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Abstract

Background: In social groups, dominant individuals may socially inhibit reproduction of subordinates using
aggressive interactions or, in the case of highly eusocial insects, pheromonal communication. It has been
hypothesized these two modes of reproductive inhibition utilize conserved pathways. Here, we use a comparative
framework to investigate the chemical and genomic underpinnings of reproductive dominance in the primitively
eusocial wasp Polistes metricus. Our goals were to first characterize transcriptomic and chemical correlates of
reproductive dominance and second, to test whether dominance-associated mechanisms in paper wasps
overlapped with aggression or pheromone-related gene expression patterns in other species. To explore whether
conserved molecular pathways relate to dominance, we compared wasp transcriptomic data to previous studies of
gene expression associated with pheromonal communication and queen-worker differences in honey bees, and
aggressive behavior in bees, Drosophila, and mice.

Results: By examining dominant and subordinate females from queen and worker castes in early and late season
colonies, we found that cuticular hydrocarbon profiles and genome-wide patterns of brain gene expression were
primarily associated with season/social environment rather than dominance status. In contrast, gene expression
patterns in the ovaries were associated primarily with caste and ovary activation. Comparative analyses suggest
genes identified as differentially expressed in wasp brains are not related to queen pheromonal communication or
caste in bees, but were significantly more likely to be associated with aggression in other insects (bees, flies), and
even a mammal (mice).

Conclusions: This study provides the first comprehensive chemical and molecular analysis of reproductive
dominance in paper wasps. We found little evidence for a chemical basis for reproductive dominance in P. metricus,
and our transcriptomic analyses suggest that different pathways regulate dominance in paper wasps and
pheromone response in bees. Furthermore, there was a substantial impact of season/social environment on gene
expression patterns, indicating the important role of external cues in shaping the molecular processes regulating
behavior. Interestingly, genes associated with dominance in wasps were also associated with aggressive behavior in
bees, solitary insects and mammals. Thus, genes involved in social regulation of reproduction in Polistes may have
conserved functions associated with aggression in insects and other taxa.
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Background
In many animal species, social interactions with conspe-
cifics can profoundly influence individual physiology and
behavior, including reproduction [1]. Eusocial insect soci-
eties represent an extreme case in which colonies consist
of one or a small number of reproductively active queens
or kings and tens to millions of sterile workers. In some
species, direct physical aggression establishes reproductive
dominance, while other species use chemical signaling
via pheromones to establish dominance hierarchies [2]. It
has been hypothesized that such chemical communication
systems evolved from an ancestral state in which aggres-
sive dominance interactions inhibited reproduction [3,4].
Comparative studies of the genomic mechanisms medi-
ating reproductive dominance through aggression or
chemical signaling can determine if these modes of
communication share common genetic underpinnings.
Comparisons of the genomic mechanisms underlying

social regulation of reproductive dominance in primitively
eusocial Polistes wasps and advanced eusocial Apis honey
bees provide an excellent framework with which to study
the evolution of social inhibition of worker reproduction
[5]. Eusocial behavior evolved separately in bee and wasp
lineages [6], and thus, any shared mechanisms for sociality
and reproduction between honey bees and paper wasps
may represent deeply conserved elements that could be
employed in multiple insect lineages [5]. On one extreme,
Polistes wasps use physical aggression to initially establish
dominance hierarchies, and then transition to ritualized
behaviors, possibly using chemically based recognition
to maintain these hierarchies [7]. On the other extreme,
honey bee queens use pheromones to establish reproduct-
ive dominance, and physical aggression by queens towards
workers is not observed. The effects of honey bee queen
pheromones on worker physiology, behavior, and gene ex-
pression patterns have been extensively characterized
[8-10]. Conversely, gene expression associated with dom-
inance status in Polistes has not been previously studied,
but such work is now possible with the development of
microarrays to monitor genome wide expression patterns
in Polistes metricus wasps [11]. The goal of this study was
to compare dominance-related gene expression in Polistes
to aggression- and pheromone-related gene expression
patterns in honey bees and other species, allowing us to
test whether reproductive dominance in Polistes is associ-
ated with genes with known links to aggression, phero-
monal regulation, or both.
The presence of distinct groups of females on Polistes

colonies exhibiting a range of caste, dominance, and re-
productive states [12] provides an excellent opportunity
for dissecting the mechanistic bases of reproductive dom-
inance. The fact that dominance hierarchies occur in dif-
ferent stages of colony development also allows us to
examine the importance of the colony environment, which
has proven to be very important in recent studies in other
social insects [13]. In temperate species of Polistes, one or
a few sister females found annual colonies in the spring
“founding phase” [14]. If multiple females are present,
these foundresses form a dominance hierarchy with dom-
inant foundresses (with large ovaries) taking over egg-
laying and subordinate foundresses (with small ovaries)
taking over foraging and provisioning of larvae [15]. Dur-
ing the “worker phase”, foundress-reared brood emerge as
adult females, which typically become workers [12]. At
this time, the dominant foundress increases egg-laying
and is called the queen, and subordinate foundresses ei-
ther die or are forced from the nest [16,17]. Linear domin-
ance hierarchy among the females characterizes worker
phase nests, with the queen as the alpha, or most do-
minant, individual [15]. Among workers, both dominant
workers (with partially developed ovaries) and subordinate
workers (with mostly undeveloped ovaries) are socially
inhibited from reproducing, but subordinates even more
so due to receiving more aggressive contacts and engaging
in energetically demanding foraging behavior [18-20].
The initial position of a Polistes individual in a domin-

ance hierarchy is established within a few minutes via in-
tense aggressive interactions with other females, including
biting, grappling, and attempted stinging [21]. Since be-
havioral dominance is established rapidly, it is not likely to
involve large-scale changes in gene expression or phy-
siology, although prior physiological and hormonal state
influences performance in dominance contests [22-25].
Subsequently, repeated, more ritualized dominance inter-
actions maintain physiological, or reproductive, dominance
[26]. Dominance hierarchy maintenance requires chemical
and/or visual individual recognition between wasps [27].
Large physiological changes in ovary activation, juvenile
hormone, and ecdysteroid titers accompany this longer-
term reproductive dominance [28-30]. Here, we focus on
reproductive (physiological) dominance rather than behav-
ioral dominance, as this form of dominance is longer-term
and thus more likely to be manifest at the level of gene
expression.
This study focuses on transcriptomic and chemical cor-

relates of reproductive dominance, both within and be-
tween the different female castes in Polistes metricus
wasps. First, we examined chemical profiles in subordinate
and dominant Polistes workers, nest-founding females
(dominant and subordinate co-foundresses), and queens,
to determine if there were chemical correlates of caste and
reproductive dominance, as suggested by previous studies
with other species of Polistes [31,32], which could poten-
tially function as chemical signals or cues to establish or
maintain reproductive dominance hierarchies. Next, we
examined the gene expression profiles in the brains and
ovaries of these five groups of wasps, to explore transcrip-
tomic correlates of caste and reproductive dominance.
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The goals of the transcriptomic study were two-fold:
first, to provide new baseline data on patterns of gene
expression associated with dominance to identify candi-
date genes for future studies, and second, to conduct a
comparative genomic analysis by quantitatively compar-
ing wasp dominance-associated gene expression patterns
to gene expression data in other species. We hypothesized
that paper wasp brain gene expression patterns would be
related to gene expression associated with caste, exposure
to queen pheromone and/or aggression in honey bee
workers. In addition, we extended our comparative analysis
to available data on aggression-related gene expression
from two non-eusocial species, the fruit fly Drosophila
melanogaster and the mouse Mus musculus. The results
of these studies suggest reproductive hierarchies in pri-
mitively social species are associated with gene networks
related to aggression in solitary species rather than phero-
monal regulation in advanced eusocial species.

Results
Chemical analyses
We examined chemical profiles from dominant and subor-
dinate co-foundresses (sampled during the founding phase
of the colony) as well as queens and dominant and subor-
dinate workers (sampled during the worker-producing
phase of the colony). We identified four body areas as can-
didate carriers of dominance-related chemicals: 1) cuticular
Table 1 Components of the cuticular hydrocarbons of Polistes

Putative ID Retention time (mi

Pentacosane* 27.6

n-octacosane* 34.6

n-nonacosane* 37.0

11-, 13-, & 15-methylnonacosane* 37.6

n-triacontane* 39.5

n-hentriacontane* 41.1

x-methyltriacontane (?) 41.8

n-dotriacontane* 42.3

11,15- and 13,17-dimethylhentriacontane* 45.0

11,15- and 13,17-dimethylhentriacontane (?) * 45.7

11-, 13-, 15- and 17-methyltritriacontane* 46.1

Hexatriacontene isomer (?) 47.4

Hexatriacontene 47.8

13,17- and 15,19-dimethyltritriacontane * 49.4

13-,15- and 17-methylpentatriacontane * 49.9

11,15- and 13,17-dimethylpentatriacontane * 52.8

n-octatriacontane 53.3

n-tetracontane 56.7

All identifications were high confidence (>90% similarity to library or standards mas
ANOVA analysis across the five groups are highlighted in bold and patterns presen
Polistes metricus in [36].
hydrocarbons, previously associated with dominance status
in P. dominula [7,33,34]; 2) the mandibular glands, where
queen pheromone is produced in honey bees [8], 3)
Dufour’s glands because of their role in egg-marking in
several social insect species [35], and 4) the sternal glands
because of their potential importance to abdomen rubbing
behavior which may accompany dominance interactions
in Polistes [35]. Each of the four body regions examined
had distinct chemical profiles, none of which were clearly
related to dominance status. Data from the three glands
are presented and discussed in the supplementary mate-
rials (Additional file 1: Supplemental Text, Figure S2).
From the cuticle, we identified 18 distinct hydrocarbons,

a large proportion of which (13, or 72%) showed signifi-
cant differences across the five groups of wasps (Table 1).
Linear discriminant analysis (LDA) revealed a separation
between the foundresses and the queen/worker groups
(Figure 1A); this could possibly reflect differences in sea-
son or social environment. Using GC-MS, we identified at
least 16 different hydrocarbons of varying chain lengths
from 25-40 (Table 1). Thirteen of these compounds were
previously identified as present on the cuticle of Polistes
metricus (Table 1, [36]). Hierarchical clustering of the 13
compounds with significant differences among the treat-
ment groups (Figure 1B) revealed a correlated cluster of
five compounds in the range of 33-40 carbon chain length
(13,17- and 15,19-dimethyltritriacontane, 13-,15- and 17-
metricus

n) Carbon chain length Molecular weight p-value

25 352 0.004

28 394 0.006

29 408 0.006

30 422 0.03

30 422 0.007

31 436 NS

31 436 0.04

32 450 NS

33 464 0.004

33 464 NS

34 478 NS

36 504 NS

36 504 0.008

35 492 <0.001

36 506 <0.001

37 520 0.002

38 534 <0.001

40 562 0.03

s spectra) except for those indicated with (?). Compounds that differed in
ted graphically in Figure 1. Compounds with *were also identified as present in
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Figure 1 Multivariate analyses of cuticular hydrocarbon data. A) Linear discriminant analysis (LDA) of chemical profile data, showing graphs
based on values of the two major linear discriminants, derived from quantities of compounds extracted from the cuticle from the five groups
(DF = dominant foundress, SF = subordinate foundress, DW = dominant worker, SW = subordinate worker, Q = queen). B) Patterns of cuticular
hydrocarbon abundance reveal a cluster of compounds related to season and/or social environment. Hierarchical clustering (represented by blue
dendrograms) of mean values (log10 transformed) for 13 compounds with significant differences across the five female groups. The heatmap
illustrates the fold difference in log10 levels of each compound compared to the overall mean for each compound (1:1), with higher levels in red
and lower in green. Five compounds (bottom of the figure) show a similar pattern in which levels are lowest in foundresses and highest in
workers and queens, reflecting differences in season and/or social environment.
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methylpentatriacontane, 11,15- and 13,19- dimethylpenta-
triacontane, n-octatriacontane, and n-tetracontane). All
five compounds varied significantly among treatments
(ANOVA, P < 0.05), and showed a similar pattern that
reflected differences in season and/or social environment,
with the highest levels in worker phase individuals (queens
and workers) and lowest levels in founding phase individ-
uals (foundresses).

Brain gene expression
Using previously developed custom oligo microarrays for
P. metricus [11], we examined brain gene expression pat-
terns of eight individuals from each of the five groups of
wasps (dominant and subordinate co-foundresses, queens,
and dominant and subordinate workers). Of the 5500
transcripts represented on the arrays, 3367 were expressed
above background levels in a sufficient number of arrays
to be included in the analysis. 499 of these (14.8%) were
differentially regulated across the five behavioral groups
(FDR p-value <0.05).
Differentially regulated transcripts showed multiple dis-

tinct expression patterns across the five groups (multivari-
ate analyses: Additional file 1: Figure S3). As in the case of
the cuticular hydrocarbon profiles, there are clear differ-
ences associated with the two colony developmental phases.
This effect of season/social environment on brain expres-
sion patterns was apparent in both hierarchical cluster-
ing based on a distance matrix of all possible contrasts
(Figure 2A, Additional file 1: Figure S3C) and principal
components analysis (PCA, Additional file 1: Figure S3B),
where season/social environment accounted for 23% of
the overall expression variation.
Post-hoc contrasts across the groups (FDR p-value <

0.05) revealed relatively few transcripts were associated
with dominance status. We focused on two contrasts
(dominant vs subordinate foundresses, and dominant vs
subordinate workers) because these contrasts represented
females that were interacting together on the same nest
and were not confounded by comparisons across castes.
There were 46 differentially regulated transcripts between
dominant and subordinate foundresses and 17 differen-
tially regulated transcripts between dominant workers and
subordinate workers. There was no overlap across these
two contrasts, suggesting again a potent influence of sea-
son or social environment in that different mechanisms
appear to be associated with dominance in foundresses
and workers (Figure 2B). The 63 transcripts showing dif-
ferences between dominant and subordinate females (the
union of the aforementioned two contrasts) are heretofore
referred to as “brain dominance-associated” transcripts
(Figure 2B, Additional file 2).
Similarly, to identify caste-associated genes, we exam-

ined overlapping sets of genes from queen vs worker
post-hoc contrasts (FDR p-value < 0.05) and found a
somewhat larger signal of differential expression. There
were 118 differentially regulated transcripts between
queens and dominant workers and 55 between queens
and subordinate workers, 36 of which overlapped be-
tween the two contrasts (Figure 2B). The 137 transcripts
showing differences between queens and workers (the
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Figure 2 Patterns of gene expression in brains of dominant and subordinate wasps. A summary of the brain microarray data, for 499
differentially regulated transcripts across the five groups (DF = dominant foundress, SF = subordinate foundress, DW = dominant worker,
SW = subordinate worker, Q = queen). A) Consensus clustering analysis (from both principal components analysis and hierarchical clustering)
shows that many transcripts showed a pattern that corresponds to the social environment (founding phase or worker phase) and/or season.
Wasp nest cartoons adapted from [37]. B) Venn diagrams summarizing the number of differentially regulated transcripts associated with either
dominance status (top) or caste (bottom) and showing the overlaps between contrasts used to identify 'brain dominance-associated' transcripts
(top) and 'brain caste-associated' transcripts (bottom).
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union of the aforementioned two contrasts) are hereto-
fore referred to as “brain caste-associated” transcripts
(Figure 2B, Additional file 2).
We validated array expression data for one gene,

vitellogenin, which was previously examined in queens
and subordinate workers using quantitative real time PCR
(qRT-PCR) [38]. Expression patterns uncovered with the
array in the current study showed strikingly similar
patterns to previous qRT-PCR data, with approximately
2-fold higher expression in queens compared to subordin-
ate workers in both studies (Additional file 1: Figure S5).

Ovary gene expression
Next, we examined ovary gene expression patterns of
eight individuals from each of the five groups of wasps
(dominant and subordinate co-foundresses, queens, and
dominant and subordinate workers). Out of 5500 tran-
scripts represented on the array, 3349 were expressed
above background levels in a sufficient number of arrays
to be included in the analysis. Of those, we found a large
proportion (2302, or 68.7% of transcripts) were differen-
tially regulated across the five groups (after correcting
for multiple testing, false discovery rate p-value <0.01).
Again, there was a diversity of expression patterns

across the five groups (multivariate analyses Additional
file 1: Figure S4A, B, C). One of the most prevalent ex-
pression patterns (Figure 3A) reflects the gross level of
ovary activation; queens and dominant foundresses had
very high levels of ovary activation (score of 4) and were
likely to be actively egg-laying, whereas the other three
groups had very low ovary activation (scores of 1-2, and
rarely 3, even in “dominant” workers) with no mature
oocytes and were thus not actively egg-laying. This pat-
tern was recovered both by hierarchical clustering by
gene (Figure 3A, Additional file 1: Figure S4A) and PCA
(Additional file 1: Figure S4B), in which ovary activation
levels accounted for 41% of the variation.
Post-hoc contrasts across the groups (FDR p-value

< 0.01) revealed a moderately large number of tran-
scripts were associated with dominance status. There
were 657 differentially regulated transcripts between
dominant and subordinate foundresses and 572 differen-
tially regulated transcripts between dominant workers
and subordinate workers. There was an overlap of 169
transcripts across these two contrasts (Figure 3B), sug-
gesting that there may be both shared and divergent
mechanisms associated with ovary activation across the
reproductive and worker castes. The 1060 transcripts
showing differences between dominant and subordinate
females (the union of the aforementioned two contrasts)
are heretofore referred to as “ovary dominance-associated”
transcripts (Additional file 3).
By examining overlapping sets of genes from queen vs

worker post-hoc contrasts (FDR p-value < 0.01), we again
found a larger signal of differential expression associated
with caste differences. There were 1678 differentially regu-
lated transcripts between queens and dominant workers
and 1266 between queens and subordinate workers, 1001
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Figure 3 Patterns of gene expression in ovaries of dominant and subordinate wasps. A summary of the ovary microarray data, for 2302
differentially regulated transcripts across the five groups (DF = dominant foundress, SF = subordinate foundress, DW = dominant worker,
SW = subordinate worker, Q = queen). A) Consensus clustering analysis (from both principal components analysis and hierarchical clustering)
shows that many transcripts showed a pattern that corresponds to gross ovary activation state. Wasp ovary drawings adapted from [39].
B) Venn diagrams summarizing the number of differentially regulated transcripts associated with either dominance status (top) or caste
(bottom) and showing the overlaps between contrasts used to identify 'ovary dominance-associated' transcripts (top) and 'ovary caste-associated'
transcripts (bottom).
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of which overlapped between the two contrasts (Figure 3B).
The 1943 transcripts showing differences between queens
and workers (the union of the aforementioned two con-
trasts) heretofore referred to as “ovary caste-associated”
transcripts (Additional file 3).

Gene ontology (GO) analysis on dominance and caste-
associated gene lists
Using DAVID [40], we tested to see which, if any, Gene
Ontology categories (restricted to “Biological Process”)
of genes were under or over-represented in our gene
lists compared the background array. The 60 “brain
dominance-associated” transcripts were represented by
several small clusters of genes (shown in Table 2), none
of which were significantly overrepresented in the gene
lists relative to the background gene set on the array: eye
development, reproduction, and cytoskeletal organization.
For the “brain caste-associated” transcripts, only one GO
category, oxidation reduction, was significantly overrepre-
sented relative to the background on the array, and this
was only significant with unadjusted p-values (Table 2).
Other processes associated with, but not significantly
overrepresented, in brain caste-associated genes included
aging, synaptic transmission, and RNA processing.
In general, both “ovary dominance-associated” and

“ovary caste-associated” genes showed functions related
to protein folding, mitotic spindle organization, prote-
olysis, and metabolism (Table 2). For the “ovary caste-
associated” list, there were a number of genes related to
reproduction and ovary activation, though none of these
were significantly enriched relative to the background.
There was a cluster of 70 genes related to “reproductive
process”, which included Insulin Receptor Substrate, Sex
lethal, Female sterile (2) ketel, Ecdysone induced protein
75B. Another cluster of six genes was related to “oocyte
fate determination”, and included capping protein alpha,
armadillo, and notch.

Comparative analysis
To begin to identify conserved pathways associated with
caste and dominance, we tested for overlap between our
complete lists of differentially regulated transcripts in
brain (n = 502) and lists of differentially regulated tran-
scripts from several studies in other species (Table 3).
We found no significant overlap between wasp brain

differentially expressed transcripts and those differen-
tially expressed in honey bees in association with caste
differences [41] or response to queen pheromone [9].
We did find a significant overlap between wasp brain
differentially expressed gene lists and those associated
with differences in worker foraging behavior in honey
bees in one study [42], but this result was not con-
firmed in comparisons with a second study on the same
behavior [43].
We next investigated whether there was significant

overlap with genes relating to aggressive behavior in
honey bees. Alaux et al. [43] examined honey bee ag-
gressive behavior in several contexts—as it relates to



Table 2 Summary of Gene Ontology (GO) Analysis of differentially expressed gene lists

Cluster Biological process of cluster # genes # Enriched
subcategories

Example Drosophila homologs

Brain dominance-associated

C1 Compound eye development, photoreceptor cell
differentiation

4 7/0 COP9 complex homolog subunit 4, microtubule star, rasputin,
scabrous

C2 Cytoskeletal organization, actin filament
organization

5 1/0 Paramyosin, Transitional endoplasmic reticulum, upheld

C3 Phagocytosis, vesicle mediated transport 4 0/0 Beadex, alpha-coatomer protein

C4 Reproduction, oogenesis 6 0/0 COP9 complex homolog subunit , Glutamate dehydrogenase,
quick-to-court

C5 Nucleotide, ATP binding 8 0/0 Hexokinase A, polyA-binding protein, rasputin

C6 Zinc, ion, metal binding 7 0/0 Nucleosome remodeling factor - 38kD, Sorbitol dehydrogenase-
2, upheld

Brain caste-associated

C1 Oxidation reduction 12 8/0 Ecdysone-induced protein 28/29kD, Glutathione peroxidase,
Malate dehydrogenase, Sorbitol dehydrogenase-2

C2 Aging, determination of adult life span 4 0/0 Autophagy-specific gene 7, Excitatory amino acid transporter 1

C3 Cell cycle process, microtubule-based
process, cytoskeletal organization

8 0/0 Eukaryotic initiation factor 4E, Helicase at 25E, Ribosomal
protein L3, microtubule star, stubarista

C4 Regulation of RNA metabolism 8 0/0 Brahma associated protein 60kD, X box binding protein-1

C5 RNA splicing, binding, processing 7 0/0 Polyadenylate-binding protein 2, U2 small nuclear riboprotein
auxiliary factor 50, hiiragi

C6 Metamorphosis, morphogenesis, cell death 5 0/0 Autophagy-specific gene 7, mastermind, scabrous

C7 Synaptic transmission 5 0/0 Glutamic acid decarboxylase , longitudinals lacking

Ovary dominance-associated

C1 Protein folding 18 0/0 Cyclophilin 1, DnaJ-like-2, Heat shock protein cognate 4,
T-complex Chaperonin 5

C2 Proteolysis 52 1/0 Serine protease inhibitor 4, amontillado, supernumerary limbs,
Proteasome 29kD subunit

C3 Mitotic spindle organization 36 7/0 Replication Protein A 70, Ribosomal protein S4, short spindle 4,
Dynein heavy chain 64C

C4 Oxidative phosphorylation 16 0/0 ATP synthase-beta, V-type proton ATPase subunit d 1,
NADH:ubiquinone reductase 75kD subunit precursor

C5 Regulation of cell projection, morphogenesis,
differentiation

14 1/0 Calcium/calmodulin-dependent protein kinase II, twinstar,
short stop, capping protein alpha

C6 Carboxylic and amino acid catabolic process 6 0/0 Glutamate dehydrogenase, Probable maleylacetoacetate
isomerase 2, sluggish A

C7 Lipoprotein metabolism 4 0/0 N-myristoyl transferase, Putative GPI-anchor transamidase,
Rab escort protein

Ovary caste-associated

C1 Cytoskeletal organization, mitotic spindle
organization

94 11/0 Brahma associated protein 55kD, Dynamitin, Kinesin heavy
chain, notch

C2 Protein folding 29 1/1 Calreticulin, Cyclophilin , Probable prefoldin subunit 4,
Protein disulfide isomerase

C3 Translation 61 3/0 Elongation factor 1-gamma, Transcription factor IIB,
Ribosomal protein S17

C4 Cofactor metabolic/biosynthetic process 29 3/0 Coenzyme Q biosynthesis protein 2, maroon-like,
Succinate dehydrogenase B, Glutamate dehydrogenase

C5 Generation of precursor metabolites and energy,
oxidative phosphorylation

45 5/0 Aconitase, Aldolase, Cytochrome c oxidase subunit Va,
Pyruvate kinase
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Table 2 Summary of Gene Ontology (GO) Analysis of differentially expressed gene lists (Continued)

C6 Proteolysis 83 8/0 Diphenol oxidase A2, Insulin degrading metalloproteinase,
Ubiquitin carrier protein, fizzy

C7 Glucose and hexose metabolism 23 6/0 Hexokinase A, Phosphoenolpyruvate carboxykinase,
Phosphofructokinase

Based on a GO analysis using Drosophila homologs, the top 6 or 7 clusters of GO terms corresponding to “Biological Process” are shown. Each cluster listed is
accompanied by a description of the GO terms that make up the “Biological Process of Cluster”, “# genes” represented in each cluster, “# Enriched subcategories”
which incidates GO subcategories that were significant within each cluster (counts refer to number of significant p-values, raw/FDR adjusted), and “Example
Drosophila homologs” in each cluster.
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genotype (aggressive Africanized lineages compared to
more docile European lineages), age (hive bees vs for-
agers), and response to alarm pheromone (which elicits
attack and stinging behavior). We first focused on the
subset of genes that were found to be differentially
expressed in all three contexts in honey bees. We found
a small, but significant overlap between this list of genes
and the complete set of brain differentially expressed
genes in wasps. This suggestive result, along with the
small size of the gene lists being compared, led us to
compile an expanded list of all genes related to honey
bee aggressive behavior in any context (the union of the
three contexts). Here we found no significant overlap
with the wasp brain differentially expressed list; however,
when we compared this expanded honey bee aggression
list to the wasp "brain caste-associated" genes, we again
found significant overlap (Table 3). There was no signifi-
cant overlap when we compared to the 63 wasp "brain
dominance-associated genes” (data not shown).
To further investigate the potential connection be-

tween genes related to dominance (our study) and aggres-
sion, we compared our complete wasp brain differentially
expressed gene list to microarray studies identifying brain-
expressed genes associated with aggression in Drosophila
melanogaster fruit flies [44] and maternal aggression in
mice [45]. In both cases, we found evidence of a relatively
small, but statistically significant overlap (Table 3). As a
Table 3 Comparative analyses examining overlap in gene exp

Wasp list Compared to X Description of study Citation

Brain DE Apis mellifera Queen vs sterile worker [41]

Brain DE Apis mellifera Queen phero. response [9]

Brain DE Apis mellifera Foragers vs nurses [42]

Brain DE Apis mellifera Foragers vs nurses [43]

Brain DE Apis mellifera Aggression (composite) [43]

Brain DE Apis mellifera Aggression (3 contexts) [43]

Brain Caste Apis mellifera Aggression (composite) [43]

Brain DE D. melanogaster Aggression [44]

Brain DE Mus musculus Maternal aggression [45]

Brain DE Mus musculus Sleeping vs awake [46]

Brain DE refers to the complete list of transcripts differentially expressed in the brai
described in the main text. The number of transcripts overlapping (significant in bo
only, or ”Sig. wasp only”; significant in the other species, “Sig. X only”; and significan
Tests are shown. Lists of genes with significant overlaps are highlighted in bold and
control, we compared our study to another mouse study
that used the same microarray to examine brain gene ex-
pression patterns associated with sleep [46]—no signifi-
cant overlap was detected.

Discussion
This study is the first comprehensive examination of
chemical profiles and genome-wide expression patterns
associated with reproductive dominance in a primitively
eusocial species. Our analysis of cuticular hydrocarbons
identified over a dozen compounds with potential links to
the phase of the colony cycle (which encompasses season
and social environment) in P. metricus. In addition, we
provide new baseline data on transcriptomic correlates of
reproductive dominance and caste in both brains and
ovaries. Many genes showed expression patterns related to
the social environment/season (founding phase vs worker
phase, Figure 2), suggesting there could be major effects of
social environment on brain gene expression in wasps.
Thus, both the chemistry and brain transcriptome data
show patterns strongly associated with the social environ-
ment, and highlight the fact that there are major differ-
ences in the social milieu between founding and worker
phase colonies. These data agree with other recent studies
suggesting the social environment as one of the most po-
tent influences on gene expression patterns in ants [13].
Finally, our results indicate the brain expression patterns
ression between P. metricus, Apis, Drosophila, and Mus

Sig. both Sig. wasp only Sig. X only Sig. neither p-value

77 129 354 498 0.322

58 339 384 2263 0.939

106 99 392 487 <0.001

58 340 254 1478 0.99

85 312 512 2135 0.343

5 8 392 2640 0.019

37 82 435 1575 0.022

49 307 238 2247 0.0184

27 200 77 960 0.033

68 159 323 714 0.692

n, “Brain Caste” refers to the subset of genes that are “brain caste-associated”,
th, or “Sig. both"), as well as non-overlapping transcripts (significant in wasp
t in neither study, “Sig. neither”) and two-tailed p-values from Fisher’s Exact
a complete list of overlapping transcripts are provided in Additional file 2.
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associated with reproductive dominance are (surprisingly)
not conserved across wasps and honey bees, but rather
that some genes associated with aggressive behaviors may
have been co-opted to establish or maintain dominance
hierarchies in Polistes wasps.
Previous studies have clearly demonstrated cuticular hy-

drocarbons change with female fertility in insects including
Polistes, with some evidence for cuticular differences re-
lated to dominance status in foundresses/workers of other
species of Polistes wasps [7,34,35,47,48]. We identified 13
cuticular hydrocarbons in P. metricus with significant dif-
ferences across females. Several of these compounds have
been identified on the cuticles of other insects, for ex-
ample, in association with age in mosquitoes (pentacosane
[49]), ovarian activation in social insects (dimethylpen-
tatriacontane and dimethylhentriacontane [31], penta-
cosane, nonacosane, methylnonacosane, triacontane, and
methyltriacontane [50]), and even dominance status in
other species of Polistes (pentacosane, nonacosane, and
methylnonacosane [32], methylpentatriacontane [51], and
dimethylpentatriacontane [31]). However, in our study,
none of these compounds were closely related to domin-
ance status or levels of ovarian activation in P. metricus,
but several showed associations with the time of collection
(early vs late season) and/or social environment (foundress
association vs queenright mature colony, Figure 1B). Fur-
ther studies on these 13 compounds could provide add-
itional insights into the role of cuticular hydrocarbons in
response to the abiotic and social environment in Polistes.
Our microarray results suggest a relatively small sub-

set of genes in the brain show patterns related to repro-
ductive dominance status. There were several differentially
expressed genes related to vision and eye development,
which is intriguing because of the importance of visual
communication in the genus Polistes, although P. metricus
is not known to use visual cues for individual recognition
[52,53]. We found no overlap between sets of differentially
expressed genes between dominant and subordinate foun-
dresses and dominant and subordinate workers, suggest-
ing that distinct subsets of genes may be involved in the
maintenance of dominance status in the founding and
worker stages of colony development. This is consistent
with known differences in the role of juvenile hormone
(JH) in the development and maintenance of dominance
status and ovarian activation in queens versus workers in
Polistes. In foundresses, JH regulates behavioral and ovar-
ian reproductive dominance [22,24,30]. In workers, JH has
a dual function in that it affects both reproductive domin-
ance [20] and age-related onset of foraging behavior
[54,55], and JH action depends on the physiological
condition (i.e. nutritional state) of the female [56,57].
A slightly larger subset of genes showed caste-associated

expression differences in the brain. These genes had func-
tions related to oxidation reduction, aging, and synaptic
transmission, which could be linked to known differences
in metabolism [58], lifespan [12], and learning abilities
[59] between workers and queens. Previous studies in
honey bees have also uncovered differences in the expres-
sion of genes related to aging (such as telomerase) and oxi-
dation reduction [41]. We suggest candidate genes related
to aging (Autophagy-specific gene 7, Excitatory amino acid
transporter 1), eye development (microtubule star, rasputin,
scabrous), and reproduction (Glutamate dehydrogenase,
quick-to-court) may play an important role in establishing
and maintaining adult caste differences in Polistes.
Our cross-species comparative analyses showed no sig-

nificant overlap in sets of genes associated with domin-
ance status in wasps and pheromonal regulation in honey
bees. Thus, they do not support the hypothesis that phero-
monal regulation of reproduction relies on the same mo-
lecular mechanisms as physical dominance in these two
species. Furthermore, according to the ovarian and repro-
ductive groundplan hypotheses [60-62], genes involved in
reproduction have been co-opted to play a role in queen-
worker caste differentiation and worker division of labor.
However, in contrast to this theory, we find distinct brain
gene expression patterns are associated with reproductive
dominance hierarchies between dominant and subordinate
co-foundresses and between dominant and subordinate
workers, and dominance-associated genes differ between
wasps and honey bees. Thus, there does not appear to be
a conserved suite of genes regulating these processes in
the brain. Interestingly, however, genes associated with
dominance in Polistes significantly overlap with sets of
genes associated with aggressive phenotypes in honey bees
[43], Drosophila [44], and mice [45]. There was also some
overlap with genes related to foraging in one [42] of two
[43] previous honey bee studies. This overlap may reflect
differences in aggressive behavior between honey bee for-
agers and non-foragers [43], or perhaps be explained by
the fact that lower dominance status in wasps is typically
associated with increased foraging behavior [12]. Overall,
these data suggest that there may be a small number of
genes with recurrent roles in aggressive behavior across
diverse taxa. It is important to note, however, that the
microarray only examined a subset of the genes in the
paper wasp genome and was limited to transcripts show-
ing significant homology to honey bee or other insect
proteins. The role of novel genes or rapidly evolving
genes in the regulation of dominance status in Polistes
remains to be explored and is definitely worthy of fur-
ther attention [63].
We found large differences in ovary gene expression,

both associated with dominance status and with caste dif-
ferences. Overall, many transcripts showed expression dif-
ferences associated with gross differences in ovary size
(Figure 3A). This pattern is reflected in the types of genes
that were differentially expressed–there were numerous
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genes with functions related to cell division and prolif-
eration, as well as production of nucleic acids and pro-
teins. Thus, the large differences in ovary size across the
groups (Figure 3A) are undoubtedly produced by changes
in the regulation of genes related to egg production and
maturation.

Conclusions
In summary, experiments presented here provide a wealth
of new data about the chemical and transcriptomic corre-
lates of reproductive dominance in Polistes paper wasps,
an important model system for studying dominance behav-
ior and the evolution of sociality [74]. Several specific com-
pounds and genes are excellent candidate for future
studies of their causal role in establishing and maintaining
dominance. Our data also highlight the importance of the
season and/or social environment in gene expression and
cuticular hydrocarbon production, and suggest there are
distinct mechanisms responsible for communicating and
maintaining dominance among foundresses, between
queens and workers, and among workers. Comparisons
with honey bees suggest that largely different sets of genes
are associated with social regulation of reproduction in
honey bees and paper wasps. This is not entirely surpris-
ing, considering bees and social vespids diverged between
100-150 million years ago [6], and that the form of social
control of reproduction (chemical vs physical) differs
greatly between the two species.
The most notable finding from our cross-species com-

parisons is that genes that are differentially expressed in
brains of dominant and subordinate wasps are likely to be
associated with aggression in other species, from honey
bees, to flies, to mice. Our data suggest that in primitively
social wasps, social regulation of reproduction may be reg-
ulated by genes with deeply conserved functions associ-
ated with aggression in solitary insects and other taxa.
Thus, our data have begun to unravel the evolution of the
mechanistic underpinnings of reproductive inhibition in
workers, and that in some cases this may be built on fun-
damental elements of solitary behavior, such as aggression.

Methods
Wasps
We collected Polistes metricus adult females at four
field sites in central Illinois (USA): Vermilion River
Observatory (Danville, IL, +40°3′28″, -87°33′42″),
Allerton Park (Monticello, IL, +40°0′25″, -88°38′58″),
Lake of the Woods (Mahomet, IL, +40°12′6″, -88°22′
38″), and Forest Glen (Westville, IL, +40°0′46″, -87°33′
55″). We collected wasps from undisturbed nests lo-
cated in wooden nest boxes or on the eaves of buildings
between 5:30-7:00 am to ensure that all wasps were
present on the nest and to control for circadian effects
on gene expression. We collected 23 wasps during the
founding phase between May 14-17, 2008 from nests with
2-3 females (10 nests with two and one nest with three
females). We observed each nest >2 times in the 3 weeks
prior to collection to verify the presence of multiple foun-
dresses. Populations of Polistes metricus in Illinois gener-
ally have few nests that are multiply founded (~ 5%, A.L.T,
personal observation). We collected 116 wasps during the
"worker phase" between July 27- August 1, 2008 from 20
nests with at least 2 workers and no males; males are indi-
cative of colonies producing non-worker reproductive fe-
males. To remove wasps from their nests, we anaesthetized
them with CO2 gas for 30 sec, then immediately freeze-
killed them on dry ice and stored them at -80°C for further
analysis.

Dissections and determinations of reproductive
dominance rank
Each wasp was subjected to several dissections (Additional
file 1: Figure S1). We removed legs on dry ice and stored
them at -80°C for microsatellite analysis (see below). We
noted wing wear (presence or absence) as an indicator of
foraging experience [64]. We thawed gasters in RNA-later®
(Qiagen, Valencia, CA), then dissected ovaries and scored
ovary activation (1 = completely undeveloped, string-like
ovarioles, 2 = slightly developed ovarioles with small
bulges, 3 = partially developed ovarioles, with two or fewer
fully developed oocytes, 4 = fully developed ovarioles, with
three or more fully developed oocytes). We stored ovaries
in RNA-later® at -80°C for RNA extractions. We dissected
Dufour’s glands and sternal glands (located based on de-
scriptions in [35]) from gasters and stored the glands in
200 μL diethyl ether. After dissection, we submerged each
wasp’s gaster in 1 mL pentane for 10 minutes to extract
cuticular hydrocarbons. We freeze-dried heads for 60 min
at 300mTorr, dissected brains on dry ice, and stored brains
at -80°C for RNA extractions. From the same heads we
dissected mandibular glands (based on descriptions in
[35]) and placed them in 200 μL diethyl ether.

Choice of focal wasps for microarray and chemical
analysis
To reduce variation due to differences in ovary activa-
tion, caste, and relatedness, we focused on a subset of
collected wasps (n = 8 focal females per group) in each
of five groups: DF = dominant foundress, SF = subordin-
ate foundress, Q = queen, DW= dominant worker, SW =
subordinate worker. Wasp relatedness was assessed
using microsatellites (Additional file 1, complete data in
Additional file 4); this information allowed us to identify
and exclude wasps from nests with evidence of queen
replacement, which can profoundly disrupt dominance
hierarchies in Polistes [65]. We focused on foundress as-
sociations with exactly two females, inferred from micro-
satellites to be sisters (but due to limits on sample size
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we included two pairs of non-sisters). We chose pairs of
workers from the same nest inferred to be sisters and
the daughters of the resident queen. We used foundress
pairs that had clear differences in reproductive domin-
ance—the subordinate female had an ovary activation
score of 1 and the dominant female a score of 4. For
worker phase nests, we identified queens as females with
ovary activation scores of 4 and high levels of wing wear
(acquired during the founding phase, [64]). We chose
dominant workers as females with no wing wear and
ovary scores of 2 or 3, and subordinate workers as females
with high levels of wing wear and ovary scores of 1.

Chemical analysis
Methodology for analysis of the three glands (mandibular,
Dufour's and sternal) are presented in Additional file 1. A
1 μL sub-sample of each cuticular extract was injected
into an Agilent 6890 GC System using an Agilent HP-
5MS column (30 m length × 0.25 mm diameter × 0.25um
thickness) in splitless mode and a flame ionization detector.
The temperature program was as follows: 150°C hold for 1
minute, ramp up 15°C/minute to 200°C, ramp up 7.5°C/
minute to 300°C, hold 25 minutes. Data were quantitated
using Agilent Chemstation and internal standards. Eluting
compounds were identified by comparing retention times
and spectra (GC-MS) with those of pure standards.
We chose a subset of representative cuticular samples

for GC-MS analysis on a Waters GCT gc-tof-ms using
a similar column in splitless mode at 1 mL/minute He
flow. Injector 250°C; program: 50°C, hold 1 minute, 20°C/
minute to 180°C, 3°C/minute to 320°C, hold 15 minutes.
The identifications of 18 hydrocarbons from C25 (MW
352) to C40 (MW 562) were confirmed by either spectral
comparison with the NIST MS Search 2.0 mass spectral li-
brary or by running standards.

Microarrays
The P. metricus oligo microarrays [11] are comprised of
10,000 duplicate spots, representing 5000 different tran-
scripts, corresponding to approximately 3248 different
genes. We extracted each individual wasp’s brain and
ovary RNA using a PicoPure (Evrogen, Moscow, Russia)
kit. We assessed total RNA quantity with a NanoDrop
(Thermo Scientific, Waltham, MA) and quality with an
Agilent Bioanalyzer (Agilent, Santa Clara, CA). We then
subjected each RNA sample to T7 amplification (Invitro-
gen, Grand Island, NY) and labeled each independently
with both Cy3 and Cy5 dyes (Invitrogen, Grand Island,
NY). We then hybridized amplified, labeled RNA to each
microarray using previously described methods [11]. We
employed a complete loop design with a dye swap, such
that each individual wasp appeared on two arrays (8
wasps per group, 5 groups, 40 arrays, for both brain
and ovary microarray studies). We hybridized arrays for
approximately 18 hours at 42°C in a Maui mixer (BioMicro
Systems, Salt Lake City, UT), then washed and immedi-
ately scanned them, with saturation tolerance set at 0.10%,
using a GenePix scanner (Molecular Devices, Sunnyville,
CA). We manually spot-checked all arrays to remove spots
with irregular printing or dust on the array.

Statistical analysis
For the chemical analysis, we calculated absolute concen-
trations of each compound for each individual sample
using the external standard. These values were log-
transformed and used for mixed model ANOVAs in R v.
2.15.3 (R Core Development Team 2008), with group
(the five female types) as a fixed effect and colony as a
random effect. Although the compounds on the cuticle
are unlikely to be truly independent from each other,
this analysis was useful as it allowed us to assess differ-
ences among groups for each compound separately. We
conducted pairwise comparisons and adjusted p-values
for multiple testing using a Bonferroni correction. We
also used the same values for linear discriminant ana-
lysis (LDA) in R and hierarchical clustering analysis by
compound (for significantly different compounds only,
single linkage clustering method) in Genesis [49].
We used SAS to analyze microarray data as in [66]. We

removed data from spots with intensity levels lower than
the median background level of 175 and log transformed
and normalized data across arrays using the Lowess
method. We removed spots that were missing from >25%
of the arrays. We used a mixed model ANOVA to test for
differences in expression, with dye and array as random ef-
fects and group and spot as fixed effects. P-values were
corrected for multiple testing using false discovery rate
(FDR), likewise for all pairwise comparisons between the
groups. We used an FDR p-value significance cutoff of
0.05 for brains and 0.01 for ovaries. A more stringent cut-
off was used for ovaries because there were a considerably
larger number of differentially expressed transcripts. The
results were visualized using principal components ana-
lysis and hierarchical clustering in JMP (SAS Institute,
Cary, NC). We generated a distance matrix based on the
number of differentially regulated transcripts between
each pairwise comparison of female type, which we used
to conduct hierarchical clustering in R. We conducted
Gene Ontology analysis in DAVID [40], using Drosophila
best hits to the wasp transcripts (as in [11]), and using the
full set of Drosophila best hits on the P. metricus array as
a background list. We report results of overrepresentation
tests, both raw and Benjamini adjusted p-values.
To conduct tests of cross-species overlap, for each spe-

cies, we used tBLASTx of P. metricus transcripts against
other species’ databases. Honey bee and Drosophila hits
were used as described previously, with e-value cutoffs of
1 e-5 [67]. For the mouse Mus musculus, we used
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BLAST2GO [68] against the Ensembl database and best
tBLASTx hits were identified, with e-value cutoffs of
1e-3. If a P. metricus transcript did not have a hit meet-
ing this cutoff, it was not used in further analyses. This re-
sulted in lists of putative orthologs between P. metricus
transcripts and each query species database. Using data in
online repositories (GEO and MIAME), we identified the
putative orthologs that were present on both test arrays be-
ing compared (P. metricus and either bee, fly, or mouse).
We determined the overlap between gene lists and used
two-tailed Fisher Exact tests to determine whether the
number of genes that were shared in common between
both species was significantly higher or lower than expected
by chance, compared to a hypergeometric distribution.
We tested for overlap between transcripts differentially

expressed in wasp brains and transcripts with expression
patterns in the brains of honey bees that were significantly
associated with: 1) caste differences in adult queens and
workers [41]; 2) exposure of workers to queen mandibular
pheromone verses a solvent control [9]; 3) behavioral state
differences between foragers and nurses [42,69]; and 4) ag-
gressive behavior in workers [43]. We also tested for over-
lap between lists of differentially regulated genes related to
aggression in Drosophila [44] and the mouseMus musculus
[45]. Although we found numerous additional studies
examining aggressive behavior in other species including a
cichlid fish [70], chicken [71], human [72], and a songbird
[73], we were unable to conduct meaningful overlap ana-
lyses because of the small number of genes that met both
criteria of being differentially expressed and having hom-
ologous sequences in P. metricus.

Availability of supporting data
All microarray data and details of the experiment were
deposited in the Array Express database www.ebi.ac.uk/
arrayexpress (ArrayExpress accession number E-MTAB-
2190 for brain data and E-MTAB-2191 for ovary data) in
accordance with MIAME (“Minimum information about
a microarray experiment”) standards.

Additional files

Additional file 1: Contains supplementary figures, tables, methods,
results, and discussion to accompany the main text.

Additional file 2: Contains a list of brain differentially expressed
transcripts, including lists of which overlapped across the different
cross-species comparisons.

Additional file 3: Contains a list of ovary differentially expressed
transcripts.

Additional file 4: Contains microsatellite data.
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