
A Machine Learning Approach to Edge Type Prediction in
Internet AS Graphs

Jinu Susan Varghese and Lu Ruan
Department of Computer Science

Iowa State University
Ames, Iowa, USA

jsusan@iastate.edu, ruanlu@iastate.edu

ABSTRACT
The Internet consists of a large number of interconnected
autonomous systems (ASes). ASes engage in two types of
business relationships to exchange traffic: provider-to-customer
(p2c) relationship and peer-to-peer (p2p) relationship. In-
ternet AS-level topology can be represented by AS graphs
where nodes represent autonomous systems (ASes) and edges
represent connectivity between ASes. While researchers have
derived AS graphs using various data sources, inferring the
types of edges (p2c or p2p) in AS graphs remains an open
problem. In this paper we present a new machine learning
approach to edge type inference in AS graphs. Our method
uses the AdaBoost machine learning algorithm to train a
model that predicts the edge types in a given AS graph us-
ing two node attributes–degree and minimum distance to a
Tier-1 node. We train a model for a BGP graph and validate
the model using ground truth AS relationships and CAIDA’s
inferred AS relationship dataset. Our results show that the
model achieves over 92% accuracy on a number of BGP
graphs.

Keywords
Internet, AS graphs, edge type prediction, machine learn-
ing

1. INTRODUCTION
The Internet connects tens of thousands of autonomous

systems (ASes) operated by different administrative en-
tities. Routing between ASes is determined by the Bor-
der Gateway Protocol (BGP). BGP is a policy-driven
interdomain routing protocol that allows each AS to
choose its own policy in determining which routes to
import from and export to its neighbors. The routing
policies of ASes are largely determined by the business
relationships between neighboring ASes, which can be
broadly classified into two types: provider-to-customer
(p2c) and peer-to-peer (p2p). In the p2c relationship,
the customer pays the provider for transiting traffic to
the rest of the Internet. In the p2p relationship, two
ASes exchange traffic between themselves and their cus-
tomers on a settlement-free basis.

The Internet AS-level topology can be represented
by an AS graph in which nodes represent ASes and
two nodes are connected by an edge if they engage in
a business relationship to exchange traffic. Researchers
have derived AS graphs from three commonly-used data
sources [20]: BGP data [9, 7], traceroute measurements
[1, 3], and the Internet Routing Registry (IRR) [5].
These data sources result in three types of AS graphs:
BGP graphs, traceroute graphs, and IRR graphs. Each
type of AS graphs contains unique edges that do not
exist in other types of graphs. Thus, the three types
of AS graphs complement each other to provide a more
complete view of the Internet AS topology.

Given an AS graph, it is important to determine the
type of each edge (p2c or p2p) in the graph. Without
knowing the edge types, we cannot fully characterize the
Internet AS-level topology because connectivity does
not imply reachability. Specifically, the AS paths se-
lected by an AS depend on its routing policies, which in
turn depend on its business relationships with neighbor
ASes. Since network operators are usually not willing
to publicly disclose their AS relationship information,
researchers have developed various heuristic algorithms
to infer AS relationships using BGP data [16, 25, 23, 11,
21, 12, 18]. These algorithms infer AS relationships by
analyzing a set of AS paths extracted from BGP rout-
ing tables. Thus, they can be used to infer edge types
in a BGP graph by analyzing the set of AS paths used
to derive the graph. However, these algorithms cannot
be used to infer edge types in traceroute graphs or IRR
graphs. Thus, a new method is needed to infer edge
types in AS graphs derived from any data source.

In this paper we present a novel method of inferring
edge types in AS graphs. Our method uses the Ad-
aBoost machine learning algorithm to train a model for
a given AS graph that predicts edge types (p2c or p2p)
in the graph using two node attributes–degree and min-
imum distance to a Tier-1 node. We train a model for
a BGP graph and validate the model using a set of
ground truth AS relationships and CAIDA’s AS rela-
tionship inference dataset [2]. The results show that
our model achieves over 92% accuracy on a number of

1

BGP graphs.
Machine learning techniques have been used to solve

various problems such as detecting anomalous routing
dynamics in BGP updates [26], classifying ASes in the
Internet [13], identifying network applications based on
features of IP traffic flows [24], and winnowing the pre-
fixes with unintended limited visibility from those with
intended limited visibility [19]. To the best of our knowl-
edge, this work is the first to use machine learning tech-
niques to infer edge types in AS graphs.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe how to build a model for an input
BGP graph to illustrate our method of building machine
learning models for edge type prediction in AS graphs.
In Section 3 we provide a detailed analysis of the pre-
diction results of our model. In Section 4 we study the
consistency of our model by applying it to ten different
BGP graphs. We conclude our work and discuss future
directions in Section 5.

2. A METHOD FOR BUILDING EDGE TYPE
PREDICTION MODELS

In this section, we present our method of building
models for edge type prediction in AS graphs. We use
an input BGP graph G to illustrate our method. Given
G, we describe how to build a model that predicts the
type of each edge (p2c or p2p) in G.

2.1 Creating the Input BGP Graph
We create a BGP graph G using the BGP data archived

by Route Views [9] and RIPE RIS [7]. We download
a BGP table snapshot from all Route Views and RIPE
collectors on each day for the first five days of November
2014. We create G using this BGP dataset as follows.
We first extract AS paths from the BGP table snap-
shots. We then sanitize the AS paths by discarding
the AS paths that contain a loop or an invalid ASN1.
We also remove any AS set and duplicate ASNs arising
from AS prepending from the AS paths. Finally, we
process each sanitized AS path p to create G as follows.
If AS X appears in p, then X becomes a node in G.
If AS X and AS Y are adjacent in p, then an edge is
added between X and Y in G. The resulting AS graph
G contains 48,867 nodes and 183,606 edges.

2.2 Preparing the Training Data
We predict edge types using two node attributes com-

puted from G–degree and distance. The degree of a node
is the number of its adjacent nodes in G. The distance
of a node is its minimum distance to a Tier-1 node,
which is calculated as follows. All Tier-1 nodes have
distance 02. To find the distance of a non-Tier-1 node
1An ASN is invalid if it is unallocated or reserved.
2We manually identify 16 Tier-1 ASes according to
Wikipedia [8].

v, we compute the shortest path from v to any Tier-1
node. The number of hops in this shortest path is the
distance of v.

In order to create a set of training examples, we ex-
tract a set of ground truth AS relationships using the
same BGP dataset we used to construct G. ASes some-
times add BGP communities to a route to tag the type
of neighbor from which the route is received. For ex-
ample, the community 2914:420, defined by AS2914,
indicates that the route was received from a peer. We
use the list of BGP communities for tagging type of
neighbor assembled by CAIDA [17] to extract a set T
of 42,486 ground truth AS relationships from our BGP
dataset. T contains 15,070 (35.47%) p2p relationships
and 27,416 (64.53%) p2c relationships3. Every entry in
T is of the form < (i, j), rij > where (i, j) is a pair of
ASes and rij ∈ {p2c, p2p} is the AS relationship of i
and j. Since we extract the ground truth and construct
G from the same BGP dataset, (i, j) is an edge in G.
Thus, T gives the ground truth AS relationships for a
subset of the edges in G. Specifically, T covers 23.14%
of the edges in G.

Given T , we create a set of training examples, de-
noted by TE, as follows. For every entry < (i, j), rij >
in T , we create an entry in TE with the form <[degreei,
distancei, degreej , distancej], rij> where [degreei,
distancei, degreej , distancej] is the feature vector that
lists the degree of node i, the distance of node i, the
degree of node j, and the distance of node j.

2.3 Creating the Model
Given G and the set of training examples TE, we use

the Gentle AdaBoost machine learning algorithm [15]
to build a model that predicts edge types in G. Boost-
ing is an approach to machine learning in which weak
learners are combined to form a strong learner. The
AdaBoost algorithm of Freund and Schapire [14] was
the first practical boosting algorithm and remains one
of the most widely used and studied [22]. Gentle Ad-
aBoost is a variant of AdaBoost that is more resistant
to outliers.

2.3.1 The Gentle AdaBoost Algorithm
The Gentle AdaBoost algorithm [15] is shown in Fig-

ure 1. The algorithm takes as input a set of training
examples (x1, y1), · · · , (xm, ym) where each xi belongs
to some domain X and each label yi belongs to the set
{−1,+1}. In our problem, each xi is a feature vector
that contains the degree and distance of two ASes for
which the ground truth AS relationship is known, and
the labels -1 and +1 correspond to p2c and p2p, respec-
tively.

3We do not include in T hybrid AS relationships where two
ASes have different AS relationships at diffferent intercon-
nection locations.

2

Input: (x1, y1),...,(xm, ym) where xi ∈ X , yi ∈
{−1,+1}

1. Initialize wi = 1/m for i = 1, ...,m
F (x) = 0

2. For t = 1, ..., T

(a) Fit the regression function ft(x) by
weighted least-squares of yi to xi with
weights wi

(b) Update F (x)← F (x) + ft(x)

(c) Update wi ← wiexp(−yift(xi)) and
renormalize

3. Output the classifier sign[F (x)]

Figure 1: Gentle AdaBoost Algorithm

The algorithm maintains a distribution of weights
over the training set. Initially, the weight wi of each
training example is set to 1/m where m is the number
of training examples, and the final classifier F (x) is set
to 0. The algorithm is performed in T iterations. In
each iteration, a weak classifier ft(x) : X 7→ R is com-
puted, where the sign of ft(x) gives the classification.
Here, ft(x) is updated using Newton stepping. Next,
the final classifier F (x) is updated with ft(x), and the
weights to be applied in the next iteration on the train-
ing examples are updated as wi ← wiexp(−yift(xi)).
In this way, the weak classifiers are combined to form

the final classifier F (x) such that F (x) =
T∑

i=1

ft(x) and

sign[F (x)] ∈ {+1,−1}.
We use an R package named ada [10] that imple-

ments the Gentle AdaBoost algorithm. The base clas-
sifier used by ada is a classification tree. So ada uses
another package called rpart [6] that implements recur-
sive partitioning of classification trees.

2.3.2 Training the Model
We split TE into a training set and a test set where

the training set is used to train a model and the test
set is used to validate the model. To study the effect
of training set size on the accuracy of the model, we
create 9 different training sets, each containing p% of
the entries in TE where p ∈ {10, 20, · · · , 90}. For every
training set we create a test set, denoted by Test1, that
contains the edges in T that are not contained in the
training set. We can use Test1 to validate the model
as we know the ground truth AS relationships for the
edges in Test1.

Since T only covers 23.14% of the edges in G, we

need another test set to validate the prediction results
for the edges in G that are not covered by T . Since
we do not know the ground truth AS relationships for
these edges, we need an alternative way to validate the
prediction results. CAIDA has developed a highly accu-
rate AS relationship inference algorithm [18] that infers
AS relationships from a set of AS paths. They publish
inferred AS relationship data for the first day of every
month since January 1998 at [2]. We have compared
CAIDA’s inferred AS relationship data for 11/01/2014
with T and found that they have a 98.88% match. Thus
we use CAIDA’s AS relationship inference dataset to
validate our prediction results for the edges in G − T .
Let C denote the set of edges that exist in both G and
CAIDA’s 11/01/2014 AS relationship inference data.
We create a test set Test2 = C −T , which contains the
edges in G that cannot be validated by T but can be
validated by CAIDA’s inferred AS relationship dataset.
Test2 contains 126,300 edges, which covers 68.79% of
the edges in G. Note that the models trained with dif-
ferent training sets share the same Test2.

We train 9 models using 9 different training sets. For
each model we compute the accuracy of the model on
Test1 and Test2 where accuracy is defined as the per-
centage of correctly classified instances over the total
number of instances in the test set. Figure 2 plots the
accuracy on the two test sets for the 9 models. We
see that the accuracy on Test1 is between 93.41% and
94.42%, and the accuracy on Test2 is between 91.50%
and 92.31%. The results show that the models can pre-
dict edge types in G with high accuracy.

Among the 9 models, the one trained with 70% of TE
has the best overall accuracy on Test1 and Test2. The
accuracy of this model on the training set is 94.10%
and the accuracy on Test1 is 93.95%. The fact that
the test accuacy is very close to the training accuracy
means that there is little, if any, overfitting. In the next
section, we present a detailed analysis of the prediction
results of this model.

3. ANALYSIS OF THE PREDICTION RE-
SULTS

In this section, we study the prediction results of the
model trained with 70% of TE. The training set, de-
noted by Train, contains 29,740 instances. Test1 con-
tains 12,746 instances and Test2 contains 126,300 in-
stances.

We use three metrics–accuracy, precision, and recall–
to evaluate the model. Accuracy is defined as the per-
centage of correctly classified instances over the total
number of instances. Precision is defined as the per-
centage of class members classified correctly over the
total number of instances classified as class members.
Recall is defined as the percentage of class members
classified correctly over the total number of class mem-

3

20 40 60 80

91
.5

92
.0

92
.5

93
.0

93
.5

94
.0

94
.5

Percentage of training data

A
cc

ur
ac

y(
%

)

91.5

91.65

92.06
91.99

92.15

91.95

92.31
92.24

91.86

93.41

93.76 93.72

94.07

93.9 93.86
93.95

94.02

94.42

Test1
Test2

Figure 2: Accuracy vs. training set size

bers.

3.1 Results for Test1

The performance metrics of the model on Test1 are
shown in the first column of Table 1. We see that Test1
covers 6.94% of the edges in G and the model has an
accuracy of 93.95% on Test1. The p2c class has high
precision (96.32%) and recall (94.28%). For the p2p
class, recall is high (93.34%) but precision is below 90%.

Test1 Test2 Test21 Test22

Size 12746 126300 125647 653
Coverage in G 6.94% 68.79% 68.43% 0.36%

Accuracy 93.95% 92.31% 92.40% 74.58%
Precision-P2C 96.32% 91.87% 92.04% 74.58%
Precision-P2P 89.83% 92.80% 92.80% NA
Recall-P2C 94.28% 93.45% 93.38% 100%
Recall-P2P 93.34% 91.10% 91.35% 0%

Table 1: Performance metrics of the model on
various test sets.

00 01 11 12 22 23

Test1 Accuracy 100% 97.94%91.12%88.71%93.96% 99%
#Edges in Test1 27 5862 4145 2347 265 100

%P2P edges in Test1 100.00% 2.37% 83.67%28.33%65.66%1.00%
#Edges in Train 75 13372 9776 5561 728 228

%P2P edges in Train 98.67% 2.29% 83.81%28.14%62.36%1.75%

Table 2: Test1 accuracy and characteristics of
Test1 and Train for different distance patterns.

We next examine the accuracy for the edges in Test1
with different distance patterns. We say an edge in G
has distance pattern ij if one of the endnodes has dis-
tance i and the other endnode has distance j. Fig. 3
shows the percentage of edges with different distance
patterns for T , Test1, and Train. We see that T ,

0.24%

45.27%

32.77%

18.61%

2.34% 0.77%

0.25%

44.96%

32.87%

18.7%

2.45%
0.77%

0.21%

45.99%

32.52%

18.41%

2.08% 0.78%

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

 T
 Test1

 Train

00 01 11 12 22 23
Distance Pattern

P
er

ce
nt

ag
e

of
 e

dg
es

Figure 3: Distribution of distance patterns in T ,
Test1, and Train.

Test1, and Train have the same set of distance patterns
{00, 01, 11, 12, 22, 23} and they have similar distribution
of the distance patterns. This is expected because Test1
and Train are subsets of T . Most edges fall under dis-
tance patterns 01 and 11, indicating that most of T are
extracted from BGP communities tagged by Tier-1 and
Tier-2 ASes.

Table 2 shows Test1 accuracy for each distance pat-
tern and the characteristics of Test1 and Train in terms
of the total number of edges and the percentage of p2p
edges in each distance pattern. It can be seen that
Test1 and Train have similar percentage of p2p edges
in each distance pattern. This explains why the model
trained with Train has high accuracy on Test1. For
distance patterns 00, 11, and 22, Test1 and Train have
high percentage of p2p edges while the percentage of
p2p edges is low for distance patterns 01, 12, and 23.
This means that most of the p2p relationships are es-
tablished between nodes in the same tier of the routing
hierarchy and most of the p2c relationships are estab-
lished between nodes in different tiers of the routing
hierarchy. We see that distance patterns 00, 01, and 23
have very high accuracy (between 97.94% and 100%).
This is because for these distance patterns almost all
edges in Train and Test1 are of the same type (i.e., the
percentage of p2p edges is either very low or very high).

3.2 Results for Test2

The performance metrics of the model on Test2 are
shown in the second column of Table 1. We see that

4

Test2 covers 68.79% of the edges in G and the model
has an accuracy of 92.31% on Test2. Both p2p and
p2c classes have similar precision and recall, which are
between 91.10% and 93.45%. Test1 and Test2 together
cover 75.73% of the edges in G. Thus, we have validated
75.73% of the prediction results using either the ground
truth or CAIDA’s inferred AS relationship dataset.

0.065%

13.967%

38.445%

34.912%

7.816%

4.4%

0.111% 0.24% 0.004% 0.039%

0.013%

4.935%

39.416%40.002%

9.584%

5.532%

0.139% 0.314% 0.057% 0.006%

0

10

20

30

40

0

10

20

30

40

 G
 Test2

00 01 11 12 22 23 33 34 44 45
Distance Pattern

P
er

ce
nt

ag
e

of
 e

dg
es

Figure 4: Distribution of distance patterns in G
and Test2

We plot in Fig. 4 the percentage of edges with dif-
ferent distance pattens for G and Test2. By comparing
Fig. 3 and Fig. 4 we see that G and Test2 contain
distance patterns 33, 34, 44, and 45 but T , Train, and
Test1 do not contain these distance patterns. Also, the
top two most represented distance patterns in G/Test2
are 11 and 12 while the top two most represented dis-
tance patterns in T/Train/Test1 are 01 and 11. This
means that T is biased towards edges in higher tiers
of the routing hierarchy in comparison to G. This is
due to the fact that T is extracted from BGP commu-
nities, which mostly come from Tier-1 and Tier-2 ASes.
The fact that the distance pattern distribution of Train
matches that of Test1 but does not match that of Test2
explains why the accuracy on Test1 (93.95%) is higher
than the accuracy on Test2 (92.31%).

To study how the absence of distance patterns 33,
34, 44, and 45 in Train affects the prediction accuracy
for these distance patterns, we split Test2 into two sub-
sets: Test21 and Test22. Test21 contains the edges with
distance patterns 00, 01, 11, 12, 22, 23 and Test22 con-
tains the edges with distance patterns 33, 34, 44, 45.

The performance metrics of the model on Test21 and
Test22 are shown in the third and the fourth columns of
Table 1. We see that the accuracy on Test21 is 92.40%
while the accuracy on Test22 is only 74.58%. This shows
that our model can make accurate predictions for the
edges whose distance patterns are represented in Train
but have low prediction accuracy for the edges whose
distance patterns are not represented in Train. We
note that while the accuracy on Test22 is significantly
lower than the accuracy on Test21, the overall accu-
racy on Test2 (92.31%) is only slightly lower than the
accuracy on Test21 (92.40%) because Test22 contains
only 0.52% of the edges in Test2. We also note that
our model predicts all the edges in Test22 as p2c. As
a result, Precision-P2P is NA, Recall-P2P is 0%, and
Recall-P2C is 100% in Table 1.

Table 3 shows Test2 accuracy and the characteristics
of Test2 and Train for each distance pattern in G. We
see that the accuracy for distance patterns 33, 34, 44,
and 45 are low as they are are not represented in Train.
Since all edges in distance patterns 33, 34, 44, and 45
are predicted to be p2c, the accuracy for each of these
distance patterns is equal to the percentage of p2c edges
in that distance pattern. For example, the accuracy for
distance pattern 33 is 81.82% because 81.82% of the
edges with distance pattern 33 in Test2 are p2c. All dis-
tance patterns that are represented in Train have high
accuracy (between 92.07% and 98.67%) except for 01,
which has an accuracy of 85.61%. This is because while
15.66% of the 01 edges in Test2 are p2p, only 2.29% of
the 01 edges in Train are p2p. Thus, our model has
not seen enough p2p edges with distance pattern 01 in
Train to make accurate predictions.

We observe in Table 3 that for Test2 the percentage
of p2p edges in distance pattern ii decreases as i in-
creases from 0 to 3. For example, 94.21% of the edges
in distance pattern 00 are p2p, and only 18.18% of the
edges in distance pattern 33 are p2p. This means that
higher tier ASes are more likely to peer with another
AS in the same tier.

4. VALIDATING CONSISTENCY OF THE
MODEL

We apply our model to other BGP graphs to evaluate
the consistency of our model. We use the Internet AS-
level topology data archived by the Internet Research
Lab (IRL) at UCLA. IRL publishes daily snapshots of
AS topologies [4] derived from BGP data collected by
Route Views, RIPE RIS, PCH, and Internet2. We cre-
ate 10 AS graphs using the IRL AS topology data, one
for each month between April 2014 and February 2015
except May 20144. The AS graph for a specific month

4We do not create an AS graph for May 2014 because the
AS relationship inference data for May 2014 is not available
at CAIDA’s website. As a result, we cannot validate our

5

00 01 11 12 22 23 33 34 44 45

Accuracy 94.12% 85.61% 92.07% 92.18% 94.55% 98.67% 81.82% 78.84% 50% 36.11%
#Edges in Test2 17 6233 49782 50523 12105 6987 176 397 8 72

%P2P edges in Test2 94.12% 15.66% 77.31% 32.01% 40.78% 1.30% 18.18% 21.16% 50.00% 63.89%
#Edges in Train 75 13372 9776 5561 728 228 0 0 0 0

%P2P edges in Train 98.67% 2.29% 83.81% 28.14% 62.36% 1.75% NA NA NA NA

Table 3: Test2 accuracy and characteristics of Test2 and Train for different distance patterns.

04/14 06/14 07/14 08/14 09/14 10/14 11/14 12/14 01/15 02/15

#Edges in graph 195068 197271 198160 204703 204704 210205 207781 210195 212543 204959
|Test1| 11386 11730 11940 12106 12284 12582 12586 12431 12215 12078
|Test2| 123225 122423 123330 124450 126228 125237 127048 129581 130097 140321

Coverage by Test1 ∪ Test2 69.01% 68.00% 68.26% 66.71% 67.66% 65.56% 67.20% 67.56% 66.96% 74.36%
Test1 Accuracy 92.85% 92.54% 92.40% 92.52% 92.49% 92.54% 92.53% 92.45% 92.66% 92.42%

Test1 Precision-P2C 95.85% 95.51% 95.46% 95.76% 95.46% 95.83% 95.72% 95.62% 96.09% 95.87%
Test1 Precision-P2P 87.86% 87.53% 87.25% 87.05% 87.37% 87.03% 87.14% 87.07% 86.83% 86.62%
Test1 Recall-P2C 92.92% 92.83% 92.66% 92.58% 92.86% 92.51% 92.63% 92.64% 92.55% 92.35%
Test1 Recall-P2P 92.88% 92.02% 91.94% 92.42% 91.78% 92.60% 92.35% 92.11% 92.60% 92.57%
Test2 Accuracy 92.07% 92.30% 92.06% 90.86% 92.25% 92.33% 92.40% 92.22% 92.24% 91.14%

Test2 Precision-P2C 92.65% 93.00% 92.49% 90.42% 92.78% 93.02% 92.83% 92.81% 92.92% 90.12%
Test2 Precision-P2P 91.39% 91.50% 91.56% 91.36% 91.62% 91.57% 91.94% 91.61% 91.54% 92.21%
Test2 Recall-P2C 92.73% 92.86% 92.73% 92.18% 92.41% 92.40% 92.39% 92.00% 91.90% 92.37%
Test2 Recall-P2P 91.30% 91.62% 91.28% 89.44% 92.02% 92.25% 92.40% 92.46% 92.60% 89.92%

Table 4: Performance metrics of the model on various IRL graphs

is created by merging the daily AS topology data pub-
lished by IRL. We note that the AS graph for February
2015 is created using the AS topology data for the first
14 days of the month as data for the rest of the month
are not available at IRL’s website. The IRL graphs are
more complete than our graph G because we do not use
BGP data from PCH and Internet2 to create G.

We create two test sets for every IRL graph. The
first test set, denoted by Test1, contains the edges that
are in both the IRL graph and T but are not in Train.
The prediction results for Test1 can be validated using
T . The second test set, denoted by Test2, contains the
edges that are in both the IRL graph and CAIDA’s AS
relationship inference data for the corresponding month
but are not in T . The prediction results for Test2 can
be validated using CAIDA’s AS relationship inference
dataset. Table 4 shows the performance metrics of our
model on the two test sets for the 10 IRL graphs. The
table also shows the size of each IRL graph and the size
of the two test sets for each IRL graph. We see that
the accuracy on Test1 is between 92.40% and 92.85%.
The accuracy on Test2 is between 90.86% and 92.40%,
and 8 out of the 10 graphs have over 92% accuracy.
The results show that while our model is trained us-
ing degree and distance attributes computed from our
November 2014 BGP graph G, the model achieves con-
sistently high accuracy on other BGP graphs.

5. CONCLUSION AND FUTURE WORK
We present a new machine learning approach to edge

type prediction in AS graphs. Given an AS graph, our

prediction results using CAIDA’s data.

method uses the AdaBoost algorithm to train a model
that predicts the edge types (p2p or p2c) in the graph
using two node attributes computed from the graph–
degree and minimum distance to a Tier-1 node. We
created a BGP graph using November 2014 BGP data
from Route Views and RIPE, and trained a model for
the graph using ground truth AS relationships extracted
from BGP communities. The model achieves 93.95%
and 92.31% accuracy on Test1 (validated by ground
truth) and Test2 (valided by CAIDA’s AS relationship
inference data), respectively. Furthermore, our model
achieves similar acuracy on ten BGP graphs derived
from IRL’s AS topology data.

While we only consider BGP graphs in this work,
our method can be used to build models for AS graphs
derived from other data sources. In our future work we
will build models for traceroute graphs and IRR graphs.
We will also use other AS attributes (e.g., AS type) to
improve the prediction accuracy.

Acknowledgments
We would like to thank Kris De Brabanter for his helpful
comments and discussions.

6. REFERENCES
[1] Archipelago Measurement Infrastructure.

http://www.caida.org/projects/ark.
[2] CAIDA’s AS Relationship Inference Dataset.

http://data.caida.org/datasets/as-
relationships/serial-1/.

[3] The DIMES Project.
http://www.netdimes.org/new/.

6

[4] Internet AS-level Topology Archive.
http://irl.cs.ucla.edu/topology/.

[5] The Internet Routing Registry.
http://www.irr.net.

[6] Package rpart. http://cran.r-
project.org/web/packages/rpart/rpart.pdf.

[7] RIPE Routing Information Service.
http://www.ripe.net/data-tools/stats/ris/.

[8] Tier-1 network.
http://en.wikipedia.org/wiki/Tier 1 network.

[9] University of Oregon Route Views Project.
http://www.routeviews.org.

[10] M. Culp, K. Johnson, and G. Michailides. ada:
An R package for stochastic boosting. Journal of
Statistical Software, 17(2):1–27, 9 2006.

[11] G. Di Battista, M. Patrignani, and M. Pizzonia.
Computing the types of the relationships between
autonomous systems. In IEEE INFOCOM,
volume 1, pages 156–165, 2003.

[12] X. Dimitropoulos, D. Krioukov, M. Fomenkov,
B. Huffaker, Y. Hyun, k. claffy, and G. Riley. AS
relationships: inference and validation. ACM
SIGCOMM Computer Communication Review,
37(1):29–40, 2007.

[13] X. Dimitropoulos, D. Krioukov, G. Riley, and
K. Claffy. Revealing the autonomous system
taxonomy: The machine learning approach.
Passive and Active Measurements Workshop
(PAM), 2006.

[14] Y. Freund and R. Schapire. A decision-theoretic
generalization of on-line learning and an
application to boosting. Journal of Computer and
System Sciences, 55(1):119–139, 1997.

[15] J. Friedman, T. Hastie, and R. Tibshirani.
Additive logistic regression: a statistical view of
boosting. The Annals of Statistics, 28(2):337–407,
2000.

[16] L. Gao. On inferring autonomous system
relationships in the Internet. IEEE/ACM
Transactions on Networking, 9(6):733–745, 2001.

[17] V. Giotsas, M. Luckie, B. Huffaker, et al. Inferring
complex AS relationships. In The Internet
Measurement Conference, pages 23–30, 2014.

[18] M. Luckie, B. Huffaker, A. Dhamdhere,
V. Giotsas, and kc claffy. AS relationships,
customer cones, and validation. In The Internet
Measurement Conference, pages 243–256, 2013.

[19] A. Lutu, M. Bagnulo, J. Cid-Sueiro, and
O. Maennel. Separating wheat from chaff:
Winnowing unintended prefixes using machine
learning. In IEEE INFOCOM, pages 943–951,
2014.

[20] P. Mahadevan, D. Krioukov, M. Fomenkov,
X. Dimitropoulos, A. Vahdat, et al. The Internet
AS-level topology: three data sources and one

definitive metric. ACM SIGCOMM Computer
Communication Review, 36(1):17–26, 2006.

[21] R. Oliveira, D. Pei, W. Willinger, B. Zhang, and
L. Zhang. The (in)completeness of the observed
Internet AS-level structure. IEEE/ACM
Transactions on Networking, 18(1):109–122, 2010.

[22] R. E. Schapire. Explaining AdaBoost. In
Empirical Inference, pages 37–52. Springer, 2013.

[23] L. Subramanian, S. Agarwal, J. Rexford, and
R. H. Katz. Characterizing the Internet hierarchy
from multiple vantage points. In IEEE
INFOCOM, volume 2, pages 618–627, 2002.

[24] N. Williams, S. Zander, and G. Armitage. A
preliminary performance comparison of five
machine learning algorithms for practical IP
traffic flow classification. ACM SIGCOMM
Computer Communication Review, 36(5):5–16,
2006.

[25] J. Xia and L. Gao. On the evaluation of AS
relationship inferences. In IEEE Global
Telecommunications Conference, volume 3, pages
1373–1377, 2004.

[26] K. Zhang, A. Yen, X. Zhao, D. Massey, S. F. Wu,
and L. Zhang. On detection of anomalous routing
dynamics in BGP. In NETWORKING 2004,
pages 259–270. Springer, 2004.

7

