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ABSTRACT 

 

The maize (Zea mays L.) in vivo maternal doubled haploid system has been 

widely applied to maize breeding and genetics in recent decades and is an important part 

of the majority of public and private maize breeding programs today. The principal 

advantage of the doubled haploid system is the ability to generate completely 

homozygous inbred lines in as little as two seasons. Other advantages to this system 

include more rapid integration of loci of interest and increased usefulness over traditional 

lines developed through self-pollination. In this dissertation, some of the major problems 

in the maternal doubled haploid system are addressed. Namely, improvement of maternal 

inducers, improved understanding of the genetics controlling inducibility, development of 

an automated system to sort haploid kernels, investigation and application of spontaneous 

chromosome doubling, and a proposal for the acceleration of the breeding cycle beyond 

doubled haploids through the in vitro nursery. This dissertation provides some new 

insight into these problems, as follows. The development and release of a new improved 

maternal haploid inducer for use in doubled haploid programs. Improved understanding 

of the quantitative nature of inducibility and the effects of misclassification are discussed. 

Successful automated discrimination of haploid and diploid kernels using optical and 

fluorescence methods is described. In an effort to make the doubled haploid system more 

efficient and safe, a bypass of the colchicine doubling step is proposed through the 

application and investigation of spontaneous chromosome doubling in haploid plants. 

Finally, as a proposal for what could be the next step in accelerating the breeding cycle, 

the in vitro nursery and its applications is discussed.    
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CHAPTER ONE 

 GENERAL INTRODUCTION 

The second highest produced crop and the number one cereal grain in the world 

(1.02 billion tons in 2013 valued at $67.1 billion) (FAOSTAT, 2013), maize (Zea mays 

L.) is an important row crop used as food, feed, and fuel. From its most obvious use as an 

animal feed, to use in cosmetics, tires, and molded plastic, maize is a highly versatile 

crop providing raw materials for many industries.  

 

Originating from Mexico and Central America from its ancestor Teosinte, maize 

has been bred for over 5,000 years. The maize that is commonly known today is vastly 

different from maize as it was 10,000 years ago. Teosinte resembles maize. However, its 

utility as a crop was not sufficient and over the years Native Americans selected and 

improved maize into the crop grown today. Today’s maize is an annual, monoecious 

grass with imperfect flowers. Feed maize, the most commonly grown type, is typically a 

single stalk which produces one ear per plant. Maize is a unique grass in that its male 

flower (tassel) is located atop the plant and the ear (female) is found typically midway up 

the stalk growing between stalk and leaf. This unique architecture makes maize a highly 

outcrossing (allogamous) crop. 

 

Over time, maize was slowly domesticated and adapted to increasingly higher 

latitudes expanding from the tropics into the temperate zones of the United States and 

eventually to Europe and around the world. In North America, maize production is 

concentrated on the plains of the Midwestern United States with most of the production 
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occurring in Iowa, Illinois, Nebraska, and Indiana. Temperate climate, high average 

rainfall, and fertile soil provide an ideal environment for production. Average maize 

yields in high production regions range from 10.5-12.9 metric tons/hectare with 

maximum yields exceeding 21 metric tons/hectare. These high yields resulted from a 

combination of both breeding and agronomic improvement (Duvick, 2005).  

 

Evolution of maize breeding 

Maize breeding, as we know it today has evolved from a very primitive, 

essentially mass selection scheme, to the multi season per year single cross hybrid 

programs today. Beginning with Shull (1908) and East (1908), the concept of extracting 

homozygous and homogeneous inbred lines from heterozygous and heterogeneous open-

pollinated varieties and crossing them to create single cross hybrids began the transition 

to maize breeding as we know it today.  However, due to poor performance of  inbred 

lines due to inbreeding depression it was not economically viable to produce hybrid seed 

until the proposal of double cross (4-way) hybrids was introduced (Jones, 1918). The 

recognition that double cross hybrids could provide a yield advantage over open-

pollinated varieties led to an increase in the research and development of inbred lines. 

However, it was soon realized that there is an enormous number of possible combinations 

between lines and that not all line combinations out yielded their open pollinated variety 

progenitors. This, coupled with the seven generations it takes to generate an inbred 

created a major problem (Hallauer, 1988). Research then turned towards the prediction of 

hybrid performance, and the use of testers to evaluate combining ability of inbred lines. 

Jenkins (1934), proposed a method for the prediction of four way hybrid performance as 
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a way to more easily select those four way cross combinations to be made. Slowly, 

double cross hybrids completely phased out open pollinated varieties and over time, the 

double cross hybrids were replaced by single cross hybrids due to increased performance 

and understanding and exploitation of heterotic groups. In 1933 no double cross hybrids 

were being grown in the U.S., but by 1945 over 50% of the area was planted in double 

cross hybrids and quickly rose to 100% by 1960 (Hallauer, 1988. Subsequently, in 1960 

only a very small percentage of the area was planted in single cross hybrids, but by the 

year 2000, nearly 100% of all maize grown in the U.S. was single cross hybrids. Despite 

all of these advancements, development of inbred lines remained an expensive and time 

consuming endeavor, requiring at least 4 years even with off season nurseries. 

 

Doubled Haploids 

  First described by Randolph (1932) haploid plants in maize were found by Chase 

(1947) to be a natural occurrence in typical maize populations in the United States.  It 

was soon understood that these sterile haploid maize plants could be useful for genetic 

and breeding efforts.  With the discovery that the chemical colchicine can be used to 

artificially double the genome present in haploid plants, fertile diploid lines could be 

artificially produced and are known today as doubled haploids (DHs) (Blakeslee and 

Avery, 1937; Gayen et al., 1994).  There are two methods that are commonly used to 

produce DHs: in vitro anther/spore culture (Germanà, 2010) and in vivo induction of 

haploidy using specialized inducer lines (Chalyk, 1994; Coe, 1959; Rober et al., 2005).  

The advantage of DHs is that they are instantly 100% homozygous.  This is a substantial 
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time saving over traditional self-pollination, where it takes four years to develop an F8, 

which is theoretically 99.6% homozygous, assuming two seasons per year.   

Maize DH lines are most commonly developed using the in vivo maternal induction 

method, which is simple and more genotype-independent than in vitro methods in maize 

(Geiger, 2009).  Over time, lines that produced a significantly higher proportion of 

haploid kernels per ear, when used as maternal inducers, were identified (Bordes et al., 

1997; Chalyk, 1994; Coe, 1959; Rober et al., 2005).  Inducer parents have all of the same 

characteristics of other maize, but heritably produce haploid kernels when crossed with 

another (donor) line of interest.  Inducers serve to “induce” haploid embryos which are 

later doubled to generate DHs.  The donor population is analogous to any breeding 

population. However, instead of some form of selection and self-pollination the 

population is crossed to the inducer.  In vivo inductions can be made with either maternal 

or paternal inducers each having a different genetic consequence.  In the case of a 

maternal inducer, the goal is to produce maternally derived haploid kernels and the donor 

population serves as the female.  Bulk pollen from the inducer (male) is used to pollinate 

the donor population, since the inducer is used as the male parent the cytoplasm of the 

maternal haploids will come from the donor population.  For paternal inducers the goal is 

to produce paternally derived haploid kernels and the donor population serves as the male 

parent.  Pollen from the donor population is used to pollinate the inducer, and thus the 

cytoplasm of the paternally derived haploids originates from the inducer. 

 

Four objectives are proposed for the overall improvement and adaptation of the 

DH process to the Midwestern U.S.  The objectives are 1) investigation of the maternal 
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genetic components controlling inducibility of donor parents, 2) investigation of rates, 

genetic components and utility of spontaneous chromosome doubling, 3) development of 

improved and adapted maternal haploid inducers, and 4) automation of the selection of 

haploid progeny. 

 

The cytological process that is responsible for the induction of haploid embryos 

during in vivo induction is not known, but two competing hypotheses exist.  The first 

involves a failure of fertilization.  The pollen does not fertilize the embryo, but induces 

its development, leading to a haploid embryo (Chalyk et al., 2003).  The second 

hypothesis involves successful fertilization and subsequent expulsion of the 

chromosomes from the inducer parent (Wedzony et al., 2002; Zhang et al., 2008).  

Though inducibility may seem qualitative, a study by Lashermes and Beckert (1988) 

showed that a cross between an inducer line and a non-inducer line generated quantitative 

variation for inducibility.  This prompted a study by Prigge et al. (2012) to investigate the 

genetics underlying the quantitative variation for inducibility.  A total of seven QTL on 

five chromosomes were found, with two major effect QTL on chromosomes 1 and 9, 

which explained 80-90% of the genetic variance for inducibility (Prigge et al., 2012).  

This study provides breeders, who use the DH process and/or develop haploid inducer 

lines, the ability to use marker assisted selection to accelerate the breeding of improved 

and adapted inducer lines.  However, the discovery that there is a heritable genetic 

component for inducibility in the maternal inducer leads to the question, whether there is 

a heritable genetic component in the donor parent that affects inducibility. This question 

was initially addressed by Kebede et al. (2011) using a set of ten white seeded inbreds 
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developed by CIMMYT in a half diallel.  The ten inbreds were crossed in all possible 

combinations without selfs and reciprocals.  The F1 progeny of the half diallel were 

induced and inducibility was scored.  A significant general combining ability effect was 

found, while specific combining ability was not significant, suggesting that inducibility is 

an additive trait.   

 

Artificial doubling of genomes in plants using colchicine has first been reported 

by Blakeslee and Avery (1937).  Colchicine has long been known to artificially double 

ploidy levels by inhibition of mitotic spindle apparatus development (Borisy and Taylor, 

1967).  Artificial genome doubling became more efficient in maize, when it was 

discovered that colchicine treatment applied to exposed coleoptiles improves the 

doubling rate (Gayen et al., 1994; Geiger, 2009).  However, this method is not 100% 

successful, with doubling rates ranging from 16% to 49%, depending on the method used 

(Eder and Chalyk, 2002). Moreover, colchicine treatment costs time and labor.  

Spontaneous doubling of chromosomes has been reported in many grass species and has 

played an important role in the formation of polyploid crops. However, when considering 

spontaneous doubling, rates are usually too low to be implemented in a DH program 

(Castillo et al., 2009).  

 

The inducer used by our group is a F1 hybrid between RWS and RWK-76 (Rober 

et al., 2005), and developed in Germany. It is poorly adapted to the temperate climate of 

the U.S.  When grown in the Midwest U.S., the inducer hybrid is small and prone to 

lodging and has other poor agronomic qualities.  Introgressing induction loci into elite 
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temperate lines will help to solve most of the agronomic problems that the inducer 

currently has such as lodging and adaptation to the Iowa climate.  Resistance to lodging, 

improved adaptation and the ability to produce haploid kernels are essential qualities of 

any haploid inducer line developed.  However, another important quality of any good 

inducer is the ability to shed copious amounts of pollen for an extended period of time.  

Elite lines of maize have been bred for reduced tassel size over time due to the negative 

correlation between tassel size and grain yield caused by shading of upper leaves 

(Duncan et al., 1967; Fischer et al., 1987; Hunter et al., 1969). Therefore, introgressing 

the induction loci into elite maize lines will likely result in the development of lines with 

reduced tassel size and pollen shed density. Another pollen trait that is beneficial is 

pollen heat tolerance. An inducer with pollen that can remain fertile under extreme heat, 

which is common in the summer and winter nurseries used for DH development, would 

produce more successful induction crosses and extend the pollination window.  

 

Haploid kernels encompass only a small fraction of the total number of kernels 

produced in an induction cross (~8%). Haploid kernel selection is thus an important and 

time consuming step in the development of DH lines.  The most common selection 

method is based on the R1-navajo (R1-nj) allele of the r1 gene (Geiger, 2009; Nanda and 

Chase, 1966). The R1-nj allele is a dominant allele in the anthocyanin pathway that 

produces a visible purple/red hue in the crown of the aleurone, anthers, roots, and 

coleoptiles (Ludwig and Wessler, 1990). The utility of R1-nj is that the presence of 

pigment in the crown of the aleurone and embryo can be readily identified in mature 

kernels through visual inspection.  Haploid kernels exhibit color in the crown of the 
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aleurone, but not in the embryo.  This signifies that fertilization of the central cell was 

successful, but fertilization of the egg cell was not. On average 8% (Geiger, 2009) of all 

kernels of an induction cross are haploids, though this varies between genotypes (Prigge 

et al., 2011; 2012).   

 

There are several problems with the R1-based selection system, the most obvious 

being the time required for selection of haploid kernels. Each individual kernel must be 

visually inspected and the majority of kernels are not easily distinguishable. The extent to 

which the embryo coloration is seen through the seed coat also varies within and between 

genotypes, complicating selection.  If the donor genotype carries the C1
I
 allele (colorless 

aleurone), that is dominant to C1 (colored aleurone), then the resulting kernels will all be 

yellow or white depending on the state of the Y1 locus (Ford, 2000). Those kernels 

cannot be selected based on red color, since C
1
 is epistatic to R1-nj. Despite these 

problems, the R1-nj marker system continues to be the most popular system employed for 

haploid kernel selection. Though it is a simple process, the desire for automation is 

substantial. 

 

The objectives of this thesis were to contribute to improving the efficiency of the 

maize DH system by 1) identification of highly inducible lines , 2) identification of 

spontaneous chromosome doubling lines, 3) development of new inducer lines adapted to 

Midwest U.S., and 4) establishment of a method for potential automated sorting of 

haploid kernels. In chapter 5, an outlook on further acceleration of breeding cycles for 

maize and other crops has been proposed.  
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Organization of the thesis 

This thesis contains one published research article (Chapter 6), one manuscript 

submitted for publication (Chapter 5), and three manuscripts (Chapters 2-4) in 

preparation for submission for publication. The general conclusion of all the chapters is 

summarized in Chapter 7 as an overview of the improvements identified and future 

works. The general introduction provides a historical perspective to maize breeding and 

how this work relates. Literature for each individual experiment is provided for each 

chapter as a context. 

 

Author Contributions 

Chapter 2 

GD designed the experiment and conducted most of the data collection, all the data 

analysis and summary, as well as writing of the manuscript. 

UF provided input for experimental design and assisted with data collection. 

BT assisted with data collection. 

DN provided input for experimental design and the statistical analysis 

TL provided input for the experimental design and assisted with the interpretation of 

results and critical commentary for the manuscript. 

Chapter 3 

UF generated populations for line development, collected data, made selections, and 

provided critical commentary for the manuscript 



10 

 

GD made selections in the populations, collected data, assisted with design of 

experiments, assisted with data analysis and wrote the manuscript. 

TL assisted with design of experiments and population selection, assisted with data 

analysis, and provided critical commentary for the manuscript. 

Chapter 4 

GD designed the experiment and conducted most of the data collection, all the data 

analysis and summary, as well as writing of the manuscript. 

UF provided input for experimental design and assisted with data collection. 

BT assisted with data collection. 

JR assisted with data collection. 

MB conducted data collection at offsite location. 

NY conducted data collection at offsite location. 

AV assisted with data collection. 

SM conducted data collection at offsite location. 

DN provided input for the experimental design and the statistical analysis. 

TL provided input for the experimental design and assisted with the interpretation of 

results and critical commentary for the manuscript. 

Chapter 5 

GD assisted with design of the experiment, developed materials for data collection, 

analyzed the data and wrote the manuscript. 

JC assisted with design of the experiment, interpretation of results and critical 

commentary for the manuscript. 

ME conducted all data collection 



11 

 

TL assisted with design of the experiment, interpretation of results and critical 

commentary for the manuscript. 

Chapter 6  

GD provided development of the concept for the manuscript as well as the writing of the 

manuscript. 

UF provided critical commentary on the concept and the manuscript. 

TL provided the initial concept and development of the concept as well as critical 

commentary for the manuscript. 

 

References 

 Blakeslee, A.F., and A.G. Avery. 1937. Methods of inducing doubling of chromosomes 

in plants by treatment with colchicine. Journal of Heredity 28:393-411 

Bordes, J., R.D. deVaulx, A. Lapierre, and M. Pollacsek. 1997. Haplodiploidization of 

maize (Zea mays L.) through induced gynogenesis assisted by glossy markers and 

its use in breeding. Agronomie 17:291-297 

Borisy, G.G., and E.W. Taylor. 1967. The mechanism of colchicine. Journal of Cell 

Biology 34:525-533 

Castillo, A.M., L. Cistue, M.P. Valles, and M. Soriano. 2009. Chromosome doubling in 

monocots. In: Touraev, A. et al., editors, Advances in haploid production in 

higher plants, Springer, Netherlands. p. 329-338 

Chalyk, S., A. Baumann, G. Daniel, and J. Eder. 2003. Aneuploidy as a possible cause of 

haploid-induction in maize. Maize Genetics Cooperation Newsletter 77:29 



12 

 

Chalyk, S.T. 1994. Properties of maternal haploid maize plants and potential application 

to maize breeding. Euphytica 79:13-18 

Chase, S.S. 1947. Techniques for isolating monoploid maize plants. Journal of Botany 

34:582 

Coe, E.H. 1959. A line of maize with high haploid frequency. American Naturalist 

93:381-382 

Duncan, W.G., W.A. Williams, and R.S. Loomis. 1967. Tassels and the productivity of 

maize. Crop Science 7:37-39 

Duvick, D.N. 2005. The contribution of breeding to yield advances in maize (Zea mays 

L.), in : L.S. Donald (Ed.), Advances in Agronomy, Academic Press. pp. 83-145 

East, E.M. 1908. Inbreeding in corn. Connecticut Agric. Exp. Stn. Rep. 1907:419-428 

FAOSTAT. 2013. Food and agricultural commodities production/Commodities by 

regions.  Food and Agriculture Organization of the United Nations: Statistics 

Division. http://faostat3.fao.org/faostat-

gateway/go/to/browse/rankings/commodities_ by_regions/E (accessed 28 Oct 

2015) 

Fischer, K., G. Edmeades, and E. Johnson. 1987 Recurrent selection for reduced tassel 

branch number and reduced leaf area density above the ear in tropical maize 

populations. Crop Science 27:1150-1156 

Ford, R.H. 2000. Inheritance of kernel color in corn: Explanations and investigations. 

Am. Biol. Teach. 6:181-188 

Gayen, P., J.K. Madan, R. Kumar, and K. Sarkar. 1994. Chromosome doubling in 

haploids through colchicine. Maize Genetics Cooperation Newsletter 68:65 



13 

 

Geiger, H.H. 2009. Doubled Haploids. In: Bennetzen, J.L. and S. Hake, editors, 

Handbook of Mazie. Springer, New York. p. 641-657 

Germana, M.A. 2010. Anther culture for haploid and doubled haploid production. Plant 

Cell, Tissue and Organ Culture. 104:283-300 

Hallauer, A.R., M.J. Carena, and J.B. Miranda. 1988. Quantitative genetics in maize 

breeding. In: Prohens, J., F. Nuez, and M.J. Carena, editors, Handbook of Plant 

Breeding. Springer, New York, NY. p. 1-31 

Hunter, B., T. Daynard, D. Hume, J. Tanner, J. Curtis, and L. Kannenberg. 1969. Effect 

of tassel removal on grain yield of corn (Zea mays L.). Crop Science 9:405-406 

Jenkins, M.T. 1934. Methods of estimating the performance of double crosses in corn. 

Journal of the American Society of Agronomy 26:199-204  

Jones, D.F. 1918. The effects of inbreeding and crossbreeding upon development. Conn. 

Agric. Exp. Stn. Bull. 207:5-100 

Kebede, A.Z., B.S. Dhillon, W. Schipprack, J.L. Araus, M. Banziger, K. Semagn, G. 

Alvarado, and A.E. Melchinger. 2011. Effect of source germplasm and season on 

the in vivo haploid induction rate in tropical maize. Euphytica 180:219-226 

Lashermes, P. and M. Beckert. 1988. Genetic control of maternal haploidy in maize (Zea 

mays L.) and selection of haploid inducing lines. Theoretical and Applied 

Genetics 76:405-410 

Ludwig, S.R., and S.R. Wessler. 1990. Maize R gene family: Tissue specific helix-loop-

helix proteins. Cell 62:849-851 

Nanda, D.K., and S.S. Chase. 1966. An embryo marker for detecting monoploids of 

maize (Zea mays L.). Crop Science 6:213-215 



14 

 

Prigge, V., C. Sanchez, B.S. Dhillon, W. Schipprack, J.L. Araus, M. Banziger, and A.E. 

Melchinger. 2011. Doubled haploids in tropical maize: I. Effects of inducers and 

source germplasm on in vivo haploid induction rates. Crop Science 51:1498-1506 

Prigge, V., X. Xu, L. Li, R. Babu, S. Chen, G.N. Altin, and A.E. Melchinger. 2012. New 

insights into the genetics of in vivo induction of maternal haploids, the backbone 

of doubled haploid technology in maize. Genetics 190:781-793 

Randolph, L.F. 1932. Some effects of high temperature on polyploidy and other 

variations in maize. PNAS 18:222-229 

Rober, F.K., G.A. Gordillo, and H.H. Geiger. 2005. In vivo haploid induction in maize – 

performance of new inducers and significance of doubled haploid lines in hybrid 

breeding. Maydica 50:275-283 

Shull, G.H. 1908. The composition of a field of maize. Am. Breeders’ Assoc. Rep. 4:296-

301 

Wedzony, M., F. Rober, and H.H. Geiger. 2002. Chromosome elimination observed in 

selfed progenies of maize inducer line RWS, VII International Congress on 

Sexual Plant Reproduction. Maria Curie-Sklodowska. University Press, Lublin, 

Poland. pp. 173 

Zhang, Z., F. Qui, Y. Liu, K. Ma, Z. Li, and S. Xu. 2008. Chromosome elimination and 

in vivo haploid production induced by Stock-6 derived inducer line in maize (Zea 

mays L.). Plant Cell Rep. 27:1851-1860 

  



15 

 

CHAPTER TWO 

 A DIALLEL ANALYSIS OF A MAIZE DONOR POPULATION RESPONSE TO 

IN VIVO MATERNAL HAPLOID INDUCTION I: INDUCIBILITY 

 

Gerald N. De La Fuente
1
, Ursula K. Frei

1
, Benjamin Trampe

1
, Dan Nettleton

2
, and 

Thomas Lübberstedt
1,*

 

Manuscript in preparation for submission to Crop Science. Abstract, structure, and 

references are all formatted according to journal standards. 

 

Abstract 

The maize in vivo maternal doubled haploid (DH) system is an important tool 

used by maize breeders and geneticists around the world. The ability to rapidly produce 

DH lines of maize for breeding allows breeders to quickly respond to new selection 

criteria based on the ever changing biotic and abiotic stresses that maize is subjected to 

across its growing area. There are two important steps in the generation of DH lines using 

the in vivo maternal DH system: 1) the production and identification of haploid progeny, 

and 2) the doubling of chromosomes to create fertile, diploid inbred lines that can be used 

for topcross/per se evaluation. For this study, the focus is the first step, the production 

and identification of haploid progeny. In this study, a diallel mating between six inbred 

lines of maize GF1, GF2, GF3, GF4, GF5 and GF6 was produced to study the genetic 

makeup of inducibility in temperate maize germplasm. A maximum estimated rate of 

inducibility was found in GF1/GF2 at 15%. Significant general combining ability (GCA) 

effects as well as significant effects for specific combining ability (SCA), reciprocal 

effects (REC), environmental effects (ENV), as well as GCA by ENV and SCA by ENV 

interactions were found. Misclassification rates ranged from 0-45% in the 30 hybrids 
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considered. This study supports the use of germplasm with improved inducibility for 

breeding to improve rates of inducibility in germplasm which has low induction rates.    

 

Introduction 

Maize (Zea mays L.) is a diverse crop, whose primary application is for food and 

feed. However, its reach extends far beyond this, providing raw materials for different 

industries. Maize has been an exemplary model for understanding the power of selection 

as over the past century we have seen the transition from open pollinated varieties to the 

highly productive single cross hybrids of today. In maize breeding, as in breeding of all 

crops, speed is key. The ability to rapidly, efficiently, and economically run breeding 

cycles is essential to both a successful breeding program, and to the overall security of a 

robust food, feed, and fuel supply. Though plant breeding is currently limited biologically 

by the necessity of floral organs for minimization of generation time (De La Fuente, et al. 

2013), over time breeders have integrated tools such as winter nurseries and embryo 

rescue techniques to increase the number of generations possible in each year. 

 

Despite these advantageous techniques, there still remains the complexity that it 

takes some time (8 generations/4 years) to develop an inbred line suitable for full scale 

topcross evaluation. Although, it is true that early generation testing provides a hint as to 

the performance of lines in development (Hallauer et al., 1988), there still remained the 

necessity to produce a homozygous and homogeneous inbred line which can be stably 

reproduced and protected which could take 7 years to complete. Doubled haploids (DHs) 

provided a solution to this challenge. 
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First recognized by Chase (1947), it is understood that haploid plants occur 

naturally in maize at a low frequency. Theoretically, their utility for maize breeding and 

genetics was immediately understood (Chase, 1947). However, it was not until further 

advancements in maternal inducers and chromosome doubling techniques were refined 

that maize DHs became commonplace in breeding programs (Coe, 1959; Geiger, 2009, 

Rober et al., 2005). Today, a large percentage of commercial and public maize breeding 

is conducted through the use of the DH system. The ability to generate a new fully 

homozygous and homogeneous inbred line in 12 months or less provides a speed 

advantage that allows breeders to quickly respond to new market demands and shifts in 

selection targets. 

 

The maize DH system used today is known as the in vivo maternal haploid 

system. Though this method is most popular (due to its ease of use and less genotype 

dependency), two other methods exist: in vivo paternal haploid system, and in vitro 

anther culture system (Geiger, 2009). Herein, the focus will be on the in vivo maternal 

haploid system and the genetics which control specific steps in the process. This system 

involves two key biological steps: 1) production of haploid progeny, and 2) doubling of 

chromosomes (De La Fuente et al., in preparation).  

 

In most inbred line development programs, the breeding cycle begins with the 

cross of two (or more) parents of interest. Note that it is possible to produce DH lines 

from any type of line, population, cross, backcross etc. It is even possible to generate DH 
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lines from an advanced inbred, though it would be of little benefit. Often (since speed is 

most critical) breeders use an F1 breeding cross as the donor parent. The donor parent, 

which is the female in this system, provides all of the genetic information that is passed 

on to the haploid progeny. These donor F1 are pollinated by a male that is termed a 

maternal haploid inducer. Though somewhat counterintuitive, these inducers are termed 

‘maternal’ since the resulting haploid progeny from the induction cross are produced on 

the female leading to the following: 1) the genotype dependency of this system is much 

lower than the in vivo paternal haploid system, 2) this system is more economical as it 

allows for use of isolation nurseries to generate induction crosses, and 3) the cytoplasm 

of the resultant line will be from the maternal donor. 

 

The phenomenon of haploid induction in maize, though it is extensively used, is 

poorly understood. Two competing hypotheses exist. One hypothesis is that some 

percentage of the pollen from the inducer is able to ‘induce’ the egg cell to begin 

development leading to a functional haploid embryo without fusion of the sperm and egg 

cell (Chalyk et al., 2003). The second, and more supported theory, involves the union of 

the sperm of the inducer and the egg of the donor which stimulates development of the 

embryo (Wedzony et al., 2002; Zhang et al., 2008). The genome of the inducer is 

subsequently eliminated from the embryo that is haploid and contains only the genome of 

the donor parent, which is a result of one meiosis recombination during egg cell 

development. The production of haploid kernels is a complex phenomenon involving 

genetic control by both the maternal inducer and the donor (Prigge et al., 2011; Rober et 

al., 2005). The genetic control of induction (the ability to induce haploids – trait carried 
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by the inducer) has been extensively investigated through both breeding and genetics 

(Rober et al., 2005; Prigge et al., 2011; Prigge et al., 2012). Since the discovery and 

development of ‘Stock 6’ (Coe, 1959), many new maternal inducers have been developed 

with increasing rates of haploid induction (Rober et al., 2005; Prigge et al., 2011). QTL 

studies have been conducted and two major QTL, explaining over 60% of the phenotypic 

variation have been identified which both trace back to ‘Stock 6’ (Prigge et al., 2012). A 

maternal haploid inducer with a high induction rate will provide, on average, over 30% 

haploid kernels. However, this is a two sided phenomenon. When inducing a large 

number of diverse germplasm, any given maternal haploid inducer will likely produce a 

normal distribution of inducibility (ability to be induced to create haploid kernels – trait 

of the donor) pointing to quantitative control also on the donor side due to several factors 

(Rober et al., 2005; Prigge et al., 2011; Kebede et al., 2011).  Although the genetics of 

haploid induction have been well studied, to our knowledge few previous studies exist 

that consider the effect of the donor population and were mostly conducted in tropical 

germplasm (Rober et al., 2005; Prigge et al., 2011; Kebede et al., 2011). 

 

The efficient and economic production of DH lines relies on the ability to produce 

sufficient numbers of haploid kernels. Based on experience at the Iowa State Doubled 

Haploid Facility, there, in all germplasm pools (even in elite adapted material) there 

exists some germplasm with low inducibility. This limits the potential pool of breeding 

material for those programs which conduct breeding primarily or exclusively with DHs. 

For this reason, and to prime and facilitate future mapping experiments we screened a set 

of diverse maize inbreds (publicly and privately developed) for inducibility and 
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spontaneous doubling potential (see accompanying paper). Though most produced an 

inducibility rate near the average (data not shown), three lines were identified which 

produced average induction rates in excess of 25% when induced with RWS/RWK-76 

(Rober et al., 2005). These three lines, along with the three lines selected for their 

spontaneous doubling ability were then mated in a full diallel to study the genetic 

components of inducibility and spontaneous doubling ability (De la Fuente et al., in 

preparation). A diallel mating scheme was selected because F1 donors are typically the 

generation used for induction, and it is also of interest to answer the question of whether 

or not poor lines can be ‘supplemented’ by lines which are superior for inducibility, if 

specific combinations produce superior inducibility rates, and finally if there is an effect 

of the direction of the cross. This is also a good system to study the interaction of genes 

controlling induction. 

 

Using a six parent diallel, where three of the inbreds were identified as high 

inducible and three were identified as having high spontaneous chromosome doubling 

ability, the objectives of this study were to 1) investigate the genetics and practical use of 

inducibility for use in the maternal DH system, 2) evaluate the inheritance of inducibility, 

and 3) understand the interactions between genes controlling induction.  

 

Materials and methods 

Germplasm 

Six inbred lines were selected for use in a complete diallel: three of which are 

highly inducible (IND), but do not have spontaneous chromosome doubling (SCD) 
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potential and three of which are poorly inducible, but have high SCD potential. The lines 

and details of their heterotic grouping, flowering time, pedigree, and origin are presented 

in Table 1. Seed from all three lines was acquired from the USDA North Central 

Regional Plant Introduction Station. The six inbred lines were crossed in a full diallel, 

creating a set of 30 unique F1 hybrids. These hybrids were pollinated with the maternal 

haploid inducer RWS/RWK-76 in 2014 at the ISU-AEA to produce haploid seed for each 

of the hybrids. Seed was then visually sorted using the R1-nj color marker to determine 

the percentage of haploid seed. 

Production of diallel 

A diallel mating design was chosen due to the high preference of the use of F1 

donors for in vivo maternal haploid induction, the ability to answer various hypotheses, 

and to subsequently use generated haploid seed to study SCD. As previously mentioned, 

the six parents were specifically selected for their high trait values of either inducibility 

or spontaneous doubling potential.  The six inbreds were mated in a full diallel 

(reciprocals included) producing 30 unique F1 combinations between the six inbreds. The 

diallel crosses were first made in winter 2013 at Tuniche Seed Services in Graneros, 

Chile. Fortunately, enough seed was made of each of the crosses to perform the first 

experiment, however, due to nicking issues (mostly with GF4 and GF2) the diallel 

crosses were repeated in summer of 2014 in Ames, IA at the Iowa State University 

Agricultural Engineering and Agronomy Farm (AF). All ears from each specific cross 

were bulk harvested. 
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Trials and trait scoring 

The diallel was grown in two separate environments over the course of two years. 

The first environment was in summer of 2014 (AF14) at the Iowa State University 

Agronomy Farm (AF), the second in summer of 2015 (AF15) at AF. The experiment was 

grown in a four-replication randomized complete block design with 5.4m single row plots 

in AF14 and 3.8m plots in AF15 both with 0.76m row spacing. All plots were manually 

detasseled and shoots were covered prior to silk emergence. All plots were pollinated 

with bulk pollen from either RWS/RWK-76 or an F2 generated from this F1 whose 

induction rate is not statistically different (data not shown). Plots were then bulk 

harvested, dried and shelled.  

 

A random sample of 1000 (or as many as possible) kernels were then counted 

from the bulk. 1000 kernels were selected as the sample based on simulation studies 

conducted with data from a preliminary experiment. Data from the preliminary 

experiment was used to model inducibility and the associated variances and tests were 

conducted using different numbers of binomial trials (i.e. sorted kernels). A balance was 

sought between the ability to detect significant differences between small percent 

changes in inducibility rates as well as the number of kernels needed to be sorted (i.e. it is 

easier to sort 100 kernels per sample, but 100 does not provide enough power to detect 

differences of 5%, while sorting 10,000 would provide sufficient power, but would make 

the experiment larger than labor available for sorting). These kernels were then sorted 

into putative hybrids and haploids. Kernels were sorted based on the R1-nj seed based 

marker system (Nanda and Chase, 1966). Kernels that showed coloration in the aleurone 
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(expected for successful fusion of inducer sperm with the central cell) and in the embryo 

(expected for successful fusion of inducer sperm with the egg cell) were scored as hybrid. 

Those kernels which showed coloration in the aleurone, but not in the embryo (expected 

for successful induction of haploid embryo) were scored as putative haploids. A base 

inducibility rate (IR) was calculated as number of putative haploids divided by total 

number of kernels. However, as noted in other studies (Kebede et al., 2011; Prigge et al., 

2011) the R1-nj system is not 100% accurate. Haploid seed were grown and based on this 

a misclassification rate (following Kebede et al., 2011) was calculated to adjust for 

misclassified haploid kernels. After approximately three weeks of growth, the hybrid 

plants distinguish themselves from the haploids due to increased vigor. The hybrid-

appearing plants were counted as misclassified haploids and then divided by the total 

number of planted seed (non-germinated seed were assumed to be haploids). The 

corrected induction rate was then calculated as follows. Corrected induction rate = 

#haploids*(1-misclassification rate)/total number of planted seed.  

Statistical Analyses 

The combining ability analysis was conducted using DIALLEL-SAS05 (Zhang et 

al., 2005) considering all F1s and reciprocals, also known as method 3 (Hallauer, 1988). 

IRs were adjusted for the misclassification rate, and then transformed for analysis using 

the angular transformation to normalize the distribution (Prigge et al., 2011). In our 

experiments, we did not sample germplasm, but characterized defined lines. Thus, a fixed 

effect model was considered. Estimates for general combining ability (GCA), specific 

combining ability (SCA), GCAxEnvironment, SCAxEnvironment, reciprocal (REC), 
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RECxEnvironment, were all computed. All calculations were done using DIALLEL-

SAS05 and respective estimations as described in Bolboaca et al. (2011). 

 

Preplanned contrasts of interest for the application of the trait were computed. 

SAS PROC MIXED (version 9.4, SAS Institute, 2013) was implemented using the 

angular transformed corrected induction rates. The model considered here was Yijk = Envi 

+ Rep(Env)i(j) + Entryk + Env*Entryik
 
+ eijk. Where Yijk is the mean angular transformed 

induction rate across the whole experiment, Envi is the random effect of the ith 

environment, Rep(Loc)i(j) is random effect of the jth replication nested in the ith 

environment, Entryk is the fixed effect of the kth entry (F1s from diallel), Env*Entryik is 

the random interaction between the ith environment and the kth entry, and eijk is the 

residual error. Contrast statements were used to test the effect of using the inducible lines 

as males and females when crossed to other inducible lines and when crossed to other 

non-inducible lines to test if inducible lines can be used as parents in a cross to produce 

higher inducibility in a non-inducible background. 

 

Results 

For this experiment, across both environments, a total of 233,665 (120,000 in 

AF14, and 113,665 in AF15) seed were sorted. A total of 27,174 putative haploids were 

identified with visual sorting giving an uncorrected IR of 11.6% with uncorrected values 

ranging from 2.6%-32.5%. For AF14, the uncorrected IR was 13.1% and for AF15 the 

uncorrected IR was 10.2% (Table 2). Misclassification rates ranged from 0%-45.2% with 

averages for each parental line of: 5.8% (GF1), 4.1% (GF2), 4.5% (GF3), 11.8% (GF4), 
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16.19% (GF5), and 9.17% (GF6). GF4/GF5 and GF6/GF5 had the highest 

misclassification rates at 45.2% and 32.1% respectively. After accounting for 

misclassifications, the average IR was 10.5% with values ranging from 2.4%-30.5%. 

 

In the combining ability analysis significant sources of variation were estimated 

for GCA (p-value=<0.001), SCA (p-value=0.0019), REC (p-value=0.0028), ENV (p-

value=<0.001), GCA by ENV interaction (p-value=0.0012), and SCA by ENV 

interaction (p-value=0.016) (Table 3). Along the diagonal, GCA estimates for the six 

inbreds are presented. Above the diagonal, SCA effects are presented, and below the 

diagonal, REC effects are presented. In general, the estimated effects are low. For GCA, 

GF2, GF3, GF4, GF5 and GF6 had significant GCA estimates at: 0.05%, 0.063%, -

0.01%, 0.003%, and -0.14%, respectively. For SCA, two specific crosses had significant 

estimates: GF2/GF6 (-0.05%) and GF3/GF6 (0.06%). For reciprocal estimates, only 

GF1/GF4 had a significant reciprocal effect of 0.06%. 

 

Least square means of IR across both environments are presented in Figure 1. The 

highest estimated IR, corrected for misclassification, is GF1/GF2 (15%) and the lowest 

estimated IR is GF6/GF4 (7%). GF3 and GF5 predominate the crosses in the top ten 

estimates for IR (10/20 possible parents). GF6 and GF1 predominate the crosses in the 

lowest ten estimates for IR (11/20 possible parents). As seen in Figure 1, GF4/GF5, 

GF5/GF4, GF4/GF6 and GF6/GF5 have high rates of misclassification (also seen in 

Table 2). For inducibility the narrow sense heritability estimate was 0.6, while the broad 

sense heritability estimate was 0.1. For the preplanned contrasts, when crossed as a 
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female GF2 provided a significant difference (p-value=0.046) when crossed to inducible 

lines and non-inducible lines. The same is true for GF4 when used as a female (p-

value=0.049), and as a male (0.021), and for GF6 when used as a female (p-

value=0.033). Finally, in conjunction with another study on the same 30 hybrids, but 

considering rates of SCD in the haploid plants, the correlation between the two traits is -

0.04. Overall there is not much similarity between the hybrids with high inducibility and 

high SCD. However, interestingly, GF1/GF2 has the highest rates of both SCD and 

inducibility. Also of interest, GF2/GF5 has the second highest rate of inducibility, but has 

the worst rate of SCD. 

 

Discussion 

The effective and efficient use of the maize in vivo maternal DH system relies on 

the ability to efficiently produce and sort, and effectively identify haploid progeny. The 

most ideal situation would be that the IR is 100% and all seed produced on the ear are 

haploids. This is of course theoretically impossible, because if the IR for a given inducer 

is 100%, then when you self-pollinate the inducer 100% of the progeny will be haploid 

and thus sterile and there would be no way to maintain the inducer for future use. A 

balance between IR and number of haploids the breeder is willing to have in the male 

rows must be sought.  There are multiple avenues by which to increase the efficiency of 

this system 1) the development and use of improved inducer lines (Frei et al., in 

preparation; Prigge et al., 2011; Coe, 1959; Geiger, 2009; Rober et al., 2005), 2) 

improved methods of haploid selection through new traits and/or automation (De La 

Fuente et al., submitted; Melchinger et al. 2015; Smelser et al., 2015; Jones et al.,2012), 
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and 3) the method considered in this and other studies (Prigge et al, 2011; Kebede et al., 

2011), improvement of rates of induction in the donor material. It is possible that there 

are interactions between 2 and 1, but conflicting reports show that in some cases there is 

interaction between donor and inducer (Prigge et al., 2011), and in some cases not 

(Kebede et al., 2011).  

Induction Rates 

Induction rates in this study average 10% across both environments and all 30 

hybrids, which is fairly consistent with averages seen at the ISU-DHF (Frei, personal 

communication). When compared to other studies done, IRs in this study are slightly 

higher than those reported: 6.74% (Kebede et al., 2011), and 7.63% (Prigge et al., 2011). 

The higher induction rates seen in this study are likely due to the more adapted nature of 

the germplasm in consideration. Both studies (Kebede et al., 2011; Prigge et al., 2011) 

consider tropical germplasm both pollinated with RWS (Rober et al., 2005). It is possible 

that more elite germplasm from temperate adapted environments provide better overall 

IR.  

Environmental effects on induction rates 

Induction rates presented for AF14 (13.1%) were higher than those for AF15 

(10.2%). Significant effect of environment in the combining ability analysis also supports 

this difference. An effect of environment was also reported by Kebede et al. (2011) and 

Prigge et al. (2012), however, in this study a significant effect of GCA by ENV was seen 

unlike that reported in Kebede et al. (2011). The significant GCA by ENV interaction 

could have come from the abnormally cool season that was experience at AF15 during 

pollination. Unseasonably cool temperatures and high amounts of rainfall during the peak 
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of pollinations in this experiment may have had some effect on the IR. In addition to the 

odd weather pattern, a significant amount of biotic stress was experienced due to the cold 

weather which may have reduced the IR, this has been previously reported in maize 

(Geiger, 2009). 

Combining ability 

GCA and SCA estimates in this study were, in general, very low. This is not 

surprising when the range in average corrected IR for each of the inbred lines in the 

diallel was only 10%-12%. Ranges reported for a similar study in tropical maize (Kebede 

et al., 2011) were 2.9-9.66% across environments. Their inclusion of more contrasting 

germplasm provided with higher estimates for GCA. The highest estimate for GCA in 

this study was 0.06% for GF3 while the highest reported in Kebede et al., (2011) was 

1.06%. However, similar low percentage effects were also reported for other lines in their 

study. In contrast to results from Kebede et al. (2011), however, this study reports 

significant SCA and REC effects. Significant SCA effects were reported for GF2/GF6 

(0.05%) and GF3/GF6 (-0.06%). It may be that SCA effects were not found in Kebede et 

al. (2011) due to the fact that their germplasm was all sourced from breeding lines and 

breeding material from CIMMYT (International Center for Maize and Wheat 

Improvement), while germplasm for this study was sourced from both private and public 

breeding programs from different times and locations. More diversity in the six parents in 

this study may have lead to the SCA seen. No other study has reported on reciprocal 

effects for IR. In this study a significant effect of REC was estimated and GF5/GF4 had a 

significant REC effect (-0.06%). REC effect would be an important consideration as it 

could allow breeders to increase their IR by simply planning the direction of their cross. 
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Misclassification rates 

Misclassification rates of haploid seed can become a significant problem if they 

are are too high. For example, if a breeder needs to plant a total of 1000 haploid seed to 

produce enough DH lines, and the misclassification rate is 50%-75% then ½ to ¾ of the 

plants in the field will be hybrids and will need to be removed. This is a waste of time, 

materials, and field space all of which add cost to the breeding program. The objective of 

DHs is speed and efficiency, and wasting time and money is counterproductive. In this 

study, misclassification rates ranged from 0%-45%. For the specific lines included in the 

study, GF1, GF2 and GF3 had misclassification rates that were within acceptable limits 

4.5-5.8% while GF5 had an unacceptable rate of misclassified haploids (16%) averaged 

across all crosses. Misclassification rates were, on average, lower than those reported in 

other studies (Kebede et al., 2011; Prigge et al., 2011; Rober et al., 2005). Both Prigge et 

al. (2011) and Rober et al. (2005) report that the inclusion of unadapted landraces and 

populations increase the misclassification rates. This could be an explanation of why 

misclassification rates in this study are lower. Alleles that modify the R locus may still be 

segregating in unadapted material. Based on the results presented here and the genetic 

contributions of GF4, GF5, and GF6 and their parents to the dent germplasm it may be 

desirable for breeders to obtain a small sample (i.e. 100-250 seed) and germinate or cut 

the seed (cutting the seed allows for better visualization of the pigmentation) to come up 

with an estimate for the misclassification rate so that it can be accounted for when 

estimating the number of haploid seed that need to be planted. 

 

 



30 

 

Breeding for increased IR 

This study is in agreement with others (Kebede et al., 2011; Prigge et al., 2011; 

Rober et al., 2005) that there is significant variation in IR and that the environment has an 

effect on the average induction rate, and that selection could be possible for improvement 

of IR. As noted above, heritabilities of IR are low, so it will be more difficult of a trait to 

select for. This study in addition concludes, that there are significant interactions between 

the germplasm and the environment and that specific combinations and the direction of 

the cross have an effect on IR. As is reported by others (Kebede et al., 2011; Prigge et al., 

2011; Rober et al., 2005) when unadapted germplasm is used the rates of 

misclassification go up and the rates of induction go down. It may then be possible for 

breeders to utilize more adapted lines with high induction rates and low misclassification 

rates to cross into unadapted material to raise the rates of induction and lower the rates of 

misclassification through selection. When considering using the lines and/or hybrids in 

this study for breeding, it follows that GF1/GF2 would be the superior hybrid to breed 

with. Not only does GF1/GF2 have the best rates of inducibility, but it also has been 

estimated to have the highest rates of SCD (De La Fuente, et al., in preparation). 

Combining both of these traits into the germplasm would be beneficial. Overall, however, 

it seems this is the only combination that could provide this advantage as the correlation 

between SCD and inducibility is low (r
2
=-0.04) and it seems that in general there is no 

relationship between the two. It is evident that IR is a quantitative trait, so combining 

both traits would take some time, but if it could be coupled through cycles of selection 

utilizing the DH system with some form of SCD (De La Fuente et al., in preparation) then 
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it could be a cheap and quick method to develop germplasm that could be rapidly 

incorporated into breeding programs for evaluation of other useful traits. 
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Table 1. Pedigree, origin, and general information for six parents included in diallel. 

Line 

Name 
Heterotic Group Origin Pedigree GDD to Silk Selection Reason 

GF1 non-stiff stalk Minnesota CC36 x A405 1318 
spontaneous chromosome 

doubling 

GF2 stiff stalk Minnesota CO106 x A321 1522 
spontaneous chromosome 

doubling 

GF3 non-stiff stalk Nebraska W117Ht x Mo17Ht 1178 high inducibility rate 

GF4 stiff stalk Hawaii Oh40B, L317, GF5 1640 high inducibility rate 

GF5 stiff stalk Indiana 
Indiana strain of Stiff Stalk 

Synthetic 
1522 high inducibility rate 

GF6 stiff stalk Minnesota W117 x B37Ht 1400 
spontaneous chromosome 

doubling 

 

3
4
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Table 2. Misclassification rates of the 30 hybrids from this diallel. Rates presented here 

as percentages. 

Entry 

Misclassification Rate 

(%) Std. Dev. 

GF1/GF2 6.0 0.02 

GF1/GF3 4.8 0.02 

GF1/GF4 6.0 0.04 

GF1/GF5 6.0 0.02 

GF1/GF6 4.8 0.04 

GF2/GF1 4.8 0.02 

GF2/GF3 1.2 0.00 

GF2/GF4 3.6 0.02 

GF2/GF5 3.6 0.02 

GF2/GF6 1.2 0.02 

GF3/GF1 2.4 0.02 

GF3/GF2 4.8 0.02 

GF3/GF4 3.6 0.02 

GF3/GF5 6.0 0.04 

GF3/GF6 6.0 0.04 

GF4/GF1 11.9 0.05 

GF4/GF2 3.6 0.28 

GF4/GF3 4.8 0.28 

GF4/GF5 45.2 0.29 

GF4/GF6 4.8 0.04 

GF5/GF1 11.9 0.04 

GF5/GF2 8.3 0.09 

GF5/GF3 7.1 0.06 

GF5/GF4 21.4 0.12 

GF5/GF6 20.2 0.11 

GF6/GF1 0.0 0.04 

GF6/GF2 4.8 0.04 

GF6/GF3 4.8 0.23 

GF6/GF4 13.1 0.22 

GF6/GF5 32.1 0.22 
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Table 3. Combining ability analysis. Reported as percent corrected IR. Diagonal values 

are GCA, above the diagonal are SCA, and below the diagonal are reciprocal effects. 

*denotes significance at the 0.05 level. 

Inbred GF1 GF2 GF3 GF4 GF5 GF6 

GF1 -0.0003 -0.0333 -0.0210 0.0014 0.0032 -0.0033 

GF2 0.0835* 0.0500* -0.0339 0.0256 0.0035 -0.0478* 

GF3 -0.0044 -0.0050 0.0630* 0.0046 0.0005 -0.0569* 

GF4 0.0058 -0.0067 0.0029 -0.0129* -0.0339 0.0000 

GF5 0.0258 0.0702 -0.0041 -0.0645* 0.0027* 0.0019 

GF6 -0.0025 0.0161 -0.0324 0.0092 0.0700 -0.1357* 

 

Table 4. Preplanned contrasts for combinations of inducible (IND) and non inducible 

(non-IND) lines when used as males and females. *=significance at the 0.05 level. 

Contrast F Value Pr > F 

GF1 as female: crossed to IND vs non-IND 0.02 0.8809 

GF1 as male: crossed to IND vs non-IND 1.54 0.2248 

GF1 as female vs GF1 as male 0.43 0.5192 

GF2 as female: crossed to IND vs non-IND 4.32 0.0467* 

GF2 as male: crossed to IND vs non-IND 1.98 0.1704 

GF2 as female vs GF2 as male 0.05 0.8254 

GF3 as female: crossed to IND vs non-IND 0.37 0.5504 

GF3 as male: crossed to IND vs non-IND 0.66 0.4235 

GF3 as female vs GF3 as male 0.01 0.912 

GF4 as female: crossed to IND vs non-IND 4.2 0.0494* 

GF4 as male: crossed to IND vs non-IND 5.92 0.0214* 

GF4 as female vs GF4 as male 0.03 0.8567 

GF5 as female: crossed to IND vs non-IND 0.91 0.347 

GF5 as male: crossed to IND vs non-IND 0.36 0.5509 

GF5 as female vs GF5 as male 0.01 0.9304 

GF6 as female: crossed to IND vs non-IND 4.99 0.0334* 

GF6 as male: crossed to IND vs non-IND 4.22 0.0491* 

GF6 as female vs GF6 as male 0.4 0.5317 
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Figure 1. Least square means of 30 hybrids for inducibility with (red) and without (blue) correction for misclassification. 

Least square means are presented as ratios.  
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Abstract 

BHI306 maize germplasm was developed by the Doubled Haploid Facility, 

Department of Agronomy, Iowa State University. This germplasm line is a maternal 

haploid inducer that can be used to generate haploid progeny for the development of 

doubled haploid lines in maize using the maternal in vivo haploid induction system. This 

germplasm is unique as it combines multiple traits that make it a versatile inducer which 

can be used in various programs and it is adapted to the Midwest U.S. BHI306 has an 

11% induction rate which is as good as the popular maternal haploid inducers RWS and 

RWK-76, it also has a germination rate of 78% which is significantly higher than RWS 

(36%) and RWK-76 (21%). BHI306 carries the Pl1 root marker, which allows selection 

on red root color when the popular R1-nj marker does not work. Finally, BHI306 carries 

the Ga1 allele which makes it compatible for pollination onto popcorn donor populations, 

which increases its versatility of use over other publicly available inducers. 

Introduction 

The advent of the maize (Zea mays L.) doubled haploid (DH) system has 

accelerated the cycle of maize breeding and genetics in a significant way. Over the past 
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two decades, an increasing number of breeding programs (both public and private) have 

used doubled haploids with great success to accelerate both line development and 

population development for genetic studies. Under normal conditions maize is a diploid 

organism with 2n=20. However, Chase (1947) found that at a low frequency (1/1000) 

haploid individuals are produced naturally under normal conditions. This prompted 

continued studies and experiments, whereby the mechanism of haploid induction was 

investigated, as well as its utility for maize improvement. 

 Production of DH lines in maize can be accomplished through both in vivo, and in 

vitro methods. In vitro methods (microspore or anther culture) are highly genotype 

dependent as only a limited number of genetic backgrounds respond well to tissue culture 

techniques. For this reason, in vivo haploid induction is the preferred method of haploid 

production. There are two methods for production of in vivo haploids. In the paternal 

haploid induction system, the inducer carries the indeterminate gametophyte (ig) gene 

and is used as the female in the cross. The population of interest pollinates the inducer 

and provides the genetic information present in the haploid seed that is produced at a 0-

8% frequency (Kindiger and Hamann, 1992). The paternal system is also dependent on 

the donor genotype (Geiger, 2009), with only some genetic backgrounds able to 

successfully produce haploids at a high enough percentage to be feasible. Paternal 

haploid induction is widely used to produce cytoplasmic male sterile analogs to breeding 

lines. The most commonly used method for haploid production is in vivo maternal 

haploid induction where the inducer is the male parent in the cross and haploids are 

produced on and from the female donor population. Haploid induction rates for this 

method vary as well depending on the inducer, the donor population, and the 
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environment. Though the method is highly successful, it is still unclear what the 

mechanism for haploid induction involves. Two competing hypotheses exist (Geiger, 

2009). The first assumes, that during double fertilization, one pollen nucleus fuses 

successfully with the embryo sac cells to form a viable endosperm, while the other fails 

to fuse with the egg cell. The egg cell develops into a haploid embryo supported by a 

normal triploid endosperm. The second, is that the inducer pollen successfully fuses with 

the egg cell stimulating division, and the haploid genome from the inducer is 

subsequently expelled from the embryo early in development (Geiger, 2009). 

 Despite the unknown mechanism for maternal haploid induction, this method is 

used with great success in private breeding companies as well as public institutions such 

as the Doubled Haploid Facility at Iowa State University (ISU-DHF). Recent QTL 

mapping studies (Prigge et al., 2012; Lashermes and Beckert, 1988) have identified loci 

which are required for haploid induction in the maternal inducer with two major QTL 

located on chromosomes 1 and 9 and the QTL on chromosome 1 explaining up to 66% of 

the variation in their population. The first true maternal haploid inducer was identified by 

Coe (1959) in a source obtained from Charles R. Burnham in 1950 and was designated 

‘Stock 6’. Stock 6 carries the QTL on chromosome 1 and on average will provide a 

haploid induction rate of 1-2%. After this discovery, the interest in haploids declined 

slightly, but was subsequently revitalized when it was found that through selective 

breeding the induction rate of inducers could be increased and several popular inducer 

lines have been developed to date including ‘WS14’, ‘MHI’, ‘RWS’ (Rober et al., 2005), 

and  ‘UH400’ (Prigge et al., 2011).  



41 

 

 The basic outline for maternal haploid induction and production of DH lines using 

this method is as follows. Season 1: production of breeding crosses for induction, 

typically a biparental cross F1 is used, but any generation (including random mating 

populations) can be used as the donor population for induction. The F1 is most popular 

because a major objective of the DH system is speed. Season 2: the donor population 

(female) is pollinated with bulk pollen from the maternal haploid inducer. A percentage 

of the seed will have haploid embryos which have undergone one recombination during 

gamete formation. At harvest, the seed can visually be sorted (in most cases) using the 

dominant R1-nj (Nanda and Chase, 1966) marker. Hybrid seed (which is discarded) has 

coloration on both the cap of the aleurone and the embryo indicating that there has been 

successful fertilization in both the egg and central cell. Haploid seed has coloration on the 

cap of the aleurone, but not on the embryo indicating that there was successful 

fertilization in the central cell and failed fertilization in the egg which has developed into 

a haploid embryo. The sorted haploid seed is collected for each donor population and 

stored. Season 3: haploid seed is germinated and treated with colchicine at the seedling 

stage using either immersion or injection (Geiger, 2009). Colchicine is a spindle poison 

and causes a failure of chromosomes to be pulled to opposite poles during mitosis (Borisy 

and Taylor, 1967). Thus, if successful, a ‘copy and paste’ of the haploid genome is 

created. Treated plants are subsequently transplanted into the field. Haploid plants 

develop normally, but are generally shorter, weaker, lighter in color, and have more erect 

leaves. These plants will be chimeras, having haploid and diploid sectors. If genomes of 

cell lines developing into reproductive cells have successfully doubled, the plants will 
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shed small amounts of pollen and have fertile ears. These plants are self-pollinated. Seed 

of each successfully pollinated plant is a new DH line. 

The maternal inducer is used in season 2 to produce the haploid seed and is a vital 

part of a successful DH production system. Obviously, the maternal inducer must carry 

two non-negotiable traits: haploid induction ability and a dominant marker gene for 

selection. However, the inducer must also carry traits of a good male parent. Specifically, 

the inducer must have a strong tassel which sheds copious amounts of pollen over the 

course of at least 5-7 days. This translates into a thick rachis with high glume per cm 

number, many branches, and tolerance to heat. The inducer must also carry other 

favorable agronomic qualities desirable in any elite line of maize. 

Though many maternal inducers are publicly available, it was clear that none 

were well suited to the temperate environment of the Corn Belt. Many of the most 

popular inducers are extremely weak plants with poor agronomic characteristics. 

Specifically, the F1 hybrid RWS/RWK-76 and its parents, though they have excellent 

induction rates and a good tassel, are poorly adapted to the U.S. Corn Belt. RWS and 

RWK-76 are adapted to cooler temperatures and environments of central Europe. In the 

U.S., this inducer is extremely susceptible to lodging during the high winds experienced 

during the frequent storms which pass through the Midwest and also to the more extreme 

heat which is common in the middle of summer. RWS/RWK-76 also only uses the R1nj 

marker for haploid selection making its use in colored corn impossible. The utility of 

RWS/RWK-76 in popcorn DH line development is limited due to incompatibility 

between dent and popcorn types of maize (Kermicle et al., 2006). For these reasons a line 
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development program was instituted within the DH facility at ISU to develop new, 

improved, and adapted inducer lines which can be used by researchers in temperate U.S. 

environments. 

Methods 

BHI306 was developed using a pedigree breeding scheme utilizing marker 

assisted selection for loci known to control induction rate. The first cross was made in the 

summer of 2010 at the Iowa State University Agricultural Engineering and Agronomy 

Farm (AF) in Boone, IA between A632.75 A1 A2 C1 R1-r B1 Pl1/(RWS/RWK-76). 

A632.75 is a B14 derived stiff stalk line that has been converted to contain alleles that 

confer purple coloration in all parts of the plant. Its inclusion in the cross was for 

donation of B14 adaptation and for the Pl1 allele which provides the ability to select for 

root color as haploid identification criteria. RWS/RWK-76 is an F1 maternal haploid 

inducer (Rober et al., 2005) that is widely used, and used by the ISU-DHF for inductions. 

RWS/RWK-76 provides high induction rates and good tassel traits such as degree of 

pollen shed and duration of pollen shed, but is poorly adapted to the U.S. Midwest. The 

F1 was chosen to incorporate induction traits from both RWS and RWK-76. The seed 

from the three-way cross was then grown in the greenhouse at ISU in the winter of 2010. 

A single plant was selected and pollinated with bulk pollen from an F2 population of the 

RWS/RWK-76 cross to increase the contribution of loci conferring induction rate. The 

progeny of this cross were grown in summer 2011 at AF. A single plant was selected and 

pollinated with bulk pollen from a RWS/RWK-76 F2 population. Additionally, in 

summer 2011, a cross was made between (RWS/RWK-76)/’B15-dent sterile’. B15-dent 
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sterile was included in the cross as the donor of the Ga1 allele which provides fertility 

when crossed to popcorn which typically carries the Ga1 allele to make it non-receptive 

to dent maize pollen. In winter 2011 the progeny of the second A632.75 cross were 

grown alongside the progeny of the B15-dent sterile F1. A single plant was selected and 

crossed with pollen from the B14-dent sterile F1. The resultant population was given the 

designation PCPOP and was the population used for subsequent selections. In summer of 

2012, seed from PCPOP was grown at Agronomy Farm (AF) and the progeny were 

screened for the major QTL on chromosome 1 in bin 1.03 known to control induction 

ability (Prigge et al., 2012). Plant 562 was selected and self-pollinated. The resultant F2 

was seed was designated PCPOP562. In winter 2012, PCPOP562 F2 plants were grown at 

the winter nursery location for the ISU-DHF in Graneros, Chile with Tuniche Seed 

Services (CL). The F2 was grown in three rows for test inductions and in a single row for 

single plant selection. Single plants were selected and self-pollinated based on favorable 

plant phenotypes, with special consideration given to sturdy, large tassels which shed 

pollen over several days. F2:3 lines were then grown at AF in summer 2013 in three row 

plots and single plants within the row were test induced on dent and popcorn hybrids. 

After three test inductions were made, the plant was self-pollinated. Based on induction 

rates of the test pollinations as well as the ability to pollinate popcorn, plant 460 was 

selected (PCPOP562-1-460). The resultant F3:4 line was grown in CL in a single row for 

test inductions on dent and popcorn hybrids along with other lines in development. Six 

individual F4 plants were in PCPOP562-1-460 based on plant phenotype as well as tassel 

phenotype and self-pollinated. Based on the results of induction in dent and popcorn, the 

six selfs of PCPOP562-1-460 were advanced and grown in F4:5 progeny rows in summer 
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2014 at AF. The lines were evaluated for uniformity, plant type, tassel phenotype, 

lodging resistance, and most importantly induction rate in dent and popcorn. Based on 

phenotype, uniformity, and high induction rate as well as good seed set in self-

pollinations, single F5 plant selfs were advanced from PCPOP562-1-460-01 and grown in 

Chile as F5:6 progeny rows. The F5:6 progeny rows were test induced on three popcorn 

hybrids as well as one dent maize hybrid. Based on uniformity, tassel and plant 

phenotype, and induction rates, six of the F5:6 progeny rows were bulk harvested and 

entered into the inducer line evaluation trial (ILET). The ILET was grown in summer 

2015. Each inducer entry, including BHI306, was grown in single row plots replicated 

four times in a randomized complete block design. Each plot was scored for GDDs to 

flowering, plant height, haploids in the row, germination, and was test pollinated onto a 

dent corn hybrid for induction rate comparisons. 

Characteristics 

BHI306 is classified as a maternal haploid inducer, meaning that it should be used 

as the pollen (male) parent to be crossed onto donor populations (female) to generate 

haploid progeny for the development of DH lines. Table 1 summarizes the values for the 

traits of consideration when evaluation of new inducer lines is conducted. BHI306 has an 

average induction rate of 11% which is not significantly different than RWS (10.7%) and 

RWK-76 (10.5%), but better than that of the other maternal inducer included in the 

comparison: MHI (Eder and Chalyk, 2002) which induced at 2.9%. The F1 between 

RWS/RWK-76 induces at 15.4%, but this is not significantly higher than BHI306. BHI 

306 reaches 50% anthesis (measured as the time when 50% of plants in plot have anthers 
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shedding pollen) at 1184 GDDs which is slightly later than RWS and RWK-76, but 

earlier than MHI. One of the most important traits that was considered is germination 

which was evaluated at each generation by counting the number of plants that emerged 

from the direct planting. When using the RWS/RWK-76 inducer, the ISU-DHF incurred 

a significant increase in labor cost and time because these plants had to be established via 

transplanting to get enough plants in the field to be used for pollinations. This made 

planting very laborious, as this transplanting was added onto the additional transplanting 

of haploid plants for DH line production. This also increased winter nursery costs due to 

the increase in plot cost for transplanting. As seen in Table 1, BHI306 germinates at a 

significantly higher rate (78%) than RWS (36%) and RWK-76 (21%). The ability to plant 

BHI306 with a standard plot planter and get good germination rates will increase the 

efficiency of inductions, and likely make induction isolation fields possible. BHI306 also 

had good seed set when self-pollinated making it easier to maintain as an inbred line. One 

aspect for potential users to consider is that when a maternal inducer is self-pollinated, it 

creates haploid progeny on the self-pollinated ear at rates similar to induction rates of the 

inducer. This needs to be considered when calculating planting rates, as the haploids (if 

they germinate) will typically be sterile. 

 

In addition to high induction and germination rates, as well as good plant 

phenotype and pollen shed characteristics, BHI306 also carries two additional alleles that 

increase its utility for DH line production. BHI306 carries the P11 (Figure 1) gene which 

is a dominantly inherited locus that creates red coloration in the seedling roots which can 
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be used for haploid selection similar to the R1-nj system. If the R1-nj marker does not 

work (because of the presence of C1 allele in colored maize, and sometimes popcorn and 

sweetcorn), the seed can be germinated and selection can be made based on the root 

coloration. Haploid progeny will have white roots and hybrid progeny will have red roots 

(Figure 1). This increases the utility of the inducer to types of maize that produce 

problems with the R1-nj marker system. In addition to this marker, BHI306 also carries 

the Ga1 allele which allows it to pollinate popcorn. Most popcorn produced in the U.S. 

carries the Ga1 allele which makes it incompatible with pollen from dent maize. Dent 

maize, on the other hand, does not usually carry Ga1 so it cannot pollinate popcorn, or 

any maize with Ga1. Since BHI 306 carries the Ga1 allele, it can be used to pollinate 

both dent maize and popcorn.   

Availability 

Seed of BHI306 will be maintained by personnel at the Doubled Haploid Facility 

which is housed in the Department of Agronomy, Iowa State University, Ames, IA 

50011. BHI306 is available for licensing through material transfer agreement for those 

interested in acquiring a maternal haploid inducer line. Requests for BHI306 should be 

directed to Iowa State University Research Foundation, Inc. Office of Intellectual 

Property and Technology Transfer, Iowa State University, Ames, IA 50011. 
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Table 1. Summary of inducer line evaluation trial between BHI306 and popular maternal 

inducers. HIR=haploid induction rate, STAND=stand count, GDD=growing degree days 

to anthesis?, PLHT=plant height(cm). HIR and STAND data were transformed using the 

logit transformation prior to analysis. Logit and untransformed data are presented. 

Groupings are based on LSD at the 0.05 level. Entries with the same group letter are not 

significantly different. 

Trait Value 
BHI30

6 
MHI 

RWK-

76 
RWS 

RWS/RWK

-76 

lsd 

0.05 

HIR 

logit -2.08 -3.3297 -2.1019 -2.0729 -1.6701 0.51 

untransforme

d 
0.11 0.029 0.105 0.107 0.154 - 

Group A B A A A   

STAN

D 

logit 1.26 2.021 -1.264 -0.5654 -0.4976 1.21 

untransforme

d 
0.78 0.886 0.217 0.36 0.376 - 

  Group AB A CD CD CD   

GDD - 1184 
1206.2

5 

1153.7

5 

1171.2

5 
1114.25 34.5 

PLHT - 198 188.75 161.25 153.75 176.25   
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Figure 1. Pl1 ‘red root’ marker system. As seen on the left, the haploid seedlings that are hybrids between the inducer and 

the donor produce red seedling roots. On the right, haploids selected out of the population produce white roots due to the 

lack of the Pl1 allele. This allows for selection of haploid progeny even if the R1-nj seed marker does not work. 

5
1
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Abstract 

The use of doubled haploids (DHs) in maize has become ubiquitous in maize 

breeding programs as it allows breeders to go from cross to evaluation in as little as two 

years. Two important aspects of the in vivo DH system used in maize are: 1) the 

identification of haploid progeny and 2) doubling of the haploid genome to produce 

fertile inbred lines. This study is focused on the first step. Currently, identification of 

maize haploid progeny is done manually using the R1-nj seed color marker. This is a 

labor intensive and time consuming process, a method for automated sorting of haploids 

would increase the efficiency of DH line development. In this study, six inbred lines were 

crossed with the maternal haploid inducer ‘RWS/RWK-76’ and a sample of seed was 

sorted manually for each line. Using the VideometerLab 3 system, spectral imaging 

techniques were applied to discriminate between haploids and hybrids. Using DNA 

markers to confirm the haploid/diploid state of the tested seed, for the majority of 

genotypes haploid identification was possible with over 50% accuracy when comparing 

the DNA analysis to the visual results.  

Keywords maize, haploid, diploid, fluorescence, automated sorting 
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Introduction 

In plant breeding, breeding cycle speed is key, as expressed in the genetic gain 

equation (De la Fuente et al., 2013). Per cycle gains are limited by the denominator which 

generally contains time and cost. Over time, breeders found various ways to accelerate 

the timeline by using tools such as winter nurseries and early generation testing. 

However, it still takes time to generate the final inbred line with a level of homozygosity 

and homogeneity which is acceptable.  Rapid development of 100% homozygous and 

homogeneous lines is accomplished by development of doubled haploid (DH) lines 

(Geiger, 2009). 

 

DHs are used with great success in other crops besides maize (Zea mays L.), and 

their use and acceptance continues to increase in maize breeding. Development of DH 

lines is more technically demanding compared to inbred line development by continued 

self-pollination.  First discovered in the 1940s by Chase (1949), haploid plants in maize 

are naturally occurring at a low frequency. Their utility for genetics and breeding was 

recognized, but use of DHs was not immediately accepted due to the low frequency of 

haploid kernels and inability to efficiently produce fertile haploid plants. Subsequent 

development of the maternal haploid inducer ‘Stock 6’ (Coe, 1959) and other improved 

inducer lines, and development of economic and applicable protocols for the production 

of DH lines led to a dramatic increase in line development using the in vivo maternal 

haploid system in maize during the past two decades (Geiger, 2009). 
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For successful in vivo maternal haploid induction, a few key steps must be met. 

First, haploids must be generated on the maternal donor plant. Second, kernels with 

haploid embryo (“haploids”) must be distinguishable and separated from undesirable 

hybrid kernels. Third, haploid plants are treated with colchicine to double their genome 

number and self-pollinated to generate the final DH line. Herein, we focus on the second 

step: successful identification of haploids out of a mixture with undesirable hybrid 

kernels. On average, we expect that approximately 10% of the total number of kernels in 

a given lot of induced kernels will be haploid. As a consequence, 90% of the kernels are 

undesirable as their embryo contains 50% each donor and inducer genomes. Although 

alternative selectable markers are under investigation, the most widely and successfully 

used selectable marker is R1-nj (personal communication with various breeding 

companies). R1-nj, is successful due to its dominant inheritance, and ability to distinguish 

between its transmission to the triploid endosperm and the diploid embryo. R1-nj 

produces a red coloration in the cap of the aleurone (endosperm transmission) and in the 

embryo (embryo transmission). By observing this coloration, it is possible to distinguish 

haploids (color in the cap of the aleurone, but none in the embryo) reliably from hybrids 

(color in the cap of the aleurone and in the embryo). Although several other dominant 

inherited phenotypic markers exist in maize, R1-nj has so far been superior due to xenia 

expression and ability to select at the seed level before planting. Thus, only haploid 

kernels are colchicine treated and planted, reducing costs and effort compared to marker 

systems expressed at seedling or a later stage.  
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Despite of the various advantages of R1-nj, selection of haploid kernels is labor 

intensive and does not work equally well for all donors.  The shape of the kernel (flat vs. 

round) affects the ability to see embryo coloration, as does the level of transparency of 

the seed coat, which is overlaying the embryo. Currently, sorting of haploids is 

exclusively executed by skilled labor. The challenge for commercial breeders is to sort 

through large numbers of kernels within a short harvest and planting window between 

seasons, which may lead to suboptimal outcomes in the sorting process: 1) this task is 

extremely repetitive which leads to fatigue and mistakes, 2) a large workforce is required 

during a brief period, and 3) variation in kernel shape and expression of R1-nj between 

donor populations may lead to varying false positive and false negative rates in haploid 

kernel detection. 

 

The human eye is only able to detect wavelengths of light between 380 – 780 nm 

which limits the ability to detect subtle coloration differences. The speed at which a 

person can sort massive amounts of kernels is limited, prompting desire for automation of 

the haploid selection process. Though no fully implemented system is being 

commercially used, several other pilot studies have been published using other markers to 

discriminate between the haploid and diploid fractions using instrumentation. Traits such 

as the difference between the embryo weights of the haploid and diploid seed (Smelser et 

al., 2015), spectral differences using NIRS and SIMCA (Jones et al., 2012), fluorescence 

imaging (Boote et al, 2015), and oil content (Melchinger et al., 2015) are all being tested 

for their utility as automated selection criteria. Each method has its strengths and 

drawbacks. The weight, NIRS, and fluorescence methods all utilize existing markers, 
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while the oil content method requires the development of new high oil haploid inducers. 

The development of a high oil inducer is not a trivial matter as oil content is a 

quantitative inherited trait and can be affected by environmental conditions as well as 

context dependency of the germplasm.   Herein, we describe an approach based on the 

VideometerLab 3 spectral imaging system, which has shown great success in other seed 

based assays. The ability to automate haploid – diploid kernel discrimination would allow 

for a substantial decrease in costs and increase in efficiency of the maize DH system and 

any other DH system in which a seed color based selectable marker is used. It is 

important to note that this process does not necessarily need to be 100% accurate. The 

ability to enrich haploid kernels to >80% would still be a desirable outcome saving both 

money and time. 

 

The objectives of this study were, to (i) evaluate the utility of the VideometerLab 

3 system to discriminate between haploid and diploid seed, (ii) test the system on several 

genotypes that display varying difficulty of manual sorting, and  (iii) employ DNA 

marker assays for confirmation of haploid-diploid discrimination. 

 

Methods 

Germplasm 

For this experiment, induced kernels were produced in the summer of 2012 at the 

Iowa State University Agronomy and Agricultural Engineering Research Farm in Boone, 

IA. As part of a larger experiment 120 inbred lines were planted in single row, 5.48 meter 

plots on 45.72 cm row spacing at a density of 60,000 plants per hectare.  All plants had 
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immature ears covered before silk emergence and were detasseled to reduce foreign 

pollen contamination. When all plants in the plot reached approximately 50% silking, 

bulk pollen from the maternal haploid inducer F1 ‘RWS/RWK-76’ (Rober et al., 2005) 

was used to pollinate all plants in the row. At maturity, all ears in the row were bulk 

harvested and shelled. As part of a separate experiment, each plot was visually sorted for 

haploid and hybrid kernels to determine induction rate. Six inbred lines were selected to 

be used in this experiment to test the ability of the Videometer system to select haploid 

kernels using the R1-nj marker in the kernel in a variety of genetic backgrounds. 

 

The six inbred lines selected are as follows: ‘PHR36’, a DuPont Pioneer expired 

PVP white semi dent inbred from the non-stiff stalk heterotic group;  “PHT77’, a DuPont 

Pioneer expired PVP yellow dent inbred from the non-stiff stalk heterotic group; 

‘PHK35’, a DuPont Pioneer expired PVP yellow dent inbred from the stiff stalk heterotic 

group; ‘B47’, a DuPont Pioneer expired PVP yellow dent inbred from the stiff stalk 

heterotic group, developed from the Iowa State public inbred line ‘B37’. ‘NK792’ is an 

inbred line developed by Northrop, King and Company. A PVP certificate was applied 

for but withdrawn for ‘NK792’. ‘MS198’ is a yellow semi dent public inbred developed 

by Michigan State University. Detailed information for each of these lines can be found 

in the PVP certificates which can be accesses through the USDA’s Germplasm Research 

Information System (GRIN) (http://www.ars-grin.gov/npgs/). From each of the six inbred 

lines, 100 random haploid, and 100 random diploid kernels were selected manually and 

used for analysis. 

 

http://www.ars-grin.gov/npgs/
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Sample preparation and image acquisition 

From each inbred, 50 kernels were randomly selected from the hand sorted seed 

and placed in a 9 cm diameter petri dish with the embryo facing up. In some cases, it was 

difficult to orient the kernel with the embryo up due to the shape of the kernel. However, 

for most of the kernels it was possible to place them correctly with the embryo facing up. 

 

For image acquisition, the VideometerLab 3 system was utilized. This instrument 

acquires multispectral images of the reflectance from the surface of maize kernels. Using 

strobed LED technology the VideometerLab 3 combines measurements at 19 different 

wavelengths into a single high resolution spectral image. Each pixel in the image is a 

reflectance spectrum which includes wavelengths ranging from ultraviolet, to visual, into 

the near infrared spectrum (thus outside the range visible to the human eye). In addition 

to the illuminated wavelength, 4 filters were included in the analysis for measuring 

fluorescence from the kernel surface (cutoff at 400, 500, 600, and 700 nm). 

 

In the first step, the instrument was calibrated, and the light setup prepared to 

match the samples in such a way that the captured images contain an as wide a dynamic 

range as possible with a minimum of saturated pixels. Next, petri-dishes with kernels 

were placed in the VideometerLab 3 instrument and images acquired for each petri-dish. 

Images were saved for further processing. Images were taken with 2056x2056 pixels and 

79 bands (regular reflectance, plus fluorescence measured with the above mentioned four 

cutoff wavelengths). Each image was 1.24 Gb in size. 
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Detection of maize kernels 

In order to properly identify separate kernels, each must be segmented in the 

image into so-called BLOBs (Binary Labelled Objects). This automated process is 

diagrammed in Figure 1 where the image (1.1) is divided into either foreground or 

background (1.2). Next, the multispectral information available in each pixel in the 

labelled areas is used to create a linear model (CDA – canonical discriminant analysis) 

(Olesen et al., 2011), that ensures the canonical discrimination function will “score” high 

when pixels look the same as a kernel and “score” low when pixels look like the 

background (1.3). Finally, this score is used to do the final segmentation of the kernels 

(1.4) into segregated objects (1.5). 

Haploid vs diploid score 

Once a list of BLOBs is created, models are constructed of the diploid embryo. 

Due to aforementioned differences in expression of the R1-nj marker, colored embryos 

differ between inbreds. Thus models need to be generated for each of the inbreds. This is 

done in a similar way to segmentation of kernels described in the previous section (Figure 

2). First, regions are labelled inside the kernels (2.1 and 2.2), such that the diploid 

embryos have one label, and the endosperm and haploid embryos have separate labels. 

As before, a model is constructed (2.3) that yields a high discriminant score when the 

pixels “look” like a diploid embryo and low when not (2.4 and 2.5). 

Extracting the haploid vs diploid score and haploid identification 

Since the discriminating feature between haploid and diploid kernels is solely 

contained within the embryo of the kernel, the extracted measure was restricted to the 

embryo of the kernel. In order to do this, the “surface” (or region of interest) of the 
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embryo is detected and isolated. Once this region is isolated, the diploid score is extracted 

from only this region for each kernel (Figure 3). For each set of 100 induced kernels from 

each of the six inbreds, the above procedures were followed and for each of the 

genotypes the identification rate was estimated for three different approaches: 1) for each 

kernel the diploid score was used to evaluate, whether it is more similar to other diploid 

or haploid kernels. 2) For each kernel a score is created by combining all the diploid 

scores (for all genotypes) using CDA. 3) In addition to the aforementioned criteria, 

addition of more features related to shape and texture of the kernels was used in the 

model. 

Testing of haploid vs diploid scores on seed genotypes 

To test the system, a random sample of 20 kernels from the haploid and diploid 

fraction was placed on two separate petri dishes (See Figure 4). Ten of the kernels in each 

of the petri dishes were used to train the model for the specific genotype both for 

fluorescence and for visual light. Once the model was trained by selection of the 

optimally discriminant wavelength for that genotype, it was used to generate a haploid vs 

diploid score for the remaining ten kernels on the plate. Individual kernels received 

unique scores. These individual kernels were then subjected to marker analysis for a 

validation of the haploid vs diploid state.  

Marker analysis for confirmation of haploid vs diploid identification 

As previously mentioned, the R1-nj color marker is not perfect. Expression of this 

marker is variable in both embryo and aleurone. Other issues such as kernel size and 

shape, time between pollination and harvest and disease pressure create more variability 

in the visibility of the coloration to the human eye. Thus, to definitively confirm the 
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haploid vs diploid identity of the kernels, all kernels were planted in a greenhouse tray for 

DNA extraction from leaf tissue. It should be noted that a ‘seed chipping’ approach is not 

possible since the endosperm is the product of a successful fertilization between the 

donor plant and the inducer in all haploid kernels. The triploid endosperm, would 

therefore, always be a hybrid. At the 2-3 leaf stage, tissue samples were collected for 

DNA extraction. Prior to this analysis, the six lines and the inducer used for pollination 

were used to identify polymorphic markers that could be used to positively identify 

hybrids between the inducer and the line and also identify the line itself (Supplemental 

Table 1).  DNA was extracted using a CTAB protocol (Stewart et al., 1993) with plant 

tissue which was flash frozen with liquid nitrogen. DNA was then separated using 

isomyl-alcohol:Chloroform solution and dissolved into ethanol. DNA was diluted to 

20ng/μL for PCR.  

Statistical Analysis 

All tests were conducted using a Welch two-sample T-test (Welch, 1938) as 

implemented in the R function ‘t.test’. The Welch two-sample T-test is appropriate as the 

sample sizes are small and the variances of the two fractions are not equal. Using 

Satterthwaite’s approximation, percentage points of the t distribution were modified 

using an estimation of degrees of freedom based on the separate individual sample 

variances instead of a pooled variance estimates.  
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Results 

Identification of haploids vs hybrids using fluorescence 

For each individual genotype, a specific wavelength produced an optimally 

discriminating value for that specific genotype. In Figure 7, boxplots for each of the six 

genotypes were generated to show the distribution of kernel scores for the haploid and 

diploid fractions of each genotype. In this figure, the optimal score was used based on the 

model generated for each genotype, thus producing the most discriminating values 

possible. As seen in both the boxplots of Figure 5, and Table 1, significant differences 

were obtained in all genotypes except for NK792 at the 0.05 significance level. More 

variation within genotypes was found for genotypes PHT77 and NK792. These genotypes 

also have the least significant differences between the haploid and diploid fractions. This 

is not surprising, as these genotypes were the most difficult to sort by hand. 

The effect of using the correct model for a specific genotype can be seen in Figure 6, and 

Table 2. For this set of boxplots, PHT77 was sorted using wavelengths optimized for all 

six genotypes. For example, PHT77.1 uses the wavelength that is optimized for PHR35. 

In the boxplots, it can be seen that the variance within genotypes increases when the non-

optimal wavelength is used. In this case, the wavelength that is optimized for PHT77 

(PHT77.2) and PHT77.3 and PHT77.4 produce significant differences. A similar effect 

can be seen for all genotypes when the non-optimal wavelength is used (data not shown).  

 Identification of haploids vs hybrids using visual light 

In addition to using non-visible light wavelengths, the kernels were analyzed 

using wavelengths in the visible light spectrum. Again, each genotype had an optimal 

wavelength which produced the most discriminating score for differentiation of haploids 
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vs hybrids. In Figure 7 and Table 3, the results of this analysis are shown in boxplots and 

significance values for t tests of each genotype. Differences between haploids and 

hybrids were significant for all genotypes except for NK792. With visual light, similar 

results were obtained, when non-optimal wavelengths were used (Figure 8, Table 4) with 

significant differences for PHT77 only when using this genotype’s specific wavelength 

(PHT77.2) or the wavelength for PHR35 (PHT77.1). Similar results were obtained with 

the other genotypes (data not shown). 

 

Breeders evaluated many haploid seed from many diverse genotypes. There 

would be great utility in having a ‘global wavelength’ which can be used across all 

germplasm in the breeding pool. As mentioned, this study produced a unique optimized 

wavelength for each genotype. To evaluate the possibility of a ‘global wavelength’, all 

comparisons were made between haploids and diploids within each genotype for each 

fluorescence wavelength (Table 5). In PHR35, PHK35, PHB47, and MS198 there are 

significant differences between the haploid and diploid fractions for every wavelength. 

However, PHT77, PHK35 and NK792 do not show significant differences for all 

wavelengths. Based on this information, there would be the possibility to use a global 

wavelength, however, each genotype would need to be visually checked to ensure that it 

is being properly sorted. 

Marker analysis verification of haploid vs diploid scores 

For this analysis, it was assumed that all non-germinating seed were of the 

haploid fraction. Haploid seed produce lower germination rates on average, as these 

embryos are weaker since they lack half of their genetic information (Prigge et al., 2011). 
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Accuracies between the VideometerLab 3 score and molecular marker identification for 

the six genotypes ranged from 40% to 100% (Table 6), with the lowest accuracies for 

those genotypes which were most difficult to sort by hand (see Supplemental Table 1 for 

a full list of scores). Manual sorting for genotypes PHR35, PHB47, and MS198 was 

100% accurate based on the haploid vs hybrid score compared to marker analysis. 

Haploids were detected for PHT77 with 40%, for PHK35 with 70%, and for NK792 with 

50% accuracy.  

 

Discussion 

Success of identification 

 The overall objective of this study was, to determine 

whether the Videometer system can be used to accurately sort haploid and hybrid seed in 

maize. Sorting of haploids from a maize DH program is a very time consuming and 

tedious process that can take thousands of hours of labor to complete for a single average 

sized breeding program. Many of the sorting efforts are out sourced to countries where 

winter nurseries are located as labor is usually cheaper and the seed can then be readily 

available for planting. This study shows that there is a significant potential to utilize the 

Videometer system for the automation of sorting of haploid seed for maize DH programs 

utilizing the R1-nj marker system in their in vivo induction program. As is seen in the 

results, some genotypes proved difficult to sort. The six genotypes were classified into 

two different groups 1) easy to visually sort, and 2) difficult to visually sort. The 

genotypes that were easy to visually sort are PHR35, PHK35, PHB47, and MS198. The 

genotypes difficult to sort were PHT77, and NK792.   This is a common problem seen in 
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all maize DH programs as the expression of R1-nj is dependent on the genetic 

background of the donor population as well as environmental factors. In the case of this 

study the background within genotypes is uniform as all genotypes were produced from 

inbred lines. A suitable next step will be to consider segregating donor populations to see 

what effect this has on the sort. Based on the results, it is clear that the use of the optimal 

wavelength for a specific genotype is important. When considering a typical maize 

breeding program, it is likely that the majority (at least in the U.S.) of the germplasm will 

be yellow dent corn. Most yellow dent corn which is properly pollinated will provide 

good expression of R1-nj. However, it remains possible that certain combinations could 

provide modification of the expression of R1-nj since this is not a trait which is selected 

for so any modifier loci should segregate in the germplasm. Modifications to the 

expression could make visual and automated sorting more difficult. It is therefore most 

likely that breeding programs would need to classify their induced seed into two groups 

as was done in this paper: those which are easy to visually sort, and those which are 

difficult to visually sort. As shown in this study, those which are easy to visually sort can 

be accurately sorted using the VideometerLab 3 system. Those which are difficult to sort 

could be run through the system multiple times to, at least, enrich the fraction of haploid 

seed in the mix which would still provide an advantage.  It is also crucial to train the 

model with accurate visual sorts. If the visual sorts used to train the model are poor, then 

the model will poorly discriminate the fractions for that genotype as was the case for 

NK792. Visual scores (Supplemental Table 1) for NK 792 identified the haploid and 

hybrid fractions as they were sorted. However, marker analysis showed that only four of 

the haploids were correctly identified. In previous sections, it was noted that NK792 
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produced the least significant values between the two fractions. The poor sort for NK792 

could have come from the poor expression of R1-nj on the kernels making visual sorting 

very difficult. Based on visual and marker scores, the haploid fraction contained five 

hybrids. It is thus likely, that the training kernels also contained a similar fraction of 

hybrids. Thus when the model was trained, half of the kernels were incorrectly classified 

producing a poor model to sort from. This explains the poor discrimination found for 

NK792. This will continue to pose a challenge, but it was promising to see that the 

automated scores corrected for a few visual sorting mistakes. The fitting of a global 

model would eliminate the need for manual sorting for each different genotype prior to 

sorting. However, it is shown in Table 5 that only the genotypes in the easy to sort group 

(PHR35, PHK35, PHB47, and MS198) are sortable using the optimized wavelengths 

from other genotypes.  One aspect to consider, however, is that global models may work 

better within the germplasm used in specific breeding programs. For example, a breeder 

may be able to generate a global model for their stiff stalk dent germplasm, and a 

separate model for their non-stiff stalk germplasm.  

Challenges and automation 

A major challenge of working with maize kernels for imaging is that the kernels 

are of an irregular shape and do not always lay flat depending of many factors including 

the number of kernels on the ear, and the location of the specific kernel on the ear with 

flatter kernels occurring with complete pollinations in the middle of the ear and rounded 

kernels occurring in incomplete pollinations and on the ear base and tip. In order to use 

the system as it currently works, the kernels must be positioned with the embryo facing 

upward which proved challenging. A system will have to be devised where the kernel can 
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be displayed to the optics in a consistent and accurate position for imaging. 

Discrimination of the embryo from the rest of the kernel is a useful aid to discrimination 

of the two fractions as this is the only part of the kernel which has a visible difference 

between the haploid/diploid fractions. 

 

Currently, the positioning of the kernels on a petri dish is not a high-throughput 

method which would allow for the sorting of the millions of kernels which would be 

needed. Now that the system has been shown to be discriminatory between hybrids and 

haploids, it will be important to design and automated system which can feed a large 

quantity of seed to the imaging system (e.g., through a conveyor or channel system) 

which would then subsequently sort the seeds into two fractions using robotic picking or 

some kind of pneumatic or mechanical gate system. It is important to note, that a 100% 

accuracy rate is not necessary. A rate of 10% hybrids in the haploid fraction would be 

acceptable, as these can be cut out of the field easily. It is most important to identify all 

haploids in the seed genotype, even if this means that some hybrids are misclassified due 

to the setting of the sort threshold. Losing haploids into the hybrid fraction would be 

undesirable as haploids only occur at, on average, a 10% rate in an induction cross and 

each seed can be critical to the production of enough DH lines for breeders to evaluate 

per cross. 

Comparison to other methods 

As mentioned in the introduction, other pilot studies have been conducted which 

evaluate the ability to use an automated system to discriminate between haploid and 

hybrid seed in an induction cross. The method proposed herein, as mentioned, uses the 
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Vidometer Lab 3 system which has been documented as a useful tool for the 

nondestructive and automated analysis of seed phenotypes (Liu et al., 2014; Shetty et al., 

2012; Olesen et al., 2011). This method is able to capitalize on the already existing 

marker system (R1-nj) and would also not require the development of a new set of optical 

sensors/software to handle the data. This in comparison to, for example, the previously 

mentioned Jones et al. (2012) which required the development of a new system for the 

analysis of the seeds as well as software to be adapted for its use. Though the method in 

Jones et al. (2012) provided a discriminative sort, there was no validation of the true 

identity of the haploid/hybrid kernels. The method described by Boote et al. (In press), 

provides the most similar method, using NIRS and fluorescence imaging. However, this 

method only considers one kernel at a time and while discussion of automation was 

provided, no current method exists for that system, while for the VideometerLab 3 

system a method of automated seed feeding exists (shown here: 

ftp://videometerlab:multispec@www.videometer.com 

/Videos/2014_July_VideometerLab_AutoFeeder.AVI). The method described in Smelser 

et al. (2015) uses the weight of the haploid and hybrid embryos as a marker to 

discriminate between the two seed fractions. In this study visually selected kernels were 

weighed and total kernel weights were compared as a discriminative marker. Only two of 

the six genotypes produced significant differences. Automation of such a system could 

prove difficult since it would rely on single kernel weights. Also, it is unclear what the 

effect of kernels of different size would have. Kernels on the tip and base of the ear are 

sized differently than those in the center which will affect the overall weight of the 

kernel. There may also be loci which control the size of the embryo which segregate in 
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the germplasm affecting the accuracy of the sort. Again, no validation of the identity of 

the visual sort was provided. Finally, the method proposed by Melchinger et al. (2015; 

2014; 2013) uses oil content as a marker for discrimination between haploid and hybrid 

seed. While detection of oil content has the potential to be automated on a single kernel 

basis, and the ability to discriminate the two fractions was shown, there is a dependence 

on the genetic background of the material as is the case in all studies discussed. Modifier 

loci for oil content may segregate within the germplasm causing confounding effects of 

the oil content expression. The most difficult aspect of the high oil marker, is the 

development of new high oil inducer lines. While the VideometerLab 3 system relies on 

existing marker technology, using oil content would require the development of new 

inducers with both high oil content and high induction rate. Both of these traits are 

quantitative and it would not be a trivial task to increase the mean induction rate and the 

mean oil content simultaneously, though it can be done as they describe. This would 

however, make the system more expensive as it would not only require the 

instrumentation, but also either the development or purchase of a new high oil inducer.  

 

Considering these methods, it seems that the VideometerLab 3 system would be 

the easiest to implement due to the fact that 1) the instrumentation is already designed 

and well tested showing success in other seed phenotypes, 2) software is already 

developed for this system, 3) this study shows that discrimination of haploids and hybrids 

is possible, and 4) it utilized the existing inducers and marker system. 
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Table 1. Comparison between haploid and diploid fractions using fluorescence for each 

of the six genotypes. Comparisons were made using the Welch two sample T-test. The 

optimal wavelength for each genotype was used in this analysis. 

Genotype Fraction Fluorescence Mean Std. Dev. P-Value 

PHR35 Hybrid -0.19 0.36 < 0.001* 

 

Haploid -1.06 0.1 

 PHT77 Hybrid -0.48 0.35 0.0012* 

 

Haploid -1.15 0.41 

 PHK35 Hybrid -0.33 0.18 < 0.001* 

 

Haploid -1.15 0.17 

 PHB47 Hybrid 0.03 0.29 < 0.001* 

 

Haploid -0.91 0.12 

 NK792 Hybrid -0.65 0.38 0.051
NS

 

 

Haploid -0.94 0.19 

 MS198 Hybrid -0.26 0.18 < 0.001* 

 

Haploid -0.92 0.26 

  

Table 2. Comparison between haploid and diploid fractions using fluorescence for 

PHT77. Comparisons were made using the Welch two sample T-test. In this table, 

optimal wavelengths for each of the six genotypes were used on PHT77. 

Genotype Fraction  Fluorescence Mean Std. Dev. P-Value 

PHT77.1 Hybrid -0.73 0.18 0.09
NS

 

 

Haploid -0.86 0.16 

 PHT77.2 Hybrid -0.48 0.35 0.0012* 

 

Haploid -1.15 0.41 

 PHT77.3 Hybrid -0.19 0.28 0.03* 

 

Haploid -0.49 0.3 

 PHT77.4 Hybrid -0.31 0.33 0.03* 

 

Haploid -0.61 0.22 

 PHT77.5 Hybrid -1.69 0.2 0.33
NS

 

 

Haploid -1.77 0.19 

 PHT77.6 Hybrid -0.73 0.18 0.17
NS

 

 

Haploid -0.84 0.17 

   



74 

 

 

Table 3. Comparison between haploid and diploid fractions using visible light for each of 

the six genotypes. Comparisons were made using the Welch two sample T-test. The 

optimal wavelength for each genotype was used in this analysis. 

Genotype Fraction Visible Light Mean Std. Dev. P-Value 

PHR35 Hybrid -0.1 0.93 <0.001* 

 

Haploid -1.09 0.13 

 PHT77 Hybrid -0.72 0.24 0.002* 

 

Haploid -1.09 0.2 

 PHK35 Hybrid -0.51 0.19 <0.001* 

 

Haploid -1.05 0.1 

 PHB47 Hybrid -0.2 0.26 <0.001* 

 

Haploid -0.92 0.13 

 NK792 Hybrid -0.81 0.24 0.051
NS

 

 

Haploid -1.01 0.14 

 MS198 Hybrid -0.45 0.18 <0.001* 

 

Haploid -0.99 0.09 

  

Table 4. Comparison between haploid and diploid fractions using visible light for PHT77. 

Comparisons were made using the Welch two sample T-test. In this table, optimal 

wavelengths for each of the six genotypes were used on PHT77. 

Genotype Fraction Visible Light Mean Std. Dev. P-Value 

PHT77.1 Hybrid 0.003 0.19 0.03* 

 

Haploid -0.17 0.14 

 PHT77.2 Hybrid -0.72 0.24 0.002* 

 

Haploid -1.09 0.2 

 PHT77.3 Hybrid -0.53 0.17 0.08
NS

 

 

Haploid -0.69 0.21 

 PHT77.4 Hybrid -0.13 0.2 0.12
NS

 

 

Haploid -0.26 0.15 

 PHT77.5 Hybrid -1.02 0.2 0.32
NS

 

 

Haploid -1.11 0.17 

 PHT77.6 Hybrid -0.72 0.12 0.17
NS

 

 

Haploid -0.79 0.1 
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Table 5. P-values for Welch two sample t-test for all possible combinations using 

fluorescence. Each genotype was tested at all six wavelengths to observe if a global 

model could be applied instead of producing an optimal wavelength for each genotype. 

  Wavelength 

Genotype 1 2 3 4 5 6 

PHR35 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

PHT77 0.09 0.001 0.03 0.03 0.33 0.17 

PHK35 <0.001 <0.001 <0.001 0.16 <0.001 <0.001 

PHB47 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

NK792 0.68 0.97 0.81 0.51 0.051 0.28 

MS198 <0.001 0.001 <0.001 <0.001 0.002 <0.001 

 

Table 6. Using molecular marker information that allows for the classification of a hybrid 

between the inbred line and the inducer and a haploid progeny of the inbred line, the 

accuracy of the VideometerLab 3 sort was checked.  

Genotype Fraction # correct # incorrect Accuracy 

PHR35 Hybrid 10 0 100% 

 

Haploid 10 0 100% 

PHT77 Hybrid 8 2 80% 

 

Haploid 4 6 40% 

PHK35 Hybrid 9 1 90% 

 

Haploid 7 3 70% 

PHB47 Hybrid 10 0 100% 

 

Haploid 10 0 100% 

NK792 Hybrid 10 0 100% 

 

Haploid 5 5 50% 

MS198 Hybrid 10 0 100% 

 

Haploid 10 0 100% 
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Figure 1. The segmentation process. Regions/pixels in the image (1) are labelled in 

“foreground” and “background” categories (2). The labelling is used to create a score (3) 

that can be used to segment the image into individual regions, each containing one kernel 

(4). Each region is extracted from the image (5) into so-called BLOBS (Binary Labelled 

Objects). 
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Figure 2. Identification of the diploid embryo. The diploid and haploid embryo in each 

kernel (1) is labelled with two different labels (2). In addition to the haploid embryo 

region, the surroundings, different from the diploid embryo, is included in order to create 

a model (3) that will score high on only diploid embryos. (4) show the resulting “diploid 
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embryo-score” generated from the model. (5 and left side) illustrate the resulting score 

from a haploid embryo. 

 
 

Figure 3. Before the diploid-embryo score is extracted from each kernel, we ensure that 

the score is extracted from the endosperm region. Hence, as for the 

foreground/background segmentation in Figure 6, we label the endosperm region and the 

rest in two labels, and create a model that we use for doing the segmentation of the 

embryo region. 
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Figure 4. Experimental layout of kernels. 20 individual randomly selected kernels from 

the haploid and diploid fractions of each genotype were placed on a petri dish, embryo 

side up, for imaging. The bottom ten kernels were used to train the model, and the model 

was then tested on the remaining 10 kernels for each fraction. 
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Figure 5. Boxplots showing the distribution of values for each of the six genotypes using 

fluorescence. As seen, some of the genotypes have small variance within each group and 

good separation between fractions while some have higher variance and less separation. 
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Figure 6. Boxplots showing the distribution of values for PHT77 using optimal 

fluorescence wavelengths for all six genotypes. As seen, the differentiation between 

haploid and diploid fractions is not as pronounced as seen in Figure 7. 
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Figure 7. Boxplots showing the distribution of values for each of the six genotypes using 

visible light. As seen, some of the genotypes have small variance within each group and 

good separation between fractions while some have higher variance and less separation. 
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Figure 8. Boxplots showing the distribution of values for PHT77 using optimal visible 

light wavelengths for all six genotypes. As seen, the differentiation between haploid and 

diploid fractions is not as pronounced as seen in Figure 7. 
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Abstract 

Doubled haploid (DH) lines are used in maize breeding to accelerate the breeding 

cycle and create inbred lines in as little as two seasons. This allows breeders to quickly 

evaluate new cross combinations without wasting time inbreeding. There are two 

important steps in creating DH lines: 1) generation and selection of haploid progeny, and 

2) doubling of chromosomes to create a fertile, diploid inbred.  The second step is the 

focus herein. Normally colchicine is used to double chromosomes in haploid plants 

which is expensive and time consuming. In this study three public inbred lines GF1, GF2, 

and GF6 were found to have spontaneous chromosome doubling (SCD) ability as 

haploids. In conjunction with another study, a 6 parent full diallel between these three 

SCD lines and three non-SCD lines was created and male fertility in haploids was scored. 

Diallel analysis shows that significant GCA estimates of up to 17% exist for SCD as well 

as significant SCA effects of up to 25%. No reciprocal effects were found significant and 

broad and narrow sense heritabilities for SCD were estimated at 0.62 and 0.31, 

respectively. The potential to use SCD in breeding programs for the improvement of the 
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DH system as well as to expand the DH system into other types of maize such as tropical 

or popcorn exists as well as the reduction in time and monetary resources. 

Introduction 

Production of doubled haploid (DH) lines in maize (Zea mays L.) has provided 

breeders and geneticists a powerful tool for the rapid production of new inbred lines for 

testing and evaluation. The applications of DH lines and their advantages in both 

breeding and genetics have been discussed at length (Bernardo, 2009; Geiger, 2009; 

Prigge et al., 2011; Longin et al., 2011). Maize was not the first, nor is it the only crop to 

realize the potential applications and benefits of DHs. For many crops such as wheat 

(Triticum spp.), barley (Hordeum vulgare L.), rye (Secale cereale), rapeseed (Brassica 

napus), broccoli (Brassica oleracea), tobacco (Nicotiana tabacum), potato (Solanum 

tuberosum), sugar beet (Beta vulgaris L.), onion (Allium cepa), apple (Malus domestica), 

poplar (Populus tremula), oak (Quercus spp.), and some citrus species protocols for 

production of DH lines are available.  

 

Though multiple methods exist for the production of maize DH lines, the most 

popular due to its ease of use, success rate, and flexibility is the in vivo maternal haploid 

induction system. With this system there are two key biological steps that must occur for 

the successful production of DH lines: 1) the production and identification of haploid 

progeny (see accompanying paper) and 2) successful genome doubling in haploid plants. 

In this manuscript, the focus will be on spontaneous genome doubling. 
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DH systems provide 100% (theoretically) inbred lines rapidly, economically, and 

reliably. Although widely accepted, the current maize DH system is not without 

shortcomings. Quantitative genetic control of the rates of haploid induction limits the 

number of haploid progeny which can be produced (Prigge et al., 2011, De La Fuente et 

al., in preparation). Without doubling treatment, the rate of haploid fertility is typically 

very low: 0.41% were reported by Kleiber et al. (2012). However, with doubling 

treatment, across a diverse set of germplasm, rates are typically near 8% (Kleiber et al., 

2012). In order for the haploid plant to be fertile, genomes of cells which lead to the 

formation of reproductive organs must successfully be doubled. This genome doubling 

produces a diploid genome which is expected to be 100% homozygous and thus, results 

in a completely inbred line. After genome doubling, reductional division is possible and 

meiosis leads to formation of fertile pollen and egg cells.  

 

The current DH system relies on use of artificial doubling treatments. The most 

widely used method is the use of the chemical colchicine. The first report of the use of 

colchicine as a doubling agent goes back to 1937 (Blakeslee and Avery, 1937). 

Colchicine acts to artificially double ploidy through the inhibition of the mitotic spindle 

apparatus development (Borisy and Taylor, 1967). This method was, at first, not very 

efficient, but refined practices have led to reported doubling rates of between 16-49% 

depending on the method of application (Eder and Chalyk, 2002). Colchicine is a toxic 

chemical to both user and plant. The use of colchicine requires specialized training and 

supervision as well as appropriate disposal protocols. Perhaps, the most problematic issue 

with this system is the need for germination, treatment, and subsequent transplanting, 
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which requires a substantial labor input compared to sowing maize seed. Dependence on 

colchicine limits application of DH technology in developing countries (Kleiber et. al, 

2012). Observations made at the Iowa State University Doubled Haploid Facility (ISU-

DHF) over multiple seasons show that even with the use of colchicine treatment, skilled 

labor, and appropriate facilities some populations used for DH production are recalcitrant 

and double at low rates (<1%, data not shown). This is commonly occurring in specialty 

maize such as popcorn and sweet corn. However, it is also found in elite temperate 

adapted maize populations, leading to potential reduction in selectable variation in a 

breeding program when applying DH technology. 

 

Spontaneous chromosome doubling (SCD) has been reported in maize (Wu et al., 

2014; Sugihara et al., 2013; Kleiber et al., 2012) and also in other grass species and has 

likely been an important factor in the formation of some of our polyploid crops (Castillo 

et al., 2009).  However, for economic production of DH lines the rate of SCD must be at 

least that observed when artificial chromosome doubling is used (~8-10%). SCD has 

been reported for tropical and elite temperate maize with European and North American 

origin (Kleiber et al., 2012). Reports on SCD tend to concentrate on female fertility 

(Chalyk, 1994; Geiger et al., 2006), though one does consider male fertility (Kleiber et. 

al, 2012). It is important to consider male fertility, since usually female fertility is not the 

limiting factor (Chalyk, 1994). So far, no studies on SCD were performed for maize 

germplasm adapted to Midwest U.S.  
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Based on preliminary experiments with inbred line derived haploid lines, a six 

parent diallel was produced between these three SCD inbred lines and three inbreds 

which have low SCD but high inducibility rates. The objectives of this study were to 1) 

investigate the genetics and potential practical use of SCD in DH line production, 2) 

evaluate the inheritance of SCD, and 3) evaluate, if a cross between and non-SCD line 

and an SCD line produces SCD haploids.  

 

Materials and Methods 

Preliminary Trial 

As part of a study on inducibility a total of 102 public and expired Plant Variety 

Protection (ExPVP) inbred lines were pollinated with the maternal haploid inducer 

‘RWS/RWK-76’ (Rober et al., 2005). Haploid kernels from these inbred lines were 

grown at the Iowa State University Agricultural Engineering and Agronomy Farm (ISU-

AEA) in Boone, IA in the summer of 2013 in a preliminary screening experiment. 

Twenty-five putative haploid kernels from each entry were directly planted with a plot 

planter in a two replication randomized complete block design. Observations of fertile 

male tassels with healthy anthers dehiscing at ISU-DHF along with discussions with 

users of ISU-DHF led us to the conclusion that male fertility limits successful self-

fertilization of haploids.  As consequence, pollen-shedding haploids were scored. For 

control, self-pollinations and crosses were made in lines with high SCD. All crosses 

produced intact seed, which was subsequently grown for other experiments and 

confirmed as derived from a cross. Three inbreds were identified with superior (>50%) 

male fertility. Each of these inbreds produced fertile anthers, successful self-pollinations 
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and crosses onto other haploid lines (data not shown). The three identified inbreds and 

their corresponding haploids were grown side-by-side for confirmation in summer 2014 

and 2015 (Figure 1) at ISU-AEA and again the haploids produced fertile anthers and 

were phenotypically distinct from their inbred counterpart. Additionally, a cross made 

between an SCD haploid from the highest doubling line and another non-doubling line 

was grown in the greenhouse in the winter of 2013 at ISU producing fertile F1 plants 

which were induced with ‘RWS/RWK-76’. These haploids were directly planted in the 

field and segregated for SCD male fertility at a near 1:1 ratio, confirming our 

observations that this is a heritable, stable, and selectable trait. 

Germplasm 

Six inbred lines were selected for use in a complete diallel: three of which are 

highly inducible, but do not have SCD potential and three of which are poorly inducible, 

but have high SCD potential. The lines and details of their heterotic grouping, flowering 

time, pedigree, and origin are detailed in Table 1. Seed from all three lines was acquired 

from the USDA North Central Regional Plant Introduction Station. The six inbred lines 

were crossed in a full diallel, creating a set of 30 unique F1 hybrids. These hybrids were 

pollinated with the maternal haploid inducer RWS/RWK-76 in 2014 at the ISU-AEA to 

produce haploid seed for each of the hybrids. Seed was then visually sorted using the R1-

nj color marker. 

Field Trials 

Haploids of each of the 30 F1s were grown at a total for four locations: Iowa State 

University’s Agricultural Engineering and Agronomy Farm (AF) in Boone, IA, USDA’s 

North Central Regional Plant Introduction Station (PI) in Ames, IA, University of Illinois 
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Research Farm (IL), Urbana, IL, and Texas A&M University’s Field Research Station 

(TX) near College Station, TX. In addition, the haploids of the six inbreds were grown in 

a smaller two replication trial at AF in paired rows with their corresponding inbred line 

for comparison. The trial at Texas A&M was planted in two row 9.14m plots on 0.76 m 

spacing with a total of 90 seed planted in each plot. The TX trial was delayed in planting 

due to heavy rains that fell in the early spring in TX. Once the plots were planted and 

established, heavy rains came again in May causing the nearby Brazos River to flood the 

nursery. However, data could still be taken as the plants were at flowering already. The 

remaining three trials were planted on 5.48 m plots with 0.76 m spacing with 28 kernels 

planted per plot in 2015. Weather in Iowa (PI and AF) was cooler and wetter than 

average, especially around flowering time.  The trial at IL experienced a rainy and cold 

spring, but a normal summer season.  All plots were planted using untreated haploid seed, 

not transplants. Normally, haploids are germinated, treated with colchicine, and then 

transplanted into the field. All plots were maintained with standard agronomic practices. 

Once plants reach ~V5 (Elmore et al., 2011) misclassified hybrids were visually 

identified and removed from the plot so that only haploid plants remained. A stand count 

was taken of the final number of plants in the row.    

Traits Scored 

Plots were walked daily to score flowering haploid plants for male fertility 

(Figure 2). Each day, individual plants were evaluated for the presence of healthy fertile 

anthers. Haploids are most commonly sterile. Most sterile plants do not even exert 

anthers out of the glumes. Plants were scored male fertile when at least one healthy 

anther was extruded from a glume on the tassel. If scored fertile, the plant was tagged for 
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counts after flowering was complete. After flowering, the number of fertile (tagged) 

plants was counted and divided by the total number of haploid plants in the row to 

compute the fraction of male fertile plants. For confirmation, one replication at AF was 

hand pollinated to show that fertile anthers contained indeed viable pollen. 

Statistical Analyses 

Two types of statistical analyses were conducted. The first considered the mating 

design of the diallel and broke down the variance components of the SCD trait to 

investigate the genetic inheritance and nature of the trait. The second analysis was based 

on preplanned contrasts that are of interest in the practical use of the trait. For the first 

analysis the SCD = fertile plant/total plant ratio was logit transformed:  SCDlogit = 

log[(SCD+0.005)/(1-SCD+0.005)] as was reported in Kleiber et al. (2012) to normalize 

the data. The combining ability analysis was conducted using DIALLEL-SAS05 (Zhang 

et al., 2005) considering all F1s and reciprocals, also known as method 3 (Hallauer, 

1988). In our experiments, we did not sample germplasm, but characterized defined lines. 

Thus, a fixed effect model was considered. Estimates for general combining ability 

(GCA), specific combining ability (SCA), GCAxEnvironment, SCAxEnvironment, 

reciprocal (REC), RECxEnvironment, were all computed, as well as genetic variance 

(σ
2

g), additive variance (σ
2

A), and dominance variance (σ
2

D) determined for calculation of 

broad and narrow sense heritabilities. All calculations were done using DIALLEL-SAS05 

and respective estimations as described in Bolboaca et al. (2011).  

 

For the second analysis, preplanned contrasts of interest for the application of the 

trait were computed. SAS PROC GLIMMIX (version 9.4, SAS Institute, 2013) was 
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implemented using the binomial count data of number of fertile plants as successes, and 

total number of plants as trials. The model considered here was Yijk = Envi + Rep(Loc)i(j) 

+ Entryk + Env*Entryik
 
+ eijk. Where Yijkl is the mean across the experiment of the logit 

transformed SCDs, Envi is the random effect of the ith environment, Rep(Loc)i(j) is 

random effect of the jth replication nested in the ith environment, Entryk is the fixed 

effect of the kth entry (F1s from diallel), Env*Entryik is the random interaction between 

the ith environment and the kth entry, and eijkl is the residual error. Contrast statements 

were used to test the effect of using the SCD lines as males and females when crossed to 

other SCD lines and when crossed to other non-SCD lines to test if SCD lines can be 

used as parents in a cross to produce SCD in non-SCD background. 

 

Results 

Figure 3 summarizes the least square means across environments for the 30 

hybrids ordered from highest to lowest SCD. GF1/GF2 has the highest estimated SCD 

across environments at 46% followed by its reciprocal cross at 38%. The top five SCD 

hybrids are all SCDxSCD crosses. The lowest estimated SCD is GF2/GF5 at 9%. There 

are no SCDxSCD crosses in the worst five hybrids with two of the five being non-SCD x 

non-SCD crosses. The average value for SCD across all hybrids and locations is 23%. As 

part of the separate two replication experiment at AF, the estimates for the inbred SCD 

rates were as follows: GF1 (94%), GF2 (65%), GF3 (71%), GF4 (71%), GF5 (0%), GF6 

(71%). Figure 4 summarizes the distribution of DH lines generated from the pollination 

of the single replication at AF. Summarized is both the DH lines made per attempted 

pollination (left bar) and the DH lines made per total haploid plants in the row. The 
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highest percentage (75%) for DH lines made per attempted pollination was GF1/GF4 and 

the highest percentage for DH lines produced per number of haploid plants in the row 

was GF4/GF5 with (33%). In general the lowest estimates (zero successful pollinations) 

were combinations with GF4 and especially GF5. Also included in Figure 4 are totals 

across all combinations for each line. The values for DH lines per attempted pollination 

are as follows: GF1 (23%), GF2 (32%), GF3 (32%), GF4 (32%), GF5 (14%), and GF6 

(25%).  

Diallel Analysis 

In the combining ability analysis (Table 2) the effect of environment, GCA, SCA, 

and GCAxEnv interaction are all significant at the 0.05 level.  There was no significant 

effect for the direction of the cross (reciprocal effect) (Table 2). Positive general 

combining abilities were estimated for GF1, GF2, and GF6 (Table 3) though only GCA 

for GF1 was significant. GF3, GF4, and GF5 produced negative GCA estimates with 

significant GCA estimates for GF4 and GF5. The highest positive GCA estimate (17.1%) 

was obtained for GF1. GF4 produced the lowest negative GCA with a -8.3% reduction in 

SCD when combined with the other lines in the diallel. Significant SCA estimates were 

found for GF1/GF2 (12.4%), GF3/GF4(-13.9%), GF2/GF5(-13.4%), GF3/GF5(23.3%) 

and GF4/GF5(25.5%). Heritability estimates of SCD from the diallel analysis were 0.62 

for broad sense heritability and 0.31 for narrow sense heritability. 

Contrast Analysis 

In Table 4 for SCD lines (GF1 p-value=0.45, GF2 p-value=0.84, GF6 p-

value=0.73) it does not matter whether they are used as male or female. There is a 

significant difference between the SCD and non-SCD group when crossed to them. For 
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the following, the difference in consideration is whether or not for the SCD and non-SCD 

line groups (GF1,GF2, GF6, or GF3, GF4,GF5, respectively) there is a significant 

difference between when the line in question is used as the female or the male in the 

cross. For GF1, it matters whether it is used as a female (p-value=0.0004), or a male (p-

value=0.0147) when crossing to SCD and non-SCD lines. The same is true for GF2, 

when used as a female (p-value=0.001) or a male (p-value=<0.0001). This is also true for 

GF6 when used as a female (p-value=0.02) or a male (p-value=0.04). For GF4 there are 

no significant differences. For GF5 and GF3 it only matters when they are used as the 

male in the cross (p-values=0.01 and 0.05, respectively).  

 

Discussion 

Rates of SCD 

The efficient and economical production of DH lines requires the ability to 

produce fertile haploid plants at a high enough percentage that it is not necessary to plant 

out too many haploids per population. Based on experience with standard colchicine 

doubled DH line production at the ISU-DHF, an average of about 20-25% of colchicine 

treated plants will produce fertile anthers for pollinations (Frei, 2015, personal 

communication). These 20-25% of plants are the result of thousands of seeds being 

germinated in trays, subsequently individually treated with colchicine and then 

transplanted into the field. Values of 24% were obtained in a replicated experiment 

conduced on haploids produced from B73 with different colchicine application methods 

(Vanous, 2011). However, across the 30 hybrids in this experiment as seen in Figure 3, 

an average male fertility rate of 23% was achieved without any transplanting and 
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colchicine treatment.  This is a substantial improvement and might lead to substantial 

savings of both time and money when introduced into breeding programs. Our inferences 

are limited to the six lines of our diallel. However, breeding with SCD lines was started 

in 2014 and haploids grown in 2015 as part of a line development program showed 

fertility ranging from 5-30% without colchicine from crosses between the SCD lines and 

non-SCD elite germplasm (data not shown). Preliminary experiments identified the SCD 

lines as GF1, GF2, and GF6 based on male fertility in self and cross combinations. 

However, as was seen across all environments, GF3 and GF4 expressed some SCD male 

fertility based on our criteria. This is especially evident when significant SCA estimates 

are found for GF4/GF5 (25.5%) and GF3/GF5 (23.3%). This is further supported by the 

percentage of successful pollinations per plants in the row in GF4/GF5 (33%) and 

GF3/GF5 (11%). It seems that GF3 and GF4 compliment well with GF5 and express 

SCD. This was not expected, however, it shows that this is not a simply inherited trait, 

and there are more complex genetic factors that must be considered.  

Utilization of SCD in breeding populations 

Though it is clear that there is potential for the use of SCD in breeding programs 

that utilize the maize in vivo maternal DH system, there are challenges that must be 

addressed before utilization of SCD in breeding populations can be fully adopted. Unlike 

maternal haploid inducer development, where the objective is to create a single inducer 

that works well with all germplasm, the incorporation of SCD will require the trait be 

moved into all the active breeding populations being used for DH line development. The 

ideal situation would be that SCD is a single gene trait which is simply inherited and not 

affected by the environment or the genetic background it is moved into. However, based 
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on the results of this study, it is evident that SCD will be more challenging to work with. 

Effects of environment and genotype by environment interactions will complicate the 

usage of the trait across the germplasm. The more complex nature of its inheritance, with 

both significant GCA and SCA complicates the way it is utilized in the germplasm. The 

effect of the genetic background which it is in also will affect the nature in which it is 

utilized in crosses and breeding. 

 

Effects of environment complicate the use of many traits when incorporated into a 

breeding program. In this experiment, the effect of environment was significant, which is 

not surprising as we used very different environments both in Texas and the Midwest. 

Estimates for rates of male fertility were 65% (max=78%, min=5%) at AF, 43% 

(max=51%, min=0%) in CS, 41% (max=67%, min=0%) in IL, and 47% (max=71%, 

min=0%) at PI. Though the lowest average rates of male fertility were in CS, the location 

with the most plots with zero plants fertile was IL with a total of 19, ten of which were 

SCD line combinations. The highest observed rate was 78% at AF. Of the few reports 

considering SCD in the literature, only one (Kleiber et al., 2012) used multiple 

environments for their trials. Kleiber et al. (2012) reported no significant effect of 

environment.  It will be important, moving forward, to consider the effect of the breeding 

environment when utilizing SCD germplasm. 

 

A simple effect of environment would mean that certain environments are more 

conducive to the expression of SCD, however, with significant genotype by environment 

interaction, not only are environments different, but specific lines are performing 
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differently in specific locations.  For example, for the GF1 crosses, when crossed by GF2 

it performed, on average, 19% worse at AF as compared to PI, IL, and CS. In contrast, 

GF1/GF3 performed 25% better at PI than the average of AF, IL, and CS, and over 30% 

better and AF alone. For AF, the best performer was GF6/GF5 (68%), and the worst 

performer was GF1/GF3 (34%). For CS, the best performer was GF4/GF6 (61%) and the 

worst performer was GF5/GF2 (36%). For IL, the best performer was GF2/GF1 (59%) 

and the worst performer was GF2/GF4 (34%). For PI the best performer was GF1/GF3 

(69%) and the worst performer was GF2/GF5 (40%). The only consistency was GF1/GF3 

performing best at AF and PI. These two locations (AF and PI) are located in adjacent 

counties in Iowa. It seems that the adaptation of the inbred lines could be playing a role in 

the expression of the trait. The only other study to consider multiple environments 

(Klieber et al. 2012) did not report significant GxE interactions, but their methods used 

adapted elite materials from a private company in one experiment, and completely 

unadapted material from tropical germplasm in another. Consideration will need to be 

given to the SCD line used for specific environments. Alternatively, the SCD trait can be 

moved into the germplasm that is adapted to that specific environment.  

 

Simply moving the trait into new germplasm, however, may not be the entire 

answer. The combining ability analysis summarized in Table 3 shows that there are both 

additive and epistatic effects that must be considered when working with SCD. 

Significant GCA indicates additive genetic effects that are passed on to progeny making 

line conversion, and/or development of new elite germplasm straightforward. This 

supports earlier findings where recurrent selection for SCD was practiced on a small 
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scale, leading to an increase in the rate of SCD in the population (Zabirova et al., 1993), 

as well as reports that variation for SCD exists (Geiger and Schonleben, 2011). A larger 

broad sense heritability as compared to the narrow sense heritability shows that there are 

dominance and/or epistatic genetic components involved. This is supported by significant 

SCA effects for some hybrid combinations: 12.4% for GF1/GF2, -13.85% for GF3/GF4, -

13.41 for GF2/GF5, 23.28% for GF3/GF5, and 25.46% for GF4/GF5. GF1/GF2 was far 

superior to all other combinations, and could thus be used to make three way crosses to 

increase the rates of SCD. However, it is important here to consider what is giving this 

significant SCA effect. Though the nature of SCD is unknown, it is likely being 

expressed in the haploid plant since if the genome doubled very early in development (i.e. 

in the embryo formation), the plants would look exactly like their inbred parent which is 

not the case. Since the haploid plant only has a single copy of the genome and even if 

doubled it is a 100% homozygous inbred there is no possibility for dominance effects. 

Thus, what remains to explain this is epistatic effects in the haploid genome. Epistatic 

effects can be exploited when making breeding crosses in DH breeding programs. If there 

are two sets of germplasm that combine to create good SCA for SCD such as the 

GF1/GF2 combination shown in Table 3, then crossing them for production of donor 

populations will result in high SCD potential. Also, the ability to produce SCD in hybrids 

where a SCD line and a non-SCD line are crossed makes the selection process even 

simpler. This ability to recover SCD is seen in the overall averages for the inbreds in 

Figure 4 where both SCD and non-SCD inbreds produced DH lines. Haploids will select 

for the breeder, as only those haploids which double will produce progeny and 

consequently all non-SCD progeny will be eliminated. There could, however, be potential 
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drawbacks to this. For example, if any unwanted loci are linked to or are in gametic phase 

disequilibrium with loci controlling SCD, allowing only fertile haploids through the 

selection bottleneck could create undesirable phenotypes in the breeding populations. The 

production of SCD haploids in GF4 and GF3 crosses, as evidence by the significant SCA 

(Table 4) suggest that perhaps there is some complementation in this trait that is 

segregating in this population. Since there has been no prior selection for SCD, the loci 

segregating in the germplasm may have complimentary loci which when combined 

produce SCD. Ongoing mapping studies will further elucidate this question. A study done 

by Laude and Carena (2014) looked into combining abilities among 16 maize populations 

adapted to the temperate U.S. Corn Belt for grain and grain quality traits. They found that 

for grain yield, the predominant factor for was non-additive genetic effects (SCA), i.e. 

specific combinations of populations had more of an effect that did populations overall. 

While for grain quality traits, the predominant factor was additive genetic effects (GCA), 

i.e. specific populations carried more favorable additive alleles that increased values 

when combined with any other population. However, other, contrasting conclusions are 

also cited (Laude and Carena, 2014), leading to the conclusion that the conclusions are 

specific to the population being used. As seen for SCD, lines such as GF1 provide 

positive and significant GCA estimates, suggesting that it carries alleles that are additive 

in nature and works well with other germplasm. In contrast, there is GF4 and GF5 which 

produce significant negative GCA estimates, but positive SCA estimates (Table 4) 

suggesting that they carry alleles that are important for SCA, but only work in 

combination with other alleles. It seems that the inheritance of the trait is not as 

straightforward as originally hypothesized. 
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How then, should the genetic architecture of this trait be characterized for use in breeding 

crosses and selection? Most of the published reports of haploid fertility in maize 

generally conclude that there is significant genetic variation in SCD and that selection for 

the trait is possible (Kleiber et al., 2012; Geiger and Schonleben, 2011; Chalyk, 1994; 

Geiger et al., 2006). These studies concluded that in their particular germplasm, varying 

from proprietary breeding germplasm to unadapted tropical germplasm, that there is 

significant variation for SCD. When comparing an untreated control to nitrous oxide 

doubling, Kato (2002) showed that untreated maize haploids were doubling due to SCD 

at 11%, similar to the rates (12%) observed first by Chase (1952). Wu et al. (2014) also 

reports identification of SCD in Zhengdan958 at a maximum rate of 3.52% and rates in 

other germplasm ranging from 3.85%-1.06%. Finally, Sugihara et al. (2013) report on a 

single locus fdr1 which was mutated with sodium azide which produced fertile haploid 

plants at a rate of 48%. Though these previous studies provided motivation and a basis 

for investigating SCD, what they lack is planned crosses in a designed mating, which this 

study provides.   Based on the combining analysis, new hypotheses can be developed 

about the genetic nature of SCD. At first, it was thought that SCD was a single (or very 

few) gene trait that was simply inherited based on some of the preliminary data. Crosses 

made with SCD lines and non-SCD lines yielded fertile haploids. However, as is seen in 

Table 4, there are SCA effects that are significant for GF3 and GF4. This suggests that 

there are multiple loci controlling SCA, and that complementation is occurring leading to 

epistatic effects with specific combinations. GF1 may potentially carry several of these 

alleles, or a major allele that allows it to have a positive GCA across all the lines. 
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However, GF3 and GF4, while having negative GCA estimates (Table 4), have high SCA 

estimates for specific crosses (Table 4).  It is possible that the alleles that are affecting 

SCD may be segregating in the germplasm, unknown since this is not a trait that is 

selected on and prior to DH was of no consideration. When moving this trait into 

breeding germplasm, the genetic background will need to be taken into consideration. It 

may involve moving it into different germplasm and evaluating the rates of SCD and then 

using an adapted and new background to move SCD into the remaining germplasm pools.  

 

The most challenging aspect of working with SCD will be the complex nature of 

its expression and inheritance. Both additive and epistatic gene action, likely with some 

form of complementation in the germplasm is occurring. Further studies need to be 

conducted for mapping loci controlling SCD, investigating negative effects of the trait, 

and finally to study performance of SCD in diverse genetic backgrounds.     

Potential Applications 

The ability to directly plant haploid seed without the tedious process of treating 

with colchicine and transplanting not only makes the DH system cheaper and more 

efficient, but also makes it safer. Haploid seed could be packaged like all other nursery 

seed, or bulk planted if a large enough quantity mitigating the risk of weather events as 

well as allowing for better delay control for labor management. In general, most DH line 

development begins with the crossing of two parents for the development of an F1 which 

is induced. However, there is some discussion about the use of F2 populations for 

induction. In a simulation study, Bernardo (2009) suggested that F2 be used for 

inductions instead of F1. This could be more possible with the use of SCD, however, a 
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major objective of the DH system is rapid line development. Using F2 populations would 

add a season to the cycle and there is no guarantee that any given F2 plant will produce a 

DH line. However, if there is a non-negotiable trait that can be easily selected for among 

the F2 then this may be beneficial through F2 enrichment. However, with the rates of SCD 

seen and the ease of its use, then one could simply select among the haploids which are 

essentially samples of F2 gametes. Doubling rates with colchicine are generally 30% in 

adapted and elite material, especially if it has been through a cycle of DH. However, 

when tropical material, or older germplasm as well as sweet corn and popcorn are 

considered the rates of doubling drop down to near zero making DHs difficult if not 

impossible. The SCD trait could be moved into some of the tropical/sweet corn/popcorn 

germplasm and would allow rapid adaptation of tropical germplasm as well as give sweet 

corn and popcorn breeders a new tool for line development. Consider for example the 

cost of producing a DH line using colchicine doubling. The current rate offered by the 

ISU-DHF is $38.25 per DH line for germination, colchicine treatment, transplanting, and 

pollination. So, for 200 lines it would cost $7,650. Compare this to using SCD, once it is 

moved into the breeding population. A success rate of 10% will be used (Figure 4) for 

this example. Here this is no need for germination, transplanting, or colchicine treatment. 

So, it would simply be 2000 haploid seed planted in plots with a plot planter. The cost of 

space for this planted at 74,000 plants/hectare would be $70 with a rental cost of $2,475 

per hectare. The cost of supplies and time for planting would be approximately $45. The 

cost of pollinating (1 person, 20$/hour, 2 hours per day, for 14 days) would be $560. This 

would add up to $675 to create 200 new DH lines using SCD. Thus, the cost per line 

would be $3.38. This is a 91% savings over colchicine doubled DH line production.  
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Finally, the ability to produce large number of fertile haploids cheaply could allow for the 

development of new breeding strategies where selection can be conducted at the haploid 

level. Currently no selection, other than natural selection, is conducted at the haploid 

level and all DH lines are advanced to testing. It could be possible to sample DNA from 

haploids and use genomic selection or marker assisted selection strategies to select 

among the haploids and advance only those lines which are of interest based on marker 

information. Consideration to this possibility was given by Wu et al. (2014) where the 

efficiency of selection using genomic selection was contrasted with selection pressure 

applied at the haploid versus the DH level. It was concluded that in order to make 

genomic selection (GS) at the haploid level more effective a success rate for generation 

of DH lines from haploids without colchicine of 17% would be needed (Wu et al., 2014). 

Based on the results presented here, it would be possible to use the haploid selection 

scheme presented by Wu et al. (2014) to make GS more effective at the haploid level.  
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Table 1. Pedigree, origin, and general information for six parents included in diallel. 

Line 

Name 

Heterotic 

Group 
Origin Pedigree 

GDD to 

Silk 
Selection Reason 

GF1 non-stiff stalk Minnesota CC36 x A405 1318 
spontaneous chromosome 

doubling 

GF2 stiff stalk Minnesota CO106 x A321 1522 
spontaneous chromosome 

doubling 

GF3 non-stiff stalk Nebraska W117Ht x Mo17Ht 1178 high inducibility rate 

GF4 stiff stalk Hawaii Oh40B, L317, GF5 1640 high inducibility rate 

GF5 stiff stalk Indiana Indiana strain of Stiff Stalk Synthetic 1522 high inducibility rate 

GF6 stiff stalk Minnesota W117 x B37Ht 1400 
spontaneous chromosome 

doubling 

 

 

1
0
7
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Table 2. Analysis of variance table for Griffing’s method 3 fixed model diallel analysis of 

SCD. GCA=general combining ability, SCA=specific combining ability, REC = 

reciprocal, Env = environment. *=significant at the 0.05 level 

 

df SS MS F-value P-value 

Environments 3 20.75 6.9181 29.81 <0.001* 

Reps(Environments) 8 1.7213 0.2139 0.92 0.4991 

Hybrids 29 26.694 0.9204 3.97 <0.001* 

GCA 5 13.5815 2.716 11.704 <0.001* 

SCA 9 16.7224 1.858 8.006 <0.001* 

REC 15 3.4807 0.232 0.999 0.456 

Hybrid x Env 87 30.1002 0.3459 1.49 0.0098* 

GCAxEnv 15 11.07855 0.7385 3.1825 <0.001* 

SCAxEnv 27 8.6581 0.32067 1.3818 0.10646 

RECxEnv 45 11.8316 0.26292 1.1329 0.274 

Error 29 232 53.8411 0.232 

  

Table 3. Combining ability table for the six parent diallel for SCD. GCA estimates are on 

the diagonal and SCA estimates are on the off diagonal. Only the top half of the matrix 

was filled in as there was not significant reciprocal or maternal effects. Data is presented 

in percentages which were obtained from using the inverse logit function to convert the 

SCD data back into a ratio. *=significance at the 0.05 level. 

 

GF1 GF2 GF3 GF4 GF5 GF6 

GF1 17.13%* 12.40%* -3.27% 1.56% -6.55% -0.54% 

GF2 

 

1.57% 5.28% 1.70% -13.41%* 3.95% 

GF3 

  

-2.15% -13.85%* 23.28%* 3.64% 

GF4 

   

-8.28%* 25.46%* 0.36% 

GF5 

    

-6.10%* -6.01% 

GF6 

     

5.09% 
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Table 4. Preplanned contrasts for combinations of SCD and non SCD lines when used as 

males and females. *=significance at the 0.05 level. 

Contrast F Value Pr > F 

GF1 as female: crossed to SCD vs non-SCD 13.74 0.0004* 

GF1 as male: crossed to SCD vs non-SCD 6.2 0.0147* 

GF1 as female vs GF1 as male 0.59 0.4455 

GF2 as female: crossed to SCD vs non-SCD 11.6 0.001* 

GF2 as male: crossed to SCD vs non-SCD 25.01 <.0001* 

GF2 as female vs GF2 as male 0.04 0.8356 

GF3 as female: crossed to SCD vs non-SCD 2.79 0.0987 

GF3 as male: crossed to SCD vs non-SCD 4.11 0.0457* 

GF3 as female vs GF3 as male 1.1 0.2963 

GF4 as female: crossed to SCD vs non-SCD 1.67 0.1995 

GF4 as male: crossed to SCD vs non-SCD 3.18 0.0781 

GF4 as female vs GF4 as male 0.28 0.595 

GF5 as female: crossed to SCD vs non-SCD 3.43 0.0673 

GF5 as male: crossed to SCD vs non-SCD 5.98 0.0165* 

GF5 as female vs GF5 as male 0.1 0.7487 

GF6 as female: crossed to SCD vs non-SCD 5.26 0.0242* 

GF6 as male: crossed to SCD vs non-SCD 4.3 0.041* 

GF6 as female vs GF6 as male 0.12 0.728 
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Figure 1. Side by side comparison of GF2 inbred and GF2 haploid. General phenotype of 

plants is identical. However, the haploid plants are always shorter and less vigorous, they 

typically have smaller leaves, ears, and tassels. Inset is a picture of a fertile tassel on a 

GF2 haploid. 

  



111 

 

 

Figure 2. Fertile tassels in haploid field trials. Outer four pictures show examples of the 

tassel phenotypes seed when healthy anthers are shedding pollen on an SCD haploid 

plant. The center picture gives a close-up of the anthers and pollen. 
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Figure 3. Least square means of SCD across all environments from the contrast analysis. SCD is presented in a ratio of 

fertile plants / total plants.

1
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Figure 4. Summary of pollination success for pollinations made in single rep at Iowa State University Agronomy Farm. 

Solid bar denotes ratio of successful pollinations (DH lines) made per fertile plants (attempted pollinations). Dotted bar 

denotes ratio of successful pollinations made per total haploid plants in the row. Also included are averages of all 

combinations for each of the inbred lines in the diallel.
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Abstract 

The growing demand for food with limited arable land available, necessitates that 

the yield of major food crops continues to increase over time.  Advances in marker 

technology, predictive statistics, and breeding methodology have allowed for continued 

increases in crop performance through genetic improvement.  However, one major 

bottleneck is the generation time of plants, which is biologically limited and has not been 

improved since the introduction of doubled haploid technology.  In this opinion article we 

propose to implement in vitro nurseries, which could substantially shorten generation 

time through rapid cycles of meiosis and mitosis.   This could prove a useful tool for 

speeding up future breeding programs with the aim of sustainable food production. 

 Glossary box 

backcross: a breeding methodology where a gene or few genes (for example, resistance 

to a disease) usually contained within a wild or less than acceptable line are transferred to 

high performing lines by crossing the two lines and then repeatedly crossing the progeny 

back to the high performing parent while selecting for the gene or few genes of interest.  

The objective is to produce progeny that are as genetically similar to the high performing 
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parent as possible while containing the gene or few genes desired from the less than 

acceptable parent.  

BC4 line: backcross 4 line.  Lines which are derived after four generations of 

backcrossing. 

full-sib recurrent selection: a method of genotypic recurrent selection where individuals 

are evaluated for performance by paired plant cross pollinations which generates a set of 

full-sib (i.e. two shared parents) families which are tested in replicated trials to generate 

data for selection.  Requires 2 seasons per cycle. 

half-sib recurrent selection: a method of genotypic recurrent selection where 

individuals are evaluated for performance by cross pollination with a tester which 

generates a set of half-sib (i.e. one shared parent) families which are tested in replicated 

trials to generate data for selection.  Requires 1-3 seasons per cycle depending on the 

specific method used. 

genetic improvement/gain: the change in mean performance of a population that occurs 

as the result of the selection and recombination of superior performing individuals in a 

population. 

introgression: a relatively small portion of the genome of an unadapted individual which 

is transferred through conventional crossing to adapted germplasm for evaluation of its 

utility for genetic improvement.  

linkage drag: the undesirable transfer of unwanted genes along with the gene/locus of 

interest due to physical linkage causing a decrease in performance of the progeny. 
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MABC: marker assisted backcross.  A variation of the backcross breeding methodology 

where molecular markers are used to select for the trait of interest, and if desired for 

maximum recovery of the desired parent genome. 

self incompatibility: the inability of a plant with functional male and female gametes to 

produce a zygote through self fertilization. 

selfed progeny recurrent selection: a method of genotypic recurrent selection where 

individuals are evaluated for performance by development of selfed families (i.e. F2:3, 

F3:4, F4:5, etc.) which are tested in replicated trials to generate data for selection.  

Requires 3+ seasons per cycle depending on how advanced the generation of self 

pollination is (i.e. more time is required for F4:5 than F2:3). 

Keeping up with demand 

Crop production has steadily increased over time and it has been suggested that 

50% of the progress is attributable to advances in crop management and breeding [1, 2].  

For example, the three major crops in the US, maize (Zea mays), wheat (Triticum spp.), 

and soybean (Glycine max), show positive linear increases in average yield from 1930 to 

2012 [3] (Figure 1).  However, changes in climatic patterns, land and water availability 

now provide additional challenges for plant breeders and geneticists to ensure yield 

stability in varying environments [4]. In order to meet the projected increase of global 

demand for food, feed, and fibre (100% by 2050 [5]), the linear progress seen in Figure 1 

will need to be increased.  In order to increase the rate of genetic improvement (see 

Glossary) the efficiency, reliability, and speed of genetic improvement must be increased.  
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In this opinion article we propose an idea benefitting the speed of genetic improvement 

through the implementation of rapid generation cycling by the use of the in vitro nursery.  

Through rapid cycles of meiosis and mitosis conducted in tissue culture, generation times 

of crop species can be decreased allowing more opportunities for recombination and 

selection in a given unit of time. 

 

 The breeder’s equation  

Five modifiable components are used to estimate genetic gain (Box 1): additive 

genetic and phenotypic variance (which can be combined as narrow sense heritability), 

selection intensity, parental control, and time [6-9]. Choice of germplasm for formation 

of segregating populations affects additive variation (genetic variation that can be 

transmitted to the next generation), while choice and management of selection 

environments affects phenotypic variance. A combination of these components affects 

selection efficiency. Selection intensity, corresponding to percentage of individuals 

advanced after a cycle of selection, can be modified easily.  The aforementioned factors 

can be optimized through knowledge of the germplasm and the use of predictive tools.  

The most critical remaining factor to maximize genetic gain is time.  The number of 

generations per year is biologically limited.  The most extreme cases are short generation 

times (six/year) in Arabidopsis (Arabidopsis thaliana) versus long generation times in 

tree species (multiple years/generation).  Advances in cycle time have been limited, 

except for the use of off season nurseries, and doubled haploid technology. 
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Speeding up 

Off season nurseries, popularized by the pioneering plant breeder Norman 

Borlaug among others, can help to reduce the time needed to release new cultivars, e.g., 

the time for producing a new wheat cultivar was shortened from 10-12  to 5-6 years [10]. 

For pure line and hybrid crop breeding, the ability to generate homozygous and 

homogeneous lines is another time constraint.  However, by using doubled haploids 

(DHs) in different crop species, homozygous and homogeneous lines have been produced 

in two rather than five or more generations, and was the last major breakthrough to 

reduce cycle time [11-13].  The most popular being the maize DH system using the R1-nj 

color marker [14]. But the different steps of the DH process (Figure 2) have biological 

and genotypic limitations.  The success rates for haploid induction [11, 15-17], adaptation 

to tissue culture (in the case of anther culture) [18], and doubling [19] have all been 

shown to be genotype dependent in different crop species.  Breeders using DHs will 

unintentionally practice recurrent selection for loci increasing success rates of the DH 

process [20], which might constrain genetic variation in breeding populations, at least for 

respective genome regions. 

The in vitro nursery 

Currently, the most efficient way to produce homozygous and homogeneous lines 

is through a combination of off season nurseries (generations per year) and DH 

technology (homozygosity per generation).  We propose the concept of an in vitro 

nursery, where new genotypes are formed by in vitro production of gametes and their 
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subsequent fusion.  Here, generation time is limited by how quickly somatic cells can 

form new gametes and how quickly these gametes can be fused. 

The general progression of the in vitro nursery is outlined in Figure 3.  Tissue is 

extracted from the basal leaf section of selected genotypes and converted into an in vitro 

cell culture and induced to mitotically divide through application of growth regulators 

such as 2-4D [21], which can be maintained in minimal space requirements in a 

laboratory setting with each cell callus occupying about 4 mm
2
 [22].  Genotypes of 

interest are subsequently isolated and single somatic cells are induced to undergo meiosis 

for generation of new gametes.  These gametes are subsequently fused to generate new 

genotypes in a similar way to the in vivo unification of pollen and egg cells.  However, in 

contrast to the in vivo system, where the breeder would need to wait until seed maturity 

and the flowering of progeny to produce the next generation, fused diploid cells could 

immediately be induced to undergo meiosis within the in vitro system, and produce 

gametes for new crosses, or for artificial genome doubling to produce a new 

homogeneous/homozygous cell line. [23]. Several techniques exist for fusion of plant 

gametes in vitro: electrically induced fusion, chemically induced fusion, and calcium 

induced fusion [24, 25].  Successful fusion of plant gametes in vitro has been reported for 

maize [23, 26], wheat [27], rice (Oryza sativa L.) [28], and tobacco (Nicotiana tabacum 

L.) [29].  The main biological bottlenecks are now limited to the induction of meiosis and 

the rate of cell division, whose estimation is critical to successful tissue culture [22].  It is 

estimated that plant cell division rates can range from 22 to 48 hours [21].     
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This entire process would need to be coupled with marker-based and/or genomic 

selection.  Evaluation and selection within the in vitro nursery would be accomplished by 

running marker analyses on new cell lines and/or gametes.  Time can be saved by using 

single cells for whole genome amplification and subsequent marker analysis [30, 31].   

Selection efficiency can be increased by selecting gametes versus zygotes.  In traditional 

breeding practices, selection is limited to the diploid (or polyploid) plant in most cases. A 

notable exception would be selection on haploid plants in a DH system. In the in vitro 

system, specific and targeted matings could be achieved through mitotic division of 

gametes and subsequent marker analysis for genomic gamete selection (GGS). Though 

no examples exist of the mitotic division and callus formation of artificially induced 

gametes, other biological examples such as yeast, the ability to grow haploid callus in 

anther culture, and the normal (though weak) functionality of haploid maize plants 

provide evidence that this is possible.  These haploid mitotic divisions allow for the 

selection of gametes without their destruction. This could also be coupled with 

optimization procedures for generating optimal genotypes with minimal numbers of 

resources and time [32] increasing selection efficiency.  Selected cell lines could then be 

converted to mature plants, which can be used for phenotypic evaluation.  In maize, 

converting cell lines into mature plants will be the most time-demanding step, currently 

requiring 148 to 215 days from gamete fusion to the harvest of mature seed.  Plant 

regeneration is not 100% efficient, and varies in different species with percentages 

reported as 37-73% in tobacco, 25-48% in rice, 41-59% in maize, 5-33% in cotton 

(Gosyppium hirsutum), and 93-100% in soybean[33].   This step is likely also genotype 

dependent and warrants more research into the regeneration of plants from tissue culture. 
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The obvious advantage of this system is the reduction in time for line 

development.  With a conservative estimate for a division rate of 48 hours per cycle, a 

new cycle could be generated every week, provided that marker analyses could be 

conducted at a similar pace. For comparison, a DH line can be produced in one year with 

only a single recombination event. Alternatively, in the same time period, a line produced 

from the in vitro nursery could result from 12 cycles of recombination and selection (at 1 

week intervals), assuming that meiotic induction and division takes 48 hours similar to 

the division rate for mitosis, before plant regeneration is limiting seed production. The 

utility of in vitro nurseries is obvious for both mapping and marker-assisted backcrossing 

(MABC).  Mapping experiments require the development of large (i.e., >200 families) 

populations, which can be used for genotyping and phenotyping. Development and 

maintenance of large populations require significant resources including both labor force 

and field space. This is particularly true for species with large generation time and space 

requirements.  The in vitro nursery system could allow for the quick and efficient 

development of cell lines that can be subsequently stored and/or converted into plants to 

be used for phenotyping and/or production. 

In MABC the ultimate goal is to transfer a gene of interest into an existing 

cultivar/line.  One main challenge of MABC is, to remove unfavorable alleles of closely 

linked genes, i.e., to eliminate linkage drag, particularly in the case of exotic 

introgressions.  Thus, multiple individuals need to be evaluated, which is costly and 

requires a significant amount of resources.  MABC programs could alternatively be 

conducted within in vitro nurseries.  Large numbers of individuals could be generated 
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within a controlled laboratory setting and evaluated using markers.  This would allow 

rapid and efficient introgression of genes of interest.  The utility of this system becomes 

increasingly superior, as the number of loci to be introgressed increases [13]. 

Another application of an in vitro nursery would be to overcome self 

incompatibility (SI), which is present in many cultivated species [34-37].  In order to 

successfully produce single cross hybrids in SI crops, breeders must be able to generate 

homogeneous and homozygous parental inbred lines to produce the hybrid.  The 

generation of these inbred lines is impossible in case of SI. This process, however, occurs 

through the interaction of pollen tubes with stigma [38]. In the in vitro nursery, this 

pollination stage can be bypassed and gametes can be fused directly, thus overcoming the 

issue of SI. We envisage a system, where somatic cells of these species are used to 

generate gametes which could be subsequently fused with gametes from the same cell 

(simulating self-pollination) or artificially doubled simulating the DH process to generate 

homozygous and homogeneous lines that can be used subsequently to generate hybrids.  

This idea can be taken one step further.  Gametes from selected homozygous and 

homogeneous lines could be fused in vitro to generate zygotes which are the desired 

hybrid combination.  This process could be combined with the development of synthetic 

seeds where somatic embryos are encapsulated to form artificial seed, which can be 

packaged and distributed to growers similar to a normal seed.  Successful germination of 

artificial seed generated from somatic tissue has been demonstrated in species such as 

alfalfa (Medicago sativa) [39], cyclamen (Cyclamen persicum Mill.) [40], and salparni 

(Desmodium gangeticum L.) [41].  
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The utility of this system is more beneficial for plant species with long generation 

times such as those of the genus Leucaena, which can take up to 2 years to flower [42], 

pecan (Carya illinoinensis) which flower at 6-7 years of age [43], and other woody 

species.  However, its utility could also extend to species which normally require 

vernalization or a chilling cycle to induce flowering such as peaches (Prunus persica)  

[44], and wheat [45] as a method to overcome these requirements and produce new 

sexual progeny at any time in the year.   Apomictic species for which recovery of 

sexually generated populations to be used as variation for selection is difficult may also 

benefit such as those of citrus species [46].  Finally annual crops, such as maize and 

soybean, could also benefit through rapid generation of new populations for selection and 

line conversion.  For example, consider the time and expenses used to convert new 

breeding lines of maize and soybean into those which contain desirable genes for 

resistance to a pathogen or transgenes.  This process which works in tandem with line 

development can require up to six seasons to produce a suitable BC4 line and assuming 3 

seasons per year would take two years to complete.  Using the proposed in vitro nursery, 

this process could be shortened to 257 days assuming one week per cycle and 215 days to 

regenerate a fertile plant.  The savings will not only be in time, but also in cost of land, 

seed shipment to off season nurseries, labor, and a smaller number of lines converted.   

Challenges 

The purpose of this manuscript is to combine recent advances in different fields of 

biology and conceptualize a technique that could substantially advance efficiency of plant 

breeding, once becoming available. The idea of an in vitro nursery presented in the 



124 

 

previous sections, while new and innovative, does have obvious problems and gaps at 

current.  The first, and most important, is the ability to stimulate meiosis and to generate 

gametes in vitro.  Recent advances in both plant and animal models provide insight into 

gamete formation in vitro.  For animals, the production of egg cells in vitro has been 

reported [47], as well as the successful production of artificial gametes in mice [48]. The 

first study required the use of stem cells, whereas the second used testicular tissue and 

thus, did not induce gametes from purely somatic cells. A recent review [49] outlined 

current advances in development of artificial gametes in animals and the significant 

obstacles that remain.  The authors note, that the knowledge needed to generate 

functional germ cells in vitro exists, but the methodology is in its infancy [49].  In 

contrast to animals, whose germ lines are established early in development, plants specify 

germ lines later in development and can have multiple germ lines [50].  For example, a 

hypoxic environment causes any cell in an early maize anther to convert to a germ cell 

[51].  It is currently unclear if recombination is occurring, though it is likely since 

meiosis is induced, and more research is needed to confirm.  The genetic mechanisms 

which underlie the control of plant meiosis are being elucidated and research is ongoing 

with practical applications, including the in vitro nursery, across the plant sciences.  The 

complexity and breadth of the research in this field is beyond the scope of this 

manuscript, but the reader is referred to [52] for an up to date description of the latest 

breakthroughs.  This provides an initial framework for producing gametes in vitro from 

somatic cells.  Like most techniques in biology, it is likely that this process will not be 

100% efficient.  There would therefore be a need to distinguish between haploid and 

diploid cells, which may not be trivial. 
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The use of the in vitro nursery will also require the continued advancement of 

predictive tools that can be used in genomic selection schemes. This research is not 

specific to applications for the in vitro nursery as it would also assist current breeding 

programs. 

An array of issues still remains with this proposed idea. Growing cells in tissue 

culture can generate genotype dependencies [53-55] and the use of the in vitro nursery 

will cause unintended selection for loci, which control success of cell culture.  Genotype-

dependency of regeneration is the major challenge in tissue culture techniques [56-58].  

However, genes or QTL for regeneration in tissue culture have been identified [59, 60] 

and can help to overcome this bottleneck.  Recent reports show that targeting young 

zygotes or isolating cells during the early callus phase for plant regeneration has less 

genotype dependency than those which are allowed to go through a callus growth phase 

and are then regenerated [61-63].  Another issue is the phenomenon of somaclonal 

variation.  When plants are grown in vitro, stress induces changes in regenerated plants.  

Somaclonal variation can provide useful variation [64]. In the in vitro nursery changes 

due to somaclonal variation, such as activation of transposable elements, can counteract 

generation of homogeneous and homozygous lines.   

Despite these challenges, a major benefit would be a larger number of generations 

per year with the potential to increase the rate of genetic gain which in turn may increase 

the rate at which the mean yield of crops improves (Figure 1).  
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Box 1. Genetic gain: breeders equation 

The objective of plant breeding is the identification and development of superior 

individuals and families.  The mean performance of breeding populations is increased 

through selection of individual plants with higher than average performance.  This 

change in mean performance of the breeding population can be expressed as genetic gain 

in different forms, depending on the situation [6]. 

Genetic gain per cycle: 

(𝐼) 𝐺𝑐 = 𝑘𝑐ℎ2𝜎𝑃 

(𝐼𝐼) 𝐺𝑐 =
𝑘𝑐𝜎𝐴

2

𝜎𝑃
   𝑤ℎ𝑒𝑟𝑒 ℎ2 =

𝜎𝐴
2

𝜎𝑃
2  

As seen in equation I in the case of one cycle of selection, k is the selection differential 

expressed in standard deviation units, representing the percentage of individuals selected 

and advanced to the next generation.  The degree of parental control (i.e., genetic control 

of males, females, both sexes) is quantified in c. Narrow sense heritability (h
2
) is a 

measure of what proportion of phenotypic variance (σ
2

P) can be explained by additive 

genetic variance (σ
2

A).  Equation II can be derived by substituting σ
2

A / σ
2

P for 

heritability.  The additive genetic variance is the component of the genetic variance that 

is transmitted to the progeny (except in polyploids where some dominance variance is 

transmitted and in clonal breeding, where all genetic variance is transmitted). 



135 

 

Different selection schemes (e.g., half-sib, full-sib, selfed families) require different 

numbers of seasons to complete a full selection cycle.  For comparison of alternative 

breeding schemes, the calculation of genetic gain per year is more informative than gain 

per cycle.  This is achieved by dividing equation II by the number of years (y) required 

per cycle. 

Genetic gain per year:  

(𝐼𝐼𝐼) 𝐺𝑦 =
𝑘𝑐𝜎𝐴

2

𝑦𝜎𝑃
 

Equation III can be expanded further for specific situations, when different environments 

and replications are used and to quantify variance that is contained within and among 

families in the selection scheme.  These expansions are beyond the scope of this article, 

the reader is referred to [6] for an in depth discussion of the different forms of the genetic 

gain equations.    

By modifying the components in equation III, breeders are able to maximize genetic gain.  

Some components are simpler to manipulate than others.  This article focuses on the 

management of time (expressed as y) as a method to maximize genetic gain. 
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Figure 1. Yield gains of major U.S. crops. Average yield per year in metric tons/ha 

(MT/ha) for each of the three major U.S. crops (maize, wheat, and soybean) from 1930-

2012 [3].  Each crop shows a linear increasing trend over time with maize having the 

highest annual gain of 0.11 MT/year followed by wheat at 0.028 MT/year and soybeans 

at 0.023 MT/year for average grain yield.  This increase in mean yield per hectare needs 

to be increased in order to meet the demands of a growing human population. 
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Figure 2. The maize doubled haploid system. Maize doubled haploid (DH) technology is 

a specific example of DH technology used with great success by public and private plant 

breeders to shorten the time it takes to generate a homozygous line from eight to two 

seasons. This is arguably the latest major breakthrough in cycle time (a reduction in years 

per cycle: see Box 1).  Though DH technology is used with success in maize and other 

crop species, there are limitations as are noted in the figure.  The rate of haploid induction 

is genetically controlled by quantitative trait loci (QTL) in both the inducer and donor 

population.  The R1-nj [14] marker allele used to identify haploid kernels is useless, if the 

kernels are colored or if they carry the colorless allele.  Rates of doubling in haploid 

plants are typically low and highly dependent on both technique and genotype.  The 

doubling agent, colchicine, is a carcinogen.  Those plants that successfully double their 
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genomes typically shed little pollen and there is no guarantee that the optimal genotype 

will set seed and advance to testing.  For now, the benefits of time savings outweigh the 

drawbacks. 
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Figure 3. The in vitro nursery.  The general scheme of the in vitro nursery. First, tissue 

from selected genotypes must be extracted and converted into a tissue culture.  A 

genotype dependency for tissue culture conversion and success is likely. Once the 

somatic cells have stabilized in culture, they are induced to undergo meiosis. After 

gametes are formed, they are allowed mitotic cycles which lead to clonal cells, so that 

DNA can be extracted from some of those cells for marker analyses. Marker effect 

estimation based on genomic selection, marker-assisted backcrossing, or marker assisted 

selection are incorporated.  Optimization procedures can then be incorporated to make 

the stacking of optimal loci as efficient as possible.  Optimal gametes are then selected 

and fused to form a new diploid individual.  Mitotic divisions are required to enable DNA 

extraction. At this junction, selected new genotypes can either be converted into fertile 
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plants or into synthetic seed for phenotypic evaluation. The cell line can then be 

immediately recycled in the nursery and induced to form new gametes, in order to 

complete the cycle. 

  



141 

 

CHAPTER SEVEN 

GENERAL CONCLUSIONS AND THE FUTURE OF  

MATERNAL IN VIVO DOUBLED HAPLOIDS 

 

In the previous chapters the reader has been given, first, an introduction to the 

progression of maize breeding from early research to modern commercial programs and a 

description of the maternal in vivo DH system and problems associated with it. As 

previously mentioned modern maize breeding programs extensively utilize the in vivo 

maternal DH system for production of new inbred lines for testing. Maize breeders 

heavily rely on the ability to quickly adapt to new selection targets by utilizing the speed 

available through this DH system. Through Chapters 2-6, the reader is taken through the 

normal progression of the DH system: 1) generation of a donor population which is 

suitable for production of new inbreds through sufficient haploid progeny (Chapter 2), 2) 

use of maternal inducer lines for production of haploid progeny on the donor population 

from step 1 (Chapter 3), 3) efficient and accurate selection of haploid progeny (Chapter 

4), and 4) doubling of the haploid genome for generation of homozygous diploid lines 

(Chapter 5). Finally, the reader is presented with the potential for the next advancement 

in breeding cycle speed in Chapter 6. 

 

Results from the studies included in this dissertation show promise for the ability 

to continue to improve the maize DH system to make maize breeding more efficient. 

Conclusions presented from the experiments on inducibility suggest that improvement of 

the rates of induction on the donor population is possible through selective breeding. This 

is in agreement with published literature in other maize germplasm as well. Utilization of 
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improved lines for inducibility can provide the potential to expand the germplasm base of 

maize breeding programs by including otherwise recalcitrant material in DH breeding 

programs. Considering now, the other side of the induction cross, the maternal inducers, 

the release of BHI306 maternal haploid inducer will expand the pool of germplasm that 

can be used for DH line development. The ability of BHI306 to use multiple selectable 

markers (R1-nj and pl1) and its ability to pollinate popcorn germplasm will allow 

breeders of specialty maize types to utilize DHs in their line development programs. 

BHI306 also provides and improvement in agronomic traits, especially germination rates, 

over the existing inducer lines available in the temperate U.S.  

 

After the induction cross is made, next, the seed must be sorted to identify the 

haploid progeny. In Chapter 4 the description of a potential automated system for 

haploid/diploid discrimination is included. Results show that the Videometer Lab 3 

system has the potential to discriminate between diploid and haploid seed with greater 

than 50% accuracy in most cases. The expression of R1-nj plays a role in the accuracy of 

the system, but as the results indicated, the optical system corrected human sorting errors, 

and even if the system cannot sort at 100% accuracy, enrichment of the sample for 

haploid progeny is a desirable outcome. 

 

Once the haploid progeny have been identified, typically, they would undergo a 

very laborious and expensive process of germination, colchicine treatment, and 

transplanting into the field for self-pollination. Results from Chapter 5 show that the 

potential to utilize spontaneous chromosome doubling (SCD) for the development of DH 
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lines is possible. Combinations of SCD lines with non-SCD lines allowed for the 

production of DH lines without colchicine treatment. Rates of doubling above 20% allow 

for the effective use of SCD for production of haploids. The amount of labor, space, and 

money saved from utilizing SCD could have the potential to restructure maize breeding 

programs by freeing up resources from DH line development to be used for testing and 

evaluation thereby increasing the ability of maize breeders to find favorable genotypes 

with the same budget.  

 

Finally, the concept of the in vitro nursery, while not directly related to DHs, is 

indirectly related to DHs through the concept of speed. The purpose of the DH system is 

the acceleration of breeding programs, which is the main objective of the concept of the 

in vitro nursery. The ability to make selections at the gamete level is similar to the ability 

to select at the haploid level which was discussed with the use of SCD in Chapter 5. 

However, in haploid plants, breeders are still limited by the life cycle of the plant which 

is relatively long compared to the life cycle of a cell. This concept will require a great 

deal of future research, but essentially the only aspect that has not been considered is the 

induction of meiosis. That will not be an easy hurdle to cross, but neither was the 

development of the maize DH system. 

 

While the preceding chapters provided a great deal of new information and 

potential avenues for advancement, like all research they also raise a new set of 

questions. The ultimate objective of the previous studies is the practical application of the 

results to an applied maize breeding program. In order to do this, the traits of inducibility 
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and SCD must be further evaluated. Towards this, during the development of the 

experiments described here, additional line development and population development 

was conducted for future experiments and evaluation of the potential of these topics to be 

used in applied maize breeding. Crosses with elite germplasm have been made for the 

evaluation of new lines containing both  SCD and inducibility potential with improved 

agronomic characteristics. These traits will need to be evaluated for any detrimental 

effects they may have on yield and other important agronomic characteristics needed in 

any maize hybrid. Crosses have also been made for the development of mapping 

populations for the further understanding of the genetic makeup of these traits so that 

they can be better utilized and understood in maize, and potentially found/transferred to 

other crop species. Automation of haploid selection would also reduce cost to breeding 

programs and allow for, potentially, more accurate sorting of haploid progeny. 

Development of automated systems for sorting is currently underway.  

 

Taken individually, the conclusions of the chapters in this dissertation each 

provide avenues for improvement to the specific steps of the DH process. However, what 

is important to consider is that taken together the conclusions of the chapters presented 

above provide a whole process improvement to the DH system by contributing 

understanding and time/cost savings to the system as a whole. Improved inducers and 

rates of induction on the donor will decrease the number of kernels needed to be sorted 

saving time and money. The ability to use an automated system for the sorting of haploid 

and diploid seed will also support the previous step by saving time and money in the 

sorting process. Once sorted, the ability to use SCD to eliminate the steps of colchicine 
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application and transplanting will save a large amount of time and money which will 

further improve the process. Overall, the conclusions of each chapter provide the 

potential to increase the efficiency and applicability of the DH system in maize. Breeders 

are encouraged to utilize the germplasm identified in this dissertation for the integration 

of increased rates of induction and the ability to use SCD for DH line development.  

 

Maize breeding has come a long way from mass selection conducted by our 

ancestors that domesticated it and made it the crop we know today. Continued efforts 

over the years progressing through open pollinated varieties to four way hybrids, all the 

way to the modern single cross hybrids have made maize a staple crop worldwide which 

continues to be grown on more area every year. A few decades ago, DHs where the new 

technology on the horizon and improvements to the DH system have been presented here. 

These improvements have the potential to change the way maize haploids and DHs are 

used, in a more efficient and effective manner. The question remains, how long will it 

take before the next breakthrough arrives, could the in vitro nursery be that answer. 
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