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Abstract 

In this study, I exploit the recent technology-driven soy boom in Brazil to assess how the 

diffusion of different technologies, namely the genetically modified soy and biological nitrogen-

fixing soy varieties adapted to the Brazilian savanna, change the agricultural supply response 

function. I use a novel panel dataset combining farm-level data for 1.5 million commercial farms 

from the 1996 and 2006 Brazilian agricultural census surveys to estimate the price effects on the 

expansion of the soy acreage. I find that the acreage response functions become increasingly 

elastic towards the agricultural frontier because of the existence of different technological 

diffusion processes. The large price effect on the adoption of nitrogen-fixing soy designed to 

convert marginal savanna pastureland into soy production explains most of the heterogeneity in 

the acreage supply function in Brazil. The estimated long-run price elasticity of soy acreage is 0.6 

in the south and 1.8 in the savanna. On the agricultural frontier close to the savanna–Amazon 

border, the price elasticity of agricultural land is 0.13, implying that a 10% permanent increase in 

soy prices would result in the conversion of 1 million hectares of natural vegetation to farmland.  

Key words: Acreage response, Technological change, Agricultural micro-data, Brazil, Soy 

JEL codes: O33, Q12, Q16, Q55 

                                                            
* Assistant Professor, Department of Economics and Center for Agricultural and Rural Development, Iowa 
State University. 518 Farm House Lane, Ames, IA 50011. gdepaula@iastate.edu. This article was 
originally one section of my doctoral dissertation at Yale University. The first version of this analysis was a 
section of my job market paper titled “Technological Diffusion and Bundled Contracts: Soy Boom in 
Brazil”. I thank Leandro Justino for excellent research assistance with the analysis of the confidential 
agricultural census datasets. I am grateful for the invaluable guidance and support of Robert Mendelsohn, 
Arnulf Grubler, and Kenneth Gillingham. I thank Xiaohong Chen, Ahmed Mushfiq Mobarak, Ary Fortes, 
Glaucia Ferreira, and the seminar participants at Yale, the Association of Environmental Resources 
Economics conference, and the University of Ottawa Environmental Economics Workshop for their 
comments and suggestions. I also thank the research staff from the Brazilian Institute of Geography and 
Statistics (IBGE) and Brazilian Agricultural Research Company (Embrapa), especially Carlos Lessa, Luis 
Carlos Pinto, Flavio Alves, Geraldo Souza, and Rosanna Guidicci for their support in accessing the micro 
census dataset. I gratefully acknowledge the financial support from the Council for Latin American and 
Iberian Studies at Yale, the Yale Institute for Biospheric Studies, and the Yale MacMillan Center. Any 
errors are my own. 

mailto:gdepaula@iastate.edu


2 
 

How does technology adoption influence long-run agricultural supply response 

functions? There has recently been renewed focus on the identification of agricultural 

supply and demand elasticities to evaluate the effectiveness of biofuel and forest 

conservation policies (Hausman, 2012; Roberts and Schlenker, 2013). Such policies have 

a potential “leakage” effect through their influence on commodity prices. For instance, 

higher demand for corn for biofuel production in the United States could increase 

commodity prices and lead to agricultural expansion in Brazil. Land diversion policies 

designed to protect natural vegetation and conserve carbon sinks could also lead to land-

use change through increases in commodity prices. In both cases, the degree of the 

“leakage” effect depends on the shape of the long-run agricultural supply response 

function. 

Although technological innovation is the principal factor changing long-run agricultural 

supply, estimating the effects of technology adoption in long-run agricultural supply 

functions remains a challenge. Most empirical analyses of agricultural supply use country 

or county time-series data to estimate supply elasticities and model technological change 

with trend variables. The implicit assumption of these models is that technological 

change in the agriculture sector is a slow-moving process that can be captured by time 

effects. Although the development of agricultural technologies such as new seed varieties 

can take years or even decades, the technological adoption process as well as institutional 

changes that influence adoption do not necessarily follow a slow-moving or 

approximately linear pattern. In fact, some technological adoption cases such as the 

soybean expansion in the Brazilian savanna tend to follow a typical S-shaped pattern with 
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a period of rapid technological adoption. Moreover, the adoption process itself could be 

responsive to changes in commodity prices, leading to a non-linear response in 

agricultural supply. 

The main contribution of this study is to model the technological adoption process to 

estimate agricultural supply response functions. I contrast the agricultural supply effect of 

the adoption of two agricultural technologies in Brazil: genetically modified soy (GE soy) 

in the south of Brazil and biological nitrogen-fixing soy varieties adapted to the Brazilian 

savanna (NF soy). Both technologies diffused rapidly in Brazil after 1996, but had 

different effects on the soy supply function. The pesticide-resistant GE soy variety was 

designed for traditional soy-producing regions such as the south of Brazil, and this 

rapidly replaced traditional soy varieties. By contrast, the NF soy technology was 

developed to convert marginal pastureland in the savanna into large soy plantations, and 

this diffused rapidly through partnerships between farmers and trading companies. 

The Brazilian case of the soy expansion provides a unique experiment to assess how the 

diffusion of different technologies changes the agricultural supply response. Figure 1 

illustrates the elusive effect of technological change in the analysis of country time series. 

The historical yield time series for soy in Brazil shows a clear linear trend. However, the 

soy acreage time series reflects the non-linear technological diffusion processes. The 

apparent slow-moving technological change reflected in the yield time series conceals the 

historical technological change process that altered the soy agricultural supply function in 

Brazil. The booming soy expansion after 2006 happened through the conversion of 

marginal land in the savanna, which was originally considered to be unsuitable for 
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agricultural production. In this study, I estimate the acreage component of agricultural 

supply separately for the south and savanna regions of Brazil and use measurements for 

the return to the adoption of GE and NF soy to assess the differentiated effect of these 

technologies on the soy supply function and implications for land-use change in Brazil. 

I use the most comprehensive agricultural dataset in Brazil to estimate the regional 

acreage response functions for soy. I combine for the first time confidential farm-level 

data for 1.5 million commercial farms from the 1996 and 2006 Brazilian agricultural 

census surveys (IBGE, 1996, 2006), capturing the fastest period of soy expansion in 

Brazil. The agricultural census dataset is the only source of agricultural data covering the 

entire country that contains farm-level information on farmers’ land-use and technology 

choices as well as on their characteristics and agricultural outcomes such as measures of 

productivity and forestland. The agricultural census is also the only official dataset 

reporting pastureland at the farm level for Brazil. The aggregated time-series dataset in 

Brazil does not track pastureland, and it is not possible to model land-use change in 

Brazil without pastureland since it represents about 50% of all farmland and 73% of 

agricultural land. Therefore, I link the census farm-level data at the census block level 

and then integrate the census panel with a panel dataset with spot price data at the 

municipality level (IBGE PAM, 2015)1. 

I estimate the soy acreage function by using a long first differences model, which 

replicates the long-run response to a permanent price increase. The unit of observation is 

the rural census block. I explore the permanent increase resulting from two 

macroeconomic policy changes in Brazil after 1996: the Kandir law, which eliminated 
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state taxes for soy exports, and the 1999 currency devaluation. These two policies 

combined resulted in a permanent increase in soy prices of over 50% despite the 

relatively stable global soy prices during this period. I show that these policy changes in 

combination with the large variation in distance from producers’ locations to markets and 

ports in Brazil generated spatial variation in price changes. I then explore this variation in 

price changes to identify price effects conditional on the census block fixed effects, the 

state and mesoregion fixed effects, and a rich set of baseline characteristics to capture 

local trends in agricultural expansion. I also instrument price changes with the straight-

line distance to market measurements, conditioned on the baseline characteristics. 

I use two methods to incorporate the technological change effect into the acreage model. 

I first adapt the approach of Foster and Rosenzweig (1996) and Bustos, Caprettini, and 

Ponticelli (2016) by using the variation in the potential yield measures in a first 

differences model to identify the technological change effects. Second, I explicitly model 

the technological choice in a selection model for the acreage response function to 

separate the effect of prices on the soy acreage expansion through technological adoption. 

The identification of the technological change effects relies on the combination of 

exogenous potential yield measures (GAEZ FAO/IIASA, 2017) and the timing of the 

introduction of GE soy and new farmer–trader NF soy contracts. 

I find significant heterogeneity in the acreage response functions across Brazil, consistent 

with the results presented by Hausman (2012) for the soy expansion and Nagaravapu 

(2010) for the sugarcane expansion. In the south of the country, the estimated long-run 

price elasticity of the soy expansion is 0.25 at the region level and 0.62 for locations with 
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a higher return to GE adoption compared with a price elasticity of the GE soy diffusion of 

1.11. These results are consistent with the rapid replacement of traditional soy varieties 

with GE soy. The price effect in the soy acreage expansion through the technological 

adoption channel is small in the south and my estimates are comparable with the price 

elasticities for the south region estimated by Hausman (2012), using time-series data.  

In the savanna, the soy acreage function is more elastic. The region-level price elasticity 

is 1.15, which increases to 1.8 in locations with a high return to NF soy adoption. On the 

agricultural frontier of the savanna, on the border with the Amazon biome, the estimated 

long-run price elasticity is 3.13. These estimates are statistically significant and higher 

than the short-run price elasticities of Hausman (2012) for the savanna2. In the savanna, 

the large acreage response to price changes is explained by the indirect effect of prices 

through the technological adoption channel. The permanent price increase enabled NF 

soy production on new land, resulting in an elastic supply function. This result suggests 

that the standard time-series model for acreage response functions underestimates supply 

elasticities on the agricultural frontier where technological change is designed for the 

conversion of land into agricultural production. 

I also estimate a first differences model for the expansion of all agricultural land, 

including pastureland, to assess the environmental impact of a permanent change in soy 

prices. The estimated price elasticity of agricultural land is 0.025 for Brazil and 0.101 for 

the savanna. The elasticity for the south region is not statistically significant. The 

elasticity for Brazil is comparable to the agricultural land elasticities estimated by Barr et 

al. (2010) for the period between 2004 and 2006, and is lower than the cropland 
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elasticities estimated by Hausman (2012) and Roberts and Schlenker (2013), as expected, 

since these studies do not account for pastureland. These elasticities imply that a 10% 

increase in soy prices, holding technology and policy fixed, would result in a 

deforestation of 936 thousand hectares in Brazil if we use the country elasticities and 

approximately 953 thousand hectares only in the Midwest savanna using the savanna 

elasticity. Although the simulated land-use change is relatively small compared with 

historical deforestation in Brazil, these results suggest that simulated land-use change 

based on country-level models can significantly underestimate the environmental impact 

of price increases on the agricultural frontier. 

This study is the first acreage supply analysis of soy in Brazil using micro census data 

and, to the best of my knowledge, the first econometrics study that models the 

technological change effect to estimate the acreage supply function. This analysis thus 

builds on a rich literature that measures agricultural supply functions (Nerlove, 1956; 

Cochrane, 1955; Tomek and Robinson, 1981; Just, 1993, 2000) and complements the 

series of recent econometrics studies that estimate supply response functions to simulate 

the impact of environmental policies on land-use change (Barr et al., 2010; Hausman, 

2012; Roberts and Schlenker, 2013; Nagavarapu, 2010). My empirical approach 

combines the model for estimating the technological change effects used by Bustos, 

Caprettini, and Ponticelli (2016) with the econometric estimation of the price elasticity of 

the soy expansion used by Hausman (2012). Bustos, Caprettini, and Ponticelli (2016) use 

aggregated data to estimate the effects of the soy technological change in agricultural and 

development outcomes in Brazil, but they do not account for price changes. Hausman 
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uses a panel of aggregated data for prices and acreage to estimate the long-run price 

elasticities of the soy expansion in Brazil, but models technological change by using 

different functional forms for time trends. My empirical analysis therefore builds on these 

two studies by modeling both technological changes and price changes using micro-level 

data. 

Institutional Context: Technological Change and Price Increase 

The technological change that transformed the Brazilian agricultural sector was the 

adaptation of soy for production in the large savanna biome. Since the 1960s, the 

Brazilian government has sponsored a plant-breeding program that combines tropicalized 

soy seeds with nitrogen-fixing bacteria strains. Brazilian scientists designed new seed–

bacteria combinations that allowed production in savanna soils without the application of 

nitrogen fertilizer to enable profitable soy growth in the undeveloped regions of Brazil. 

The adoption of NF soy is expensive because in addition to buying these new seed–

bacteria combinations, farmers must clean the land and correct the chemical deficiencies 

of the soil through the widespread application of lime and fertilizers. This high upfront 

investment initially slowed the diffusion of NF soy, which accelerated only in the mid-

1990s after the government implemented a series of market reforms that opened the 

Brazilian market to foreign investment and changed soy prices. For a detailed description 

of NF soy technology, see Hungria, Campos, and Mendes (2001), and Alves, Boddey, 

and Urquiaga, (2002). DePaula (2017), Junior (2011), and Silva (2012) explain the 

technological diffusion mechanisms for NF soy. 
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Figure 2 shows the six biomes of Brazil and soy expansion into the savanna. Soy 

production started in the temperate south region of Brazil, mostly in the Atlantic Forest 

biome, where the soil and climate characteristic are similar to other major soy-producing 

regions in the United States and Argentina. In 2011, soy production intensified in the 

south, also extending into the Pampa biome, and expanded throughout the savanna 

biome, reaching the frontier of the Amazon. In 2001, soy production reached as far north 

as 7 degrees latitude south of the equator line, in the state of Maranhao. 

NF soy technology was specifically designed for the conversion of marginal land in the 

Brazilian savanna. By contrast, the GE soy developed by Monsanto was created for 

traditional soy-producing regions and was first commercialized in the United States and 

Argentina in 1996. The new GE seed was resistant to glyphosate pesticides, reducing the 

necessary number of pesticide applications. GE soy technology also reduced labor costs 

in the farm and facilitated no-tillage planting, improving soil conservation practices. GE 

soy was officially approved for commercial use in Brazil in 2001 and diffused rapidly, 

mostly in the south of Brazil. For more information on the characteristics and adoption 

process of GE soy technology, see Bustos, Caprettini, and Ponticelli (2016), Qaim and 

Zilberman (2003) and Ainsworth et al. (2012). 

Change in Soy Prices in Brazil from 1996 to 2006 

After years of hyperinflation, the Brazilian government implemented a series of 

macroeconomic policies in the mid-1990s to stabilize the country’s economy. Two policy 
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changes raised the price farmers received for exporting soy by over 50% between 1996 

and 2006, despite relatively constant international prices. 

The first policy was the Kandir Law approved in 1996 (Kume and Piani, 1997; Soares, 

2012). The Kandir Law eliminated the state tax on the circulation of products and 

transport services (ICMS) related to the export of primary goods, an effective tax cut of 

about 20%. ICMS is the main state tax in Brazil that varies across states and 

transportation routes. Figure 3A shows the average ICMS rate applied to soy exports over 

time. The Kandir Law also changed the relative prices of raw and processed soy, favoring 

exports of raw soy and reducing investment in new soy-processing capacity in Brazil 

(Junior, 2011). 

The second policy intervention was the devaluation of the Real currency during the 

financial crisis of 1999. The Kandir Law, which had the effect of a fiscal devaluation, 

was created in part to compensate for the appreciation of the Real after the 

implementation of Plano Real (Kume and Piani, 1997). Figure 3B shows the evolution of 

the effective real exchange rate of the Real. In 1994, the Brazilian government pegged the 

Real to the Dollar to control inflation; however, the peg system proved too expensive and 

had to be removed in January 1999, resulting in a 66% currency devaluation. Finally, the 

Brazilian government reduced tariffs on imports to spur competition and increase 

productivity. Between 1989 and 1994, the index of agricultural input prices, which 

includes purchases of fertilizers and new farming equipment, decreased by about 25% in 

real terms (De Melo, 1999). The change in import tariffs compensated for the negative 

effect of the currency devaluation on the import of agricultural inputs and machinery. 
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The combination of the currency devaluation and tax cuts led to a permanent increase in 

the price of soy for the export market. Furthermore, the changes in prices and profit 

margins varied significantly across Brazil because of the large variation in the quality of 

the national transportation infrastructure. Most of the soy produced in Brazil and 

exported is transported to ports by trucks, in many cases on unpaved roads. This variation 

in transport cost induces differentiated changes in farm gate prices and farm profits 

across Brazil. 

Data 

I combine three datasets for my empirical analysis: the Brazilian Agricultural Census 

produced by the Brazilian Institute of Geography and Statistics (IBGE, 1996, 2006), the 

IIASA/FAO Global Agro-Ecological database (GAEZ) (FAO/ IIASA, 2017), and the 

Municipal Agricultural Production Survey, also maintained by IBGE (2015). I summarize 

in this section the key features of the dataset. For more information see DePaula (2017). 

Table 1 presents the summary statistics for the main variables used in the empirical 

analysis. The panel dataset has 34,115 common census blocks, accounting for 1.59 

million and 1.5 million commercial farms in 1996 and 2006, respectively. Appendix A 

describes the variables used in the analysis and IBGE (1998, 2012, 2016) documents the 

IBGE agricultural census and IBGE PAM survey. 

The novel dataset is a two-period panel linking the 1996 and 2006 Brazilian agricultural 

census surveys at the census block level. Due to confidentiality restrictions, it is not 

possible to link the census data at the farm level. I thus aggregated the farm-level 
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variables at the census block level for approximately 1.5 million commercial farmers and 

then connected the census blocks for the census surveys of 1996 and 2006. I followed the 

commercial farm definition based on farm production value used by the Brazilian 

Agricultural Research Agency (Alves et al., 2012). Commercial farming accounts for 

more than 80% of agricultural production in Brazil. Although most census blocks appear 

in both census surveys, some were combined or divided between 1996 and 2006. I thus 

created the common census block unit as the smallest set of census blocks identical in 

both surveys. The common census block is the unit of observation of the panel dataset. 

One census block in Brazil has on average 40 farms. Appendix C contains a map of the 

rural census blocks in Brazil.  

The census panel dataset contains the acreage harvested with soy in each farm by type of 

seed (traditional, certified, genetically modified) as well as the characteristics of the farm 

and production system. The dependent variables are the change in soy harvested area, 

change in the share of farmland allocated to soy in a census block, and change in GE soy 

area harvested. Over three-quarters (76%) of the 5.4 million hectares of the soy 

expansion occurred in the savanna region, while 3.2 million hectares were harvested with 

GE soy in 2006, 80% in the south. The average change in soy harvested area was 338 

hectares. 

The GAEZ dataset (FAO/ IIASA, 2017) has estimates of the potential yield of soybean 

and other crops under three levels of input intensity: low, medium, and high. I adapt the 

approach of Bustos, Caprettini, and Ponticelli (2016) to explore the cross-sectional 

variation in potential yield in a first differences model to identify the technological 
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change effects. In particular, I use the differences in potential yield under the different 

levels of input use to capture the marginal value of agricultural intensification. The 

potential yield measures used are for rain-fed agriculture and represent 30-year averages 

defined in 0.5° by 0.5° grid cells (FAO/ IIASA, 2017). I integrate the potential yield 

measures with the census panel by using a geographical information system to determine 

the potential yield at the census block level. The GAEZ dataset of potential yields has 

also been used in studies of agricultural development (Nunn and Qian, 2011) and climate 

change impacts in agriculture (Costinot, Donaldson, and Smith, 2016). For additional 

information about the GAEZ dataset, see the model documentation (Fischer et al., 2012). 

In addition to the agricultural census, IBGE conducts annual surveys of producers of 

major crops to track the quantity produced, area planted and harvested, and average 

producer price (hereafter referred to as spot prices) at the municipality level (IBGE, 2002; 

Hausman, 2012). Data collectors from IBGE are allocated to different municipalities to 

track the output and price variables monthly and compute weighted average estimates for 

the annual productivity and spot prices in each municipality, generating a publicly 

available panel dataset that spans 1990 to 2014 (IBGE PAM, 2015). Hausman (2012) 

also used the IBGE PAM agricultural dataset to estimate sugarcane and soy price 

elasticities in Brazil. I use the PAM panel of spot prices to compute changes in expected 

prices before and after the macroeconomic reforms. 

My preferred measure of the expected soy price is the six-year average spot price before 

the census survey because the goal is to assess the long-run effect of permanent price 

changes. This long average minimizes annual variation, especially during the mid-1990s 
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when the Brazilian economy was unstable. Figure 4 shows the distribution of changes in 

expected prices for the two major soy-producing regions in Brazil. The large changes in 

soy spot prices are the direct result of the introduction of the Kandir law in 1996 and 

change in exchange rate policy in 1999. There is a large variation in price changes, 

measured as differences in the log of expected prices, in both the savanna and the south 

regions. However, as expected, the price changes are significantly higher in the savanna 

given its high transportation costs. The estimated price effects are robust to alternative 

measures of the expected soy price and to the addition of controls for soy price volatility, 

measured in terms of weighted deviations from average prices (Hausman, 2012). 

Theory: Heterogeneity in the Long-run Acreage Response Function 

A permanent increase in commodity prices can affect the farmed acreage through (i) a 

direct channel, namely the reallocation of land from less profitable activities, and (ii) a 

technology adoption channel, namely the conversion of marginal land through the 

adoption of new production systems. Both channels can increase heterogeneity in the 

acreage response function. The farm acreage response function is 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 =

𝐴𝐴(𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖�𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖,𝑈𝑈𝑖𝑖𝑖𝑖�), where 𝑖𝑖, 𝑗𝑗, and 𝑡𝑡 indexes the farm, crop, and year. 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 is the area 

harvested, 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 is the farm-gate spot price, 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 is the production technology, and 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 is a 

measure of land quality for the production of crop 𝑗𝑗. I omit the crop subscript 𝑗𝑗 to 

simplify the notation, as we focus on soy in this article. The price effects are 

(1)     
𝜕𝜕𝐴𝐴𝑖𝑖𝑖𝑖
𝜕𝜕𝑃𝑃𝑖𝑖𝑖𝑖

=  
𝜕𝜕𝐴𝐴𝑖𝑖𝑖𝑖
𝜕𝜕𝑃𝑃𝑖𝑖𝑖𝑖�

𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 𝑃𝑃𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝑖𝑖

   +       
𝜕𝜕𝐴𝐴𝑖𝑖𝑖𝑖
𝜕𝜕𝑇𝑇𝑖𝑖𝑖𝑖

  
𝜕𝜕𝑇𝑇𝑖𝑖𝑖𝑖
𝜕𝜕𝑃𝑃𝑖𝑖𝑖𝑖

  
���������

𝑇𝑇𝐷𝐷𝐷𝐷ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑃𝑃𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝑖𝑖
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Both terms on the right-hand side of equation (1) are functions of land quality 𝑈𝑈𝑖𝑖𝑖𝑖. The 

first term captures the standard land-use substitution effect. The second term represents 

the indirect price effect through technological adoption, and this will vary with the 

availability of new production technologies and the return to adoption for land of quality 

𝑈𝑈𝑖𝑖𝑖𝑖. Figure 5 illustrates the heterogeneity of the soy acreage response function in the two 

regions of Brazil. For simplicity, the acreage response function was initially identical in 

both regions. The direct price response is represented by the expansion ∆𝐴𝐴 = 𝐴𝐴1 − 𝐴𝐴0 

given the price increase ∆𝑃𝑃 = 𝑃𝑃1 − 𝑃𝑃0. In the south, the price change incentivizes the 

adoption of GE soy, thereby shifting the acreage function to the right. The final 

expansion is then ∆𝐴𝐴 = 𝐴𝐴2 − 𝐴𝐴0 and the acreage response function 𝐴𝐴𝑆𝑆𝑛𝑛𝑆𝑆𝑖𝑖ℎ is more elastic 

than the original acreage function.  

In the savanna, the increase in prices stimulates the adoption of capital-intensive NF soy, 

designed for the conversion of marginal land for soy production. The indirect effect is 

larger because the adoption of NF soy enables the conversion of large parcels of land. 

The soy expansion in the savanna is ∆𝐴𝐴 = 𝐴𝐴3 − 𝐴𝐴0, and the savanna acreage response 

function, 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑆𝑆 is more elastic. Hence, the indirect technological adoption channel 

explains the heterogeneity in the acreage response functions given the variation in 

technologies. 

Long-run Acreage Response Identification Problem 

How does heterogeneity in the technological adoption process affect the identification of 

the long-run acreage functions? In the long run, technological change is the main driver 
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of agricultural supply and both the profitability of technological change and the set of 

technologies available to farmers vary spatially. To examine this identification problem, I 

assume linear approximations for the acreage response and technology adoption 

equations. Let the acreage response function be represented as 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝛿𝛿 + 𝛽𝛽𝑃𝑃𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑇𝑇𝑖𝑖𝑖𝑖 +

𝑈𝑈𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 and the technology equation as 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝛼𝛼(𝑈𝑈𝑖𝑖) + 𝛾𝛾(𝑈𝑈𝑖𝑖)𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖. Technology 𝑇𝑇𝑖𝑖𝑖𝑖 

indexes the soy production system in a simplified linear probability model with random 

coefficients. Land quality 𝑈𝑈𝑖𝑖 is observed by the farmer but not by the econometrician. 

The farmer will choose the most profitable technology for his/her farm based on 𝑈𝑈𝑖𝑖. 𝛼𝛼, 𝛽𝛽, 

𝛾𝛾, and 𝛿𝛿 are parameters and 𝜖𝜖 and 𝑣𝑣 error terms. By plugging the technology equation 

into the acreage equation and rearranging the terms, we obtain the reduced-form acreage 

response function typically used in the empirical analysis of agricultural supply: 

(2)     𝐴𝐴𝑖𝑖𝑖𝑖 = 𝛿𝛿 + [𝛽𝛽 + 𝜃𝜃𝛾𝛾(𝑈𝑈𝑖𝑖)]𝑃𝑃𝑖𝑖𝑖𝑖 + [𝜃𝜃𝛼𝛼(𝑈𝑈𝑖𝑖) + 𝑈𝑈𝑖𝑖] + 𝜃𝜃𝑣𝑣𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖                

The heterogeneous effect of prices on technological adoption due to the variation in land 

quality is 𝛽𝛽� = 𝛽𝛽 + 𝜃𝜃𝛾𝛾(𝑈𝑈𝑖𝑖). The price elasticity of acreage increases with the effect of a 

permanent price increase on technology adoption, 𝛾𝛾, and the effect of the new production 

system on the relative profitability of soy production, θ. For example, in the Brazilian 

savanna, the adoption of NF soy increases the relative profitability of soy compared with 

extensive grazing, a large 𝜃𝜃, resulting in a large price effect, 𝛽𝛽� ≫ 𝛽𝛽. Equation (2) is 

typically estimated by using panel datasets such that the time-invariant term 𝜃𝜃𝛼𝛼(𝑈𝑈𝑖𝑖) + 𝑈𝑈𝑖𝑖 

is differenced out of the model. However, if 𝑈𝑈𝑖𝑖 is unobserved, the error term in equation 

(2) is 𝜃𝜃𝛾𝛾(𝑈𝑈𝑖𝑖)𝑃𝑃𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑣𝑣𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖, which is a function of prices. In this case, using 

instrumental variables for the price such as exogenous demand shocks would not identify 
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the price effects, except when prices do not affect technology adoption, 𝜃𝜃𝛾𝛾(𝑈𝑈𝑖𝑖) = 0. I 

propose estimating the long-run price effect by explicitly modeling the indirect price 

effect 𝜃𝜃𝛾𝛾(𝑈𝑈𝑖𝑖), using the exogenous spatial variation in potential yields as a proxy for 

𝛾𝛾(𝑈𝑈𝑖𝑖). 

Differential Price Effects with the Diffusion of GE and NF Soy Technologies in Brazil 

I rewrite equation (1) by using the first-order condition for the farmer’s land allocation 

problem to derive empirical implications for the soy expansion with technological 

adoption. The price response of the soy expansion can be represented by 

(3)    
𝜕𝜕𝐴𝐴∗

𝜕𝜕𝑃𝑃
= 𝛹𝛹(𝐴𝐴∗) 

⎣
⎢
⎢
⎢
⎡

 
𝜕𝜕 𝛱𝛱∗(𝐴𝐴∗,𝑇𝑇)

𝜕𝜕𝑃𝑃���������
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 𝑃𝑃𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝑖𝑖

 +   
𝜕𝜕 𝛱𝛱∗(𝐴𝐴∗,𝑇𝑇)

𝜕𝜕𝑇𝑇
 
𝜕𝜕 𝑇𝑇
𝜕𝜕𝑃𝑃�����������

𝑇𝑇𝐷𝐷𝐷𝐷ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑃𝑃𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝑖𝑖

   

⎦
⎥
⎥
⎥
⎤

   

I derive Equation (3) by applying the implicit function theorem to the optimal condition 

of land-use conversion, 𝛱𝛱∗( 𝐴𝐴∗,𝑇𝑇 ,𝑃𝑃) − 𝑂𝑂𝑂𝑂 ( 𝐴𝐴∗,𝑇𝑇 ) = 0. The farmer converts land to 

soy production to equate the marginal benefits and costs of conversion. 𝛱𝛱∗ is the 

optimized farmer profit function, 𝑂𝑂𝑂𝑂 is the opportunity cost of the land, 𝐴𝐴∗ is the optimal 

acreage converted into soy production and 𝛹𝛹(𝐴𝐴∗) =  1
𝜕𝜕 𝛱𝛱∗
𝜕𝜕𝜕𝜕 −𝜕𝜕 𝑂𝑂𝑂𝑂

𝜕𝜕𝜕𝜕

   captures the variation in  

the productivity of land at the optimal acreage 𝐴𝐴∗. I use the three components on the 

right-hand side of equation (3) to explain the different price responses in Brazil. 

Implication 1 (NF Soy): The combination of a large endowment of land in the savanna 

and the diffusion of capital-intensive NF soy technology generates a large acreage 
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response to price increases. In the savanna, 𝛹𝛹(𝑆𝑆∗) is large. Land productivity decreases 

slowly as marginal land is converted to soy production through the diffusion of NF soy. 

The indirect price effect is large for the adoption of NF soy because the technology 

requires a large capital investment in soil correction. The direct price effect is small 

because the savanna soil is unsuitable for soy production without the NF technology. 

Implication 2 (GE Soy): Labor-saving GE soy will mostly replace traditional soy 

plantations on productive land in the south of Brazil and will generate a small acreage 

response to price increases. Land in the south is more suitable for agricultural production 

than that in the savanna and the variation in soil productivity is larger, implying a small 

𝛹𝛹(𝐴𝐴∗). Both the direct and the indirect price effects in the case of GE soy are small 

because the technology does not require capital investment and is cost-saving. GE soy 

would thus diffuse rapidly – even without an increase in soy prices. At the same time, the 

savings on labor expenditure are unlikely to be sufficiently large to convert the land used 

for other crops to soy production. An exception could be the substitution of grazing land 

for soy production in the southern frontier of Brazil. 

Empirical Framework: Long First Differences Model 

To estimate the long-run effect of a permanent price shock on the soybean expansion, we 

would ideally track identical farms subject to different permanent price shocks over a 

period sufficiently long for farmers to change their production technologies; we would 

then contrast farmers’ land-use decisions. In this analysis, I use a long first differences 

model that approximates this ideal experiment. I explore a permanent price shock 
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resulting from macroeconomic reforms in a large country in which farmers have different 

technological options. I then observe a farmer’s choices before and after the price 

changes by using a long panel dataset with two periods 10 years apart. Furthermore, I 

observe the diffusion of two technologies across the country to quantify the price effect 

through the technological change channel. To estimate the price effects, I explore the 

spatial variation in price shocks due to large differences in transportation costs. 

The level equation for the first differences model is 

(4)      𝐴𝐴𝑖𝑖𝑖𝑖 = 𝛿𝛿0 + 𝛿𝛿1𝑡𝑡 + 𝛿𝛿2𝑡𝑡𝑑𝑑𝑈𝑈𝑈𝑈 + 𝛽𝛽1𝑡𝑡𝑃𝑃𝑃𝑃𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑀𝑀𝑈𝑈,𝑖𝑖 + 𝛽𝛽3𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑀𝑀𝑈𝑈,𝑖𝑖 + 𝛽𝛽4𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛽𝛽5𝑋𝑋𝑖𝑖 + 𝑣𝑣𝑖𝑖
+ 𝜖𝜖𝑖𝑖𝑖𝑖 

where 𝑡𝑡 = 0, 1 indexes the agricultural census years of 1996 and 2006, 𝑖𝑖 indexes the 

census block, and 𝑀𝑀𝑈𝑈 indexes the municipality. 𝐴𝐴𝑖𝑖𝑖𝑖 is the area harvested with soybeans 

in census block 𝑖𝑖 in year 𝑡𝑡 and 𝑃𝑃𝑀𝑀𝑈𝑈𝑖𝑖 is the expected price in municipality 𝑀𝑀𝑈𝑈. 𝑑𝑑𝑈𝑈𝑈𝑈 are 

dummy variables for states (referred to as UFs in Brazil). 𝑃𝑃𝑃𝑃𝑖𝑖 represents potential 

soybean yields under the maximum and medium levels of input use. These potential yield 

measures are time-invariant. The time-invariant observed and unobserved heterogeneity, 

𝑋𝑋𝑖𝑖 and 𝑣𝑣𝑖𝑖, are differenced out. Examples of time-invariant characteristics are soil and 

climate attributes, geographical features, historical land use, historical drivers of 

agricultural productivity, and unobserved land quality at each census block. 𝑋𝑋𝑖𝑖𝑖𝑖 is a 

vector of the time-variant characteristics. 

The estimated baseline model is the first differences equation: 

(5)    ∆𝐴𝐴𝑖𝑖 = 𝛿𝛿1 + 𝛿𝛿2𝑑𝑑𝑈𝑈𝑈𝑈 + 𝛽𝛽1𝑃𝑃𝑃𝑃𝑖𝑖 + 𝛽𝛽2∆𝑃𝑃𝑀𝑀𝑈𝑈 + 𝛽𝛽3𝑃𝑃𝑃𝑃𝑖𝑖∆𝑃𝑃𝑀𝑀𝑈𝑈 + 𝛽𝛽4∆𝑋𝑋𝑖𝑖 + ∆𝜖𝜖𝑖𝑖  
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The parameter of interest is the average partial effect of prices on the soy harvested 

acreage: 𝜇𝜇(𝑃𝑃𝑃𝑃𝑖𝑖) = 𝜕𝜕∆𝐴𝐴𝑖𝑖
𝜕𝜕∆𝑃𝑃𝑀𝑀𝑀𝑀

= 𝜕𝜕𝐴𝐴𝑖𝑖𝑖𝑖
𝜕𝜕𝑃𝑃𝑀𝑀𝑀𝑀𝑖𝑖

= 𝛽𝛽2 + 𝛽𝛽3𝑃𝑃𝑃𝑃𝑖𝑖. In a first differences model, the cross-

sectional variation in potential yield captures the effect of technological change, as the 

return from technology adoption, the 𝜕𝜕 𝛱𝛱∗(𝐴𝐴∗,𝑇𝑇)
𝜕𝜕𝑇𝑇

 term in equation (3), varies with the 

potential yield of the land (Foster and Rosenzweig, 1996; Bustos, Caprettini, and 

Ponticelli, 2016). The intuition is that the available set of production technologies 

expanded and that land with higher returns to intensification has a comparative advantage 

for the adoption of new technologies. The coefficient of the interaction term between the 

price and potential yield, 𝛽𝛽3, captures the differential price response due to a 

technological diffusion process. I estimate equation (5) separately for the south and 

savanna regions, using measures of potential yield associated with the profitability of the 

NF and GE soy technologies to approximate the indirect price effect through the 

technological adoption channel. I use the estimated price effect to compute the long-run 

price elasticities of the soy expansion. The coefficients 𝛿𝛿1 and 𝛿𝛿2 capture the trends in the 

soy expansion at the country and state levels. I also model trends by the baseline 

characteristics such as historical land productivity and profitability to capture the 

differentiated trends correlated with the opportunity cost of the land. The coefficient 

𝛽𝛽1 captures the technological change effect similar to the parameters estimated by Bustos, 

Caprettini, and Ponticelli (2016). 

The key identifying assumption for the first differences estimator with two time periods 
is 

(6)     𝐸𝐸(∆𝜖𝜖𝑖𝑖 | 𝑑𝑑𝑈𝑈𝑈𝑈 ,𝑃𝑃𝑃𝑃𝑖𝑖 ,∆𝑃𝑃𝑀𝑀𝑈𝑈,∆𝑋𝑋𝑖𝑖) = 0    
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The identification assumption in the long first differences acreage model is different from 

the assumption for the fixed-effects model estimated with a panel of annual agricultural 

output. The endogeneity problem in the fixed-effects model is the incorporation of 

anticipated yield shocks in expected prices (Roberts and Schlenker, 2013; Hendricks, 

Janzen, and Smith, 2014). Roberts and Schlenker (2013) propose an instrumental variable 

approach based on storage shocks to estimate a global agricultural supply function. 

Hendricks, Janzen, and Smith (2014) show that controlling for current yield shocks or 

estimating an acreage response function mitigates the endogeneity problem. In a 10-year 

first differences model, it is unlikely that the expected prices in 1996 incorporate 

information about yield shocks 10 years later. 

The long first differences model uses the longitudinal and cross-sectional variation to 

identify the price effects. In this case, unobserved changes in local policies, local 

infrastructure, or local market structures could be correlated with permanent changes in 

local prices. I expect the baseline characteristics and the state fixed effects to capture 

most of the variation in the local trends for two reasons. The first is because agricultural 

policies and public infrastructure projects in Brazil are designed at the federal or state 

level. The second is because the expansion of the soy market in Brazil from 1996 to 2006 

was driven by the export market and not by changes in local markets. For example, 

Brazilian soy exports almost tripled between 1996 and 2006. Another potential source of 

endogeneity would be concentration of investors such as trading companies in particular 

locations generates spatial variation in demand for soy. In this case, we could have 

reverse causality. This is unlikely in the Brazilian case for two reasons. First, we know 
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the specific policy changes that affected soy prices and how the interaction of the policies 

with the distance to market generated a large spatial variation in price shocks. Second, it 

is clear that the profitability of soy trading companies that invested in Brazil during this 

period depended on the scale of trading, as profit margins were small. Trading companies 

operated in multiple locations, and there is survey evidence of competition among trading 

companies in local markets of the agricultural frontier (Rezende, 2008). 

Finally, part of the soy expansion could be a result of immigrant farmers purchasing 

cheap land in the agricultural frontier. I use the characteristics of the municipality and 

proxies for the profitability of land before 1996 to control for these differentiated 

expansion trends. It is not possible to completely eliminate omitted variable bias or 

reverse causality. Furthermore, there could be measurement error in our permanent price 

shock variables. I then instrument the expected prices with the minimum straight-line 

distance to market (Souza-Rodrigues, 2015). 

Variation in Permanent Price Changes with the Distance to Market 

As the long first difference model relies on the cross-sectional variation in prices to 

estimate the price effects on the soy expansion, I use a simple price model to show how 

the interaction between the macroeconomic policies introduced in Brazil after 1996 and 

different transportation costs created spatial variation in soybean price increases. See 

Appendix B for a derivation of the price model. I assume that the farmer makes land-use 

decisions based on the expected prices at the farm gate. The farm gate price at time 𝑡𝑡 is 

𝑃𝑃𝑖𝑖
𝐸𝐸𝑆𝑆𝐷𝐷𝑓𝑓 = (1 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖)(𝑒𝑒𝑖𝑖𝑃𝑃𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑑𝑑). The tax, 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖, exchange rate, 𝑒𝑒𝑖𝑖, market price, 
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𝑃𝑃𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖, and unit cost of transportation (cost to transport a ton of soy per kilometer), 𝑐𝑐𝑖𝑖, can 

vary over time. 𝑑𝑑 is the distance to market. By way of a simplification, I assume that the 

transport cost, 𝑐𝑐𝑖𝑖, and global soy price, 𝑃𝑃𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖, do not change over time. The two policy 

changes that generated a permanent price increase in Brazil are modeled through changes 

in 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 and 𝑒𝑒𝑖𝑖. By using the differences in logs as an approximation for the percentage 

change in prices, I decompose the price shock into three components 

(7)    ∆𝑃𝑃 ≅ 𝐿𝐿𝐿𝐿𝐿𝐿�𝑃𝑃1
𝐸𝐸𝑆𝑆𝐷𝐷𝑓𝑓) − 𝐿𝐿𝐿𝐿𝐿𝐿(𝑃𝑃0

𝐸𝐸𝑆𝑆𝐷𝐷𝑓𝑓� 

               = 𝐿𝐿𝐿𝐿𝐿𝐿 �1−𝑖𝑖𝑆𝑆𝑡𝑡1
1−𝑖𝑖𝑆𝑆𝑡𝑡0

� − 𝐿𝐿𝐿𝐿𝐿𝐿(1 − 𝑆𝑆𝑇𝑇𝑇𝑇) + 𝐿𝐿𝐿𝐿𝐿𝐿(1 + 𝐿𝐿 − 𝑆𝑆𝑇𝑇𝑇𝑇)   

where 𝐿𝐿 is the growth rate in the market price, defined as 𝑒𝑒1𝑃𝑃1𝑓𝑓𝑚𝑚𝑖𝑖 = (1 + 𝐿𝐿)𝑒𝑒0𝑃𝑃0𝑓𝑓𝑚𝑚𝑖𝑖, 

while 𝑆𝑆𝑇𝑇𝑇𝑇 is the transportation cost share of the market price, 𝑆𝑆𝑇𝑇𝑇𝑇 = 𝑐𝑐𝑑𝑑/𝑒𝑒0𝑃𝑃0𝑓𝑓𝑚𝑚𝑖𝑖. The first 

term on the right-hand side of equation (7) represents the effect of the tax change and 

does not vary with distance in this simplified model. In reality, the tax changes 

implemented in Brazil affect transportation services and vary across states, inducing 

further spatial price variation. I ignore this tax effect here for simplification. For a tax 

reduction from 20% to 10%, the price increase will be approximately 5%. The 

elimination of ICMS tax for exports would thus result in a price increase of almost 10%. 

The second term, −𝐿𝐿𝐿𝐿𝐿𝐿(1 − 𝑆𝑆𝑇𝑇𝑇𝑇), is a function of the transportation costs and varies 

with distance. Since the transport cost share is below one, this term will always be 

positive and will increase nonlinearly with the transport cost share 𝑆𝑆𝑇𝑇𝑇𝑇. For example, for 

a transport cost share of 30%, the change in prices will be approximately 15%. If the 
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transport cost share in frontier locations with poorly maintained roads reaches 50%, the 

resulting price change would be 30%. 

The last term in equation (7), 𝐿𝐿𝐿𝐿𝐿𝐿(1 + 𝐿𝐿 − 𝑆𝑆𝑇𝑇𝑇𝑇), varies with both the growth rate in the 

market price and the distance to market. This term would be negative only if the transport 

cost share is greater than the market price growth rate. I expect this term to be positive 

because in the 10-year period analyzed in this study, the growth rate is larger than the 

transport cost share in most locations due to the large change in exchanges rates in Brazil. 

The derivative of the price change ∆𝑃𝑃 with respect to the transport cost share, 𝑆𝑆𝑇𝑇𝑇𝑇, is 

𝜕𝜕∆𝑃𝑃
𝜕𝜕𝑆𝑆𝑇𝑇𝑂𝑂

=  𝑛𝑛
1+𝑛𝑛−𝑆𝑆𝑇𝑇𝑂𝑂

> 0. As expected, the price shock increases nonlinearly with 

transportation costs and therefore the distance to market. In farms located close to the 

port, where transportation costs would be close to zero, a 60% increase in prices due to 

currency devaluation would result in an approximately 37% increase in farm gate prices, 

not considering the effect of changes in taxes. For a farm located in the agricultural 

frontier where the transport cost share could reach 50%, the same 60% increase in market 

prices would result in a price increase of approximately 55%. This spatial variation is 

likely to be higher because the quality of transportation infrastructure decreases 

nonlinearly with the distance to market. Transportation costs tend to increase rapidly with 

the distance to the agriculture frontier. The large spatial variation observed in the data is 

thus consistent with the variation implied by the price model. 
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Decomposing the Price Effect on Acreage Expansion 

Finally, I extend the long first differences model to decompose the price effect into the 

direct effect and the indirect technological adoption effect (equation (3)). The expected 

change in acreage can be expressed in terms of the probability of expansion: 

𝐸𝐸[∆𝐴𝐴𝑖𝑖|𝑋𝑋𝑖𝑖 ,∆𝑃𝑃𝑀𝑀𝑈𝑈] = 𝑃𝑃𝑃𝑃[∆𝐴𝐴𝑖𝑖 > 0|𝑋𝑋𝑖𝑖 ,∆𝑃𝑃𝑀𝑀𝑈𝑈] × 𝐸𝐸[∆𝐴𝐴𝑖𝑖|𝑋𝑋𝑖𝑖 ,∆𝑃𝑃𝑀𝑀𝑈𝑈 ,∆𝐴𝐴𝑖𝑖 > 0], where the 

vector 𝑋𝑋𝑖𝑖 includes all the observed farm characteristics. I estimate separately the choice 

to expand, which in the case of the savanna implies the adoption of NF soy, and the 

acreage expansion model conditional on expansion. What differentiates the decision to 

expand soy production in the savanna from the choice of total acreage converted into soy 

production is the significant upfront investment necessary to prepare savanna soils for 

farming. Hence, this upfront cost of adopting NF soy represents an economic hurdle for 

the adoption of NF soy technology. However, if the permanent price increase is 

sufficiently large to overcome this adoption hurdle, large amounts of land could be 

converted into soy production through the technological adoption channel. Differentiating 

the unconditional expected acreage function, 𝐸𝐸[∆𝐴𝐴𝑖𝑖|𝑋𝑋𝑖𝑖 ,∆𝑃𝑃𝑀𝑀𝑈𝑈], with respect to the price 

changes, ∆𝑃𝑃𝑀𝑀𝑈𝑈: 

(8)  
𝜕𝜕𝐸𝐸[∆𝐴𝐴𝑖𝑖]
𝜕𝜕∆𝑃𝑃𝑀𝑀𝑈𝑈

  =   Pr [∆𝐴𝐴𝑖𝑖 > 0]
𝜕𝜕𝐸𝐸[∆𝐴𝐴𝑖𝑖|∆𝐴𝐴𝑖𝑖 > 0]

𝜕𝜕∆𝑃𝑃𝑀𝑀𝑈𝑈�������������������
𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 𝑃𝑃𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝑖𝑖

  +     
𝜕𝜕Pr [∆𝐴𝐴𝑖𝑖 > 0]

𝜕𝜕∆𝑃𝑃𝑀𝑀𝑈𝑈
𝐸𝐸[∆𝐴𝐴𝑖𝑖|∆𝐴𝐴𝑖𝑖 > 0]

�������������������
𝑇𝑇𝐷𝐷𝐷𝐷ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛

𝑃𝑃𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷𝑖𝑖

   

I omit the conditioning variables 𝑋𝑋𝑖𝑖 and ∆𝑃𝑃𝑀𝑀𝑈𝑈 in equation (8) to simplify notation. The 

first term on the right hand side captures the price effect on the acreage expanded in 

census blocks that expanded production. The second term captures the technology 
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adoption price effect through the price effect in the probability of soy expansion. In the 

savanna, we expect a large price effect through the technology adoption channel. 

However, the two-step hurdle model will not work well in the south because the adoption 

of GE soy does not require a significant upfront investment. I use the hurdle model to 

decompose the price effects on the soy expansion in the savanna. 

I estimate the hurdle model in two steps. In the first step, I estimate a Probit model for the 

choice of expansion; in the second step, I estimate the conditional acreage response 

model. This selection model relies on a parametric assumption and exclusion restrictions 

for identification. The ideal exclusion restriction would capture the variation in the 

upfront investment in soil correction for technology adoption. Two plausible candidates 

are the distance to lime mines and share of forested land before 1996. Because lime is 

used in large quantities to correct soil acidity in the savanna, farmers located further from 

this input source will incur a large upfront cost. The conversion of forested land to soy 

production is particularly expensive because the process of cleaning the land is costly. 

The exclusion restriction assumption is conditional on a set of farm characteristics 

including measures of land suitability for soy production and state fixed effects. 

Empirical Results: Heterogeneous Supply Response 

The key empirical results of this article are threefold. First, the regional acreage response 

functions are different, becoming more elastic towards the less developed agricultural 

frontier. Second, the heterogeneous long-run supply response is a result of the different 

technological diffusion processes. Finally, the indirect price effect through the 
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technological channel explains most of the heterogeneity in the long-run supply response. 

The empirical evidence suggests that forecasting the long-run agricultural supply 

response requires explicitly modeling the technological change. Although modeling the 

technological change beyond time trends is challenging, I find that using potential yield 

measures to proxy for the return to innovation can improve the supply analysis. I start the 

empirical analysis with a graphical illustration of the acreage response function in Brazil. 

I show how the different measures of potential yield explain the GE and NF soy diffusion 

processes. I then estimate separately the acreage response functions for the south and 

savanna regions. 

Figure 6 shows the fitted values for a non-parametric acreage response function based on 

the long first differences model of equation (5). Each dot represents one census block in 

the two main soy-producing regions of Brazil. Appendix D describes the sieves first 

differences model. The concave sieves acreage response function flattens as we move 

from the developed south region to the agricultural frontier in the savanna. The more 

inelastic part of the function corresponds to the soy expansion in the southern and eastern 

parts of the country where GE soy diffused rapidly. As these regions are located closer to 

ports, the price changes were relatively smaller. By contrast, the function flattens as we 

move further inland towards the agricultural frontier of the savanna. The set of census 

blocks furthest to the right are from the state of Mato Grosso, the largest soy-producing 

state in Brazil, in the frontier of the savanna and Amazon biomes. Although the sieves 

acreage response function in figure 6 shows the non-linear nature of the soy supply 

response function in Brazil, it is highly elastic because I estimate it for the entire country 
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without geographical fixed effects that capture differentiated trends at the state or 

mesoregion level. 

Modeling the Return to GE and NF Soy Adoption 

I incorporate the technological diffusion process into the estimation of the acreage 

response function by using two potential yield measures that capture the return to 

adopting GE and NF soy. The GAEZ potential yield measures are constructed 

independently of Brazilian farmers’ actual choices of production system and therefore are 

plausible sources of exogenous variation in the return to agricultural intensification. The 

maximum potential yield measure, PY (high-medium), captures the natural soil suitability 

for soy production. PY (high-medium) is the marginal value of adopting advanced soy 

production systems and is a robust measure for the return to GE soy adoption in Brazil 

because GE soy was designed for highly productive soy plantations when introduced in 

1996. By contrast, because the NF soy technological package was designed for marginal 

land in the savanna, PY (high-medium) does not capture the return to NF adoption. 

However, PY (medium-low) is negatively correlated with the nitrogen content of soil, 

and thus it captures the marginal value of adopting the nitrogen-fixing technology on 

savanna land3. 

Farmers choose land-use and production technology jointly. Table 2 shows the results for 

a joint choice model of soy expansion and soy technology. The soy expansion, ∆𝐴𝐴, is the 

difference between the areas harvested with soy in 2006 and 1996. The GE soy 

technology is identified by using the type of seed variable from the IBGE census and the 
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NF technology is based on the technological package used for NF soy production in the 

savanna. Trading companies and input suppliers offer a technological package that 

includes technical assistance, debt, certified seeds, pH correction inputs, and soil 

management practices. The IBGE census contains variables for each component of the 

NF soy package. Columns 1 to 4 in Table 2 show the results for a Biprobit model for the 

choices of the soy expansion and adoption of GE soy in the south. Columns 5 to 8 show 

the results for the soy expansion and NF soy adoption in the savanna. I estimate regional 

models controlling with fixed effects and controls for baseline characteristics. Columns 1 

and 2 for the south model and columns 5 and 6 for the savanna model use state biome 

fixed effects, whereas columns 3, 4, 7, and 8 use mesoregion fixed effects. 

The choices of soy expansion and technology are strongly correlated as expected. The 

correlation between the error term in the two choice models, the rho coefficient in table 2, 

ranges from 0.77 to 0.87 and is statistically significant in all models. It is thus not 

possible to model separately the long-run acreage change from the technological adoption 

process. Moreover, standard supply response models implicitly assume that the set of 

available technologies and the return for different technologies are homogeneous across 

large geographical regions. This assumption is particularly problematic in the case of 

technologies designed for the conversion of marginal land to agriculture, such as the NF 

soy technology. 

The most robust result in the Biprobit models as well as with the alternative 

specifications of technology choice in Brazil using the IBGE census data is the effect of 

the potential yield measures in the choice of GE and NF soy. PY (high-medium) is a 
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robust predictor of the choice of adopting GE soy and expanding soy production in the 

south of Brazil and PY (medium-low) is a robust predictor of NF soy adoption in the 

savanna. PY (high-medium) is statistically insignificant in most specifications for the 

choice of NF soy. I tested different functional forms for the potential yield measures, 

including linear, quadratic, and dummy variables for the different quantiles of potential 

yield. The evidence from the choice and expansion models suggests a non-linear 

relationship between the potential yield measures and expansion and technological 

outcomes. 

Finally, the Biprobit results presented in Table 2 show that the price effect in the soy 

expansion and GE soy adoption in the south is statistically insignificant. In the savanna, 

when we add the mesoregion fixed effects, the price effects also become statistically 

insignificant. The inclusion of a rich set of control variables and fixed effects absorbs 

much of the variability in price changes, measured at the municipality level. In the next 

sections, I estimate separate regional acreage response models by using the interaction 

effects between price changes and potential yields under different specifications and with 

the distance to the port as an instrument for the price changes. I find that after accounting 

for census block fixed effects, controlling for trends based on land productivity and the 

productivity of alternative crops, and controlling for geographical trends by using state 

and mesoregion fixed effects, the interaction terms between price and potential yield are 

robust across specifications. 
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 Acreage Response Function with GE Soy Adoption in the South 

I estimate the acreage response function for the south region by using the first differences 

model of equation (5). My preferred dependent variable is the change in the soy 

harvested area share of the census block area; however, I also use the model to estimate 

the change in the soy harvested area, change in the GE soy harvested area, and changes in 

the agricultural acreage share. The parameter of interest is the coefficient of the change in 

the log of the expected price variable, ∆𝐿𝐿𝐿𝐿𝐿𝐿(𝐸𝐸𝑃𝑃), and the interaction between the 

changes in price and dummies for the quantiles of the potential yield measures, 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃. Table 3 shows the estimated acreage response function for the south, using 

the mesoregion fixed effects in all the specifications to capture trends at the mesoregion 

level. Brazil is divided into 137 mesoregions. The south region is the smallest in the 

country with only three states, 23 mesoregions, and 7,591 rural common census blocks. 

Columns 1 and 2 in table 3 show the acreage response function without interactions 

between the price and potential yield. Column 1 uses a quadratic function for the 

potential yield variables, whereas column 2 uses the dummy variables. The functional 

form of the potential yield variables does not affect the estimated price effect. A 1% 

increase in the expected soy price increases the share of the soy harvested area in the 

census block by 3%. To compute the long-run elasticities, I first convert the shares into 

the changes in the soy harvested area by multiplying the coefficient of ∆𝐿𝐿𝐿𝐿𝐿𝐿(𝐸𝐸𝑃𝑃) by the 

average census block area in the south, 4,221 hectares. I divide the resulting expected 

change in soy acreage by the mean soy harvested area for 1996 and 2006, 582 hectares. 

This calculation is equivalent to multiplying the coefficient of ∆𝐿𝐿𝐿𝐿𝐿𝐿(𝐸𝐸𝑃𝑃) by 7.25. 
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I find a long-run price elasticity of 0.25, about one-third that estimated by Hausman 

(2012), using the municipality data and annual variation in spot prices from the IBGE 

PAM dataset. Hausman also estimates regional elasticities for Brazil by using US-traded 

futures prices, finding a much more elastic acreage response; however, none of the 

regional elasticities is statistically significant4. In this article, we refer to the Hausman 

elasticities based on spot prices using the same price dataset from IBGE. Without the 

mesoregion fixed effects, my estimated price elasticity for the south increases to 0.49. 

Columns 3 to 5 present the results for the acreage response function with interactions 

between the price change and potential yield. The parameter of interest is the interaction 

term between the change in price and dummies for the two top quantiles of the maximum 

potential yield, PY (high-low). This coefficient represents the differentiated price effect 

on land with higher returns for the adoption of GE soy and is robust across the 

specifications with the mesoregion fixed effects. The estimated elasticity for the top 

quantile of the maximum potential yield ranges from 0.51 to 0.62, twice as large as the 

regional elasticity5. Column 5 shows the results when I instrument the price changes with 

a quadratic function for the straight-line distance from the municipality to the port. The 

estimated elasticity, 0.46, is similar to the elasticity estimates when using OLS with the 

mesoregion fixed effects. The estimated IV model did not use the mesoregion fixed 

effects, as the instrument has no effect on price changes after accounting for the 

mesoregion trends. 

In the first differences model, the coefficient for the time-invariant potential yield 

variables capture the effect of the introduction of a new technology. In the case of the 
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south region of Brazil between 1996 and 2006, this represents the introduction of GE soy. 

This approach was used by Bustos, Caprettini, and Ponticelli (2016) to analyze the 

introduction of GE soy in Brazil. The coefficient of PY (high-low) Q2 in column 3 

suggests a technological change effect of a 1.3% increase in the soy harvested area share 

for land in the second quantile of the maximum potential yield after accounting for the 

price effect. The other coefficients for the potential yield dummies are not statistically 

significant. When I add the interaction effect between the price and potential yield, the 

coefficients for the PY (high-low) dummies and price effects are no longer statistically 

significant. It is therefore not clear whether the introduction of GE soy had any direct 

effect on the soy expansion without taking into consideration price increases. To 

disentangle the direct and indirect price effects, I model the expansion of the GE soy 

harvested area. 

In the south, from 1996 to 2006, the soy acreage and GE soy acreage increased by 1.3 

and 2.6 million hectares, respectively and 50% of all soy planted in the south was GE soy 

by 2006. At least half of the diffusion of GE soy happened through the conversion of 

traditional soy plantations. Table 4 shows the estimated soy and GE soy expansion 

models. The dependent variable is the change in the total area harvested with soy and GE 

soy. The change in the area harvested with GE soy is equal to the area harvested with GE 

soy in 2006, as GE soy was only approved for commercialization in Brazil in 2001. I find 

a large and robust price effect on the diffusion of GE soy – even with the mesoregion 

fixed effects model. This effect corresponds to the 𝜕𝜕𝑇𝑇𝑖𝑖𝑖𝑖
𝜕𝜕𝑃𝑃𝑖𝑖𝑖𝑖

 term in equation (1), namely the 

price effect of the adoption of a new agricultural technology. The estimated price 
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elasticity of the GE soy expansion ranges from 1.11 to 2.41 and is at least twice as large 

that the price elasticity of the total soy expansion. The maximum potential yield dummies 

have a significant and robust effect on the total soy and GE soy expansions, but the effect 

is three times larger for the latter. 

In summary, these results suggest that the introduction of GE soy in combination with the 

price increase led to a large conversion of traditional soy plantations to GE soy in the 

south. However, this large and robust price effect on such technology diffusion did not 

translate into a large effect in the expansion of soy into new agricultural land. I find that 

the elasticity of the acreage response function not only varies with the potential yield, but 

is also only statistically significant in locations with the highest potential yield for soy 

production. The GE soy technology was not designed to and did not extend the 

agricultural frontier in Brazil up to 2006. In traditionally productive regions such as the 

south of Brazil, the indirect price effect in the acreage response function thus tends to be 

small. 

Acreage Response Function with NF Soy Adoption in the Savanna 

The acreage response function is more elastic in the savanna than in the south because of 

the indirect effect of price on the soy expansion through the technological change 

channel. Whereas in the south the indirect price effect is small, in the savanna it accounts 

for most of the supply response. The permanent price increase enabled the adoption of an 

expensive technology, namely NF soy, designed for the conversion of marginal 

pastureland into productive soy plantations. 
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Table 5 shows the results of the first differences model estimated for the savanna. The 

model is the same as that used for the south; however, the potential yield measure that 

captures the return to the adoption of NF soy is the medium potential yield, PY (medium-

low). Columns 1 to 3 show the results for the models without price and potential yield 

interactions. Model 1 uses a quadratic functional form for the potential yield measures, 

whereas model 2 uses dummy variables. The estimated price elasticity is approximately 

1.15. Both models include the log of farm size in 1996 and the log of the value of 

agricultural production in 1985 as control variables. Model 3 also includes the log of 

population density and the log of income per capita in 1985 to capture the differentiated 

trend based on the variation in local market demand. The elasticity decreases to 0.6 in 

model 3 when I add these baseline variables. In the savanna region, the mesoregion fixed 

effects are too restrictive, and thus they absorb the price variation. However, the 

interaction coefficients of the price and medium potential yield are statistically significant 

and robust across the specifications in those models with mesoregion fixed effects. The 

estimated elasticities are not significantly different from zero for the mesoregion fixed 

effects. These results show the nonlinear relationship between price changes and 

distance. As all the locations in the savanna region are far from ports, the variation in 

price changes within this region is small. 

Columns 4 to 6 show the results for the models with interaction terms between the price 

change variable and dummies for the medium potential yield. For the savanna models, I 

only use dummies for the medium potential yield variables; however, all the 

specifications control for the maximum potential yield. The results are robust when using 
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the linear, quadratic, and dummy specifications for the maximum potential yield. The 

price–potential yield interactions are statistically significant across all the specifications 

for the two top quantiles of the medium potential yield. The acreage response functions 

are more elastic in the top quantiles of the medium potential yield, particularly in the 

second quantile. The estimated price elasticity varies from 1.2 to 2.18 for the second 

quantile and from 0.74 to 1.21 for the top quantile. 

Model 6 is estimated by using the straight-line distance to the port as an instrument for 

price changes. The key assumption in the IV model is that the distance to the port is 

unrelated to unobserved changes affecting the soy expansion, possibly due to the 

unobserved productivity of a demand shock. This assumption is more plausible when 

conditioning for the baseline characteristics that control for variation in land productivity 

and local demand. The larger elasticity estimated by using the IV model could reflect the 

attenuation bias due to the measurement error in the price change variable. 

I also estimate the acreage response function for the Midwestern part of the Brazilian 

savanna, which accounts for most of the soy production in Brazil, reaches the Amazon 

frontier, and includes the states of Mato Grosso, Mato Grosso do Sul, and Goias. The 

state of Mato Grosso is the largest soy producer in Brazil and has land in both the 

savanna and the Amazon biomes. Because I do not separate the Amazon part of the 

Midwest savanna in the estimation, the elasticity reflects the price response in the 

agricultural frontier of the savanna and the savanna’s Amazon border. The estimated 

elasticities in models 7 and 8 are three times larger than the price elasticities for the entire 

savanna region. Models 7 and 8 both include the baseline characteristics and model 8 
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includes the state fixed effects; nonetheless, the results are unaffected by the addition of 

these state fixed effects. The large price elasticities in the agricultural frontier of the 

savanna are consistent with the nonparametric sieves acreage response function shown in 

figure 6. 

Hausman (2012, table 8) estimates a short-run spot price elasticity for the Midwest region 

of 0.99, statistically significant at the 1% level, and a long-run spot price elasticity of 

2.31 (not statistically significant). For the Amazon border, Hausman (2012) estimates a 

short-run spot price elasticity of 0.703, statistically significant at the 5% level, and a 

long-run spot price elasticity of 2.032 (not statistically significant). The long-run price 

elasticities I estimate for the Midwest savanna are naturally larger than Hausman’s short-

run elasticities, but also larger than the long-run elasticities estimated for the Midwest 

and Amazon frontier. The time-series model captures the short-run effect of price 

changes on acreage well; however, the simulation of the long-run elasticities from the 

short-run price changes might miss the longer and more capital-intensive process of 

converting marginal land into agriculture. Furthermore, the aggregated estimates of the 

supply elasticities also average out the differentiated responses across land with different 

suitability to new technologies. The estimated elasticities from the time-series and long 

first differences models tend to converge in traditional agricultural regions such as the 

south, whereas the time-series model is likely to underestimate the long-run elasticity in 

the agricultural frontier driven by a specific technological diffusion process. 

Finally, I separate the direct and indirect price effects in the soy expansion in the savanna 

region by using a selection model and the price effect decomposition in equation (8). The 
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indirect price effect, the second term on the right-hand side of equation (8), is calculated 

by multiplying the marginal price effect on the probability of the soy expansion by the 

expected expansion conditional on soy expansion. I use a Probit model for the choice of 

the soy expansion in the savanna, assuming that all soy production on savanna land 

requires the use of NF soy owing to its acidic, nitrogen-deficient soil. The nonlinear 

Probit model generates heterogeneous price responses according to the land 

characteristics. My preferred Probit model is the equivalent of model 3 in table 5. I use a 

quadratic function for the potential yield measures and control for the baseline 

characteristics. Figure 7 shows the technological change component of the long-run price 

elasticity as a function of the medium potential yield. 

The price elasticity doubles as the medium potential yield increases. A permanent 

increase in soy prices results in a larger soy expansion on land with a higher marginal 

value of NF soy adoption, as the medium potential yield measure captures the variation in 

the return to NF soy adoption. In the savanna, the indirect price effect shown in terms of 

the price elasticities in figure 5 accounts for most of the effect of prices on the soy 

expansion. I find that the change in the expected size of the soy expansion in the savanna 

is unresponsive to price increases. This result reflects the importance of economies of 

scale for soy production in the savanna. The farmer’s most important decision is whether 

to convert pastureland into soy plantation. When he or she decides to produce soy, the 

average acreage allocated to soy is more a function of the land characteristics than the 

market conditions. The savanna farmer explores the economies of scale of large soy 
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plantations to compensate for the small profit margins due to the high transport costs and 

high capital expenditure incurred when converting pastureland and preparing the soil. 

Land-use Changes 

Agricultural supply elasticities are important to simulate the impact of biofuel and climate 

change policies on the conversion of natural vegetation into agriculture. Such policies can 

permanently increase commodity prices and thus affect farmers’ land-use decisions across 

regions. I therefore use the long first differences model to estimate the effect of a permanent 

change in soy prices on the share of the land allocated to agriculture (i.e., cropland and 

pastureland). The dependent variable is the ratio of the share of the census block acreage 

allocated to cropland and pastureland. The average share of agricultural land in Brazil is 

73% and this figure is consistent at the regional level6. Table 6 summarizes the price effect 

on total agricultural land for Brazil as well as for the south and savanna regions. All the 

models include the baseline characteristics. Further, models 1, 3, and 5 have the state fixed 

effects, whereas models 2, 4, and 6 have the mesoregion fixed effects. The elasticities are 

reported at the bottom of the table. 

I find small but statistically significant price effects in the agricultural area share nationally 

and in the savanna region. The price effects are not statistically different from zero in the 

south region. In addition, when adding the mesoregion fixed effects, none of the price 

effects is statistically significant, although the estimates are comparable to the models with 

the state fixed effects. The price elasticity of agriculture acreage is 0.046 nationally and 

0.128 in the savanna, both statistically significant at the 5% level (models 1 and 5). 
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I compare the estimated elasticities with those calculated by Barr and coauthors (2010) 

using time-series data at the country level. I report their estimated elasticities for two 

periods, 1997–1999 to 2001–2003 and 2004 to 2006, which combined match the 10-year 

period between the agricultural censuses (Barr et al., 2010, Table 18). My estimate for the 

price elasticity of agricultural land falls between the elasticities estimated by Barr and 

coauthors for these two periods. It is possible that the stricter monitoring of forestland or 

changes in credit constraints changed the total agricultural elasticity after 2004 (Barr et al., 

2010). However, the most significant policy changes targeting deforestation were 

implemented after 2006 and the most land-intensive crops in Brazil such as soybean and 

corn are largely financed by private companies (e.g., trading and input suppliers). 

Furthermore, soy and corn acreage continued to grow rapidly throughout that decade. A 

methodological challenge, the measurement of pastureland, could also affect the estimation 

of agricultural elasticities. 

The Brazilian agricultural census is suitable for estimating the elasticity of agricultural 

land because it has pastureland information. The available time-series data on agricultural 

land use in Brazil do not report pastureland.  In the first differences model, I use the 

pastureland acreage at the census block level. Measuring pastureland is particularly 

important in Brazil because approximately 50% of all private land is allocated to 

managed and natural pasture. A common approach to address this data deficiency, as also 

used by Barr and coauthors, is to interpolate annual estimates of pastureland based on 

census data. I tested different interpolation methods using the IBGE PAM dataset and 

estimates for grazing intensity but found it difficult to reconcile the results with the 
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observed aggregated crop acreage at the municipality level. The challenge is that the 

intensity of grazing is jointly determined with farmers’ land-use choices and is 

heterogeneous across a large country such as Brazil. Hausman (2012) and Roberts and 

Schlenker (2013) estimate the price elasticities of crop acreage in Brazil by using time-

series data without pastureland. The crop acreage elasticities should be larger than total 

agricultural elasticity as it is easier to convert pastureland than forestland into cropland. 

For example, Barr and coauthors (2010) estimate both elasticities and find that the crop 

elasticity is three times higher than the agricultural elasticity including pastureland. 

The price elasticities of agricultural land are useful to simulate land-use changes in 

response to permanent price increases. However, the simulation must be analyzed 

cautiously as it assumes no additional technological change, land-use policy change, and 

it does not account for general equilibrium effects. I simulate the change in land use in 

Brazil and in the savanna, using the range of elasticities estimated from models 1 and 2 

for the former and models 5 and 6 for the latter. I then multiply the simulated price 

increase, 10%, by the elasticities and by total agricultural land in Brazil and in the 

Midwest savanna in 2006 based on the census (204.5 million and 104 million hectares, 

respectively). In 2006, about 70% (76%) of all agricultural land in Brazil (the savanna) 

was pastureland (IBGE, 2006)7. At the national level, a 10% permanent price increase 

would raise the total agricultural area by between 520 and 936 thousand hectares. In the 

savanna, a 10% permanent price increase would increase the total agricultural area by 

between 761 and 953 thousand hectares. The difference in the simulated land-use change 

using the country and regional elasticities show the importance of accounting for spatial 
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heterogeneity. The application of country-level estimates for the supply elasticity to land-

use simulation understates the potential for land-use change in the most ecologically 

sensitive regions. 

Although I find statistically significant land-use effects from the price increases, it is 

useful to provide a reference for these estimates. According to estimates from the Food 

and Administration Organization (FAO) and Brazilian Institute for Space Research 

(INPE), the cumulative deforestation in the Amazon from 1996 to 2006 was 19.2 million 

hectares (FAO, 2014). Hence, the simulated deforestation based on a 10% permanent 

price increase for the entire country represents only 5% of Amazon deforestation in those 

10 years. 

Robustness Checks 

In this section, I report the results of the robustness tests for the spatial correlation and 

alternative measurements of permanent price chances. Appendix E presents the complete 

results for the alternative specifications of the supply response functions estimated in this 

analysis. 

Spatial Correlation 

A potential problem when estimating supply functions using micro datasets is spatial 

correlation in the unobserved determinants of the soy expansion. Neighboring farmers are 

likely to be subject to the same demand and supply shocks. Moreover, the technological 

and land-use choices of a farmer could influence the choice of his/her neighbors. The unit 

of observation in my two-period panel dataset is the common census block, which 
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contains on average 40 farms. I test the statistical significance of the estimated price and 

technological change effects firstly by changing the clustering variable to allow for 

correlation in areas larger than the municipality and secondly by applying the standard 

error correction for spatial correlation proposed by Conley (1999) (see also Fetzer, 2014; 

Hsiang, 2010). Under Conley’s approach, spatial dependence is modeled as a function of 

the distance between agents. Hence, in my case, this represents the straight-line distance 

between rural census blocks. 

Table 7 compares the soy response function in Brazil by using municipality, microregion, 

and mesoregion as the clustering variables. The estimated coefficients of the price effects 

are statistically significant at the 1% level in all specifications without price potential 

yield interactions. When I add the interaction effects, the direct effect of price changes 

becomes statistically insignificant in the models with the state fixed effects. However, the 

coefficients of the price–potential yield interaction (second quantile) are statistically 

significant across all specifications. 

Table 8 shows the estimated soy response function in Brazil, using Conley’s standard 

errors. For models with Δ soy area share as the dependent variable, the price effects are 

statistically significant at the 1% level for the four cutoff distances tested. Conley’s 

standard errors for the price effects increase with the cutoff distance when the dependent 

variable is Δ soy area but are still statistically significant at the 500 km threshold. 
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Measurement of the Permanent Price Change 

I exploit two macroeconomic policy changes to measure the permanent increase in soy 

prices in Brazil to estimate the long-run soy acreage function. My preferred measure of 

the permanent price change uses long averages (i.e., six years) before and after the 

introduction of these two policies to separate the effect of permanent changes from the 

annual variation in prices. I test the robustness of the estimated long-run price effects to 

the alternative measures of price changes, varying the averaging period. 

Table 9 presents the estimated price effects, using four measures of permanent price 

changes, namely the baseline measure and the alternatives ΔP1, ΔP2, and ΔP3. Appendix 

A describes the variables. Each line in the table corresponds to one acreage response 

function for Brazil. I report the estimated price effects for two dependent variables and 

for models with the baseline control variables and state fixed effects. The estimated price 

effects are economically and statistically significant across the alternative measures of 

price changes, dependent variables, and specifications. The only exception is the price 

effect estimated by using ΔP2 with the baseline characteristics and without the state fixed 

effects. However, the price effects for ΔP2 are significant and consistent with the other 

estimates in the specification with the state fixed effects. 

The estimated price effects when using these alternative measures of price changes are 

consistent within each specification. A 1% permanent increase in soy prices would 

increase the share of the soy area by approximately 2% in each census block (column 

(3)). If we use the Δ soy area dependent variable, the soy acreage would expand by about 
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500 ha (column (6)). The price effects decrease as we add controls and fixed effects, with 

the exception of the models with the ΔP3 measure of price changes. ΔP3 uses averages 

for only three years before and after the policy changes and is therefore more sensitive to 

short-term variation in local prices across Brazil. The price effects estimated by using the 

ΔP3 measure are higher than those under the alternative definitions. The price effects 

estimated by using the baseline and ΔP1 and ΔP2 measures are not statistically different. 

Conclusion 

I use a novel agricultural dataset combining farm-level data for 1.5 million commercial 

farms from the 1996 and 2006 Brazilian agricultural census surveys (IBGE, 1996, 2006) 

to model the effect of a permanent price increase and two technological diffusion 

processes on the agricultural supply response function of soy in Brazil. I find that the 

heterogeneity in the long-run supply response is a result of the different technological 

diffusion processes and is explained by the indirect price effect on technology adoption. 

The permanent increase in soy prices enabled the adoption of an expensive technology, 

namely NF soy, designed for the conversion of marginal pastureland into productive soy 

plantations in the Brazilian savanna. The presented empirical evidence highlights the 

importance of modeling technological diffusion processes to predict the long-run 

agricultural supply response. The long-run response of agricultural supply is more elastic 

on the agricultural frontier where innovation is designed for the conversion of marginal 

land into productive farming. Technology adoption, however, can also change 

agricultural supply through intensification. For example, the recent expansion of soy/corn 

double cropping systems in Brazil will change the agricultural supply functions for these 
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crops. Price increases could then lead to further agricultural intensification, which is the 

subject of ongoing research. 

Endnotes

1 The IBGE PAM panel dataset is publicly available and was used by Hausman (2012) to 

estimate the price elasticities of the soy acreage by using soy spot prices. 

2 Hausman’s long-run price elasticities for the savanna are not statistically significant. 

3 The correlation between the PY (high-medium) and PY (high-low) potential yield 

measures is 0.94, meaning that the empirical results are robust to alternating these two 

variables. The correlation between PY (high-low) and PY (medium-low) is 0.32. Please 

see DePaula (2017) for a production function model of the potential yield measures. 

4 Table 8 in Hausman summarizes the regional price elasticities for soybean acreage in 

Brazil. 

5 The estimated elasticity for the top quantile is measured in relation to the first quantile 

of the maximum potential yield PY (high-low) and the first quantile of the medium 

potential yield PY (medium-low). In the south, there are 2,626 census blocks in the top 

quantile of PY (high-low) and the bottom quantile of PY (medium-low) and the mean 

maximum potential yield in these census blocks is 3.75. 

6 The census dataset surveys farmland only; therefore, only private land is included in the 

calculation of the share of the land allocated to different land uses. Public forestland is 

not accounted for in this analysis. 
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7 The data for total agricultural land and pastureland are based on the 1.5 million 

commercial farms used in this analysis. There are over five million farms in Brazil and 

these totals might change if we included smaller farms. 
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Figures and Tables 

A. Soy Yield      B. Soy Harvested Area   

 

Figure 1. Expansion of soy production to the Brazilian savanna.  

Note: Maps created by the author using the data from the Brazilian Institute for Applied 

Economic Research (IPEA, 2018) and from the Brazilian National Agricultural Supply 

Company (CONAB, 2018). 
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            1975                            2011 

 

Legend. Biome: Amazon; Savanna; Caatinga; Atlantic Forest; Pantanal; Pampa 

Soy Production (million tons):    < 0.2;      < 0.5;      < 1.0;       < 3.0;       < 5.0;      

Figure 2. Expansion of soy production to the Brazilian savanna.  

Note: Maps created by the author by using the IBGE Agricultural Census (IBGE Census, 

2017) and IBGE Annual Production Survey (IBGE PAM, 2015). 
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A. Average state tax on the movement of  B. Index of the effective real                                 

soy export production (ICMS)   exchange rate of the Real currency 

 

Figure 3. Changes in tax and exchange rates in Brazil between 1996 and 2006.  

Note: Graphs 3A and 3B were prepared by the author by using data from Rezende (2012) 

and the Brazilian Institute of Applied Research (IPEA, 2018), respectively. 
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Figure 4. Density functions for price changes in Brazil.  

Note: Changes are measured as the differences in the log of expected prices between 

2006 and 1996. The large price changes result from the introduction of the Kandir law in 

1996 and change in exchange rate policy in 1999. Density function for the savanna 

includes states of Mato Grosso, Mato Grosso do Sul, e Goias. 
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Table 1. Summary Statistics – Brazil 

 

Variables: 1996 2006 Δ

A. Totals:
Soy area harvested (million hectares) 8.3 13.7 5.4
Soy production (million tons) 19.0 35.9 16.9
Total farm area (million hectares) 294.2 281.4 (12.9)
Soy area share (soy harvested area / total area) 0.03 0.05 0.02
GE Soy area harvested (million hectares) 0.0 3.2 3.2

B. Mean and standard deviation:
Soy area harvested (hectares) 238 401 187

(1,776) (3,039) (1,877)
Agricultural area share (agr. area / total area) 0.74 0.73 0.01

0.21 0.23 0.21
Expected soy price (2012 $Real per Kg) 0.42 0.83 0.42

(0.07) (0.07) (0.08)
Maximum potential yield soy (high inputs) (tons/hectare) 3.1

(1.0)
Delta Potential yield soy (high - low) (tons/hectare) 2.8

(0.9)
Delta Potential yield soy (medium - low) (tons/hectare) 0.5

(0.3)
Distance to port (kilometres) 442

(325)
Distance do lime mine (kilometres) 191

(157)
Baseline characteristics - Year 1985:

Production value (2006 1,000 $Reals per hectare) 1.09
(1.28)

Populational density (habitants/square km) 53.01
(155.70)

Income per capita (2006 1,000 $Reals per capita) 6.82
(4.99)

Share of pasture land 0.42
(0.21)

Share of crop land 0.27
(0.17)

Share of forest land 0.20
(0.16)

Number of common census blocks 34,115 34,115

Number of commercial farms (million) 1.59 1.50 -0.09
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Figure 5. Heterogeneity in the acreage response function.  

Note: Different types of technologies, GE and NE, lead to different indirect price effects 

and price elasticities of acreage.  
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Figure 6. Sieves acreage response function.  

Note: Fitted values for the non-parametric long first differences model. Each dot 

represents a census block in the south and savanna regions of Brazil. 
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Table 2. Biprobit Model for the Joint Choice of Soy Expansion and Production 

Technology 

 
Note: *** p<0.01, ** p<0.05, * p<0.1. All standard errors clustered at the municipality 

level. Savanna models include only states from the Midwest region: Mato Grosso, Mato 

Grosso do Sul, and Goias. Models (1), (2), (5), and (6) include the following control 

variables: price change for substitute crops (sugarcane, coffee, and rice), log of the 

agricultural production value in 1985, log of the average farm size in 1996, log of 

population density in 1985, share of crop land in the municipality in 1985, share of 

pasture land in the municipality in 1985, and dummy for soy production in the census 

block in 1990. Models (3), (4), (7), and (8) include the following control variables: log of 

the agricultural production value in 1985 and log of population density in 1985. 

Expansion GE Soy Expansion GE Soy Expansion NF Soy Expansion NF Soy

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

Δlog(EP) 0.206 -0.277 0.513 0.207 1.988*** 2.098*** 0.0168 0.598
(0.306) (0.367) (0.345) (0.396) (0.733) (0.787) (0.749) (0.847)

PY(high - medium) 0.694*** 0.617** 0.620*** 0.618** 0.150 0.667* -0.0834 0.581
(0.251) (0.295) (0.214) (0.275) (0.237) (0.383) (0.204) (0.392)

PY(high - medium) squared -0.129*** -0.115** -0.111** -0.0907* 0.0250 -0.121 0.0535 -0.152
(0.0485) (0.0573) (0.0440) (0.0537) (0.0642) (0.0972) (0.0577) (0.0986)

PY(medium - Low) 0.545 -0.00717 2.120*** 2.332*** 3.000*** 6.422*** 3.395*** 7.416***
(0.376) (0.372) (0.415) (0.417) (0.697) (1.131) (0.718) (1.281)

PY(medium - Low) squared -0.311 0.0640 -1.326*** -1.324*** -1.649*** -4.225*** -2.110*** -5.122***
(0.296) (0.300) (0.315) (0.323) (0.470) (0.736) (0.471) (0.789)

rho (correlation between choices) 0.792*** 0.772*** 0.828*** 0.875***
(0.0372) (0.0377) (0.0723) (0.0737)

Baseline Characteristics Yes Yes Yes Yes Yes Yes Yes Yes
State and Biome fixed effects Yes Yes No No Yes Yes No No
Meso region fixed effects No No Yes Yes No No Yes Yes

Observations (census blocks) 7,949 7,949 7,949 7,949 2,444 2,444 2,445 2,445

South Savanna
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Table 3. First Differences Model for the Acreage Response Function in the South 

 

Note: *** p<0.01, ** p<0.05, * p<0.1. All standard errors clustered at the municipality 

level. 

  

Dependent variable is Δ soy area share

IV

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )

Δlog(EP) 0.0338** 0.0383** 0.00528 -0.0141 -0.111***
(0.0163) (0.0165) (0.0397) (0.0442) (0.0275)

Dummy PY(high - low) Q2 0.0130*** -0.0313 -0.0381 -0.00406
(0.00473) (0.0378) (0.0423) (0.0122)

Dummy PY(high - low) Q3 0.00303 -0.0460 -0.0470 -0.0912***
(0.00514) (0.0294) (0.0321) (0.0193)

Dummy PY(medium - low) Q2 0.000816 0.0437* 0.0767*** -0.0953***
(0.00497) (0.0223) (0.0240) (0.0148)

Dummy PY(medium - low) Q3 -0.00373 0.0533** 0.0823*** -0.0909***
(0.00689) (0.0267) (0.0283) (0.0156)

Δlog(EP) x Dummy PY(high - low) Q2 0.0624 0.0788 0.0116
(0.0535) (0.0601) (0.0208)

Δlog(EP) x Dummy PY(high - low) Q3 0.0705* 0.0851* 0.174***
(0.0423) (0.0471) (0.0320)

Δlog(EP) x Dummy PY(medium - low) Q2 -0.0581* -0.0805** 0.158***
(0.0301) (0.0328) (0.0238)

Δlog(EP) x Dummy PY(medium - low) Q3 -0.0784** -0.0844** 0.143***
(0.0352) (0.0372) (0.0243)

Quadratic functions of potential yield Yes No No No No
Baseline Characteristics No No No Yes Yes
Mesoregion fixed effects Yes Yes Yes Yes No

Observations (census blocks) 7,591 7,591 7,591 7,397 7,397
R2 0.149 0.143 0.145 0.135 0.082
1st stage F-stat 14.49

Long-run price elasticity of soy acreage:
Region average 0.25 0.28
Top quantile of pontential yield 0.51 0.62 0.46

Long-run price elasticity (Hausman, 2012) 0.72

South

OLS
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Table 4. First Differences Model for the Soy Expansion and GE Soy Expansion in 

the South 

 

Note: *** p<0.01, ** p<0.05, * p<0.1. All standard errors clustered at the municipality 

level. 

 

 

 

  

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )

Δlog(EP) 358.3** 89.15 1,400*** 804.2** 644.3*
(172.2) (139.2) (397.4) (368.1) (361.4)

Dummy PY(high - low) Q2 86.99** 81.70* 275.8*** 284.7*** 320.3***
(38.60) (46.74) (65.36) (59.78) (66.74)

Dummy PY(high - low) Q3 128.3*** 68.01 244.1*** 70.20 129.4**
(38.18) (49.90) (51.22) (46.16) (50.97)

Dummy PY(medium - low) Q2 -60.93* -22.79 1.512 99.40 106.9
(32.63) (36.91) (57.13) (63.81) (69.21)

Dummy PY(medium - low) Q3 -121.8** -58.05 -362.9*** -208.7** -193.5**
(55.72) (58.64) (85.56) (90.83) (96.95)

Baseline Characteristics Yes Yes No No Yes
Meso region fixed effects No Yes No Yes Yes

Observations (census blocks) 7,591 7,397 7,591 7,591 7,397
R2 0.057 0.103 0.107 0.169 0.174

Long-run price elasticity of soy acreage: 0.62 2.41 1.38 1.11
Long-run price elasticity (Hausman, 2012) 0.72

Δ Soy Area

South

Δ GE Soy Area
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Table 5. First Differences Model for the Acreage Response Function in the Savanna 

 

Note: *** p<0.01, ** p<0.05, * p<0.1. All standard errors clustered at the municipality level.

Dependent variable is Δ soy area share

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

Δlog(EP) 0.0382*** 0.0371*** 0.0195*** -0.0113** -0.0349*** -0.0295*** 0.111*** 0.101***
(0.00647) (0.00634) (0.00703) (0.00515) (0.00695) (0.0114) (0.0326) (0.0328)

Dummy PY(high - low) Q2 -0.000214 -0.00223** -0.000457 -0.00250** -0.00211**
(0.000950) (0.00103) (0.000942) (0.00103) (0.00102)

Dummy PY(high - low) Q3 0.00605*** 0.00461*** 0.00520*** 0.00373*** 0.00355**
(0.00150) (0.00144) (0.00143) (0.00138) (0.00142)

Dummy PY(medium - low) Q2 0.00564*** 0.00677*** -0.0339*** -0.0352*** -0.0510***
(0.000878) (0.000950) (0.00608) (0.00614) (0.00866)

Dummy PY(medium - low) Q3 0.00328*** 0.00393*** -0.0249*** -0.0289*** -0.0275***
(0.00101) (0.00104) (0.00452) (0.00467) (0.00863)

Δlog(EP) x Dummy PY(medium - low) Q2 0.0693*** 0.0738*** 0.1000***
(0.0111) (0.0113) (0.0158)

Δlog(EP) x Dummy PY(medium - low) Q3 0.0505*** 0.0589*** 0.0568***
(0.00820) (0.00865) (0.0154)

Quadratic functions of potential yield Yes No No No No No Yes Yes
Baseline Characteristics No No Yes No Yes Yes Yes Yes
State fixed effects No No No No No No No Yes

Observations (census blocks) 13,661 13,661 13,385 13,661 13,385 13,385 2,172 2,172
R2 0.071 0.076 0.091 0.085 0.102 0.097 0.110 0.130
1st stage F-stat 42.52

Long-run price elasticity of soy acreage:
Region average 1.18 1.15 0.60 3.44 3.13
Second quantile of pontential yield 1.80 1.20 2.18
Top quantile of pontential yield 1.21 0.74 0.85

OLS

Savanna Midwest Savanna

OLSIV
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Figure 7. Technological change component of the price elasticities of soy acreage in 

the savanna.  

Note: The price elasticities are estimated by using the probability model of the soy 

expansion in the savanna, corresponding to the second term in equation (8). 
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Table 6. First Differences Model for the Land-use Response Function in Brazil 

 

Note: *** p<0.01, ** p<0.05, * p<0.1. All standard errors clustered at the municipality 

level. 

  

Dependent variable is Δ agricultural area share

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

Δlog(EP) 0.0337** 0.0187 0.0227 -0.00164 0.0942** 0.0752
(0.0166) (0.0180) (0.0244) (0.0236) (0.0405) (0.0492)

Baseline Characteristics Yes Yes Yes Yes Yes Yes
State fixed effects Yes No Yes No Yes No
Mesoregion fixed effects No Yes No Yes No Yes

Observations (census blocks) 32,537 33,576 7,717 7,912 2,172 2,172
R2 0.063 0.078 0.039 0.043 0.155 0.151

Price elasticity of agricultural acreage: 0.046 0.025 0.030 (0.002) 0.128 0.102
Price elasticity of agricultural acreage         
(Barr et. al., 2010):  

1997-1999 to 2001-2003 0.201
2004 to 2006 0.007

Price elasticity of crop acreage                   
(Hausman, 2012): 0.110
Price elasticity of crop acreage                   
(Roberts and Schlenker, 2013): 0.174 - 0.261

Midwest SavannaBrazil South
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Table 7. Soy Response Function in Brazil with the Alternative Clustering Variables 

 

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors for models (1) and (2) are 

clustered at the municipality level. There are 5,562 municipalities in Brazil. Standard 

errors for models (3) and (4) are clustered at the microregion level. There are 558 

microregions in Brazil. Standard errors for models (5) and (6) are clustered at the 

mesoregion level. There are 1375 mesoregions in Brazil. Al models include the log of the 

agricultural production value in 1985 and the log of the average farm size in 1996. The 

models with the interaction terms also control for the maximum potential yield of soy. 

  

Dependent variable is Δ soy area share
Clustering:

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

Models without price PY interaction:
Δlog(EP) 0.0672*** 0.0340*** 0.0672*** 0.0340** 0.0672*** 0.0340***

(0.00482) (0.00838) (0.00899) (0.0141) (0.0111) (0.0115)
Models with price PY interaction:

Δlog(EP) 0.0549*** 0.0214* 0.0549*** 0.0214 0.0549*** 0.0214
(0.00753) (0.0126) (0.0129) (0.0200) (0.0160) (0.0151)

Δlog(EP) x Dummy PY(medium - low) Q2 0.0492*** 0.0351*** 0.0492*** 0.0351* 0.0492** 0.0351**
(0.0111) (0.0116) (0.0190) (0.0187) (0.0195) (0.0170)

Δlog(EP) x Dummy PY(medium - low) Q3 0.00933 0.00611 0.00933 0.00611 0.00933 0.00611
(0.00991) (0.0114) (0.0167) (0.0170) (0.0194) (0.0136)

State fixed effects No Yes No Yes No Yes

Municipio Microregion Mesoregion
Brazil
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Table 8. Soy Response Function in Brazil with Standard Errors Corrected for 

Spatial Correlation 

 

Note: *** p<0.01, ** p<0.05, * p<0.1. Models (5) to (8) also include the full set of 

baseline characteristics, potential yield for alternative crops, and dummy variable for soy 

production in 1990. 

  

Dependent variable
Conley cutoff distance 
(kilometers)

50 100 200 500 50 100 200 500

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

Δlog(EP) 0.0671*** 0.0671*** 0.0671*** 0.0671*** 460.8*** 460.8** 460.8** 460.8*
(0.00695) (0.00972) (0.0116) (0.0130) (169.0) (194.3) (221.3) (272.1)

PY(medium - low) -0.00497*** -0.00497** -0.00497* -0.00497** 482.5*** 482.5** 482.5** 482.5*
(0.00172) (0.00224) (0.00267) (0.00208) (133.3) (197.8) (197.8) (248.7)

PY(medium - low) squared 0.00377*** 0.00377*** 0.00377*** 0.00377*** -487.1*** -487.1*** -487.1*** -487.1***
(0.000695) (0.000917) (0.00111) (0.000936) (91.02) (138.6) (138.6) (183.3)

Log of farm size in 1996 0.00388*** 0.00388*** 0.00388*** 0.00388*** 213.1*** 213.1*** 213.1*** 213.1***
(0.000676) (0.000907) (0.00110) (0.00122) (33.04) (36.10) (46.16) (60.42)

Log agricultural production 
value / ha in 1985

0.00385*** 0.00385*** 0.00385* 0.00385 -142.1*** -142.1*** -142.1*** -142.1***

(0.000827) (0.00129) (0.00196) (0.00288) (33.78) (37.71) (45.82) (52.29)

Observations (census blocks) 34,025 34,025 34,025 34,025 32,869 32,869 32,869 32,869
R2 0.144 0.144 0.144 0.144 0.057 0.057 0.057 0.057

Brazil
 Δ soy area share  Δ soy area
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Table 9. Soy Response Function in Brazil with Different Measures of Permanent 

Price Changes 

 

Note: *** p<0.01, ** p<0.05, * p<0.1. All standard errors clustered at the municipality 

level. Each line in the table represents the price effect of a different regression model. I 

test the alternative measurements for permanent price changes: ΔP1: average for 1990 to 

1994 and average for 1996 to 2000. ΔP2: average for 1990 to 1994 and average for 2000 

to 2004. ΔP3: average for 1994 to 1996 and average for 2000 to 2002. 

 

 

 

  

Dependent variable

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

Δlog(EP) : baseline 0.0672*** 0.0340*** 0.0234*** 1,166*** 663.9*** 489.5**
(0.00482) (0.00838) (0.00843) (162.8) (194.8) (204.2)

Δlog(EP) : ΔP1 0.0599*** 0.0326*** 0.0266*** 1,072*** 599.6*** 562.4***
(0.00464) (0.00687) (0.00825) (145.9) (147.4) (176.5)

Δlog(EP) : ΔP2 0.0712*** 0.0130 0.0209** 856.7*** 443.7* 436.8*
(0.00725) (0.00938) (0.00876) (148.7) (229.8) (240.3)

Δlog(EP) : ΔP3 0.0521*** 0.0556*** 0.0525*** 562.2*** 734.6** 776.8**
(0.00859) (0.0113) (0.0115) (204.0) (292.9) (309.0)

Baseline Characteristics No No Yes No No Yes
State fixed effects No Yes Yes No Yes Yes

Brazil
 Δ soy area share  Δ soy area



69 
 

Appendix A – Description of Variables 

Variable Description Dataset / Unit 

of Observation 

Soy acreage 

expansion 

Difference between the soy area harvested in 2006 and 1996 in Brazilian commercial 

farms, measured in hectares.  

IBGE Census / 

Census block 

GE soy 

acreage 

expansion 

Difference between the soy area harvested using genetically modified soy in 2006 and 

1996 in Brazilian commercial farms, measured in hectares. I use the type of seed variable 

of the IBGE census to determine the area harvested with GE seeds. 

IBGE Census / 

Census block 

Soy area 

share 

Soy harvested area divided by the total area in a rural common census block.  IBGE Census / 

Census block 

Agriculture 

area share 

Total area allocated to agriculture production, which includes cropland and pastureland, 

divided by the total area in a rural common census block. 

IBGE Census / 

Census block 

Soy potential 

yield 

Potential yield of rain fed soy production under low, intermediate, and high input use, 

measured in tons per hectare. I also use potential yield measures for corn, cotton, 

sugarcane, and rice. The potential yield variables were averaged at the census block level.  

GAEZ 

IIASA/FAO / 

Census block 
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Expected soy 

spot price 

My preferred measure of the expected soy price is the average of the spot price in the 

municipality in the previous six years. For the census year 1996 I use the average price for 

1990 to 1996. For the census year 2006 I use the average price for 1999 to 2004. All prices 

were deflated using the IGP-DI inflation index computed by Fundacao Getulio Vargas. 

IBGE PAM / 

Municipality 

Alternative 

measures of 

expected soy 

spot price 

For robustness test, I also used the following measures for the expected soy price. ΔP1: 

average for 1990 to 1994 and average for 1996 to 2000. ΔP2: average for 1990 to 1994 and 

average for 2000 to 2004. ΔP3: average for 1994 to 1996 and average for 2000 to 2002. 

ΔP4: average for 1994 to 1996 and average for 2000 to 2001. ΔP5: average for years 1990 

to 1995 and average for 1999 to 2002.  

IBGE PAM/ 

Municipality 

Expected 

price of 

alternative 

crops 

I computed expected prices for sugarcane, corn, cotton, and rice using the same formulas 

described above for calculation of the expected price of soy. 

IBGE PAM/ 

Municipality 
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Log of 

population 

density in 

1985 

Log of population density of a microregion in Brazil in year 985. Population density is 

measured in 1985. Population density is measured in number of habitants per squared 

quilometer. There are 558 microregions in Brazil/ 

IBGE Census – 

Embrapa / 

Microregion 

Log of the 

value of 

agricultural 

production in 

1985 

Log of the average agricultural production value of a   microregion in Brazil. Agricultural 

production value is measured in 2006 1,000 Reals per hectare. 

IBGE Census – 

Embrapa / 

Microregion 

Log of 

income per 

capital 

Log of average income per capita of a microregion in Brazil. The income per capital is 

measured in 2006 1,000 Reals per habitant. 

IBGE Census – 

Embrapa / 

Microregion 

Share of 

cropland in 

1985 

Total area harvested with crops in 1985 in a microregion divided by the total area of the 

microregion. All harvested areas are measured in hectares. 

IBGE Census – 

Embrapa / 

Microregion 
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Share of 

pastureland in 

1985 

Total area allocated to pasture in 1985 in a microregion divided by the total area of the 

microregion. All areas are measured in hectares. 

IBGE Census – 

Embrapa / 

Microregion 

Share of 

forestland in 

1985 

Total area of natural vegetation in 1985 in a microregion divided by the total area of the 

microregion. All areas are measured in hectares. 

IBGE Census – 

Embrapa / 

Microregion 

Log Farm size Log of the average farm size of the rural common census block in the 1996 census. Farm 

size is measured in hectares. 

IBGE Census / 

Census block 

Dummy for 

soy 

production in 

1990 

1 if the soy area harvested in a municipality in year 1990 is greater than zero. Zero 

otherwise. 

IBGE PAM/ 

Municipality 

Distance to 

port 

Distance from each microregion to the closets port. Includes ports in the coast as well as 

ports in major rivers. Computed using geographical information system. The distance to 

IBGE GIS - 

Embrapa/ 

Microregion 
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port is measured in kilometers. Geographical shape for ports in Brazil is available by 

IBGE. 

Distance to 

lime mine 

Distance from each census block to the closets lime mine. Include lime mines of medium 

and large size. Computed using geographical information system. The distance to the lime 

mine is measured in kilometers. Geographical shape for lime mines in Brazil is available 

by IBGE. 

IBGE GIS - 

Embrapa/ 

Census Block 

Soil 

characteristics 

Average index for soil characteristics measured at the Municipality level. The following 

soil characteristics were integrated into the census dataset: nitrogen content, pH index, 

organic matter index; Potassium index, Aluminum index, share of clay soil, share of silt 

soil, and share of sand soil. 

Embrapa/ 

Municipality 

Price risk Measure of price volatility. I follow Hausman (2012) in computing a weighted average of 

the squared deviation of average price from current price. The wages are 0.5 for the most 

recent year, and 0.3 and 0.2 for the previous years. 

IBGE PAM / 

Municipality 
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Table A1. Summary Statistics – South 

 

Variables: 1996 2006 Δ

A. Totals:
Soy area harvested (million hectares) 3.9 5.2 1.3
Soy production (million tons) 8.7 12.8 4.1
Total farm area (million hectares) 35.8 32.0 (3.8)
Soy area share (soy harvested area / total area) 0.11 0.16 0.05
GE Soy area harvested (million hectares) 0.0 2.6 2.6

B. Mean and standard deviation:
Soy area harvested (hectares) 479 685 217

(1,423) (1,935) (833)
Agricultural area share (agr. area / total area) 0.77 0.74 0.05

0.18 0.20 0.14
Expected soy price (2012 $Real per Kg) 0.41 0.85 0.44

0.04 0.05 0.06
Maximum potential yield soy (high inputs) (tons/hectare) 3.7

(0.5)
Delta Potential yield soy (high - low) (tons/hectare) 3.4

(0.5)
Delta Potential yield soy (medium - low) (tons/hectare) 0.5

(0.3)
Distance to port (kilometres) 429

(230)
Distance do lime mine (kilometres) 209

(104)
Baseline characteristics - Year 1985:

Production value (2006 1,000 $Reals per hectare) 1.64
(0.89)

Populational density (habitants/square km) 44.06
(60.34)

Income per capita (2006 1,000 $Reals per capita) 9.97
(3.84)

Share of pasture land 0.35
(0.20)

Share of crop land 0.42
(0.20)

Share of forest land 0.15
(0.11)

Number of common census blocks 7,591 7,591

Number of commercial farms (million) 0.34 0.29 -0.05
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Table A2. Summary Statistics – Savanna 

 

Variables: 1996 2006 Δ

A. Totals:
Soy area harvested (million hectares) 4.0 8.1 4.1
Soy production (million tons) 9.4 22.1 12.7
Total farm area (million hectares) 188.4 180.3 (8.1)
Soy area share (soy harvested area / total area) 0.02 0.05 0.02
GE Soy area harvested (million hectares) 0.0 0.6 0.6

B. Mean and standard deviation:
Soy area harvested (hectares) 291 595 338

(2,577) (4,550) (2,884)
Agricultural area share (agr. area / total area) 0.76 0.72 0.01

0.19 0.22 0.21
Expected soy price (2012 $Real per Kg) 0.41 0.77 0.37

0.09 0.07 0.10
Maximum potential yield soy (high inputs) (tons/hectare) 3.0

(0.9)
Delta Potential yield soy (high - low) (tons/hectare) 2.7

(0.8)
Delta Potential yield soy (medium - low) (tons/hectare) 0.6

(0.3)
Distance to port (kilometres) 549

(372)
Distance do lime mine (kilometres) 189

(127)
Baseline characteristics - Year 1985:

Production value (2006 1,000 $Reals per hectare) 0.62
0.76

Populational density (habitants/square km) 28.21
65.44

Income per capita (2006 1,000 $Reals per capita) 5.20
4.18

Share of pasture land 0.50
0.18

Share of crop land 0.17
0.09

Share of forest land 0.19
0.11

Number of common census blocks 13,667 13,667

Number of commercial farms (million) 0.74 0.74 0.00
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Description of IBGE Agricultural Census Dataset 

Every ten years IBGE surveys over 5 million farmers in Brazil to create the agricultural 

census dataset. The agricultural census survey was designed based on the international 

standard for agricultural censuses developed by the Food and Agriculture Organization of 

the United Nations and based on information needs from institutional users and scholars. 

The farm-level version of the census is confidential but can be accessed for academic 

research at the IBGE Center for Documentation and Dissemination of Information 

(CDDI) in Rio de Janeiro, Brazil, following IBGE’s protocols for the protection of the 

confidentiality of the information.  

In this study, I use the 1995/1996 census, referred to in this study as the 1996 IBGE 

census, and the 2006 census. One difference between the 1996 and 2006 surveys is the 

reference period. The 1996 survey followed the agricultural calendar, from August 8 

1995 to July 31 1996, whereas the 2006 survey used the calendar year, from January 1 

2006 to December 31 2006. The difference in the reference period has no impact on this 

analysis as I use harvested acreage to compute agricultural expansion. Soy is harvested in 

Brazil between February and April. I thus compare the soy area harvested for the 

2005/2006 and 1995/1996 agricultural seasons.  

The novelty of my dataset is the integration of the two census surveys at the census block 

level. The census block is the survey unit for the agricultural census. Most census blocks 

are the same across surveys. However, there are cases where a census blocks are divided 

or combined between censuses. I used IBGE documentation of changes in census blocks 
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to create the common census block unit. IBGE has extensive technical documentation for 

the agricultural census. For detailed information about the 2006 agricultural census, see 

IBGE (2012). For the 1996 agricultural census, see IBGE (1998). 

Description of IBGE Municipal Agricultural Production Survey (PAM) 

IBGE also surveys agricultural production for 41 crops at the municipality level monthly 

and annually. The Municipal Agricultural Production survey (PAM) contains annual 

information on planted area, harvested area, production, average yield, production value, 

and the average price paid to the producer for 41 crops at each municipality. The PAM 

data is publicly available through the IBGE website (SIDRA) and is used for calculation 

of producer price indexes in Brazil. For example, Fundação Getulio Vargas uses the 

agricultural production value reported in the PAM survey to compute the index of 

wholesale prices (IPA) and the general price index (IGP-M). The producer price, also 

referred in this study as the spot price, is the annual average price paid to the producer for 

a crop in a municipality weighted by the monthly quantities commercialized during the 

year. State and local agencies complete the PAM survey in the first three months of the 

year and submit the results to the IBGE Agriculture Department for validation using the 

monthly agricultural surveys and historical data. For a detailed explanation of the survey 

and the data validation process, see IBGE (2016).  
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Appendix B – Spatial Variation in Price Shocks 

The farm gate price at time 𝑡𝑡 is 𝑃𝑃𝑖𝑖
𝐸𝐸𝑆𝑆𝐷𝐷𝑓𝑓 = (1 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖)(𝑒𝑒𝑖𝑖𝑃𝑃𝑖𝑖𝑓𝑓𝑚𝑚𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑑𝑑). I use the log 

approximation to show how the price shocks, measured in terms of percentage changes in 

prices, vary spatially when taxes and market prices change: 

(𝐵𝐵1)    ∆𝑃𝑃 =
𝑃𝑃1
𝐸𝐸𝑆𝑆𝐷𝐷𝑓𝑓 − 𝑃𝑃0

𝐸𝐸𝑆𝑆𝐷𝐷𝑓𝑓

𝑃𝑃0
𝐸𝐸𝑆𝑆𝐷𝐷𝑓𝑓 ≅ 𝐿𝐿𝐿𝐿𝐿𝐿�𝑃𝑃1

𝐸𝐸𝑆𝑆𝐷𝐷𝑓𝑓) − 𝐿𝐿𝐿𝐿𝐿𝐿(𝑃𝑃0
𝐸𝐸𝑆𝑆𝐷𝐷𝑓𝑓� = 

                     = 𝐿𝐿𝐿𝐿𝐿𝐿�(1 − 𝑡𝑡𝑡𝑡𝑡𝑡1)�𝑒𝑒1𝑃𝑃1𝑓𝑓𝑚𝑚𝑖𝑖 − 𝑐𝑐1𝑑𝑑�� −  𝐿𝐿𝐿𝐿𝐿𝐿�(1 − 𝑡𝑡𝑡𝑡𝑡𝑡0)�𝑒𝑒0𝑃𝑃0𝑓𝑓𝑚𝑚𝑖𝑖 − 𝑐𝑐0𝑑𝑑�� 

It is know that the error of the log approximation increases with the percentage change. I 

ignore this error as my objective is to provide an intuition for the spatial variation in price 

shocks. 

I use the properties of logarithms to rewrite equation B1 

(𝐵𝐵2)     ∆𝑃𝑃 = 𝐿𝐿𝐿𝐿𝐿𝐿 �
1 − 𝑡𝑡𝑡𝑡𝑡𝑡1
1 − 𝑡𝑡𝑡𝑡𝑡𝑡0

� + 𝐿𝐿𝐿𝐿𝐿𝐿[
𝑒𝑒1𝑃𝑃1𝑓𝑓𝑚𝑚𝑖𝑖 − 𝑐𝑐1𝑑𝑑
𝑒𝑒0𝑃𝑃0𝑓𝑓𝑚𝑚𝑖𝑖 − 𝑐𝑐0𝑑𝑑

]                                                 

Defining the market price growth rate 𝐿𝐿 as 𝑒𝑒1𝑃𝑃1𝑓𝑓𝑚𝑚𝑖𝑖 = (1 + 𝐿𝐿)𝑒𝑒0𝑃𝑃0𝑓𝑓𝑚𝑚𝑖𝑖, the transportation 

cost share of the market price as 𝑆𝑆𝑇𝑇𝑇𝑇 = 𝑐𝑐𝑑𝑑/𝑒𝑒0𝑃𝑃0𝑓𝑓𝑚𝑚𝑖𝑖, and assuming that the transport cost 

does not change over time, 𝑐𝑐0 = 𝑐𝑐1 = 𝑐𝑐, I can simplify the second term in the right hand 

side of B2: 

(𝐵𝐵3)    𝐿𝐿𝐿𝐿𝐿𝐿 �
𝑒𝑒1𝑃𝑃1𝑓𝑓𝑚𝑚𝑖𝑖 − 𝑐𝑐1𝑑𝑑
𝑒𝑒0𝑃𝑃0𝑓𝑓𝑚𝑚𝑖𝑖 − 𝑐𝑐0𝑑𝑑

� = 𝐿𝐿𝐿𝐿𝐿𝐿 �
(1 + 𝐿𝐿)𝑒𝑒0𝑃𝑃0𝑓𝑓𝑚𝑚𝑖𝑖 − 𝑐𝑐𝑑𝑑

𝑒𝑒0𝑃𝑃0𝑓𝑓𝑚𝑚𝑖𝑖 − 𝑐𝑐𝑑𝑑
� = 𝐿𝐿𝐿𝐿𝐿𝐿 �

(1 + 𝐿𝐿) − 𝑆𝑆𝑇𝑇𝑇𝑇
1 − 𝑆𝑆𝑇𝑇𝑇𝑇

� 

                                              = 𝐿𝐿𝐿𝐿𝐿𝐿(1 + 𝐿𝐿 − 𝑆𝑆𝑇𝑇𝑇𝑇) − 𝐿𝐿𝐿𝐿𝐿𝐿(1 − 𝑆𝑆𝑇𝑇𝑇𝑇)                       
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The price shocks can be decomposed into three terms substituting equation B3 into 

equation B2: 

(𝐵𝐵4)    ∆𝑃𝑃 = 𝐿𝐿𝐿𝐿𝐿𝐿 �
1 − 𝑡𝑡𝑡𝑡𝑡𝑡1
1 − 𝑡𝑡𝑡𝑡𝑡𝑡0

� − 𝐿𝐿𝐿𝐿𝐿𝐿(1 − 𝑆𝑆𝑇𝑇𝑇𝑇)  + 𝐿𝐿𝐿𝐿𝐿𝐿(1 + 𝐿𝐿 − 𝑆𝑆𝑇𝑇𝑇𝑇)     

The first term represents the effect of the tax change and does not vary with distance in 

this simplified model. The second term is a function of transportation costs and varies 

with distance. This term will always be positive, as the transport cost share is lower than 

one, and increases with the transport cost share. The last term varies with both the growth 

rate in the market price and distance to market. This term is also positive as the transport 

cost share is lower than the market price growth rate.  

Taking the derivative of equation B4 with respect to the transport cost share: 

(𝐵𝐵5)     
𝜕𝜕∆𝑃𝑃
𝜕𝜕𝑆𝑆𝑇𝑇𝑇𝑇

(𝐿𝐿, 𝑆𝑆𝑇𝑇𝑇𝑇) =
1

1 − 𝑆𝑆𝑇𝑇𝑇𝑇
−  

1
1 + 𝐿𝐿 − 𝑆𝑆𝑇𝑇𝑇𝑇

=  
𝐿𝐿

1 + 𝐿𝐿 − 𝑆𝑆𝑇𝑇𝑇𝑇
> 0          

As expected the price shock increases nonlinearly with transportation costs and therefore 

distance to market. The derivative of price change with respect to distance to market is: 

(𝐵𝐵6)     𝜕𝜕∆𝑃𝑃
𝜕𝜕𝐴𝐴

(𝐿𝐿, 𝑆𝑆𝑇𝑇𝑇𝑇) =  𝑛𝑛
1+𝑛𝑛−𝑆𝑆𝑇𝑇𝑂𝑂

� 𝐷𝐷
𝐷𝐷0𝑃𝑃0𝑚𝑚𝑚𝑚𝑖𝑖�          
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Appendix C – Map of Rural Common Census Blocks in Brazil 
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Appendix D – Sieves Acreage Response Function 

I estimate a Sieves semi-parametric version of equation 5 to explore the heterogeneity in 

the acreage response function modeled using the micro census data, to examine the 

robustness of the acreage supply function, and to provide a simple graphical 

interpretation of the acreage response function. For details on Sieves models and 

estimation see Chen (2007). 

The sieves first-differences model is: 

(𝐷𝐷1)     ∆𝐴𝐴𝑖𝑖 =  𝛿𝛿1 + 𝛿𝛿2𝑑𝑑𝑈𝑈𝑈𝑈 +  𝐺𝐺(∆𝑃𝑃𝑖𝑖) +  𝜃𝜃3𝑃𝑃𝑃𝑃𝑖𝑖 + 𝜃𝜃4𝑋𝑋𝑖𝑖𝑖𝑖 +  ∆𝐷𝐷𝑖𝑖           

The price response function in equation (D1), 𝐺𝐺(∆𝑃𝑃𝑖𝑖), is unknown, so I use the sieves 

approximation: 

(𝐷𝐷2)     𝐺𝐺𝑚𝑚�∆𝑃𝑃𝑖𝑖 ,𝜃𝜃�3� =    ∑ ∆𝑃𝑃𝑖𝑖𝜃𝜃�𝑖𝑖𝑚𝑚𝑆𝑆
𝑖𝑖=0 + ∑ 𝜃𝜃𝑖𝑖+𝑓𝑓𝑓𝑓

𝑖𝑖=1 (∆𝑃𝑃 − 𝑣𝑣𝑖𝑖)𝑆𝑆 1�∆𝑃𝑃 ≥ 𝑣𝑣𝑖𝑖�       

The sieves approximation is a polynomial spline where 𝑡𝑡 is the order of the polynomial, 

𝐷𝐷 is the number of knots, and 𝑣𝑣𝑖𝑖 represents the 𝑗𝑗𝑚𝑚 knot. The sieves model in equation 

(D2) splits the support of the price changes into 𝐷𝐷 splices, and uses a polynomial 

approximation for each segment. The semi-parametric sieves model with splines is 

estimated using ordinary least squares. Figure 6 shows the fitted values from the sieves 

acreage response function. The vertical axis shows prices changes in terms of differences 

in log of expected prices and the horizontal axis measures soy expansion in hectares. 

Every dot in Figure 6 is one rural common census block in Brazil.  
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Appendix E – Regression Results – Table E1 - Biprobit Models 

Note: *** p<0.01, ** p<0.05, * p<0.1. All standard errors clustered at the municipality level. 

Expansion GE Soy Expansion GE Soy Expansion NF Soy Expansion NF Soy

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

Δlog(EP) 0.206 -0.277 0.513 0.207 1.988*** 2.098*** 0.0168 0.598
(0.306) (0.367) (0.345) (0.396) (0.733) (0.787) (0.749) (0.847)

PY(high - medium) 0.694*** 0.617** 0.620*** 0.618** 0.150 0.667* -0.0834 0.581
(0.251) (0.295) (0.214) (0.275) (0.237) (0.383) (0.204) (0.392)

PY(high - medium) squared -0.129*** -0.115** -0.111** -0.0907* 0.0250 -0.121 0.0535 -0.152
(0.0485) (0.0573) (0.0440) (0.0537) (0.0642) (0.0972) (0.0577) (0.0986)

PY(medium - Low) 0.545 -0.00717 2.120*** 2.332*** 3.000*** 6.422*** 3.395*** 7.416***
(0.376) (0.372) (0.415) (0.417) (0.697) (1.131) (0.718) (1.281)

PY(medium - Low) squared -0.311 0.0640 -1.326*** -1.324*** -1.649*** -4.225*** -2.110*** -5.122***
(0.296) (0.300) (0.315) (0.323) (0.470) (0.736) (0.471) (0.789)

Δ Price Risk -0.0586* -0.0715** 0.0322 0.0276 -0.0105 0.0493 -0.0726 -0.0147
(0.0305) (0.0361) (0.0298) (0.0358) (0.0697) (0.0781) (0.0700) (0.0832)

Δlog(EP) - sugarcane -0.0695 -0.146 0.0269 0.0518 -0.0667 -0.444** 0.201 -0.0516
(0.103) (0.120) (0.113) (0.131) (0.121) (0.207) (0.135) (0.220)

Δlog(EP) - corn -0.0135 0.282 0.419 0.836** -1.327*** -1.001* -1.102*** -1.051**
(0.261) (0.305) (0.316) (0.344) (0.352) (0.511) (0.324) (0.536)

Δlog(EP) - cotton -1.279 -2.502* -0.822 -3.067* -0.490 -1.670* -0.499 -1.641
(1.193) (1.381) (1.498) (1.600) (0.742) (0.854) (0.838) (1.084)

Δlog(EP) - rice -0.228* 0.0154 -0.522*** -0.550*** 1.082** 1.973*** 1.584*** 2.607***
(0.138) (0.169) (0.180) (0.204) (0.464) (0.650) (0.506) (0.713)

Log value agr. prod. / ha 1985 -0.392*** -0.760*** 0.362*** 0.132 -0.239 -0.283 0.339* 0.521**
(0.0972) (0.107) (0.108) (0.118) (0.183) (0.263) (0.192) (0.232)

Log population density 1985 -0.408*** -0.281*** -0.477*** -0.206** -0.196** -0.188 -0.00352 -0.0902
(0.0684) (0.0763) (0.0862) (0.0878) (0.0915) (0.125) (0.119) (0.173)

Soy area share 1996 -1.020*** 1.328*** -0.842*** 1.523***
(0.139) (0.206) (0.137) (0.223)

Log of farm size 1996 0.118*** 0.151*** 0.218*** 0.175***
(0.0292) (0.0332) (0.0339) (0.0375)

Cropland share 1985 5.352*** 6.609*** 8.130*** 8.815***
(0.427) (0.500) (1.540) (1.944)

Pastureland share 1985 2.471*** 2.220*** -1.242** -2.462***
(0.324) (0.369) (0.542) (0.654)

Dummy for soy production in 1990 0.527*** 0.403*** 0.847*** 0.816***
(0.0612) (0.0696) (0.102) (0.142)

rho (correlation between choices) 0.792*** 0.772*** 0.828*** 0.875***
(0.0372) (0.0377) (0.0723) (0.0737)

State and Biome fixed effects Yes Yes No No Yes Yes No No
Meso region fixed effects No No Yes Yes No No Yes Yes

Observations (census blocks) 7,949 7,949 7,949 7,949 2,444 2,444 2,445 2,445

South Savanna
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Table E2 - First Differences Model for the Acreage Response Function in the South 

 
Note: *** p<0.01, ** p<0.05, * p<0.1. All standard errors clustered at the municipality level. 
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Table E3 – First Differences Model for the Soy and GE Soy Expansion in the South 

 
Note: *** p<0.01, ** p<0.05, * p<0.1. All standard errors clustered at the municipality level. 

  

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 )

Δlog(EP) 358.3** 89.15 1,400*** 804.2** 644.3*
(172.2) (139.2) (397.4) (368.1) (361.4)

Dummy PY(high - low) Q2 86.99** 81.70* 275.8*** 284.7*** 320.3***
(38.60) (46.74) (65.36) (59.78) (66.74)

Dummy PY(high - low) Q3 128.3*** 68.01 244.1*** 70.20 129.4**
(38.18) (49.90) (51.22) (46.16) (50.97)

Dummy PY(medium - low) Q2 -60.93* -22.79 1.512 99.40 106.9
(32.63) (36.91) (57.13) (63.81) (69.21)

Dummy PY(medium - low) Q3 -121.8** -58.05 -362.9*** -208.7** -193.5**
(55.72) (58.64) (85.56) (90.83) (96.95)

Log of farm size in 1996 163.0*** 149.2*** 291.9*** 341.1*** 340.9***
(22.45) (21.50) (47.11) (49.97) (50.54)

Log agricultural production value / ha in 1985 -75.43** -2.090 42.85 -84.62 -0.384
(29.25) (42.21) (50.96) (53.89) (67.01)

Log populational density in 1985 -87.77*** -187.0***
(26.77) (47.50)

Log income per capita in 1985 15.50 15.50
(41.92) (41.92)

PY(high) - sugarcane 81.55*** 60.91*** 210.6*** 96.68*** 105.2***
(16.34) (16.62) (27.52) (20.44) (22.70)

PY(high) - coffee 1.444 70.05 -367.3*** -138.6*** -205.6***
(29.56) (58.42) (46.61) (49.40) (53.06)

PY(high) - cotton -822.3*** -561.0* -1,870*** -201.2 -423.0
(271.4) (287.5) (415.5) (334.8) (373.9)

Meso region fixed effects No Yes No Yes Yes

Observations (census blocks) 7,591 7,397 7,591 7,591 7,397
R2 0.057 0.103 0.107 0.169 0.174

Δ Soy Area

South

Δ GE Soy Area
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Table E4 - First Differences Model for the Acreage Response Function in the Savanna 
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Table E5 - First Differences Model for the Land-use Response Function in Brazil 

 
Note: *** p<0.01, ** p<0.05, * p<0.1. All standard errors clustered at the municipality level. 

 

Dependent variable is Δ agricultural area share

Variables ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 )

Δlog(EP) 0.0337** 0.0187 0.0227 -0.00164 0.0942** 0.0752
(0.0166) (0.0180) (0.0244) (0.0236) (0.0405) (0.0492)

PY(high - medium) -0.0227*** -0.00972 0.00622 0.00305 -0.0487* -0.0492*
(0.00847) (0.00880) (0.0220) (0.0185) (0.0253) (0.0275)

PY(high - medium) squared 0.00320 -0.000163 -0.00270 -0.00256 0.0163** 0.0141*
(0.00223) (0.00231) (0.00448) (0.00386) (0.00684) (0.00804)

PY(medium - Low) 0.0183 0.00551 0.177*** 0.113*** 0.0779 0.00897
(0.0212) (0.0246) (0.0296) (0.0389) (0.0708) (0.0841)

PY(medium - Low) squared -0.0135 -0.0175 -0.111*** -0.104*** -0.0444 -0.00585
(0.0145) (0.0144) (0.0236) (0.0265) (0.0452) (0.0475)

Δ Price Risk -0.000119 0.000674 0.000583 0.00125 0.00147 -0.00738
(0.00194) (0.00188) (0.00242) (0.00240) (0.00654) (0.00638)

Δlog(EP) - sugarcane -0.00202 -0.00252 -0.0126* 0.0105 -0.00308 0.0105
(0.00637) (0.00669) (0.00705) (0.00795) (0.0138) (0.0132)

Δlog(EP) - corn -0.0266** -0.0260** 0.0144 -0.00324 -0.00778 0.0783**
(0.0120) (0.0108) (0.0228) (0.0235) (0.0279) (0.0336)

Δlog(EP) - cotton 0.0862*** 0.0397 0.254*** 0.159* -0.0602 0.0361
(0.0245) (0.0283) (0.0674) (0.0877) (0.0661) (0.0704)

Δlog(EP) - rice -0.0116 -0.00143 0.00861 0.000912 -0.0123 -0.120***
(0.00990) (0.0117) (0.00930) (0.0123) (0.0486) (0.0400)

Log value agr. prod. / ha 1985 0.0343*** 0.0102** 0.00634 0.0112* 0.0391** -0.0256**
(0.00504) (0.00400) (0.00854) (0.00590) (0.0159) (0.0110)

Log population density 1985 -0.0106*** 0.00162 -0.0108
(0.00338) (0.00556) (0.00729)

Log of farm size 1996 0.0198*** 0.0158*** 0.0102*
(0.00223) (0.00365) (0.00582)

Cropland share 1985 -0.0973*** 0.0161 -0.386***
(0.0280) (0.0424) (0.145)

Pastureland share 1985 -0.0861*** -0.0863** -0.223***
(0.0212) (0.0360) (0.0509)

Dummy for soy production in 1990 -0.00489 -0.00565 -0.00983
(0.00369) (0.00524) (0.00815)

State fixed effects Yes No Yes No Yes No
Mesoregion fixed effects No Yes No Yes No Yes

Observations (census blocks) 32,537 33,576 7,717 7,912 2,172 2,172
R2 0.063 0.078 0.039 0.043 0.155 0.151

Midwest SavannaBrazil South
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