurred, none of which have any relationship to the present 

landslide surface morphology. 

Where the material is characterized by brittle behavior little in

ternal deformation of the landslide takes place. The word brittle is used 
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here in the sense that deformation is restricted to failure along a few 

discrete surfaces and the bulk of the deposit is undefonned. This type of 

behavior is best demonstrated by the roadcut in Figure 23. The key for 

Figures 18-26 is on pages 67-68. For detailed descriptions see Appendix 

C. The material in the landslide has moved along the "fault" at 130 

meters but the original crude stratification of the brown colluvium has 

been preserved. In Figure 20 there has been sufficient rotation of the 

landslide so that the original stratification of the brown colluvium be

tween 120 and 160 meters is nearly vertical but still preserved. 

Where bed rock is involved in brittle behavior, the bedding planes of 

the rock making up the landslide are preserved. This is shown in Figure 

21, where the stratification of the shales and sandstones has been rotated 

but is still intact. This roadcut is located at the base of a bedrock 

slump. Here, at 80 meters, bedrock has actually been "thrust" out over 

brown colluvium. The bedrock at 260 to 320 meters in Figure 24 has also 

remained intact and shows the characteristic backwards rotation of slump. 

Where the failure surface of a landslide consists of a zone rather 

than one distinct surface several different materials may be "sheared" 

together. This is seen in the western half of Figure 18. The long thin 

outcrop pattern of many of the bodies of green and brown colluviums indi

cates that they are being "sheared" along several failure surfaces. A 

similar pattern is seen in the western half of Figure 26. 

Based on these roadcuts it appears that brittle behavior in the form 

of slumping is characteristic of at least some of the landslides. 
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Key for Figures 15A and 18-26 

No. or symbol Unit 

A Buried A horizon 

1 Brown colluvium 

lA Washed brown colluvium 

IB Very rocky brown colluvium 

IC Brown colluvium with gray boulders 

ID Fine brown colluvium 

2 Green colluvium 

3 Green shaley colluvium 

3A Green bouldery colluvium 

4 Mixed green and brown colluvium 

5 Brown silt 

5A Brown silt with pebbles 

5B White silt 

6 Dark brown silt 

7 Gray silt 

8 Orange gravel 

9 Cobble size fragments in a gray silt matrix (50-50) 

10 A horizon 

11 horizon 

llA horizon poorly developed 

12 Red colluvium 

13 Red silt 

13A Light red silt 

13B Red silty gravel 

13C Massive sandy silt 

13D Red silt 

14 Volcanic ash 

14A Ash-lithified 



15 

15A 

16 

17 

18 

19 

19A 

19B 

20 

20A 

21 

21A 

22 

22A 

22B 

23 

24 

25 

25A 

25B 

26 

27 

28 

28A 

30 

31 

«B 
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Ash-slightly lithified 

Volcanic ash 

Ashy silt 

Ashy sand 

Yellow silt 

Olive sand 

Sand 

Gravel 

Gravely sand 

Sandy gravel 

Interbedded green shale and sandstone 

Interbedded green shale and sandstone-strongly oxi

dized 

Green sandstone 

Green shale 

Brown sandstone 

Shattered brown sandstone 

White sandstone 

Red sandstone 

Red siltstone 

Conglomerate 

Conglomerate 

Sandstone 

Modern slump 

Talus deposits 

Gros Ventre-Gallatin Formation 

Highly fractured Gros Ventre-Gallatin Formation 

Igneous and metamorphic clast gravels 

Limestone 

Bighorn Fm. rock fragments 

Madison Fm. rock fragments 



Figure 18. RCl—76. The westernmost half of RCl—76 shows material in the process of being mixed 
together. Here at least eight different types of colluviums and silts form a complex 
association. The long thin shape of many of the deposits indicates that they are being 
sheared together. This situation would exist if the failure surface of a landslide con
sisted of a zone of several failure surfaces rather than one discrete failure surface. 
Or if during several periods of movement of the landslide different failure surfaces 
had formed. For location see Figure 51. 
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Figure 19. RC2-76 and Rc3-76. 

A. The deposits here are not extensive enough to enable any detailed structures to be 
worked out. The silts appear to be a series of deposits filling in a depression on the 
surface of a landslide. For location see Figure 51. 
B. The brown colluvium both above and below the bedded brown silts shows no apparent 
stratification; however, the brown silts are not deformed. Possibly, the silt accumu
lated in a closed depression on the surface of a debris slide and was covered by a 
later debris slide in which the green colluvium formed the failure surface. Each end 
of the silt deposit has been terminated by faults formed during a later period of move
ment. For location see Figure 51. 
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Figure 20. RC5-76. The material in this roadcut shows a complete range from rigid to plastic be
havior. West of 160 meters there is no apparent stratification in the brown colluvium, 
and the green colluvium at 220 meters has a highly contorted contact with the brown 
colluvium indicating a plastic behavior. Between 120 and 160 meters the material is 
crudely stratified but the stratification is nearly vertical. The failure surface for 
•this landslide is in the green colluvium located at 120 meters. Clasts of flat pebble 
conglomerate are aligned parallel with the contacts between the green and brown col-
luviums. The material between 120 and 160 meters has been rotated by a later movement; 
the ash bed is now dipping at approximately 45°. This later period of movement would 
account for the steeply dipping stratification of the ash bed. For location see Figure 
51. 
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Figure 20. (Continued) 



Figure 21. RC6-76. Part of the toe of a bedrock slump is still intact. Since the bedding in the 
westernmost 30 meters of the roadcut is intact the landslide must have moved as a rigid 
body along a discrete shear surface. This is further substantiated by the fact that at 
80 meters intact bedrock has been "thrust" out over brown colluvium. For location see 
Figure 51. 
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Figure 22. RC7-76 and RC8-76. 

A. While creep phenomena are not covered in this dissertation they are exhibited in 
this roadcut. Clasts of limestone in the A horizon of the modern soil profile are 
aligned parallel with the modern ground surface. The silt beds at each end of the cut 
are inclined parallel with the modern ground surface. The upper surfaces of these silt 
beds would have been horizontal when they accumulated. For location see Figure 51. 

B. The ash deposit has been highly contorted in the westernmost ten meters of the 
roadcut. In the eastern twenty meters the ash and brown silts have been contorted to a 
lesser degree. There is no apparent bedding the brown colluvium. For location see 
Figure 51. 



r East A 

. 20 m 

- 15 

10 

26 

26  20 

East B 

20 m 

15 

26 

West 



Figure 23. RClO-76. In colluvium, near the head of a slump, no internal deformation takes place. 
The original crude stratification of the colluvium has been preserved. At least one 
period of slumping has occurred along the "fault" at 130 meters with no apparent in
ternal deformation of the slump block on the west side of the fault. For location see 
Figure 51. 
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Figure 24. RC12-76 and RC13-76. 
A. Most of this roadcut is covered by modern slump deposit. However, the bedrock ex
posed from 260 to 320 meters shows the backwards rotation characteristic of slump de
posits. For location see Figure 51. 

B. The highly contorted nature of the contact between the green and unstratified brown 
colluvium indicates that the green colluvium was flowing plastically and that the two 
were in the process of being mixed together. For location see Figure 51. 
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Figure 25. RC15-76 and TC76-1. 
A. The highly contorted nature of the contact between the green and unstratified brown 
colluvium indicates that the green colluvium was flowing plastically and that the two 
were in the process of being mixed together. For location see Figure 51. 

B. Shows cross cutting relationship between crystalline gravels and volcanic ash de
posit. For location see Figure 53. 
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Figure 26. RC16-76. The highly contorted nature of the contact between the green and unstratified 
brown colluvium indicates that the green colluvium was flowing plastically and that the 
two were in the process of being mixed together. For location see Figure 51. 
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The slumps undergo little internal deformation and original bedding is 

preserved within the landslide. 

When the material is characterized by plastic behavior extreme in

ternal deformation takes place. The word plastic is used here as it is 

defined in the A.G.I. GLOSSARY OF GEOLOGY (Gary et al., 1974) as: 

Plastic (struc) Said of a body in which strain produces 
continuous, permanent deformation without rupture. 

Where brown colluvium behaves as a plastic substance no stratifica

tion is preserved as shown by the roadcuts in Figures 12, 19B, and Ilk. 

The brown colluvium in these exposures has no observable stratification. 

It is presumed that many of these roadcuts are located near the toes of 

former landslides; many slumps grade into debris slides at their toes 

(Varnes, 1958). In this area, plastic behavior rather than brittle would 

dominate due to an increase in water content of the material. 

Where green and unstratified brown colluvium occur together the green 

colluvium frequently appears to have "intruded" into the brown (Figures 

8 - easternmost 90 meters, 20 - 220 meters, 24B, 25A, 26 - easternmost 100 

meters). The contacts between the green and brown colluviums are highly 

irregular. Where clasts of flat pebble conglomerate occur in the green 

colluvium they are usually aligned parallel with the contacts. 

The origin of these "intrusions" is at best speculative. The density 

3 
of the unstratified brown colluvium averages 1409 kg/m and for the green 

3 
1569 kg/m . Therefore, the green colluvium did not intrude the brown in a 

manner similar to a salt dome. During the final stages of a compound 

slump-debris slide, that is slump at the head and debris slide at the base, 

movement should cease first near the toe due to decreased slope angle and 
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loss of water. The material behind the toe will still be moving. This 

causes the area immediately behind the toe to be under compressional 

stress. Green colluvium has 0 cohesion when saturated and could easily be 

made to flow. If the landslide consists of brown colluvium overlying 

green colluvium it is possible that the green colluvium has been force

fully intruded upwards into the brown colluvium in response to this com

pressional stress. 

The relationship between the volcanic ash deposits and the landslide 

debris exposed in the roadcuts indicates at least two periods of landslide 

activity prior to the ash deposition, and one post-deposition period. 

None of the associated landslide deposits have any relationship to the 

present landslide surface morphology. In Figure 22B the ash at 50 meters 

lies directly on bedded pond silts. This relationship indicates that a 

period of landsliding followed by stability occurred prior to the deposi

tion of the ash. Silts of similar texture are accumulating in the closed 

depressions on modern landslides. The ash deposit in Figure 20 rests 

directly on brown colluvium. This ash bed is located on the south side of 

Shell Canyon (Figure 51) where it could only be preserved if it had fallen 

into a closed depression on the surface of a landslide. Because neither 

pond silts nor evidence of soil formation exist in the colluvium at the 

base of the ash, the landslide and the deposition of the ash bed are con

sidered to be essentially contemporaneous. The landslide was probably 

triggered by the earthquakes which were generated by the same volcanic 

eruption that produced the ash. 
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Both ash beds have been contorted by subsequent landslides. This 

probably did not occur immediately after the deposition of the ash, since 

the ash in Figure 20 is overlain by pond silts which indicate a period of 

stability after deposition of the ash. 

Activity of Landslides in Shell and Tensleep Canyons 

The landslides in Shell and Tensleep Canyons which still have a sur

face expression have been classified into a series of morphostratigraphic 

units (Figures 52 and 54). This classification is based only on surface 

morphology. It does not distinguish landslides on the basis of type of 

movement or type of material within the landslide. This classification 

uses three broad subdivisions. In order of increasing relative age, they 

are active, passive, and inactive. Passive and inactive have in turn been 

subdivided into a total of six units based primarily on the state of 

preservation of closed depressions on the surface of the landslides. 

Active landslide 

An active landslide is moving at the present time. It has both a 

despositional and an erosional surface morphology. A hummocky surface 

with numerous closed depressions that commonly contain water characterize 

the depositional areas. In the source areas fresh scarps are present. 

Vegetation is poorly established throughout. Large areas of bare earth 

are common. Springs and seeps are common. 

Passive landslide 

A passive landslide is no longer moving downslope. The depositional 

area is still characterized by a hummocky surface. However, closed de
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pressions show at least some evidence of being filled. In the source area 

the scarp has only been slightly modified by erosion. Vegetation is well 

established on the landslide but areas of bare earth still exist. Springs 

and seeps may be present. 

Passive-1 landslide A passive-1 landslide has been stable for a 

short period of time. It has a hummocky surface morphology with greater 

than 1% of total surface area in closed depressions, some of which contain 

water. All closed depressions display some evidence of being filled with 

sediment. 

Passive-2 landslide In a passive-2 landslide closed depressions 

still occupy more than 1% of the surface area. However, they are almost 

completely filled with sediment and contain water only seasonally. 

Passive-3 landslide Here closed depressions occupy less than 1% 

of the surface area. These are almost completely filled with sediment and 

contain water only seasonally. 

Inactive landslide 

An inactive landslide is no longer moving downslope. In the deposi-

tional area no closed depressions remain. In the source area the scarp 

has been severely eroded. Vegetation is well-established on the landslide 

arid areas of bare earth are rare. Springs and seeps are rare. 

Inactive-1 landslide No closed surface depressions remain. In 

the source area the scarp has been severely eroded but is still easily 

recognizable as such. 

Inactive-2 landslide No closed depression remains. The surface 

morphology consists of a series of benches and/or small hills. In the 
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source area the scarp has been so severely eroded that it is difficult to 

recognize as such. 

Inactive-3 landslide An inactive-3 landslide has no recognizable 

landslide morphology remaining. 

In Shell Canyon at the eastern margin of the study area (Figure 51), 

the glacial moraines of the Shell Creek Glacier and the surficial land

slides display cross-cutting relationships (Figure 27). These relation

ships allow the correlation of the landslide morphostratigraphic units 

with the glacial chronology. Inactive-3 landslides are overlain by the 

Ruble Creek moraine and are thus at least pre-Bull Lake II in age. The 

Shell Creek moraine overlies both inactive-2 and inactive-1 landslide 

deposits indicating they are both pre-Bull Lake I in age. Passive-3 land

slides cut out the Shell Creek moraine and are in turn cut out by the 

Ranger Station moraine. This indicates that passive-3 landslides are 

post-Bull Lake pre-Pinedale in age. Passive-2 landslides cut out the 

Ranger Station moraine and are thus post-Pinedale I in age. Farther up 

the canyon the passive-2 landslides are cut out by the Crooked Creek 

moraine indicating they are pre-Pinedale II in age. Passive-1 and active 

landslides must both be post-Pinedale II in age. Passive-1 landslides are 

tentatively classed as pre-Pinedale III age landslides. The same sequence 

of landslide deposits and glacial moraines has been observed in Tensleep 

Canyon. These cross-cutting relationships indicate that there was a 

period of landslide activity preceding each recognizable advance of the 

Shell Creek Glacier. 



Figure 27. Map showing cross-cutting relationships between moraines and landslide deposits. 
- - - - Hyattvllle Road. For location see Figure 51. 

A = active landslides 0 Scale 1 KM 
B = talus deposits ' i 
C = passive-1 landslides 
D = passiye-2 landslides 

l^g = Ranger Station Moraine 
E = passive-3 landslides 

Qs = Shell Creek Moraine 
F = inactive-1 landslide 
G = lnactlve-2 landslide 

Qr = Ruble Creek Moraine 
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The short duration of time between landslides and the subsequent 

glacial advance is Indicated by the analysis of a roadcut through the 

Shell Creek moraine and an adjacent landslide deposit (Figures 51 and 28). 

There are no paleosols between the landslide deposits and the glacial 

till. The contact between the landslide debris and the till in the 

westernmost twenty meters of Figure 28 is sharp. The glacial till con

sists of crystalline cobbles and boulders in a sandy matrix. The sand 

consists of fragments of quartz and feldspars. The landslide debris con

sists of the unstratified brown colluvium previously described. There are 

no carbonate rock fragments from the brown colluvium mixed into the gla

cial till. Therefore, the glacier was not eroding material at this point. 

If there had been sufficient time for the formation of a soil profile on 

the landslide debris evidence of it would be preserved. There is none and 

it is concluded that landslide activity immediately preceded each glacial 

advance and is thus early glacial in age. If the landslides are early 

glacial in age, it can be assumed that the slopes are relatively stable 

during interglacial time. 

It is unlikely that there was any landslide activity triggered by the 

periodic retreat of the Shell Creek Glacier. The Shell Creek Glacier was 

relatively feeble and incapable of doing extensive erosion (Darton, 

1906). Bull Lake and younger moraines were deposited on or near the Pre-

cambrian surface at the bottom of the canyon. Thus, the glaciers did not 

deepen and oversteepen the valley so that slopes would become unstable 

upon retreat of the ice as may have happened in many other areas of the 

western U.S. 



Figure 28. RC18-77. Westernmost twenty meters show relationship of Shell Creek moraine overlying 
landslide deposits (unstratified brown colluvium). Easternmost 60 meters of roadcut 
indicate unstratified brown colluvium has been intruded into the Shell Creek moraine 
but there Is no evidence here of "mixing" either. The contact between the two materials 

is sharp. For location see Figure 51. 
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The terminal moraines for each of the last four glacial advances, 

Bull Lake through Pinedale III, are found at successively higher eleva

tions than the one proceeding it, in both Shell and Tensleep Canyons. This 

relationship indicates that each of the last four glacial advances has 

been less extensive than the one proceeding it. If the landslide activity 

is related to the same climatic changes that triggered the glacial ad

vances then the landslides of each age should have a similar systematic 

distribution in space. 

The activity classes of the landslides in both Shell and Tensleep 

Canyons are systematically distributed in space. Older landslides, 

inactive-1 and 2, are found in the lower portions of each canyon (Figures 

52 and 54) and the landslides become progressively younger with increasing 

elevation. Other than the landslides triggered by highway construction, 

the only active landslides are found in the higher, presently moister 

areas of each canyon. It is also apparent that even though large areas of 

the canyons have undergone landsliding in the past only relatively small 

areas are active at the present time. It thus appears that the area 

affected by landslide activity has both decreased in area with each gla

cial advance and has occurred at progressively higher elevations. During 

the interglacial (post-glacial) interval, landslides are restricted to 

local areas of greater than average moisture. The distribution of the 

landslide activity classes is thus compatible with the distribution of 

glacial deposits. Detailed mapping of the landslide deposits in select 

areas yields a similar distribution. 
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The surface morphologies of landslide deposits were mapped in detail 

in three small drainage basins, Post Creek, Grouse Creek, and Salt Creek 

(Figure 51). If the landslide history of Shell Canyon is indeed charac

terized by alternating periods of stability and instability then there 

should be a systematic distribution of landslide deposits of different 

ages (surface morphologies). If not, then the ages of the landslide de

posits should be randomly distributed. 

At Post Creek (Figures 29 and 51) the original widespread pre-Bull 

Lake slump blocks (G1 and G2) have partially disintegrated and partially 

been buried by smaller and younger slumps, first by slumps F3 during later 

pre-Bull Lake time. During post-Bull Lake-pre-Pinedale I time small 

slumps (E4 and E5) progressively buried the older deposits. The pre-

Pinedale I deposits were then partially buried by post-Pinedale II age 

talus. Post Creek is located downstream from the Precambrian surface 

(Figure 52), and landslides could have been initiated by base level 

changes of Shell Creek. 

In the Grouse Creek area, older pre-Bull Lake age slump blocks (G2 

and G3) have again been partially disintegrated and buried by younger 

landslides, first by Pre-Bull Lake slumps (F4 and F5) (Figures 30 and 51). 

The pre-Bull Lake slumps were also partially buried by post-Bull Lake-

pre-Pinedale I debris slides (E6). Between post-Pinedale I and pre-

Pinedale II time the Grouse Creek debris slides (E6) were partially re

activated (D7) and the pre-Bull Lake slumps continued to disintegrate 

(D7). During post-Pinedale II time there was only a small area of renewed 

activity (C8) which in turn has been partially buried by post-Pinedale II 



Figure 29. Detailed landslide activity map of Post Creek. For loca
tion see Figure 51. Contour interval is 61 meters. 

B6 = post-Pinedale II age talus 

E5 = landslide deposits 

E4 = landslide deposits 

F3 = landslide deposits 

G2 = landslide deposits 

G1 = landslide deposits 

= Madison Fm., Jefferson Fm., and Leigh 
and Horseshoe Mtn. Mbrs. of Bighorn Fm. 

= Steamboat Point Mbr. of Bighorn Fm. 

Cy = Gallatin, Gros Ventre, and Flathead Fms. undlf. 
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POST CREEK 



Figure 30. Detailed landslide activity map of Grouse Creek. For 
location see Figure 51. Contour interval is 61 meters. 

B9 = post-Pinedale II age talus 

08 = landslide deposits 

D7 = landslide deposits 

E6 = landslide deposits 

F5 = landslide deposits 

F4 = landslide deposits 

G3 = landslide deposits 

G2 = landslide deposits 

M = Madison Fm., Jefferson-Threeforks Fms., and Leigh and 
Horseshoe Mtn. Mbrs. of Bighorn Fm. 

Ogjj = Steamboat Point Mbr. of Bighorn Fm. 

Cy = Gallatin, Gros Ventre, and Flathead Fms. undif. 
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talus. Grouse Creek is located above the inner Precambrian gorge of Shell 

Creek (Figure 52) and the slope stability could not have been affected by 

the base level changes of Shell Creek. 

At Salt Creek (Figures 31 and 51) the same general sequence is 

present. However, the oldest landslide deposits present are post-Bull 

Lake-pre-Pinedale I debris slides (El). These have been partially dis

integrated and buried by post-Pinedale I-pre-Pinedale II deposits (D2). 

During post-Pinedale II time renewed activity again took place (C3). 

Post-Bull Lake to post-Pinedale II deposts are presently being disinte

grated and buried by active debris slides. Salt Creek is located above 

the inner Precambrian gorge of Shell Creek (Figure 52) and the slope sta

bility could not have been affected by base level changes of Shell Creek. 

Four general trends appear in the geologic histories of the three 

areas. Most apparent is that as the mean elevation of the sites increases 

from 1615 meters at Post Creek through 2316 meters at Grouse Creek to 2682 

meters at Salt Creek, the age of the oldest landslide in each area becomes 

younger as does the age of the youngest landslide. Likewise, as the ele

vation of each site increases towards the cliff, the ages of the land

slides become younger. Fourth, within all sites, the older landslides 

have disintegrated during subsequent episodes of slope instability. The 

systematic decrease in the ages of the youngest and oldest landslides at 

each site is compatible with the systematic decrease in the extent of the 

late Pleistocene glaciations and confirms a climatic control upon the 

landslide activity. The systematic decrease in the age of landslides 

toward the cliff which often times spans a major interglacial further 



Figure 31. Detailed landslide activity map of Salt Creek. For 
location see Figure 51. Contour interval is 61 meters. 

active landslides 

C3 = landslide deposits 

D2 = landslide deposits 

El = landslide deposits 
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indicates that the slopes are not responding to either base level changes 

or retrogressive failure but to a stimulus associated with the cliff. 

Environmental Controls of Landslides 

Landslides in Shell and Tensleep Canyons occur in two types of 

materials, bedrock and colluvium. The bedrock landslides are slumps, 

block glides, or debris slides depending on the structural orientation of 

the bedrock relative to valley sides. The controls on the colluvial land

slides are more complex but water, i.e., seepage forces, is of prime 

importance. 

Bedrock landslides 

While compiling a photogeologic map of the entire Bighorn National 

Forest for the U.S. Forest Service, it was noted that widespread landslide 

activity does not commence until erosion has exposed the upper part of the 

Gallatin Formation. This formation is the first lithologically incompe

tent unit encountered by streams eroding into the lower Paleozoic rocks of 

the Bighorn Mountains. Once this formation is exposed landslides become 

widespread. For a discussion of the regional concept of landslides see 

Appendix A. Evidently the shales in the Jefferson Formation in the Big

horn Mountains are not thick enough to trigger widespread landsliding. 

The structural orientation of bedrock relative to valley walls con

trols the type of bedrock landslide that occurs. Where the dip of the 

bedrock is away from the valley, as along the south side of Shell Canyon, 

slumps occur (Figures 7 and 52). They range in length from 180 meters to 

500 meters and in width from 500 to 900 meters (Table 6). Although the 
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Table 6. Size data for bedrock landslides; all size measurements are in 
meters (W = width, L = length) 

Maximum size Slump Block glide Debris slide 

Length 550 1525 910 

Width 910 3050 180 

Area 5x10^ m^ 4.7x10^ 
2 

m 1.6x10^ 
2 

m 

F = W/L 1.7 2.0 0.2 

Minimum thickness 180 300 ? 

Mean size 

Length 510 71 350 

Width 875 85 75 

Area 4.5x10^ 6.0x10^ 
2 

m 2.6x10^ 
2 

m 

F = W/L 1.7 1.2 0.2 

Minimum thickness 100 67 1 
Minimum size 

Length 180 60 60 

Width 500 60 60 

Area 
h 2 

9x10 m 3.6x10^ 
2 

m 3.6x10^ 
2 

m 

II 

2.8 1.0 1.0 

Minimum thickness 73 67 ? 

Bighorn and Madison limestones are involved in the slumping, the main part 

of the failure surface is located in the Gallatin and Gros Ventre shales. 

Where the dip of the bedrock is into the valley (less than 20°) 

either block glides or debris slides occur, depending on what rock types 

are exposed. Where the Bighorn and Madison limestones are forming the 

canyon walls block glides occur. Their size varies greatly (Table 6). 

The very large block glides are composed of both the Bighorn and Madison 



Ill 

Formations. The failure surface is again located in the Gallatin Forma

tion. In this case the failure involves limestone sliding on shale. 

These large block glides are rare throughout the entire Bighorn Mountains. 

An example is the Cedar Creek block glide (Figure 52). 

The most common block glides are relatively small, minimum size in 

Table 6. They involve only the Steamboat Point Member of the Bighorn 

Formation. These glock glides do not begin moving until the overlying 

limestones have been removed by erosion. Once this overlying material is 

removed the entire exposure of the Steamboat Rock Member is involved in 

the block glides. The failure surface is also located in the Gallatin 

Formation. 

Few springs have been observed in the field associated with any of 

the actively moving block glides. Evidently failure is due to a creep 

phenomenon rather than to high pore pressures or lubrication of the 

failure surface. 

Bedding plane failures in the Madison Formation, limestone sliding 

on limestone, have been documented in the Bighorn Mountains by Patton 

(1966). However, these cover an insignificant area of the Bighorn's when 

compared to the block glides failing on a limestone-shale contact. 

Where the Gallatin Formation makes up the canyon wall, the relatively 

thin limestone beds, less than 1.5 meters thick, break up rapidly upon 

initiation of landsliding and debris slides result. Although an entire 

hillside may be covered by complexes of debris slides, individual slides 

are relatively small (Table 6). Actively moving debris slides are asso

ciated with numerous springs. Jointing in the limestone beds allows 
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ground water to reach the limestone-shale contacts where it acts both as a 

lubricant and to raise pore pressures. 

Colluvial landslides 

Two types of landslides occur in the colluvium, slumps and debris 

slides. The slumps are larger than the debris slides and have a higher 

form ratio (F = W/L) (Table 7). The slumps are found in the lower, pres

ently drier portions of the canyons whereas the debris slides occur in the 

higher, presently moister area of each canyon. However, the controls on 

colluvial landslides are not obvious. 

To gain a better understanding of the factors controlling the distri

bution of the colluvial landslides a statistical analysis was used. 

Twenty-four landslides in Shell Canyon and ten in Tensleep Canyon were 

selected at random and eighteen variables measured. The variables are de

fined in Table 8. Spearman Correlation Coefficients were calculated for 

all variables to determine those natural interactions. Stepwise multiple 

regression analysis was used to determine the significant factors con

trolling the activity of the landslides, their map area, their length, and 

their width/length ratio (Tables 10, 11, and 12). 

Spearman correlation coefficients 

The eighteen variables measured may be classified into five sub

systems: the moisture, topographic, rock property, location, and land

slide (Table 9). The landslide subsystem is composed of dependent varia

bles which are influenced by the independent variables in the other four 

subsystems. 
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Table 7. Size data for colluvial landslides; all size measurements are in 
meters (W = width, L = length) 

Maximum size Slump Debris slide 

Length 2240 778 

Width 5824 545 

Area 6.1x10* m^ 1.9x10^ m^ 

F = W/L 2.5 0.7 

Mean size 

Length 769 432 

Width 1138 160 

Area 1.2x10* m^ 7.4x10* m^ 

II 1.5 0.4 

Minimum size 

Length 174 148 

Width 56 31 

Area 4.6x10^ m^ 1.5x10* m^ 

F = W/L 0.3 0.2 

The moisture subsystem contains those variables that are indicators 

of the moisture regime of the landslide. PER PINE is an indicator of the 

present moisture conditions on the surface of the landslide. The greater 

the PER PINE the higher the overall soil moisture is, ASPECT is an indi

cator of both the present and past moisture conditions. The more souther

ly the aspect the higher the evaporation rate and the lower the soil 

moisture. ASPECT can also be considered a topographic variable. DRA AREA 

is an indicator of the amount of water that is being supplied to the 

landslide either at the present or during past climatic changes. The 
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Table 8. Definition of parameters measured for statistical analysis of 
colluvial landslides 

Name Definition 

PER PINE 

ASPECT 

DRA AREA 

ELE BL 

ELE CT 

ACT 

PRESLO 

POSTSLO 

CLIFFSLO 

SHFAC 

Percent area on landslide covered by pinetrees. 

Aspect of the long axis of the landslide, measured from 
0°, north, to 359°. 

Area of the drainage basin above the landslide which is 
supplying water to it. 

Elevation of local base level. 

Elevation of the top of the Paleozoic cliff behind the 
landslide. 

Activity of landslides as defined in the section Activity 
of Landslides in Shell and Tensleep Canyons. 1 = active, 
2 = passive-1, 3 = passive-2, 4 = passive-3, 5 = 

inactive-l, 6 = inactive-2. 

Hillslope prior to landslide movement, measured from the 
base of the toe of the landslide to the top of the scarp. 

Hillslope after landslide movement, measurement from the 
base of the toe of the landslide to the base of the 
scarp. 

Slope of the Paleozoic cliff behind the landslide. 

Vertical distance of the scarp below the Bighorn-Gallatin 
contact. 

DISFAC Ratio of the distance of the scarp base of the landslide 
from base level/distance of the Paleozoic cliff from base 
level. 

OVSLOPE 

HFAC 

MAP AREA 

LENGTH 

The average slope measured from the base of the Paleozoic 
cliff to local base level. 

Vertical location of the scarp of the landslide relative 
to local base level. 

The map area of the landslide measured parallel to slope. 

The length of the landslide measured parallel to slope. 

The width/length ratio of the landslide. 
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Table 9. Landslide subsystems 

Subsystem Moisture Topographic Rock Locational 

Independent PER PINE PRESLO SHFAC DISFAC 
variables 

ASPECT OVSLOPE CLIFFSLO HFAC 

DRA AREA 

ELE CT 

ELE ST 

ELE BL 

Dependent Landslide 
variables 

ACT 

POSTSLO 

MAP AREA 

LENGTH 

F 

larger the DRA AREA the greater the potential seepage forces within the 

slope. ELE CT is an indicator of the amount of precipitation falling in 

the DRA AREA. As the ELE CT Increases the precipitation increases, 

assuming that precipitation Increases with altitude. ELE ST and ELE BL 

are both indicators of the amount of precipitation which may fall directly 

on the landslide assuming that precipitation increases with elevation. 

The variables in the topographic subsystem are indicators of slope 

geometry. As PRESLO or OVSLOPE become greater the tendency for landslides 

to occur should increase. 
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The rock subsystem contains two variables. SHFAC is a measure of the 

depth of failure surface below the Bighorn-Gallatin contact. The smaller 

this number the greater the thickness of shale involved in the landslide. 

CLIFFSLO is an indicator of the amount of talus which can be contributed 

to the slide area. The steeper the cliff the more talus it can supply at 

any one time. 

The locational subsystem contains the variables DIS FAC and HFAC. A 

larger DIS FAC indicates that the slide scarp is closer to the Paleozoic 

cliff. The greater the HFAC, the higher the scarp is above local base 

level. 

The four dependent variables ACT, MAP AREA, LENGTH, and F plus 

POSTSLO make up the landslide subsystem. The dependent variables all de

scribe the relative age, size, and shape of the landslide. They are con

trolled by the independent variables in the other four subsystems. 

POSTSLO describes the final stable slope angle. POSTSLO can also be con

sidered a topographic variable. 

In Shell Canyon only the independent variables DIS FAC and HFAC are 

2 
strongly intercorrelated, R =0.91 (Figure 32). Two other sets of varia

bles ASPECT and DRA AREA, and ELE BL and CLFFSLG have a moderate degree of 

2 
intercorrelation, both have R s of 0.59. The intercorrelation of ASPECT 

and DRA AREA is not surprising since all sample sites selected were on the 

north side of Shell Canyon. All other independent variables measured are 

truly independent. 

Within the landslide subsystem, ACT is Influenced directly by the 

moisture parameters ELE ST, ELE CT, and ELE BL (Figure 32). The moisture 
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control is interpreted to indicate that in the late Quaternary as each 

successive wet-dry climatic change became less intense, the zone of maxi

mum available moisture occurred at successively higher elevations and the 

resulting landslides likewise occurred at successively higher elevations. 

The size parameters of the landslides, MAP AREA, and LENGTH are con

trolled primarily by the size of the DRA AREA supplying water to that 

particular landslide. As the DRA AREA becomes larger the landslides be

come larger. Since DRA AREA is a measure of the ground water being sup

plied to a landslide, this relationship indicates that the size of a 

landslide is primarily controlled by the amount of water in the col-

luvium. F is only weakly influenced by DIS PAC, while POSTSLO is not 

controlled by any of the independent variables. 

In Tensleep Canyon (Figure 33) DISFAC and HFAC are strongly inter-

2 
correlated, R = 0.90. ELE BL and OVSLOPE are moderately intercorrelated, 

2 2 
R =0.68. MAP AREA and LENGTH are strongly intercorrelated, R =0.71. 

All other variables are truly independent. 

ACT is not significantly correlated with any of the independent 

variables measured. This indicates that the factors controlling ACT dif

fer between the two canyons. 

The size parameter MAP AREA has an even stronger correlation with 

DRA AREA than in Shell Canyon. Again, size is being controlled by the 

amount of ground water supplied to the landslide. POSTSLO is also strong

ly influenced by DRA AREA, the greater the DRA AREA the gentler the 

POSTSLO. 
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Figure 33. Plot of Spearman Correlation Coefficients for Tensleep Canyon. 
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LENGTH is controlled by PER PINE and the intercorrelated parameters 

DISFAC and HFAC, and MAP AREA. This indicates that at present longer 

landslides have a greater percent tree cover and their scarps are located 

nearer the Paleozoic cliffs than shorter landslides. Longer landslides 

also have larger DRA AREA than short ones. 

On the other hand F is being controlled by SHFAC, a variable that 

bears no relationship to water. Slumps tend to have high F values and 

debris slides low F values (Table 7). It is apparent that although size 

is being controlled by water content, the actual type of failure is being 

controlled by other factors. 

Stepwise multiple regression analysis 

The same independent variables appear to be controlling the size and 

shape of the landslides in both Shell, and Tensleep Canyons. The parame

ters MAP AREA and LENGTH are controlled primarily by DRA AREA (Tables 10, 

11, and 12). F on the other hand is controlled mainly by the slope 

geometry. However, the controls on ACT differ in each canyon. 

ACT In Shell Canyon 70 percent of the variation in ACT is ex

plained by ELE ST, DRA AREA, and PER PINE (32, 33, and 4 percent, respec

tively) (Table lOA). The negative correlation of ACT with ELE ST and 

PER PINE indicates that younger landslides (ACT decreases) are found in 

higher, presently moister environments than older ones. During a series 

of successively less intense climatic changes younger landslides would 

also be expected to occur at successively higher elevations. The positive 

correlation of ACT with DRA AREA indicates that older landslides have 

larger drainage basins than younger ones. 
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Table lOA. Regression equations for the landslide parameters measured in 
Shell Canyon 

For individual values, N = 24 

ACT = 11.647 - 0.0137 PER PINE + 2.584 DRA AREA - 0.003 ELE ST 

R^ = 0.70 

MAP AREA = -201490.051 + 3913369.515 DRA AREA R^ = 0.76 

LENGTH = 739.499 + 1412.265 DRA AREA - 1499.541 PRESLO R^ = 0.80 

F = 0.003 + 3.113 PRESLO - 4.207 POSTSLO + 0.179 ACT R^ = 0.50 

Table lOB. Regression equations for the landslide parameters measured in 
Shell Canyon 

For mean values, N = 6 

ACT = 17.679 + 3.201 DRA AREA - 0.006 ELE ST R^ = 0.89 

MAP AREA = -175584.099 - 14167.353 PER PINE + 4188131.236 DRA AREA 

R^ = 0.90 

LENGTH = -2495.767 - 6.314 PER PINE - 0.1336 ASPECT - 0.764 ELE CT + 

1.680 ELE ST + 8.404 DISFAC + 293.047 ACT R^ = 0.99 

F = 0.810 + 3.713 DRA AREA - 0.179 ACT R^ = 0.89 
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Table IIA. Regression equations for the landslide parameters measured in 
Tensleep Canyon 

For individual values, N = 10 

ACT = 0.031 +4.690 HFAC = 0.53 

MAP AREA = -847389.763 + 778997.714 DRA AREA + 381.536 ELE ST R^ = 0.99 

LENGTH = -1604.0468 + 153.371 DRA AREA + 0.726 ELE ST + 97.825 ACT 

R^ = 0.90 

F = -6.123 + 0.031 ASPECT + 0.649 DRA AREA - 0.406 ACT R^ = 0.92 

Table IIB. Regression equations for the landslide parameters measured in 
Tensleep Canyon 

ACT = -1.186 + 5.944 HFAC R^ = 0.77 

MAP AREA = 21986.663 + 782233.697 DRA AREA R^ = 0.98 

LENGTH = 317.692 - 559.260 DISFAC + 62.947 HFAC + 146.995 ACT R^ = 0.99 

F = 3.686 - 8.576 POSTSLO R^ = 0.90 

In Tensleep Canyon 53 percent of the variation in ACT is explained by 

HFAC (Table llA). In general, the landslides become younger toward the 

base of the adjacent cliff. 

When the two canyons are analyzed as one population (Table 12A) only 

34 percent of the variation in ACT can be explained. This decrease in the 

coefficient of determination is interpreted to indicate that the controls 

on ACT are different between the two canyons and that each canyon must be 

treated separately. 
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Table 12A. Regression equations for landslide parameters in Tensleep and 
Shell Canyons combined 

For individual values, N = 34 

ACT = -4.659 + 0.727 DRA AREA + 0.003 ELE CT - 0.004 ELE ST R^ = 0.34 

MAP AREA = -4152422.245 + 957107.164 DRA AREA - 2336.206 ELE BL 

3312.513 ELE ST + 379539.164 ACT R^ = 0.68 

LENGTH = -443.456 + 205.051 DRA AREA - 1.825 ELE BL - 1.257 ELE CT 

3.070 ELE ST - 3309.572 PRESLO + 1742.544 POSTSLO + 1.676 

SHFAC + 2163.802 OVSLOPE + 148.153 ACT R^ = 0.89 

F = 5.357 + 0.654 DRA AREA - 0.002 ELE CT + 2.990 PRESLO - 4.403 

POSTSLO - 0.674 HFAC R^ = 0.66 

Table 12B. Regression equations for landslide parameters in Tensleep and 
Shell Canyons combined 

For mean values, K = 6 

ACT = 17.528 - 0.006 ELE ST R^ = 0.52 

MAP AREA = 20563.763 + 1289539.604 DRA AREA R^ = 0.36 

LENGTH = 43.100 + 116.7331 ACT R^ = 0.70 

F = -0.197 + 0.010 ASPECT - 4.350 POSTSLO R^ = 0.73 

MAP AREA In Shell Canyon 76 percent of the variation in MAP AREA 

is explained by one variable, DRA AREA (Table lOA). This relationship 

indicates that larger landslides are associated with large drainage basins 

which supply more water to them. In other words, the size of the land

slides in Shell Canyon are controlled by the amount of water that is 

supplied to them. 
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Regression analysis of MAP AREA in Tensleep Canyon (Table llA) pro

duces an equation similar to the one for Shell Canyon. DRA AREA explains 

98 percent of the variation, ELE ST only one percent. 

When the data are analyzed as one population (Table 12A) only 68 

percent of the variation in MAP AREA can be explained. A plot of MAP AREA 

vs. DRA AREA for each canyon (Figure 34) clearly shows that the slopes and 

intercepts of the two lines are different. This indicates that while the 

control on MAP AREA is the same in both canyons the manner in which it 

affects MAP AREA varies slightly between canyons. 

Figure 34 indicates that a larger DRA AREA is required in Tensleep 

Canyon than in Shell Canyon to trigger a landslide of the same size. 

OVSLOPE, PRESLO, and POSTSLO are all steeper in Tensleep Canyon than in 

Shell (2, 4, and 1 degree respectively). For eqivalent size landslides, 

if slope angle is the primary factor controlling slope stability then 

DRA AREA should be smaller rather than larger in Tensleep Canyon. How

ever, the bulk of the precipitation in the Bighorn Mountains comes in the 

form of snow. The water equivalency for the May first snowpack in the 

uplands around Shell Canyon averages 300 mm while in Tensleep Canyon only 

100 mm (Despain, 1973). If the precipitation patterns were similar during 

glacial periods then larger DRA AREAs would be needed in Tensleep Canyon 

to supply the same amount of water to the slopes below and trigger land

slides of the same size as those in Shell Canyon. This again indicates 

that climate is the primary factor in controlling slope stability in the 

Bighorn Mountains. 



Figure 34. Drainage area vs. map area (DRA AREA vs. MAP AREA) for landslides in Shell Canyon (A) 

and Tensleep Canyon (B). 

© = slumps in Shell Canyon 

• = debris slides in Shell Canyon 

+ = slumps in Tensleep Canyon 

X = debris slides in Tensleep Canyon 
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LENGTH DRA AREA explains 76 percent of the variation in LENGTH in 

Shell Canyon (Table lOA). The remaining four percent of the variation is 

explained by PRESLO. In Tensleep Canyon 62 percent of the variation in 

LENGTH is explained by DRA AREA (Table llA). The remaining 28 percent is 

explained by ELE ST and ACT. This again indicates that ground water is 

the primary factor controlling the size of a landslide. 

When the data are combined (Table 12A), a complicated equation re

sults with DRA AREA explaining only 30 percent of the variation. The two 

canyons must be treated separately. 

JF The controls on the width/length ratio (F) of a landslide are 

less obvious than those on either MAP AREA or LENGTH. In general slumps 

have high F values and debris slides have low F values. No sharp division 

can be drawn between the two however. 

In Shell Canyon, when individual landslides are analyzed (Table lOA) 

only 50 percent of the variation in F is explained, 30 percent by PRESLO 

and POSTSLO, 20 percent by ACT. The regression equation indicates that 

high F values (slumps) are favored by steeper PRESLO and gentler POSTSLO. 

However, when mean values are regressed, DRA AREA explains 69 percent of 

the variation of F (Table lOB) indicating that landslides with higher F 

values (slumps) have larger drainage basins supplying water to them. How

ever, it must be remembered that the mean values were generated by ACT. 

Since DRA AREA appears in the mean ACT equation (Table lOB) and ACT 

and DRA AREA both appear in the mean F equation the fact that DRA AREA 

explains 69 percent of the variation in F may in part be due to covaria

tion. In reality older landslides have larger DRA AREA than younger ones 
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(Table lOB) which explains the correlation between F and DRA AREA. There

fore, the main control on F is considered to be slope geometry. 

In Tensleep Canyon, when individual landslides are analyzed (Table 

llA), ASPECT, DRA AREA, and ACT control the variation in F (45, 29, and 

18 percent respectively). ASPECT can be considered in part a geometric 

parameter and it explains the bulk of the variation. Tensleep Canyon 

trends NE-SW in the study area. As ASPECT becomes more northerly, more 

nearly at a right angle to the canyon, F becomes greater. DRA AREA again 

indicates that slumps are favored by larger drainage basins. The mean 

regression equation for F (Table IIB) indicates that as POSTSLO becomes 

less landslides with higher F values (slumps) have tended to occur. 

The combined population (Table 12A and B) indicates that both slope 

geometry and ground water influence the type of failure, but in a more 

complex way. This again indicates that both Canyons should be analyzed 

separately. 

Summary The variation of ACT reflects the influence of both the 

environmental setting and the climatic history. The positive correlation 

of DRA AREA and ACT indicates that the oldest landslides have the largest 

drainage basins. The most severe climatic changes are also thought to 

have occurred earliest. The positive correlation of ACT with ELE ST and 

HFAC indicates that younger landslides are found higher and nearer the 

modern Paleozoic cliff. This may reflect the accumulation of talus below 

the cliff which would increase the driving force on a landslide imme

diately below the cliff. ELE ST and ELE CT are positively correlated when 

both canyons are analyzed as one population. 
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The stepwise regression analyses clearly indicate that the size, 

MAP AREA and LENGTH of the landslides in the two canyons are controlled 

primarily by the seepage forces within the hillslopes. As the DBA AREA 

increases the amount of ground water supplied to the colluvium from the 

upland increases. The seepage forces within the colluvial slopes increase 

and larger landslides result. The regression analyses also indicate that 

the precipitation falling directly on the landslides is not responsible 

for their size but that the seepage forces have an external source of 

water. 

2 
Although the R values for F are not as high as those of MAP AREA 

and LENGTH, they do indicate that the type of landslide occurring is con

trolled mainly by slope geometry rather than seepage forces. This obser

vation tends to contradict the work of Komamura and Huang (1974) that 

water content controls the type of landslide. However, their conclusions 

are based on laboratory studies while the ones in this work are based on 

field studies. 

Contrasting Behavior of Slopes in Tensleep Canyon 

The importance of water in the form of seepage forces is conclusive

ly demonstrated by the behavior contrast between the slopes on the north

west and southeast side of Tensleep Canyon. The north side of the canyon 

is composed of colluvial deposits with no landslide surface morphology 

(Figure 11), whereas the southeast side is entirely landslide deposit 

(Figure 54). There are three deposits of volcanic ash in the talus de

posits on the northwest side of the canyon (Figures 15C, 15D, and 25B). 
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The oldest. Figure 15C, is type 0 Pearlette in age. All three ashes are 

undeformed which indicates that the northwest slope of the canyon has been 

stable since the deposition of the ash beds. There are also numerous 

buried horizons exposed in roadcuts along the north side of the 

canyon which are undeformed. It thus appears that one side of the canyon 

has remained stable for over 0.6 million years while the other side has 

undergone repeated failure even though both sides of the canyon are com

posed of the same brown colluvium. 

The obvious difference between the two sides of the canyon is in the 

size of the drainage basins above the canyon rim (Table 13). The drainage 

divide on the southeast side of Tensleep Canyon is over 3.3 kilometers 

from the canyon rim whereas it coincides with the canyon rim on the 

northwest side (Figure 35). The mean drainage basin area on the north 

side is significantly smaller than that on the south side at a 99 percent 

confidence level (Table 13). The overall slope angle (OVSLOPE), however, 

is significantly steeper on the northwest stable side than on the south

east side (Table 13 and Figure 35). 

The contrasting behavior of the slopes is interpreted to indicate a 

dominant control by ground water supplied from the surrounding uplands 

and the resulting seepage forces. If base level fluctuations had been the 

dominant control, both slopes should have failed, or at least the steeper 

northwest slope should have. As pointed out, however, the northwest slope 

has remained stable. If precipitation falling directly upon the slides is 

the control both slopes might have failed. The stability of the north 

slope in this case could be explained by its steeper slopes which promote 
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Table 13. Comparison of slope parameters for north and south side of 
Tensleep Canyon 

DRA AREA km^ 

North 

ELE CT m 

side 

ELE BL m OVSLOPE rise/run 

-2 
X 2.586x10 2379 2070 0.332 

a 2.497 115.217 125.154 0.042 

South side 

-1 
X 0.529x10 2513 2087 0.310 

a 0.971 199.663 179.601 0.098 

more overland flow and by its exposure which promotes drier soils. How

ever, the significant difference in mean drainage basin area between the 

two slopes favors the conclusion that seepage forces are the dominant 

control. This conclusion is compatible with the regression and correla

tion analyses. 

Engineering Factors Controlling the Distribution of Landslides 

Because of a lack of bore hole data it was not possible to perform a 

rigorous slope stability analysis utilizing back calculations. However, 

an analysis of landslides consisting of brown colluvium using Taylor's 

stability numbers (Taylor, 1937) and of the green colluvium using a modi

fication of the infinite slope concept (Skempton and Hutchinson, 1969) is 

possible. The analysis should indicate those factors promoting slope 

failure. If the conclusion, based on the activity distribution in space 

and the statistical analysis is correct, water, i.e., seepage forces, 

should again prove to be the critical factor. 



Figure 35. Cross section across Tensleep Canyon. See Figure 8 for location of traverse line E-W. 
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Where brown colluvium is involved in landsliding, slumping is the 

dominant type of movement and seepage forces are critical in triggering 

the failures. Based upon test data provided by the Federal Highway Com

mission for the section of highway above Shell Falls, the curves of 

critical slope height vs. slope angle in Figure 36 were constructed using 

Taylor's stability numbers (Taylor, 1937). The critical slope height is 

calculated by the following equation: 

H^r = (c/Y)*(1/SN) 

where 

= critical slope height 

c = unit cohesion 

Y = bulk density 

SN = Taylor's stability number 

Where steady seepage is involved a weighted friction angle, (j)^, is 

used to find the correct stability number (Taylor, 1937). (f)^ is approxi

mated by the equation; 

(approx.) 

where 

= weighted friction angle 

Yj^ = buoyant unit weight 

Y^ = total unit weight 

= developed friction angle 

This is the same (|)^ as is used in the case of sudden drawdown. However, 

Taylor (1948) states, "It may be shown that the case of steady seepage is 

in general slightly more stable than the sudden drawdown case, and thus 



Figure 36. Critical slope height (Hg^) vs. slope angle in degrees for 
brown colluvium in Shell Canyon. Curve based on Taylor's 
stability numbers, and cohesion of 3792 kg/m^, (j)^ of 30°. 
Yd curve based on dry bulk density of 58 kg/m^, Ys curve 
based on saturated bulk density of 64 kg/m^. ^ slopes 
above Shell Falls that failed, # slopes above Shell Falls 
that were stable. A - no seepage forces, B - seepage 
parallel to slope. 
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the stability number for the sudden drawdown case may often be used as a 

conservative approximation of the stability number under steady seepage." 

The calculations for the roadcuts above Shell Falls are based on a 

2 
single triaxial determination of c = 3792 kg/m , and tj)^ = 30° for the 

brown colluvium. When no seepage forces are involved (Figure 36, curve A) 

the stability calculations indicate that all roadcuts above Shell Falls 

should be stable as all roadcuts plot below curve A. However, two of 

these roadcuts have failed in the recent past. 

When seepage forces are taken into account (Figure 36, curve B), the 

critical slope height is reduced. The two roadcuts that failed plot above 

the critical slope height curve. Those that are presently stable plot 

below the curve. It is clear then that seepage forces were responsible 

for the failure of the two roadcuts. 

Seepage forces also appear to be important in triggering naturally 

occurring landslides in Shell Canyon. Of the twenty-four landslides 

statistically analyzed, nine were slumps. When vs. slope angle is 

plotted for these slumps (Figure 37) six of the nine plot above the criti

cal slope height line for steady seepage. Seepage forces would be ex

pected to increase during a climatic change when there was more available 

moisture. The three slumps that plot below the line may be composed 

of some material other than brown colluvium or they may have been seismi-

cally triggered. 

Although the debris slides cannot be analyzed directly, it can be 

demonstrated that as the moisture content of the green colluvium of which 

they are composed increases the slope stability decreases. Data supplied 



Figure 37. Critical slope height (H^r) vs. slope angle for naturally 
occurring slumps in Shell Canyon. is in meters. 
Slope angle is in the form of rise/run. Line A is the Her 
line for F = 1. 
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by the Federal Highway Commission (Table 14) indicate that the green col-

luvium has a friction angle (<j)) of 0° and that cohesion decreases with 

increasing moisture content (Figure 38). 

Landslides on a planar surface of failure in an infinite slope 

(debris slides) may be analyzed using the following equation (Skempton and 

Hutchinson, 1969): 

2 
c + zcos B (y  - my )tan^ 

F = 
yzsingcosg 

where 

F = safety factor 

z = depth to failure surface 

Y = bulk density of soil 

= bulk density of water 

m = ratio of height of water table above failure surface to total 

depth of failure surface 

(p = angle of internal friction 

3 = slope angle 

Assuming F = 1 and fS = 0, for the green colluvium, this equation reduces 

to: 

= singcosg 
yz 

Two unknowns still remain, z and g, so the equation cannot be solved 

directly. However, based on the c and y data supplied by the Federal 

Highway Commission (Table 14) for the green colluvium it is possible to 

drawn a set of curves of z vs. 3 (Figure 39). 
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Table 14. Triaxial test data for green colluvium supplied by the Federal 
Highway Commission 

% moisture 
3 

Density kg/m 4) c kg/m^ 

10.3 1653 0 18,000 

15.1 1778 0 18,000 

20.3 1760 0 10,546 

24.7 1603 0 2,602 

30.4 1486 0 636 

For the landslides that were statistically analyzed in Shell Canyon, 

the depth to z for the debris slides in the green colluvium is unknown, 

however, elevation of top of scarp-elevation of base of scarp will give an 

indication of the maximum depth of z. PRESLO is assumed to be equal to $. 

When the values of maximum z vs. 3 for the debris slides are plotted on 

Figure 25, all points plot below curve C. This Indicates that the green 

colluvium has a relatively high moisture content (20.38) when it failed. 

The moisture content of slope forming materials will increase in a region 

when the climate is changing towards one of greater available moisture. 

The analysis of both the slumps and debris slides indicate that 

seepage forces are the critical factor in triggering the landslides in 

Shell and Tensleep Canyons. However, it must be kept in mind that in 

another geologic setting some other factor such as slope geometry could 

prove to be more important. 



142 

-10 

-c 

-5 

Figure 38. C/y^ vs. w, moisture content. C/yj is in kg/m, moisture con

tent is in percent. of c/yj vs. w line is 0.89. Based on 
the raw data in Table 14. 
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Figure 39. Z vs. 3 for debris slides in green colluvium. Z is in meters, 
3 is in degrees. Curve A based on c of 18,000 kg/m^ and % 
moist, of 10.3. Curve B based on c of 18,000 kg/m^ and % 
moist, of 15.1. Curve C based on c of 10,546 kg/m^ and % 
moist, of 20.3. Curve D based on c of 2,602 kg/m^ and % 
moist, of 24.7. Curve E based on c of 636 kg/m^ and % moist, 
of 30.4. For raw data see Table 14. 
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Quaternary History of Shell Canyon 

The Quaternary history of Shell Canyon consists primarily of periodic 

episodes of landslide activity and advances of alpine glaciers. It is 

based on the morphology of surficial deposits, cross-cutting relationships 

between landslide deposits and glacial moraines, the relationship between 

landslide deposits and volcanic ash deposits, and the stratigraphy of 

buried landslide deposits. The history is summarized in Figure 40. 

What occurred in Shell Canyon prior to the time when Shell Creek cut 

down to the Precambrian surface can only be speculated upon. Shell Canyon 

is asymmetric, the northern side being much farther from the modern Shell 

Creek than the southern (Figure 9). There are three possible causes of 

this asymmetry. First, it could be due to the lateral migration of Shell 

Creek to the southwest. The dip of the Paleozoic rocks is to the south

west and the creek could have migrated downdip by the process of under

cutting. However, Shell Creek exits the canyon through a narrow gorge; 

thus this portion of the creek has been fixed in the same position 

throughout its history. Also, if lateral migration were the cause of the 

asymmetry there should be abundant crystalline boulders mixed into the 

brown colluvium on the north side of the canyon. There is only one small 

isolated location, directly south of Copeman's Tomb, where crystalline 

boulders were found on the north side of the canyon, so it is unlikely 

that Shell Creek has migrated laterally any extensive distance. Second, 

the asymmetry could be due to block gliding along the northern, updip side 

of the canyon. But, the cliffs on the north side of the canyon are com

posed of both the Bighorn and Madison Formations. As discussed in the 



Figure 40. Quaternary geologic history of Shell Canyon. 
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section on Environmental Controls of Landslides block glides in this 

situation are rare. The third and most likely explanation is that the 

north side of Shell Canyon has retreated due to the production of talus by 

the Bighorn-Madison cliff and the subsequent removal of the talus by col-

luvial landslides. 

Shell Creek cut down to the Precambrian surface sometime prior to the 

deposition of Dirty Sally's ash. It is inferred that at this time the 

large bedrock slumps, located on the south side of Shell Canyon, were 

formed because their toes are testing directly upon the Precambrian sur

face. With the exposure of the Precambrian surface, the base level above 

the first 2.4 kilometers of Shell Canyon was stabilized for the adjacent 

landslides. 

Shell Creek itself then entered a long period of relative stability 

once it had reached the Precambrian surface within the study area. The 

superposition of the Bluejacket and Kane ashes (Figure 15A) indicates that 

Shell Creek aggraded its channel slightly during an interval of approxi

mately 1.3 million years. 

Sometime after the deposition of the Kane ash. Shell Creek again 

began downcutting and the inner gorge of Shell Canyon was eroded. By the 

time the Field Camp ash was deposited. Shell Creek had downcut to a level 

only seven meters above its present floodplain. The creek continued to 

erode its channel to a point twelve meters below its present level. 

Twelve meters of Pinedale age alluvium fills the valley at the Wagon Wheel 

Cafe (Figure 51) (R. C. Palmquist, Iowa State University, Ames, personal 
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communication, 1978). Since Pinedale time, Shell Creek has been gradually 

degrading its channel. 

Within Shell Canyon, the first episode of colluvial landsliding of 

record occurred prior to the deposition of the Kane ash in Figure 22B. 

This is indicated by the underlying pond silts. The age of this episode 

of landsliding can only be speculated upon but it may be related to the 

same climatic changes that caused the Cedar Ridge glaciation. 

The second episode of landslide activity was probably seismically 

triggered. This episode is represented by the landslide that trapped the 

Kane ash in Figure 20. A period of stability followed during which the 

pond silts on top of the ash were deposited. 

The third episode of landsliding is indicated by the rotation of the 

ash bed in Figure 20. The age of this movement is unknown. It could be 

related to the climatic changes that occurred during the Sacagawea glacia

tion. Or if Richmond (1976) is correct and there were three advances of 

the Bull Lake glaciers then it might be related to the Bull Lake I glacia

tion. Here it has been tentatively correlated with the Sacagawea glacia

tion simply because that is the next younger glaciation. 

The evidence for landslide activity related to the Cedar Ridge glaci

ation, the seismic event, and the Sacagawea glaciation is found only in 

roadcuts. None of these periods of landslide activity has any relation

ship to the present landslide surface morphology. 

The inactive-3 landslide deposit which underlies the Ruble Creek 

Moraine may be related to the climatic changes associated with the Bull 
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Lake I glaciation of Richmond (1976). Part of this landslide deposit is 

exposed at the surface but its age cannot be conclusively determined. 

The first episode of landslide activity which has a surface expres

sion is the inactive-2. This has been tentatively correlated with the 

Bull Lake II glaciation of Richmond (1976). The remainder of the 

Quaternary history is characterized by a series of cycles which consist 

of episodes of landslide activity prior to each of the four remaining 

glacial advances. Each interglacial time was characterized by relative 

slope stability as is demonstrated by the present small scale landslide 

activity. 

Quaternary History of Tensleep Canyon 

The later Quaternary history that is post inactive-2 landslides of 

Tensleep Canyon is similar to that of Shell Canyon. The major difference 

is the stability of the north side of Tensleep Canyon since the deposition 

of the Kane ash (Figure 15D). The history of the canyon prior to the 

deposition of the Kane ash is largely unknown. The canyon was cur prior 

to the deposition of the Kane ash and a period of colluviation occurred to 

provide the stratified brown colluvium on which it rests. 
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MODELS OF SLOPE STABILITY 

Four factors may affect the regional stability of slopes in any given 

physiographic province. These are base level changes of streams, climatic 

changes, periods of glaciation, and seismic events. Four models are de

veloped to explain the effect of these factors (Figures 41, 42, 43, and 

44). The climatic, seismic, and composite glacial models are based on 

observations presented in this dissertation. The base level model is 

based on theory. In any particular area, one model may dominate over the 

others depending on the local geologic setting, or two or more models may 

interact simultaneously to modify the slope stability. 

The models are not designed to explain the stability of a slope at a 

specific site. The models are designed to explain the regional response 

of slopes to changes in their environment. The word region is herein used 

for an area ranging in size from a first order drainage basin to a 

physiographic province. The level of detail with which a model may be 

applied to any one region will vary depending on the physical size of that 

region. 

The base level, climatic change, and composite-glacial models are 

long term models. The time scale of the base level model is on the order 

of 100s to 1000s of years. The time scale of the climatic change and 

composite-glacial models is on the order of glacial-interglacial, i.e., 

thousands of years. The seismic model is the only short term model. The 

time scale is on the order of minutes or days. Therefore, landslides 

triggered by random precipitation events, which can and do occur (Nilsen 

et al., 1976), are not included in the time frame of these models. 
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Base Level Model 

In the long terra, the basic premise for this model is that the sta

bility of the slopes in a region is controlled by the base level of 

streams at their base. With the initiation of downcutting by the streams 

the valley slopes are oversteepened and become unstable (Figure 41). The 

area of unstable slopes will be related to the length of the reach wherein 

the streams are downcutting. After the streams cease downcutting, the 

slopes will continue to fail until they reach a slope angle adjusted to 

the new lower base level. 

The age relationships of the landslides in a region will be deter

mined by the manner in which the streams lower their base level. When the 

base level lowering is due to knickpoint migration upstream, the age of 

the landslides will decrease toward the headwaters of the valley. The 

area where the knickpoint originated is the site of the earliest down-

cutting and is likewise the first area where the streams reach their new 

base level and the landslides stabilize. The landslides are actively 

moving in the area of the knickpoint. When the base level lowering is 

caused by regional tilting, the streams in a region will simultaneously 

downcut throughout their length. In this case, the landslides will occur 

simultaneously throughout the valley and all will be roughly the same age. 

Provided the overall slope angle is not reduced by overland flow* 

etc., slopes affected by the base level model will remain in a state of 

quasi-equilibrium because the landslides will have moved just enough to 

reestablish the minimum stable slope angle. Therefore, older landslides 

need be no more "stable" than young ones. 



Figure 41. Base level model of slope stability. A stands for relative area of slope failure. 
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All slopes remain sensitive to either natural or man made environ

mental changes around them. A period of renewed downcutting will trigger 

a new period of landsliding. On the other hand, if the streams go through 

a period of aggradation the slopes will become more stable due to the 

buttressing effect of material deposited at the toes of the slopes. 

This model would apply to areas underlain by unconsolidated sedi

ments, areas of relatively weak sedimentary and metamorphic rocks, or 

volcanic rocks. Areas underlain by high grade metamorphic, or intrusive 

igneous rocks will be stable under any circumstances, provided they are 

not severely jointed. 

In the short term, landslides triggered by random precipitation 

events such as those described by Nilson et al. (1976) will be superim

posed upon the slope failure curve (Figure 41). Specific slopes near 

failure due to base level changes could fail from the decreased strength 

resulting from increased pore pressure generated by a short period of 

heavy precipitation. However, these failures would not change the overall 

shape of the curve. 

Climatic Change Model 

In this model base level does not change but the slopes in a region 

become unstable due to an increase in available moisture. This increase 

in available moisture may result from either a decrease in temperature 

and/or an increase in precipitation. The effect of either will be to 

increase the seepage forces within a slope. The model assumes that 

seepage forces are capable of affecting the stability of the slopes. 
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In the long term, if slopes are adjusted to a prevailing "dry" 

climate, then landsliding begins at or soon after the time when the 

climate becomes more "moist" (Figure 42). Provided the slopes fail at the 

same rate as the increase in available moisture, landsliding will cease 

soon after the available moisture curve has reached its peak (Figure 42). 

This quick response gives rise to large areas of the region being covered 

by landslides of the same age. 

Through geologic time a region may be affected by numerous periods of 

"wet" and "dry" climate. If a second period of "wet" climate supplies 

more available moisture than the preceding one, then it should reactivate 

the landslides initiated by the the first period of "wet" climate, provid

ed that these slopes have not been stabilized by some other factor. If 

the second period of "wet" climate provides less available moisture than 

the first, then no new landslides should be initiated. On a regional 

basis, there would be no increase in the relative area of slope failure 

with the onset of this second period of "wet" climate. 

In mountainous regions, however, a special situation exists. Moun

tain valleys are frequently bounded by steep slopes or cliffs made up of 

resistant rocks. This situation allows colluvium to accumulate at the 

base of the cliff during a period of "dry" climate when the slopes below 

the cliff are stable. The talus accumulation has the effect of increasing 

the slope angle and driving force on the slopes below the cliffs. Col

luvium may be formed during the "wet" periods of climate. There may in

deed be more formed. It simply never accumulates on the slopes below the 

cliffs because these slopes are failing by landslides. 



Figure 42. Climatic change model of slope stability. A stands for relative area of slope failure. 
B stands for available moisture. 
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The increase in slope angle and driving force on the slopes below the 

cliffs means that a period of active slope failure may occur with each 

period of "wet" climate. During a period of "wet" climate the overall 

slope angle below the cliffs is reduced due to landsliding. During a 

"dry" period of climate the overall slope angle increases due to the 

accumulation of colluvium. The next period of "wet" climate need not 

provide as much available moisture as the one preceding it to cause the 

slopes to fail again, provided enough colluvium accumulated at the base of 

the cliff. 

The shape of the decay portion of the relative area of slope failure 

curve in Figure 42 may vary according to the rate at which talus is sup

plied. A high rate of talus production will cause the curve to be 

"stretched" out over a longer period of time. A low rate of talus produc

tion will cause landsliding to cease soon after the peak in the available 

moisture curve is reached. 

If the available moisture is related to altitude, more at high 

altitude and less at low, each successive period of less intense "wet" 

climate will only reactivate landslides at successively higher altitudes. 

The oldest preserved landslides will be found at the lowest elevation 

because the most intense period of "wet" climate will affect the greatest 

overall area. This particular sequence would apply to mountainous areas 

that have undergone successively less intense "wet-dry" climatic changes 

during the late Pleistocene. Depending upon the length of the inter

vening "dry" periods landslides of distinctly different ages could occur 

in the same valley. 
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The relative stability of the modern slopes will be determined by 

what part of a "wet-dry" climatic cycle exists in a region at the present 

time. If the region is in the beginning phase of a "wet" period of cli

mate the slopes will be relatively unstable and will remain so until the 

available moisture curve peaks. During a "dry" period they will be rela

tively stable. 

This model applies primarily to two situations. First, valleys with 

stable base levels such as those floored by an inner gorge of high 

strength rocks that prevent base level changes by the valley's stream from 

affecting the valley slopes above the gorge. Or second, to areas under

lain by moisture sensitive materials. 

In the short term, landslides triggered by random precipitation 

events such as those described by Nilson et al. (1976) can be superimposed 

on the relative area of slope failure curve (Figure 42). Specific slopes 

near failure due to seepage forces could be made to fail due to a sudden 

and temporary increase in those seepage forces. However, this would not 

change the overall shape of the curve. 

Composite-Glacial Model 

This model is a combination of the base level model and the climatic 

change model. It applies to mountainous areas that have undergone alpine 

glaciation. The model is based on three assumptions: one, that the 

glacier itself advanced into the part of the valley undergoing landslides; 

two, that the glacier was capable of active erosion in that area and that 

the height of the slopes glacially oversteepened exceeds the height of any 
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morainal deposits; third, the glacial advance is contemporaneous with a 

period of increased available moisture. The increased available moisture 

is due to a decrease in temperature and/or increased precipitation. 

Over the long term, the landslides occur in two distinct pulses 

(Figure 43). The first pulse of slope failure occurs prior to the advance 

of the glacier into that section of the valley and is explained by the 

climatic change model. The landslides are initiated by the same climatic 

change that caused the glacial advance. The second pulse of landslide 

activity occurs after the retreat of the ice and is explained by the base 

level model in that the valley has been deepened and slopes oversteepened 

due to erosion by the glacier. Landsliding will continue to occur until 

the slopes attain a stable angle consistent with the new base level and 

interglacial climate. During the actual ice advance the slopes are rela

tively stable due to the buttressing effect of the ice mass on the sur

rounding valley sides. 

The relative stability of the slopes in a glaciated region is deter

mined by what phase of the composite-glacial model the region is in. 

"Just prior to" and "just after" the glacial advance the region is charac

terized by unstable slopes. During the remainder of the interglacial and 

during the glacial advance itself the slopes should be relatively stable. 

Under this model there will be two ages of landslides in a region for 

each glacial advance. The minimum difference in ages of the two periods 

of landslide activity in any one valley will be determined by the time the 

glacier actually occupied that valley. However, only the second pulse of 

landslide activity will be preserved for any particular glacial advance. 



Figure 43. Composite-glacial model of slope stability. A stands for relative area of slope failure. 



COMPOSITE-GLACIAL MODEL 

GLACIAL ADVANCE QJ 
OD 
< 
LU 
a: 
o 
z 

o\ 

TIME (1000 S OF YEARS)- ^ 



163 

This model will apply to areas underlain by surficial materials or 

where the bedrock is of insufficient strength (shales, schists, phyllites, 

etc.) to form stable, steep slopes. The model does not apply to regions 

underlain by high grade metamorphic or intrusive igneous rocks, unless 

heavily jointed. When not heavily jointed these rocks will form steep 

slopes that are relatively stable. 

In the short term, landslides triggered by random precipitation 

events such as those described by Nilson et al. (1976) can be superimposed 

on the relative area of slope failure curve (Figure 43). Specific slopes 

near the point of failure could be made to fail due to a short term rise 

in the water table. However, this would not change the overall shape of 

the curve. 

Seismic Model 

This is the only one of the four models that deals with a relatively 

short term event (Figure 44). Assuming that landslides are not taking 

place due to other causes, during an earthquake landslides will occur on 

slopes that are otherwise stable. The more intense the earthquake is the 

larger the relative area of slope failure. Slopes already near failure 

within a region will fail first, then the more "stable" areas will fail. 

Landslides will continue for a period of time after the earthquake ceases 

as the slopes adjust themselves to stresses imposed on them by the earth

quake. 

The age distribution of the landslides in a region will depend on the 

timing of the earthquakes. For any one earthquake, landslides will occur 



Figure 44. Seismic model of slope stability. A stands for relative area of slope failure. 
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over a relatively short period of time (minutes, hours, days, or weeks, 

rather than hundreds or thousands of years). If the earthquakes are 

scattered randomly through time then the resulting landslide deposits will 

have no systematic age distribution. If the earthquakes are systematical

ly distributed through time then the landslides will also be. 

Application to Shell and Tensleep Canyons 

In Shell Canyon the base level, climatic change model and the seismic 

models apply to different parts of the canyon. The composite-glacial 

model does not apply because the Bull Lake and younger glaciers advanced 

no more than three kilometers into the part of the canyon where landslides 

occurred, and the Bull Lake and younger glaciers did not deepen and over-

steepen this part of Shell Canyon. 

On the south side of Shell Canyon, above the inner Precambrian gorge 

(Figure 52) the base level model applies to the bedrock slumps which were 

initiated by the erosion of the Cambrian-age shales above the Precambrian 

nonconformity. When Shell Creek eroded a gorge below the Precambrian sur

face, base level changes for the slumps ceased. 

Only one of the landslides exposed in the roadcuts in Shell Canyon 

can be definitely assigned to a model. The proximity of Shell Canyon to 

Yellowstone Park should make the area subject to earthquakes during the 

eruption of the Pearlette ashes. The ash bed in Figure 20 in Shell Canyon 

proper was deposited in a closed depression formed by a landslide. Geo

logic evidence indicates this landslide took place immediately prior to 
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the deposition of the ash. Therefore, it seems likely that the seismic 

model applies to this landslide. 

The colluvial landslides in the areas which have a landslide surface 

morphology are younger than the erosion of the inner Precambrian gorge 

(Figure 40). The climatic model must apply to these landslides since base 

level changes are precluded. 

To the west of the Precambrian gorge, base level changes have taken 

place throughout the history of Shell Canyon. Since the available 

engineering data indicate the material making up these slopes is sensitive 

to seepage forces it appears that both the climatic change and the base 

level models are superimposed on this area. 

The largest continuous area of landslides is located on the north 

side of Shell Canyon above the Precambrian inner gorge. The deposits re

tain a landslide surface morphology and are younger than the erosion of 

the inner gorge (Figure 40). The landslides are also younger than the 

landslide containing a volcanic ash deposit which was seismically trig

gered. Since neither base level change nor glaciation could have ini

tiated these landslides, climatic changes appear to be the triggering 

factor. The age distribution of the landslides supports this. Large 

areas are covered by landslides of the same age (Figure 52). The position 

of the Bull Lake and Pinedale moraines indicates that each period of "wet" 

climate was less intense than the one that preceded it. In general, suc

cessively younger landslides are found at successively higher lelvations 

(Figures 29, 30, and 31). 
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In Tensleep Canyon the situation is less obvious but the climatic 

change model appears to dominate over the others. In Tensleep Canyon no 

inner Precambrian gorge exists to form the base level of the landslides. 

However, the base of the Pinedale I moraine is at the level of the modern 

Tensleep Creek. For the area upstream there have been no base level 

changes to initiate landslides since the deposition of the Pinedale I 

moraine. Neither has the Pinedale I glacier deepened or oversteepened the 

valley. Because landslides are found both upstream and downstream from 

the moraine, it is assumed that climatic changes have caused both of them. 

The most convincing evidence in support of the climatic change model, 

however, is in the different behavior of the northwest and southeast side 

of Tensleep Canyon previously discussed. 

In other areas of the Western U.S., particularly areas underlain by 

thick sequences of shales that have been recently uplifted, the base level 

model may dominate over the others. Bailey (1970) implies that base level 

changes are responsible for triggering most of the landslides in the Teton 

National Forest, particularly in the area of Moran Junction. 
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CONCLUSIONS 

1. Landslides have been a major agent of erosion in Shell and 

Tensleep Canyons throughout the Quaternary. Periods of increased availa

ble moisture (glacial climates) were characterized by unstable slopes and 

intense landslide activity, whereas periods of decreased available mois

ture (interglacial climates) were characterized by relative slope sta

bility . 

2. Two types of landslides are found in the canyons, bedrock and 

colluvial. Bedrock landslides consist of slumps, block glides, and debris 

slides. The type of landslide that occurs is controlled by the geometric 

setting of the bedrock. Colluvial landslides are composed of slumps and 

debris slides. The type of landslide that occurs appears to be controlled 

by slope geometry. However, the initiation and the size of the colluvial 

landslides are controlled by seepage forces. Base level changes are rela

tively unimportant in this geologic setting. 

3. Landslides which still retain a surface morphology may be 

classified on the basis of their activity. When these units are mapped it 

is possible to determine regional trends in slope stability. 

4. Volcanic ash deposits of four different ages are found in the 

study area. They can be differentiated locally on the basis of weight 

loss and fusion temperature. The relationship of landslide deposits to 

these ashes, plus the relationship of landslides to glacial deposits, 

permits a detailed Quaternary history of the study area to be determined. 

5. There are four models that may be used to explain the stability 

of slopes. The climatic change model applies to the bulk of the slopes in 
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both Shell and Tensleep Canyons. The relative stability of the slopes in 

any given area is determined by the applicable model and what point in 

time the area is in. 

6. There is no single model that will explain the behavior of all 

slopes in all regions. In any given region one of the four models may 

apply or a combination of two or more. Each new area will have its own 

set of unpleasant surprises depending on the climatic history and geo

logical setting and must be treated accordingly. 
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APPENDIX A: CLASSIFICATION AND REGIONAL CONCEPT OF LANDSLIDES 

Introduction 

A complete review of the literature on landslides is not physically 

possible. At this point over 700 papers have been found on the subject. 

The last comprehensive review of landslides was by Sharpe (1938). The 

purpose of Appendix A is to discuss the classification of landslides, the 

recognition of landslides, the regional concept of landslides, and land

slides in the Rocky Mountains. 

Classification 

Many workers on the subject of landslides have recognized the need 

for the systematic classification of such phenomena. Ward (1945) stated: 

A classification of the types of failure is necessary to the 
engineer to enable him to recognize the different phenomena for 
purposes of design and also enable him to take the appropriate 

remedial or safety measures necessary. The geographer and geologist 
need a classification so that they may interpret the past and pre
dict the present trends of topography as revealed by their observa
tions . 

The different schemes of classification are many and varied. Terzaghi 

(1950) said, "A phenomenon involving such a multitude of combinations 

between materials and disturbing agents opens unlimited vistas for the 

classification enthusiast." 

Molitor (1894) presents one of the earliest comprehensive classifica

tions of landslides (Table 15). He stated, "A landslide, especially if of 

any great extent, may be classed among the worst of difficulties which the 

engineer is called upon to overcome." He based his classification on the 
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Table 15. Molitor's (1894) classification of landslides 

Type Criteria 

1 Those occurring where the slope is too steep to maintain 
equilibrium of the mass. 

2 Those caused by inclination of the natural strate, combined 

with the lubrication action of water. 

3 Slides caused by the action of water alone. 

4 Slides where the underground is not capable of supporting the 
weight of the overlying material. 

conditions causing landslides. In type 1 and 2 landslides Molitar (1894) 

placed mass-movements with a clearly defined sliding surface. In type 3 

landslides the material becomes water saturated and behaves as a fluid, 

i.e., mudflow. Type 4 landslides are caused by the collapse of the roofs 

of caves or mine tunnels. Both natural and man-made landslides fit into 

this simple classification. Molitar's (1894) paper appears to be con

siderably "ahead of its time" and is recommended as excellent reading on 

the subject of landslides. 

Russel's (1900) classification recognized only two types of land

slides. One is the downhill movement of a single block of either rock or 

unconsolidated sediment, with a backward rotation. This would be a slump 

in Varnes's (1958) classification. Two is displaced blocks with open 

fissures. This appears to be a block glide. More importantly Russel 

recognized that a continuous gradation from snow avalanches to landslides 

to soil creep exists rather than distinct breaks between the different 

types of movement. 



179 

Howe (1909) conducted one of the earliest regional studies of land

slides in the United States. He recognized that the Mancos Shale was in

volved in most of the landslides in the San Juan Mountains of Colorado. 

He classified the landslides there on the basis of component material and 

type of movement (Table 16). His classification is broader than previous 

works since it includes both soil creep and mudflows. However, he puts 

all landslides caused by construction into the same group. 

MacDonald (1915) derived a partial classification of landslides 

(Table 17), based on his work in the Panama Canal Zone. This classifica

tion is oriented toward engineering practices. Mass-movemenst resulting 

from structural breaks and deformation can be up to several hundred yards 

in length. They consist of a block of material that settles vertically 

and is accompanied by bulging of the ground surface at the toe of the 

slope. Later the block tilts outward and disintegrates. This type of 

landslide is due to weak rock units and an oversteepened slope. The 

normal or gravity slides form where porous and permeable material slides 

over impermeable material into the cut. This type of landslide is 

aggravated by jointing of the rocks. The fault zone slides occur in the 

sheared zones along faults. When an excavation cuts into the sheared zone 

a landslide usually results. Slides due to erosion and slides due to wash 

of streams appear to be simply slope wash on bare ground and wave erosion 

respectively. 

Newland (1916) recognized five different types of landslides that 

occurred along the Hudson River Valley (Table 18). Although not specifi-
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Table 16. Howe's (1909) classification of San Juan landslides 

Type Material 

Soil (or earth) creep Detritus 

Earth slides or soil slips 

Mud flows 

Talus slumps 

Submarine slides at edge of continental shelf, or from 
ends of deltas 

Rock slides: large masses of rock rotating backward on Solid rock 
axes parallel to strike of slope down which movement 
takes place 

Rock falls: rock shattered; if of sufficient magnitude 
shattered rock moves with great velocity outward from 
base of cliff as a flow of newly made detritus 

Rock slides or slides on detritus, resulting in the Detritus & 
movement of both solid rock 

Slides from artificial cuts Misc. 

Sinking of ground over mines or caverns 

Table 17. MacDonald's (1915) classification of landslides 

Type Criteria 

1 Structural breaks and deformations in the rock material 

2 Normal or gravity slides 

3 Fault zone slides 

4 Slides due to erosion 

5 Slides due to wash of streams 
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Table 18. Newland's (1916) classification of landslides 

Type Criteria 

Surface creep Involve soil, sand, and gravel, little active in 
plastic clays 

Slumps and flows Peculiar to clays and silts 

Subsidence Due to squeezing out of a wet clay substratum on the 
plane of its bed 

Subsidence Due to unbalanced pressure on confined liquid sub
stratum, leads to an upward movement at a distance 

cally stated his classification appears to be based on type of movement 

and material. 

Ladd (1935) was concerned primarily with railroad engineering and 

divided landslides into five main classes (Table 19). His seventeen sub

divisions are based on the kind of material involved and the type of move

ment. His classification is rather restricted since naturally occurring 

ground subsidence and rockfalls have no place in this classification. 

Ladd did notice that natural materials are rarely homogeneous, which 

makes the mathematical treatment of landslides extremely difficult. Also, 

the second half of his paper is an excellent review of the methods used in 

the prevention and control of landslides. 

Sharpe (1938) attempted a continent wide classification of land

slides. His classification is based on the kind of movement and their 

relative rates. He felt that a classification system should be based on 

either observation of the movement or of its resulting deposits. 
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Table 19. Ladd's (1935) classification of landslides 

Type Flows; Criteria 

1 

a Mud flows consisting of clay material 

b Mud flows consisting of volcanic ash or its decomposition 

products 

2 Slope readjustments; in materials as follows: 

a Soil accumulations, originating in situ 

b Talus accumulations, originating through gravity, and 
frost and weathering processes working on cliff faces of 
rock formations, or on steeply sloped surfaces 

c Beds of clay 

d Sand accumulations 

e Heterogeneous glacial debris 

f Unconsolidated volcanic products 

g Aggregates of shattered serpentine, or of any of the 
clay-like group of serpentine materials 

h Artificial fills and half-fills made of earth-materials 

other than boulders and gravel 

3 Undermined strata (cases not included in subsidences and rock 
falls because of horizontal element in movement): 

a Collapse with slide characteristics, resulting from 
squeezing-out of underlying wet clayey beds, or the 
escape of underlying rounded sand beds (unconsolidated) 

b Collapse with slide characteristics, due to breaking down 
of underlying weak, poorly consolidated strata; or such 
areas in igneous rock masses (volcanic) 

c Collapse with slide characteristics, due to burning of 
underlying lignite beds 

4 Structural slides. Movement on and because of : 

a Bedding planes 

b Joint planes 

c Fault planes 

d Schistose planes 

5 Clay ejection from ancient clay-filled caves opened by cuts (rare) 
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The types of landslides are subdivided primarily according to their 

predominant type of movement. He defines flowage as a viscous or plastic 

movement. No shear plane is present and the movement takes place by a 

continuous deformation. A slide movement takes place on a slip surface. 

Within each type of movement, a great range in the rate of movement 

exists. 

Sharpe's second major criteria for subdivision is the water or ice 

content of the material involved. The kind of material is third in impor

tance. His classification (Figure 45) has ten major types and eight sub

types. In Figure 45 a wedging out or the use of dashed lines indicates a 

gradation rather than a sharp boundary between types of movement. Sharpe 

suggests that forms intermediate in nature be described as transitional or 

compound. Submarine landslides are not included in the classification. 

The chief advantage of Sharpe's classification over many earlier ones is 

that natural and artificial landslides are not separated. Sharpe recog

nized that the same general processes are involved in both. 

Ward (1945) offers another comprehensive classification of land

slides. It encompasses mass movement from solifluction and creep to 

rotational slumps. Ward's classification (Table 20) is based on (1) the 

geological strata and structure of the slope, and (2) the climate, in

tensity and frequency of rain, temperature changes, and wind. The depth 

of the movement increases towards the bottom of the table. He defines the 

terms used in Table 20 as follows: 

a. Solifluction—the movement may be classed as a modified form of 
soil creep with the freezing and thawing process predominating, 
and may only affect the top few inches of soil. 
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Figure 45. Sharpe's (1938) classification of landslides. 
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Table 20. Ward's (1945) classification of landslides 

Type Climate 

Surface 
erosion 
creep 

Fragmentai 
slides 

(1) Dry 

(2) Par
tially sat. 

(3) Sat. 

(4) 

Rockfalls 
and slides 

Detritus 
slides 

Rotational 

Solifluction (frost heaving and thawing) 

Soil erosion, involving rapid transport of 
surface materials by wind and rain 

Temperature, 
rain 

Wind and 
rain 

Rolling down of surface layers of scree, sand. Wind, vi
and gravel slopes brations 

Fine material behaves as if slight cohesive, 
shallow mass slide. Shale screes develop 
cohesion and become detritus slides. 

Saturated fine loose sands may pack closer 
on slight disturbance, and behave as a heavy 
liquid. Submerged dense sands behave as in 
(1). 

Collapse of overlying strata undermined by 
washing out of sand 

Falls resulting from frost action and deeper 
slides along joints and faults 

Shallow mass slides in predominantly cohe
sive materials, considerable relative dis

tortion within the moving mass, mud run 

Deeper seated rotational slips, minor initial 
distortion of moving mass 

Rain, wind 

Rain, vi
brations 

Rain, tides 

Temperature, 
rain 

Rain 

Shear slips Typical of clays Rain 

b. Soil erosion—it involves surface transport and pickup of friable 
soils under frictional drag of water and wind. 

c. Soil creep—this phenomena is one of slow progressive downhill 
movement of the upper few feet of soil. 

d. Fragmentai slides—fragmentai refers to cohesionless materials 
such as sand, gravel, and scree. 
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e. Rotational shear slips—movement is a rotational one with minor 
distortion of the moving mass. 

f. Rockfalls and slides—these are movements associated with steep 
rock exposures when not underlain by weaker materials. 

g. Detritus slides—shallow movements in cohesive materials. 

Ward (1945) recognized the occurrence of compound landslides. However, 

the classification (Table 20) does not include mass movement in bedrock 

other than rockfalls and slides. 

In 1958, Varnes presented a classification of landslides (Figure 46) 

which utilizes features that might be observed in the field with a minimum 

of investigation. It does not refer to the causes of the landslides but 

is based upon two criteria: (1) the type of material involved in the 

landslide (based on the condition of the material prior to movement), and 

(2) the type of movement. Varnes (1958) states that this classification, 

"resembles more than any other that proposed by Sharpe (1938)." He 

recognized that: 

More often than not, any one landslide shows several types of 
movement within its various parts or at different times in its de
velopment. Most slides are therefore complex. 

For a detailed discussion of the terminology used in Figure 46 see Varnes 

(1958). Varne's classification is used in this paper. 

Jones et al. (1961) used two different methods of classifying land

slides in the Columbia River Valley. In 1942 they classed the lands 

along the shore of Franklin D. Roosevelt Lake into five general groups for 

land use appraisal. The classes are: (1) landslides likely, (2) land

slides unlikely, (3) slide areas, (4) bedrock, and (5) indeterminate. 
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Figure 46. Varne's (1958) classification of landslides. 
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Although this appears to be a simple, useful system for land use mapping 

it is mentioned only briefly by the authors and their terminology is not 

defined. They also classified landslides (Table 21) by age, relation to 

bedrock, and process of movement. The authors define recent as a land

slide that is recorded or can be recalled by a local resident, and ancient 

as a landslide that is not recorded or cannot be recalled by a local 

resident. 

Table 21. Jones et al. (1961) classification of landslides 

Type Criteria 

1 Recent slump earthflow 

2 Recent slump earthflow limited by bedrock 

3 Ancient slump earthflow 

4 Slip-off slopes 

5 Multiple alcoves 

6 Landslides off bedrock 

7 Talus slumps 

8 Landslides in artificial slopes, including some natural material 

9 Mudflows 

10 Dry earthflows 

Hutchinson (1968) classified landslides on the basis of the mechanism 

of movement and the morphology of the resulting deposit (Table 22). The 

rate and type of material involved in the landslide are secondary cri

teria. This classification system is similar to Sharpe's (1938) system, 

but does take into account mass movement by creep and solifluction. 
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Table 22. Hutchinson's (1968) classification of mass movement 

Type Criteria 

(1) Shallow, predominantly seasonal creep Creep 

a. Soil creep 

b. Talus creep 

(2) Deep-seated creep; mass creep 

(3) Progressive creep 

(4) Freeze-thaw movements Frozen ground 

a. Solifluction phenomena 

b. Cambering and valley bulging 

c. Stone streams 

d. Rock glaciers 

(5) Translational slides Landslides 

a. Rock slides; block glides 

b. Slab, or flake slides 

c. Detritus, or debris slides 

d. Mudflows 

(i) Loess flows 

(ii) Flow slides 

(6) Rotational slips 

a. Single rotational slips 

b. Multiple rotational slips 

(i) In stiff, fissured clays 

(ii) In soft, extra-sensitive clays; clay flows 

c. Successive, or stepped rotational 

(7) Falls 

a. Stone and boulder falls 

b. Rock and soil falls 

(8) Sub-aqueous slides 

a. Flow slides 

b. Under-consolidated clay slides 
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Carson (1976) classified landslides on the basis of mode of deforma

tion and character of the material. His classification system includes 

creep phenomena and is most similar to that previously proposed by 

Hutchinson (1968). 

Finally, Blong (1973) tried to devise a numerical classification of 

the debris slide, debris avalanche, and debris flow series of Varne's 

(1958) classification. His attempt was based on "19 numerical (erosional, 

slope length, etc.) and 43 disordered multistate (shear plane shape, 

etc.) attributes." However, he found no single form or attribute that 

distinguished between the types of landslides. He concluded that until 

some more distinctive criteria could be found that we were better off 

using simple descriptive classifications. Carrara et al. (1977) have also 

reached the same conclusion. 

Recognition of Landslides 

The three basic methods by which landslides may be recognized are a 

ground survey, the study of topographic, geologic and soils maps, and the 

study of aerial photographs. One of the most obvious characteristics of 

landslides is the presence of a hummocky ground surface (Ritchie, 1958). 

Also a knowledge of the general setting in which a landslide may take 

place is best obtained through personal acquaintance and long term obser

vation of the area (Ritchie, 1958). The criteria for recognizing active 

or recently active landslides has been summarized by Ritchie (1958), and 

is presented in the following paragraphs. 
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Ritchie places special emphasis on the observation of cracks in the 

ground surface. He believes these can give important information as to 

the cause and the character of a landslide. En echelon cracks are par

ticularly important because they generally develop before other signs of 

failure. A map of en echelon cracks can generally outline the slide area. 

Where a slump type of failure is developing (Figure 47), the cracks at the 

head of the slump will be slightly curved in the vertical plane and con

cave towards the direction of movement. If appreciable vertical offset 

has occurred, the cracks will wedge shut at depth. On the other hand, in 

a block glide type of movement (Figure 48), most of the cracks will be 

parallel to the slope or the cliff face. And the cracks will not wedge 

shut at depth. Block glides can be distinguished from lateral spreading. 

In a block glide only a few major cracks appear in the upper part of the 

slide, whereas a maze of intersecting cracks exist where failure has taken 

place by lateral spreading. It is important to be able to recognize the 

different types of failure since for engineering purposes different types 

of failure will require different corrective procedures (Ritchie, 1958). 

Topographic, geologic, and soils maps have proven useful in the study 

of landslides. Even though they generally neither show landslides nor 

yield detailed information to solve specific landslide problems, they do 

provide useful background information which Ritchie (1958) has summarized 

as: 

a. Rock and soil units and their characteristics. 

b. Areal distribution of rock and soil units. 
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Figure 47. Tension cracks as typically developed in a slump slide in 
cohesive materials. (Based on Terzaghi and Peck, Figure 

151, 1947). 



Figure 48. Crack pattern in slump (block glide??) that indicates 
flowage in depth beneath harder material at surface. 

Broken pipes from reservoir at top of hill dumps a large 
amount of water into an old slide and reactivated it. 
Horseshoe-shaped scarp in imperfect, differentiating it 

from that of a true slump. The greatest movement is near 
the center of the slide, as indicated by arrangement of 
cracks and of standing water. The fact that cracks are 
convex outward is indicative of flow movement in depth. 
South side of Reservoir Hill, Dunbar, W. Va. (From draw
ings supplied by Robert C. Lafferty, Consulting Geologist) 
(Ritchie, 1958.) 
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c. Sequence of rock and soil units. For example, a weak unit that 
could cause failure may not be exposed at the surface but may be 
plainly shown on a geologic cross-section or on a soil profile. 

d. Character and distribution of folds, faults, and joints in bed
rock, all of which may seriously affect its susceptibility to 
sliding. 

e. Location of volcanic cinder cones and similar features that offer 
special problems. 

f. Drainage pattern, streams, lakes, and swamps, all of which give 
indication of relative permeability of underlying materials. 

g. Bowl shaped headwater regions of creeks, which suggest landslide 
origins. 

h. Terraces, slopes, and depressions. 

i. Abnormally steep slopes, with mounds of possible landslide origin 
at their bases. 

j. Scalloped escarpments that suggest landslide origins. 

k. Anomalous constrictions in canyons, quite possibly caused by 
landslides. 

The use of air photos has numerous advantages over conventional maps, 

and in some cases over ground surveys. These advantages are summarized by 

Liang and Belcher (1958) as: 

a. Air photos present an overall perspective of a large area. When 
examined with a pocket or mirror stereoscope, overlapping photos 
give a three-dimensional view. 

b. Boundaries of existing slides can be readily delineated on air-
photos. 

c. Surface and near surface drainage channels can be traced. 

d. Important relationships in drainage, topography, and other 
natural and manmade elements that seldom are correlated properly 
on the ground become obvious on air photos. 

e. A moderate vegetative cover seldom blankets details to the photo-
interpreter as it does to the ground observer. 
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f. Soil and rock formations can be seen and evaluated in their 

"undisturbed" state. 

g. Continuity and repetitions of features are emphasized. 

h. Routes for field investigations and programs for surface and sub
surface exploration can be effectively planned. 

i. Recent photographs can be compared with old ones to examine the 
progressive development of slides. 

k. Air photos can be studied at any time, in any place, and by any 
person. 

1. Through air photos, information about slides can be transmitted 
to others with a minimum of ambiguous description. 

However, there are certain limitations on the use of air photos in in

vestigating landslides. Liang and Belcher (1958) state that these are: 

a. Personal Experience - The usefulness of air photos increases with 
the individual's experience in interpretation and with his knowledge 
concerning the area under study. An inexperienced interpreter should 
be particularly careful in a new, complex area in which he has little 
background knowledge. 

b. Scale - The scale of ordinary existing photography (1:15,000 to 
1:30,000) is adequate for the study of most terrain and slide prob
lems. However, in geologically complex areas or in areas where land
slides are rather small, a scale of 1:5,000 to 1:10,000 would be de
sirable. Pictures within this range of scale are commonly available 
when the route has been photographed for photogrammetric mapping 
purposes. Photography of scales even larger than this is good for 
detailed examination, but the area covered in each photograph is 
limited and, therefore, the over-all perspective is more difficult to 
grasp. 

c. City Development - In well built-up areas, natural conditions are 
altered or concealed by human activities. There, air photography may 
have special merits in city planning and related purposes, but its 
usefulness in landslide investigation is greatly handicapped, espe
cially when the landslides are small. 

d. Ground Investigation - It should be emphasized that the use of 
air photos cannot and should not replace ground investigation en

tirely. Through careful planning with air photos, however, the sur
face and subsurface exploration necessary for a landslide study can 
be profitably reduced to a minimum. 
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The choice of the proper scale is particularly important in the study 

of landslides. Salgeiro (1965) using aerial photos at a scale of 1:6,000 

was able to map the crack and joint pattern of a potential landslide 

directly from the photographs. However, if the scale is too large then 

"massive" landslides, greater than one square mile, are almost impossible 

to detect (Dishaw, 1967). Dishaw (1967) found scales of 1:12,000 and 

1:10,000 to be of little use and he was best able to detect these land

slides at 1:63,000 scale photographs. To locate these massive landslides 

one must look for anomalies in the valley cross-section and Dishaw's 

(1967) criteria for recognizing them are: 

a. The u-shaped cross-section of a glaciated valley is absent (in a 
glaciated area). 

b. The valley is usually narrower at the slide site, which is some
times a canyon. 

c. The presence of a large block of material in the bottom of an 

otherwise unbroken valley section. 

d. The presence of bedrock islands in a river or lake occupying a 
former glaciated valley. 

e. The irregular shoreline of either a lake or a river. 

f. The presence of deep and extensive areas of broken bedrock. 

g. The slide material has a jagged or at least huimaocky appearance. 

h. Rapids in a stream. 

i. Bulging at the toe of a slide. 

j. The presence of a scarp face on the valley side, usually with 
associated talus banks. 

k. The presence of ponds and undrained depressions on the valley 
slopes. 



198 

Liang (1959) feels that when photographs of the proper scale have 

been obtained the most obvious morphologic features of landslides that can 

be observed on the photographs are: 

a. The scarp at the head of the slide. 

b. Hummocky topography and the haphazard drainage pattern of the 
mass. 

c. The strikingly different tones and vegetative characteristics 
between the slide area and adjacent stable land. 

These features become less prominent as the landslide gets older (Liang, 

1959). Also, it is possible to determine the slope angle directly from 

the aerial photographs. Danial (1966) outlines one of the simpler of the 

graphical methods for determining slope angle from air photos. 

Finally, Liang and Belcher (1958) outline a simple format for the 

investigation of landslides through the use of air photos which is: 

a. Lay out locations of road or other planned structures on photos. 

b. Take a quick survey, on the photographs, of all cliffs or banks 
adjacent to river bends, and of all steep slopes in the photo 
area, to see if landslide movements are evident. 

c. Outline areas along the right-of-way that show consistent charac
teristics of topography, drainage, and other natural elements 
within the same unit. 

d. Evaluate the general landslide potential of the areas with the 
help of Table 12. 

e. Make a detailed study of all cliffs or banks adjacent to river 
bends and all steep slopes above and below the center line of the 
road. It is important to compare slopes within the same unit 
area rather than of different areas. For instance, slopes in 
bedrock would be more stable, even though steeper, than slopes in 
adjacent soil areas. Realize that slides usually appear small in 
photos, and so look carefully, inspecting slopes in minute de
tail. Look especially for; 
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a. Existing slides. Relatively new slides appear in white tones 
(on black and white photographs); vegetation and drainage are 
not well established on them. The reverse conditions are 
true for old slides. 

(1) Hillside scars and hummocky topography. 

(2) Parallel moon-shaped dark patches on hillside, likely to 
reflect vegetation in minor depressions. Draw a line 
through the axis of scars or crescents in the slides. 
This line often points to drainageways on higher ground 
that contribute to the landslide movement. 

(3) Irregular outline of highways and random cracks or 
patches on existing pavement. 

b. Potential slides. 

(1) Ponded depressions and diverted drainageways. 

(2) Seepage areas suggested by faintly dark lines, which may 
mean near-surface channels and fan shaped dark patches, 
probably reflecting wet vegetation. 

f. Ground check some of the landslides that are recognized in the 
air photos. 

g. Ground check all suspected spots. 

The Regional Concept of the Occurrence of Landslides 

The frequency and type of landslides vary geographically and if land

slides are restricted to only naturally occurring failures, the indica

tion of an "area problem" becomes readily apparent (Baker and Chieruzzi, 

1959). Krynine and Judd (1957) define the regional concept of landslide 

occurrence in a general way as: 

Serious consideration should be given to the regional concept 
of landslide classification. According to this concept the slides 
within a geomorphic (or physiographic) province may be defined as 
an area within which the method of deposition of rocks and soils 
is approximately identical. This regional concept is accepted by 

some of the workers interested in landslides, but evidence is still 
needed. 
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Baker and Chieruzzi (1959) rated the United States on the basis of 

landslide severity (Figure 49). They based their measurements on the 

frequency of occurrence of landslides, on the size of the moving mass, and 

on the dollars per year spent on correction of landslides. Based on these 

criteria large parts of the United States do behave similarly with respect 

to landslides (Figure 49). In relation to the geomorphology of an area 

Sharpe (1938) feels that landslides are most likely to occur where the 

valley walls are steepest. This will occur when the area in question is 

in the transition between youth and maturity. 

However, there is some disagreement as to the importance of the in

fluence of a particular rock type on the distribution of landslides. 

Bruce (1968) for landslides in South Dakota states, "landslides are not 

controlled by the geologic boundaries in the Pierre Shale, but are con

trolled by the topographic environment of the slope and the concentration 

of discontinuities in the slopes." However, the predominant opinion is 

that rock type does play an important part. Bailey (1970) stated that in 

the Teton National Forest the primary regional cause of landsliding is the 

occurrence over wide areas of shales. 

Landslides in the Rocky Mountains 

This last section consists of a brief review of previous work in the 

Rocky Mountains. It consists mainly of descriptions of specific sites. 

Table 23 is a compilation of the geologic formations which have been found 

to be highly susceptible to landslides. 



Figure 49. Landslide severity in the United States (Baker and Chieruzzl (1959). 
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Table 23. Formations in Western U.S. with "high" susceptibility of land-
sliding^ 

Geologic formation Age Area examined 

(4) Unnamed formation Pliocene? Battlement Mesa, Col. 

(1) Wind River Eocene Purdy Basin 

(1) Indian Meadows Eocene Purdy Basin 

(3) Willwood Eocene Utah 

(4) Wasatch Eocene Battlement Mesa, Col. 

(1) Pinyon Cong. Paleocene Mt. Leidy Highlands 

(1) Hoback Paleocene Hoback Basin 

(1) Tertiary Volcanics Tertiary Pinyon Peak Highlands 

(6) Potosi Volcanics Tertiary NW Ariz., SW Col. 

(2) North Horn Cretaceous-Tertiary Utah 

(1) Harebell Cretaceous Buffalo Fork River, Wy. 

(1) Cody Shale Cretaceous Gros Ventre Valley 

(1) Frontier Cretaceous Gros Ventre Valley 

(1) Aspen Cretaceous Fall Creek Wy. 

(1) Mowry Shale Cretaceous Gros Ventre Valley 

(1) Thermopolis Shale Cretaceous Gros Ventre Valley 

(1) Bear River Cretaceous Fall Creek, Wy. 

(2) Tropic Cretaceous Utah 

(5) Judith River Cretaceous Gardiner, Mont. 

(6) Mancos Shale Cretaceous NW Ariz., SW Col. 

(6) Pictured Cliffs Cretaceous NW Ariz., SW Col. 

(6) Fruitland Shale Cretaceous NW Ariz., SW Col. 

(6) Kirtland Shale Cretaceous NW Ariz., SW Col. 

(7) South Platte Cretaceous Front Range Foothills 

(10) Tohatchi Cretaceous NW New Mexico 

Compiled from (1) Bailey (1970), (2) Shroder (1967), (3) Pierce 
(1968), (4) Yeend (1969), (5) Waldrop and Hyden (1963), (6) Dickinson 
(1965), (7) Braddock and Eigher (1962), (8) Strahler (1940), (9) Gregory 
(1917), and (10) Watson and Wright (1963). 
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Table 23. (Continued) 

Geologic formation Age Area examined 

(10) Menefee Cretaceous NW New Mexico 

(1) Cloverly Cretaceous-Jurassic Gros Ventre Valley 

(1) Morrison Cretaceous-Jurassic Gros Ventre Valley 

(1) Sandance Jurassic ! Gross Ventre Valley 

(2) Chinle Triassic Utah 

(8) Moenkopi Triassic Northern Ariz. 

(8) Chinle Triassic Northern Ariz. 

(1) Amsden Pennsylvanian Gros Ventre Valley 

Bailey (1970) found that in the Teton National Forest the primary 

regional cause of landsliding is the presence, over wide areas, of shales. 

The primary diagenetic process affecting these shales has been the removal 

of overburden pressure which leaves them weak and easily susceptible to 

landsliding. These shales are mainly of Jurassic and Cretaceous age 

Bailey (1970). 

Shroder (1967) from his work in Utah believes that landslides are 

most common where strong beds overlie weak ones. Also, the south and 

southwest facing slopes in Utah were found to have the fewest landslides, 

evidently because they are driest. Where the landslides occur today, they 

are confined mainly to the Db, Dc, and BSk climatic zones. 

In the Carter Mountain area of Wyoming, landslides are occurring 

where Tertiary volcanics overlie the Willwood formation (Pierce, 1968). 

Evidently landslides in this area have occurred intermittently over a 

considerable period of time. There are at least two major periods of land
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slide activity and the older landslides are overlain by a moraine which 

the author feels is Bull Lake in age. 

In the Grand and Battlement Mesa areas of Colorado, Yeend (1969) 

finds that the effect of landslides on the topography of the area is 

greater than that of glaciation during the Pleistocene. Battlement Mesa 

has been almost completely destroyed and over one-half of Grand Mesa has 

been destroyed by landslides in a period of nine million years. Yeend 

(1969) thinks that the landsliding has been active throughout the Pleisto

cene and it is still actively going on today, but the rates of movement 

have been rather variable. 

Yeend (1969) found that there is a difference in the fabric between 

landslide deposits and glacial tills. In landslide deposits the long axis 

of cobbles dips downslope. In glacial tills (derived from valley gla

ciers) the long axis of cobbles dip upslope. This is important in areas 

where moraines and landslide deposits interfinger and might easily be 

confused with each other. 

Work by Waldrop and Hyden (1963) near Gardiner, Montana indicated 

that an area originally mapped as a glacial moraine was mainly a landslide 

deposit. The landslides start out as blockglides and slumps, then they 

become fragmented and move as debris slides. The authors feel that the 

landslides range in age from interglacial (??) to postglacial. Also, in 

the San Juan Mountains, Dickinson (1965) examined the type area for the 

Cerro till and concluded that the deposits were actually landslide debris. 

Soon after the earthquake at Hebgen Lake, Montana in 1959, Witkind 

examined the area and found that the highways in the epicentral area were 
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extensively damaged. In one instance an "ancient earthflow" was reacti

vated by the earthquake and bowed the centerline of a highway (Witkind, 

1959). This earthflow continued to move for at least four weeks after the 

earthquake. 

The earthquake also triggered a large rock fragment flow, the Madison 

landslide, which was examined by Hadley (1959). He states, "The shocks 

administered to the ground by every major earthquake result in gravitative 

adjustment of the surficial material, probably over large areas." Numer

ous landslides occurred during the earthquake of which the Madison land

slide was the most disastrous because of its size; 37 million cubic yards 

of material fell covering a section of highway and the adjoining Madison 

River to a depth of 100 to 200 feet (Hadley, 1959). Thirty people were 

killed. 

The valley wall where the Madison landslide took place consisted 

mainly of gneiss and schist which was strongly sheared and deeply weath

ered, in some places to a depth of 100 feet or more. The foliation dips 

into the river valley. There is also some dolomitic marble present at the 

base of the slope. This gneiss and schist made up the bulk of the slide 

material and the surface of the slide movement cut obliquely across the 

schist, gneiss, and marble (Hadley, 1959). The velocities of the land

slide could have been as high as 100 miles per hour and Hadley (1959) 

stated that the slide was due to a "fundamental slope Instability." The 

earthquake merely acted as the trigger mechanism. 

Braddock and Eigher (1962) noted that landslides had occurred on the 

Dakota hogbacks in Colorado. Sandstone units sliding on shale moved down 
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the hogbacks on slopes as gentle as 10 degrees. The block glides were 

also folded into a series of anticlines and synclines, which seem to con

form to the original sliding surface (Braddock and Eigher, 1962). The 

authors indicated that the landslides are pre-Wisconsin in age. 

While studying the Columbia River Valley, Jones et al. (1961) noted 

that most of the landslides there were located around Franklin D. Roose

velt Lake which has 90 percent of its shoreline composed of Pleistocene 

and recent age sediments. Most of the landsliding started when the lake 

was filled and Jones et al. (1961) attributed the landslides to fluctua

tions in the lake level. There are two major types of landslides present. 

One is a compound slurap-earthflow type movement. This is the most common 

and covers the greatest area. The other type is the alcove landslide. 

These are large basinlike features that form by a combination of sliding, 

flow, and fall. They probably develop rapidly and generally occur where 

fine-grained sediments fill deep channels cut in the bedrock surface. The 

bedrock channels control the groundwater flow (Jones et al., 1961). 

Mudge (1965) studied rockfall avalanches and rockslide avalanches 

(rock-fragment flows under Varnes's (1958) classification) in the south

eastern part of the Sawtooth Range in Montana. Mudge states that they are 

characterized by the following geomorphic features: 

a. Hummocky surface. 

b. Relatively low relief from head to toe. 

c. Arcuate ridges and furrows, at least where confined. 

d. Lobate form (where not confined). 

e. Local pressure ridges where the flowage was impeded by barriers. 
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f. A trough between the head of the deposit and the base of the 
cliff or scar. 

g. Movement up or over topographically high ground. 

h. A volume measurable in the millions of cubic yards or rock. 

The rock fragment flows are important mainly because of their size. 

Varnes (1958) states, "Such flows probably cannot be produced by a few 

thousand or a few hundred cubic yards of material. Many millions of tons 

are required . . . They can occur suddenly and move with great speed 

(Mudge, 1965). They appear to be pre-Pinedale I to Recent in age. The 

controlling factors are the steep slopes and the presence of joints in the 

rock. On Sawtooth Ridge, Mudge (1965) calculates that these flows have 

removed roughly 720 million cubic meters of material and caused the cliffs 

to retreat a maximum of 1010 meters. 

The large volumes of the individual flows in the Sawtooth Range indi

cate that large sections of the cliff dropped simultaneously, possibly 

triggered by earthquakes (Mudge, 1965). Prostka (1967) found that similar 

rock-fragment flows had occurred in the valley of Whitetail Creek, a major 

tributary to the Jefferson River. They were of sufficient volume to 

permanently alter the course of the creek. 

Strahler (1940) while studying the Vermillion Cliffs of New Mexico 

noted that as the slumps occurring there got older their backward rotation 

tends to increase. He also proposes an ideal cycle of erosion of a slump 

block which is; 

Youth: A freshly fallen block consists of an elongate ridge 
whose strata dip cliffward. The former cliff edge forms a sharp 
divide on the slumped block paralleling the cliff line and plunging 
downward at each end of the block. At the base of the block is 
debris, perhaps arranged in longitudinal ridges, which consists 
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of disturbed bedrock and of the forward edge of the block which has 
been overthrust upon the pediment. 

Initial drainage is entirely consequent upon the newly formed 
slopes. Streams which flow cliffward down the back slope of the 
block join longitudinal streams which occupy the initial consequent 
valley between the block and the cliff. This drainage is impeded 
by rapid addition of material falling from the cliff behind. Streams 
which flow down the front slope of the block establish courses 
through the mass of debris at the base of the block and emerge upon 
the pediment surface. It is reasonable to suppose that the streams 
would at first be overloaded with the great amount of loose material 
formed as a result of slumping and would cover the pediment with 
alluvial fans. As the load diminished, these streams would remove 
the alluvium and extension of the pediment surface by lateral corra-
sion would be resumed. 

Maturity; In maturity the original surface of the block is 
gone, and longitudinal subsequent streams are well established between 
sharp hogbacks of resistant strata. Resequent and obsequent streams 

drain the sides of these longitudinal valleys. Transverse streams 
have cut deep canyons into the block tending to divide it into two or 
more segments. The debris at the base of the block has been re
moved, and the dipping strata of the block are being beveled by 
streams extending the area of the pediment by lateral planation. The 
cliff behind the block has been retreating, and slumping will again 
take place if the factors are favorable. 

Old Age: In old age the block is a low, rounded mass usually 
lying from one to three miles out from the cliff and completely sur
rounded by the pediment. Such blocks represent but small remnants of 
the original masses and are ultimately beveled by streams which flow 
across the pediment from the cliff. 

Since Strahler (1940) derived the "cycle" from work in only one area the 

details may be wrong but the overall idea would seem to be correct. The 

formation of a new slump block in close proximity to an older one, a rock-

slide burying part of a block, or the formation of a new pediment surface 

at a lower level can alter this ideal cycle (Strahler, 1940). 

Witkind (1959) notes that along Tepee Creek, Montana-Wyoming, mass 

wasting is one of the most effective erosive agents at work. This is due 

to high local relief, steep valley walls, and the weak nature of the rock 
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units exposed. Debris slides are common and their shape is controlled by 

that of the preexisting valleys in which they occur. Where they reach out 

onto the surrounding plains they tend to have a low hummocky toe (Witkind, 

1959). The single most important factor controlling the location of these 

debris slides is water, both ground and surface (Witkind, 1959). 

Reiche (1937) after working in northwestern Arizona defines Toreva-

block as a landslide which consists of a single large mass of unjostled 

material that during descent has undergone a backward rotation toward the 

parent cliff about a horizontal axis which it roughly parallels. It is 

apparent that this is a slump. What is interesting is that they have 

occurred in bedrock and not in unconsolidated material. They can be quite 

large. Reiche (1937) found they often reached lengths of over 300 meters 

along strike. They are widely distributed over the southern Colorado 

Plateau. 

Along the Mlekle River Valley in Alberta, Naismith (1964) found that 

valley walls are covered by old landslide deposits. Where the river is 

eroding into the toe of the valley wall active landslides occur (Naismith, 

1964). The inactive areas are located where the slides terminate either 

on the present floodplain, some distance back from the river, or on ter

races overlooking the river. The slides do not encroach out onto the 

terraces and when stream bank erosion ceases the landslides soon come to a 

halt. This indicates that renewed erosion at the toe of an inactive 

landslide could easily reactivate it (Naismith, 1964). 

Croft and Adams' (1950) work on the North Fork of the Ogden River 

demonstrated that landslides may also be significant sources of sediment 
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load in a stream. On May 17 and 18, 1949, unusually heavy rainstorms 

occurred and the resulting landslides were a major source of sediment in 

the Pineview Reservoir during the high stream discharge after the storm 

(Croft and Adams, 1950). There was about 7 hectare meters of sediment 

deposited in the reservoir which in the average year gets roughly 0.3 

hectare meters of sediment. The largest landslides occurred on north 

facing tree covered slopes while the smallest were on brush covered south 

facing slopes. 

Finally, Watson and Wright (1963) in the Chaska Mountains of New 

Mexico mapped landslide debris extending as far as eight miles away from 

the present mountain escarpment. They dated the oldest landslides as 

older than the oldest Wisconsin moraine in the nearby San Juan Mountains. 

In summary, it appears that the most useful classification is that 

proposed by Varnes (1958). There are numerous factors controlling the 

distribution of landslides. Landslides can be recognized by systematic 

study and occur over wide areas of similar geologic setting. In the 

western United States landslides are important in the erosion process. 
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APPENDIX B: OBSERVATION ON THE STRUCTURE OF THE BIGHORN MOUNTAINS 

During the academic year 1975-76 a photogeologic map of the entire 

Bighorn National Forest was prepared using color aerial photographs of a 

scale of approximately 1/16,000. The following is an observation based on 

that work, which is unrelated to the subject of landslides. 

The shape of the central and northern Bighorn Mountains is controlled 

by major faults paralleling the mountain front (Figure 50). The faults 

are located in the Precambrian crystalline basement rocks and frequently 

appear as monoclines or other folds where the overlying Paleozoic rocks 

are present. They are referred to as the Hunt Mtn. Lineament, the Trapper 

Creek Fault, and the Dry Fork Fault. 

Demorest (1941) divided the Bighorn Mountains into three segments, 

based on the asymmetry of the adjacent segments. The northern segment is 

more steeply dipping to the west. It extends from the Pryor Mountains of 

Montana, southward to approximately the point where Shell Creek and the 

Tongue River transect the Bighorn Mountains. The central segment is more 

steeply dipping to the east, and runs from the Shell Creek-Tongue River 

junction south to the Tensleep fault. The southern segment is located 

south of the Tensleep fault and is more steeply dipping to the west. 

The Bighorn Mountains make an abrupt change in trend along a line 

stretching from Shell Creek on the west to Goose Creek on the east. South 

of this line the mountain range trends north-south. North of this line 

the range trends northwest-southeast (Figure 50). The change in trend on 

the west side of the mountains occurs where the Hunt Mountain Lineament 

and the Trapper Creek Fault in Figure 50 intersect. On the east side of 



Figure 50. Map of major faults in Bighorn Mountains. 

9 = Little Goose Creek 

8 = Tongue River 

7 = Shell Creek 

6 = Tensleep Creek 

5 = Approximate area underlain by Mesozoic age rocks 
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PC = Area underlain by Precambrian age rocks 

3 = Hunt Mountain Lineament 

2 = Dry Fork Fault 

1 = Trapper Creek Fault 
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the mountains the change in trend occurs where the Dry Fork Fault inter

sects the Goose Creek area. The east side of the Dry Fork Fault is up-

thrown relative to the west side. It is apparent that either there must 

be an additional fault to the east of the Dry Fork Fault with the west 

side upthrown, or the direction of movement on the Dry Fork Fault has 

reversed. Otherwise, the Precambrian surface could not have attained its 

present elevation. South of the Goose Creek area the presence of a major 

fault paralleling the mountain front could not be observed due to heavy 

tree cover, but it would be reasonable to assume that such a fault exists. 

It is proposed that the boundary between the northern and central 

segments of the Bighorn Mountains be moved southward to a line from Shell 

Creek to Grouse Creek. This boundary conforms to the change in trend of 

the mountain front and the Intersection of the basement faults. 

It has been proposed by Hoppin and Palmquist (1965) that Laramide 

structural features in the Bighorn Mountains are controlled by Precambrian 

age zone of weakness in the crystalline basement rocks of the mountains. 

Field evidence in the Shell Canyon area supports this. Where the Hunt 

Mountain Lineament crosses Cedar Creek there is approximately 240 meters 

of offset between adjacent sides of the monoclinal flexure on the north 

side of Cedar Creek Canyon (Figure 7). On the south side of Cedar Creek 

Canyon the offset has decreased to 180 meters. In the vicinity of Grouse 

Creek there is only 60 meters of offset. However, the lineament itself 

continues to the southeast up Shell Creek. This is inferred to mean that 

only the part of the lineament near the present mountain front was re

activated during the Laramide orogeny. 
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Hoppin and Jennings (1971) suggest that east-west structural linea

ments in the central Bighorn Mountains may be the most significant struc

tural elements in the Wyoming Province. They propose that these linea

ments are the surface expression of transcurrent faulting (transform 

faults) originating in the lower part of the lithosphere due to the North 

American plate overriding the East Pacific Rise. These lineaments are 

located on the Precambrian crystalline core of the range. Their striking 

nature on either topographic maps or Landsat photos is due to the fact 

that they have been preferentially eroded by Pleistocene glaciers. How

ever, where these lineaments intersect Paleozoic bedrock, no movement was 

observed. It therefore appears that these lineaments are unrelated to 

vertical uplift of the mountains during the Laramide Orogeny. 
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APPENDIX C: DETAILED DESCRIPTION OF SURFICIAL SEDIMENTS 
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No. 1, brown colluvium 

Locatlon-roadcut No. 1 

Dominant lithology 
Gravel 

Specific lithologie name 
Loamy, silty, gravel 

Color 

Dry 

Yellowish brown (10YR5/4) 
Wet 

Texture 

Size 

Gravel 50% 
Silt 25% 
Loam 25% 

Shape 
Equidimensional, very angular, low sphericity 

Sorting 
Very poorly sorted 

Fabric 
Random 

Particle surface texture, of gravel size fragments 

Smooth, nonetched 

Mineralogical composition 
Gravel size fragments are from the Madison formation. 
Loam and silt are undetermined. 
Calcareous 

Sedimentary structures 
Character of basal contact 
Basal contact is sharp and planar. 

Character of upper contact 
Upper contact is sharp and planar 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Massive 

Current direction 
Unknown 

Fossil content 

No fossils observed 
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Degree of induration and geomorphic expression 

Nonindurated and a slope former 

Thickness 
Variable 

Soil properties 
Structureless 
Loose 
Weak 
Nonsticky 
Nonplactic 
Will not form a ribbon 

Remarks 
Rock fragments range in size from fine gravel to large boulders. The 
large boulders are not common in this deposit. 
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No. lA, washed brown colluvium 

Location-roadcut No. 5 

Same as brown colluvium No. 1, except material is crudely stratified. 
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No. IB, very rocky brown colluvium 

Location-roadcut No. 5 

Same as brown colluvium No. 1, except material now contains up to 70% 
carbonate rock fragments. 
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No. le, brown colluvium with gray boulders 

Location-roadcut No. 10 

Same as brown colluvium No. 1, except contains cobbles and boulders from 
the Madison Formation that are gray in color. 
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No. ID, fine brown colluvium 

Location-roadcut No. 10 

Same as brown colluvium No. 1, except that rock fragments are only gravel 
and cobble in size. 
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No. 2, green colluvium 

Location-roadcut No. 1 

Dominant lithology 
Gravely clay 

Specific lithologie name 
Gravely clay 

Color 
Dry 
Olive (5Y5/3) 

Wet 

Texture 
Size 
Gravel to boulders.... 40% 
Clay 60% 

Shape 

Rock fragments are tabular, very angular, low sphericity 
Sorting 

Very poorly sorted 
Fabric 

In most cases the orientation is random, however, along what appear 
to be "shear zones" between the green colluvium and other units there 
appears to be a crude foliation of the platy fragments of Gallatin 
limestone, for raw data see remarks. 

Particle surface texture 
Rock fragments—smooth, nonetched 

Mineralogical composition 
Rock fragments are from the Gallatin formation 
Clay, undetermined 
Calcareous 

Sedimentary structures 

Character of basal contact 
Basal contact is sharp and planar. 

Character of upper contact 
Upper contact is sharp and planar. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Massive to foliated 

Fossil content 
No fossils observed 
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Degree of induration and geomorphic expression 
Nonindurated and a slope former 

Thickness 

Variable 

Soil properties 
Structureless 
Hard 
Weak 
Moderately sticky 

Moderately plastic 

Form a fair ribbon 

Remarks 
This material is probably from the lower part of the Gallatin formation. 
The matrix frequently contains 1/2" and smaller size chips of green 
shale. Raw data on orientation of Gallatin rock fragments, see RCl-76 
for sample location. Surface of roadcut strikes N85°E, dips 82°N, 

apparent strike of the contact along shear zone between the green col-
luvium and brown colluvium is N85°E, dip 42°N. 

Apparent dip of Gallatin frags. Apparent dip of Gallatin frags, 
with 2 feet of contact greater than 5 feet from contact 

No. Angle No. Angle No. Angle No. Angle 
1. 31°W 26. 33 "W 1. 36°E 26. 11°E 

2. 34°W 27. 25 °W 2. 9°E 27. 58°E 

3. 44 "W 28. 37°W 3. 7°W 28. 24°W 

4. 33 29. 28°W 4. 89*W 29. 34°E 

5. 6°W 30. . 28°W 5. 24°E 30. 5°E 

6. 50°W 31. 44°W 6. 2°E 31. 5°E 

7. 47°W 32. 27°W 7. 13°E 32. 15°E 

8. 20°W 33. 62°W 8. 32°E 33. 78°E 

9. 43 °W 34. 40°W 9. 76°E 34. 28°W 

10. 37°W 35. 15 "W 10. 20°W 35. 77°W 

11. 17°W 36. 41°W 11. 4°E 36. 56°W 

12. 47°W 37. 26°W 12. 34°E 37. 40°E 

13. 38°W 38. 38°W 13. 30°W 38. 31°W 

14. 28°W 39. 42*W 14. 46°W 39. 10°E 

15. 41°W 40. 42°W 15. 65°W 40. 7°E 

16. 50 "W 41. 23°W 16. 57°E 41. 13°E 

17. 26°W 42. 22°W 17. 40°E 42. 43 °W 
18. 28°W 43. 48°W 18. 5°E 43. 29°W 
19. 57°W 44. 48°W 19. 23 "E 44. 61°W 
20. 19'W 45. 37°W 20. 50°E 45. 41°E 
21. 49°W 46. 32°W 21. 25°E 46. 33°W 
22. 32°W 47. 47°W 22. 30°W 47. 27°E 

23. 73°W 48. 17°W 23. 21°W 48. 48°E 
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24. 33°W 49. 36°W 24. 29°W 49. 21°E 
25. 46°W 50. 34°W 25. 18°W 50. 37°W 

Due to the small size of the limestone fragments, 1" to 3", it was not 
possible to obtain strike readings with the equipment at hand. 
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No. 3, green shaley colluviura 

Locatlon-roadcut No. 1 

Same as green colluvlum No. 2, except that it contains no rock fragments 
of limestone from the Gallatin Formation. 
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No. 3A, green bouldery colluvium 

Location-roadcut No. 1 

Same as green colluvium No. 2, except that it contains rock fragments of 
limestone from the Gallatin Formation up to 1' x 2' x 6" in size. 
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No. 4, mixed green and brown colluvium 

Location-roadcut No. 1 

This unit is a mixture of brown colluvium No. 1 and green colluvium No. 2, 
in roughly equal amounts. Material is mottled in appearance. Mottles 
consist of "pure" green and brown colluvium. Mottles are irregular in 
shape and from 1" to 6" in cross section. 
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No. 5, brown silt 

Location-roadcut No. 1 

Dominant lithology 
Silt 

Specific lithologie name 
Brown silt 

Color 
Dry 
Dark yellowish brown (10YR4/4) 

Wet 

Texture 
Size 

Silt 
Shape 
Undetermined 

Sorting 

Undetermined 
Fabric 
Undetermined 

Particle surface texture 
Undetermined 

Mineralogical composition 

Undetermined 

Calcareous 

Sedimentary structures 
Character of basal contact 
Basal contact is sharp and planar. 

Character of upper contact 
Upper contact is sharp and planar. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Medium bedded complex, coarse layers preominate 

Current direction 
Unknown 

Fossil content 
Occasional pulmonate gastropod observed 

Degree of induration and geomorphic expression 
Nonindurated and a slope former 
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Thickness 
Variable 

Soil properties 
Crude platy structure 

Moderate 

Friable 
Nonsticky 
Nonplastic 

Will not form a ribbon 

Remarks 
Mottled in places, mottles are strong brown (7.5YR5/8), and roughly 
1/16 to 1/8 inch across. 
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No. 5A, brown silt with pebbles 

Location-roadcut No. 6 

Same as brown silt No. 5, except material contains up to 5% carbonate 
pebbles. 
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No. 5B, white silt 

Location-roadcut No. 

Same as brown silt No. 5, except material is white (10YR8/2) (dry) in 
color. 
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No. 6, dark brown silt 

Location-roadcut No. 1 

Dominant lithology 
Silt 

Specific lithologie name 

Dark brown silt 

Color 
Dry 
Dark brown (10YR4/3) 

Wet 

Texture 
Size 

Silt 
Shape 
Undetermined 

Sorting 
Undetermined 

Fabric 
Random 

Particle surface texture 
Undetermined 

Mineraological composition 
Undetermined 
Calcareous 

Sedimentary structures 
Character of basal contact 
Basal contact is sharp and planar 

Character of upper contact 
Upper contact is sharp and planar 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Medium bedded complex, coarse layers predominate 

Current direction 
Unknown 

Fossil content 
No fossils observed 

Degree of induration and geomorphic expression 
Nonindurated and a slope former 
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Thickness 
Variable 

Soil properties 
Crude platy structure 
Moderate 
Friable 
Nonsticky 
Nonplastic 
Will not form a ribbon 

Remarks 
Occasional pulmonate gastropod observed 
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No. 7, gray silt 

Location-roadcut No. 1 

Dominant lithology 

Gray silt 

Color 
Dry 
Light brownish gray (10YR6/2) 

Wet 

Texture 

Size 
Silt 

Shape 
Undetermined 

Sorting 
Undetermined 

Fabric 
Undetermined 

Particle surface texture 
Undetermined 

Mineralogical composition 
Undetermined 
Calcareous 

Sedimentary structures 
Character of basal contact 
Basal contact is sharp and planar. 

Character of upper contact 
Upper contact is sharp and planar. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 

Medium bedded complex, coarse layers predominate 
Current direction 
Unknown 

Fossil content 
Occasional pulmonate gastropod observed 

Degree of induration and geomorphic expression 
Nonindurated and a slope former 

Thickness 
Variable 
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Soil properties 
Structureless 
Moderate 

Friable 

Nonsticky 
Nonplastic 
Will not form a ribbon 

Remarks 
Bedding planes are accentuated by layers of iron oxide, approximately 
1/16 inch thick. Silts are mottled, mottles consist of layers of Fe 
oxide, strong brown (7.5YR5/8) in color, no noticeable textural change. 
Mottles form both layers along bedding planes and irregular patches less 
than 1/2 inch across. They make up roughly 10% of the surface area. 
See photos roll 2, photos 36 and 37. 
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No. 8, orange gravel 

Location-roadcut No. 1 

Dominant lithology 

Gravel 

Specific lithologie name 
Oligomictic, loamy, gravel 

Color 
Dry 
Yellowish brown (10YR5/6) 

Wet 

Texture 
Size 
Gravel 50% 
Loam 45% 
Cobbles 5% 

Shape 
Equidimensional, very angular, low sphericity 

Sorting 
Very poorly sorted 

Fabric 
Random 

Particle surface texture 
Smooth, nonetched 

Mineralogical composition 
Gravel and cobbles are from the Madison formation 
Loam, undetermined 
Calcareous 

Sedimentary structures 
Character of basal contact 

Basal contact is sharp and planar. 
Character of upper contact 
Upper contact is sharp and planar 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Massive 

Current direction 

Unknown 

Fossil content 
No fossils observed 
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Degree of induration and geomorphic expression 

Nonindurated and a slope former 

Thickness 

Variable 

Soil properties 

Structureless 

Loose 

Weak 
Nonsticky 

Nonplastic 

Will not form a ribbon 

Remarks 



243 

No. 9, cobble size fragments in a gray silt matrix (50-50) 

Location-roadcut No. 1 

Same as btown colluvium No. 1, except that matrix is gray in 
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No. 10, A horizon 

Location-roadcut No. 1 

4" to 6" thick, gravely silt (roughly 40% of A made up of gravel and 

cobble size fragments of Madison and Bighorn Formations), brown (10YR5/3) 

(dry), medium angular blocky structure, weak, friable, nonsticky, non-

plastic, will not form a ribbon, highly calcareous. 
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No. 11, horizon 

Location-roadcut No. 3 

horizon developed in brown colluvium. 
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No. IIA, Cç,^ poorly developed 

Location-roadcut No. 10 

A poorly developed horizon developed in brown colluvium. 
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No. 12, red colluvium 

Location-roadcut No. 5 

Same as brown colluvium No. 1, except matrix is red (2.5YR5/6) (dry) in 
color. 
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No. 13, red silt 

Location-roadcut No. 2 

Dominant lithology 

Silt 

Specific lithologie name 

Red silt 

Color 

Dry 
Reddish brown (5YR5/4) 

Wet 

Texture 

Size 

Silt 

Shape 

Undetermined 

Sorting 

Undetermined 

Fabric 

Undetermined 
Particle surface texture 

Undetermined 

Mineralogical composition 

Undetermined 

Calcareous 

Sedimentary structures 

Character of basal contact 

Basal contact is sharp and planar. 

Character of upper contact 

Upper contact is sharp and planar. 

Bedding plane structures 

No bedding plane structures observed 

Sedimentary unit (layer) structures 

Massive 
Current direction 

Unknown 

Fossil content 

No fossils observed 

Degree of induration and geomorphic expression 

Nonindurated and a slope former 
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Thickness 

Variable 

Soil properties 

Fine to medium angular blocky structure 

Hard 

Friable 

Nonsticky 

Nonplastic 

Will not form a ribbon 

Peds have coating of MnO^ (???) on them, dark reddish brown (5YR2/2) 

Remarks 
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No. 13A, light red silt 

Location-roadcut No. 2 

Dominant lithology 

Silt 

Specific lithologie name 

Fine sandy light red silt 

Color 

Dry 

Reddish brown (2.5YR4/4) 

Wet 

Texture 

Size 

Silt 99% 

Carbonate pebbles 1% 

Shape 

Carbonate pebbles are spherical, well-rounded, highly spherical 

Sorting 

Undetermined 

Fabric 

Undetermined 

Particle surface texture 

Carbonate pebbles are smooth, nonetched 

Mineralogical composition 

Carbonate pebbles are limestone, probably from the Madison Formation 

Calcareous 

Sedimentary structures 

Character of basal contact 

Basal contact is sharp and planar. 

Character of upper contact 

Upper contact is sharp and planar 
Bedding plane structures 

No bedding plane structures observed 

Sedimentary unit (layer) structures 

Massive 

Current direction 

Unknown 

Fossil content 

No fossils observed 

Degree of induration and geomorphic expression 

Nonindurated and a slope former 



Thickness 

Variable 

Soil properties 

Structureless 

Moderate 

Friable 

Nonsticky 

Nonplastic 

Will not form a ribbon 

Remarks 
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No. 13B, red silty gravel 

Location-roadcut No. 17 

Dominant lithology 

Silty gravel 

Specific lithologie name 

Oligomictic, muddy gravel 

Color 

Fresh 

Red (2.5YR4/6), soil color chart 

Weathered 

Same as fresh 

Texture 

Size 

Cobbles 60% 

Silt 40% 

Shape 

Cobbles are equidimensional to tabular, sub-angular to sub-rounded, 

low sphericity 

Silt, undetermined 

Sorting 

Very poorly sorted 

Fabric 

Random, noninterlocking 

Particle surface texture 

Cobbles are pitted and etched to a depth of 1/8" 

Silt, undetermined 

Mineralogical composition 

Cobbles 100% carbonate, probably from the Phosphoria Fm. 

Silt, undetermined 

Calcareous 

Sedimentary structures 

Character of basal contact 

Basal contact is gradational over approximately 1' but appears to be 
planar. 

Character of upper contact 

This is the uppermost unit. 

Bedding plane structures 

No bedding plane structures observed 

Sedimentary unit (layer) structures 

Massive 
Current direction 

Unknown 
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Fossil content 

No fossils observed 

Degree of induration and geomorphic expression 

Nonindurated and a slope former 

Thickness 

13' 

Remarks 

See photo roll 8, photo 10. 



254 

No. 13C, massive sandy silt 

Location-roadcut No. 17 

Dominant lithology 

Silt 

Specific lithologie name 

Massive sandy silt 

Color 

Fresh 

Red (2.5YR4/6), soil color chart 

Weathered 

Same as fresh 

Texture 

Size 

Silt 80% 

Fine sand 20% 

Shape 
Undetermined 

Sorting 

Undetermined 

Fabric 

Undetermined 

Particle surface texture 

Undetermined 

Mineralogical composition 

Undetermined 

Noncalcareous 

Sedimentary structures 

Character of basal contact 

Basal contact is gradational over a distance of 4", appears to 
planar. 

Character of upper contact 

Upper contact is gradational over a distance of 1', is planar. 

Bedding plane structures 

No bedding plane structures observed 

Sedimentary unit (layer) structures 

Massive 

Current direction 
Unknown 

Fossil content 
No fossils observed 
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Degree of induration and geomorphic expression 

Nonindurated and a slope former 

Thickness 

16' 

Remarks 

Material here is also moist. See photo roll 8, photo 9. 
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No. 13D, red silt 

Location-roadcut No. 17 

Dominant lithology 

Silt 

Specific lithologie name 

Red silt 

Color 

Fresh 

Red (2.5YR4/6), soil color chart 

Weathered 

Same as fresh 

Texture 

Size 

Silt 100% 

Shape 

Undetermined 

Sorting 

Well-sorted 

Fabric 

Undetermined 

Particle surface texture 

Undetermined 

Mineralogical composition 

Undetermined 

Noncalcareous 

Sedimentary structures 

Character of basal contact 

Basal contact is very sharp and planar. 

Character of upper contact 

Upper contact is very sharp and planar. 

Bedding plane structures 

No bedding plane structures observed 

Sedimentary unit (layer) structures 

Massive 

Current direction 

Unknown 

Fossil content 
No fossils observed 
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Degree of induration and geomorphic expression 
Nonindurated and a slope former 

Thickness 

24" 

Remarks 

See photo roll 8, photo 12. 
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No. 14, volcanic ash 

Location-roadcut No. 5 

Dominant lithology 

Tuff 

Color 

Fresh 

Light gray (10YR7/2), soil color chart 

Weathered 

Light gray (10YR7/2), soil color chart 

Texture 

Size 

Made up of fine to medium size sand particles 

Shape 

Consists of very angular glass shards with a low sphericity 

Sorting 

Individual layers are well to very well sorted 

Fabric 

No obvious particle orientation 

Particle surface texture 

Particles are smooth and glassy 

Mineralogical composition 

Glass 95% 

Mafics trace 

Bentonite?? 5% 

Sedimentary structures 

Character of basal contact 

Basal contact is very sharp but irregular. Relief is up to 0.75 m, 

consists of tuff "swirled" around boulders of Bighorn and Madison 

limestone. 
Character of upper contact 

A gradual transition slow, but planar 

Bedding plane structures 

Bedding plane structures consist of small (50 cm) cheveron folds, fold 

axis is parallel to bedding planes. 

Sedimentary unit (layer) structures 

Thin bedded complex, fine layers predominate 
Current direction 

Unknown, probably from Yellowstone Park 

Fossil content 
Ho fossils observed 

Degree of induration and geomorphic expression 

Nonindurated and a slope former 
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Thickness 

17' 

Remarks 

Irregular "swirled" bottom contact and cheveron folds that the tuff was 

involved in a landslide movement after it was deposited. 
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No. 14a, ash-lithified 

Location-roadcut No. 17 

Dominant lithology 

Tuff 

Specific lithologie name 

Tuff 

Color 

Fresh 
White (5YR8/1), soil color chart 

Weathered 

Same as fresh 

Texture 

Size 

Fine sand to clay 

Shape 

Undetermined 

Sorting 

Poorly sorted 

Fabric 

Random, noninterlocking 

Particle surface texture 

Undetermined 

Mineralogical composition 

Volcanic glass ? 

Clay ? 

Noncalcareous 

Sedimentary structures 

Character of basal contact 

Basal contact is very sharp and planar. 

Character of upper contact 
Upper contact is very sharp and planar. 

Bedding plane structures 

No bedding plane structures observed 

Sedimentary unit (layer) structures 

Massive 

Current direction 

Unknown 

Fossil content 
No fossils observed 
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Degree of induration and geomorphic expression 

Upper 18" of tuff is slightly indurated, can be broken out as individual 

clods which can be easily broken between thumb and forefinger. Material 

is still a slope former. Lower 18" are well indurated, can not be 

broken between thumb and forefinger but can be easily be broken with a 

hammer. Contact between the two occurs over a distance of roughly 3". 

Thickness 

3' 

Remarks 

See photo roll 7, photos 26 and 27. In other places along the outcrop 
this unit appears to be cross bedded (?), grouped, small scale, planar, 

nonerosional, concordant, homogeneous, alpha cross stratification. Tuff 
is jointed, joints trend N-S and dip vertically. 
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No. 14b, ash-slightly lithified 

Location-roadcut No. 17 

Dominant lithology 

Ash 

Specific lithologie name 

Ash 

Color 

Fresh 

White (10YR8/2), soil color chart 
Weathered 

Same as fresh 

Texture 

Size 

Medium to fine sand 100% 

Shape 

Irregular, very angular, low sphericity 
Sorting 

Moderately well sorted 

Fabric 

Random, noninterlocking 

Particle surface texture 

Smooth and glassy 

Mineralogical composition 

Volcanic glass 97% 

Montmorillonite(?) 2% 

Mafics IZ 
Noncalcareous 

Sedimentary structures 

Character of basal contact 

Basal contact is very sharp and planar. 

Character of upper contact 

Upper contact is very sharp and planar. 

Bedding plane structures 

No bedding plane structures observed 
Sedimentary unit (layer) structures 

Massive 

Current direction 

Unknown 

Fossil content 
No fossils observed 
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Degree of induration and geomorphic 

Slightly lithified, can break out 

crushed very easily between thumb 

Thicknes 
6"-3' 

expression 

individual clods but they can be 

and forefinger. 

Remarks 

See photo roll 7, photo 29. 
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No. 14C, ash 

Location-roadcut No. 17 

Dominant lithology 

Ash 

Specific lithologie name 

Ash 

Color 
Fresh 

Light gray (10YR7/2), soil color chart 
Weathered 

Same as fresh 

Texture 
Size 

Medium sand 100% 

Shape 

Irregular, very angular, low sphericity 

Sorting 

Very well sorted 

Fabric 

Random, noninterlocking 

Particle surface texture 

Smooth and glassy 

Mineralogical composition 

Glass 100% 
Mafics trace 

Sedimentary structures 

Character of basal contact 

Basal contact is gradational over a distance of approximately 2", 

appears to planar. 

Character of upper contact 

Upper contact is gradational over a distance of 4", appears to be 

planar. 

Bedding plane structures 

No bedding plane structures observed 

Sedimentary unit (layer) structures 
Massive 

Current direction 

Unknown 

Fossil content 
No fossils observed 
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Degree of induration and geomorphic expression 

Nonindurated and slope former 

Thickness 
5 '  

Remarks 

Ash has a higher moisture content than surrounding material. See photo 
roll 8, photo 8. 
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No. 15, ashey silt 

Location-TC76-l 

Same as brown silt No. 5, except material contains approximately 20% 
volcanic ash and is massive. 
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No. 15A, ashy sand 

Location-roadcut No. 17 

Dominant lithology 
Ashey sand 

Specific lithologie name 

Ashey sand 

Color 

Fresh 

White (10YR8/2), soil color chart 

Weathered 

Same as fresh 

Texture 

Size 

Medium sand 100% 

Shape 

Sand, equidimensional to roller, sub-angular, low sphericity 

Ash, irregular, very angular, low sphericity 

Sorting 

Moderately well-sorted 

Fabric 

Random, noninterlocking 

Particle surface texture 

Sand, smooth and glassy 

Ash, smooth and glassy 

Mineralogical composition 

Ash 40% 
Quartz 50% 

Mafics trace 

Rock frag 10% 

Noncalcareous 

Sedimentary structures 

Character of basal contact 

Basal contact is very sharp and planar. 

Character of upper contact 

Upper contact is very sharp and planar. 

Bedding plane structures 

No bedding plane structures observed 

Sedimentary unit (layer) structures 

Massive 

Current direction 

Unknown 
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Fossil content 
No fossils observed 

Degree of induration and geomorphic expression 

Nonindurated and a slope former 

Thickness 

5 '8"  

Remarks 

See photo roll 8, photo 6. 
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No. 16, yellow silt 

Location-roadcut No. 3 

Dominant lithology 

Silt 

Specific lithologie name 

Yellow silt 

Color 

Dry 

Dark yellowish brown (10YR4/4) 

Wet 

Texture 

Size 

Silt 80% 

Fine sand 20% 
Shape 

Undetermined 

Sorting 

Undetermined 

Fabric 

Undetermined 
Particle surface texture 

Undetermined 

Mineralogical composition 

Undetermined 

Calcareous 

Sedimentary structures 

Character of basal contact 

Basal contact is sharp and planar. 

Character of upper contact 

Upper contact is sharp and planar. 

Bedding plane structures 

No bedding plane structures observed 

Sedimentary unit (layer) structures 

Massive 
Current direction 

Unknown 

Fossil content 

No fossils observed 

Degree of induration and geomorphic expression 

Nonindurated and a slope former 
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Thickness 

Variable 

Soil properties 

Medium to fine angular blocky structure 

Moderate 

Friable 
Slightly sticky 

Slightly plastic 

Makes a weak ribbon 

Coatings on peds, probably NnO., well-developed, very dark brown 

(10YR2/2) 

Remarks 
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No. 17, olive sand 

Location-roadcut No. 17 

Dominant lithology 
Olive sand 

Specific lithologie name 
Olive silty fine sand 

Color 
Fresh 
Light olive brown (2.5YR5/4), soil color chart 

Weathered 
Same as fresh 

Texture 
Size 
Fine sand 80% 
Silt 20% 

Shape 
Fine sand is equidimensional to roller, sub-angular, low sphericity. 
Silt was undetermined. 

Sorting 
Moderately well sorted 

Fabric 
Random, noninterlocking 

Particle surface texture 
Undetermined 

Mineralogical composition 
Undetermined 
Noncalcareous 

Sedimentary structures 
Character of basal contact 
Basal contact is very sharp and planar. 

Character of upper contact 
Upper contact is very sharp and planar. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Massive 

Current direction 
Unknown 

Fossil content 
No fossils observed 
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Degree of Induration and geomorphic expression 
Nonindurated and a slope former 

Thickness 
24" 

Remarks 
See photo roll 8, photo 11. 
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No. 18, sand 

Location-roadcut No. 17 

Same as gravely sand No. 19A, except material contains no gravel. 
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No. 19, gravel 

Location-roadcut No. 17 

Same as conglomerate No. 25, except material is nonlithified. 
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No. 19A, gravely sand 

Location-roadcut No. 17 

Dominant lithelogy 
Gravely sand 

Specific lithologie name 
Polymictic gravely sand 

Color 
Fresh 

Very pale brown (10YR8/3), soil color chart 
Weathered 

Same as fresh 

Texture 
Size 

Gravel, median size 1/4" 25% 
Fine to medium sand 75% 

Shape 
Gravel, ecuidimensional to roller, sub-angular to sub-rounded, low 
sphericity 
Sand, ecuidimensional to roller, sub-angular, low sphericity 

Sorting 
Extremely poorly sorted 

Fabric 
Random, noninterlocking 

Particle surface texture 
Gravel, rock fragments are etched and oitted to a depth not greater 
than 1/32". 
Sand, surface texture ranges from smooth and glassy to etched and 
pitted, etched and pitted are most common. 

Mineralogical composition 
Gravel 

Carbonate 90% 
Igneous 10% 

Sand 
Quartz 75% 
Feldspar ( or thoclase) trace 
Mafics trace 
Rock fragments, 
mostly carbonate 25% 

Sedimentary structures 
Character of basal contact 

Basal contact is very sharp and planar. 
Character of upper contact 
Upper contact is very sharp and planar. 
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Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Massive 

Current direction 
Unknown 

Fossil content 
No fossils observed 

Degree of induration and geomorphic expression 
Nonindurated and a slope former 

Thickness 
2' 

Remarks 
See photo roll 8, photo 5. 
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No. 19B, sandy gravel 

Location-roadcut No. 17 

Same as sandy gravel No. 19B, except material is now dorainantly gravel. 
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No. 20, interbedded green shale and sandstone 

Location-roadcut No. 6 

Dominant lithology 
Interbedded shale and sandstone 

Specific lithologie name 
Interbedded mud-shale and quartzarenites 

Sandstones 

Color 
Fresh 
White 

Weathered 
White 

Texture 
Size 
Fine sand 100% 

Shape 
Equidimensional to roller, subangular, low sphericity 

Sorting 
Well sorted 

Fabric 
Random, noninterlocking 

Particle surface texture 
Smooth and glassy 

Mineralogical composition 
Quartz 100% 
Noncalcareous 

Sedimentary structures 
Character of basal contacts of sandstone beds 
Basal contacts are very sharp and planar. 

Character of upper contacts of sandstone beds 
Upper contacts are very sharp and planar. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Thin bedded complex, fine layers predominate 

Current direction 
Unknown 

Fossil content 
No fossils observed 
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Mud-shales 

Color 
Fresh 
Olive green 

Weathered 
Dark gray 

Texture 
Size 
Clay/silt ratio roughly 1/1 

Shape 
Undetermined 

Sorting 
Undetermined 

Fabric 
Mica flakes (?) parallel to shale partings observed 

Particle surface texture 
Undetermined 

Mineralogical composition 
Clay and silt 99% 
Glauconite 1% 
Noncalcareous 

Sedimentary structures 
Character of basal contacts of shale beds 
Basal contacts are very sharp and planar. 

Character of upper contacts of shale beds 
Upper contacts are very sharp and planar. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Thin bedded complex, fine layers predominate 

Current direction 
Unknown 

Fossil content 
No fossils observed 

Degree of induration and geomorphic expression 
Unit as a whole is poorly indurated and a slope former 

Thickness 
2.5' to 8' 

Remarks 
Unit consists of alternating layers of sandstone and shale. Sandstone 
layers range in thickness from 1/8" to 1", shale layers range in thick
ness from 1/64" to 1/8". Alternation in thickness appears to be random. 
Unit is highly fractured and slightly oxidized in places. 
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No. 20A, interbedded green shale and sandstone-strongly oxidized 

Location-roadcut No. 6 

Unit 21A is the same as 21 except that they have been strongly oxidized 
and weathered. 
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No. 21, brown silt 

Location-roadcut No. 2 

Dominant lithology 
Brown silt 

Specific lithologie name 
Fine sandy brown silt 

Color 
Dry 
Yellowish brown (10YR5/4) 

Wet 

Texture 
Size 

Silt 80% 
Sand 20% 

Shape 
Undetermined 

Sorting 
Undetermined 

Fabric 
Undetermined 

Particle surface texture 
Undetermined 

Mineralogical composition 
Undetermined 
Calcareous 

Sedimentary structures 
Character of basal contact 
Basal contact is sharp and planar. 

Character of upper contact 
Upper contact is sharp and planar. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Massive 

Current direction 
Unknown 

Fossil content 
No fossils observed 

Degree of induration and geomorphic expression 
Nonindurated and a slope former 
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Thickness 
Variable 

Soil properties 
Fine to medium angular blocky structure 
Moderate 
Friable 
Nonsticky 
Nonplastic 
Will not form a ribbon 
MnOg(?) coatings on outside of peds, very dark brown (10YR2/2) in color 

Remarks 
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No. 21, green sandstone 

Location-roadcut No. 6 

Dominant lithology 
Sandstone 

Specific lithologie name 
Quartzarenite 

Color 
Fresh 
Green 

Weathered 
Green with brown and buff mottles, mottles cover approximately 40% of 
surface 

Texture 
Size 

Medium to coarse sand 100% 
Shape 
Equidimensional, rounded to well-rounded, high sphericity 

Sorting 
Moderately to poorly sorted 

Fabric 
Random, noninterlocking 

Particle surface texture 
Grains are etched and pitted 

Mineralogical composition 
Quartz 97% 
Glauconite 3% 
Noncalcareous 

Sedimentary structures 
Character of basal contact 

Basal contact is sharp and planar. 
Character of upper contact 

Upper contact is sharp and planar. 
Bedding plane structures 

No bedding plane structures observed 
Sedimentary unit (layer) structures 
Medium bedded complex, coarse and fine layers in roughly equal 
amounts. Grouped, large scale, nonerosional, planar, concordant, 
heterogeneous, Beta (??) cross stratification 

Current direction 
Unknown 

Fossil content 
No fossils observed 
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Degree of induration and georaorphic expression 
Very poorly indurated, can crumble rock in your hand, a slope former 

Thickness 
2" to 14" 

Remarks 
See photo roll 3, photo 16. 
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No. 21A, green shale 

Location-roadcut No. 6 

Dominant lithology 
Shale 

Specific lithologie name 
Clay-shale 

Color 
Fresh 
Olive green 

Weathered 
Dark greenish gray to purple 

Texture 
Size 

Clay/silt ratio greater than 2/1 
Shape 

Undetermined 
Sorting 

Undetermined 
Fabric 

Mica flakes (?) parallel to shale partings observed 
Particle surface texture 

Undetermined 

Mineralogical composition 
Undetermined 
Noncalcareous 

Sedimentary structures 
Character of basal contact 
Basal contact is very sharp and planar. 

Character of upper contact 
Upper contact is a gradual transition slow. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Parallel lamination, fine layers predominate 

Current direction 
Unknown 

Fossil content 
No fossils observed 

Degree of induration and geomorphic expression 
Nonindurated and a slope former 
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Thickness 
5" 

Remarks 
Very good partings between layers 
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No. 22, brown sandstone 

Location-roadcut No. 6 

Dominant lithology 
Sandstone 

Specific lithologie name 
Quartzarenite 

Color 
Fresh 

Variable, ranges from white to buff to rusty red to light green 
Weathered 

Ranged from rusty red to buff brown 

Texture 
Size 

Coarse to fine sand 100% 
Shape 

Equidimensional to roller, subangular, low sphericity 
Sorting 
Individual beds are moderately well-sorted 

Fabric 
Random, noninterlocking 

Particle surface texture 
Smooth and glassy 

Mineralogical composition 
Quartz 100% 
Clauconite trace 

Sedimentary structures 
Character of basal contact 
Basal contact is very sharp and planar. 

Character of upper contact 
Upper contact is sharp and planar. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Medium bedded complex, coarse and fine layers in roughly equal 
amounts. Grouped, large scale, nonerosional, planar, concordant, 
heterogeneous. Beta (??) cross stratification 

Current direction 
Unknown 

Fossil content 
No fossils observed 
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Degree of induration and geomorphic expression 
Moderately poorly indurated, can rub particles of rock off with your 
hands but cannot curable blocks with your hands, forms a low bench 

Thickness 
3' 

Remarks 
Precise nature of the corss bedding is difficult to determine due to 
small size of outcrop. Color differences tend to accentuate individual 
layers of rock in this unit. Towards the base of this unit shaley 
partings 1" to 2" apart become common. 
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No. 22A, shattered brown sandstone 

Location-roadcut No. 6 

Dominant lithology 
Sandstone 

Specific lithologie name 
Quartzarenite 

Color 
Fresh 
Light green 

Weathered 
Buff to light pink with dark brown mottles covering approximately 25% 
of surface area 

Texture 
Size 
Fine sand 100% 

Shape 
Equidimensional to roller, subrounded, low sphericity 

Sorting 
Moderately sorted 

Fabric 
Random, noninterlocking 

Particle surface texture 
Grains are etched and pitted 

Mineralogical composition 
Quartz 99% 
Clauconite 1% 
Noncalcareous 

Sedimentary structures 
Character of basal contact 
Basal contact is very sharp but somewhat undularory, amplitude is 1.5" 
or less, wavelength is roughly 6". 

Character of upper contact 
Upper contact is sharp and planar. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Medium bedded complex, coarse and fine layers in roughly equal amounts 

Current direction 
Unknown 

Fossil content 
No fossils observed 
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Degree of induration and geomorphic expression 
Individual blocks within the shattered sandstone are moderately well 
indurated but the unit is still a slopw former. 

Thickness 
3" to 2' 

Remarks 
This unit consists of angular blocks of sandstone that are roughly 
equidimensional in shape. They range in size from 1" to 6". The blocks 
are moderately well-indurated but sit in a matrix of fine sand the same 
color as the blocks. Blocks make up approximately 80% of total, matrix 
approximately 20%. See photo roll 3, photos 29 and 30. 
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No. 22B, white sandstone 

Location-roadcut No. 6 

Dominant lithology 
Sandstone 

Specific lithologie name 
Quartzarenite 

Color 
Fresh 
White with green mottles, mottles are less than 1/64" in diameter and 
cover roughly 10% of the surface area. 

Weathered 
Upon weathering the mottles turn brown to orange. 

Texture 
Size 
Medium to fine sand 100% 

Shape 
Equidimensional to roller, subangular, low sphericity 

Sorting 
Moderately to poorly sorted 

Fabric 
Random, noninterlocking 

Particle surface texture 
Smooth and glassy 

Mineralogical composition 
Quartz 99% 
Glauconite 1% 
Noncalcareous 

Sedimentary structures 
Character of basal contact 
Basal contact is gradual transition slow. 

Character of upper contact 
Upper contact is very sharp and planar. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Medium bedded complex, coarse layers predominate 

Current direction 
Unknown 

Fossil content 
No fossils observed 
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Degree of induration and geomorphic expression 
Very poorly indurated, can crumble between thumb and forefinger. Unit 
is a slope former. 

Thickness 
6" 

Remarks 
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No. 23, red sandstone 

Location-roadcut No. 6 

Dominant lithology 
Sandstone 

Specific lithologie name 
Quartzarenite 

Color 
Fresh 

Not observed 
Weathered 
Rusty red 

Texture 
Size 
Coarse sand 100% 

Shape 
Equidimensional, well-rounded, high sphericity 

Sorting 
Well sorted 

Fabric 
Random, noninterlocking 

Particle surface texture 
Frosted 

Mineralogical composition 

Noncalcareous 

Sedimentary structures 
Character of basal contact 
Basal contact is very sharp and planar. 

Character of upper contact 
Upper contact is very sharp and planar. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Medium bedded complex, coarse layers predominate 

Current direction 
Unknown 

Quartz 
Glauconite, oxidized 

98% 
2% 

Fossil content 
No fossils observed 
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Degree of induration and geomorphic expression 
Very poorly indurated, can crumble fragments between thumb and fore
finger, a slope former 

Remarks 
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No. 24, red slltstone 

Location-roadcut No. 17 

Dominant lithology 
Siltstone 

Specific lithologie name 
Red siltstone 

Color 
Fresh 

Red 
Weathered 

Red 

Texture 
Size 

Clay/silt ratio is roughly 1/2 
Shape 

Undetermined 
Sorting 

Undetermined 
Fabric 

Undetermined 
Particle surface texture 

Undetermined 

Mineralogical composition 
Undetermined 
Calcareous 

Sedimentary structures 
Character of basal contact 
Unobserved 

Character of upper contact 
Upper contact is very sharp and planar. 

Bedding plane structures 
No bedding plane structures observed 

Sedimentary unit (layer) structures 
Massive 

Current direction 
Unknown 

Fossil content 
No fossils observed 

Degree of induration and geomorphic expression 
Poorly indurated and a slope former 
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Undetermined 

Remarks 
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No. 25, conglomerate 

Location-roadcut No. 17 

Dominant lithology 
Conglomerate 

Specific lithologie name 
Polymictic conglomerate 

Color 
Fresh 
Light gray (2.5Y7/2), soil color chart 

Weathered 
Gray (10YR5/1), soil color chart 

Texture 
Size 
Rock fragments-gravel to boulder size, 0.75 m maximum 
Matrix-medium to coarse size sand particles 

Shape 
Rock fragments-subangular with a low sphericity 
Matrix-subangular with a low sphericity 

Sorting 
Extremely poorly sorted 

Fabric 
Platy rock fragments (less than 50% of total rock fragments) show a 
crude alignment parallel to the basal contact. 

Particle surface texture 
Rock fragments-etched on the surface to a depth of less than 0.2 cm 
on the average 
Matrix-surface of particles are smooth and glassy. 

Mineralogical composition 
Rock fragments 

Carbonate rock fragments 90% 
Crystalline rock fragments 10% 

Matrix 
Quartz 70% 
Feldspar (ortho. ) trace 
Red silt 5% 
Mafics 5% 
Sand size rock frag 20% 

Total 
Rock fragments 80% 
Matrix 20% 

Cementing agent is calcite. 
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Sedimentary structures 
Basal contact 
Very sharp and planar 

Bedding plane structures 
No bedding plane structures 

Sedimentary unit structures 
Medium to coarsely bedded complex, coarse layers preominate 

Current direction 
Unknown, probably from the east 

Fossil content 
No fossils observed 

Degree of induration and geomorphic expression 
Well-indurated and a cliff former 

Thickness 

Remarks 
See photo roll 7, No. 25. Sample collected. 
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No. 25A, conglomerate 

Location-roadcut No. 17 

Dominant lithology 

Conglomerate 

Specific lithologie name 
Polymictic conglomerate 

Color 

Fresh 
Light gray 

Weathered 
Dark gray to buff 

Texture 
Size 
Conglomerate ranges from granule to cobble size 60% 
Matrix is medium to coarse sand 40% 

Shape 
Granules and cobbles are equidimensional to roller, subrounded, low 
sphericity. 
Matrix grains are equidimensional to roller, subrounded, low 
sphericity. 

Sorting 
Extremely poorly sorted 

Fabric 
Random, noninterlocking 

Particle surface texture 
Granules and cobbles are etched to a depth of less than 1/32" on the 
average. 
Matrix grains have a surface texture ranging from smooth (quartz 
grains) to etched and pitted (rock fragments). 

Mineralogical composition 
Granules and cobbles 
Granite 15% 
Carbonate fragments 85% 

Sedimentary structures 
Character of basal contact 
Basal contact is very sharp and planar. 

Character of upper contact 
Upper contact is very sharp and planar. 

Matrix 
Quartz 
Feldspar 
Rock fragments 
Mafics 

80% 
trace (orthoclase) 
20% 
trace 
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Bedding plane structures 

No bedding plane structures observed 

Sedimentary unit (layer) structures 

Massive 

Current direction 

Unknown 

Fossil content 

No fossils observed 

Degree of induration and geomorphic expression 

Moderately well-indurated, usually is covered with colluvium 

Thickness 

2 ' 8 "  

Remarks 

See photo roll 7, photo 28. Upper 6" of conglomerate has a black 

colored matrix, which appears to be Mn oxide. 
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No. 25B, sandstone 

Location-roadcut No. 17 

Dominant llthology 

Sandstone 

Specific lithologie name 

Color 

Fresh 
White (7.5YRN8/), soil color chart 

Weathered 

Reddish yellow (7.5YR7/6), soil color chart 

Texture 

Size 
Medium sand 100% 

Shape 

Equidimensional to roller, subangular to subrounded, low sphericity 

Sorting 

Moderately sorted 

Fabric 

Random, noninterlocking 

Particle surface texture 

Smooth and glassy 

Mineralogical composition 

Quartz 50% 

Mafics trace 

Rock frags 50% 

Sedimentary structures 

Character of basal contact 

Basal contact is very sharp and planar. 

Character of upper contact 

Upper contact is gradational over a distance of approximately 2", 

appears to be planar. 

Bedding plane structures 

No bedding plane structures observed 

Sedimentary unit (layer) structures 

Medium bedded complex, fine layers predominate 

Current direction 
Unknown 

Fossil content 
No fossils observed 
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Degree of induration and geomorphic expression 

Well-indurated and a ledge former 

Thickness 

5" 

Remarks 

See photo roll 8, photo 7. 
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No. 26, modern slump 

Location-roadcut No. 12 

Consists of unconsolidated material that has slumped down into present 

day roadcuts. 
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No. 27, talus deposits 

Consists of unconsolidated material that has accumulated as talus deposits 
along present day roadcuts. 
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No. 28, Gros Ventre-Gallatin Formation 

Location-roadcut No. 12 

Dominant lithology 
Interbedded mud-shale and pseudosparite 

Limestone 

Color 

Fresh 

Light gray to light olive green 

Weathered 

Gray to maroon 

Texture 

Size 

Fine sand 100% 

Shape 

Equidimensional, very angular, low sphericity 

Sorting 

Well sorted 

Fabric 

Random, interlocking 

Particle surface texture 
Smooth and glassy 

Mineralogical composition 

Calcite 100% 

Glauconite trace 

Quartz trace 

Sedimentary structures 

Character of basal contacts of limestone beds 

Basal contacts are very sharp and irregular (wavy), relief is roughly 
1/4", wavelength if from 1" to 2". 

Character of upper contacts of limestone beds 

Upper contacts are very sharp and irregular (wavy), relief is roughly 

1/4", wavelength is from 1" to 2" 
Bedding plane structures 

Worm tracks observed, flat pebble conglomerate 

Sedimentary unit (layer) structures 

Thin bedded complex, coarse layers predominate, coarse layers are 

roughly 10-20 times thicker than thin layers. 
Current direction 

Unknown 

Fossil content 
No fossils observed 
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Shales 

Color 

Fresh 

Light olive green 

Weathered 

Dark olive green 

Texture 

Size 

Clay/silt ratio roughly 1/1 

Shape 

Undetermined 

Sorting 
Undetermined 

Fabric 
Undetermined 

Particle surface texture 

Undetermined 

Mineralogical composition 

Clay and silt 100% 

Glauconite trace 

Calcareous, slightly 

Sedimentary structures 

Character of basal contacts of shale beds 

Basal contacts are very sharp and irregular (wavy), relief is roughly 

1/4", wavelength is from 1" to 2". 

Character of upper contacts of shale beds 

Upper contacts are very sharp and irregular (wavy), relief is roughly 

1/4", wavelength is from 1" to 2". 
Bedding plane structures 

No bedding plane structures observed 

Sedimentary unit (layer) structures 

Parallel laminated, coarse and fine layers in roughly equal amounts 
Current direction 

Unknown 

Fossil content 

No fossils observed 

Degree of induration and geomorphic expression 
Poorly indurated and a slope former 

Thickness 

Unit is exposed for a thickness of 63'. 
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Remarks 

Unit consists of alternating layers of limestone and shale. Shale beds 

range in thickness from 6" to 4', limestone beds range in thickness from 

1" to 6". Alternation in thickness appears to be random, shale beds 

make up greater than 75% of the outcrop. Jointed, joints are striking 

NOS and dipping vertically. 
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No. 28A, highly fractured Gros Ventre-Gallatin Formation 

Location-roadcut No. 12 

Same as No. 28 except that material is highly fractured. Can still 

easily see the original bedding. No appreciable offset along bedding 

planes. Material fractured into blocks roughly 2" to 4" square. 
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No. 30, crystalline gravel 

Location-TC76-l 

Dominant lithology 

Glacial till 

Specific lithologie name 

Glacial till 

Color 

Fresh 
Light gray 

Weathered 

Dark gray 

Texture 

Size 

Gravel to boulders 60% 

Medium to coarse sand 40% 

Shape 

Gravel to boulders are equidimensional, subrounded to rounded, high 

sphericity, occasional faceted boulder observed 

Sand is equidimensional to roller, angular to subangular, low 

sphericity 
Sorting 

Very poorly sorted 

Fabric 

Random, noninterlocking 

Particle surface texture 

Gravel to boulders are etched and pitted, they frequently have a 

coating of CaCOg up to 1/4" thick on their surface. 
Sand grains appear to be "ground". 

Mineralogical composition 

Gravel to boulders........100% crystalline rock fragments 

Sand 

Quartz 70% 

Feldspar 15% 

Rock frag 15% 

Calcareous 

Sedimentary structures 

Character of basal contact 

Basal contact is sharp and planar. 

Character of upper contact 

Upper contact is sharp and planar 

Bedding plane structures 

No bedding plane structures observed 
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Sedimentary unit (layer) structures 

Massive 

Current direction 

Unknown 

Fossil content 

No fossils observed 

Degree of induration and geomorphic expression 

Nonindurated and a slope former 

Thickness 
6'-12' 

Remarks 
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No. 31, limestone 

Location-roadcut No. 17 

Dominant lithology 

Limestone 

Specific lithologie name 

Micrite 

Color 
Fresh 

Light gray 

Weathered 

Dark gray 

Texture 

Size 
Fine to medium sand 100% 

Shape 

Equidimensional, very angular, low sphericity 

Sorting 

Moderately well-sorted 

Fabric 

Random, interlocking 

Particle surface texture 

Smooth and glassy 

Mineralogical composition 

CaCOg 100% 

Sedimentary structures 
Character of basal contact 

Unobserved 
Character of upper contact 

Upper contact is very sharp and planar. 

Bedding plane structures 

No bedding plane structures observed 
Sedimentary unit (layer) structures 

Medium bedded complex, fine layers predominate 

Current direction 

Unknown 

Fossil content 

No fossils observed 

Degree of induration and geomorphic expression 

Well indurated and a cliff former 

Remarks 
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APPENDIX D: SOIL TEXTURAL DATA 

Soil pit 

No. & horizon % sand % silt % clay 

lA 51 43 6 

IB * * 

IC 62 33 5 

2A 67 23 10 

2B * * * 

2C 75 15 10 

3A 50 46 4 

3B * * * 

^^1 

_b 
- -

- - -

- - -

4A 45 43 12 

4B 44 29 27 

4C 65 14 21 

5A 47 41 12 

5B * * * 

5C 60 33 17 

6A 51 34 15 

6B * * * 

6C * * * 

7A 46 48 15 

7B * * * 

7C * * * 

7R - - -

8A 51 30 20 

^*Horizon not present, 

horizon not sampled. 
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Soil pit 

No. & horizon % sand % silt % clay 

8B * * * 

8C * * * 

8R — - -

9A^ 48 37 15 

SA» 45 40 15 

9B * * * 

9C 67 10 23 

lOA 58 27 14 

lOB 61 10 29 

lOB^a 89 1 10 

IOC * * * 

lOR * * * 

llA 64 21 15 

IIB * * * 

lie 69 21 10 

12A 49 36 15 

12B * * * 

12C 64 16 20 

13A^ 51 25 24 

llAg 54 27 19 

13B * * * 

13C * * * 

14A 56 22 22 

14B * * * 

14C 82 8 10 

15A 61 16 13 

15B * * * 

15C 72 26 2 

16A 54 28 18 

16B * * * 

16C 66 15 19 
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Soil pit 

No. & horizon % sand % silt % clay 

17A^ 57 29 14 

ITAzCa 58 25 17 

17B * * * 

17C 70 15 15 

18A 69 15 16 

18B 73 25 2 

18C 72 20 8 

19A 66 27 7 

19B * * * 

19C 70 22 8 

20A 55 40 5 

20B * * * 

20C 70 26 4 

21A — — — 

21B - - -

21C 66 29 5 

22k 57 24 19 

22B * * * 

22C 59 24 17 

23A 65 20 15 

23B 68 11 21 

23C 95 3 2 

24A 54 34 12 

24B * * * 

24C 70 22 8 

25A^ — — — 

25k^ 62 31 17 

25B^ - - -

ZSBg 68 15 17 

25C * * * 
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Soil pit 

No. & horizon % sand % silt % clay 

26A^ 58 29 13 

26A2 64 21 14 

26B 65 23 11 

26C * * * 

Ilk 54 31 14 

27B 68 25 7 

27C 57 34 9 

28A2 17 70 13 

28B 57 32 11 

28C 62 21 17 

29A2 27 36 37 

29B 22 48 30 

29C 61 21 18 

3OA2 ft * * 

30B - - -

30C - - -

SLAG - - -

31B - - -

31C - - -

32A 58 33 11 

32B 77 9 18 

32C 69 16 15 

33A 54 29 17 

33B 71 15 14 

33C 87 8 5 

34*2 63 28 9 

34B 53 18 29 

34C 49 28 23 

35A2 49 34 17 

35B 57 32 11 
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Ca 

Soil pit 

No. & Horizon 

35C 

36A 

36B 

36B 

36C 

37A 

37B 

37C 

38A 

38B 

38C 

39A 

3 93 

39C 

40A, 

40B 

40C 

41A 

41B 

41C 

42A 

42B 

42C 

43A 

43B 

43C 

44A2 

44B 

44C 

45A 

% sand 

61 

58 

65 

65 

76 

51 

63 

67 

63 

68 

74 

63 

64 

80 

70 

75 

90 

* 

* 

* 

% silt 

25 

29 

23 

23 

19 

38 

26 

27 

23 

27 

18 

25 

28 

12 

23 

18 

8 

* 

* 

* 

% clay 

14 

13 

12 

12 

5 

11 

11 

6 

14 

5 

8 

12 

8 

8 

7 

7 

2 

* 

* 

* 

48 

57 

62 

35 

28 

29 

16 

15 

9 
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Soil pit 

No. & horizon % sand % silt % clay 

45B - - -

45C - - -

46A2 64 29 7 

46B 75 19 6 

46C 71 20 9 

47A - - -

47B - - -

47C - - -

48A - - -

48B - - -

48C 82 13 5 

49A 60 26 14 

49B 58 22 20 

49C 60 27 13 

50A A * * 

50B * * * 

50C A * * 

51A 64 29 7 

51B 83 10 7 

51C 85 9 6 

52A 80 9 11 

52B * * * 

79 21 5 

52C 74 15 11 

53A 72 22 7 

53B * * * 

89 7 5 

53C 90 7 3 

54A 58 30 12 

54B * * ft 
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Soil pit 

No. & horizon % sand % silt % clay 

54Cca 66 29 5 

55A 80 14 6 

55B * * * 

55C 89 10 1 

56A 43 48 9 

55B * * * 

56C 75 20 5 

57 A * * * 

57B * * * 

57C A * * 

58A * * * 

58B * * * 

58C A * * 

59A 87 11 2 

59B * A * 

59C 82 16 12 

60A 81 12 7 

60B * * * 

GOCca 91 7 2 

61A 69 20 9 

61B * * * 

77 18 6 

61C 70 27 3 

62 A 72 19 9 

62B * * 

GZCca 80 15 5 

62C 64 32 4 

63A 71 4 5 

63B * * * 
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Soil pit 

No. & horizon % sand % silt % clay 

63C 58 37 5 

64A 70 14 16 

64B * * * 

72 22 6 

64c 74 22 4 

65A 56 31 13 

65B * * * 

70 22 8 

65C 88 7 5 

66A 46 34 20 

66B^ 56 32 12 

666^ 78 15 7 

90 5 5 

66c 80 17 3 

67 A 56 34 10 

67*2 74 21 5 

67B 61 30 9 

67C 75 15 10 

68A * * * 

68B * * * 

68C 81 9 10 

69A2 71 18 11 

69B 77 14 9 

85 11 4 

7 OA 48 37 15 

7 OB 62 18 20 

7 DC 49 31 20 

71A 54 31 15 

71B 62 28 10 

71Cca 70 21 9 
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Soil pit 

No. & horizon % sand % silt % clay 

71C 61 34 5 

72A 55 38 7 

72B 61 29 10 

72C 86 8 6 

73A - - -

73B - - -

73C - - -

74A 86 7 7 

74B 92 5 3 

74C 91 6 3 

75A2 - - -

75B - - -

75C^ 
Ca 

75C - - -

76A 78 11 11 

76B 79 12 9 

76C 77 18 5 

77A2 50 40 10 

77B 64 26 10 

lie 68 25 7 

18^2 74 18 8 

78B2 76 14 10 

78B3 83 9 8 

85 8 7 

79A2 53 34 13 

79B 64 19 17 

79C 85 1 14 

80A 57 28 15 

80B 66 22 12 

8OB3 75 15 10 
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Soil pig 

No. & horizon % sand % silt % clay 

83 7 10 

81A 76 13 11 

81B 

00 

11 5 

84 11 5 

82A 57 28 15 

82B 69 16 15 

82B3 72 18 10 

82C 87 10 3 

83A * * * 

83B * * * 

83C 27 44 29 

84A2 43 41 16 

84B 59 29 12 

84C * * * 

85A 82 13 5 

85B 81 4 16 

85C 78 12 10 

86A 75 18 7 

86B 68 22 10 

86C 86 10 4 

87A 71 23 6 

87B 75 15 10 

87C 77 15 8 

88A^ 67 16 7 

88A2 64 29 7 

88B 77 2 21 

88C 96 2 2 

00
 

00
 

0
 

M
 

1 
H

 

88 7 5 

88C111 90 7 3 

*8Civ 98 1 1 
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Soil pit 

No. & horizon % sand % silt % clay 

97B 

97C 

98A 

98B 

98C 

99A 

99B^ 

99B2 

99C 

lOOA 

lOOB 

lOOC 

lOlA 

lOlB 

lOlC 

102A 

102B 

102c 

102c 

103A 

I03B 

103C 

104A 

104C 

105A 

105B 

105B. 

105C 

106A 

106B 

Ca 

* 

87 

* 

* 

81 

92 

91 

95 

88 

47 

56 

53 

67 

63 

83 

80 

* 

* 

7 

6 

6 

3 

9 

45 

35 

28 

31 

34 

14 

15 

* 

5 

* 

* 

12 

2 

3 

2 

3 

8 

9 

19 

2 

3 

3 

5 
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Soil pit 

No. & horizon % sand % silt % clay 

106Bc^ -

106c — — — 

107A 63 37 0 

107B 89 8 3 

107C 92 5 3 

108A — — — 

108B - - -

108C_ — — — 
Ca 

108C - - -

109A -

109B - - -

109C - - -

llOA - - -

HOB - - -

HOC- — — — 
Ca 

HOC — — 

lllA - - -

lllB - - _ 

lllC - - _ 

II2A2 -

112B - - _ 

113A -

113B - - _ 

113C -

114A 54 39 7 

114B 68 24 8 

114c * * * 

115A 66 24 10 

115B 87 7 6 
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Soil pit 

No. & horizon % sand % silt % clay 

LLSBCA 88 7 5 

115C^ 88 8 4 

II5C2 75 12 13 

116A 70 24 6 

116B 85 11 4 

116C 95 4 1 

117A 75 20 5 

117B 94 1 1 

117C 89 9 2 

118A - - -

118B - - -

118C - - -

119A - - -

1191A 63 28 9 

1191B^ 85 10 5 

II9IB2 76 18 6 

119Aj - - -

119B^ - - -

120A - - -

120C^ - - -

120C„ Ca 
I2OC2 - - -

121A - - -

121c - - -

122A - - -

122C^ - - -

- - -

I22C2 - - -

123A - - -

123B 
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Soil pit 

No. & horizon % sand % silt % clay 

123C - - -

124C - - -

125A - - -

125B - - -

125C - - -

126A - - -

126B - - -

126C - - -

127A - - -

127B - - -

127C - - -

128A^ 77 22 1 

128A 70 24 6 

128C 90 9 1 

129Ai 57 37 6 

129A2 69 27 4 

I29B2 80 12 8 

I29B3 97 1 2 

129C 98 1 1 

I3OA1 65 27 8 

130A 74 16 10 

130B^ 82 13 5 

UOBg 91 6 3 

"OCca 81 15 4 

131A - - -

131B - - -

131C - - -

132G 3 73 24 

133C 5 70 25 

134C 33 23 44 



327 

Soil pit 

No. & horizon % sand % silt % clay 

135C 

136C 

60 

21 

17 

37 

23 

42 
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APPENDIX E: SOIL PROFILE DESCRIPTIONS 
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Key for Appendix E 

Depth to bedrock and depth to H^O table are listed in meters. 

Depth to soil horizon is listed in centimeters. 

Texture 

Texture Term 

angular cobbley ac 

angular gravelly ag 

gravel g 

very coarse sand vcos 

coarse sand cos 

sand s 

fine sand fs 

very fine sand vfs 
loamy coarse sand Icos 

loamy sand Is 

loamy fine sand If s 

sandy loam si 

fine sandy loam fsl 

very fine sandy loam vfsl 

gravelly sandy loam gsl 

Texture Term 

loam 1 

gravelly loam gl 

stoney loam stl 

silt si 

silt loam sil 

clay loam cl 

silty clay loam sicl 

sandy clay loam scl 

stoney clay loam stcl 

silty clay sic 

clay c 

Structure 

Size or class 

very fine vf 

fine f 

medium m 

coarse c 

very coarse vs 

Grade or distinctness 

structureless 0 

weak. 1 

moderate 2 

strong 3 

Form or type 

platy pi 

prismatic pr 

columnar cpr 

blocky bk 

angular blocky abk 

subangular blocky sbk 

granular gr 

crumb cr 

single grain. .sg 

massive m 
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Consistency 

Dry soil Wet soil 
loose dl nonsticky 
soft ds slightly sticky 

slightly hard dsh sticky 
hard dh very sticky.... 
very hard dvh nonplastic 
extremely hard deh slightly plastic 

plastic 
very plastic.... 

Moist soil 
loose ml 
very friable mvfr 
friable mf r 
firm mfi 
very firm mvfi 
extremely firm mefi 

Boundary 

Distinctness Topography 
abrupt a smooth 
clear c wavy 
gradual g irregular 
diffuse d broken 

Mottling 

Abundance Contrast 
few f faint 
common c distinct 
many m prominent 

Size 
fine 1 
medium 2 
coarse 3 
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Soils Data 

Site Nr>. 1 Location NW16. 53 N90W Elevation 1585 
Dominant wild oats 
vegetation bunch grass 

 ̂total  ̂good 
ground cover 80 ground cover oO 

Parent 
silty carbonate collu. 

Formation name for 
underlying bedrock Gallatin 

 ̂surface covered 
by bedrock 0 

colluvia 
Tĵ ndform landslic 

,1 backfill area on 
Le (slump) 

Slope 
anale 2 Aspect NlOW 

Erosion 
Glass slight 

less than 
Precip. 38 cm. 

Drainage Somewhat excessively 
class drained 

Depth to 
seasonal 

ïpO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5+ 1.5+ 

1.5+ 1.5+ 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 92 
10YR5/2 

10YR4/3 1 med pi 
1 np 
f ns 7+ sm 

G 92+ 
10YR6/1 

10Yfi6/2 acl mas 
1 np 
f ns 7+ 

Comments Horizons only weakly developed and are very low in organic 
Matter, 
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Soils Data 

Rite Nn. ? Lnftfl.Wnn NW1 4. 41N90W Elevation 1585 
Dominant wild oats 
vegetation bunch grass 

% total % good 
ground cover 90 yrnund cover 75 

Parent loamy carbonate 
ma+̂ -H al cnlluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 

Colluvlal backfill area on 
Landform landslide ( slump) 

Slope 
angle 3 Aspect NlOW 

Erosion 
Class slight 

less than 
Precip. 39 cm. 

Drainage 
class ext. well 

Depth to 
seasonal 

HigO table (est.) 
year around 

Depth to bedrock 
rlppable non-rlppable 

1.5 + 1.5 + 

1.5+ 1.5+ 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 46 
10ÏR5/2 

10YR4/3 1 pi 
lo ns 
f np 7+ R sm 

C 46 + 
10YR6/1 

10YR5/2 ags mas 
lo ns 
f np 7+ 

Comments Horizons only weakly developed and are very low in organic 
matter. 
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Soils Data 

Site No. 1 Location NW16.63N90W Elevation 1695 
Dominant 
vegetation saw grass 

% total % good 
ground nover 60 ground cover 40 

Parent loamy carbonate 
material colluviom 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
by bedrock 0 

colluvial backfill area on 
Landform landslide (slump) 

Slope 
an&le 4 Aspect N15W 

Erosion 
Class moderate 

less than 
Precip. 38 cm. 

Drainage 
class exc. well 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.9 + 1.5+ 

1.5 + 1.5<-

Profile description 
Hori
zon Depth 

Color 
dry  ̂ moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 10.4 
10YR3/3 

10YR2/2 1 m2pl 
lo wso 
mfl wpo es gs 

°1 137.2 
10YR5/2 

10YR4/3 1 ml pi 
lo wso 
mfl wpo es gs 

167.6 
10YR6/3 

10YR5A vfs m 
lo wso 
mfl wpo es gs 

167.6+ 
10YR5/2 

10YR4/3 a&sll m 
lo wso 
mfl WPO es 

Comments A horizon contains some organic matter, profile only poorly 
differentiated. The structure in the C, is due to bedding planes. 
This appears to be a depression filling on an old rotational slump. 
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Soils Data 

aitft Nn. 4 t.mca.tlnn NW31. 93N89W Elevation 2621 
Dominant sage, grass, and 
vegetation fôarba . 

% total % good 
ffround cover 80 ground cover oO 

Parent weathered 
material limestone 

Formation name for 
underlvlnc bedrock Madison 

% surface covered 
"bv bedrock 0 Landform sldeslope 

Slope 
angle 5 Aspect N12E 

Erosion 
Class moderate 

greater than 
Preclp. 60 cm. 

Drainage 
class well 

Depth to 
seasonal 

[igO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 

1.5+ 1.6 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
drv wet pH Boundary 

A 1S.4 
2.5YR2/4 

2.6YE2/2, sil mTabk 
dsh wss 
mfr wps 7- cs 

B 61.4 
2.5ÏR5A 

2. 4YR3/4 sll mlabk 
dsh ws 
mfr ws 7- es 

G 61.4+ 
7.5ÏR5/6 , 

7. 6YB4/2 acal m 
dsh wss 
mfr wps 7+ 

Comments Clay skins ?? present in the A horizon as well as a fair 
amount of orgaùic matter. Clay skins present in the B horizon. 
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Soils Data 

Site No. 5 Location SW30,531' 89W Elevation 2670 
Dominant sÉge, and 
vegetation forbs 

% total % good 
ground cover 80 ground nnver 50 

Parent weathered carbonate 
«1 bedrock 

Formation name for 
underlying bedrock Madison 

% surface covered 
by bedrock 20 Landform sldeslope 

Slope 
angle 15 Aspect N90E 

Erosion 
Class moderate 

greater than 
Precip. 50 cm. 

Drainage 
class well 

Depth to 
seasonal 

igO table (est,) 
year around 

Depth to bedrock 
rlppable non-rlppable 

1.5+ 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 30.7 
2.5YR2/4 

2.5ÏR2/2 sll m2abk 
dsh wss 
mfr wpo 7- cs 

G 30.7+ 
7.5YR5/6 

7.5YR4/2 acsl m 
dsh wss 
mfr WPO 7+ 

Comments Clay skins ?? and large amount of organic matter present In the 
A horizon. As moved up the hill from pit no. 4 appear to have lost 
the B horizon. 
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Soils Data 

Site Un. 6 Location SW30, 53N89W Elevation 2804 

Dominant grass, sage, and 
vegetation forbs 

% total % good 
Ground cover 30 frnund cover 15 

Parent weathered carbonate 
matft-rial bedrock 

Formation name for 
underlvine bedrock Madison 

% surface covered 
by bedrock 50 Landform rideecrest 

Slope 
angle 5 Aspect S15W 

Erosion 
Class moderate 

greater than 
Precip. 50 cm. 

Drainage 
class well 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5+ 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 15.4 
2.5YR2/4 

2.5YR2/2 sil mZabk 
dsh irss 
mfr WPS 7- am 

B 15.4+ 

Comments Poorly developed clay skins?? present on the peds in the 
A horizon. Much organic matter also present. 
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Soils Data 

Si tfi No. 7 Trfiftation NEIS. 51N89W Elevation 2731 
Dominant grass, sage, aâd 
vegetation forbs 

% total % good 
ground cover 70 ground cover 50 

Parent weathered carbonate 
material bedrock 

Formation name for 
underlvinc bedrock Madison 

% surface covered 
bv bedrock 20 Landform sidesloi ae 

Slope 
angle 1*5 Aspect S20W 

Erosion 
Class moderate 

greater than 
Precip. 50 dm. 

Drainage 
class well 

Depth to 
seasonal 

KgO table (est,) 
year around 

Depth to bedrock 
rippable non-rippable 

1.2 1.5+ 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
drv wet pH Boundary 

A 20.5 
2.5ÏR5A 

2.5YR4./6 sll m2abk 
dsh wso 
mfr wpo 7- as 

R 20.5+ 7+ 

Comments Poorly developed clay skins ??? present in A horizon. Good 
deal of organic matter, appears to be 1(% by volume. 
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Soils Data 

Site No. 8 Location SW18. "ÎINC >CW Elevation 2460 
Dominant 
vegetation grass, and sage 

% total % good 
ground cover 60 ground cover 40 

Parent weathered Amsden 
material silts and carbonates 

Formation name for 
underlying bedrock Amsden 

% surface covered 
by bedrock 20 Landform ridee crest 

Slope 
angle 10 Aspect S45W 

Erosion 
Class slight 

greater than 
Precip. 50 cm. 

Drainage 
class moderately well 

Depth to 
seasonal 

ligO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

0.3 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 15.4 
2.5YR2/4 

2.5YR2/2 sil m2abk 
dsh *80 
mfr SDO 7- as 

R 15.44 
10R4/8 

7-

Comments Poorly developed clay skins ??? on peds in A horizon, 

-, 
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Soils Data 

R1tA Nn. 9 Lnfiatlnn Stfl8,53N90W Elévation 2560 
Dominant grass, sage, and 
vegetation forks 

% total % good 
eround cover 70 ground cover 50 

Parent weathered Amsden 
mate-Hal sllts and carbonates 

Formation name for 
underlying bedrock Amsden 

% surface covered 
by bedrock 0 TAndform rldaecrest 

Slope 
anale 10 Asuect Ŝ 5W 

Erosion 
Glass slight 

greater than 
PreciTJ. 50 cm. 

Drainage 
class moderately well 

Depth to 
seasonal 

fl-O table (est.) 
year around 

Depth to bedrock 
rlppable non-rlppable 

1.5 + 1.9 + 

1.5+ 1.5 + 

Profile descrlDtion 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet PH Boundary 

*1 10.2 
7.5YR3/2 

7.5YR3/2 sil m2abk 
dh ws 
mfl WD 7- cs 

4 30.7 
2.5YR2/4 

2.9YR2/2 sil m2abk 
dh ws 
mfl wp 7- cs 

C 30.7+ 
10R4/8 

10R3/6 si m 
dh ws 
mfl wp 7-

Comments No clay skins present. Up to 10̂  organic matter (est.) in 
the A horizon. 
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Soils Data 

SltP Nn. 10 Location RWt8.4tN88W Elevation 2719 

Dominant alpine fir, sage, 
vegetation g-ra-RRr forbs 

 ̂total 
ground cover &2_ 

% good 
yrnunci cover 74 

Parent weathered carbonate 
material bfidronk 

Formation name for 
underlying bedrock Madison 

% surface covered 
by bedrock 0 Landform mldeslone 

Slope 
angle Aspect Si OB 

Erosion 
Glass slight sLignx iPrecip. -lu cm. 

Depth to HgO table (est.) 
seasonal year around 

1.5+ 1.5 + 

greater than 
50-25». 

Drainage 
class moderately well 

Depth to bedrock 
rippable non-rippable 

1 . 4  +  1 . 4  +  

Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

10YR2/2 
10YR2/2 sll c2gr 

dsh wss 
mfr wps 7- cs 

5YH3/2 
el m2abk 

dsh ws 
mfi wp 7- CS 

R7 
7.5B4/4 

7. 4YR1/2 c l  m2abk 
dsh ws 
mfi wp 7+ cs 

R «7+ 

7.5R7/6 
7t 

Comments A horizon, weakly developed clay skins ??? and high content 
of vmdecayed organic matter (est. 10̂ ). B, horizon, well developed 
clay slins (5YR3/2), mottles are present (c2f), they are 2.5YR3A 
color, Bg_ horizon, well-developed clay skins (5YR̂ /2), common 
distinct veînlets of GaCÔ  running through 10YR8/2, 
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Soils Data 

Site No.11 Location NH25.53N 39W Elevation 2743 
Dominant grass, sage, and 
vegetation forbs 

% total % good 
ground cover 80 ground cover 60 

Parent weathered carbonate 
bedrock 

Formation name for 
underlying bedrock Madison 

% surface covered 
bv bedrock 10 Landform sideslope 

Slope 
angle 21 Aspect N89E 

Erosion 
Class class 1 

greater than 
Precip. 60 cm. est. 

Drainage somewhat excessively 
class drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.9 + 1.5 + 

1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 46 
7.5YR3/2 

7.5YR3/2 sil m2abk 
ds wso 

nfvr wpo 7- cs 

C 61 
5YRV3 

ÇYH3/3 agi m 
ds wso 

nfvr WDO 7+ as 

R 61+ 
7.5ÏH7/6 

7+ 

Comments A horizon, clay skins ??? (5YR3/2), carbonate pebbles 
present, less than 10̂  (est.)» G horizon, pea size carbonate 
pebbles present, 3(%iby 'V6lQme{(est,). 
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Soils Data 

Site No. 12 Location NW31. 53N£ 19W Elevation 2621 
Dominant grass, sage, and 
vegetation forbs 

% total % good 
ground cover 90 çrnund cover 70 

Parent weathered carbonate 
mA+A-ria.! bedrock 

Formation name for 
underlving bedrock Madison 

% surface covered 
bv bedrock 0 Landform toesloue 

Slope 
anKle 19 Aspect N89E 

Erosion 
Class class 1 

greater than 
PreciT). 50 cm. 

Drainage gQ̂ ewhat excessively 
class HralnpH 

Depth to 
seasonal 

dpO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.4 + 1.4 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

C03»r 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 60.9 
10YR3/3 

10YR2/2 sil mlabk 
sa tfso 
mfvr wpo 7- ca 

n 73.7 
7.5YR4/4 

7.4YR3/2 all m 
sa wso 
mfvr wpo 7+ as 

R 73.7+ 
7.5YR7/6 

7+ 

Comments A horizon, well-developed clay skins??? (7.5ÏB3/2). 
G horizon, contains 10̂  (est.) angular carbonate rock fragments. 

, . 
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Soils Data 

Site No. 11 Location SW10.53N 38W Elévation 2694 
Dominant grass, sage, and 
vegetation forbs 

% total % good 
ground, cover 90 ground cover 70 

Parent weathered carbonate 
al bedrock 

Formation name for 
underlying bedrock Madison 

% surface covered 
by bedrock 20 Landform sideslope 

Slope 
angle 3*5 Aspect N89B 

Erosion greater- than 
Class class 1 Precit). 50 cm. 

Drainage somew 
class drain 

tiat excessively 
3d 

Depth to HgO table (est.) 
seasonal year around 

1.5+ 1.5 + 
Depth to bedrock 

rippable non-rippable 

0.61 1.5 + _ 

Depth to HgO table (est.) 
seasonal year around 

1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

46 
10YR3/3 

10YR3/2 sil mlabk 
ds wso 

nfvr WDO 7- ffS 

121.9+ 
10YR3/3 

10YR3/2 affsil mlabk 
sa wso 
mfvr WDO 7+ 

Comments A, horizon, clay skins??? present (10YR3/2). Ag horizon, 
same as A. except contains 2C% (est.) angular carbonate rock 
fragments. Soil pit discontinued at 121.9 cm. 
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Soils Data 

Site No- 14- Location SE25.53N89W Elevation 2767 
Dominant grass, sage, and 
vegetation forts 

% total % good 
ground cover 80 ground cover 60 

Parent weathered carbonate 
matfi-H al bedrock 

Formation name for 
underlvlne bedrock Madison 

% surface covered 
bv bedrock 20 Landform sidealone 

Slope 
angle 5 Aspect N90E 

Erosion 
Glass class 1 

greater than 
PreclD. 50 cm. 

Drainage somew 
class drain 

hat excessively 
ed 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 

49.7 1.5 + 

1.5 + 1.5 + 

Profile descriation 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 10.2 
10YR3/3 

10YR3/2 sll mlabk 
ds wso 

mfvr woo 7- cs 

C 49.7 
5YE4/4 

5YE3/3 aosll m 
ds wso 

mfvr wpo 7+ as 

R 45.7+ 
7.5YR7/6 

7+ 

Comments 
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Soils Data 

Site No. 15 Location NE35,53NI 39W Elevation 2773 
Dominant grass, sage, and 
vegetation forbs 

% total % good 
ground cover 80 ground cover oO 

Parent weathered carbonate 
material bedrock 

Formation name for 
underlvinc bedrock Madison 

% surface covered 
bv bedrock 10 Landform ridgecrest 

Slope 
angle 22 Aspect S40W 

Erosion greater than 
Class class 1 Precit). 50 cm. 

Drainage 
class well drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 

1. «; + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 12.8 
10YR3/4 

10YR2/2 sil m2scr 
ds wso 

nfvr wpo 7- cs 

fi 101 
10YR4/4 

10YR1/1 acsl m 
ds wso 

nfvr wpo 7t 

Comments A horizon, poorly developed clay skins??? (10YR3/2), also 
contains 10-15# angular pebble size carbonate fragments. C 
horizon, contains 50̂  (est.) angular cobble and gravel size 
carbonate rock fragments. 
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Soils Data 

Site No. 16 Location S02é. S'îNl 3QW Elevation 27(H 

Dominant grass, sage, and 
vegetation forbs 

% total % good 
pround cover 00 ground cover 74 

Parent weathered carbonate 
a.1 hAdrnnk 

Formation name for 
underlvine bedrock Madison 

% surface covered 
bv bedrock 0 Landform sideslop P - . 

Slope 
angle 18 Aspect N80W 

Erosion 
Glass class 1 

greater than 
Precio. 40 em. 

Drainage 
class well drained 

Depth to 
seasonal 

K O table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Co3x>r 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 30.7 
10YR4/3 

10YH3/3 sil m2zr 
ds wso 

iifvr wpo 7- ea 

c 101.6+ 
7.5YR4A 

7. 4YR1/2 aeal m 
ds wso 

nfvr wpo 7+ 

Comments A horizon, clay skins ??? (10YK3/3), less than 10̂  angular 
pebble size carbonate rock fragments. C horizon contains 10# 
(eat.) angular pebble size carbonate rock fragments. 
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Soils Data 

Site No. 17 Location NE35.53N89W Elevation 270? 
Dominant grass, sage, and 
vegetation forts 

JS total  ̂good 
ground cover 85 ground oovmr oO 

Parent weathered carbonate 
matA-rl albfidmck 

Formation name for 
underlying bedrock Madison 

% surface covered 
bv bedrock 20 Landform sidesloue 

Slope 
angle 29 Asoect Ŝ 5E 

Erosion greater than 
Class class 1 PreciT>.50 cm. 

Drainage 
class well drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile descri-otibn 
Hori
zon Depth 

Co3»r 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

4 30.7 
5YR3A , 

5YR2/2 sll mZabk 
ds wso 

nfvr wpo 7- gs 

2̂Ca 61.4 
5YR3A , 

5YR2/2 a&sil m2abk 
ds wso 

nfvr wpo 7+ cs 

G 61.4+ 
5YR4/3 

SYR3/3 a&sil m 
ds wso 

mfvr wpo 7+ 

Comments horizon, clay skins??? (5ÏR3/2) present. Agĝ  ̂same as 
Aj but c&htaihs 15̂  (est.) angular pebble size carbonate eock 
fragments. 



348 

Soils Data 

Site No. 18 Location NWlQ.'Î̂ Nf ow Elevation 
Dominant grass, sage, and 
vegetation forbs 

% total % good 
ground cover 100 ground cover Rn 

Parent weathered granite 
mn-tft-rtal bfidrock 

Formation name for 
underlying bedrock granite 

% surface covered 
bv bedrock 0 Landform sidoainn* 

Slope 
angle 5 AsDect S 02 

Erosion 
Class class 1 

greater than 
Precip. 90 cm. 

Drainage moderately well 
class drained 

Depth to 
seasonal 

flgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.6 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 35.8 
5YR3/2 

5YR2/2 sil mlabk 
ds wso 
mfvr WDO 7- cs 

B 61.4 
2.5Y6/6 

2.6Y6/6 sic m2abk 
dsh ws 
rafr wp 7- r.R 

C 61.44 
2.5Y6/6 

2.SY9/6 sc m 
dsh ws 
mfr wp 7-

Comments A horizon, clay skins??? (5YR3/1). B horizon, well-
developed clay skins (5Y6/2), mottles present, (f2d), contains 
less than % (est.) highly weathered, acid crystaline, pebble size, 
rock fragments. C horizon, contains % (est.) highly weathered, 
acid crystaline, pebble size, rock fragments. They appear to be a 
mica schist. 
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Soils Data 

Site No. 19 LocationNWIO. 53N90W Elevation 1585 
Dominant wild oats, sage 
vegetation and cactus 

% total % good 
ground cover 60 ground cover oO 

Parent loamy carbonate 
matftrial colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 

colluvia 
Landform landslid 

,1 backfill area on 
e (slump) 

Slope 
angle 4 Aspect SOW 

Erosion 
Class class 1 

less than 
Precip. 30 cm. 

Drainage 
class well drained 

Depth to 
seasonal 

KgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5 + 1.5 + 

Profile descri-otion 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 5 
iOYR5/3 

10YR4/3 ael fier 
dl wso 

mvfr WDO 7+ cs 

G 101.6+ 
10YR7A 

10YR6A a&sil m 
dl wso 

mvfr WDO 7+ 

Comments A horizon, organic matter less than \% (est,), contains 
(est.) angular gravel size carbonate rock fragments, appear to 

be from the Madison formation. A horizon reacts violently with Hul. 
C horizon, contains 15̂  (est.) angular gravel size carbonate 2»ck 
fragments, appear to be from the Madison formation. C hroizon reacts 
violently with HCl. 
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Soils Data 

Site No. 20 LneatlonNWlO. Ç3N90W Elevation 1585 
Dominant wild, oats, sage, 
vegetation and cactus 

% total % good 
ground cover 50 pround cover 50 

Parent loamy car"bonate 
matftrla.1 colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 

colluvial backfill area on 
Landform landslide f slumr) 

Slope 
angle- 8 Aspect SOB 

Erosion 
Class class 1 

less than 
Precit). 38 cm. 

Drainage 
class well drained 

Depth to 
seasonal 

W table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5<- 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 5 
10yR5/3 

IOYHV: agi mlgr 
dl wso 

mvfr wpo 7+ cs 

C 101.6+ 
10YR6/4 

10YR5A aKsil m 
dl wso 

mvfr woo 7+ 

Comments Profile in general is poorly developed. Aihorizon, contains 
10̂  (est,) angular gravel size carbonate rock fragments, appear to 
be from the Madison Formation. A horizon reacts violently with HCl. 
C horizon, contains 2Q̂  (est.) angular gravel size c&rbonat* sock 
fragments, appear to be from the Madison Formation. C horizon reacts 
violently with HCl. 
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Soils Data 

Sitfi No. 21 Location M15.53N90W Elevation 1539 
Dominant grass, sage, and 
vegetation .iunl-oer 

% total % good 
Ground cover 70 ground cover 70 

carbonate colluvlum 
Parent forming landslide 
mAtft-H alHfthrl s 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform sideslope-landslide islump) 

Slope 
angle 55 Aspect NOE 

Erosion 
Class class 1 

less than 
Precip.38 cm. 

Drainage somewhat excessively 
class drained 

Depth to 
seasonal 

HgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

Comments Material churned by mass movement, no discernible soil 
profile present. Consists of 50^ (est.) aggular gravel to boulder size 
carbonate rock fragments from the Madison Formation set in a 
silty matrix. Matrix is 10YR5/2, m, dl, mVfr, wso, wpo, and reacts 
violently with HCl. 
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Soils Data 

Sitp Nn. 22 Location NW15.53N90W Elevation 1585 
Dominant grass, sage, and 
vegetation juniper 

% total % good 
eround cover 50 ground cover 50 

Parent loamy, carbonate 
material colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
by bedrock 0 

colluvia 
lAndform landslic 

1 backfill area on 
e (slump) 

Slope 
angle 1 Aspect SOW 

Erosion 
Glass class 1 

less than 
Precip. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

SgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1,5 + 1,5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 5 
5Y86/1 

SYR 9/2 sil mlKr 
dl wso 

mvfr wpo 7+ cs 

G 101.6+ 
5YR6/1 

9YR5/2 sil mlpl? 
(U wso 

mvfr . wpo 7+ 

Comments Profile very poorly differentiated. A horizon has 1% organic 
matter (est.), G horizon has none. Structure in C horizon appears 
to be due to depositional bedding. 
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. . -. . .. Soils Data 
44̂ f J>y 

Site No-23 Location 1 n? 90,10 Elevation 272t6 
Dominant 
vegetation o-raaa nnH fn-rhc 

% total % good 
Ground cover fto ground cover An 

Parent weathered acid 
matft-rtal nrvstallne bed rock 

Formation name for 
underlvinff bedrock granite 

% surface covered 
bv bedrock 0 Landform ssideslope 

Slope 
angle 14 Aspect SOE 

Erosion 
Class class 1 

greater than 
Precip. SO cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 

0.7 1.5 + 

0.9 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 7.6 
7.5YRV2 

7.5YR3/2 1 flgr 
ds wso 

mvfr WDo 7- cs 

B 15.2 
7.5ÏR5A , 

7.5Yr4/2 sil mlabk 
dsh wss 
-•mfr WPS 7- cs 

G 71.2 
2.5YR6/8 

2.5YR5/6 fiSl m 
ds wso 

mvfr WPS 7- ei 

R 71.2+ 
10H5/8 

Comments B horizon, poorly developed clay skins (7.5ÏR4/4), contains 
2% (est.) angular gravel fragments of deeply weathered igneous 
rock. Depth to C horizon is variable, consists of deeply weathered 
pink granite. 
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44,40,00 
Site No. 24 Location my, 3?, 3n 

Soils Data 

Elevation 2830 
Dominant grass, sage, and 
vegetation forbs 

% total 
sromii cover 80 

% good 
ground cover 60 

Parent weathered carbonate 
material bedrock 

Formation name for 
underlvlng bedrock Bighorn 

% surface covered 
by bedrock 20 Landform sideslope 

Slope 
angle 8 Aspect SOW 

Erosion 
Glass class 1 Precip. 

greater than 
60 cm. 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 

Drainage 
class well-drained 

Depth to bedrock 
rippable non-rlppable 
1.5+ 1.5+ 

Profile dê riptibn 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 10.2 
7.5YR3/2 

7.6YR3/2 Sil m2gr 
dsh ws 
mfr WD 7- cs 

c 101.2+ 
10YH8/6 

10YR7/6 acsil m 
ds wso 

mvfr wps 7+ 

Comments a horizon, poorly developed clay skins (5ÏR2/2)???, 
angular carbonate pebbles make up less than 1% (est.) of total, 'C 
horizon, 50̂  (est.) angular cobble size dolomite fragments. 
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Soils Data 

Site No. 29 Location in7 in Elevation 2AQ6 
Dominant 
vegetation erass. and forts 

% total % good 
ground cover 99 ground cover 80 

Parent weathered carbonate 
IMI+Arial bfidroek 

Formation name foix 
underlying Madison 

% surface covered 
by bedrock 0 Landform ridsecrest-saddle 

Slope 
angle 3 Aspect #02 

Erosion greater than 
Glass class 2 Preclp. 90 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5+ 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

CoWr 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

7.6 
7.5ÏR3/2 

7.6YR2/2 sll mler 
ds wso 

avfr wpo 6,? OS 

A 4*5.7 
7.5YR3/2 

7.9YR2/2 sic m2ar 
dsh wss 
mfr wps 7.0 cw 

4 <4:9 
10ÏR6/6 

10YRV6 sic m2abk 
dsh wss 
mfr wps 7.0 cw 

101.6+ 
10YH6/6 

tOYR9/6 aeslc ra2abk 
dsh wss 
mfr wps 7,9 

Comments A horizon, clay skins??? (10YR3/2) present but not well 
developed. B, horizon, well-developed clay skins (10YR5A).. Bg 
horizon, clay skins extremely well developed (10YR5A)» contains 
60̂  (est.) angular cobble size carbonate rock fragments from the 
Madison Formation 
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Soils Data 
44,4U,UU 

Site No. 26 Location 107 ? Elevation 2932 ^  I I J  99 
Dominant 
vegetation grass, and forbs 

% total % good 
ground cover 95 pround cnvê  

Parent weathered carbonate 
matft-rVal bedrock 

Formation name for 
underlying bedrock Madison 

% surface covered 
by bedrock 0 Landform sideslope 

Slope 
angle 7 AspectN90E 

Erosion greater than 
Glass class 1 Precip. 50 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5+ 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

20.5 
7.5YR3/2 

7.5YR2/2 sil mlKr 
ds wso 

mvfr WDO gs 

41.0 
7.5YE3/2 

7.5YB2/2 sil mler 
ds wso 

mvfr WDO 5.0 es 

B 66.3 
7.5ÏH4A 

7.5YE3/2 sic flabk 
ds wso 

mvfr WDO 7.0 as 

R 56.14 
5ÏRV3 

7+ 

Comments A. horizon, poorly developed clay skins??? (5YR2/2). Ag 
horizon, well developed clay skins??? (5YR3/2). B horizon,, well 
developed clay skins (5YB̂ /3), IQ̂  (est.) angular gravel size 
fragments of carbonate rock from the Madison Formation, A lithologie 
discontinuity is present, A and B horizons appear to be alluvial in 
origin. 
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_ --Soils Data 
t*+'| 1 

Sitfi Nn. 27 T^catinn 107 19 ?? Elevation 2951 
Dominant grass, sage, and 
vegetation fmrbm 

% total % good 
pround cover 8") ground cover 70 

Parent weathered carbonate 
ma-tft-rt al hedmnk 

Formation name for 
underlying bedrock Madison 

% surface covered 
bv bedrock 20 Landform sideslope 

Slope 
angle l6 Aspect S60W 

Erosion greater than 
Class class 2 Precip. 50 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rlppable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 15.4 
5YR3A , 

'5YR3/2 sil miffr 
ds wso 

nvfr WDo 4,0 cs 

B in.7 
10YR3A 

1 OYRIA agsic flabk 
ds wso 

mvfr wpo 7,0 ca 

n ini .A+ 
10YR7/6 

invRfi^ agmi 1 ra 
ds wso 

mvfr wpo 7,5 

Comments B horizon, weakly developed clay skins (7.5Yi4/2), 2.% 
(est.) angular gravel size fragments of carbonate rock from the 
Madison Formation. G horizon, 60JÈ (est.) angular gravel »iae 
fragments of carbonate rock from the Madison Formation. 
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.. . _ __ Soils Data 

Site No. 28 Location 107,4 Elevation 2890 
Dominant 
vegetation subalnlne fir 

% total % good 
ground cover 100 pround cover 40 

Parent weathered carbonate 
mA+A-H.al bed rock 

Formation name for 
underlying bedrock Madison 

% surface covered 
by bedrock 0 Landform sideslone 

Slope 
angle 8 Aspect S70W 

Erosion 
Class class 0 

greater than 
Precin. 90 cm. 

Drainage 
class moderately well 

Depth to 
seasonal 

KgO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 
1.5+ 1.5 + 

1.5+ 1.5 + 

Profile descrl-otlon 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

-3.8 m 
ds wsp 

mvfr WDO cs 

0 m 
ds wsp 

mvfr wpo cs 

V. 7.7 
5YR3/3 , 

SYR3/2 si m2pl 
ds wso 

mvfr wpo 4.0 gs 

B 21 
5ÏR3/2 

4YB?/2/ sic ra2abk 
ds wso 

mvfr wpo cs 

f! 24.6 
7.5YRV̂  

7. 4YR1/2 sic m 
ds wso 

mvfr wpo 6,' cw 

R 24-6+ 
5YRV3 

7+ 

Comments B horizon, well-developed clay skins (5YR3/2). 
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. . .  S o i l s  D a t a  
.... 44,4U,i5, 

Site Tin. 90 Loeation i n? n Elevation 2914 
Dominant 
vegetation subalpine fir 

' % total % good 
ground cover 9 "5 ground cover 90 

Parent weathered carbonate 
imtftTial bedrock 

Formation name for 
underlying bedrock Madison 

% surface covered 
by bedrock 0 Landform aideslone 

Slope 
angle 24 Aspect NlOE 

Erosion 
Glass class 1 

greater than 
Precip. W cm. 

Drainage 
class moderately well 

Depth to 
seasonal 

KgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

"i -1.3 

ds wso 
mvfr woo cs 

2̂ 1.1 
5YR3/1 

SYRl/l sic m2pl 
ds wso 

mvfr wpo •î-Q cs 

B 14.4 
5YR3A 

sic m2abk 
ds wso 

mvfr wpo 4,0 cs 

n 101.6+ 
5YRV3 

ac m 
ds wso 

mvfr wpo 7+ 

Comments B horizon, well-developed clay skins (5YR4/3). C.horizon 
made up of 95̂  (est.) angular gravel to cobble size fragments of 
carbonate rock from the Madison Formation, very little matrix. 
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__ -Soils Data 

Site No. 30 Location in9,3ù,.n n Elevation 2<6n 
Dominant 
vegetation Dnu glas fir 

% total % good 
ground cover 84 ground cover fin 

Parent weathered car'bonate 
material bed rock 

Formation name for 
underlying bedrock Bightwm 

% surface covered, 
by bedrock 0 Landform floodnlain 

Slope 
angle S Aspect N90E 

Erosion 
Glass class 0 

greater than 
Precip. «ÎO cm. 

Drainage 
class imperfectly drained 

Depth to 
seasonal 

W table (est.) 
year around 

Depth to bedrock 
rippatle non-rippable 
1.5+ 1.5 + 

0.3 0.9 

Profile description 
Hori
zon Depth 

Co3»r 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

Ol —2.6 
ds wso 
mvfr wpo es 

0? 0 
ds wso 
mvfr wj>ft fîR 

B 10.7 
7.5ÏRV̂  

7. 4YR1/2 c mTabk 
dh ws 

miffl wp es 

IAi .0 
7.5YK2/0 

7. WÎ2/0 c 
dh ws 
mf1 wp 6.0 fîR 

ftR' 70.n+ 
2.5Ï6A 

ft mPablf 
dh ws 
mfl up 6..' 

Comments B horizon, moderately well-developed clay skins (7.5YR4/2). 
Water table was encountered at 70.0 cm. 
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Soils Data 

Site No. 31 Location 1 07, Of Elevation 2560 
Dominant 
vegetation Douglas fir 

% total % good 
ground cover 95 ground cnvAr 95 

Parent weathered carbonate 
material bed rock 

Formation name for 
underlying bedrock Bighorn 

% surface covered 
by bedrock 0 Landform sideslone 

Slope 
angle 40 Aspect NICE 

Erosion 
Class class 0 

greater than 
Precin. 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

KgO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 

1.5 + 1.5 + 
0.6 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

"i -5 
ds wso 

mvfr WDO es 

-2.5 
ds wso 

mvfr wpo es 

4 30.7 
5YR3/3 

5YR3/2 sil mlpl 
ds wso 

mvfr wpo 5.0 es 

B 51.2 
10YR5/6 

10YR4/4 sic m2abk 
dsh wss 
mfr wps 7.C es 

G 101.6+ 
10YR5/1 

10YR4/1 acs m 
ds wso 

mvfr wpo 7t 

Comments B horizon contains 5̂  (est.) angular gravel size 
fragments of deeply weathered carbonate rock from the Bighorn and 
Madison Formations. C horizon contains 60̂  (est.) angular gravèè 
and cobble size fragments of carbonate rock from the Bighorn and 
Madison Formations. 
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Soils Data 

Sitfi No. IP Location 4 mr, -a-a kc Elevation 2868 
Dominant 
vegetation frrass. and forba 

% total % good 
ground cover 90 p-nund cover 90 

Parent weathered carbonate 
material hofl-mnlr 

Formation name for 
underlying bedrock Madison 

% surface covered 
bv bedrock 0 Landform ridaecpst 

Slope 
angle 3 Aspect n40E 

Erosion greater than 
Class class 0 Preci-o. 50 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 10.7 
7.5YR3/2 

7. '5YR3/2 acsil m2s:r 
ds wso 

nvfr wpo 5.0 cs 

R <1 ? 
10YR3A 

10YR3/3 aesic fZabk 
ds wso 

nvfr WPO 7,0 cs 

P. ini 
10YR6/6 

1 nvR 4/A acsi m 
ds wso 

mvfr WPO 7T5 

Comments A horizon, poorly developed clay skins??? (5YR3/2), contains 
40̂  (est.) angular gravel and cobble size fragments of carina te 
rock from the Madison Formation. B horizon, moderately well-devel
oped clay skins (10YR3/3), contains 50$ (est.) angular gravel and 
cobble size fragments of carbonate rock from the Madison Formation. 
C horizon, contains 70̂  (est.) angular gravel and cobble size 
fragments of carbonate rock from the Madison Formation 
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.. . _ Soils Data 
44,4U, j:) 

Site No. 1? Location in? s Elevation 2834 
Dominant 
vegetation «yrAaa and fnrbm 

% total % good 
ground cover 60 ground cover 60 

Parent weathered carbonate 
7|MitQTla.l >VirlT'nf»fr 

Formation name for 
underlying bedrock Madison 

% surface covered 
bv bedrock 20 Landform sideslo pe 

Slope 
an̂ le 8 Aspect N̂ 5W 

Erosion 
Class class 4 

greater than 
Precit). 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

ipO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 
1.5+ 1.5 + 

1.5+ 1.5 + 

Profile descrlotlon 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 32.3 
5YR3/2 

9YR2/2 acsi mlgr 
ds wso 

nvfr wpo 6.5 ci 

B 41.0 
5YR2/2 

SYR2/2 acsic mlabk 
ds wso 

mvfr wpo 7.0 es 

f! 101.6+ 
10YE7A 

10YR6A acsll m 
ds wso 

mvfr wpo 8.0 

Comments A horizon, poorly developed clay skins??? (5ÏR2/2), contains 
20̂  (est. ) angular gravel and cobble size fragments of carbonate 
rock from the Madison formation. B horizon, contains moderately well-
developed clay skins (5YR3/2), contains 50̂  (est.) angular gravel 
and cobble size fragments of carbonate rock from the Madison Formation. 
C horizon, contains 70?5 (est. ) angular gravel and cobble size 
fragments of carbonate rock from the Madison Formation. 
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. . Soils Data 
44,4-0,4̂ ) 

Rltm Nn. Lnftatlon 109.12.49 Elevation 2865 
Dominant 
vegetation auhal-nlne fir 

% total % good 
ground rover 90 ground cover 70 

Parent weathered carbonate 
material "hoH mnlr 

Formation name ttix 
underlying bedrock Madison 

% surface covered 
bv bedrock 0 Landform sidealnpe 

Slope 
angle 10 Aspect S20E 

Erosion greater than 
Glass class 0 Precis. 50 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
drv wet pH Boundary 

-2*6 
ds wso 

mvfr wpo CS 

°2 0 
ds wso 

mvfr wps OS 

^2 7.7 
5YRV4 

5YR3/3 sil m2pl 
dsh wss 
•mfr wps .̂0 §S 

B 25.6 
5YR4/4 

5YR3/3 sil m2abk 
dsh wss 
mfr wps 5.0 CS 

G 101.6+ 
7.5ÏR6/6 

7. SYR 5/6 acsil m 
dsh wss 
mfr WPS 7.0 

Comments A horizon, poorly developed clay skins (5YR3/3)???. B 
horizon, clay skins present (5YR4/3). C horizon, contains 40̂  (est.) 
angular gravel and cobble size fragments of carbonate rock from 
the Madison Formation, C horizon has a pH of 7.0 and a depth of 
27,9 cm and a pH of 8.0 at a depth of 40.6 cm. 
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.. ... ̂oils Data 
• -

Site No. Location m? i? <9 Elevation 2890 
Dominant 
vegetation Ru1»lT>1nfi fir 

% total % good 
ground cover 70 ground cover 70 

Parent weathered carbonate 
matfiTlal hflrl rnftfc 

Formation name for 
underlying bedrock Madison 

% surface covered 
bv bedrock 0 Landform sideslone 

Slope 
angle to Aspect S20E 

Erosion 
Class class 0 

greater than 
PreciD.50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet PH Boundary 

-2.6 
ds wso 

mvfr WDO cs 

0? 0 
ds wso 

mvfr wpo cs 

7.7 
5YR4/4 

sil mlpl 
ds wso 

mvfr wps 5,0 es 

24.6 «ÇYR^/^ sil mlabk 
ds wso 

mvfr wps 5.0 cs 

n in n 
7.5YR6/6 

7 <YR</6 An mil m 
ds wso 

mvfr wps 7.1 as 

R 2t1 .04 
5YR4/3' 

7+ 

Comments B horizon, clay skins present (5YR3/2). 0 horizon, 
contains 70̂  (est.) angular gravel and cobble size fragments of 
carbonate rock from the Madison Formation 
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. . .  . S o i l s  D a t a  
- 44,41,UU 

Site No. Location 107. Elevation 2859 
Dominant 
vegetation crass, and forbs 

% total % good 
ground cover 90 ground cover 80 

Parent weathered carbonate 
raatflrial bed rock 

Formation name for 
underlying bedrock Madison 

% surface covered 
bv bedrock 0 Landform ridsecrest 

Slope 
angle 5 Aspect N30M 

Erosion 
Glass class 0 

greater than 
Precip. 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 20.5 
10YR2/2 

10YR2/2 si mler 
ds wso 

Tivfr WPS cs 

B is.q 
7.5YR4/4 

7. 5YR3/2 sil mlabk 
ds wso 

mvfr wpo $.0 cs 

"Oa 58.9 
10YR5/8 

10YR5/4 acsil m2abk 
dsh wss 
mfr wps 8.0 cs 

c 101.6+ 
5YR6/4 

5YR5/4 acsil m 
ds wso 

mvfr wpo 8,5 

Comments A horizon, poorly developed clay skins??? (10YE2/1). B 
horizon, well-developed clay skins (?SYR3/3). horizon, well-
developed clay skins (7.5YR4/4), contains 4ô  (est.) angular 
gravel and cobble size fragments-of carbonate rock from the Madison 
Formation. C horizon, contains 80̂  (est.) angular gravel and cobble 
size fragments of carbonate rock from the Madison Formation. 
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Soils Data 

SI +J? Vn. 19 Lnwitlon W.4l.00-107.3^. 50 Elevation 2859 
Dominant scattered firs, 
vegetation grass, and sage 

 ̂total  ̂good 
ground cover 90 çround cover 80 

Parent weathered carbonate 
Twi+ATial bed rock 

Formation name for 
underlvinff bedrock Madison 

% surface covered 
bv bedrock 0 Landform ridgecrest 

Slope 
angle 9 Aspect N30W 

Erosion 
Glass class 0 

greater than 
Precip.50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

KgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 12.8 
5ÏR3/3 

5YR1/2 si mlar 
ds wso 

nv^ WPS î.o as 

R 20.4 
5ÏRV^ 

sic mlabk 
ds wso 

mvfr WPS 9,0 cs 

n 101.6+ 
7.5ÏR5A , 

7. 4YR4/4 acsil m 
ds wso 

mvfr WPS 8.5 

Comments A horizon, clay skins??? (5YR3/2. B horizon, well-developed 
clay skins (5YR3/3). G horizon, contains 60̂  (est.) angular 
gravel and cobble size fragments, of cartom»t& rook from the Madison 
Formation. 
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Soils Data 

Site No. Location.00-L07.3̂  ̂ Elevation 2886 
Dominant grass, sage, and 
vegetation fn-rhs 

% total % good 
ground cover QO yrnund cover 90 

Parent weathered carbonate 
materia.!! 'HaH rnnic 

Formation name for 
underlying bedrock Madison 

% surface covered 
bv bedrock 0 Landform ridsecrest 

Slope 
angle lO Aspect S70E 

Erosion 
Class class 0 

greater than 
Precip. 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

fIgO ta%Le (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
drv wet pH Boundary 

Op -1.1 
ds wso 

mvfr wpo as 

A K.A 
5YR3A 

si mlsrr 
ds wso 

mvfr wps fs 

B 7/1.. 2 
5YflV6 

aeslc mlabk 
ds wso 

mvfr WPS 5. "3 as 

n 101.6-t 
10YR5/6 

10YR4/4 acai m 
ds wso 

mvfr wso 7.Ç 

Comments A horizon, poorly developed clay skins ??? (5YR3/2). 
B horizon, poorly developed clay skins (5ïR3/3)f contains less 
than % (est.) angular gravel and cobble size fragments of 
carbonate rock from the Madison Formation. C horizon, contains 60# 
(est.) angular gravel and cobble size fragments of carbonate rock 
from the Madison Formations. 
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Soils Data 

Nr>. ?Q T.nr!A.t1 nn 44.40. 97-107. 58 Elevation 2860 

Dominant grass, sage, and 
vegetation forbs 

% total % good 
ground onver 90 ground cover 75 

Parent weathered carbonate 
ma+A-rtal bed rock 

Formation name for 
underlvinc bedrock Madison 

% surface covered 
bv bedrock 5 Landform sideslope 

Slope 
angle 18 Aspect S45W 

Srosion 
Class class 1 

greater than 
Precip. 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 
*1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 25.6 
5YR4/3 

5YH3/3 si ml fir 
ds wso 
mvfr wpo 6̂ 0 fis 

B 43.5 
5YR4/4 

5ÏR3/3 acsic mlabk 
ds wso 
mvfr WPO 6.5 as 

G 101.6+ 
10YR5/4 

10YR4/3 acsi m 
ds wso 
mvfr wpo 8.5 

Comments A horizon, poorly developed clay skins ??? (5ÏE3/2). B 
horizon, poorly developed clay skins (5YR3/3)t contains 
40̂  (est.) angular gravel size fragments of carbonate rock fzagmeàts 
from the Madison Formation. C horizon, contains 60̂ !(est,) 
angular gravel and cobble size fragments of carbonate rock from the 
Madison Formation. 
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Soils Data 

Site No. 40 Location SW19.53H 89W Elevation 2591 
Dominant 
vegetation Douglas fir 

% total  ̂good 
ground cover 100 ground cover 100 

Parent 
iBR+̂ Tial glacial till 

Formation name £tir 
underlying bedrock Shell Creek Moraine 

% surface covered 
bv bedrock 0 Landform lateral moraine 

Slope 
angle 55 Aspect NICE 

Erosion 
Class class 1 

greater than 
Precio. SOccm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rlppable non-rlppable 

1£5 + 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

-7.7 
ds wso 

mvfr wpft na 

0, -9.6 
ds wso 

mvfr wnn AR 

^2 10.2 
7.5YR4/4 

7. «ÎYR3/2 bl 

o
 c

 7- gs 

B 33.3 
5YR4/6 

4TR3//I. bl clabfc 
ds wso 

mvfr wpn 7-

c 101 .6-t 
7.5ÏR4/4 

7. «^3/? hi m 
ds wso 

mvfr wpn 7-

Comments A horizon contains 40̂  (est.) rounded and faceted, gravel 
to boulder size fragments of acid crystaline Precambrian rock. B 
horizon, poorly developed clay skins (5ÏR3/2), contains 40̂  (est.) 
rounded and faceted, gravel to boulder size fragments of acid 
crystaline Precambrian rock. G horizon contains 7Q?S (est.) 
rounded and> faceted, gravel to boulder size fragments of acid 
crystaline Precambrian rock. 
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Soils Data 

Sitfi Nn- /L1 T.m(«.tlmn Wt M. 44-107.16.19 Elevation 2949 
Dominant grass, sage, and 
vegetation •Prt-r'ha 

% total % good 
ground cover 90 ground cover 70 

Parent weathered carbonate 
niA+ATial bedrock 

Formation name for 
underlvine bedrock Madison 

% surface covered 
bv bedrock 40 Landform ridgecrast 

Slope 
angle 4 Aspect N45E 

Erosion greater than 
Glass class 1 Precin. 50 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rlppable non-rippable 
0,6 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile descrlT>tlon 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments Solution cavity due to widening along joint trend (N30M), 
no profile taken. 
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Soils Data 

site Wn. k2 Location44.40. 59-107.36.19 Elevation 2911 
Dominant 
végétation eraas. and forbs 

% total % good 
ground cover lOQ'i. « • cover 90 

Parent weathered carbonate 
mate-H al bedrock 

Formation name for 
underlvine bedrock Madison 

% surface covered 
by bedrock 10 Landform ridgecrest 

Slope 
angle 3 Aspect NOE 

Erosion 
Class class 1 

greater than 
Precis.50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year a:round 

Depth to bedrock 
rippable non-rlppable 

1.5 + 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 20.5 
7.5YR4/2 

7.5YR3/2 si mlfir 
ds wso 

mvfr wpo 7- KS 

B 25.6 
7.5YR3/2 

7.5YR3/2 sic mlabk 
ds wso 

mvfr WPO 7- cs 

C 101.6+ 
5ÏR5/3 

5YR4/3 acsic m 
ds wso 

mvfr WPO 7+ 

Comments B horizon, clay skins (7.5YR4/2), contains less than 5# 
(est.) angular gravel size fragments of carbonate rock fragments from 
the Madison Formation. C horizon contains ?0̂  (est.) angular gravôl 
and cobble size fragments of carbonate rock from the Madison 
Formation. Site no. 42 is located 30 feet west from a sink hole. 
Site no, 43 is located in the sink hole. 
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Soils Data 

Site No. Ztl Location Wp,40, '!') -107.36.1 "5 Elevation 2911 
Dominant 
vefitetation o-mcs anH fnrbs 

% total % good 
ground cover 100 grnund cover 90 

Parent weathered carbonate 
material bed rock 

Formation name for 
underlvine bedrock Mâdison 

% surface covered 
bv bedrock 0 Landform sink hole 

Slope 
angle 0 Aspect NOE 

Erosion 
Class class 0 

greater than 
Precip. 50 cm. 

Drainage 
class modéra tel V well 

Depth to 
seasonal 

ligO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 4 
7.5YR3/2 , 

7.SYR3/2 si mlRr 
ds wso 

mvfr wpo 7- cs 

m 1 s.k 
5ÏR2/2 

4YR2/2 si mlabk 
ds wso 

mvfr wpo 7- cs 

n ini.6+ 
7.5ÏR3/2 , 

7. 4YR3/2 si m 
ds wso 

mvfr wpo 7-

Comments Soil pit dug in sink hole. 
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Soils Data 

31+̂  Nr.. m Lncation 44.41.14-107.17.IS Elevation 2890 
Dominant 
veeretation subalnine 

% total % good 
ground cover 94 ground cover 84 

Parent weathered, carbonate 
material bad rock 

Formation name for 
underlying bedrock Madison 

% surface covered 
bv bedrock 0 Landform aldeslone 

Slope 
angle 18 As-oect N60W 

Erosion 
Class class 0 

greater than 
PreciT). 40 em. 

Drainage 
class imperfectly drained 

Depth to 
seasonal 

W table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

0.6 1.5 + 

Profile description 
Hori
zon Death 

CoSjor 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

°2 -9 
ds wso 

mvfr WDO 7- cs 

-2.6 
ds wso 

mvfr . wpo 7- CS 

10.1 
5YR3/4 

sic ml pi 
ds wso 

mvfr wpo 7- ÇS 

B 40.6 
5ÏB4/4 

acsic mlabk 
ds wso 

mvfr wpo 7- cs 

f! 101.6+ 
10YR5A 

10YR4/4 acai m 
ds wso 

mvfr wpo 7t 

Comments A horizon, mottles present (c2d, 5YR3/2). B horizon, 
mottles present (c2d, 5YR2/2), contains 20̂  (est.) angular . 
gravel and cobble size fragments of carbonate rock from the Madison 
Formation. G horizon, contains 40̂  (est.) angular gravel and 
cobble size fragments of carbonate rock from the Madison Formation. 
Soil" is frozen at a depth of 35»6 cm. 
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Soils Data 

Nn. IK Location SW'^2.'î'MaQU Elevation 2880 
Dominant 
vegetation a-rass. and fmrba 

% total % good 
ground cover QO ground cover 70 

Parent weathered carbonate 
matft-rial bod mrik 

Formation name for 
underlying bedrock Matîl son 

% surface covered 
by bedrock 0 Landform rld/recrest 

Slope 
angle 18 Asnect N60W 

Erosion 
Class class 0 

greater than 
Precio. 40 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-ripjable 
1.5 + 1.5 + 

1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 23 
5YR3/2 

«^3/2 sic mler 
ds wso 

mvfr wpo 7- ^ra 

R 
7.5YRV̂  

9.4YR1/2 sic mlabk 
ds wso 

mvfr wpo 7-

n 101 .A+ 
10YR5/4 

10YT?ITA acaie m 
ds WSO 

mvfr wpo 7t 

Comments A horizon, poorly developed clay skins ??? (5ÏR2/2). B 
horizon, clay skins well-developed (7.5ÏR3/2). G horizon, highly 
calcareous, contains 30̂  (est.) angular gravel and cobble size 
fragments of carbonate rock from the Madison Formation. 
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Soils Data 

site No. Uf> Location 44.4-1.20-107.38.5 Elevation 2896 
Dominant 
vegetation suTaalnine fir 

% total % good 
ground cover 100 jfrftund rover 80 

Parent weathered carbonate 
ma+^rial bed rock 

Formation name for 
underlvlns bedrock Madison 

% surface covered 
bv bedrock 0 Landform ridgecrest 

Slope 
angle 7 Aspect S20E 

Erosion greater than 
Class class 0 Precin. 60 cm. 

Drainage 
class well-rtTained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rlppable non-rlppable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

0? _ <  

ds wso 
nvfr wt)0 7- cs 

Ol -9,6 
ds wso 

mvfr . wpo 7- cs 

Â  
5ÏR3/3 

si flpl 
ds wso 

mvfr wpo 7- cs 

• R 28 
5YR4A' 

%R4/3 sic mlabk 
ds wso 

mvfr wpo 7- cs 

n 101.6+ 
10ÏR6/4 

lOYRS/T acsi m 
ds wso 

mvfr wpo 7+ 

Comments B horizon, well-developed clay skins (5̂ 3/3)« C horizon, 
contains 30̂  (est.) angular gravel and cobble size fragments of 
carbonate rock from the Madison Formation. 
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Soils Data 

Si te Wn. 47 Location ̂ •35.15-107#43100 Elevation 2417 
Dominant grass, sage, and 
végétation forbs 

% total % good 
ground cover 70 prnund cover 90 

Parent weathered carbonate 
matftrial bed rock 

Formation name for 
underlying bedrock Madison 

% surface covered 
by bedrock IS Landform aidARimnA 

Slope 
angle 3 Aspect N79W 

Erosion 
Class class 1 

less than 
Precip. 40 ftm 

Drainage somewhat 
class excessively drained 

Depth to 
seasonal 

SgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

"l 10.1 
5YR3/2 

SYR2/2 acsi mlffr 
ds wso 

mvfr wpo 7- gR 

^na 18 
5YR3/2 

4YR2/P an si m1gr 
ds wso 

mvfr . wpm 7+ ga 

41 
5YR4/3 

SYRl/l acsi mlabk 
ds wso 

mvfr wpm 7+ 

101.64 
5YR6/4 

SYR 5/4 aesil m 
ds WSO 

mvfr wpo 7t 

Comments A. and Â  ̂horizons contain 15% (est.) angular gravel and 
cobble size fragments of carbonate rock from the Madison Formation. 

horizon, highly calcareous, contains 15̂  (est.) angular 
gravel and cobble size fragments of carbonate rook from the Madison 
Formation. horizon,' highly calcareous, contains 30̂  (est.) 
angular gravel and cobble size fragments of carbonate rock from the 
Madison Formation. 
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Soils Data 

Site No. 48 Location44.36.15-107,41.00 Elevation 2909 

Dominant 
vegetation grass, and sage 

% total % good 
ground cover 90 ground cover 90 

Parent deeply weathered 
material sandstone 

Formation name for 
underlying bedrock Amsden 

% surface covered 
by bedrock 0 Landform ridgecrest 

Slope 
angle 8 Aspect SlOE 

Erosion 
Class class 0 

less than 
Precip. 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
0.4 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 12.8 
5ÏR3/2 

SYR2/2 si mlpr 
ds wso 

mvfr wpo 7-

B 40.6 
5YR3/3 

4YR1/2 sn Tn1 abk 
ds wso 

mvfr wpo 7- as 

n I0t.6+ 
5ÏR4/6 

4YR4/4 si m 
ds WSO 

mvfr wpn 7-

Comments B horizon, poorly developed clay skins (5YR3/l)« G 
horizon consists of deeply waathered sandstone. 
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Soils Data 

Ritp Nft. La Trf>rm.tinn Lb, nn.in? Un «;n Elevation 
Dominant grass, sage, and 
vegetation forbs 

% total % good 
ground cover <30 pround cover An 

Parent 
material weathered siltstone 

Formation name for 
underlying bedrock Amsdmn 

% surface covered 
bv bedrock 0 Landform rldeenreat 

Slope 
angle 2 Asnect N70W 

Erosion 
Glass class 0 

less than 
Precip. 40 em. 

Drainage moderately 
class well-drained 

Depth to 
seasonal 

fîgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
q.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Colûr 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

4 10.2 
2.5YR2/2 

2.SYR2/2 si 
ds wso 

mvfr wpo 7- ca 

A 15.4 
2.5YR4/6 

2. SYR3/4 si mPAblr 
dsh wss 
•fr wpR 7- r«Q 

B 46 
2.5YR3/4 

2. ale mPAhV 
dsh wss 

7-

C 101.6+ 
2.5YR4/6 

2. 4YR4/4 sic m 
dsh wss 
mfr wps 7-

Comments B horizon, clay skins present (2.5YR3/2). 



380 

Soils Data 

Site No. 50 Location 44.35.00-107.3it-. 10 Elevation 
Dominant 
vegetation 

% total % good 
«rround cover ground cover 

Parent 
mateilal 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

ipO table (est.) 
year around 

Depth to bedrock 
rippable non-rlppable 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

1 

Comments Gopeman's Tomb turnout, aboût 3.2 kilometers from Shell Falls. 
Slump block exposed in roadcut, composed of Gallatin Formation, 
Interbedded glauconitic shales and sandstones. Grab! samples taken 
from shales suid sandstone. 
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Soils Data 

SI +J» Nft. <1 10-107.40.00 Elevation 1676 
Dominant bunch grass, 
végétation iuni-ner. and cacti 

% total % good 
ground cover «50 ground cover 10 

Parent loamy carbonate 
matftrtal nolluvlum 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform ridsTcrest on slumnblock 

Slope 
amcle 0 Aspect 0 

Erosion 
Glass class 4 

less than 
Precip. 39 cm. 

Drainage somew 
class drain 

hat excessively 
Bd 

Depth to 
seasonal 

W table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Co3»r 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 17.8 
10YR5/3 

; 10YR4/3 acsi mlcr 
ds wso 

mvfr WDO 7+ cs 

B 24.0 
10YR5/4 

10YR4/3 acai mlabk 
ds wso 

mvfr wpo 7t 

n 101.6+ 
10ÏR8/4 

10YR8/4 acsi m 
ds wso 

mvfr wpo 7+ 

Comments A horizon, contains 40̂  (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous all the way to the surface, 
B horizon, contains (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, Bighoim, and 
Madison Formation. C horizon, contains 40̂  (est.) angular gravel to 
boulder size fragments of carbonate rock from the Gallatin, Bighorn, 
and Madison Formations, ĥ hly calcareous. 
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Soils Data 

Site No. % Location 44.19.S0-107.19.SS Elevation 1S8S 
Dominant grass, sage, and 
vegetation nrioklv Dear 

% total % good 
ground cover 60 ground cover 46 

Parent loamy carbonate 
material cnlTuvium 

Formation name for 
underlvinff bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform sldeslope on a slumpbloek 

Slope 
angle 40 Aspect S80W 

Erosion 
Class class 1 

less than 
Precip. 18 cm. 

Drainage somew 
class drain 

hat excessively 
Bd 

Depth to 
seasonal 

ïgO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 41 
10YR6/3 

lOYRS/1 acsll m-flabk 
ds wso 

mvfr wpo ?+ cs 

A? 
10ÏR7/6 

1 0YT?7/^^ aeall m 
ds wso 

mvfr wpo 7t cs 

r. ini.6+ 
10YR7/8 

mYRf/A arell m 
ds wso 

mvfr wpo 7+ 

Comments A horizon, contains 30̂  (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous all the way to the surface. 
Gp horizon, contains 60g( (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, Bighorn, and Madison 
Formations, highly calcareous, lighter color is due to a build up of 
CaCO„. C horizon, contains 60% (est.) angular gravel to boulder 
size-̂ fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous. 
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Soils Data 

qitfi lift- 43 T.ncatlon 2:4. 42-107.39. Elevation 1482 
Dominant grass, sage, and 
vegetation iuni-ners 

% total % good 
Ground cover 90 çround cover 34 

Parent loamy carbonate 
raatftrial finlluvium 

Formation name for 
underlvinc bedrock Gallatin 

% surface covered 
by bedrock 0 Landform sidesloj e on a slumpblock 

Slope 
angle 40 Aspect S80W 

Erosion 
Class class 3 

less than 
Precip. 38 cm. 

Drainage somewhat excessively 
class drained 

Depth to 
seasonal 

SgO table (est.) 
year around 

Depth to bedrock 
rippable non-rlppable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 17.8 
10YR6/3 

10YR6/3 acsil mlabk 
ds wso 

mvfr wpo 7+ OS 

"flR 34.4 
7.5YR8/6 

7. 4YB8/6 acail m 
ds wso 

mvfr wpo 7+ ea 

n 101.6+ 
10YR8/6 

10YR7/6 acsil m 
ds wso 

mvfr wpo 7t 

Comments A horizon, contains 40gg (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous. horizon, contains 50# 
(est, ) angular gravel to boulder size frâ ints of carbonate rock 
from the Gallatin, Bighorn, and Madison Formations, highly calcareous, 
lighter color is due to a build up of CaCÔ . C horizon, contains 
50̂  (est.) angular gravel to boulder size fragments of carbonate 
rock from the Gallatin, Bighorn, and Madison Formations, highly 
calcareous. 
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Soils Data 

Sitfi Nft. Wt. TZp. 42-10?.IP. % Elevation l6lS 

Dominant junipers, and 
vegetation nniiflas fir 

% total % good 
ground cover 50 p-ound cover IS 

Parent loamy carbonate 
mAtA-rlal nm11 iivl urn 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform sldeslope on a slumpblock 

Slope 
anele 28 Aspect N60W 

Erosion less than 
Glass class 1 Precip. 18 cm. 

Drainage somewhat excessively 
class dral Tifid 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 

1.5+ 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 

Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 48.6 
IOYRV3 

tOYRlA acsi mlcr 

I
I
 

7+ s 

Cpm ini.6+ 
10ÏR8/2 

mvRft/? anal m 
ds wso 

mvfr wpo 7t 

Comments A horizon, contains 20^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous all the way to the surface, 
C_ horizon, contains 60j6 (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, Bighorn, and Madison 
Formations, highly calcareous, lighter color is due to a build up 

of OaCOy 
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Soils Data 

T.nGA.ti nn 2:4. 2«.9_1 07.19. 40 Elevation 1670 
Dominant juniper, Doug, fir 
vegetation and Limber Dine 

% total % good 
ground cover 40 pround nover 34 

Parent loamy carbonate 
matfi-Kal colluvlum 

Formation name for 
underlvinc bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform rid̂ ecrest on a slumublock 

Slope 
angle 10 Aspect N60W 

Erosion 
Class class 1 PreclD. 38 cm. 

Drainage somewhat excessively 
class drained 

Depth to 
seasonal 

rIgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 30.5 
10YR4/2 

10YR3/2 acsil m-flcr 
ds wso 

mvfr WDO 7+ es 

B 44.3 
10YR5/3 

10YR4/3 acsil mlabk 
ds wso 

mvfr WDO 7+ a-a 

G 101.6+ 
10YR6/4 

10YR4/4 acsil m 
ds wso 

mvfr woo 7+ 

Comments A horizon, contains 50Ĵ  (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous all the way to the surface. 
C horizon, contains 70̂  (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, Bighorn, and Madison 
Formations, highly calcareous. Profile is only poorly developed. 
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Soils Data 

Site No. Location 07.3Q. "51 Elevation 1670 
Dominant 
vegetation «saw^-rass 

% total % good 
ground cover QO ground cover <30 

Parent loamy carbonate 
nw-tA-pial f»nl 1 iivl iim 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 

colluvial backfill ara on 
Landform landslide f slump) 

Slope 
angle 3 Aspect N03 

Erosion 
Class class 0 

less than 
Precip. 38 cm. 

Drainage somew 
class drain 

tiat excessively 
ed 

Depth to 
seasonal 

tIgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 20. S 
10YR3/2 

10YR2/2 si m-flcr 
ds wso 

mvfr WDO 7+ as 

n 101.6+ 
10YR4/2 

10YR3/2 acsil m 
ds wso 

mvfr . wpo 7+ 

Comments A horizon is highly calcareous all the way to the surface. 
C horizon, contains 15̂  (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, Bighorn, and Madison 
Formation, highly calcareous. 
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Soils Data 

Nft. V7 T.nfyLt1nn 44. 40.19 Elevation 1561 
Dominant 
vegetation 

% total % good 
ground cover çrnunH cover 

Parent 
inatftTlal 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

KgO taMe (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
drv wet pH Boundary 

Comments Granite outcrop above road level (H14), landslides have 
moved directly onto granite. Precaunbrian surface appears to be 
highly irregular in general. 
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Soils Data 

Site No. 58 Location Elevation 
Dominant 
vegetation 

% total % good 
(ground cover yround cover 

Parent Formation name for 
underlying bedrock 

% surface covered 
by bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

SpO table (est.) 
year around 

Depth to bedrock 
rippable non-rlppable 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments 
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Soils Data 

SItA Nn. % Wjitlrtn 44.15.00-107.19.49 Elevation 1707 
Dominant 
vegetation grass, and saee 

% total % good 
ground cover 70 ground cover 60 

Parent weathered shale 
nvL+A-rtal and limestone 

Formation name for Gros Ventre, and 
underlving bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform sideslone on landslide 

Slope 
angle 13 Aspect N30E 

Erosion 
Glass class 4 Precip. 38 cm. 

Drainage somew 
class drain 

hat excessively 
ad 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 12.8 
10YR6/3 

10YR5/3 acsil mlcr 
ds wso 

mvfr wpo 7+ es 

n 101 .f>+ 
10YR7/3 

10YR6/3 acsl ra 
ds wso 

mvfr wpo 7f 

Comments A horizon, contains 70^ (est.) angular gravel to cobble 
size fragments of carbonate rock from the Gallatin, and Bighorn 
Formations, highly calcareous all the way to the surface. C horizon, 
contains 50^ (est.) angular gravel to cobble size fragments,of 
carbonate rock from the Gallatin, and Bighorn Formations, also 
contains IQ^ (est.) green shale chips, highly calcareous. Extremely 
poor profile development. 
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Soils Data 

Site No. 60 Location 2:4.14.44-107.10 42 Elevation 16 00 
Dominant grass, sage, and 
vegetation iunlner 

^ total % good 
ground cover in ground cover 1 n 

Parent weathered carbonate 
matATial bed rnnk 

Formation name for 
underlying bedrock naiia+in 

% surface covered 
by bedrock 0 Landform cideclmne mn lanHoHHo f oT 

Slope 
angle 75 Asoect N90fl 

Erosion 
Class class 0 Precit). 18 cm. 

Drainage somewhat excessively 
class drained 

Depth to 
seasonal 

tIgO table (est.) 
year around. 

Depth to bedrock 
rippable non-rippable 
OA 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 23 
10YR7/4 

10YR6/4 acsil mlcr 
ds wso 
mvfr WDo 7+ s 

41.4 
2.5Y8/2 

2. 4Y8/4 acsil m 
dsh wso 
mvfr wpo 7t as 

B 41.44 
5YR4/3 

7t 

Comments A horizon, contains 30^ (est.) angular gravel to .cobble 
size fragments of carbonate rock from the Gallatin, and gighorn 
Formations, highly calcareous all the way to the surface. Q„ 
horizon, contains 30^ (est.) angular gravel *o cobble siae ^ 
fragments of carbonate rock from the Gallatin, and Bighorn Formations, 
highly calcareous, lighter color is due to a build up of CaCO^. H 
horizon is highly calcareous. ^ 
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Soils Data 

Site No. 61. Location lUi. 41 Elevation l6"Vt 
Dominant grass, sage, juni-
veeetation «m». Dnup-. fir 

^ totsil ^ good 
ground cover 40 ground cover jn 

Parent loamy carbonate 
matftrial nnl1uvlvm 

Formation name for 
underlying bedrock CaTiA-kin 

% surface covered 
bv bedrock 0 Landform si H«<sl np<» nn (clump) 

Slope 
angle 30 Aspect N90W 

Erosion 
Glass class 4 Precip. 38 cm. 

Drainage somewhat excessively 
class drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rlppable non-rippable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 17.8 
10YR6/3 

10YR5/3 acsil mlcr 
ds wso 

mvfr wpo 7+ as 

Gqa 69.0 
10YR8/3 

10YR8/3 acsil m 
dh wso 
mfl wpo 7t as 

c 101.6+ 
10YR8/6 

10YR7/6 acsil m 
ds wso 

mvfr wpo 7t 

Comments A horizon, contains 20^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous all %the way to the surface. 

horizon, ^contains 10^ (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, Bighorn, and Madison 
Formations, highly calcareous, lighter color is due to a build up of 
CaCOy C horizon, contains 10̂  (est.) angular gravel to boulder 
size fraf^ments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous. 
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Soils Data 

Site No. 62 Location44.T5.06-107.39.47 Elevation 1707 
Dominant 
vegetation grass, and sage 

% total % good 
ground cover 70 çrnund cover 50 

Parent loamy carbonate 
material colluvium 

Formation name for 
underlvlne bedrock Gallatin 

% surface covered 
bv bedrock 0 Landformridsecrest on landslide (slump) 

Slope 
angle 10 Aspect N90W 

Erosion 
Class class 4 Precip. 38 cm. 

Drainage somewhat excessively 
class drained 

Depth to 
seasonal 

igO talale (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 

1.5 + 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Co3jsOr 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 18 
10YH5/3 

10YR4/3 acsil mlcr 
ds wso 

mvfr wpo 7+ as 

^Ca 39.8 
10ÏR8/2 

10YR8/2 acsll m 
ds wso 

mvfr WDO 7+ cs 

G 101.64 
10YR6/4 

10YR5/4 acsil m 
ds wso 

mvfr WDO 7+ 

Comments A horizon, contains 60^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous all the way to the surface, 
Cp horizon, contains 7056 (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, Bighorn, and Madison 
Formations, highly calcareous, lighter color is due to a build up of 
GaCO~. C horizon, contains 70^ (est.) angular gravel to boulder 
size-^fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous. 
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Soils Data 

No - T.oofl.t1 on UJ*. Til. 47-1 07. El ftvaW on 1817 
Dominant 
vegetation Douglas fir 

% total % good 
ground cover 70 ground cover '50 

Parent loamy carbonate 
material eolluvium 

Formation name fot 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform sidesloTie on landslide f mlumn^ 

Slope 
angle 60 Aspect N40W 

Erosion 
Class class 0 Precip. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

"2 -7.7 
ds wso 

mvfr wpo 7- OS 

—2.6 
ds wso 

mvfr wpo 7- as 

A 24.6 
10YR3/3 

IOYRl/2 acRll m2pl 
dsh wss 
mfr wps 7+ ffS 

C. 101.64 
10YR4/3 

10YR3/1 acfîil m 
dsh wss 
mfr wpa 7+ 

Comments A horizon, contains 10^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, slightly calcareous. C horizon, contains 6(3̂  

(est.) angular gravel to boulder size fragments of carbonate 
rock from the Gallatin, Bighorn, and Madison Formations, càâcareous. 
No noticeable horizon has developed. 
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Soils Data 

SI Wf>. 6/t T.mnAt1 nnWt.14.10-109.19.40 Elévation 1707 
Dominant grass, sage, and 
vegetation iiinl n«r 

% total % good 
ground cover 70 fpound cover «50 

Parent loamy carbonate 
matft-rial nnl 1 iivl urn 

Formation name for 
underlying bedrock r,ai latin 

% surface covered 
bv bedrock 0 Landform sldeslope on landslide ( slump ̂ 

Slope 
anale 65 Asnect N30W 

Erosion 
Class class 5 Precin. 38 cm. 

Drainage somewhat excessively 
class drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Co3»r 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 43 
10YR5/3 

10ÏR4/3 acsil mlcr 
ds wso 

mvfr WDO 7+ , Rs 

p> 84. «5 
10ÏR6/3 

10YB6/2 acsil m 
ds wso 

mvfr WDO 7+ a§ 

G 101.64 
10YR6/4 

lOYRS/4 acsil m 
ds wso 

mvfr woo 7+ 

Comments A horizon, contains 15^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin,. Bighorn» and 
Madison Formations, highly calcareous all the way to the surface. 
Grt horizon, contains 20^ (est.) angular gravel to boulder size 
flKgments of carbonate rock from the Gallatin, Bighorn, and Madison 
Formations, highly calcareous, lighter color is due to a build up of 
CaCOo. C horizon, contains 2Q^ (est.) angular gravel to boulder 
size^fragments of carbonate rock from the Gallatin, Bighorn, a&d 
Madison Formations, highly calcareous. 
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Soils Data 

Site No. 66 Location 44.3-5.20-107.36.10 Elevation 2012 
Dominant grass, sage, and 
vegetation Limber nine 

% total ^ good 
ground cover 60 ground cover 40 

Parent loamy carbonate 
material colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform sideslope on landslide 

Slope 
angle 50 Aspect N20W 

Erosion 
Class class 0 Precip. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 33 
7.5ÏR3/2 , 

7.5ÏR3/2 acsi ra2cr 
dsh wss 
mfr WPS 7+ as 

°Ga 71.7 
10YR6/2 

10YR6/1 acsil m 
dsh wss 
mfr wps 7t as 

G 101.64 
10YR7A 

10YR6/4 acsil m 
ds wso 

mvfr îTpo 7t 

Comments A horizon, contains 10^ (est.) angular gravel to cobble 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, slightly calcareous. C„ horizon, contains 
60^ (est.) angular gravel to cobble size fragments of carbonate 
rock from the Gallatin, Bighorn, and Madison Formations, highly 
calcareous, lighter color is due to a build up of CaCO». C horizon, 
contains 60^ (est.) angular gravel to cobble size fragments of 
carbonate rock from the Gallatin, Bighorn, and Madison Formations, 
highly calcareous. 
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Soils Data 

Sitfl Tin. 66 Lneation 44.35.23-107#36,10 Elevation 2073 
Dominant 
vegetation grass, and sage 

% total % good 
ground cover 75 ground covmr 60 

Parent loamy carbonate 
mn.teT«lal colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 sideslope on landslide (sluAp) 

Slope 
angle 24 Asnect NOE 

Erosion 
Class class 0 Precin. 38 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5+ 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 5 
J 1 acsi m2gr 
dsh wss 
mfr wps 7' gs 

20.3 
10YR3/3 

10YR3/2 acsi m2abk 
dsh wss 
mfr wps 7- ga 

30.4 
10YR4/3 

10YR3/3 acsil m2abk 
dsh wss 
mfr wps 7+ as 

76.2 
10YR7/2 

10YR7/2 acsil m 
dsh wss 
mfr wps 7+ as 

c 101.64 
10YR6/4 

10YR6/3 açsil m 
dsh wss 
mfr WPS 7+ 

Comments A horizon, contains less than 10^ (est. ) angular gravel to 
cobble size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations. B, horizon, poorly developed clay skins (10YR3/2), 
contains 10^ (est.) angular gravel to cobble size fragments of 
carbonate rock from the Gallatin, Bighorn, and Madison Formations. 
B_ horizon, contains 20^ (est.) angular gravel to cobble size 
fragments of carbonate rock from the Gallatin, Bighorn, and Madison 
Formations. horizon, contains 20^ (est.) angular gravel to 
cobble size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous, lighter color is due to a build 
up of CaCO,. C horizon, contains 2056 (est,) angular gravel to cobble 
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Soils Data 

site Tift. 66 Loftation Elevation 
Dominant 
vegetation 

% total % good 
ground nnver yrnund cover 

Parent 
nwtftTtal 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle tAsnect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments size fragments of carbonate rock from the Gallatin, 
Bighorn, and Madison Formations, highly calcareous. 
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Soils Data 

Site No. 67 Location W. 35.00-107.35^)0 Elevation 2073 
Dominant 
vegetation Douglas fir 

% total % good 
ground rover 80 ground cover 80 

Parent loamy carbonate 
material colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform sideslope on landslide fslump^ 

Slope 
angle 35 Aspect NOE 

Erosion 
Class class 1 Precip. 39 cm. 

Drainage 
class well drained 

Depth to 
seasonal 

CO table (est.^ 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

"2 -5 
ds wso 
mvfr wpo ?- es 

—2.6 
ds wso 
mvfr .wpo 7- as 

^2 7.6 
10YR4/4 

10YR3/3 acsil m2pl 
dsh wss 
mfr wps 7+ cs 

B 30.5 
10YRV3 

10YR3/3 acsi mlabk 
ds wso 
mvfr wpo 7t es 

G 101.6+ 
IOYRV̂  

10YR4/3 acai m 
ds wso 
mvfr wpo 7t 

Comments Ag horizon, contains 10^ (est.) angular gravel to cobble 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, slightly calcareous. B horizon, contains 50^ 
(est.) angular gravel to cobble size fragments of carbonate rock 
form the Gallatin, Bighorn, and Madison Formations. C horizon, contains 
605Ç (est.) angular gravel to cobble size fragments of carbonate 
rock from the Gallatin, Bighorn, and Madison Formations, highly 
calcareous. horizon not observed. 
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Soils Data 

31+̂  Nn- AR T.nnH.tlnn07.14.10 Elévation 2012 
Dominant 
vegetation 

% total % good 
ground cover ground cover 

Parent 
material 

Formation name for 
underlvlne bedrock 

% surface covered 
by bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

KgO talaLe (est.) 
year around 

Depth to bedrock 
rippable non-rlppable 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
drv wet PH Boundary 

Comments Grab sample in slide material, shows glauconitic shales and 
sandstones, small llngulas. 
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Soils Data 

Site No. 6Q Location 44.3^.63-167.37.50 Elevation 1646 
Dominant junipers, and 
vegetation TirMin-ioo fi-r 

% total % good 
eround rover inn ground cover An 

Parent loamy carbonate Formation name for 
underlying bedrock rial i n 

^ surface covered 
bv bedrock 0 Landform talus cone 

Slope 
angle 52 Aspect N20E 

Erosion 
Class class 0 Precip. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Coitor 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

«2 -2.6 
ds wso 

mvfr wpo 7- as 

-1.3 
ds wso 

mvfr WDO 7- as 

7.7 
IOYEV3 

10YR3/3 acsil m2pl 
dsh wss 
mfr WDS 7- as 

B 28 
10YR5A 

10YR4A 

acsil 

m2abk 
dsh wss 
mfr WPS 7+ as 

OCA 101 .64 
10Yfi8/3 

10YR8/3 acsil m 
dsh wss 
mfr wps 7+ 

Comments Ag horizon, contains 10^ (est.) angular gravel to cobble 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations. B horizon, contains 20^ (est.) angular 
grwel to boulder size fragments of carbonate rock from the Gallatin, 
Bighorn, and Madison Formations. C_ horizon, contains 80^ 
(est.) angular gravel to boulder size fragments of carbonate rock 
from the Gallatin, Bighorn, and Madison Formations, highly calcareous, 
lighter color is due to a build up of GaCO^. 
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Soils Data 

Site No. 70 Location 44.3^. %107.37.^9 Elevation 1961 
Dominant grass, forbs, and 
végétation junlpgrs 

% total 
ground cover ICQ 

% good 
ground nnver lOO 

Parent loamy carbonate 
mate-rial enlluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
by bedrock 

colluvial backfill on 
Landform landslide fslump) 

Slope 
angle Aspect N30W 

Erosion 
Glass class 0 Jiass u Precln. 38 cm. 

Depth to H.O table (est.) 
seasonal year around 

Drainage 
class well-drained 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5 + 

year around 

1.5 + 

Profile de^ription 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 5 
10YR4/2 

10YR3/2 si fier 
ds wso 

mvfr WDO 7- as 

B 24.6 
10YR3/3 

10YR3/2 si m2abk 
dsh wss 
mfr wps 7+ as 

n 101.6+ 
10YR4/2 

10YR3/2 si m 
dsh wss 
mfr wps 7+ 

Comments B horizon, poorly developed clay skins (10YR4/2), weakly 
calcareous. 
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Soils Data 

S1t« Nft. 71 T.noH.tlnnM. 44-109.17.2*9 Elavation IQSl 
Dominant 
vegetation «rrass. anfl sas-p 

% total % good 
ground cover 40 ^prnund cover 30 

Parent loamy carbonate 
matftTial niliiv11im 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform on lanrtsUdft f slumn^ 

Slope 
angle 8 Aspect N10W 

Erosion 
Class class 0 Precio. 38 cm 

Drainage 
class well-drained 

Depth to 
seasonal 

ïpO lable (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 
IOYRV3 

10YR3/3 acsi mlfr 
ds wso 
mvfr woo 7- as 

•R 
IOYRV3 

10YR3/3 acRl m?abk 
dsh wss 
mfr wps 7t 

20 
10YR8/3 

10YR8/3 acsi m 
dsh wss 
mfr wps 7+ as 

r. 101 .f>-i 
10YB6A 

inYR4/Zj. anal m 
dsh wss 
mfr wpa 7t 

Comments A horizon, contains less than 10^ (est.) angular gravel 
to boulder size fragments of carbonate rock from the Gallatin, Bighorn, 
and Madison Formations. B horizon, contains less than 10^ (est.) 
angular gravel to boulder size fragments of carbontte rock from the 
Gallatin, Bighorn, and Madison Formations. horizon, contains 
less than 10^ (est.) angular gravel to boulder size fragments of 
carbonate rock from the Gallatin, Bighorn, and Madison Formations, 
highly calcareous, lighter color is dueto a build up of CaCO«. 
C horizon, contains less than 10% (est.) angular gravel to.boulder 
size fragments of carbonate rock from theCallatin, Bighorn, and 
iadison Formations, strongly calcareous. %is is the sight of an 
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Soils Data 

SItp No. 71 Location Elevation 
Dominant 
vegetation 

% total % good 
ground cover çround cover 

Parent 
ma+ATial 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock Landform 

Slope 
angle Aspect 

Erosion 
Glass Precip. 

Drainage 
class 

Depth to 
seasonal 

HgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments old forest fire, prefire vegetation was conifer (Douglas 
fir???). 
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Soils Data 

Site No. 79 Location m. . 40-109.17.4 Elevation 1890 
Dominant 
vegetation ^rana, AnH «Ago 

% total % good 
ground cover QO ground cover 80 

Parent loamy carbonate 
matp.Ti al r»n11 iivl nm 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 lAndformsideslope on landslide (slump) 

Slope 
angle 8 Aspect N22S 

Erosion 
Glass class 2 Precip. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 7.7 
10YR3/3 

10YR2/2 acsi mlcr 
ds wso 

mvfr woo 7- gs 

B 46 
10YR4/3 

10YR3/3 acsi in2abk 
dsh wss 
mfr WPS 7+ gs 

c 101.6-» 
10ÏR5/4 

10YR4/4 acsil m 
dsh WSS 
mfr WPS 7+ 

Comments A horizon, contains leas than 10^ (est.) angular gravel 
to boulder size fragments of carbonate rock from the Gallatin, Bighorn, 
and Madison Formations. B horizon, contains 10^ (est.) angular 
gravel to boulder size fragments of carbonate rock from the Gallatin, 
Bighorn, and Madison Formations, slightly calcareous. C horizon, 
contains 50^ (est.) angular gravel to boulder size fragments of 
carbonate rock from the Gallatin, Bighorn, and Madison Formations, 
strongly calcareous. This is the sight of an old forest fire, pre-
fire vegetation was conifer (Douglas fir???), this would explain the 
lack of a horizon. 
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Soils Data 

Site Nn. 73 T.nf!atlr>n 44.39.00-107.35.20 Elevation 1981 
Dominant 
vegetation 

% total % good 
ground cover pround cover 

Parent 
matftrial 

Formation neime for 
underlying bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

ïpO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

' 

Comments Grab sample of glauconltic shales. 
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Soils Data 

Si tfi No. 7iJ. Location 44.34. 98-107.33.4-9 Elevation 2012 
Dominant grass, juniper, and 
vegetation Douglas fir 

% total % good 
ground nmver 70 ^nund r.nver 60 

Parent loamy carbonate 
raatfirtal colluvium 

Formation name for 
vmderlvine bedrock Gallatin 

% surface covered 
by bedrock 0 Landformsideslope on landslide (slump) 

Slope 
angle 60 Aspect N40W 

Erosion 
Class class 1 Precip. 38 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5+ 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 1?..R i
 

g
 

acsl fier 
ds wso 

mvfr wpo 7+ es 

B 91.8 
10YR4/3 

10YR3/' acsl m2abk 
dsh wss 
mfr WPS 7+ as 

G 101.6+ 
10YR5/4 

10YR4/i ' acsl m 
dsh wss 
nfr wos 7+ 

Comments A horizon, contains less than 10^ (est.) angular gravel to 
cobble size fragments of carbonate and sandstone rock from the 
Gallatin, and Bighorn Formations, slightly calcareous. B horizon, 
contains less than IQjS (est.) angular gravel to cobble size 
fragments of carbonate and sandstone rock from the Gallatin, and 
Bighorn Foirmations, slightly calcareous. C horizon, contains 10^ 
(est.) angular gravel to cobble size fragments of carbonate and 
sandstone rock from the Gallatin, and Bighorn Formations. 
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Soils Data 

SItP Nn. T.ncatlnn Elevation 1961 
Dominant juniper, gooseberry 
vegetation and Doue, fir 

, % total % good 
ground cover 80 pround cover 80 

Parent loamy carbonate 
material col luvi um 

Formation name for 
underlvine "bedrock Gallatin 

% surface covered 
by bedrock 0 Landform sideslone on landslide f slump) 

Slope 
angle 8 Aspect NlOW 

Erosion 
Class class 4 Preoin. 38 cm. 

Drainage 
class well-drained 

Depth to HpO ta"KLe (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5 + 1.5 + 

Depth to HpO ta"KLe (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

°2 —2.6 
ds wso 

mvfr WPO 7- as 

Ol -1.1 
ds wso 

mvfr wpo 7- as 

7.7 
10YR3/2 

10YR3/2 acsi m2pl 
dsh wss 
mfr WÇS 7+ as 

B 20.4 
10YR3/3 

10YR3/2 acsi m2abk 
dsh wss 
mfr wps 7+ as 

Ccpv 6Q.1 
10YR7/3 

10YR7/1 acsi m 
dsh wss 
mfr wps 7+ as 

(1 101.6+ 
10YR7A 

lOYné/4 acsi m 
dsh wss 
mfr wps 7+ 

Comments Ag horizon, contains less than 10^ (est.) angular gravel 
to boulder size fragments of carbonate rock from the Gallatin, Bighorn, 
and Madison Formations, slightly calcareous. B horizon, contains 
less that 1(% (est.) angular gravel to boulder size fragments of 
carbonate rock from the Gallatin, Bighorn, and Madison Formations. 
G_ horizon, contains 50^ (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, Bighorn, and Madison 
Formations, highly calcareous, lighter color is due to a build up 
of CaCO-. C horizon, contains 505^ (est.) angular gravel to 
boulder size fragments of carbonate rock from the Gallatin, Bighorn, 
and Madison Formations, strongly calcareous. 
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Soils Data 

aitP Nn- 76 Location Wt. 14.15-107.16.40 Elevation 1920 
Dominant grass, sage, and 
vegetation Douglas fir 

% total % good 
cround cover 100 ground cover 90 

Parent 
material weathered shale 

Formation name for 
underlying bedrock Gros Ventre 

% surface covered 
by bedrock 0 Landform sideslooe 

Slope 
angle 35 Aspect N30E 

Erosion 
Class class 0 PreclT). 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

[igO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 
0U3 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 3.8 
10YR5/3 

10YR4/3 sil flgr 
ds wso 

mvfr WDO 7- as 

B 10.2 
10YR4/3 

10YR3/3 sil m2abk 
dsh wss 
mfr . wps 7- as 

C 12.8 
10YR4/3 

10YE3/3 sil m 
dsh wss 
mfr WDS 7- as 

R 12.84 
2.5Y6/2 

sil 7-

Comments Horizon thickness variable, C absent at times. 
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Soils Data 

Site No. 77 Location 44.34.10-107.36.4'; Elevation 1981 
Dominant grass, forts, and 
vegetation Douglas fir 

% total % good 
ground cover 100 ground cover 100 

Parent 
material weathered shale 

Formation name for 
underlying bedrock Gros Ventre 

% surface covered 
by bedrock 0 Landform aidaslc me 

Slope 
angle 60 Aspect N20E 

Erosion 
Class class 0 Precip. 38 cm. 

Drainage 
class well- drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

0.46 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Co3»r 
dry moist Texture Structure 

Consistency 
dry wet pH Boundarv 

°2 —2.6 
ds wso 

mvfr woo 7- as 

Ol -1.3 
ds wso 

mvfr . wpo 7- as 

4 5.0 
10YB3/2 

10ÏR2/2 1 mlpl 
dsh wss 
mfr wps 7- as 

B 30.6 
10YB4/4 

10YR3/3 m2abk 
dsh wss 
mfr wps 7- as 

c 46 
10YR4/4 

10YR3/3 «11 
dsh wss 
mfr wps 7- an 

R 46+ 
2.5Y4/4 

m 
ds ws 

mfl wp 7-

Comments 
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Soils Data 

Site No. .78 Location#-. 34.00-107.36.48 Elevation 2024 
Dominant grass, gooseberries 
vegetation and Doua, fir 

, % total % good 
ground cover 100 pround cover 85 

Parent loamy carbonate 
material colluvium 

Formation name for 
underlving bedrock Gallatin 

% surface covered 
by bedrock 0 LaJidfoxm sideslore on landslide (slumu) 

Slope 
angle 65 As-oect NIOS 

Erosion 
Class class 1 PreciD. 38 em. 

Drainage 
class well-drained 

Depth to 
seasonal 

[ipO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
drv wet pH Boundary 

O2 -5.1 
ds wso 

mvfr wpo 7- as 

^1 —2.6 
ds wso 

mvfr wpo 7- as 

^2 5.1 
10YR3/3 

10YR3/2 acsi flDl 
ds wso 

mvfr WDO 7+ fCS 

20.5 
10YR4/3 

10YR3/3 acsl m2abk 
dsh wss 
mfr wps 7+ gs 

35.8 
2,5Y6/2 

2. 5Y5/2 acsi flabk 
ds wso 

mvfr wpo 7+ cs 

101 .6+ 
5Y7/2 

5Y6/2 acsil m 
ds wso 

mvfr wpo 7+ 

Comments Ag horizon, contains 10^ (est, ) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, slightly calcareous. Bp horizon, contains 20^ 
(est.) angular gravel to boulder size fragments of carbonate rock 
from the Gallatin, Bighorn, and Madison Formations, strongly calcare
ous, B_ horizon, contains 20^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous. horizon, contains 50^ 
(est.) angular gravel to boulder size fragments of carbonate rock 
from the Gallatin, Bighorn, and Madison Formations, lighter color 
is due to a build up of CaCO^, highly calcareous. 
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Soils Data 

Site No. 7Q Location 44. 16.48 Elévation 2146 
Dominant 
vegetation Douglas fir 

% total % good 
ground cover 94 ground cover 75 

Parent loamy carbonate 
nw-tft-rlal colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform sideslope on landslide f slump ̂ 

Slope 
angle 12 Aspect N50W 

Erosion 
Class class 0 Precip. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

KgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

O2 -5.1 
ds wso 

mvfr wpo 7- as 

-2.6 
ds wso 

mvfr WPO 7- as 

^2 «5.1 
7.5YR3/2 

7. 5YR3// acsi m2pl 
dsh wss 
mfr WPS 7- as 

B 33.3 
10YR3/3 

10YR2/2 acsi m2abk 
dsh WSS 
mfr WPS 7- cs 

n 101.6+ 
10YR6/4 

10YR';/4 acsi m 
ds wso 

mvfr wpo 7+ 

Comments Ap horizon, contains 10^^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin. Bighorn, and 
Madison Formations. B horizon, contains 50^ (est.) angular gravel 
to boulder size fragments of carbonate rock from the Gallatin, 
Bighorn, and Madison Formations. C horizon, contains 60^ (est.) 
angular gravel to boulder size fragments of carbonate rock from the 
Gallatin, Bighorn, and Madison Formations, highly calcareous. 
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Soils Data 

Site No. An Location Wt 11^.90-107.17.00 Elevation 2111 
Dominant grass, sage, and 
vegetation nnus-lAs fir 

% total % good 
ground, cover 100 ground cover 80 

Parent loamy carbonate 
material 1 iivl iim 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
by bedrock 0 Landformsldeslope on landslide (slump) 

Slope 
angle 10 Aspect NlOE 

Erosion 
Class class 1 Precip. 38 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rlppable non-rlppable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 7.6 
10YR3/3 

IOYRI/2 acsi f2pl 
dsh wss 
mfr WPS 7- as 

B 20.1 
IOYBV3 

lOYRl/l acsl mlabk 
dh ws 
mfl wp 7+ cs 

41.4 
10YR6/4 

10YR4A acsi mlabk 
dh ws 
mfl WD 7+ as 

°Ga 101.64 
10YR7/2 

10YR7/2 acsl m 
dh ws 
mfl wp 7+ 

Comments A horizon, contains less than lOjS (est.) angular gravel 
to boulder size fragments of carbonate rock from the Gallatin, 
Bighorn, and Madison Formations. B horizon, discontinuous clay skins 
(IOYR3/3), contains 10^ (est.) angular gravel- to boulder size 
fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, slightly calcareous. B_ horizon, contains 10^ 
(est. ) angular gravel to boulder size fragments of carbonate rock 
from the Gallatin, Bighorn, and Madison Formations, highly calcareous. 
Cg horizon, contains 20^ (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, Bighorn, and Madison 
Formations, lighter color is due to a build up of CaCO^, highly calc. 
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Soils Data 

Site No. 81 Location to.-î"?. 12-107. Elevation 1951 
Dominant grass, sage, and 
vegetation Douelas fir 

% total % good 
ground cover 90 ground cover 35 

Parent loamy carbonate 
nw.tA'pial ftnl 1 iiv*fitn 

Formation name tox 
underlying bedrock Gallatin 

% surface covered 
by bedrock 0 Landform aidealoTie on landslide fslumu^ 

Slope 
angle 40 Asuect N70W 

Erosion 
Glass class 1 Preciu. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rlppable non-rlppable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile descri-otibn 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 7.6 
10YR5A 

10YR4/4 acsi mlcr 
ds wso 

mvfr WDO 7+ as 

R 17.8 
10YR3A 

10YR3/3 acsi m2abk 
dsh wss 
mfr wps 7+ ffS 

10YR7/3 
1nYR7/l acsi m 

dsh wss 
mfr wps 7+ as 

f! ini .6+ 
10YR6/3 

10YR4/? aeai m 
ds wso 

mvfr wpo 7+ 

Comments A horizon, contains 10^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, slightly calcareous all the way to the ground 
surface. B horizon, contains 10^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations. horizon, contains 50^ (est.) angular 
gravel to boulder size fragments of carbonate rock from the Gallatin, 
Bighorn, and Madison Fromations, also contains less than 10^ (est.) 
green shale fragments (1.5 cm. and smaller) from the Gallatin, and 
Gros Ventre Fromations, lighter color is due to a build up of OaCO-, 
highly calcareous. G horizon, contains 70?S (est.) angular gravel 
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Soils Data 

Site No. 81 Location Elevation 
Dominant 
vegetation 

% total % good 
ground cover çround cover 

Parent 
material 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

tIgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments to boulder size fragments of carbonate rock from the 
Gallatin, Bighorn, and Madison Formations, also contains less that 
1(% (est.) green shale fragments (1.5 cm. and smaller) from the 
Gallatin, and Gros Ventre Formations, highly calcareous. 
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Soils Data 

Site No. 82 Location 44,35,13-10?,35,07 Elevation 1981 
Dominant grass, sage, and 
vegetationT)r>U£rlâR fir 

% total ^ good 
ground cover 100 ground cover QO 

Parent 
material carbonate alluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
by bedrock 0 Landform alluvial fan 

Slope 
angle 12 Aspect N30E 

Erosion 
Class class 0 Precip. 38 cm. 

Drainage moderately 
class well-drained 

Depth to 
seasonal 

W table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 15.2 
10YR3/3 

10YR3/2 si m2Kr 
dsh wss 
mfr WPS 7- as 

b 33.0 
10YR3/3 

10YE3/2 si m2abk 
dsh wss 
mfr WPS 7- as 

h 40 il 
10YR5A 

10YR4A sil mlabk 
ds ws 
mfi WD 7- as 

C 101.6+ 
10YR5A 

10YR4A sil m 
dsh wss 
mfr WD s 7+ 

Comments horizon, mottled (c2d 10YR2/2). G horizon, 
contains 5^ (est.) angular gravel to cobble size fragments of 
carbonate rock from the Gallatin, Bighorn, and Madison.Formations 
slightly calcareous. 
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Soils Data 

F5ite No. 83 Location 44.36.15-107.36.46 Elevation 1902 
Dominant 
vegetation 

% total % good 
ground cover çrornid cover 

Parent 
raatft-rlal 

Formation name for 
underlving bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

fl-O table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

ColAr 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments Grab sample of Gros Ventre shale, south side of Shell 
Falls turnout. 
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Soils Data 

Site No. 84 Location NE26,63N 89W Elevation 2427 

Dominant 
vegetation Douslas fir 

% total % good 
ground cover 100 ground cover 90 

Parent loamy carbonate 
mAtfirial fiolluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 

colluvial backfill area on 
Landform landslide fslumti^ 

Slope 
angle 3 Aspect NOW 

Erosion 
Glass class 0 

greater than 
PreciT). 50 cm. 

Drainage moderately well 
class drained 

Depth to 
seasonal 

KgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

0.5 1.5 + 

Profile description 
Hori
zon Depth 

CoZjùr 
drv moist Texture Structure 

Consistency 
dry vet pH Boundary 

4 17.8 
7.5YRN2/0 

7. ')YRN2/0 sic mlul 
ds wso 

lavfr woo 7- ai 

B 101.6+ 
10YR3/3 

10YR3/Î si mlabk 
ds wso 

mvfr . wpo 7t 

Comments Ap horizon, very high in organic matter. B horizon, 
mottled (c2a 10YR3/2)j slightly calcareous, contains an 
occasional fragments (1.5 cm.) of charcoal. 
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Soils Data 

Sltfi No. 84 LocationNWig.53N89W Elevation 2377 
Dominant grass, sa^^e, and 
vegetation forbs 

^ total % good 
ground cover 90 ground cover 79 

Parent loamy carbonate and 
ma+Arlal mbale colluvium 

Formation name for 
underlvine bedrock Gallatin 

% surface covered 
bv bedrock 0 

sideslope 
Landform fdebris s 

on landslide 
lide^ 

Slope 
angle 36 Aspect N50W 

Erosion 
Class class 1 

greater than 
PreciD. 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

tigO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + + 
1.5+ 1.5 + 

Profile descri-otion 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 19.4 
10YR3/3 

10YR3/2 acsil m2cr 
dsh wss 
mfr WDs 7+ RS 

B 46.1 
10YR4/3 

10YR3/3 acsi m3abk 
dh ws 
mfi wp 7+ as 

n 101.64 
10YR4/2 

10YR3/2 acsil m 
dsh wss 
mfr wps 7+ 

Comments A horizon, contains 15% (est.) angular gravel to boulder 
size fragments of carbonate rock jTrom the Gallatin, and Bighorn 
Formations, highly calcareous all the way to the ground surface. 
B horizon, contains 20^ (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, and Bighorn Formations, 
well*developed clay skins (10Yr3/2), highly calcareous. C horizon, 
contains 20^ (est.) angular gravel to boulder size fragments of 
carbonate rock from the Gallatin, and Bighorn Formations, highly 
calcareous, contains inclusions, 20^ (est.) 10 cm, in diamter, of 
A horizon material. 
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Soils Data 

Site No. 86 Location NWIQ. S3N 8QW Elevation 24 SI 
Dominant grass, sage, and 
vegetation fn-rhR 

% total % good 
ground cover 80 ground cover 60 

Parent loamy carbonate and 
ma+^rial shalft cnlluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 

ridgecrest on 
Landform lands! Idp f debris alidA^ 

Slope 
anele 3 Aspect NOW 

Erosion 
Class class 0 

greater than 
Precio. 40 em. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 6il 
10YR3/3 

10YR3/2 acsi f2cr 
dsh wss 
mfr wps 7+ frs 

"R 
10YR3/3 

invRi/? PLC. si 
dsh wss 
mf-r . wps 7+ ass 

n ini .64 
10YR5A 

1 nYRb/k m 
dsh wss 
mfr wps 7+ 

Comments A horizon, contains less than 10^ (est.) angular gravel 
to boulder size fragments of carbonate rock from the Gallatin, and 
Bighorn Formations, slightly calcareous all the way to the ground 
surface. B horizon, contains 10^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, and Bighorn For
mations, slightly calcareous. C horizon, contains 10^ (est.) 
angular gravel to boulder size fragments of carbonate rock from 
the Gallatin, and Bighorn Formations, highly calcareous. 
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Soils Data 

Site No. ft7 Location RR1Q.4?N8QW Elevation 2127 
Dominant grass, sage, and 
vegetation fn-rhs 

% total % good 
ground cover 1 00 ground cover 80 

Parent loamy carbonate and 
imtftTial <ahn1 A nml 1 iivl »m 

Formation name for 
underlying bedrock Prenamhrl an 

% surface covered 
bv bedrock 0 Landform flnndnln 

Slope 
angle 4 Aspect S20U 

Erosion 
Glass class 0 

greater than 
Precip. «50 cm. 

Drainage somew 
class drain 

hat poorly 
ed 

Depth to 
seasonal 

flgO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 
1.5+ 1.5 + 

0,5 + 1.5 + 

Profile description 
Hori
zon Depth 

CoWr 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 10.2 
10YR2/1 

10YR2/1 1 mTcr 
dh ws 
mfi Kp 7-

R 
10YR2/2 

invR?/? «n ntihlr 
dh ws 

Tnf1 wp 7t 

n ini 
10YR5A 

1 nvR/iZ/j. m 
dsh wss 
mfr wps 7+ 

Comments b horizon, slightly calcareous. C horizon, slightly cal
careous, mottled (c2d 5Y4/2), contains 10^ (est.) deeply 
weathered gravel size fragments of carbonate rock from the Gallatin, 
and Bighorn Formations. Profile as a whole is well-differentiated. 
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Soils Data 

Si to Nn. 88 Location NW31.'53N89W Elevation 2637 
Dominant grass, sage, and 
vegetation forbs 

% total % good 
ground cover 90 ground cover 80 

Parent sandy glacial 
material outwash 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform saddle 

Slope 
ansle 7 Asuect N20ii! 

Erosion 
Class class 0 

greater than 
Precit). 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

JgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

4 5.1 
10YE3/2 

10YR3/2 si m2cr 
dsh wss 
mfr WDs 7+ es 

4 10.4 
10YR3/2 

10YR3/2 sil m2pl 
dsh wss 
mfr . wps 7+ ffi 

B 40.9 
7.5YR4/4 

7. 5YR3/2 cl f3abk 
dh ws 
mfi wp 7+ cs 

61.4 
10YR5/6 

10YR5/4 fffs m 
dl wso 
ml wpo 7+ as 

69 
10YR5/4 

10YR5/4 csl mZabk 
dsh wss 
mfr wps 7+ aw 

°iii 122.9 
10YR6/4 

10YR6/4 RS m 
dl wso 

'"ml wpo 7+ as 

Sv 145.9 
10YR6/3 

10YR6/3 m 
dl wso 
ml wpo 7+ as 

s 156.7 
10YR6/3 

10YR6/3 cl flabk 
dh ws 
mfi WD 7+ as 

Comments A, horizon, slightly calcareous. Ag horizon, contains less 
than 10^ (est.) gravel size fragments of dolomite and chert from 
the Madison Formation, slightly calcareous, B horizon, well 
developed clay skins (5YRV^), slightly calcareous, contains less 
that 10^ (est.) rounded gravel size fragments of igneous and 
metaraorphic rock. Gj horizon, slightly calcareous, contains an 

occasio^ crystal crystalline rock fragment. 0 horizon, contains less 
than 10% (est.) rounded gravel size fragments or-agneous and 
metaraorphic rock, well-developed clay skins??? (10YR4/3), slightly 
calcareous. Uy__ horizon, made up of cross bedded sands with inter-
bedded lenses bi ,travel (5 cm thick), gravel consists of 
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Soils Data 

Site No. 88 Location Elevation 

Dominant 
vegetation 

% total % good 
Ground cover ground cover 

Parent 
material 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock LandForm 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

ligO table (est.) 
year around 

Depth to "bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

=V1 213.4+ 
10YR6/3 

10YR6/3 s m 
dl wso 
ml WDO 7+ 

Comments fragments of igneous and metamorphic rock, moderately 
calcareous. horizon, gravel consists of deeply weathered 
igneous and metamorphic rock fra^pnents (rounded .to subrounded), 
some rock fragments have weathered to gruss, highly calcareous. 
Cy horizon, slightly calcareous. Cyj horizon, slightly calcareous. 



423 

Soils Data 

Site No. 90 Location 44.39J30-107.J2J.5 Elevation 2499 
Dominant grass, sage, and 
vegetation forbs 

% total % good 
ground cover 100 ground cover 80 

Parent loamy carbonate 
material colluvium 

Formation name for 
underlying bedrock Gros Ventre 

% surface covered 
bv bedrock 0 

sldeslop 
Landform landslid 

e on 
e (debris slide^ 

Slope 
angle 46 Aspect N90S 

Erosion 
Glass class 1 

greater than 
Precip. «îO cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

Z 53.8 
10YR4/1 

10YR3/1 acsic m 
dsh wss 
mfr wps 7+ ai 

A 61.4 
10YR3/2 

10Yr3/2 sic mlcr 
ds wso 

ravfr wpo 7t gR 

B 112.6 
10YR3/3 

10YR3/2 acsil mPahlc 
dsh wss 
mfr wps 7+ as 

n 112.6+ 
10YR3/4 

1OYRl/3 acsl m 
ds wso 

mvfr wpo 7t 

Comments Z horizon, this is a recent debris slide, contains 20# 
(est.) angular gzavel to boulder size fragments of carbonate 
rock from the Gallatin, Bighorn and Madison Formations. B horizon, 
discontinuous clay skins (10YR2/2), contains less than 10# 
(est.) angular gravel to boulder size fragments of carbonate 
rock from the Gallatin, Bighorn, and Madison Formations. G horizon, 
contains 60# (est.) angular gravel to boulder size fragments of 
carbonate and sandstone rock from the Gros Ventre, Gallatin, Bighorn, 
and Madison Formations, slightly calcareous. 
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Soils Data 

Site No.qi Location 44.36.19-107.12.14 Elevation 2991 
Dominant grass, and 
vegetation Doufclas fir 

% total % good 
Ground cover 100 ground cover 90 

Parent loamy carbonate 
ma+ATrlal eolluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 

colluvial backfill on 
Landform landslide (slumn^ 

Slope 
angle 0 Asuect NOW 

Erosion 
Glass class 0 

greater than 
PreciTJ. 90 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

KgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5+ 1.5 + 
1.5 + 1.5 + 

Profile descrirtibn 
Hori-

Depth 
Co3Ar 

drv moist Texture Structure 
Consistency 
dry wet pH Boundary 

°2 -5.1 
ds wso 

mvfr WDO ?- as 

«1 —2.6 
ds wso 

mvfr wpo 7- as 

2.6 
5ÏR4/6 

«^1/4 si f2pl 
dsh wss 

'••fflfr wps 7- as 

•R 40.1 
5YR3A 

4YR1/1 Ric mlabk 
ds wss 

mvfr wpo 7- ffs 

n ini 
10YR3/4 

1 nvB i/i m 
ds wss 

mvfr wpn 7-

Comments B horizon, clay skins (5ÏR3/3). C horizon, contains 
less that 1% (est.) rounded deeply weathered carbonate pebbles 
from the Gallatin, Bighorn, and Madison Formations. 



425 

Soils Data 

Site No. 92 Location^-36.06-107.32.40 Elevation 2591 
Dominant grass, sage, and 
vegetation forts 

% total % good 
ground cover 90 ground cover 70 

Parent loamy carbonate 
material colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform sideslope on landslide ( slump) 

Slope 
angle 8 Aspect N90E 

Erosion greater than 
Glass class 0 Precip. 50 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Co&or 
drv moist Texture Structure 

Consistency 
drv wet pH Boundary 

A 5.1 
10YR3/3 

10YR3/2 si flcr 
ds wso 

mvfr woo 7- as 

=1 17.9 
10YR3/3 

10YR3/2 si m2abk 
dsh wss 
mfr . wps 7+ fS 

B 33.3 
5YR4/6 

acsi m 
dsh wss 
mfr wps 7+ 

Comments B, horizon, clay skins (10YR2/2), slightly calcareous. 
B horizon, well-developed clav skins (5ÏR3/3)» slightly calcareous. 
C horizon, contains 5Q^ (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, Bighorn, and Madison 
Formations. 



426 

Soils Data 

Site No. 93 Location ^,35,30-107.37.^5 Elevation 1920 

Dominant 
vegetation 

% total % good 
eround cover pround cover 

Parent 
material 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

tîpO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wt pH Boundary 

Comments Crystalline eratics, pink and white granites, some mafics 
(15^ est.). Generally less than 0.6 meters in diameter and well 
rounded. Seem to be in line trending roughly N-S, from about 15 meters 
below the road to 90 meters above the road. 
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Soils Data 

Site No. 94 Location44.35.45-107.38.10 Elevation 1920 
Dominant grass, sage, and 
vegetation forbs 

% total % good 
ground cover 60 ground cover 50 

Parent loamy carbonate 
raatftTial eolluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
by bedrock 0 Landform sideslore on landslide fslumo^ 

Slope 
angle 0 Aspect S30E 

Erosion 
Class class 1 

less than 
Precin. 38 cm. 

Drainage somew 
class drain 

hat excessively 
ed 

Depth to 
seasonal 

ligO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 
1.5+ 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Death 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 5 
J
 

1
 acsil flcr 
ds wso 

mvfr wpo 7+ as 

B 17.9 
10YR5/4 

10YR2f/4 acsil mlabk 
dh ws 
mfi WD 7+ es 

=Ca 74.2 
10YR7/4 

10YR7/4 acsil m 
dsh wss 
mfr WDS 7+ es 

C 101.6+ 
10YR7/6 

10YR6/6 acsil m 
dsh WSS 
mfr wps 7+ 

Comments A horizon, contains 13% (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
itadison Formations, highly calcareous all the way to the ground 
surface, B horizon, contains 2Q?S (est.) angular gravel to 
boulder size fragments of carbonate rock from the Gallatin, Bighorn, 
and Madison Formations, highly calcareous. horizon, contains 
20^ (est.) angular gravel to boulder size fragments of carbonate 
rock from the Gallatin, Bighorn, and Madison Formations, lighter 
color is due to a build up of GaCO_, highly calcareous. C harrizon, 
contains 60^ (est.) angular gravel"^to boulder size fragments of 
carbonate rock from the Gallatin, Bighorn, and Madison Formations, 
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Soils Data 

Site No. qU Location Elevation 

Dominant 
vegetation 

% total % good 
ground cover ground cover 

Parent 
matft-rial 

Formation name foT 
underlying bedrock 

% surface covered 
by bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Preclp. 

Drainage 
class 

Depth to 
seasonal 

KgO table (est.) 
year around 

Depth to bedrock 
rlppable non-rlppable 

Profile description 

Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments highly calcareous. 



429 

Soils Data 

Site No. 94 Location16. 60-107.17.91 Elevation 1926 
Dominant grass, sage, and 
vegetation iuniners 

% total % good 
ground cover 50 ground cover 50 

Parent loamy carbonate 
raatarial cnlluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform aideslone on landslide f slumn) 

Slope 
angle 11 Aspect S36E 

Erosion 
Class class 1 

less than 
Precio. 38 cm. 

Drainage somew 
class drain 

hat excessively 
Bd 

Depth to 
seasonal 

W table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
1.5 + 1.5 + 

Profile descri-otion 
Hori
zon Death 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 5 
10YR5/3 

10YR4/3 acsil m-flcr 
ds wso 

mvfr WDO 7+ as 

B 22. Q 
10YR5/3 

10YR4/1 acsil m2abk 
dsh wss 
mfr . WDs 7+ cs 

^Ga 40.9 
10YR8/4 

10YR8/4 acsil m 
dsh wss 
mfr wps 7+ cs 

G 101.6+ 
5Y4/4 

6Y4/3 acsil m 
dsh wss 
mfr wps 7+ 

Comments A horizon, contains 15^ (est.) angular gravel to boulder 
size fra^-pnents of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous all the way to the ground 
surface. B horizon, contàins 20!^ (est.) angular gravel to 
boulder size fragments of carbonate rock from the Gallatin, Bighorn, 
and Madison Formations, highly calcareous. C_ horizon, contains 
30^ (est.) angular gravel to boulder size fragments of carbonate 
rock from the Gallatin, Bighorn, and Madison Formations, lighter 
color is due to a build up of GaCO-, highly calcareous. C horizon, 
contains 20^ (est. ) angular gravel"^to boulder size fragments of 
carbonate rock from the Gallatin, Bighorn, and Madison Formations, 
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Soils Data 

Site No. PS Location Elévation 

Dominant 
vegetation 

% total % good 
ground cover ground cover 

Parent 
material 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precis. 

Drainage 
class 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile descri-otion 
Hori
zon Depth 

Co3x>r 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments highly calcareous. 
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Soils Data 

SltpNn. Qfi T.nftfl.t1f)nUi4..3'5. «51-107.36.10 Elevation 1926 

Dominant 
vegetation Douglas fir 

% total % good 
ground cov&r 90 yrnund cover 90 

Parent loamy carbonate 
na+ATl.al coll uvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 LandformsldesloTie on landslide Cslumi»^ 

Slope 
angle 22 Asuect SôSW 

Erosion 
Class class 1 

less than 
Precio. 38 em. 

Drainage somew 
class drain 

Tat excessively 
ed 

Depth to 
seasonal 

rIgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

-5.1 
ds wso 

mvfr vroo 7- as «, 

Ol -2.6 
ds wso 

mvfr wpo 7- as 

^2 4.1 
10YR5A 

10YR4/4 acsi m-f2pl 
dsh wss 
mfr wps 7+ cs 

B 1 4.4 
5Y3/2 

4Y1/2 acsi f2abk 
dsh wss 
mfr wps 7+ as 

n ini .64 
10YR5A 

1 cmiiifU anell m 
ds wso 

mvfr wpo 7t 

Comments A. horizon, contains less than 10^ (est.) angular gravel 
to boulder size fragments of carbonate rock from the Gallatin, 
Bighorn, and Madison Formations, highly calcareous. B horizon, 
contains ZQ/fo (est.) angular gravel to boulder size fragments of 
carbonate rock from the Gallatin, Bighorn, and Madison Formations, 
moderately calcareous. C horizon, contains 70^ (est.) angular 
gravel to boulder size fragments of carbonate rock from the Gallatin, 
Bighorn, and Madison Formations, highly calcareous. 
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Soils Data 

Site No. 97 Location44.33.^-407^2.15 Elevation 2316 

Dominant 
vegetation 

% total % good 
sround cover ground cover 

Parent 
matftrial 

Formation name for 
underlvinc bedrock 

% surface covered 
by bedrock Landform 

Slope 
an«le Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

Comments Grab sample, landslide material 



433 

Soils Data 

Sitfi No. 98 Location 44,34,10-107,33.45 Elevation 2134 

Dominant 
vegetation 

% total % good 
ground nnver ground cover 

Parent 
îiuitftTlal 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock Landform 

Slope 
anale Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments Grab sample, landslide material. 
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Soils Data 

Site No. 99 Location NE26.48N 87W Elevation 2036 
Dominant grass, sage, and 
vegetation forbs 

% total % good 
ground cover 70 ground cover 50 

Parent loauny carbonate 
mst-tfl-rial cûlluvlum 

Formation name for 
underlvinff bedrock Gallatin 

% surface covered 
by bedrock 0 Landform sideslope on landslide (slump) 

Slope 
angle 39 Aspect NOE 

Erosion 
Class class 1 Preclp. 38 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Colùr 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 17.8 
10YR3/3 

10YR3/2 acsll mlgr 
ds wso 

mvfr wpo 7+ gs 

33 
10YR3/3 

iOYR3/2 acsll mlabk 
ds wso 

mvfr WPO 7+ gs 

58.4 
10YR4/3 

10YR3/3 acsll m2abk 
dsh W8S 
mfr WPS 7+ gs 

n 101.6+ 
10YR5/3 

10YR4/3 acsll m 
ds WSO 

mvfr wpo 7+ 

Comments A horizon, contains less than 1(% (est.) angular gravel 
to boulder size fragments of carbonate rock from the Gallatin, Bighorn, 
and Madison Formations, slightly calcareous all the way to the 
surface, B, horizon, contains 20̂  (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, moderately calcareous. Bg horizon, contains 
25̂  (est.) angular gravel to boulder size fragments of carboaâte 
rock from the Gallatin, Bighorn, and Madison Formations, strongly 
calcareous. C horizon, contains 50J^ (est.) angular gravel to 
boulder size fragments of carbonate rock from the Gallatin, Bighorn 
and Madison Formations, strongly calcareous. 
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Soils Data 

Site No. 101 LocatlonNSl3.i^8N87W Elevation 2286 
Dominant grass, sage, and 
vegetation forbs 

% total % good 
ground cover 70 ground cover 50 

Parent loamy carbonate 
colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Tjandform talus cone 

Slope 
anale l6 Aspect NOE 

Erosion 
Class class 1 Precip. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Death 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 29.4 
10YR3/3 

10YR3/2 acsil mlfîr 
ds WSO 

mvfr wpo 7+ as 

•R 42.1 
10YR5/3 

10YR4/3 acsll m2abk 
dsh wss 
mfr WPS 7+ as 

n 101.64 
10YR5/3 

10YR4/3 acsil m 
ds WSO 

mvfr wpo 7+ 

Comments A horizon, contains 25% (est.) angular gxavèl 
to boulder size fragments of carbonate rock from the Gallatin, Bighorn, 
and Madison Formations. B horizon, contains 40^ (est.) angular 
gravel to boulder size fragments of carbonate rock from the Gaillatin, 
Bighorn, and Madison Formations. C horizon, contains 50̂  (est.) 
angular jiavel to boulder size fragments of carbonate rock from 
the Gallatin, Bighorn, and Madison Formations. 
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Soils Data 

Site No. 102 Location NE26.48N87W Elevation 1978 
Dômlnant 
vegetation srass. and sase 

% total % good 
ground cover SO ground cover 30 

Parent 
material fclacial outwash ? 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock 0 Landform sldeslone on landslidn ( si 

Slope 
angle 3 Aspect N45W 

Erosion 
Class class 1 Precip. 38 cm. 

Drainage 
class wèll-drained 

Depth to 
seasonal 

KgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture structure 

Consistency 
dry wet pH Boundary 

A 12.7 
10YRV3 

10YR3/3 1 mlcr 
ds wso 

mvfr woo 7+ ss 

B 30.6 
10YRV3 

10YH3/3 si mlabk 
ds wso 

mvfr . wpo 7t 

C 35.6 
10YR5A 

10YR4/3 ^sl m 
ds wso 

mvfr wpo 7+ 

=Ca 101.6+ 
10YR8/3 

10YR8/3 esl m 
ds wso 

mvfr wpo 7+ 

Comments A horizon, weaJdy calcareous all the way to the ground surface. 
B horizon, weakly calcareous. G horizon, contains 30^ (est.) 
rounded igneous and metamoirphic cobbles and boulders, 75^ or 
greater which have decayed to {jruss, slightly calcareous. C-
horizon, contains 30^ (est.) rounded igneous and raetamorphic ^ 
cobbles and boulders, 75^ or greater of idiioh have decayed to gruss, 
highly calcareous. 
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Soils Data 

Site No. 101 Location NW26.48N 37W Elevation 1899 
Dominant grass, sage, and 
vegetation luniner 

% total % good 
ground cover 70 ground cover SO 

Parent loamy carbonate 
material eolluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
by bedrock 0 Landform sideslope on landslide (slump) 

Slope 
angle 8 Aspect N80W 

Erosion 
Class class 1 Preclp. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rlppable non-rlppable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

A 5 
10YR3/3 

10YR3/2 si m2cr 
dsh wss 
mfr WPS 7- gs 

B 59.9 
10YR3A 

lOYRl/1 acsl m2abk 
dsh wss 
mfr . WPS 7+ as 

C 101.6+ 
10YR4/3 

lOYRl/l acsl m 
dsh wss 
mfr WPS 7+ 

Comments B horizon, contains 305^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn., and 
Madison Formations, very slightly calcareous. C horizon, contains 
805È (est.) angular gravel to boulder size fragments of carbonate 
rock from the Gallatin, Bighorn, and Madison Formations, highly 
calcareous. 
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Soils Data 

site No. 104 Location NW25.48N87W Elevation 1951 

Dominant 
vegetation fixass. and sase 

% total % good 
ground cover 60 ground cover 40 

Parent loamy carbonate 
raatortal colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform sideslope on landslide (slump) 

Slope 
angle 33 Aspect N40E 

Erosion 
Class class 1 Precin. 38 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1>5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1>5 + 1.5 + 

Profile description 

Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 27.9 
5YR3/3 

5YR3/2 acsil mlcr 
ds wso 

mvfr wpo 7+ as 

a 101.64 
5YR3A 

5YR3/3 acsil m 
ds wso 

mvfr WPO 7+ 

Comments A horizon, contains 50^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, slightly calcareous all the way to the ground 
surface. G horizon, contains 50^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous. 
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Soils Data 

Site No. 105Location NE24.48N 87W Elévation 2103 
Dominant grass, sage, and 
vegetation iuniper 

% total % good 
ground cover 90 ground cover 70 

Parent 
material glacial outwash ??? 

Formation name for 
underlying bedrock ridgecrest 

% surface covered 
bv bedrock 0 Landform rldgecrest 

Slope 
angle 3 Aspect N40W 

Erosion 
Class class 0 Preclp. 38 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rlppable non-rlppable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Colior 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 5 
10YR3/3 

10YR3/2 scl flcr 
ds wso 

mvfr wpo 7- gs 

B 22.9 
10YR3A 

10YR3/3 scl m2abk 
dsh wss 
mfr wps 7- ,a:s 

33 
10YR4/3 

10YR3/3 scl ra2abk 
dsh wss 
mfr WPS 7- gs 

G 101.6+ 
10YR5A 

10YR4/3 scl m 
ds wso 

mvfr wpo 7-

Comments A horizon, contains 2Q^ (est.) rounded Igneous and 
metamorphlc cobbles and boulders, B horizon, contains 40$^ (est.) 
rounded Igneous and metamorphlc cobbles and boulders, less than 
10^ (est.) have decayed to gruss. G horizon, contains 50^ (est.) 
rounded igneous and metamorphlc cobbles and boulders, less than 
10^ (est.) have decayed to gruss. 
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Soils Data 

Site No. 1 nA Location SW18,4BN Rl^W Elevation 2207 
Dominant % total % good 

ground cover 90 ground cover 70 

Parent loamy carbonate 
matfl'H.al nnll uviuip 

Formation name for 
underlvlnec bedrock Gallatin 

% surface covered 
bv bedrock 0 

rldgecrest on 
Landform landslide {slumo) 

Slope 
angle 4 Asuect N90E 

Erosion 
Class class 1 PreclD. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rlppable non-rlppable 
1.5+ 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 6.4 
10YK3/3 

10YR3/2 csil mlcr 
ds wso 

mvfr wpo 7- cs 

B 24.4 
10YR3/4 

lOYRl/l csil m2abk 
dsh wss 
mfr wpa 7t cs 

'qa 66 
10YR5/4 

10YR4/3 csl m2abk 
dsh wss 
mfr wps 7+ cs 

°Ga 101.6+ 
10YR6/4 

lOYRS/l csl m 
dsh wss 
mfr wps 7+ 

Comments A horizon, contains 40^ (est.) rock fragments. 249^ (est.) 
are rounded igneous and metamorphic cobbles and Mulders, 1,6^ (est.) 
are angular gravel to boulder size fragments of carbonate rock from 
the Gallatin, Bighorn, and Madison Formations, fi horizon, same as 
A horizon regarding rock fragment content, slightly calcareous, 
B_ horizon, contains 40^ (est.) rock fragments. 24^ (est.) are 
iQunded Igneous and metamorphic cobbles and boulders, 20^5 of 
these have decayed to gruss. The remaining Igneous rocks have a 
well-developed carbonate coating 0.8 cm. thick. The remaining 16^ of 
the rock fragments are angular gravel to boulder size fragments of 
carbonate rock from the Gallatin, Bighorn, and Madison Formations. 
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Soils Data 

Site No. 106 Location Elevation 
Dominant 
vegetation 

% total % good 
frround cover ground covef 

Parent 
material 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precin. 

Drainage 
class 

Depth to 
seasonal 

ïgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile descrintion 
Hori
zon Depth 

Coûtor 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments B_ horizon is highly calcareous. horizon, same as 
horizon^regarding roek fragment content, also highly calcareous. 
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Soils Data 

Site No. 107 Location SW24.48N 87W Elevation 2027 

Dominant fîrass, sajje, and 
vegetation iuniner 

% total % good 
cround cover 80 ground cover 60 

Parent 
mA+Arta.! glacial till 

Formation name for 
underlying bedrock Sallatln \ ' <" 

% surface covered 
by bedrock 0 Landform lateral moraine 

Slope 
angle 0 Aspect NOW 

Brosion 
Class class 0 Preclp. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

W talxLe (est.) 
year abound 

Depth to bedrock 
rlppable non-rlppable 
1.5+ 1.5 + 

1.5 + 1.5 + 

Profile description 

Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 15.2 
10YR4/3 

10YR3/3 cl m2cr 
dsh wss 
mfr WDS 7- es 

B 76.2 
10YR4/4 

10YR4/1 cl m2abk 
dsh wss 
mfr wps 7- ss 

n 101.64 
10YR5/3 

10YR4/1 csl m 

ds wso 
mvfr wpo 7+ 

Comments A horizon, contains 40^ (est.) rounded igneous and meta-
morphlc cobbles and boulders. B horizon, contains 50^ (est.) 
rounded igneous and metaunorphic cobbles and boulders. In the A 
and B horizon the cobbles and boulders are etched but few have 
decayed to gruss. C horizon, contains 50^ (est.) rounded igneous 
and metamorphic cobbles and boulders. In the C horizon the cobbles 
and boulders are coated with carbonate (CaCO~) to a thickness of 
0,1 to 0.3 cm., 2^ (est. j of the rock fragments have weathered to 
gruss. 
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Soils Data 

Site No. 108 Location SE23.48N87W Elevation 2057 
Dominant 
vegetation grass, and sage 

% total % good 
ground cover 80 ground cover 60 

Parent loamy carlwnate 
mp-terial colluviura 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
by bedrock 0 Landform talus cone 

Slope 
angle 10 Aspect N90E 

Erosion 
Class class 0 Precip. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO taU.e (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
1.5 + 1.5' + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
drv wet PH Boundary 

A 7.6 
10YR3/3 

10YR3/2 acsil micr 
ds wso 

mvfr WPO 7+ gs 

B 3S.6 
10YR5/4 

10YR4/3 acsil m2abk 
dsh wss 
mfr wps 7+ as 

61 
10YR7A 

10YR6/4 acsil .'•'in 
ds wso 

mvfr wpo 7+ as 

0 101.6+ 
10YR5A 

10YR4/4 acsil m 
ds wso 

mvfr wpo 7+ 

Comments A horizon, contains 30?5 (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, slightly calcareous all the way to the ground 
surface. B horizon, contains 30^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations. 0_ horizon, contains 30^ (est.) angular 
gravel to boulder size fragments of carbonate rock from the Gallatin, 
Bighorn, and Madison Formations, lighter color is due to a build 
up of CaCO~, highly calcareous. C horizon, contains 30^ (est.) 
angular gravel to boulder size fragments of carbonate rock from the 
Gallatin, Bighorn, and Madison Formations, highly calcareous. 
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Soils Data 

Site No. lOQ Location î5W24./rôN87W Elevation 1974 
Dominant 
vegetation p-rass. anrf «AgrA 

% total % good 
ground cover 80 ground cover 60 

Parent loamy carbonate 
material rmTliivlnm 

Formation name for 
underlying bedrock r.allatin 

% surface covered 
by bedrock 0 Landform ne nnn* 

Slope 
ftïwcle 12 Aspect N90E 

Erosion 
Class class 0 Preclp. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

îgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 7.6 

10YR4./3 
10YR3/3 acsil mlcr 

ds wso 
mvfr wpo 7+ gs 

B 10. S 
10YR6/3 

lOYR'î/3 acsil mlabk 
ds wso 

mvfr WDO 7+ as 

61 
10YR7/3 

10YR7/1 acsil m 
ds wso 

mvfr wpo 7+ gs 

n 101.6+ 
10YR5A 

10YR4/4 acsil m 
ds wso 

mvfr WPO 7+ 

Comments A horizon, contains 30^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn,and 
ladlson Formations, slightly calcareous all the way to the ground 
surface. B horizon, contains 305^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn,and 
Madison Formations. C„ horizon, contains 30^ (est.) angular 
gravel to boulder size fragments of carbonate rock from the Gallatin, 
Bighorn, and Madison Formations, lighter color is due to a build 
up of CaCO«, highly calcareous. C horizon, contains 30^ (est.) 
angular gravel to boulder size fragments of carbonate rock from the 
Gallatin, Bighorn, and Madison Formations, highly calcareous. 
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Soils Data 

Site No. 110 Location SW24.48N 87W Elevation 2018 

Dominant 
vegetation erass. and sa.se 

% total % good 
ground cover 70 ground cover 60 

Parent loamy carbonate 
material cnlluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform talus cone 

Slope 
angle 9 Aspect N85W 

Erosion 
Glass class 0 Precip. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 10.2 
10YR3/3 

lOYRl/2 acsil ra2T?l 
dsh wss 
mfr wps 7+ trs 

R 27.0 
10ÏR4/3 

lOYRT/l T mPabk 
dsh wss 
mfr vmR 7+ 

^na 78.7 
10YR7/3 

10YR7/1 acsil m 

o
 
c 

1
 7t 41R 

n 101.6+ 
10ÏR5/3 

10YR4/1 Rfisll m 
ds wso 

mvfr wpo 7t 

Comments A horizon, contains 20^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, slightly calcareous all the way to the ground 
surface. B horizon, contains 40^ (est.) angular gravel to boulder 
size fragments of carbonate rock from tlie Gallatin, Bighorn, and 
Madison Formations. horizon, contains 50% (est.) angular 
I'jravel to boulder size fraj^ments of carbonate rock from the Gallatin, 
Bighorn, add Madison Foonnations, li;;hter color is due to a build 
up of GaCOo, highly calcareous. G horizon, contains 50^ (est.) 
gravel to Mulder size rock fragments. 45^ (est.) of these are 
angular gravel to boulder size fragments of carbonate rock from the 
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Soils Data 

Site No. 11 n Location Elevation 
Dominant 
vegetation 

% total % good 
ground cover ground cover 

Parent 
mAtftrlal 

Formation name for 
underlvine bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

CelAr 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

Comments Gallatin, Bighorn, and Madison Formations, highly-
calcareous. The remaining ̂  (est.) are rounded igneous and 
metaunorphic boulders, highly calcareous. 
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Soils Data 

Site No.111 Location SE12.48N 87W Elevation 2271 
Dominant 
vegetation /rrass. anri 

% total % good 
ground cover 70 ground nnver 70 

Parent loamy carbonate 
iMttftTlal f»nT 1 iivl urn 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
by bedrock 0 Landform talus nnnm 

Slope 
angle 20 Ast»ect N7E 

Erosion 
Class class 0 Preci-D. cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

i-O table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Â 15.: <5 
10YR3/3 

iOYR3/2 acsil mlcr 
ds wso 

mvfr WDO 7- CS 

B h'\.'7 
10YR3/3 

1 OYRl/2 acsil mPahlf 
dsh WSS 
mfr wps 7- as 

0 48.4 
10YR4/3 

lOYRl/l acsil m 
ds WSO 

mvfr wpo 7+ 

Comments A horizon, contains 50̂  (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin. Bighorn, and 
ladison Formations. B horizon, contàins 50̂  (est.) angular 
gravel to boulder size fragments of carbonate rock from the Gallatin, 
Bighorn, and Madison Formations. C horizon, contains 50̂  (est.) 
angular gravel to boulder size fragments of carbonate rock from the 
Gallatin, Bighorn, and Madison Formations. Pit discontinued at 58.4 
cm. when large rock encountered. 
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Soils Data 

Site No. 119 Location NWI? /ifiNRTtf Elevation 2164 
Dominant Douglas fir, and 
vegetation Ti^nrrl Oman o 

% total % good 
ground cover 100 ground cover 100 

Parent loamy carbonate Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform talus cone 

Slope 
angle 10 Aspect N7E 

Erosion 
Glass class 0 Precip. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

IgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1-5 + 

1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

4 
10YR2/2 

lOYR?/? mil m1pl 1
 
Î
S
*
 

1
1
 

7- as 

R 
10YR3/2 

10YR2/2 acsil mlabk 
ds wso 

mvfr WDo 7-

Comments B horizon, contains 4-0^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn,, and 
Madison Formations. At ̂ 5»7 discontinued pit when unable to dig 
through large boulders of Bighorn Dolomite. 
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Soils Data 

Site No. 113 Location NE23.WN87W Elevation 230̂ : 
Dominant 
vegetation grass, and sâ e 

% total % good 
ground cover 80 pround cover 60 

Parent loamy carbonate 
material colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
by bedrock 0 Landform talus cone 

Slope 
angle 1<5 Aspect NITS 

Erosion 
Class class 0 Precip. 38 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

HgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 11.4 
7.5YR3/2 

7̂  I5YH3/2 acsil mlcr 
ds wso 

mvfr wpo 7- gs 

R 
7.5YR3/2 

afisn mlabk 
ds wso 

mvfr . wpo 7- gR 

n 101.64 
10YR4/3 

lOYRl/l an si T m 
ds wso 

mvfr wpo 7+ 

Comments A horizon, contains 2^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, ^ighorn, and 
Madison Formations. B horizon, contains 50^ (est.) angular gravel 
to boulder size fragments of carbonate rock from the Gallatin, 
Bighorn, and Madison Formations. C horizon, contains 505^ (est.) 
angular gravel to boulder size fragments of carbonate rock from the 
Gallatin, Bighozn, and Madison Formations, slightly calcareous. 
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Soils Data 

Site No. 114 Location SE23,53Nfi 9W Elevation 2390 
Dominant 
vegetation Kzass. and sâ ê 

% total % good 
ground cover 90 ground cover 70 

Parent 
material fclacial till 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock 0 Landform lateral moraine 

Slope 
angle 0 Aspect NOW 

Erosion 
Class class 0 

greater than 
Precip. 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO taTale (est. ) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture structure 

Consistency 
dry wet PH Boundary 

A 20-3 
10YR3/2 

10YB2/2 cl ml/cr 
ds wso 

mvfr WDO 7- as 

B 
10YR5A 

10YR4/4 cscl ra2abk 
dsh wss 
mfr WDs 7+ cs 

G 101.6+ 
10YR6/6 

IOYR'5/6 csl m 
ds wso 

mvfr WDo 7+ 

Comments A horizon, contains 30̂  (est.) rounded gravel to boulder 
size fragments of igneous and metanorphic rock. B horizon, contains 
5056 (est.) rounded gravel to boulder size fragments of igneous 
and metamorphic rock, very slightly calcareous. C horizon, contains 
80̂  (est.) rounded gravel to boulder size fragments of'igneous 
and metamorphic rock, slightly calcareous. 
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Soils Data 

aitP Nn. 115 T-nnaMon NE23. 63N89W Elevation 2380 
Dominant 
vegetation «rass. and sase 

% total  ̂good 
ground cover 90 ground cover 70 

Parent 
material glacial till 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock 0 TAndfnrm lateral moraine 

Slope 
angle 3 Aspect N5̂ W 

Erosion 
Glass class 0 

greater than 
PreciD. 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

fipO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5 + 1.5 + 
1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 99.C, 
10YR3/2 

10YR?./? m Pgr 
dsh wss 
mfr wps 7- as 

10YR4/3 
m m-c2abk 

dsh wss 
mfr wps 7- as 

40.8 
IOYRV^ 

10YR4/3 cl m-c2abk 
dsh wss 
mfr WDs 7+ as 

76.2 
2.5Y4A 

2. 4Y4/2 cl m 
dsh wss 
mfr wps 7+ as 

ini .A4. 
5YV3 

(il m 
dsh wss 
mfr wps 7t 

Comments A horizon, contains 1% (est.) rounded gravel to boulder 
size fragments of igneous and metamorphic rock. B horizon, contains 
15̂  (est.) rounded gravel to boulder size fragments of igneous 
and metamorphic rock. In the A and B horizons the igneous and 
metamorphic rocks are etched and pitted but there is no gruss or 
carbonate coating on the rocks. horizon, contains 30̂  (est.) 
rounded gravel to boulder size fragments of igneous and metamorphic 
rock, highly calcareous, C, horizon, contains (est,) rounded 
gravel to boulder size fragments of igneous and metamorphic rock. 
Cg horizon, contains 30̂  (est.) rounded gravel to boulder size 
fragments of"igneous and metamorphic rock. In the and C horizons 
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Soils Data 

Site No. 114 Location Elevation 
Dominant 
vegetation 

% total % good 
ground cover ground cover 

Parent 
mfl-tftrlal 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class PreciD. 

Drainage 
class 

Depth to 
seasonal 

ipO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments approximately 20̂  of the igneous and metamorphic rocks 
are decayed into grass, they also have a carbonate coating (CaCÔ ) 
0,3 cm, thick. C. and Cp are highly calcareous. Cp horizon is 
mottled (c2d 5Y7/3). 
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Soils Data 

51+̂  Nn 116 T.nrA.t1 nn RR21. 4TN8qM Elevation 232Q 
Dominant 
vegetation grass, and sase 

% total % good 
ground cover 90 fi-ound cover 70 

Parent 
material (glacial till 

Formation name for 
underlying bedrock 

% surface covered 
by Taedrock 0 Landform lateral moraine 

Slope 
angle 4 Aspect n6SE 

Erosion 
Class class 0 

greater "ttaan 
Precip. SO cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

tipO table (est.) 
year around 

Depth to bedrock 
rlppable non-rlppable 
1.5+ 1.5 + 

1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 20.3 
10YR3/4 

10YR3/3 csl f2gr 
dsh wss 
mfr WPS ?- as 

B M.I 
7.5YR5A 

7. SYR4/4 csl c2abk 
dsh wss 
mfr . wps 7- as 

n 101.6+ 
10YR6/4 

10YR4/4 csl m 
ds wso 

mvfr wpo 7-

Comments A horizon, contains 30̂  (est.) rounded gravel to boulder 
size fragments of igneous and metaraorphic rock. B horizon,, contains 
50̂  (est.) rounded gravel to boulder size fragments of Igneous 
and metéimorphic rock. C horizon, contains 60̂  (est.) rounded 
gravel to "boulder size fragments of igneous and metamorpfcdc rock. 
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Soils Data 

Site No. 119 Location 41NAQW Elevation 2286 
Dominant 
vegetation trrass. and sajxe 

% total % good 
ground cover 90 ground cover 70 

Parent 
mft+A-rlal /rlacial till 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock 0 Landform lateral moraine 

Slope 
angle 0 Aspect NOW 

Erosion greater than 
Glass class 0 Precln. 50 cm. 

Drainage 
class well-drained 

Depth to HgO table (est,) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rlppable 
1.5 + 1.5 + 

Depth to HgO table (est,) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Denth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 12.7 
10YR3/3 

10YR3/2 cl c2cr 
dsh wss 
mfr wps 7- as 

B 43.2 
7.5YRV̂  

7. WR4/2 cl m2abfc 
dsh wss 
mfr . wps 7- as 

n 101.6+ 
10YR6/3 

10YR4/3 cl m 
dsh wss 
mfr wps 7-

Comments A horizon, contains 30^ (est.) rounded (gravel to boulder 

size fragments of i:;neous and metamorphic rock. B horizon,, contains 
SOfo (est.) rounded jravel to boulder size fragments of i;;neous 

and metamorphic rock. C horizon, contains 50^ (est.) rounded 

ravel to boulder size frafinents of igneous and metamorphic rock. 
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Soils Data 

Site No- 118 Location SE21. 53N89W Elevation2301 
Dominant 
vegetation crass, and sa;:e 

% total % good 
ground cover 90 ground cover 70 

Parent 
material elacial till 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock 0 Landform lateral moraine 

Slope 
angle 0 Aspect NOW 

Erosion 
Class class 0 

greater than 
PreciT). 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rlppable non-rippable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile descrintion 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 17.8 
10YR3A 

10YR3/3 cl m2cr 
dsh Hss 
mfr vnps 7- as 

R 40.6 
7.5YRV4 

7.SYR2j./2 cl m2abk 
dsh wss 
mfr . wps 7- as 

n 101-6+ 
7.5ÏR6/4 

7.4YR̂ /Ẑ  cl m 
dsh wss 
mfr wps 7-

Comments A horizon, contains 30̂  (est.) rounded gravel to boulder 
size fragments of igneous and metamorphic rock. B horizon,, contains 
50̂  (est.) rounded gravel to boulder size fragments of igneous 
and metamorphic rock. G horizon, contains 50̂  (est.) rounded 
gravel to boulder size fragments of igneous and metamorphic rock. 
C horizon contains cobbles that are etched and pitted but no gruss 
or carbonate coating on cobbles or boulders. 
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Soils Data 

Site No. HQ Location 55E1Q. «ÎINQOW Elevation 1414 
Dominant grass, sage, and 
vegetation nricklv near 

 ̂total  ̂good 
ground cover 50 ground cover 30 

Parent loamy carbonate 
material nolluviura 

Formation name for 
underlying bedrock Gros Ventre 

% surface covered 
by bedrock 0 Landform sirfftsl nnp mn lands! 1(9A f 

Slope 
angle 0 Aspect N40E 

Erosion 
Class class 1 PreclT). 24 nm. 

Drainage 
class well-drained 

Depth to 
seasonal 

lipO table (est.) 
year around 

Depth to bedrock 
rippable non-rlppable 

1.5+ 1.5 + 
1.5 + 1.5 + 

Profile descriution 
Hori
zon Depth 

Color 
dry moist Texture structure 

Consistency 
dry wet pH Boundary 

Z -91.4 
10YR7A 

10YR6A acsi m 
ds wso 

mvfr wpo 7+ aw 

A 2.0. 
7.5YR4A 

7- acsi r.2a.hk 
dsh wss 
mfr . wps 7+ ».<5 

10YR5A 
1 OYRij. A acsi fi2abk 

ds wso 
mvfr wpo 7+ as 

Î0ÏR6A 
lOYRŶ  ao.ctl r!?AhTr 

ds wso 
mvfr wnn 7+ as 

A 
7.5YR4A 

7. «ÎYRZi./? flO.esI m 9a hie 

o
 c 7+ as 

B 137.2 

XT 

k
#
 Î
 

acsi c2abk 
ds wso 

mvfr wpo 7+ 

Comments Z horizon, contains 60̂  (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, bighorn, and 
Madison Formations, highly calcareous. A horizon, contains 30̂  
(est.) angular gravel to boulder size fragments of carbonate rock 
from the Gallatin, Bighorn, and Madison Formations, highly calcareous. 
B. horizon, contains 40̂  (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, Bighorn, and Madison 
Formations, highly calcareous. Bp horizon, contains (est.) 
angular gravel to boulder size fragments of carbonate rock from the 
Gallatin, Bighorn, and Madison Formations, highly calcareous. A 
horizon, contains 30̂  (est.) gravel to cobble size fragments of 
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Soils Data 

Sitfi Nn. 110 Location Elevation 
Dominant 
vegetation 

% total % good 
pround cover ground cover 

Parent 
mPL+ATial 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

tIgO table (est.) 
year around 

Depth to bedrock 
rippable non-rlppable 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments carbonate rock from the Gallatin, Bighorn, and Madison 
Formations, highly calcareous. B̂  horizon, contains 40̂  (est.) 
angular gravel to boulder size frâ gments of carbonate rock from the 
Gallatin, Bighorn, and Madison Formations, highly calcareous. 
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Soils Data 

Site No. 190 Location SW12. SINQOW Elevation 1554 
Dominant grass, sâ e, and 
vegetation forbs 

% total % good 
ground cover 50 ground cover 30 

Parent loamy carbonate 
material nolluvium 

Formation name for 
underlying bedrock Gros Ventre 

% surface covered 
by bedrock 0 Landformrid/iecrest on landslide (slump) 

Slope 
angle 0 Aspect NOW 

Erosion 
Class class 0 Precip. 25 cm. 

Drainage 
class well-drained 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 
Depth to bedrock 

rippable non-rippable 
1.5 + 1.5 + 

Depth to HgO table (est.) 
seasonal year around 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 10.2 
10YR5/3 

10YR4/1 acsi mlabk 
ds wso 

mvfr wpo 7+ gs 

?0. 4 
10YR7A 

1 OYR6/4 acsi m 
ds wso 

mvfr wpo 7+ as 
10YR8/2 

1 OYR8/2 acsi m 

ds wso 
mvfr WPO 7+ cs 

cp 101 .(^4 
5ÏR6A 

4YR4/4 acsi m 

ds wso 
mvfr WPO 7+ 

Comments A horizon, contains 4-0̂  (est.) angular ^pravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 

fladison Formations, hi^^hly calcareous all the way to the ground 

surface. C. horizon, contains 40^ (est.) anjular .-jravel to 
boulder size fragments of carbonate rock from the Gallatin, Bighorn, 

and Madison Formations, highly calcareous. C- horizon, contains 
30^ (est.) angular gravel to boulder size fragments of carbonate 

rock from the Gallatin, Bighorn, and Madison Formations, highly 

calcareous, lighter color is due to a build up of CaCO-,. Cg horizon, 

contains 4(% (est.) angular gravel to boulder size fra^ents of 

carbonate rock from the Gallatin, Bighorn, and Madison Formations, 
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Soils Data 

Site No. 120 Location Elevation 
Dominant 
vegetation 

% total % good 
ground cover fmund cover 

Parent 
material 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock Landform 

Slope 
an&le Aspect 

Erosion 
Class Precin. 

Drainage 
class 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rlppable non-rlppable 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments highly calcareous. 
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Soils Data 

SltfiNft. 121 T^nattnn NWl'). %N90W Elevation 1676 
Dominant grass, sage, and 
vegetation Dricklv pear 

% total % good 
ground cover SO ypound cover 30 

Parent loamy carbonate 
material colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
by bedrock 0 Landform ridirecrpst on landslide f Rlumn̂  

Slope 
angle 0 Aspect NOW 

Erosion 
Class class 1 Precip. 26 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

UpO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture structure 

Consistency 
dry wet pH Boundary 

A 8.9 
10YRV3 

10YR3/3 acsi flabk 
ds wso 

mvfr wpo 7+ cs 

G 101.6+ 
7.5YR6/4 

7.'ÎYR';A acsi m 
ds wso 

mvfr . wpo 7+ 

Comments A horizon, contains 30̂  (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous all the way to the epround 
surface. C horizon, contains 40^ (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, highly calcareous. Profile as a whole is only 
poorly devleoped. 
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Soils Data 

^^+JP. Nft. 122 Location 44.T4.40-107.40.10 Elevation 1859 
Dominant grass, sage, and 
vegetation scattered nine 

 ̂total % good 
ground cover 50 ground cover 50 

Parent loamy carbonate 
material colluvium 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
bv bedrock 0 Landform rid̂ ecre st 

Slope 
angle 0 Aspect NOS 

Erosion 
Class class 1 

greater than 
Precip. 25 cm. 

Drainage 
class imperfectly drained 

Depth to 
seasonal 

ligO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1,5 + 1.5 + 
1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 12,7 
10YRV3 

10YR3/1 acsi flcr 
ds wso 

nvfr wpo 7+ as 

27. q 
10YR5A 

10YR4A acsi m 
ds wso 

nvfr wpo 7+ as 

10YR7A 
10YR6A acsil 

dsh wss 
mfr Hps 7+ as 

101.6+ 
5Ï7/1 

4Y6/1 ac m 
dh ws 
mfi wp 7+ 

Comments A horizon, contains 20̂  (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
iiadison Formations, highly calcareous all the way to the ground 
surface. C, horizon, contains 40̂  (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
?îadison Formations, highly calcareous. contains 40̂  (est.) 
angular gravel to boulder size fragments oi carbonate rock from the 
Gallatin, Bighorn, and Madison Formations, highly calcareous, lighter 
color is due to a build up of CaCÔ . Gg horizon, contains 75̂  
(est.) angular gravel to boulder size fragments of carbonate rock 
from the Gallatin, Bighorn, and Madison Formations. Mottled, (m2p) 
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Soils Data 

Site No. 122 Location Elevation 
Dominant 
vegetation 

% total % good 
eround cover fmund cover 

Parent 
ma+ATl al 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

ïgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

ColAr 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments (5S6/l) and (m2p 2.5ÏB3A). I do not understand 
this, this pit is from a ridge summit and is well-drained at the 
present time. 
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Soils Data 

Site No. 121 LocationW-.40-107_3̂ L% Elevation 2310 
Dominant 
vegetation P-rasR. and .qafre 

 ̂total  ̂good 
ûnd rnvmr 74 ground cover «50 

Parent loamy carbonate 
material nml 1 nv1 im 

Formation name for 
underlying bedrock Gallatin 

% surface covered 
by bedrock 0 Landform -H rifri^nrc st nn landsUHe (slump)_ 

Slope 
angle O Asoect NOW 

Erosion 
Class class 0 

greater than 
Precin. «50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

JgO table (est.) 
year around 

Depth to bedrock 
rlppable non-rlppable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 12.7 
10YR2/2 

10YR2/2 acsil flfcr 
ds wso 

mvfr wpo 7+ as 

•R 
10YR3/2 

1nvRi/g an mil mPfihlr 

dsh wss 
Tnf1 wps 7+ gs 

n 1 ni. ̂4 
5Y3/2 

ara11 m 
dsh wss 
mf1 wps 7+ 

Comments A horizon, contains 40̂  (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations, calcareous all the way to the ground surface. 
B horizon, 50̂  (est.) angular gravel to boulder size fragments 
of carbonate rock from the Gallatin, Bighorn, and Madison Formations. 
C horizon, contains 50̂  (est.) angular gravel to boulder size 
fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations. 
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Soils Data 

Site No. 1 Location Ult-. -107.-̂ .14-'̂  Elevation 2?62 
Dominant 
vegetation /rrasR. and ««.p-r 

% total % good 
ground cover 40 pround cover 10 

Parent loamy carbonate 
imtftrial cnl Itivl urn 

Formation name for 
underlying bedrock Cailatin 

 ̂surface covered 
by bedrock 0 Landform r1 dn-eorfis t on lanrlqllHe ^slump) 

Slope 
anale 0 Aspect NOW 

Erosion 
Class class 3 

greater than 
Precio. *50 rm. 

Drainage 
class well-drained 

Depth to 
seasonal 

ipO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5+ 1.5 + 

Profile description 
Hori
zon Deoth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

G 101.6+ 
10YR5A 

10YR4/̂  acsil m 
ds wso 

mvfr wpo 7t 

Comments C horizon, contains 50̂  (est.) angular gravel to boulder 
size fragments of carbonate rock from the Gallatin, Bighorn, and 
Madison Formations. This is in a different vegetation zone, 
origionally it was a conifer forest which was burned off in the 
1890's so the soil may not be comparable to 123. However, on the 
rounded ridge crests and hummocks there is no A horizon present, 
G horizon is at the surface, either the A horizon was never present or 
it has been eroded away. 
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Soils Data 

Site No. I?'; Location RR20.41N89W Elevation 2487 
Dominant grass, sage, and 
vegetation fnrba 

% total % good 
ground cover 80 fpround cover 80 

Parent 
mfttft-rial till 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock 0 Landform lateral moraine 

Slope 
angle o Aspect NOW 

Erosion 
Class class 0 

greater than 
Precit». SO cm. 

Drainage 
class well-drained 

Depth to : 
seasonal 

igO table (est. ) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5+ 1.5 + 

1.5+ 1.5 + 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet PH Boundary 

A . 17.8 
10YR2/2 

10YR2/2 csl mlcr 
ds wso 

mvfr WDO 7- cs 

"R 
7.5YR4A 

7- =;YRZi./? ncl mPnhTf 
dsh wss 
mft . wpa 7- as 

f! 1 ni A+ 
10YRV3 

1 nvR/j./? f!Rl m 
ds WSO 

mvfr wpo 7-

Comments A horizon, contains 10̂  (est.) rounded gravel to boulder 
size fragments of igneous and metamorphic rock. B horizon,, contains 
20̂  (est.) rounded gravel to boulder size fragments of igneous 
and metamorphic rock, rook fragments are deeply etched and pitted, 
feldspars are altered for distance of 0.3 cm. from outer edge of 
fragments. C horizon, contains 40$̂  (est.) rounded gravel to 
boulder size fragments of igneous and metamorphic rock, rock 
fragments are deeply etched and pitted, feldspar crystals are altered 
0.3 cm. back from the surface of the fragments. In places the rock 
fragments have actually become a gruss. 
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Soils Data 

Site No. I P/, Location NWPI, 41NA QW Elevation 

Dominant grass, sage, and 
vegetation fmrbm 

^ total ^ good 
ground cover 74 ground cover 60 

Parent glacial till, and 
material landslide debris 

Formation name for 
underlying bedrock Gros Ventre 

^ surface covered 
by bedrock 0 Landform around n nra.1 no 

Slope 
awcle 0 Aspect NOW 

Erosion 
Glass class 0 

greater than 
Preclp. 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

d̂ O table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 
1.5 + 1.5 + 

1 .5  + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 
10YR2/2 

10YR2/2 fd. finr 
ds wso 

mvfr wpn 7- as 

R <n.A 
10YR3/3 

1 nvR?/? afisl mlahlf 
ds wso 

mvfr . wpn 7- «1 

n 101.6+ 
10YR5/3 

1 OYVlU/'i afisl 1 m 
ds wso 

mvfr wpn 7t 

Comments A horizon, igneous and metamorphic boulders are scattered 
around on the ground surface. B horizon, contains 10^(est..) 
rounded gravel to boulder size fragments of igneous and metamorphic 
rock, rock near bottem of horizon have decayed to grass. C horizon, 
contains 6Q^ (est.) angular gravel to boulder size fragments of 
carbonate rock from the Gallatin, Bighorn, and Madison Formations. 
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Soils Data 

S1+J» Nft. 199 T.mnAt1nn NW?"̂  41NAqW Elevation 2268 
Dominant "rass, sa.r,e, and 
vegetation fnrhs 

% total % good 
cround cover 80 ground cover 80 

Parent 
matftrial nii+.wash??? 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock 0 Landform nutwash terrace??? 

Slope 
angle 7 Aspect S60W 

Brosion 
Glass class 0 

greater than 
Preclp. 60 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rlppable non-rlppable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundarv 

A 
10YR2/1 

10YR2/1 si c2cr 
ds wso 

mfi wpo 7- ss 

•R 
10YH3/3 

1 nvR Y? m^Ahlr 
dsh wss 
mfi wps 7- gR 

n ini A+ 
10ÏEV3 

1 nvR/j,/? Q1 m 
dsh wss 
mfi wps 7-

Comments Parent material in this case may be outwash although can 
observe no bedding;. 
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Soils Data 

Site No. io« Location mil. «îINSBW Elevation 2707 
Dominant 
vegetation /rrass 

% total % good 
ground cover 40 ground cover 40 

Parent 
nw-tftrial glanla l  tm 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock n Landform 1 a. tarai noraine 

Slope 
angle o Aspect NOW 

Erosion 
Glass class 0 

greater than 
Precip. «50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5  + 1 .5  +  
1 .5  + 1 .5  +  

Profile description 
Hori
zon Denth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

4 
10YR2/2 

10YR2/2 1 ficr 
ds wso 

ivfr wpo 7-

A 17.8 
7.5YR3/2 

7.4YR3/2 cl flcr 

ds wso 
avfr wpo 7- gs 

G 101.6+ 
10YR4/3 

10YR4/2 cl m 
ds wso 

nvfr wpo 7-

Comments A horizon, contains 50̂  (est.) rounded gravel to boulder 
size fragments of igneous and •metamorphic rock. C horizon,, contains 
20̂  (est.) rounded gravel to boulder size fragments of igneous and 
metamorphic rock. 
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Soils Data 

Site No. 129 LocationNE30.63N88W Elevation 2490 
Dominant grass, sage, and 
vegetation forbs 

% total % good 
Ground cover 90 ground cover 70 

Parent 
material clacial till 

Formation name for 
underlvine bedrock 

% surface covered 
by bedrock 0 Landform lateral moraine??? 

Slope 
angle 0 Aspect NOW 

Erosion 
Class class 0 

greater than 
Precip. 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

1.5+ 1 .5  + 
1 .5  + 1 .5  + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A/̂  7.6 
5YE2/1 

SYR2/1 1 flcr 
ds wso 

mvfr WDO 7- as 

A 17.8 
5YR2/2 

4YR2/2 sil mlcr 
ds wso 

mvfr wpo 7- ai 

B 45.7 
7.5YR3/2 

7.SYR1/2 sil c2abk 
dsh wss 
mfi wps 7- s s 

Sl.T 
10YR3/3 

10YR3/2 csl mlabk 
ds wso 

mvfr wpo 7- PS 

p. ini 
10YR4/3 

1nYR4/2 Kg m 
ds wso 

mvfr wpn 7-

Comments horizon contains 50̂  (est.) rounded gravel to cobble 
size fragments of. igneous and metamorphic rock. G horizon, contains 
70̂  (est.) rounded gravel to cobble size fragments of»igneous and 
metamorphic rock, contains occasional pods (7.6-12.7cm.) of 
very dark grayish brown (10ÏB3/2) loamy material, may be decayed roots. 
This may be Bull Lake till or outwash, just up the ridge from 
here there are igneous boulders scattered around on the surface, as 
well as to the NE in the woods. 
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Soils Data 

Site No. 130 Location NE23. 
Dominant grass, sage, and 
vegetation forbs 

Elevation 2396 
% total 
ground cover 80 

% good 
grnunti nnver 60 

Parent loamy carbonate 
material cpiiuvium 

Formation name for 
underlying bedrock Gross Ventre 

% surface covered 
by bedrock Landform ridgecreat on landslide f slumnl 

Slope 
angle Aspect NOW 

Erosion 
Glass class 0 

greater than 
Preclp. 90 cm. 

Depth to H«0 table (est.) Drainage 
class well-drained 

Depth to bedrock 
rlppable non-rippable 

1.5 + 1.5 + 

seasonal 

1.5 + 

year around 

1.5 + 

Profile description 
Hori-
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet Boundary 

JA. 

17.8 

10YR2/2 
10YR2/2 si 

10YR2/2 
xom/z 

flcr 
ds 
mfi 

wso 
wpo 2z. 

mlcr 
ds 

mvfr 
wso 
WPQ 2± as 

B Mil 
10YR2/2 

loWâ SKSl _s2aiL 
dsh 
JDfl. 

wss 
Jma. 2±. -££L 

B, 
.73,2-

10YR3/2 
ism/z. acsi mZabk 

"dsh 
mfi 

wss 
WpS 2±. .ai. 

:G&. 101.6+ 
10YR6/3 

10YR6/2 .acsi JQL 
ds 

mvfr,. 
wso 
wps 2±. 

Comments A horizon, very slightly calcareous. B horizon, calcareous. 
B_ horizon, contains lf0o (est.) angular gravel to boulder size 
fKifpents of carbonate rock from the Gallatin, Bighorn, and Madison 
Formations, highly cailcareous. C„ horizon, contains 30̂  (est.) 
angular gravel to boulder size fragments of carbonate rock from the 
Gallatin, Bighorn, and Madison Formations, highly calcareous, lighter 
color is due to a build up of CaCÔ . 
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Soils Data 

Site Nn- 111 Location SS21.S1N88W Elevation 2551 
Dominant grass, sa,!:e, and 
veeetation forbs 

% total % good 
ground cover 80 ground cover 80 

Parent 
material glacial till 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock 0 Landform lateral moraine 

Slope 
angle 0 Aspect NOW 

Erosion 
Class class 0 

greater than 
Precip. 50 cm. 

Drainage 
class well-drained 

Depth to 
seasonal 

tI-0 table (est.) 
year around 

Depth to bedrock 
rippable non-rlppable 
1.5 + 1.5 + 

1.5 + 1.5 + 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

A 20 
10YR2/2 

10YR2/2 csl mlcr 
ds wso 

mvfr WDo 7- ffS 

B 60. 
7.5YR4/4 

7.SYRk/2 csl m2abk 
dsh wss 
mfi wps 7- as 

G 101.6+ 
10YR4/3 

10YR3/3 CRl m 
ds wso 

mvfr wpo 7-

Comments A horizon, contains 10̂  (est.) rounded gravel to boulder 
size fragments of Igneous and raetamorphic rock. B horizon,, contains 
20̂  (est. ) rounded gravel to boulder size frâ m̂ents of igneous 
and metamorphic rock, rock fragments are deeply etched and pitted, 
feldspars are altered for distance of 0.3 cm. from outer edge of 
fraipients. C horizon, contains 40̂  (est.) rounded gravel to 
boulder size fragments of igneous and metamorphic rock, rock 
fragments are deeply etched and pitted, feldspar crystails are altered 
0.3 cm. back from the surface of the fragment. In places the rock 
fragments have actually become a gruss. 
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Soils Data 

.1 vC u
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é
 Elevation 

Dominant 
vegetation 

% total % good 
ground cover ground cover 

Parent 
matftrial 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
jlass 

Depth to 
seasonal 

HgO table (est.) 
year around 

Depth to bedrock 
rippable non-rlppable 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
drv wet pH Boundary 

Cor -uts Grab sample of silts 
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Soils Data 

Site No. 133 Location RGl - 76 Elevation 
Dominant 
vegetation 

% total % good 
ground cover ground cover 

Parent 
material 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class PreciT). 

Drainage 
class 

Depth to 
seasonal 

HgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippaMe 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments Grab sample of silts. 
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Soils Data 

Site No. 1 TZi, Location 44̂ 5. '̂ -101.31 M Elevation 2512 
Dominant 
vegetation 

% total % good 
ground cover çround cover 

Parent 
material 

Formation name for 
underlying bedrock 

% surface covered 
by bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage 
class 

Depth to 
seasonal 

rIgO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments Grab sample of ';reen colluvium 
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Soils Data 

Site No. Location 44.35.55-107.31.40 Elevation 2536 
Dominant 
vegetation 

% total % good 
ground cover ground cover 

Parent 
material 

Formation name for 
underlying bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class Precip. 

Drainage, 
class 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

Color 
drv moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments Grab sample of green colluvium. 
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Soils Data 

Site No. Location W-. 35. 56-107.31,39 Elevation 2576 
Dominant 
vegetation 

% total % good 
ground cover ground cover 

Parent 
material 

Formation name for 
underlvine bedrock 

% surface covered 
bv bedrock Landform 

Slope 
angle Aspect 

Erosion 
Class PreclD. 

Drainage 
class 

Depth to 
seasonal 

igO table (est.) 
year around 

Depth to bedrock 
rippable non-rippable 

Profile description 
Hori
zon Depth 

Color 
dry moist Texture Structure 

Consistency 
dry wet pH Boundary 

Comments Grab sample of green colluvium 


