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Probably the most persistent general problem in acoustic emission 
(AE) applications is signal source identification. Past applications of 
pattern recognition techniques to AE have been successful, but require 
measurement of a parameter such as source location, load, etc., which is 
well-correlated with specific source types, in addition to AE signal 
characteristics used as the basis of the feature [1,2]. A training set 
comprised of a subset of the test data has also been required since good 
classification features and the distribution of their values are only 
appropriate when applied to the specific test from which they were 
obtained. The solution to these problems is to find robust features, or 
a way to predict features and feature values. Some empirical work along 
these lines has been done by Pacific Northwest Laboratory (PNL), operated 
by Battelle Memorial Institute [1,3,4]. In this paper, a transfer 
function between power spectral density (PSD) feature sets is established 
to relate the responses of two detection channels to a given source. The 
method may aid in identifying robust features and in predicting feature 
value distributions from calibration and a priori information. 

Theoretical Development 

An AE signal is captured as a transient voltage signal v(t), which 
includes the response e(t) of the AE sensor and electronics, hardware, or 
software windowing w(t), a spatial derivative of the Green's function 
(for dipole sources) 6gij(x,x0 ,t)/6Xk•=gij.k• and a source moment Mjk•(t) 
[5,6]. Given a sensor responsive to displacement in the i direction, 

v(t) = w(t)[e(t)*gij.k•*Mjk•] (1) 

where * denotes convolution. Manipulation is simpler in the Fourier 
domain where 

V(w) = W(w)*[E(w)Gij,k•(w)Mjk•(w)]. (2) 

Although the sensor response and windowing functions may affect the 
signal significantly (the analysis in the appendix of Chang and Sachse 
[7J, is incorrect), these effects are considered determinable and the 
factors are dropped. 
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The displacement vector due to a p-wave mode in the far-field, with 
separable Mpq• = mpq•s(t) and isotropic time dependance, has components 

un = (4~rc12)-1 ~n~p~q·Apq•(t-r/c1) 

which transforms to 

(3a) 

Un(w) = (spatial terms)iwexp(iwr/c1)S(w) (3b) 

giving a PSD function in an arbitrary direction u • ~ of 

P(w) = (spatial terms)w2S2(w) (4) 

In Eq. (3) c1 is the longitudinal wavespeed, ~j are direction cosines, r 
is the source/sensor distance, w is the frequency, and • denotes 
differentiation. The PSD obtained through some channel A at one location 
can, therefore, be related to that of a different channel B at a second 
location by 

( )B 
P8(w) = ~ PA(w) = HPA(w) (5) 

where the brackets ( ) enclose spatial terms. 

This form seems to generally hold for signals dominated by a 
specific wavemode. The frequency-dependent source terms are seen to 
cancel in H; and for this case, H is frequency independent. After 
normalization, the distribution of feature values for a PSD feature are 
therefore the same on both channels. Rayleigh wavemodes, which ·dominate 
in the far-field of thick sections, are also representable in the above 
form and can be similarly related [5]. Investigation of the transfer 
function for these modes may be of benefit in AE testing of thick 
structures. A similar relationship may be found for flexure in thin 
plates, where for a simple force input with time dependence 6s(t)/6t, the 
vertical displacement at a distance r is given by [8]: 

u(r,t) = s(t)*(a/t)sin[r2/4bt] (6) 

where b depends on material constants. The transfer function in this 
case is both r and w dependent, but again does not contain source effects. 

Most AE signals are comprised of multiple modes or near-field 
responses. These introduce terms in the transfer function with different 
frequency dependence depending on whether the derivative of the source 
moment is involved or not, and on the difference in arrival times of the 
various modes. Spatial effects cannot usually, therefore, be removed 
through normalization. As an example, the transfer function in the far­
field due to arrival of the p- and s-waves can be written: 

(7) 

In most AE applications, the range of frequencies is less than about 
1 MHz. With reasonable r values, wr/s2 varies over a substantial part of 
a cycle or more, and H(w) is strongly affected by frequency and changes 
in r. Figure 1 illustrates how H(w) changes with frequency and sensor 
placement for rA = 5 em and various values of rs over a frequency range 
of 0 to 1 MHz. The transfer function can be calculated if the flaw size 
and location is known, say for instance from UT examination. If 
reference data is available, this method may offer some advantage over 
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Fig. 1. Change in H(w) with frequency and channel B sensor distance for 
rA = 5 em. 

direct calculation in the manner of Eq. (1), particularly if the source 
function or instrument response function is unknown. 

Calibration is a priori information which may be useful for feature 
prediction. Again ignoring surface waves, the transfer function for a 
point force may be derived as above using the appropriate 
undifferentiated Green's function, and a simple force rather than the 
moment [5]. The form of H(w) for p- and s-waves is the same as that of 
Eq. (7), but the value of the constants will differ and H(w) again does 
not appear to be normalizable. If the source-sensor distance is the same 
for calibration and the AE source, then the spectra of the calibration 
and AE vary in a similar fashion, although with different changes in 
magnitude. This similarity may be sufficient to predict usable pattern 
recognition features, particularly if noise sources show contrasting 
frequency dependence due, for example, to a different source location. 

Experimental 

A test performed at PNL during work sponsored by DARPA and the NADC 
[1] may be used for illustration. Acoustic emissions from crack growth 
and fretting were obtained while cyclically loading a thin, jointed 
aluminum plate. The experiment and equipment are described in detail 
elsewhere [1], hence only a cursory description will be given here. A 
0.75 inch hole was milled two inches from one end of a 26 x 4 x 0.15 inch 
thick plate of 7075-T651 aluminum. A pin through the hole connected the 
plate to an assembly in such a manner as to allow the joint to rotate 
during sinusoidal cyclic loading. Four custom-built AE sensors, labeled 
A, B, P, and Q, were mounted as shown in Fig. 2. The sensors were made 
from 1/8 inch diameter PZT-5 bonded to a 1/2 inch diameter thin ceramic 
disk. With the initial 20 dB amplification stage, the sensors had a 
passband of roughly 200 to 750 kHz. During Phase 1 of the test, fretting 
emissions caused by rubbing between the pin and the joint were collected. 
The joint hole was then notched, and a short fatigue crack started at the 
notch tip. During Phase 2, AE from the growing crack were collected as 
well as fretting noise. The instrument was constructed to allow signals 
to be recorded through two channels simultaneously. 
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Fig. 2. Plate assembly with sensor positions 

Calibration signals were collected from various locations by 
breaking 0.2 millimeter diameter H hardness pencil leads, using a plastic 
ball which fit over the point of a mechanical pencil. A set of three 
signals was collected from each location and specimen condition to allow 
some averaging capability. The ~70 dB total amplification used during 
the test was enough to cause the calibration signals to saturate the AE 
instrument, even with the small diameter leads used, therefore a 20 dB 
amplifier was removed from the circuit during calibration. Although the 
amplifier was broadband and fairly flat, some effect on signal feature 
values can be expected. Signals from each set were found to be quite 
similar in general, but substantial differences were observed between 
sets which probably reflected the changes in source location, load on the 
specimen, and the effect of the crack on signal propagation. Three sets 
of calibration were examined, all originating at the intersection of the 
line joining sensors A and Band the line through the center of the joint 
and the notch tip. Set 1 signals originated from the unloaded plate on 
the side opposite the sensors. Set 2 signals were from the same side as 
the sensors with the plate at minimum load, while Set 3 was obtained 
under the same conditions as set 2, but with the notch and a short crack 
present. 

Figure 3 shows averaged, normalized power spectra from each of the 
three calibrat~on sets, along with typical normalized spectra from AE 
obtained during the test, as recorded through Channel A. Fretting is 
labeled T3 or T5 in reference to the storage tape used for Phase 1 or 
Phase 2 fretting signals respectively. In Phase 2, fretting and crack 
growth were identified on the basis of the location of the AE events on 
the load cycle, with cracking assumed to originate near maximum load at 
load position 25, as seen in Fig. 4. 

Transfer functions to convert Channel A to Channel B feature values 
were derived from signal pairs and averaged for each calibration set and 
each AE category. Crack growth and T5 fretting transfer functions are 
fairly similar as seen in Fig. 5, despite fretting arising from somewhat 
scattered locations around the pin hole rather than at the crack tip, as 
evidenced by rubbing residue. Set 2 and Set 3 calibration transfer 
functions have a fairly strong resemblance to those of Phase 2 AE but 
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Fig. 3. Averages of normalized power spectra of three pencil lead 
calibration sets and representative AE data 

160 

140 

"' 1 c 
~ 1 
UJ 

0 
..... 
Q) 
.0 
E 
:::l z 

10 20 30 40 50 60 70 80 90 100 

Load Position 

Fig. 4. Load positions of Phase II AE events 

show an apparent frequency shift in some of the outstanding 
characteristics. 

The pattern recognition procedure consisted of weighting the 
individual features according to their ability to separate crack growth 
signals from combined T3 and T5 fretting events. The feature set used 
was composed of the power spectra averaged over 10 kHz intervals in the 
passband. Autocorrelation features were initially examined as well with 
comparable results. Fisher and variance feature weighting were both 
employed and found to produce comparable classifier performance. The 
features were sequentially used on the basis of these weights to train 
the classifier, and the classifier performance was examined as a function 
of the number of features used. The classifier was a bi-linear least 
squares linear regression of the form Pk = raikXi, where Xi are values of 
the i features and aik are classification weights computed for each class 
k, so that the output Pk is 1 if the signal belongs to class k and -1 
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Fig. 5. Transfer functions from calibration and AE data sets 

otherwise. In a bi-linear regression, the weights for class 2 are the 
opposite of those for class 1, and when an unclassified feature vector is 
analyzed, it is placed in the class whose Pk value is highest. Results 
using a channel A trained classifier on various data sets are shown in 
Fig. 6. Channel A data produces the best performance, correct fretting 
exceeding 90% for all but the two and three feature classifiers, while 
performance for crack signal classification increases to above 80% with 
four features and above 90% for seven features. As a control set, 
Channel B is also classified using the Channel A regression weights. In 
this case, crack identification is good, but fretting performance is poor 
and tends to become worse when more features are used. It is noteworthy 
that use of more features does not necessarily improve overall 
performance since the aik are recalculated whenever a new feature is 
added. With well-transformed data, the performance should be good using 
the channel A classifier. From Fig. 6, it is evident that good overall 
results are not attained. Channel B data transformed by the set 2 
transfer function does best overall, but classification performance is 
still unacceptably low. 

In Fig. 7, the distribution of feature values of one of the best 
classification features is shown. The top three plots are the 
distributions of feature 20 values for the two fretting sets and the 
crack growth data. The middle three plots are the distributions from the 
Channel B data, and the lower three are distributions of Channel B data 
transformed by the set 2 transfer function. Qualitatively, the 
transformation works as desired, particularly on Phase 2 AE data. 
Channel B distributions are lower valued than those of Channel A, and the 
transformation increases the values close to the desired amount. The 
crack feature values are low valued, and many of the Channel B crack 
features values are zero or differ from zero by an amount less than the 
0.001 Volt resolution of the instrument. These zero values are 
unaffected by any finite transformation, but in this case the effect does 
not appear to be significant. The low crack feature values are assumed 
to be the principle cause of good results attained in two specific cases 
involving the autocorrelation function utilizing a time domain 
convolution [1], instances where conditions of high error tolerance were 
present in the classification scheme. In general, the transformation is 
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Fig. 6. Performance results for the channel A-trained classifier 
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Fig. 7. PSD feature 20 value distribution 

correct in direction for most features, but is numerically incorrect. 
Accuracy in the transformation is apparently further impeded by the 
instrument resolution, and also by a disparity in the factor required to 
correctly scale the various data sets. In some cases, a transformation 
which underscales crack values will overscale one of the fretting sets, 
although this should be expected because of the differences in plate 
loading when the events occur, and in differences in source location. 
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Discussion 

Because the test was planned and performed before a transformation 
procedure was known to be necessary, the qualitatively correct results 
found for many of the features are encouraging. Obviously, the 
conditions deviated from the ideal in a number of ways, and questions 
concerning the effects of removal of the amplifier stage for calibration, 
zeroes in the feature value distributions, size of the transducer 
elements and facing plate, and the assumed similarity of calibration and 
crack growth transfer functions, should be addressed. In the author's 
opinion, the use of classifiers which rely directly on features of 
multiple data types are not ideal when only a single source type is of 
interest. In the context of the present approach to feature prediction 
and the above test results, a difficulty arises because the locations of 
the crack growth and fretting sources were not the same. A distance­
dependent transfer function which accurately transformed crack signals 
could not be expected to maintain accuracy for sources originating 
elsewhere. This concern becomes more marked if the distribution of 
principle feature values depends more strongly on geometry than source 
type. 
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