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Silver azide (AgN3) was compressed up to 51.3 GPa. The results reveal a reversible second-order

orthorhombic-to-tetragonal phase transformation starting from ambient pressure and completing at

2.7 GPa. The phase transition is accompanied by a proximity of cell parameters a and b, a 3�

rotation of azide anions, and a change of coordination number from 4-4 (four short, four long) to

eight fold. The crystal structure of the high pressure phase is determined to be in I4/mcm space

group, with Ag at 4a, N1 at 4d, and N2 at 8h Wyckoff positions. Both of the two phases have

anisotropic compressibility: the orthorhombic phase exhibits an anomalous expansion under

compression along a-axis and is more compressive along b-axis than c-axis; the tetragonal phase is

more compressive along the interlayer direction than the intralayer directions. The bulk moduli of

the orthorhombic and tetragonal phases are determined to be KOT¼ 39 6 5 GPa with

KOT’¼ 10 6 7 and KOT¼ 57 6 2 GPa with KOT’¼ 6.6 6 0.2, respectively. VC 2011 American
Institute of Physics. [doi:10.1063/1.3610501]

I. INTRODUCTION

Inorganic azides have attracted considerable attention1–3

due to their application in energetic explosives and gas gen-

erators.4–10 The innocuous properties of the product gases

make them a green energy source that may decrease the

greenhouse effect.11 Furthermore, their theoretical impor-

tance as simple systems modeling the interatomic forces

makes them applicable to study for both the structure and the

dynamics in various phases under different pressure or tem-

perature conditions.12–14

Metal azides undergo a variety of pressure or temperature-

induced phase transitions, a phenomenon which has been inten-

sively studied.14–25 The behavior of the azide anions (N3
�) dur-

ing the phase transition is noticeable. In the temperature-

induced tetragonal-cubic phase transitions of both rubidium

azide (RbN3) and cesium azide (CsN3), a fluctuation of the ori-

entation of N3
� anions was observed.16–18 In both the tempera-

ture-15 and pressure-induced23–25 rhombohedral-monoclinic

phase transition of sodium azide (NaN3), a tilting of N3
� anions

was also observed. High-pressure studies on metal azides are of

special interest recently because of their use as a precursor to

form a highly energetic polymeric (non-molecular) form of

nitrogen (N2). From years of studies of N2, a polymeric N2

phase under high pressure was first predicted in 1985 (Ref. 26)

and later investigated by optical and electrical methods in 2000

(Ref. 27) and 2001,28 respectively. A single-bonded cubic

gauche form of N2 was successfully synthesized in 2004

(Ref. 29) and 2007.30 Simultaneously, the N3
� anions in NaN3

were also found to transform to polymeric nitrogen nets under

high pressure in 2004 (Ref. 19) and a cubic gauche structure in

2005.20 A high-pressure study on lithium azide (LiN3) also pre-

dicted the formation of a polymeric nitrogen network with fur-

ther compression beyond its pressure range studied.31 The

mechanism of photolysis of NaN3 under high pressure was also

studied to help elucidate the potential for high-pressure synthe-

ses of novel nitrogen structures.32 In this respect, a study of the

high-pressure behavior of AgN3 would provide more insight

into the mechanism of pressure-induced rearrangement of N3
�

anions and phase transitions that might result in the formation

of polymeric nitrogen.

AgN3 has been studied intensively due to its high effi-

ciency as a detonating agent for explosives and gas genera-

tor.7–10 Its crystal structure has been the subject of several

investigations.33–37 Under ambient conditions, AgN3 crystal-

lizes in orthorhombic space group Ibam (Fig. 1), with

a¼ 5.600(1), b¼ 5.980(6), c¼ 5.998(1) Å, and Z¼ 4.37

Upon heating from room temperature, its a-axis shows an

anomalous behavior, since it shrinks with temperature.38

AgN3 exhibits an irreversible temperature-induced phase

transition at 170 �C to a monoclinic structure in P21/c space

group.38 Despite the considerable previous studies on AgN3,

no study on its high pressure structure has been reported yet.

Comparing to its high temperature behavior, the possible

phase transition and anomalous behavior of a-axis under

high pressure are also interesting to be investigated.

The present paper reports the pressure-induced phase

transformation and compressibility of AgN3 by means of a

synchrotron X-ray diffraction measurement to 51.3 GPa in a

diamond anvil cell.

II. EXPERIMENT

A symmetric diamond anvil cell with flat diamonds was

used to generate high pressure in the experiments. The anvil

was 400 lm in diameter. A rhenium gasket was used, with a

hole of 150 lm in diameter and 60 lm in thickness, as the

a)Author to whom correspondence should be addressed. Electronic mail:

y.ma@ttu.edu.
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sample chamber. AgN3 was prepared by mixing equimolar

amounts of aqueous solutions of NaN3 and AgNO3 at room

temperature and washing the as-received white precipitate

several times with de-ionized water.39 The sample was dried

at ambient conditions for 12 h. Finally, the sample was

stored in the dark due to the light sensitivity of this com-

pound. A small flake of the sample with�100 lm in diame-

ter and�30 lm in thickness was loaded into the sample

chamber. Pressure was measured by the nonlinear shift of

the wavelength of the ruby R1 line.40,41 Argon gas and a

methanol-ethanol mixture in a 4:1 volume ratio were

selected as pressure transmitting media in different experi-

mental runs to rule out the possible contamination by prod-

ucts of the reaction of AgN3 with the pressure media. In situ
high-pressure angle-dispersive X-ray diffraction experiments

at room temperature were performed at the beamline B2 of

the Cornell High Energy Synchrotron Source (CHESS, Wil-

son Laboratory) at Cornell University and the beamline X17

C in the National Synchrotron Light Source (NSLS) at Broo-

khaven National Laboratory. In CHESS, the X-ray had a

wavelength of 0.4859 Å and was collimated to a beam size

of 40 lm in diameter; the diffraction data were recorded on a

MAR345 imaging plate. In NSLS, the X-ray beam had a

wavelength of 0.4066 Å and was focused to a spot size of

30� 30 lm2; the diffraction data were collected using a

MAR CCD detector. The diffraction images were converted

to 2h versus intensity data plots using the FIT2 D software.42

The diffraction patterns were analyzed by the software pack-

age of FullProf.43

III. RESULTS AND DISCUSSION

The AgN3 sample was compressed up to 51.3 GPa. The

results reveal a second-order phase transformation, starting

from ambient pressure and completing at 2.7 GPa. The ambi-

ent phase was recovered upon decompression to the ambient

condition. Representative patterns are shown in Fig. 2.

At ambient condition, 33 peaks were resolved and

indexed to the orthorhombic structure with Ibam symmetry

(Phase II). The cell parameters obtained at ambient condi-

tion, a¼ 5.602(2), b¼ 5.938(2), and c¼ 6.022(1), are in

excellent agreement with the results in the literature.37 Under

compression, the b and c axes shrink, while the a-axis shows

an anomalous behavior, since it expands with increasing

pressure. Meanwhile, b-axis shrinks significantly under com-

pression, which leads to a proximity of the length of a and b
(b> a at ambient condition) until an equality of a¼ b is sat-

isfied at 2.7 GPa. As a result, a phase transition from ortho-

rhombic to tetragonal structure is induced. The change of

cell parameters are tabulated in Table I and illustrated in

Fig. 3, which will be further discussed in the following texts.

The process of the transition can also be explicitly observed

in the diffraction patterns (Fig. 2). It is clearly shown that the

(200) peak shift toward high d-spacing angle until 1.0 GPa,

which shows the expansion of a under compression. The

proximity of a and b can be clearly observed by the proxim-

ity of (020) and (200), (022) and (202), and (130) and (310)

peaks up to 2.7 GPa (indicated by the dashed lines in Fig. 2).

From the process of the transition, it can be concluded that it

is a continuous, second-order phase transition44 induced by

an addition of a¼ b symmetry in the unit cell. This will also

be confirmed in the following text.

The structure of the high pressure phase of AgN3

(HP-AgN3) at 2.7 GPa was indexed by DICVOL, and the

result is illustrated in Fig. 4. By comparing the indices before

and after the phase transition, an excellent agreement is

shown between the two phases: all the peaks of HP-AgN3

have identical indices as the ambient phase; the only differ-

ence is that the peaks of (020), (022), and (130) in ambient

phase merged into (200), (202), and (310) peaks in HP-

AgN3, respectively. This double confirms that the phase tran-

sition is a continuous, second-order transition induced by an

addition of a¼ b symmetry. By checking the systematic

extinctions, three of them were observed: (hhl) with l odd,

(0kl) with k or l odd, (hkl) with hþ kþ l odd. They lead to

three possible space groups of HP-AgN3: I4/mcm, I4cm, and

I�4c2. The I4/mcm belongs to the centrosymmetric point

group 4/mmm; I4cm and I�4c2 belong to the non-centrosymmetric

FIG. 1. The crystal structure of ambient AgN3. The Ag atoms are repre-

sented by black spheres and N atoms by gray spheres.

FIG. 2. X-ray diffraction patterns of AgN3 at selected pressures.
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point groups 4mm and �42m, respectively. The space group of

ambient AgN3 is Ibam, which belongs to the centrosymmetric

point group mmm. Because the phase transition is a continuous,

second-order transition induced by an addition of a¼ b symme-

try, it can be inferred that the inversion symmetry element is pre-

served during the phase transition; in consequence, the point

group is changed from centrosymmetric mmm to centrosymmet-

ric 4/mmm by an addition of the symmetric element of fourfold

axis parallel to c-axis. Therefore, the space group of HP-AgN3 is

assigned as I4/mcm. To assign the Wyckoff positions for each

atom in HP-AgN3, it is found that, among all the known struc-

tures of metal azides, to our knowledge, there exist only four

compounds crystallizing in the space group of I4/mcm (which

are the ambient phases of potassium azide, rubidium azide, ce-

sium azide, and thallous azide45,46), and all of them possess the

same Wyckoff positions as: metal at 4a, N1 at 4d, and N2 at 8h.

Furthermore, it is also found that these Wyckoff positions are

closely analogous to that of ambient AgN3. Therefore, the Wyck-

off positions of HP-AgN3 atoms are assigned as: Ag at 4a, N1 at

4d, and N2 at 8h (these positions result in a Z number of 4, which

is also consistent with the ambient AgN3 structure).

To investigate the atomic coordinates of HP-AgN3, the

diffraction patterns were refined by Rietveld method. The

best refinement of our experimental data was achieved when

fitting the data of argon gas as the pressure medium in the

pressure range from 13.8 to 31.4 GPa. We believe this is

because argon gas has a better performance in this pressure

range. Figure 5 shows the Rietveld plot at 13.8 GPa. The

TABLE I. Unit cell parameters and unit cell volume of AgN3 at varying

pressures. The signs of “(ME)” and “(A)” after the pressure values indicate

the measurements were taken using the pressure media of methanol-ethanol

mixture in a 4:1 volume ratio and argon gas, respectively. The signs of “d:”

before the pressure values indicate the measurements were taken in the

decompression process. The numbers in the parentheses represent the error

in the last digit resulted from the refinement.

Pressure (GPa) a (Å) b (Å) c (Å) V (Å3)

Ambient 5.602(2) 5.938(2) 6.022(1) 200.3(1)

0.2(ME) 5.617(6) 5.909(6) 6.020(3) 199.8(3)

0.3(ME) 5.626(8) 5.900(7) 6.019(4) 199.8(4)

0.5(ME) 5.644(9) 5.856(8) 5.995(5) 198.1(4)

0.7(ME) 5.657(9) 5.827(9) 5.976(5) 197.0(5)

1.0(ME) 5.66(1) 5.80(1) 5.957(5) 195.6(5)

1.2(ME) 5.66(1) 5.79(1) 5.952(6) 195.3(5)

1.5(ME) 5.66(1) 5.77(1) 5.935(6) 194.1(5)

1.7(ME) 5.66(1) 5.76(1) 5.921(6) 193.1(5)

2.0(ME) 5.65(1) 5.74(1) 5.901(5) 191.7(5)

2.3(ME) 5.65(1) 5.73(1) 5.890(6) 191.0(5)

2.7(ME) 5.689(8) 5.874(5) 190.1(4)

3.3(A) 5.65(1) 5.798(8) 185.1(7)

3.9(A) 5.63(1) 5.773(7) 183.3(6)

4.5(A) 5.62(1) 5.754(8) 181.9(7)

5.2(ME) 5.618(2) 5.742(1) 181.24(9)

6.0(A) 5.60(2) 5.714(9) 179.3(8)

6.8(A) 5.60(1) 5.703(7) 178.7(6)

7.0(ME) 5.592(2) 5.696(1) 178.1(1)

9.4(ME) 5.556(2) 5.635(1) 173.9(1)

12.2(A) 5.54(2) 5.60(1) 171.7(8)

13.8(A) 5.52(2) 5.57(1) 169.8(9)

15.0(A) 5.51(2) 5.55(1) 168.4(9)

15.7(A) 5.50(1) 5.539(8) 167.3(7)

17.6(A) 5.47(2) 5.51(1) 165(1)

19.2(A) 5.44(2) 5.48(1) 162(1)

21.6(A) 5.42(3) 5.45(1) 160(1)

24.6(A) 5.39(3) 5.41(1) 157(1)

29.3(A) 5.37(4) 5.35(2) 154(2)

31.4(A) 5.34(1) 5.323(6) 151.7(5)

44.3(ME) 5.280(9) 5.218(7) 145.5(4)

46.7(ME) 5.267(9) 5.202(7) 144.3(4)

51.3(ME) 5.238(8) 5.155(6) 141.4(4)

d: 16.2(A) 5.46(4) 5.49(2) 164(2)

d: 15.4(A) 5.47(4) 5.50(2) 164(2)

d: 15.1(A) 5.48(4) 5.50(2) 165(2)

d: 14.0(A) 5.48(4) 5.52(2) 166(2)

d: 11.6(A) 5.52(3) 5.56(2) 169(1)

d: 9.2(A) 5.54(3) 5.60(2) 172(1)

d: 8.1(A) 5.57(3) 5.63(2) 174(1)

d: 7.1(A) 5.57(2) 5.65(2) 175(1)

d: 3.0(A) 5.65(2) 5.80(2) 185(1)

Quench to ambient 5.61(2) 5.88(1) 5.99(1) 197.5(8)

FIG. 3. The pressure dependence of the cell parameters a, b, and c of AgN3.

FIG. 4. The miller indices of HP-AgN3 at 2.7 GPa.
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mean quality factors of the refinement are Rp¼ 0.871%,

Rwp¼ 1.18%, and v2¼ 0.00514. It is shown that the calcu-

lated curve fits the experimental data reasonably well, indi-

cating a correct assignment of space group and Wyckoff

positions. The resulting atomic fractional coordinates are

summarized in Table II and plotted in Fig. 6. The results

indicate that the change in going from the orthorhombic to

the tetragonal phase is from 4-4 coordination (four short,

four long) to eight fold coordination of the Ag. Each azide

anion has undergone a small rotation of 3� about an axis

through the central nitrogen atom and normal to the ab plane

to an orientation inclined at an angle of 45� to the ac (or bc)

plane. It should be pointed out that the large difference in the

scattering ability of Ag and N may result in a larger error in

the atomic fractional coordinates of N2 than those shown in

the fitting results.

As shown in Table I and Fig. 3, the compressibility of

orthorhombic AgN3 shows considerable anisotropy. The

anomalous behavior (expansion) of a at high pressure is in

accord with its anomalous behavior (shrink) at high tempera-

ture.38 It may contribute to the detonation of AgN3 on me-

chanical impact, where the necessary internal stress could

result from the anomalous behavior of the lattice parameter a
of orthorhombic AgN3.38 The deformation of b is higher

than of c (b shrinks 4% from ambient pressure to 2.3 GPa;

while c shrinks 2%) at high pressure, which is also in accord

with the higher deformation of b than of c at high tempera-

ture.38 Because of the remarkable consistence in the cell pa-

rameters’ behavior of orthorhombic AgN3 at both high

pressure and high temperature,38 it is reasonable to infer that

the orthorhombic-to-tetragonal phase transition is favored by

low temperature as well. Linear fitting the P-V data of the

orthorhombic phase (Table I) yields a shrink coefficient

of �4.0 (1) Å3GPa�1 at high pressure; comparing this value

with its linear thermal expansion coefficient of 0.0365 Å3K�1

at high temperature,38 roughly one can equate the effect of a

rise of 1 GPa in pressure to a drop of 110 �C in temperature.

The compressibility of HP-AgN3 is also anisotropic, with c-

axis more compressive than a-axis. Since HP-AgN3 has a lay-

ered structure of alternating Ag cation and azide anion layers

(as seen in Fig. 6), its anisotropic compressibility indicates that

it is more compressive along interlayer direction than intralayer

directions. This can be ascribed to the attraction force between

the cation and anion ions and the repulsion force between the

same type of (either cation or anion) ions.

The unit cell volume of AgN3 at varying pressures is

summarized in Table I. The unit cell volume changes contin-

uously with only an inflection at the transition, which further

confirms that the transition is a continuous, second-order

phase transition. To determine the bulk modulus KOT and its

pressure derivative KOT’, the Birch–Murnaghan Equation of

State (BM EOS)47 was applied,

FIG. 5. Rietveld refinement patterns for HP-AgN3 at 13.8 GPa. The observed diffraction intensities are represented by the dots and the calculated pattern by

the bold solid line. The solid curve at the bottom represents the difference between the observed and calculated intensities. Short vertical bars below the

observed and calculated patterns indicate the positions of allowed Bragg reflections. The asterisks “*” indicate the peaks from the pressure transmitting me-

dium argon. The wavelength of X-ray is 0.4859 Å.
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where V0 is the volume at ambient pressure, KOT is the bulk

modulus at ambient pressure and temperature, and KOT’ is the

pressure derivative of KOT. A least-squares fitting of pressure-

volume data to the BM EOS was performed. A systematic pres-

sure error of 0.1 GPa and random volume errors from the vol-

ume refinement were used in the analysis. Fitting the data to

the third-order BM EOS yields a bulk modulus of

KOT¼ 39 6 5 GPa with its pressure derivative of

KOT’¼ 10 6 7 for the low pressure orthorhombic phase and

KOT¼ 57 6 2 GPa with KOT’¼ 6.6 6 0.2 for the high pressure

tetragonal phase. By calculating the volume of HP-AgN3 at

2.7 GPa using the BM EOS, the volume reduction at the phase

transition is found to be 1%. The unit cell volume as a function

of pressure is shown in Fig. 7, in which the solid lines demon-

strate the fitting curve using the third-order BM EOS. Compar-

ing the bulk modulus of AgN3 with LiN3 (KOT¼ 19.1 6 1.4

GPa with KOT’¼ 7.3 6 0.5),31 it is found that AgN3 is much

less compressive than LiN3. This can be ascribed to the ionic

character of the Li-azide bond and the covalent character of the

Ag-azide bond.46

It is of note that the orthorhombic-to-tetragonal phase

transition of AgN3 at high pressure is closely analogous to

the tetragonal-to-orthorhombic transition of TlN3 at low tem-

perature,46 based on the facts that both of them possess: 1)

the anomalous behavior of the orthorhombic phase, 2) the

same Wyckoff positions of the tetragonal phase, and 3) the

continuous volume change during phase transition. This may

imply that the low temperature orthorhombic phase of TlN3

might be isostructural with orthorhombic AgN3.

IV. CONCLUSIONS

High-pressure study of AgN3 up to 51.3 GPa revealed a re-

versible second-order orthorhombic-to-tetragonal phase trans-

formation, starting from ambient pressure and completing at

2.7 GPa. The phase transition is accompanied by a proximity of

cell parameters a and b, a 3� rotation of azide anions, and a

change of coordination number from 4-4 (four short, four long)

to eight fold. The high pressure phase is in the space group of

I4/mcm, with Wyckoff positions of 4a (Ag), 4d (N1), and 8h
(N2). The lattice parameter a of the orthorhombic phase exhib-

its an anomalous expansion under compression. Of the ortho-

rhombic phase, the lattice parameter b is more compressive

than c, and, of the tetragonal phase, c (along interlayer direc-

tion) is more compressive than a (along intralayer direction).

The bulk moduli of the orthorhombic and tetragonal phases are

determined to be KOT¼ 39 6 5 GPa with KOT’¼ 10 6 7 and

KOT¼ 57 6 2 GPa with KOT’¼ 6.6 6 0.2, respectively.
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