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The growing demand for food with limited arable land
available necessitates that the yield of major food crops
continues to increase over time. Advances in marker
technology, predictive statistics, and breeding method-
ology have allowed for continued increases in crop
performance through genetic improvement. However,
one major bottleneck is the generation time of plants,
which is biologically limited and has not been improved
since the introduction of doubled haploid technology. In
this opinion article, we propose to implement in vitro
nurseries, which could substantially shorten generation
time through rapid cycles of meiosis and mitosis. This
could prove a useful tool for speeding up future breeding
programs with the aim of sustainable food production.

Keeping up with demand
Crop production has steadily increased over time and it has
been suggested that 50% of the progress is attributable to
advances in crop management and breeding [1,2]. For
example, the three major crops in the US, maize (Zea
mays), wheat (Triticum spp.), and soybean (Glycine
max), show positive linear increases in average yield from
1930 to 2012 [3] (Figure 1). However, changes in climatic
patterns, land, and water availability now provide addi-
tional challenges for plant breeders and geneticists to
ensure yield stability in varying environments [4]. To meet
the projected increase of global demand for food, feed, and
fiber (100% by 2050 [5]), the linear progress seen in Figure 1
will need to be increased. To increase the rate of genetic
improvement (see Glossary), the efficiency, reliability, and
speed of genetic improvement must be increased. In this
opinion article, we propose an idea benefitting the speed of
genetic improvement through the implementation of rapid
generation cycling by the use of the in vitro nursery.
Through rapid cycles of meiosis and mitosis conducted in
tissue culture, generation times of crop species can be
decreased allowing more opportunities for recombination
and selection in a given unit of time.

The breeder’s equation
Five modifiable components are used to estimate genetic
gain (Box 1): additive genetic and phenotypic variance
(which can be combined as narrow sense heritability),

selection intensity, parental control, and time [6–9]. Choice
of germplasm for formation of segregating populations
affects additive variation (genetic variation that can be
transmitted to the next generation), whereas choice and
management of selection environments affects phenotypic
variance. A combination of these components affects selec-
tion efficiency. Selection intensity, corresponding to per-
centage of individuals advanced after a cycle of selection,
can be easily modified. The aforementioned factors can be
optimized through knowledge of the germplasm and the
use of predictive tools. The most critical remaining factor to
maximize genetic gain is time. The number of generations
per year is biologically limited. The most extreme cases are
short generation times (six/year) in Arabidopsis (Arabi-
dopsis thaliana) versus long generation times in tree spe-
cies (multiple years/generation). Advances in cycle time
have been limited, except for the use of off-season nurseries
and doubled haploid technology.
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Glossary

Backcross: a breeding methodology where a gene or few genes (e.g., resistance to

a disease) usually contained within a wild or less than acceptable line are

transferred to high performing lines by crossing the two lines and then repeatedly

crossing the progeny back to the high performing parent while selecting for the

gene or few genes of interest. The objective is to produce progeny that are

as genetically similar to the high performing parent as possible while containing

the gene or few genes desired from the less than acceptable parent.

BC4 line: backcross 4 line; lines which are derived after four generations of

backcrossing.

Full-sib recurrent selection: a method of genotypic recurrent selection where

individuals are evaluated for performance by paired plant cross pollinations

which generates a set of full-sib (i.e., two shared parents) families which are

tested in replicated trials to generate data for selection. Requires two seasons

per cycle.

Genetic improvement/gain: the change in mean performance of a population

that occurs as the result of the selection and recombination of superior

performing individuals in a population.

Half-sib recurrent selection: a method of genotypic recurrent selection where

individuals are evaluated for performance by cross pollination with a tester

which generates a set of half-sib (i.e., one shared parent) families which are

tested in replicated trials to generate data for selection. Requires one to three

seasons per cycle depending on the specific method used.

Introgression: a relatively small portion of the genome of an unadapted

individual, which is transferred through conventional crossing to adapted

germplasm for evaluation of its utility for genetic improvement.

Linkage drag: the undesirable transfer of unwanted genes along with the gene/

locus of interest due to physical linkage causing a decrease in performance of

the progeny.

MABC: marker assisted backcross; a variation of the backcross breeding

methodology where molecular markers are used to select for the trait of

interest, and if desired for maximum recovery of the desired parent genome.

Self-incompatibility: the inability of a plant with functional male and female

gametes to produce a zygote through self-fertilization.

Selfed progeny recurrent selection: a method of genotypic recurrent selection

where individuals are evaluated for performance by development of selfed

families (i.e., F2:3, F3:4, F4:5, etc.), which are tested in replicated trials to

generate data for selection. Requires 3+ seasons per cycle depending on how

advanced the generation of self-pollination is (i.e., more time is required for

F4:5 than F2:3).
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Speeding up
Off-season nurseries, popularized by the pioneering plant
breeder Norman Borlaug among others, can help to reduce
the time needed to release new cultivars, for example, the
time for producing a new wheat cultivar was shortened
from 10–12 to 5–6 years [10]. For pure line and hybrid crop
breeding, the ability to generate homozygous and homoge-
neous lines is another time constraint. However, by using
doubled haploids (DHs) in different crop species, homozy-
gous and homogeneous lines have been produced in two
rather than five or more generations, and was the last
major breakthrough to reduce cycle time [11–13]. The most
popular being the maize DH system using the R1-nj color
marker [14]. However, the different steps of the DH process
(Figure 2) have biological and genotypic limitations. The
success rates for haploid induction [11,15–17], adaptation
to tissue culture (in the case of anther culture) [18], and
doubling [19] have all been shown to be genotype-
dependent in different crop species. Breeders using DHs
will unintentionally practice recurrent selection for loci
increasing success rates of the DH process [20], which
might constrain genetic variation in breeding populations,
at least for respective genome regions.

The in vitro nursery
Currently, the most efficient way to produce homozygous
and homogeneous lines is through a combination of off-
season nurseries (generations per year) and DH technology
(homozygosity per generation). We propose the concept of an
in vitro nursery, where new genotypes are formed by in vitro
production of gametes and their subsequent fusion. Here,
generation time is limited by how quickly somatic cells can
form new gametes and how quickly these gametes can be
fused.

The general progression of the in vitro nursery is outlined
in Figure 3. Tissue is extracted from the basal leaf section of
selected genotypes and converted into an in vitro cell culture
and induced to mitotically divide through application of
growth regulators such as 2–4D [21], which can be main-
tained in minimal space requirements in a laboratory set-
ting with each cell callus occupying approximately 4 mm2

[22]. Genotypes of interest are subsequently isolated and
single somatic cells are induced to undergo meiosis for
generation of new gametes. These gametes are subsequently
fused to generate new genotypes in a similar way to the
in vivo unification of pollen and egg cells. However, in
contrast to the in vivo system, where the breeder would
need to wait until seed maturity and the flowering of proge-
ny to produce the next generation, fused diploid cells could
immediately be induced to undergo meiosis within the in
vitro system, and produce gametes for new crosses, or for
artificial genome doubling to produce a new homogeneous/
homozygous cell line [23]. Several techniques exist for fusion
of plant gametes in vitro: electrically induced fusion, chemi-
cally induced fusion, and calcium induced fusion [24,25].
Successful fusion of plant gametes in vitro has been reported

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

1940 1960 1980 2000

2
4

6
8

10

Year

Yi
el

d 
M

T/
ha

Maize = 0.11 MT/y            R^2=0.95Key:
Soybeans = 0.023 MT/y     R^2=0.93
Wheat = 0.028 MT/y         R^2=0.94

TRENDS in Plant Science 

Figure 1. Yield gains of major US crops. Average yield per year in metric tons/ha

(MT/ha) for each of the three major UScrops (maize, wheat, and soybean) from 1930

to 2012 [3]. Each crop shows a linear increasing trend over time with maize having

the highest annual gain of 0.11 MT/year followed by wheat at 0.028 MT/year and

soybeans at 0.023 MT/year for average grain yield. This increase in mean yield per

hectare needs to be increasedto meet the demands of a growing human population.

Box 1. Genetic gain: the breeder’s equation

The objective of plant breeding is the identification and develop-

ment of superior individuals and families. The mean performance of

breeding populations is increased through selection of individual

plants with higher than average performance. This change in mean

performance of the breeding population can be expressed as

genetic gain in different forms, depending on the situation [6].

Genetic gain per cycle: Q3

Gc ¼ kch2sP [I]

Gc ¼
kcs2

A

sP

where h2 ¼ s2
A

s2
P

[II]

As seen in Equation I in the case of one cycle of selection, k is the

selection differential expressed in standard deviation units, repre-

senting the percentage of individuals selected and advanced to the

next generation. The degree of parental control (i.e., genetic control

of males, females, both sexes) is quantified in c. Narrow sense

heritability (h2) is a measure of what proportion of phenotypic vari-

ance (s2
P) can be explained by additive genetic variance (s2

A). Equa-

tion II can be derived by substituting s2
A/s2

P for heritability. The

additive genetic variance is the component of the genetic variance

that is transmitted to the progeny (except in polyploids where some

dominance variance is transmitted and in clonal breeding, where all

genetic variance is transmitted).

Different selection schemes (e.g., half-sib, full-sib, selfed families)

require different numbers of seasons to complete a full selection

cycle. For comparison of alternative breeding schemes, the calcula-

tion of genetic gain per year is more informative than gain per cycle.

This is achieved by dividing Equation II by the number of years (y)

required per cycle.

Genetic gain per year:

Gy ¼
kcs2

A

ysP

[III]

Equation III can be expanded further for specific situations, when

different environments and replications are used and to quantify

variance that is contained within and among families in the selection

scheme. These expansions are beyond the scope of this article; the

reader is referred to [6] for an in-depth discussion of the different

forms of the genetic gain equations.

By modifying the components in Equation III, breeders are able to

maximize genetic gain. Some components are simpler to manip-

ulate than others. This article focuses on the management of time

(expressed as y) as a method to maximize genetic gain.
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for maize [23,26], wheat [27], rice (Oryza sativa L.) [28], and
tobacco (Nicotiana tabacum L.) [29]. The main biological
bottlenecks are now limited to the induction of meiosis and
the rate of cell division, whose estimation is critical to
successful tissue culture [22]. It is estimated that plant cell
division rates can range from 22 to 48 h [21].

This entire process would need to be coupled with
marker-based and/or genomic selection. Evaluation and
selection within the in vitro nursery would be accomplished
by running marker analyses on new cell lines and/or
gametes. Time can be saved by using single cells for whole
genome amplification and subsequent marker analysis
[30,31]. Selection efficiency can be increased by selecting
gametes versus zygotes. In traditional breeding practices,
selection is limited to the diploid (or polyploid) plant in
most cases. A notable exception would be selection on
haploid plants in a DH system. In the in vitro system,
specific and targeted matings could be achieved through
mitotic division of gametes and subsequent marker analy-
sis for genomic gamete selection (GGS). Although no exam-
ples exist of the mitotic division and callus formation of
artificially induced gametes, other biological examples
such as yeast, the ability to grow haploid callus in anther
culture, and the normal (although weak) functionality of
haploid maize plants provide evidence that this is possible.
These haploid mitotic divisions allow for the selection of

gametes without their destruction. This could also be
coupled with optimization procedures for generating opti-
mal genotypes with minimal numbers of resources and
time [32] increasing selection efficiency. Selected cell lines
could then be converted to mature plants, which can be
used for phenotypic evaluation. In maize, converting cell
lines into mature plants will be the most time-demanding
step, currently requiring 148 to 215 days from gamete
fusion to the harvest of mature seed. Plant regeneration
is not 100% efficient and varies in different species with
percentages reported as 37–73% in tobacco, 25–48% in rice,
41–59% in maize, 5–33% in cotton (Gosyppium hirsutum),
and 93–100% in soybean [33]. This step is probably also
genotype-dependent and warrants more research into the
regeneration of plants from tissue culture.

The obvious advantage of this system is the reduction in
time for line development. With a conservative estimate for
a division rate of 48 h/cycle, a new cycle could be generated
every week, provided that marker analyses could be con-
ducted at a similar pace. For comparison, a DH line can be
produced in 1 year with only a single recombination event.
Alternatively, in the same time period, a line produced from
the in vitro nursery could result from 12 cycles of recombi-
nation and selection (at 1 week intervals), assuming that
meiotic induction and division takes 48 h, similar to
the division rate for mitosis, before plant regeneration is
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Figure 2. The maize doubled haploid system. Maize doubled haploid (DH) technology is a specific example of DH technology used with great success by public and private

plant breeders to shorten the time it takes to generate a homozygous line from eight to two seasons. This is arguably the latest major breakthrough in cycle time (see Box 1

for a reduction in years per cycle). Although DH technology is used with success in maize and other crop species, there are limitations (as noted in the figure). The rate of

haploid induction is genetically controlled by quantitative trait loci (QTL) in both the inducer and donor population. The R1-nj [14] marker allele used to identify haploid

kernels is useless, if the kernels are colored or if they carry the colorless allele. Rates of doubling in haploid plants are typically low and highly dependent on both technique

and genotype. The doubling agent, colchicine, is a carcinogen. Those plants that successfully double their genomes typically shed little pollen and there is no guarantee

that the optimal genotype will set seed and advance to testing. For now, the benefits of time savings outweigh the drawbacks.
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limiting seed production. The utility of in vitro nurseries is
obvious for both mapping and marker-assisted backcrossing
(MABC). Mapping experiments require the development of
large (i.e., >200 families) populations, which can be used for
genotyping and phenotyping. Development and mainte-
nance of large populations require significant resources
including both labor force and field space. This is particu-
larly true for species with large generation time and space
requirements. The in vitro nursery system could allow for
the quick and efficient development of cell lines that can be
subsequently stored and/or converted into plants to be used
for phenotyping and/or production.

In MABC, the ultimate goal is to transfer a gene of
interest into an existing cultivar/line. One main challenge
of MABC is to remove unfavorable alleles of closely linked
genes, that is, to eliminate linkage drag, particularly in the
case of exotic introgressions. Thus, multiple individuals
need to be evaluated, which is costly and requires a signifi-
cant amount of resources. MABC programs could alterna-
tively be conducted within in vitro nurseries. Large numbers
of individuals could be generated within a controlled labo-
ratory setting and evaluated using markers. This would
allow rapid and efficient introgression of genes of interest.

The utility of this system becomes increasingly superior, as
the number of loci to be introgressed increases [13].

Another application of an in vitro nursery would be to
overcome self-incompatibility (SI), which is present in
many cultivated species [34–37]. To successfully produce
single cross hybrids in SI crops, breeders must be able to
generate homogeneous and homozygous parental inbred
lines to produce the hybrid. The generation of these inbred
lines is impossible in the case of SI. This process, however,
occurs through the interaction of pollen tubes with stigma
[38]. In the in vitro nursery, this pollination stage can be
bypassed and gametes can be fused directly, thus overcom-
ing the issue of SI. We envisage a system, where somatic
cells of these species are used to generate gametes which
could be subsequently fused with gametes from the same
cell (simulating self-pollination) or artificially doubled
simulating the DH process to generate homozygous and
homogeneous lines that can be subsequently used to gen-
erate hybrids. This idea can be taken one step further.
Gametes from selected homozygous and homogeneous
lines could be fused in vitro to generate zygotes which
are the desired hybrid combination. This process could
be combined with the development of synthetic seeds
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Figure 3. The in vitro nursery. The general scheme of the in vitro nursery. First, tissue from selected genotypes must be extracted and converted into a tissue culture. A

genotype dependency for tissue culture conversion and success is likely. Once the somatic cells have stabilized in culture, they are induced to undergo meiosis. After

gametes are formed, they are allowed mitotic cycles which lead to clonal cells, so that DNA can be extracted from some of those cells for marker analyses. Marker effect

estimation based on genomic selection, marker-assisted backcrossing, or marker-assisted selection are incorporated. Optimization procedures can then be incorporated to

make the stacking of optimal loci as efficient as possible. Optimal gametes are then selected and fused to form a new diploid individual. Mitotic divisions are required to

enable DNA extraction. At this junction, selected new genotypes can either be converted into fertile plants or into synthetic seeds for phenotypic evaluation. The cell line can

then be immediately recycled in the nursery and induced to form new gametes to complete the cycle.
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where somatic embryos are encapsulated to form an artifi-
cial seed, which can be packaged and distributed to
growers similar to a normal seed. Successful germination
of an artificial seed generated from somatic tissue has been
demonstrated in species such as alfalfa (Medicago sativa)
[39], cyclamen (Cyclamen persicum Mill.) [40], and salparni
(Desmodium gangeticum L.) [41].

The utility of this system is more beneficial for plant
species with long generation times such as those of the
genus Leucaena, which can take up to 2 years to flower
[42], pecan (Carya illinoinensis) which flower at 6–7 years
of age [43], and other woody species. However, its utility
could also extend to species which normally require ver-
nalization or a chilling cycle to induce flowering such as
peaches (Prunus persica) [44], and wheat [45] as a method
to overcome these requirements and produce new sexual
progeny at any time in the year. Apomictic species for
which recovery of sexually generated populations to be
used as variation for selection is difficult may also benefit
such as those of citrus species [46]. Finally, annual crops,
such as maize and soybean, could also benefit through
rapid generation of new populations for selection and line
conversion. For example, consider the time and expenses
used to convert new breeding lines of maize and soybean
into those which contain desirable genes for resistance to a
pathogen or transgenes. This process which works in tan-
dem with line development can require up to six seasons to
produce a suitable BC4 line and assuming three seasons
per year would take 2 years to complete. Using the pro-
posed in vitro nursery, this process could be shortened to
257 days assuming 1 week per cycle and 215 days to
regenerate a fertile plant. The savings will not only be
in time but also in cost of land, seed shipment to off-season
nurseries, labor, and a smaller number of lines converted.

Concluding remarks and future challenges
The purpose of this manuscript is to combine recent
advances in different fields of biology and conceptualize
a technique that could substantially advance efficiency of
plant breeding, once becoming available. The idea of an in
vitro nursery presented in the previous sections, although
new and innovative, does have obvious problems and gaps
at present. The first, and most important, is the ability to
stimulate meiosis and to generate gametes in vitro. Recent
advances in both plant and animal models provide insight
into gamete formation in vitro. For animals, the produc-
tion of egg cells in vitro has been reported [47], as well as
the successful production of artificial gametes in mice [48].
The first study required the use of stem cells, whereas the
second used testicular tissue and thus did not induce
gametes from purely somatic cells. A recent review [49]
outlined the current advances in the development of
artificial gametes in animals and the significant obstacles
that remain. The authors noted that the knowledge need-
ed to generate functional germ cells in vitro exists but the
methodology is in its infancy [49]. In contrast to animals,
whose germ lines are established early in development,
plants specify germ lines later in development and can
have multiple germ lines [50]. For example, a hypoxic
environment causes any cell in an early maize anther to
convert to a germ cell [51]. It is currently unclear if

recombination is occurring, although it is likely because
meiosis is induced, and more research is needed to confirm
this. The genetic mechanisms which underlie the control
of plant meiosis are being elucidated and research is
ongoing with practical applications, including the in vitro
nursery, across the plant sciences. The complexity and
breadth of the research in this field is beyond the scope of
this manuscript, but the reader is referred to [52] for
an up-to-date description of the latest breakthroughs.
This provides an initial framework for producing gametes
in vitro from somatic cells. Similar to most techniques in
biology, it is likely that this process will not be 100%
efficient. Therefore, there would be a need to distinguish
between haploid and diploid cells, which may not be
trivial.

The use of the in vitro nursery will also require the
continued advancement of predictive tools that can be used
in genomic selection schemes. This research is not specific
to applications for the in vitro nursery as it would also
assist current breeding programs.

An array of issues still remains with this proposed idea.
Growing cells in tissue culture can generate genotype
dependencies [53–55] and the use of the in vitro nursery
will cause unintended selection for loci, which control
success of cell culture. Genotype dependency of regenera-
tion is the major challenge in tissue culture techniques
[56–58]. However, genes or quantitative trait loci (QTL) for
regeneration in tissue culture have been identified [59,60]
and can help to overcome this bottleneck. Recent reports
show that targeting young zygotes or isolating cells during
the early callus phase for plant regeneration has less
genotype dependency than those which are allowed to go
through a callus growth phase and are then regenerated
[61–63]. Another issue is the phenomenon of somaclonal
variation. When plants are grown in vitro, stress induces
changes in regenerated plants. Somaclonal variation can
provide useful variation [64]. In the in vitro nursery
changes due to somaclonal variation, such as activation
of transposable elements, can counteract the generation of
homogeneous and homozygous lines.

Despite these challenges, a major benefit would be a
larger number of generations per year with the potential to
increase the rate of genetic gain, which may, in turn,
increase the rate at which the mean yield of crops improves
(Figure 1).
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13 Lü bberstedt, T. and Frei, U.K. (2012) Application of doubled haploids
for target gene fixation in backcross programmes of maize. Plant Breed.
131, 449–452

14 Nanda, D.K. and Chase, S.S. (1966) An embryo marker for detecting
monoploids of maize (Zea mays L.). Crop Sci. 6, 213–215

15 Prigge, V. et al. (2011) Doubled haploids in tropical maize: I. Effects of
inducers and source germplasm on in vivo haploid induction rates.
Crop Sci. 51, 1498–1506

16 Prigge, V. et al. (2012) New insights into the genetics of in vivo
induction of maternal haploids, the backbone of doubled haploid
technology in maize. Genetics 190, 781–793

17 Kebede, A.Z. et al. (2011) Effect of source germplasm and season on the in
vivo haploid induction rate in tropical maize. Euphytica 180, 219–226
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