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ABSTRACT 

With the recent advancements in digital technology, three-dimensional (3-D) shape 

measurement has played an increasingly important role in fields including manufacturing, 

homeland security, medical sciences, and entertainment. Over the past decades, numerous 3-

D shape measurement techniques have been developed. Among these existing techniques, 

fringe analysis based on phase-shifting sinusoidal structured patterns stands out because of its 

numerous advantages. However, there are still some major challenges of the existing digital 

fringe projection system for accurate 3-D shape measurement and for future speed 

improvement. They are: (1) projector nonlinearity problem, (2) synchronization problem, and 

(3) exposure time limitation problem. There are currently two approaches to generate 

sinusoidal fringe patterns with a digital-light-processing (DLP) projector: defocusing binary 

patterns (DBP) and focusing sinusoidal patterns (FSP). The focus of this dissertation research 

is to compare these methods for high-quality 3-D shape measurement. 

We developed a system based on a digital fringe projection and phase-shifting 

technique to perform various comparison tests. The system utilizes a DLP projector to project 

computer generated fringe patterns onto the object and a charged-coupled-device (CCD) 

camera to acquire the fringe images. Conventionally, sinusoidal fringe patterns are usually 

supplied to a focused projector, and the DBP method is used to properly defocus the 

projector to generate sinusoidal patterns from binary structured patterns. We compare the 

performance of the new DBP approach against the traditional FSP method by analyzing the 

phase errors introduced by following factors: (1) defocusing degree, (2) exposure time, (3) 

synchronization, and (4) projector nonlinear gamma.  
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The traditional FSP involves some practical issues for high-quality measurement. Our 

experiment found it is possible to generate ideal sinusoidal fringe patterns by the DBP 

method, and when the projector is defocused to a certain degree, the phase error induced by 

the DBP method is very close to that produced by the FSP approach. With the DBP method, 

3-D reconstruction was shown to be feasible. 

Short exposure time is especially needed when measuring fast motion. For the FSP 

method, the minimum exposure time of the camera is limited by the projector’s fringe 

projection rate, and the phase error is very large when a very short exposure time is needed. 

The experimental results show that the phase error does not change very much when the 

exposure time alters, and if a very short exposure time is needed, the DBP method clearly 

outperforms the FSP method for 3-D shape measurement. It also provides a potential way to 

develop fast 3-D shape measurement technique. 

For the DLP projector, if it is supplied with sinusoidal fringe patterns, the 

synchronization between the projector and the camera is critical. When the projector is not 

synchronized with the camera, the phase error for the DBP method is much smaller than that 

for the FSP method when the exposure time is not multiples of projection cycle. By 

implementing the DBP method in our system, we could achieve 3-D reconstruction without 

synchronization between the projector and the camera. 

Projector gamma correction, which is usually a time-consuming procedure, is 

mandatory for the FSP method. In this research, we found no projector gamma correction is 

needed for the DBP method. Our experimental results demonstrated it can achieve high-

quality 3-D reconstruction by the DBP method without projector nonlinearity calibration. 
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Compared with the FSP method, the possible shortcomings of the DBP method are: 

(1) seemingly sinusoidal fringe patterns are still composed of high-frequency harmonics, 

which results in measurement error, and (2) the depth range of high-contrast fringe patterns is 

small. Even with these drawbacks, this new technique still has the potential to replace the 

conventional fringe generation technique. 
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CHAPTER 1.  INTRODUCTION 

With the recent advancements in digital technology, the use of fringe projection 

techniques for 3-D shape measurement techniques has become one of the most active 

research areas in optical metrology [1]. Among the various fringe analysis techniques, the 

one employing sinusoidal fringe patterns and phase shifting approach is one of the most 

widely used due to its speed and accuracy [2]. However, there are some practical issues to be 

considered for high quality measurement and for its speed improvement. Currently, there are 

two approaches to generate sinusoidal fringe patterns with a DLP projector: DBP and FSP. 

The objective of this dissertation research is to compare these methods with respect to the 

following issues: (1) degree of defocusing, (2) exposure time, (3) synchronization, and (4) 

projector nonlinear gamma. Studying how to use a commercial projector to realize real-time, 

low-cost, reliable, and accurate 3-D shape measurement is highly needed.  

State of the art is reviewed in Section 1.1. The motivations of this research are 

introduced in Section 1.2. The objective of this research is addressed in Section 1.3, and 

Section 1.4 presents the organization of this dissertation. 

1.1  State of the art 

3-D shape measurement technique is concerned with extracting the depth information 

from the image of the measured object. The methods investigating this topic fall into two 

categories, passive and active, depending on their source to sense the object [3]. 

The passive methods are essentially to capture photographs of the object from 

different viewing angles, and to obtain the depth information by finding the correspondence 
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between images and establishing the triangulation relationship between the object point and 

the camera sensors. Active methods, on the other hand, recover depth information by actively 

putting some pre-defined structured patterns onto the object surface to assist the 

corresponding identifications.  Our work falls in the category of the active methods. 

The structured light is defined as the projection of simple or encoded light patterns 

(i.e. points, lines, grids, complex shapes) onto the illuminated scene [4]. Due to its merits of 

easy implement and fast full field measurement, the structured light method has been widely 

used in the field of vision-based, non-contact 3-D shape measurement [5]. 

Zhang & Huang put forward a technique called digital fringe projection and phase-

shifting technique and have successfully developed a high-resolution, real-time 3-D shape 

measurement system, which achieved simultaneous 3-D shape acquisition, reconstruction, 

and display at a speed of 40 frame/sec [6]. Chen et al. presented an idea of designing 

uniquely color-encoded pattern projection to realize 3-D shape reconstruction with only local 

analysis of a single image. The system has the advantage of dynamically adjusting the 

position between the camera and the projector [7]. Based on the combination of gray-coded 

and phase-shifting methods, Chen et al. developed an accurate 3-D shape measurement 

system to reach 360
o
 measurement. The average standard deviation is 0.076 mm for a plaster 

model with the volume of 320 mm × 200 mm × 250 mm [8]. All of those techniques require 

structured light patterns are sent to a focused projector to fulfill precise 3-D shape 

measurement, which belongs to the FSP approach.  

Shape recovery from the defocusing method is different from that of the focus 

method. It needs to compute the blur degree of the images and carefully calibrate the imaging 

system about its blurring characteristics [9]. Without precisely estimating the defocusing 
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blur, it would not be possible to obtain the proper reconstruction. Hinojosa et al. developed a 

3-D shape measurement system by using projections of cylindrical wavefronts on the object 

to extract the depth information of the objects from the defocusing structured light (DSL) 

image and recover the 3-D surface information [10]. However, this approach has not realized 

real-time 3-D shape measurement.  

A fringe pattern is essentially a special case of structured light pattern in which the 

stripe intensity varies sinusoidally. Conventionally, the fringe patterns are generated either by 

a mechanical grating or by laser interference. With recent advancements in digital display 

technology, which has the advantage of generating and controlling the fringe patterns 

accurately and easily, 3-D shape measurement based on the fringe projection techniques has 

become one of the most brisk fields in optical metrology and has various applications in 

diverse fields [11-14]. 

Although the traditional FSP approach based on digital fringe projection and phase-

shifting technique has been widely adopted, there are practical considerations of the existing 

digital fringe projection technique: 

(1) Projector nonlinearity problem. Because the commercial video projector is 

usually a nonlinear device that is purposely designed to compensate for human 

vision, generation of sinusoidal fringe image is difficult. Therefore, to perform 

high quality 3-D shape measurement using a digital fringe projection and phase-

shifting method, the projector nonlinearity calibration is usually mandatory. 

Different methods have been developed to calibrate and correct the nonlinearity 

of the projector [15-20]. The projector nonlinearity calibration increases the 

complexity of the system development. Moreover, our experiments found that the 



 4 

projector nonlinearity changes overtime, thus it needs to be re-calibrated 

frequently for high quality measurement.  

(2) Synchronization problem. Because the DLP projector generates one full 

grayscale image by time modulation [21], it is vital to capture the whole channel 

projection in order to acquire correct and accurate grayscale images. Therefore, if 

sinusoidal fringe patterns are supplied to the projector, the synchronization 

between the projector and the camera is critical and the exposure time of the 

camera must be precisely controlled. This means that the camera must start its 

exposure when the image starts refresh, and must stop its exposure when it 

finishes refresh.  

(3) Exposure time limitation problem. Since the projector and the camera must 

be precisely synchronized, the minimum exposure time of the camera is limited 

by the projector’s fringe projection rate, typical 120 HZ for a DLP projector. The 

camera exposure time cannot be shorter than the single channel projection time 

2.78 ms (1/360 sec). This certainly limits its application to measure fast motion 

when a very short exposure time is needed. 

To avoid these problems, one approach is to use the DLP Discovery platform 

developed by Texas Instruments (TI). With DLP Discovery board, high-speed, highly linear 

sinusoidal fringe patterns can be generated, and the synchronization between the camera and 

the projector can be precisely controlled [22, 23]. However, compared with a commercial 

DLP projector, the DLP Discovery platform is much more expensive. Therefore, studying 

how to use a commercial projector to realize real-time, low-cost, reliable, and accurate 3-D 

shape measurement is highly needed. Although the existing technology does still not reach 
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all these features together, in this dissertation, we will present a DBP approach and give a 

comparison study of digital sinusoidal fringe generation technique, and the research work in 

this thesis will bring a new perspective to the goal.  

The idea of generating sinusoidal fringe patterns by the DBP method comes from our 

two observations [24]: (1) seemingly sinusoidal fringe patterns often appear on the ground 

when the light shines through open window blinds, and (2) the sharp features of an object are 

blended together in a blurring image that is captured by an out-of-focus camera. The former 

gives the insight that an ideal sinusoidal fringe image could be produced from a binary 

structured pattern, and the latter provides the hint that if the projector is defocused, the binary 

structured pattern might become an idea sinusoidal one. 

 The DBP approach takes the advantage of the operation principle of an optical switch 

called digital micromirror device (DMD) in a DLP projector [21, 25]. DMD consists of an 

array of tiny mirrors, and each mirror can reflect light in one of two directions, depending on 

the state of the underlying memory. When the memory state is in the ON state (1), the mirror 

tilts +θ degrees as to reflect light towards the projection aperture. When the memory state is 

in the OFF state (0), the mirror tilts -θ degrees as to reflect light towards the projector 

aperture, as seen in Figure 1. Thus, the ON state of the mirror appears bright and the OFF 

state of the mirror appears dark, and the grayscale values of the image are generated by 

controlling the percentage of ON time of the micromirror during one frame period. For 

instance, when a uniform image with grayscale values of 255 is supplied to a DLP projector, 

the micromirrors have the duty cycle of almost 100% ON. If the grayscale value is reduced to 

128, each micromirror stays ON for only half of the projection cycle time. When the input 

gray scale is reduced to 64, the time that each micromirror stays ON is 1/4 projection cycle.  
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Figure 2 shows the schematic diagram of a single-chip DLP projector. The white light 

first generated by the lamp in a DLP projection system passes through a color wheel filter as 

it travels to the DMD chip. The color wheel composed of RGB color filter spins at a high 

speed producing red, green, and blue light sequentially that illuminates the DMD surface. 

The DMD synchronizes with the color light, reflects it based on the color shining on it and 

forms three color channel images. By this way, the color channel images are outputted 

sequentially onto the screen. Due to its high resolution, high optical efficiency and brightness, 
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Figure 1.  DMD optical switching principle [21]. 
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Figure 2.  Schematic diagram of a single chip DLP projector [21]. 
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high speed, and robust stability [21], the DLP display supersedes with Cathode Ray Tube 

(CRT) or Liquid Crystal Display (LCD) displays and becomes one of the most active 

applications in digital fringe generation technique. 

For the DBP approach, the computer generates gray scale images with binary state (0 

or 255) are used, which means each micromirror is always set to be a value of 0 or 255, it 

should stay OFF or ON all the time. By this means, the micromirror will act as “solid state” 

(does not flash) [26]. Therefore, the fringe patterns are always generated in solid state and 

any segment of time can represent the produced signal, which means no precise 

synchronization between the projector and the camera is needed. At the same time, the 

exposure time of the camera can be shorter than one projection cycle. With this new 

technology, the 3-D shape system can measure fast motion and the measurement speed could 

be greatly improved. Thus, the DBP method clearly has the potential to develop high-speed 

real-time 3-D shape measurement. 

The major contribution of this research is that it does a comparison study of 

sinusoidal fringe generation techniques between the DBP method and the traditional FSP 

approach. The experimental results have verified that generating sinusoidal fringe images by 

the DBP is less sensitive to the exposure time used, to the synchronization between the 

projector and the camera, and to the projector nonlinear gamma. On the contrast, for the 

conventional FSP method, all these factors must be well controlled to ensure high-quality 3-

D measurement. Thus, this DBP technique can be used to measure fast motion when a very 

short exposure time is needed and has significantly simplified the development of 3-D shape 

measurement system. Compared with the FSP method, the DBP technique has the potential 
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to replace the conventional fringe generation technique for 3-D shape measurement based on 

fringe analysis techniques.  

1.2  Motivation 

Over the past years, a number of 3-D shape measurement techniques have been 

developed including some with real-time capabilities [27-31]. 3-D shape measurement using 

a DLP projector becomes increasingly popular during the past few years. Among these 

existing 3-D shape measurement techniques, the use of fringe projection techniques for 

generating 3-D surface information has become one of the most popular research areas in 

optical metrology because of its ability to provide high-resolution, whole-field 3-D 

reconstruction of objects in a non-contact manner at high speed [1].  

Although the conventional FSP approach based on a digital fringe projection and 

phase-shifting technique has been widely adopted, there are three major problems for 

accurate 3-D shape measurement and for future speed improvement: (1) projection 

nonlinearity problem, (2) synchronization problem, and (3) exposure time limitation 

problem. Our recent study has found that using a DBP approach can simplify or alleviate 

these problems relating to the ideal fringe generations with a digital video projector [24, 32]. 

In this dissertation, we will have a comparison study about these two methods for high-

quality 3-D shape measurement. 

1.3  Objective 

The aim of this research is to compare the DBP method and the FSP method with 

respect to the following factors: (1) degree of defocusing, (2) exposure time, (3) 
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synchronization, and (4) projector nonlinear gamma. In this dissertation, the fundamentals of 

these two techniques will be explained, the defocusing simulation for the DBP method and 

the experimental results for the comparison study will be shown, and the advantages and 

disadvantages of the DBP method compared to the FSP method will be discussed. 

1.4  Organization of this dissertation 

This dissertation is organized as follows: Chapter 1 discusses the motivation of using 

defocusing binary pattern method for the 3-D shape measurement. Chapter 2 describes the 

methodology and explains the details of the technique. Chapter 3 contains the theoretical 

background related to optics. Chapter 4 shows some simulation results. Chapter 5 presents 

experimental results and discusses these two approaches. Chapter 6 summarizes this thesis 

and discusses some future work. 
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CHAPTER 2.  METHODOLOGY 

To realize pixel-level spatial resolution, sinusoidal fringe patterns are preferable. 

Conventionally, the sinusoidal fringe patterns are generated by laser interference. This has 

been widely adopted in optical metrology. However, because there are some problems related 

to coherent light, such as speckle noise, white light-based techniques have been extensively 

used. With the advancements of digital display technology, fringe projection based methods 

have been increasingly studied in recent years. In this section, we will address the physics 

background of sinusoidal fringe generation techniques, and then focus on digital fringe 

projection techniques. 

2.1  Sinusoidal fringe generation 

Traditionally, phase shifted sinusoidal fringe patterns are generated by interfering a 

time-varying phase-shifted reference wavefront with the test wavefront. At each 

measurement point, a time varying signal is produced, and then the relative phase between 

the two wavefronts at that point is encoded in these signals. 

From physical optics, the wavefront of a light source is: 

                                                    
( , )( , , ) ( , )  i x yw x y z a x y e  .                                              (1) 

Where x and y are spatial coordinates, and a(x,y) is the wavefront amplitude. The wavefront 

phase can be written as: 

                                                      ( , ) 4 ( , ) /  x y h x y .                                                (2) 

Here, λ is the wavelength, and h(x,y) is the surface height under test. The equations for the 

reference and test wavafronts in the interferometer are: ( , ) ( )
( , , ) ( , )

 
 ri x y t

r rw x y t a x y e and 
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( , ) ( )
( , , ) ( , )

 
 ti x y t

t tw x y t a x y e , respectively, where ( , )ra x y and ( , )ta x y are the wavefront 

amplitudes, ( , )r x y and ( , )t x y  are the wavefront phases, and ( , ) x y  is the time-varying 

phase shift. When the reference and test wavefront interfere with each other, its intensity will 

be: 

                                              
2( , , ) | ( , , ) ( , , ) | r tI x y t w x y t w x y t
 ,                                       

(3) 

Or  

                               
( , , ) '( , ) "( , )cos[ ( , ) ( , ) ( )]     t rI x y t I x y I x y x y x y t

.
                    (4) 

Where 2 2'( , ) ( , ) ( , ) r tI x y a x y a x y  and "( , ) 2 ( , ) ( , ) r tI x y a x y a x y  are the average intensity 

and the intensity modulation, respectively. If we define the phase difference as 

( , ) ( , ) ( , )   t rx y x y x y , the resultant intensity image is: 

                                      ( , , ) '( , ) "( , )cos[ ( , ) ( )]   I x y t I x y I x y x y t .                             (5) 

Where ( , ) x y  is the unknown phase related to the temporal phase shift of the sinusoidal 

variation. By computing the temporal delay at all the required measurement points, the whole 

map of the unknown wavefront ( , ) x y can be obtained. 

2.2  Three-step phase-shifting algorithm 

Optical metrology using fringe analysis is widely used in numerous applications 

because of its measurement accuracy and non-contact surface measurement nature. In order 

to perform a measurement, the phase needs to be retrieved from the fringe images. Generally, 

more fringe images that are used, the better the measurement that can be obtained. However, 

taking more fringe images will reduce the measurement speed. From Equation (5), we know 
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that at least three fringe images with known phase shift are required to uniquely solve for the 

phase. In this research, we use a three-step phase-shifting algorithm with a phase shift of 2π/3, 

and the intensities of the three phase-shifted fringe images are: 

                            1( , ) '( , ) "( , )cos[ ( , ) 2 /3]I x y I x y I x y x y    ,                                (6) 

                                    2( , ) '( , ) "( , )cos[ ( , )]I x y I x y I x y x y  ,                                          (7) 

                              3( , ) '( , ) "( , )cos[ ( , ) 2 /3]I x y I x y I x y x y     .                                  (8) 

Where '( , )I x y  is the average intensity, "( , )I x y  is the intensity modulation, and ( , )x y  is 

the phase to be solved for. Solving Equations (6)-(8) simultaneously, we obtain the phase, 

                                          1 1 3

2 1 3

3( )
( , ) tan

2

I I
x y

I I I
 

 
  

   ,

                                                (9) 

and the data modulation, 

                                    

2 2

1 3 2 1 3

1 2 3

3( ) (2 )"
( , )

'


   
 

 

I I I I II
x y

I I I I
 .                              

(10) 

The Equation (9) indicates that the phase value obtained ranges from – π to + π. To obtain a 

continuous phase map, a phase unwrapping algorithm is applied to detect the 2π 

discontinuities and remove them by adding or subtracting multiples of 2π [33]. Data 

modulation, ( , ) x y , has a value between 0 and 1, and can be used to determine the quality of 

the data point with 1 being the best. 

2.3  Digital fringe projection and phase shifting method 

Conventionally, the fringe images are generated by laser interference, which gives 

good precision. However, the problem of using laser is that the speckle noise is very difficult 
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to remove, and the precise phase shift is hard to achieve. In this section, we will introduce a 

digital fringe projection and phase shifting method. 

Digital fringe projection is a technique that takes advantages of the digital video 

projection technology. Instead of using laser interference, it uses a computer to generate 

fringe patterns. Figure 3 shows the typical setup of a digital fringe projection system. A 

projector projects vertically or horizontally straight fringe stripes onto the object. The fringe 

patterns will change from straight stripes to curved ones due to the object’s surface geometry. 

A camera captures these reflected fringe patterns, which will be analyzed by the computer 

software. If the correspondence between the camera and the projector is known, 3-D 

information can be obtained through triangulation (△ABC). 

Compared with laser interference based technology, the major advantages of using a 

digital fringe projection technique are [34]: (1) no speckle noise. Instead of using a coherent 

light source, white light can be used for this technology. Therefore, the problems induced by 

coherent light source do not exist; (2) the profile of the patterns can be accurately controlled 

by software; and (3) the phase shift error caused by mechanical devices (e.g. pizeo) for phase 

shifting is eliminated because the phase shift is generated digitally. 

Object

Projector fringe Camera image

Phase line

Projector 

pixel

Camera 

pixel

Object 

point

Phase line

Baseline

B

C A

 

Figure 3.  Typical setup of a digital fringe projection and phase shifting system. 
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2.4  Projector nonlinearity correction 

However, the traditional fringe projection technique is not trouble free. One of the 

major problems is the projector nonlinear gamma response. This is because the commercial 

video projector is usually a nonlinear device that is purposely designed to compensate for 

human vision. This nonlinear response will result in non-sinusoidal waveforms if no 

compensation is used. For the digital fringe projection and phase-shifting method, the non-

sinusoidal waveforms are the primary source of error because the phase shift error is not 

present due to its digital fringe generation nature. Over the years, various nonlinear gamma 

correction methods have been proposed. In general, they can be classified into two categories, 

active methods, and passive methods. The active methods essentially pre-deform the 

waveform of the fringe patterns generated by the computer before sending to the computer 

[15,16] while the passive methods correct the phase errors after the fringe images are 

captured [17-20]. However, these techniques complicate the development of 3-D shape 

measurement system. Moreover, our experiments found that the projector nonlinearity 

changes overtime. On the contrary, if a technique can generate ideal sinusoidal fringe images 

without worrying about nonlinear gamma, it would significantly simply the development of 

the 3-D shape measurement system.  

In this research, we will present the DBP approach to generate high-quality sinusoidal 

fringe patterns, which does not need projector nonlinear gamma calibration. This technique 

will be discussed next. 
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2.5  Defocusing technique 

Generally, the defocusing technique is to use a computer to generate binary structured 

images, and to defocus the projector to make them become sinusoidal structured ones. The 

defocusing is controlled by adjusting the focal length of the projector.  

Figure 4 shows the binary structured pattern and its corresponding defocused one. A 

computer generates a binary structured pattern by setting pixels with two grayscale values 0 

or 255. Figure 4(a) is the binary structured image which is projected onto a uniform white 

flat board and then captured by a camera when both the camera and projector are in focus. 

Figure 4(b) shows the 100th row cross section of the binary structured image. It looks like a 

square wave. Figure 4(c) shows an example of the same pattern when the projector is 

defocused to a certain degree and the camera is focused. Figure 4(d) is its corresponding 

100th row cross section. The cross section shows that the square wave becomes a seemingly 

sinusoidal one. Thus, it seems to be feasible to generate ideal sinusoidal patterns by properly 

defocusing binary patterns. 

             

            (a)                                (b)                                    (c)                                 (d) 

Figure 4.  (a) Example of a binary structured pattern when both the projector and 

camera are in focus; (b) 100th row cross section of the pattern in (a); (c) Example of a 

defocusing binary structured pattern when the projector is defocused to a certain 

degree; (d) 100th  row cross section of the pattern in (c). 

100 200 300 400
0

50

100

150

200

250

X (Pixel)

In
te

ns
ity

 (
gr

ay
sc

al
e)

100 200 300 400
0

50

100

150

200

250

X (Pixel)

In
te

ns
ity

 (
gr

ay
sc

al
e)



 16 

 

(a)                       (b)                      (c)                       (d)                       (e) 

                                                

    (f)                                                                         (g)                                                   

Figure 5.  3-D shape measurement of the sinusoidal fringe generation by defocusing 

binary structured patterns. (a) 1I ; (b) 2I ; (c) 3I ; (d) Wrapped phase map; (e) 

Unwrapped phase map; (f)-(g) 3-D shapes viewed from different angles. 

The DBP technique has been verified by measuring a complex sculpture, as shown in 

Figure 5. Figures 5(a)-(c) show three phase shifted fringe images with a phase shift of 2π/3. 

The 2π/3 phase shifting is realized by spatially moving 1/3 period of the binary structured 

patterns. Figure 5(d) is the wrapped phase map obtained from Equation (9). A phase 

unwrapping algorithm is applied to detect the 2π discontinuities and remove them by adding 



 17 

or subtracting multiples of 2π [33], Figure 5(e) shows the continuous unwrapped phase. In 

this research, the unwrapped phase is converted to coordinates by applying a phase-to-height 

conversation algorithm, which will be explained in the following Section 2.6. The results 

show that the proposed DBP approach can be used for measuring 3-D objects with 

complicated features. 

2.6  Phase-to-height conversion algorithm 

The obtained unwrapped phase contains the depth (z) information of the measured 

object, 3-D shape can be extracted from the unwrapped phase if the system is calibrated. In 

this research, we use a simple phase to height conversion algorithm. 

To convert the phase to depth, the relationship between the depth and the phase must 

be established. Figure 6 shows the schematic diagram of the system. A reference plane with 

height 0 in the depth (z direction) is used as the reference for subsequent measurement. The 

arbitrary point M in the captured image corresponds to point N in the projected image, and 

point D on the object surface. From the projector’s point of view, phase D on the object 

surface has the same phase value as A on the reference plane, that is,  D A . While from 

the point of view of the CCD camera, point D on the object surface images is at the same 

pixel as point C on the reference plane. The phase difference between point C on the 

reference plane and point D on the object can be expressed as: 

                                                    
     CD CA C A .                                                (11) 

Assume the distance between point M and point N is d and the reference plane is parallel to 

the device with a distance s between them. By analyzing the similar relationship between 

△MND and △CAD, we can get: 
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1


  

d s BD s

CA BD BD
.                                                  (12)

 

Because for the real measurement, the distance s is much larger than BD , the equation can be 

simplified as: 

                                            
( , )

2
CA CA

s ps
z x y BD CA K

d d
 


    .                                   (13)                    

Here p is the distance per fringe on the reference plane. From Equation (13), the proportional 

relationship between the phase differences to height information (z coordinate) can be 

obtained. 

We use a step to calculate the phase-height conversion constant K. The height of the 

step from the reference plane is approximately 53 mm. Figure 7(a) shows the 409
th

 row cross 

section of the step height. The phase difference between the top and the bottom surface of the 

step is CA C A     = 6.4756 - 0.0838 = 6.3918 rad. The constant K is: 

 

53
8.2919( / )

6.3918 
K mm rad 

.    
            (14) 

Assuming the x and y coordinate is proportional to the real coordinates of the object. The 

measured area on the reference plane is 144 × 187 mm
2
, the conversion constant in x and y 

coordinates are: 

                                            

187
0.2922( / )

640
x yk k mm pixel  

.
                                       (15) 

Therefore, the 3-D coordinates of the object can be obtained by applying the conversion 

constant K, xk , 
yk  onto the unwrapped phase of the object.  

It should be noticed that this conventional reference-phase-based method still has 

some drawbacks, such as approximation errors, small range measurement, and inaccurate x  
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Figure 6.  Schematic diagram of the phase-to-height conversion. 

         

                          (a)                                           (b)                                            (c) 

Figure 7.  Measurement results of a flat board with a step. (a) 409
th

 row cross section 

ofthe step; (b) Cross section of the bottom surface; (d) Cross section of the top surface.  

and y coordinates [3]. At the current stage, all the existing techniques require the projector to 

be in focus, which is not the case for our system. We have not found a way to calibrate a 

defocused projector yet and we still use the standard simple calibration approach in our 

research. Currently, we are seeking a new method to accurately calibrate a defocused 

projector. 

2.7  Summary 

This chapter introduced the digital fringe projection technique, reviewed the three-

step phase-shifting algorithm and phase-to-height conversion algorithm, and described the 

defocusing technique.  
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CHAPTER 3.  THEORETICAL BACKGROUND  

In this chapter, we will introduce some optics background of the method used in this 

dissertation, including imaging system, Fourier optics, and Fraunhofer diffraction to better 

understand how defocusing works from the point of view of optics.  

3.1  Imaging system 

The lens system of a DLP projector can be modeled as a simple lens imaging system, 

as shown in Figure 8. All the rays, that are radiated by an object point are refracted by the 

convex lens, are converged to the corresponding points on the imaging plane. The irradiance 

and the position of the focused image of a point are uniquely determined, and the position of 

a point and its image are interchangeable. This means that the image of the image is the 

object itself. 

For the lens of negligible thickness, in air, the relationship between the position of the 

point in the scene and the position of its corresponding focused image point can be explained 

as [35]: 

                                                                
1 1 1
 

f u v
 .                                                            (16) 

Where f is the focal length, u is the distance between the object and the lens, and v is the 

distance between the focused image and the lens plane. This formula indicates that as long as  

an object is placed at distance u (u > f) along the axis in front of a positive lens with focal 

length of  f, a screen placed at a distance v behind the lens will have its corresponding image.  
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imageLens  

Figure 8.  Imaging system in focus. 

3.2  Fourier optics 

The light source is composed of infinite point sources, and Fourier optics describes 

light propagation in terms of rays. In this section, we will firstly introduce some 

mathematical equations of light propagation, and then focus on the spherical wave, which 

will be used for the analysis of the Airy disk in Section 3.5. 

Fourier optics is a branch of modern optics, which studies the classical optics using 

the Fourier analysis method in telecommunication theory. Telecommunication theory 

analyzes telecommunication signals, and only involves the Fourier transform of one-

dimensional (1-D) time function. In optics, optical signal is a 3-D space function, the 

propagation of light in different directions with a spatial frequency needs Fourier transform 

of 3-D space function. Fourier optics spectrum analysis gives a new interpretation about a 

wide range of optical phenomena, which mainly includes scalar diffraction theory, imaging 

lens law, using spectral analysis to analyze the nature of the optical system, etc [36]. 

The propagation of light can be described as a waveform propagating through a 

vacuum or a material medium such as air or glass. Mathematically, the amplitude of the wave 

is expressed by a scalar wave function u which only depends on both space and time: 
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                                                                 ( , )u u r t .                                                            (17) 

Where ( , , )r x y z  is the position in 3-D space, and t represents time. The wave equation in 

the time domain can be represented as follows [37]: 

                                                       
2

2

2 2

1
( ) ( , ) 0u r t

c t


  

 .
                                                 (18) 

Where ( , )u r t is a real value Cartesian component of electromagnetic wave propagation 

through a vacuum, c is a fixed constant equal to the propagation speed of the wave, and  is 

the Laplacian operation. 

In Fourier optics, light is assumed as a fixed frequency, and the optical field is given 

as: 

                                                          
( )( ) ( ) j rr a r e    .                                                        (19) 

Where   is in general a complex quality with separate amplitude and phase. 

For the light emitted from a point source, if the wave surface is spherical wavefront, it 

is called spherical waves. Figure 9 shows a divergent spherical wave. Spherical wave of the 

same phase is a set of concentric spherical surfaces, and the amplitude of each point is 

inversely proportional to the distance from the point to the center of sphere. The amplitude of 

any monochromatic spherical wave generated by source point P is given in this form: 

                                                         0( ) j k ra
U P e

r

   .                                                          (20) 

Where r   is the radius vector of point P, and r = | r | = 2 2 2x y z  , 0a  is the amplitude at r 

= 1, k  is wave vector, and  k =
 
| |k

 
= 

2


, the size of k is called as spatial angular frequency. 
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P
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Figure 9.  Divergent spherical wave. 

3.3  Fraunhofer diffraction 

Equation (16) is based on geometrical optics, which does not consider the light 

diffraction. Light diffraction occurs when the light passes through a small opening, 

comparable in size to the wavelength λ of the light, in an otherwise opaque obstacle, the 

wavefront on the other side of the opening resembles the wavefront shown in Figure 10. 

Diffraction is a wave after the obstacle of the holes continues to spread through the 

phenomenon of scattering. Fraunhofer diffraction is a form of wave diffraction that occurs 

when field waves are passed through a slit causing only the size of an observed aperture 

image to change. 

In scalar diffraction theory, the Fraunhofer approximation is a far field 

approximation, and the diffraction equation is [38]: 

       
2 2

0 0, 0 0 0 0 0

exp( ) 2
( , ) exp ( )exp

2

jkz x y
U x y jk U x y j x x y y dx dy

j z z z



 





    
      

   


.

     (21) 

Where 
0 0, 0( )U x y  is the optical field distribution of diffraction aperture plane, k is spatial 

angular frequency, (x,y,z) and 0 0 0( , , )x y z  are the coordinates of a diffraction aperture plane 

and an observation plane, respectively. 
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Figure 10.  Optics wave diffraction. 

3.4  Point spread function 

In imaging system, point spread function (PSF) is defined as the radiation intensity 

distribution in the image to an infinitely small point source [39]. A more general term for the 

PSF is a system’s impulse response, the PSF being the impulse response of a focused optical 

system. In a perfect imaging system, the radiant energy generating from an infinitely small 

point source in the object plane would be concentrated at an ideal point in the image plane, 

which is called the ideal image point. However, in practical systems, there is a “smearing-

out” of the energy around the ideal point image, which results in unsharp imaging of the 

point source.  The PSF is a way of measuring such unsharpness [40]. 

Mathematically, if there is no distortion in the imaging system, the image plane 

coordinates are linearly related to the object plane coordinates via the magnification M as: 

                                                      0 0( , ) ( , )i ix y Mx My .                                                      (22) 

The object is divided into discrete point objects of different intensity, and the ideal point can 

be assumed as a 2-D impulse function, then the object plane field can be represented as: 

                                      0 0 0 0( , ) ( , ) ( , )  O x y O u v x u y v dudv .                                     (23) 
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This means that the object is a weighted sum over impulse functions. According to the 

superposition principle, the image plane field is the superposition of the image of each of the 

individual impulse functions. Then the image is expressed as: 

                                 ( , ) ( , ) ( , )  i i i iI x y O u v PSF x Mu y Mv dudv  .                                (24) 

In which, ( , ) i iPSF x Mu y Mv  is the imaging of the impulse function 0 0( , )  x u y v  . 

Equation (24) indicates the image of an object can then be seen as a convolution of the true 

object and the PSF.
 

3.5  Airy disk 

In focusing imaging system, Airy disk and Airy pattern are descriptions of the best 

focused spot of light that a perfect lens with a circular aperture can make. Therefore, the real 

image we can get is a convolution of the ideal image with the Airy disk pattern [41]. 

Mathematically, the Airy disk is given by the Fourier transform of the circle aperture: 

                                        

2 2

1 1
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1

0

( )



   
x tx t e dt  .                                                     (27) 

Where, 0I  is the maximum intensity of the pattern at the Airy disk center, 1J  is the Bessel 

function of the first kind of order 1,   is the gamma function, a = d/2 is the radius of the 

aperture, k = 2π/λ is the wave number, and θ is the angle between the axis of the circle 
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aperture and the line between the aperture center and the observation point, as shown in 

Figure 11. 

Limited by diffraction theory, the angle of the Airy disk is given by: 

                                                            sin( ) 1.22


 
d .

                                                         (28) 

Here, λ is the wavelength of the light, and d is the diameter of the aperture.  

Figure 11 shows the schematic diagram of the imaging system with a finite size lens. 

The point light source emits an ideal spherical waves, and is imaged by the lens onto its 

imaging plane. In practice, due to the finite size of the lens and light diffraction, the image of 

a point object is not a crisp circular patch of constant brightness, as suggested by geometrical 

optics. Instead, it will be roughly a circular blob with the brightness falling off gradually with 

increasing distance from the center, as shown in Figure 12 and Figure 13. The image point 

appears to be an Airy disk as shown in Figure 11, and the fractions of the total power 

contained with the first dark ring is 83.8%. 

d

θ

83.8% power
Full spherical wave emitted 

from a point source

Partial spherical wave 

converges to PSF

Finite size lensObject plane Image plane

Airy disk

 

Figure 11.  Finite size lens imaging system generates an Airy disk from point light 

source with spherical waves. 
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Figure 12.  The Airy pattern with the interval x = kasin(θ) ∈ [-10,10]. 

 

Figure 13.  Surface plot of the intensity of an Airy disk. 

3.6  Model of defocus 

The image information introduced previously tells how an image is generated when 

the imaging system is in focus. That is, when a point light source is in focus, all rays that are 
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plane. However, when the system is out of focus, the image on the image plane is no longer a 

focused point but a blurred circular whose radius '  describes the amount of defocus 

associated with the depth of the point in the scene [42]. 

                                                           ' '

'

1 1 1
rv

f v u
     .                                                (29) 

Where ρ is a constant related with the imaging system, r is the radius of the lens aperture, v’ 

is the lens-to-image distance, f is the focal length of the lens, and u is the distance of the 

object point from the lens. Figure 14 shows the imaging system in defocus. 

Mathematically, the Airy disk can be expressed in Equation (25). From Figure 12, we 

can see the Airy pattern falls rather slowly to zero with increasing distance from the center, 

with the outer rings containing a significant portion of the integrated intensity of the patterns. 

An alternative way to approximate the Airy disk pattern is to ignore the relatively small outer 

rings of the Airy pattern, and to use a Gaussian profile to approximate the central lobe. 1-D 

Gaussian function is expressed in the following form: 

                                                 
2

2

1 ( )
( ) exp

22

x
f x





 
  

  .

                                           (30) 

Where,   is the expected value and  is the standard deviation. 
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Figure 14.  Imaging system in defocus. 
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Figure 15 shows that the Gaussian has a characteristic symmetric “bell curve” shape 

that quickly falls off towards infinity. The parameter   is the position of the center of the 

peak, and   controls the width of the “bell”. 

If we equate the peak amplitude of the Airy pattern and Gaussian profile to be equal, 

and find the value of   giving the optimal approximation to the pattern [41], we obtain: 

                                                        

0.42
f

D


 

. 

                                                         (31) 

Where f is the focal length of the imaging system, λ is the wavelength, and D is the diameter 

of the entrance pupil.  

Figure 16 shows the radial cross-section through the Airy pattern and its Gaussian 

profile approximation. From this figure, we can see the Gaussian profile is a good 

approximation to the Airy disk pattern. 

 

Figure 15.  Gaussian curve with expected value   and variance 2 . 
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Figure 16.  A radial cross-section through the Airy pattern and its Gaussian profile 

approximation. The Gaussian curve with expected value   =0 and variance 2 = 0.2, 

and the Airy pattern with the interval x = kasin(θ) ∈ [0, 4]. 

An analysis shows that the sum of the various functions obtained at different 

wavelengths has the general shape of a 2-D Gaussian function [43]. Thus, for a diffraction-

limited lens system, the PSF of the imaging system can be approximated as a circularly 

symmetric 2-D Gaussian function [42]. 
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 
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  .
                                      (32) 

Here the blur parameter '  is defined from Equation (29). Therefore, the image I(x,y) 

becomes the convolution of the focused image F(x,y) with the corresponding PSF h(x,y). 

                                                      ( , ) ( , ) ( , )I x y F x y h x y  .                                              (33) 
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3.7  Summary 

This chapter introduced some optical theory used in this dissertation: image system, 

Fourier optics, Fraunhofer diffraction, point spread function, Airy disk, and model of 

defocus. The goal is to give some optics background on how an image is generated when the 

image system is in focus or defocus. Next, we will introduce how to use a Gaussian filter to 

simulate the defocusing effect and show some simulation results. 
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CHAPTER 4.  SIMULATION 

In this chapter, we will introduce the mathematical representation of the binary 

patterns, and then simulate the defocusing effect by applying a Gaussian filter. Finally, we 

will show some simulation results. 

4.1  Theoretical analysis 

Mathematically, a binary pattern generated by a computer can be regarded as a square 

wave horizontally, and the imaging system can be regarded as a PSF [40]. The defocusing of 

the projector will generate blurred images. The degree of defocusing can be modeled as a 

different breadth of PSF. The PSF can be approximated as a Gaussian smoothing filter [41]. 

If a filter is applied so that only the first harmonics is kept, an ideal sinusoidal waveform will 

be produced. 

Because the structured patterns have vertical stripes with exactly the same structure, 

in order to understand how the binary pattern changes when the projector is defocused, we 

only need to understand how one horizontal cross section of the pattern alters. 

Mathematically, the cross section of the binary pattern can be considered as a square wave, 

which can be written in the following form: 

                                          

0 [ / 2, ]
( )

1 [ , / 2]

t nT T nT
y t

t nT nT T

 
 

  .

                                               (34) 

Where, T is the period, n is an integer. In the Fourier domain, the square wave can be 

represented as: 
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                                   (35) 

From Equation (35), we can see that the square wave only has odd harmonics without 

even ones, thus, it is easier to design a filter to suppress the higher-frequency components. 

This explains the feasibility of generating sinusoidal structured patterns by properly 

defocusing binary ones.  If the binary structured patterns are moved horizontally, phase-

shifted fringe patterns with sinusoidal fringe patterns will be generated after defocusing. 

Thus, this approach can be used for 3-D shape measurement by using a digital fringe 

projection and phase-shifting method. 

4.2  Simulation results 

To understand how the degree of defocusing affects the measurement error, we 

simulate the defocusing effect by applying a Gaussian smoothing filter. The degree of blur 

can be modeled as applying different widths of the Gaussian smoothing filter, and different 

degrees of defocusing can be realized by applying different sizes of filters or the same size of 

filters at different number of times. The latter approach is adopted in this research. This is 

because the convolution of two Gaussian functions is another Gaussian function [44], which 

can be expressed in the following form: 

 
22 2

1 21 2

2 2 2 22 2
1 2 1 21 2 1 2

( )( ) ( )1 1 1
exp exp exp

2 2 2( )2 2 2 ( )

xx x   

       

      
        

        .   

(36) 

Here, 1 and 2  are expected values, 1 and 2  are standard deviations. 
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In this simulation, because the structured stripes are either vertical or horizontal, only 

one cross section perpendicular to the fringe stripes needs to be considered. Thus, the 

problem is reduced to 1-D filter expressed as Equation (30). 

Figure 17(a) shows the cross section of a binary structured pattern (square wave) with 

the period of 48 pixels, and then after applying a Gaussian filter with 7 pixels and a standard 

derivation of 3.5 pixels. The sharp edges of the binary patterns start softening and the square 

wave becomes trapezoidal in shape, as shown in Figure 17(b). If the same filter is applied 

again, the waveform is close to sinusoidal, but the top and the bottom remain flat, as shown 

in Figure 17(c). Figure 17(d)-(f) show the results when the filter is applied the third, fourth, 

and fifth times. It clearly shows that the wave becomes more and more sinusoidal when the 

defocusing degree increases. One should notice that the amplitude of the sinusoidal wave 

decreases as the degree of defocusing increases. This indicates that the fringe contrast drops 

accordingly. For a real measurement system, this may result in larger error because the 

quantization error of a digital camera is larger. For this simulation, a floating point is used to 

reduce the error caused by quantization. 

The phase shifting is simulated by spatially moving the binary patterns. For example, 

a 2π/3 phase shifting can be realized by moving 1/3 period of the binary patterns. With 

generating three phase-shifted fringe patterns, the phase value can be computed by applying 

Equation (9). A phase unwrapping algorithm is used to remove 2π discontinuities and obtain 

a continuous phase map. In this simulation, we use a Matlab function to unwrap the phase: 

                                           Φ(x,y) = ( , ) 2 ( , )x y m x y  

  

.                                     (37)                                                            

Here,   is the phase obtained from Equation (9), and Φ is the continuous unwrapped phase.  
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And then, the first polynomial is used to obtain the general profile (slope) of the 

unwrapped phase. The phase error is computed by subtracting the unwrapped phase by the 

slope.  

Figure 18 shows the corresponding phase error for the smoothed fringe images shown 

in Figure 17.  The phase error for a square wave is very large, and root mean square (RMS) is 

0.3307 or 0.3007/ (2π) ×100% ≈ 4.8%, as shown in Figure 18(a). On the contrast, when the 

filter is applied the second, third, fourth, and fifth times, seen in Figures 17(c)-(f), the profile 

of the fringe becomes more sinusoidal, and the phase error reduces to less than 0.06%, which 

can be negligible. Therefore, once the binary structured patterns are defocused to be  

 

Figure 17.  Schematic diagram of the cross section of a binary structured pattern when     

applying a Gaussian smoothing filter at different times. The period of binary square 

wave is 48 pixels, and the standard derivation of the Gaussian filter is 3.5. 
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Figure 18.  RMS phase error for different smoothing levels from (a)-(f) are 0.3007,   

0.0375, 0.0138, 0.0030, 0.0009, 0.0002 rad, respectively. 

sinusoidal ones, further defocusing will not significantly increase the phase error. From 

Figures 17(a)-(f), we can find the amplitude of the wave gradually becomes smaller as the 

defocusing degree increases. That means the fringe contrast will reduce gradually. Actually, 

in a real 3-D shape measurement system, if the degree of defocusing is too low, fringe 

contrast will be very low. Even though some fringe enhancement techniques can be used [45], 

the random noise will bring significant error into the phase. 

Since nonsinusoidal waveforms usually result in periodical phase error. It should be 

noted that the phase error shown in Figure 18 appears to be periodical. There may be two 

reasons to explain the periodical phase error. One is the finite filter size of the Gaussian filter. 

However, in the real measurement system, the lens defocusing acts as an analog device, 
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which will not involve the problems caused by discrete filtering. Another reason may be the 

high order harmonics components. 

4.3  Summary 

This chapter first introduced the mathematical equations of the binary patterns, and 

then, to better understand how the defocusing degree affects the measurement error, we 

simulated the defocusing effect by applying a Gaussian filter. Finally, some simulation 

results and analysis were shown.  
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CHAPTER 5.  EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this chapter, we will compare the performance of the new DBP approach against 

the traditional FSP method by analyzing the phase errors introduced by the following factors: 

(1) degree of defocusing, (2) exposure time, (3) synchronization, and (4) projector nonlinear 

gamma. Experimental results show that in most scenarios, the error for the DBP method is 

smaller than that of the FSP method. Next, we will show some 3-D reconstruction results of 

complex objects by using the DBP and the FSP methods respectively. Finally, we will 

summarize the work and discuss the results. 

5.1  Test system 

The performance of the proposed approach was verified with a structured light 

system, as shown in Figure 19. The system includes The Imaging Source Digital USB CCD 

camera (DMK 21BU04) with Computar M0814-MP lens F/1.4 with f = 12 mm, and the Dell 

projector (M109S). The camera resolution is 640 × 480, with a maximum frame rate of 

60frames/sec. The minimum and maximum exposure times of the camera are 0.1 ms and 30 

sec, respectively. The pixel size of the camera sensor is 5.6 × 5.6 μm
2
. The projector has a 

resolution of 858 × 600 with a lens of F/2.0, f = 16.67 mm. The projection distance is 599.4-

2400.3 mm. The DMD used in this projector is 11.43-mm Type Y chip.  

This projector uses Texas Instrument BrilliantColor
TM

 technology to enhance the 

brightness and color gamut [46]. In this technology, instead of using red, green, blue (RGB) 

three colors, it uses five colors including yellow and cyan to use coupling spectra between 

RG and GB. To simplify the test, only the green channel is used for tests. 
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Figure 19.  Photograph of the test system. 

  

  (a)                                            (b)                                             (c) 

Figure 20.  Projector timing signal if the projector is fed with different grayscale values 

of the green image. (a) 255; (b) 128; (c) 64. 

To understand how the projector projects images, we send different grayscale values 

of the green images to the projector and use a photodiode to sense the output light, and then 

the photocurrent is converted to a voltage signal and monitored by an oscilloscope. Figure 20 

shows the results displayed on the oscilloscope. Channel 1 shows VSync of the video 

graphics array (VGA) signal connected with the projector and channel 2 of the oscilloscope 

shows the detected signal. Because the projector is synchronized with the computer’s video 

signal through VSync, its projection cycle is 1/60 s. If the pure green RGB = (0, 255, 0) 

image is supplied to the projector, there are five periods of signal output for each VSync 

period (1/60 s) and the signal is almost filled in during each channel duration (approximate 
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16.67 ms), as shown in Figure 20(a). When the grayscale value is reduced to 128, 

approximately half of the channel is filled, as shown in Figure 20(b). If the input grayscale is 

reduced to 64, only a smaller portion of the channel is filled, as shown in Figure 20(c).  

Comparing the results from Figure 20, it seems that if the grayscale value is 

somewhere between 0 and 255, the output signal becomes irregularly, and we cannot use any 

portion signal to represent the whole signal. Therefore, for the FSP method, when the 

projector is supplied with sinusoidal fringe patterns with the intensity varying from 0 to 255, 

the camera must capture the whole projection period to obtain the correct image projected 

from the projector. This would bring two problems in the 3D shape measurement by using 

the FSP method. One is the exposure time limitation problem; another is the synchronization 

problem between the projector and the camera. These two problems will be discussed in 

Section 5.3 and Section 5.4, respectively.  

5.2  Defocusing degree 

The simulation results introduced in Section 4.2 show that it is feasible to generate 

sinusoidal fringe patterns by defocusing binary patterns. Theoretically, we can find a proper 

defocusing degree to generate high-quality sinusoidal structured patterns. Therefore, to 

compare the phase error at various defocusing degrees, 5 levels of defocusing are tested. 

During the experiments, a uniform flat surface is imaged, and the camera is synchronized 

with the projector through VSync signal of computer video. The exposure time is set to be 

one projection cycle (i.e., 16.67ms). The camera is always in focus during the test. The 

projector starts in focus and then increases its defocusing degree by adjusting the focal length 

of the projector. For the traditional method, the gamma of the projector is calibrated and the  
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associated phase error is compensated. 

Figures 21(a)-(e) show examples of the fringe images captured when a binary 

structured pattern is sent to the projector and the projector is defocused at different levels. 

Figures 21(f)-(j) show the corresponding 100
th

 row cross sections in above corresponding 

images. At level 1, both the projector and the camera are in focus, therefore for the DBP 

method the fringe patterns have very obvious binary structures, as shown in Figure 21(a). 

With the increase of the defocusing degree, the binary structures are less and less clear, and 

they become more and more sinusoidal. Figure 21(c) shows sinusoidal fringe stripes, thus, it 

seems to be feasible to generate ideal sinusoidal patterns by properly defocusing binary 

patterns. However, if the defocusing degree is too much, sinusoidal structure becomes 

obscure and the contrast of the fringe image is low, as shown in Figure 21(e). From Figures 

20(a)-(e), we can see the binary structured patterns become sinusoidal ones when the 

defocusing degree increases and contrast of the fringe images gradually becomes low.  

Figures 21(k)-(o) show the sinusoidal fringe images generated by the FSP method and 

the corresponding cross sections. Figure 21(k) shows the result when the projector is in 

focus, and Figures 21(l)-(o) show the results when the projector is increasingly defocused. 

Compared with the results in Figures 21(a)-(e), when the projector is supplied with a 

sinusoidal pattern, the fringe image has very high contrast when the projector is in focus, as 

shown in Figure 21(k). However, when the projector is defocused, the fringe contrast is 

lower than its DBP counterpart. When the projector is defocused to a degree, the fringe 

quality for the DBP method is better than that for the FSP method. 

Once three phase-shifted images are captured, the phase value can be obtained by 

using Equation (9). A phase unwrapping algorithm is used to remove the 2π discontinuities 
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(a)                           (b)                        (c)                        (d)                        (e) 

 

         (f) Level 1              (g) Level 2           (h) Level 3            (i) Level 4             (j) Level 5    

 

(k)                           (l)                        (m)                         (n)                         (o) 

     

        (p) Level 1            (q) Level 2           (r) Level 3             (s) Level 4           (t) Level 5                    

Figure 21.  Example of fringe images (a)-(e) and the 100
th

 cross section (f)-(j) of the 

fringe images for the DBP method at different defocusing levels. Example of fringe 

images (k)-(o) and the 100
th

 cross section (p)-(t) of the fringe images for the FSP method 

at different defocusing levels. Level 1 is focus and level 5 is severely defocused. 
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to obtain a continuous phase map, and its slope is removed to better show the phase error. 

For the FSP method, a nonlinear gamma calibration method [16] is adopted to ensure the 

projector project ideal sinusoidal fringe images. 

The associate phase errors are plotted in Figure 22. Figures 22(a)-(e) show the phase 

error when the DBP is used. We can see if both the projector and the camera are in focus, the 

phase error is very large (RMS 0.106 rad). When the defocusing degree increases gradually, 

fringe patterns will become much more sinusoidal and the phase error becomes much smaller 

(RMS in Figure 22(c) is 0.020 rad). However, if the defocusing degree is too large, the 

sinusoidal structure becomes obscure, and the phase error increases again. This experiment 

shows that there is a large range of defocusing when the phase error is relatively small. 

Therefore, the DBP method can be used for generating sinusoidal fringe pattern with a large 

depth range. 

Figures 22(f)-(j) show the phase error when the FSP method is used. When the 

projector is in focus, no obvious periodical error appears, and the phase error is very small 

(RMS 0.019 rad). This is because the gamma of the projector is calibrated and the associated 

phase error is compensated well. However, when the projector begins defocusing, periodical 

error appears. The error seems to be caused by a single-frequency component and the signal 

frequency component is usually the result of the imbalance of the three fringe images.  There 

may be two reasons to explain the periodical error when the projector is defocused.  (1) It is 

not easy to precisely represent the gamma of the projector using a mathematical equation by 

calibration, because it is a complicated curve; and (2) it could be the precision of the 

synchronization between the projector and the camera, which will be explained in Section 5.4. 
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As a comparison, the phase error generated by the DBP method is smaller when the projector 

starts defocusing. 

Figure 23 shows the phase error introduced by these two methods under different 

defocusing degrees. From this figure, we find that when the projector is in focus, the 

traditional method works better, and the phase error caused by the FSP method (RMS 0.019 

rad) is much smaller than that in the DBP method (RMS 0.106 rad). However, when the 

projector is defocused to a degree, the phase error induced by the DBP method is actually 

smaller than that produced by the FSP method, which means the proposed method starts 

outperforming the traditional one. It is interesting to notice that both methods produce similar 

phase error under their own best conditions. This experiment clearly indicates that it is 

possible to generate ideal sinusoidal fringe patterns by defocusing binary patterns.  

 

(a)                         (b)                          (c)                          (d)                         (e) 

 

(f)                         (g)                          (h)                          (i)                           (j) 

Figure 22.  (a)-(e) Phase error for different defocusing levels of fringe images is shown 

in Figure 21(a)-(e). The RMS errors in (a)-(e) are 0.106, 0.022, 0.020, 0.024, 0.073 rad; 

(f)-(j) Phase error for different defocusing level of fringe images is shown in Figure 

21(k)-(o). The RMS errors in (f)-(j) are 0.019, 0.019, 0.021, 0.033, 0.109 rad. 
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Figure 23.  Phase errors for different defocusing levels of fringe images in Figure 21. 

A complex object is measured with both the DBP method and the FSP method. In this 

research, the 2π/3 phase shifting is realized by spatially moving 1/3 period the fringe 

patterns. The phase is converted to coordinates by applying a phase-to-height conversion 

algorithm introduced in Section 2.6, and the 3-D geometry is smoothed by a 5 × 5 Gaussian 

filter to reduce the most significant random noises.  

To compare the 3-D measurement quality at various defocusing degrees, 4 levels of 

defocusing are tested. Figure 24 shows the measurement results of a complex sculpture for 

the DBP and the FSP methods at different defocusing levels. Figures 24(a)-(d) show the 3-D 

shape by the DBP method with defocusing levels from 1 to 4, and Figures 24(e)-(h) show the  

3-D reconstruction results by the FSP method at the same levels as above. At level 1, both 

the projector and the camera are in focus. 3-D reconstruction by the DBP method has a very 

large error, as shown in Figure 24(a), while for the FSP method, it gets a high-quality 3-D 

shape, as shown in the Figure 24(e). With the defocusing degree increasing, the DBP method 

gradually gets better results, as shown in Figures 24(b)-(c). However, if the defocusing 

degree is too great, the measurement quality drops. On the contrast, for the FSP method, 
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when the projector is focused, it gets a high-quality shape, as shown in Figure 24(e). With the 

increase of the defocusing degree, the measurement quality drops, as shown in Figures 24(f)-

(h). These experimental results clearly indicate it is feasible to get high-quality 3-D 

reconstruction results by the DBP method as long as the projector is properly defocused. 

 

(a)                              (b)                                (c)                                  (d) 

 

(e)                              (f)                                   (g)                                  (h) 

Figure 24.  Measurement results of a complex sculpture for the DBP and the FSP 

methods at different defocusing levels. Level 1 is focused and level 4 is severely 

defocused. (a)-(d) show the results by the DBP method with defocusing levels from 1 to 

4, and (e)-(h) show the results by the FSP method with different levels. 
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5.3  Exposure time 

Short exposure time is especially needed when measuring very fast motion. To 

evaluate how the camera’s exposure time influences the measurement, 15 different exposure 

times are tested and the phase errors are calculated accordingly. During this experiment, a 

uniform flat surface is imaged. The camera is always in focus and synchronized with the 

VSync signal of the computer video. For the DBP method, the projector is properly 

defocused to a certain degree to generate high-quality sinusoidal fringe patterns. For the FSP 

method, the projector is in focused and gamma calibration is applied to ensure the projector 

to project ideal sinusoidal fringe patterns. 

When the exposure time is less than one channel projection, 10 different exposure 

times (2.50, 4.17, 5.83, 7.50, 9.17, 10.83, 12.50, 14.17, 15.80, 16.67 ms) are used for data 

acquisition.  The exposure time is selected so that either partial or the whole projection pulse 

can be captured by the camera. For simplicity, only the green channel is used, and the 

projector uses the BrilliantColor
TM

 technology, five pulses are generated within one projector 

cycle, as shown in Figure 20(a). The camera is synchronized with the computer’s video 

signal through VSync, the camera always starts its exposure time when the VSync signal 

comes and stops at different timing, as shown in Figure 25. Because the camera’s exposure 

time changes, aperture is adjusted accordingly to achieve high quality fringe images during 

the test. 

For the FSP method, the projector is in focus, and the nonlinear gamma of the 

projector is calibrated to reduce the phase error. Figure 26(a) shows the fringe image when 

the exposure time is set to be 2.5 ms. From this figure, the nonsinusoidal patterns are clearly 

displayed, that is because compared with one projector cycle of 16.67 ms, the exposure time  
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Figure 25.  Timing of the camera exposures. All exposure starts when the VSync signal 

comes, and stops at different timing. Exposure 1, 2, …, and 10 use exposure time of 

2.50, 4.17, 5.83, 7.50, 9.17, 10.83, 12.50, 14.17, 15.80, 16.67 ms. 

is too short and the camera cannot capture the full projection period. The phase error for this 

exposure is very large (RMS 0.38 rad). Figure 26(c) shows one cross section of the phase 

error for the traditional FSP method after removing the unwrapped phase slope. Obviously, 

high-frequency periodical error components appear in the figure. Usually, the nonsinudoidal 

wavefrom results in periodical phase errors. The nonsinusoidal wavefrom is the result of the 

miss-capture of the camera. Because a DLP projector needs one full projection time to 

generate one grayscale image, any less exposure of the camera can result in an incorrect 

grayscale image. 

For the DBP method, there are only two intensities (0 and 255). Our previous 

experiment result shown in Figure 20(a) indicates that when the projector is supplied with a 

pure green RGB = (0, 255, 0) image, the output signal has five periods during one projection 

cycle. We can use one period signal to represent the whole projection cycle signal. Thus, the 

exposure time could be any time.  

Figure 26(b) shows the corresponding fringe image when the exposure time is set to 

be 2.50 ms. Compared with the fringe image shown in Figure 26(a), the fringe image for the  
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         (a)                        (b)                                 (c)                                           (d) 

Figure 26.  Fringe images and phase errors if the exposure time is 2.50 ms. (a) Fringe 

image for the FSP method; (b) Fringe image for the DBP method; (c) One cross section 

of the phase error map for the FSP method (RMS: 0.38 rad); (d) One cross section of   

the phase error map for the DBP  method (RMS: 0.08 rad). 

 

(a)                   (b)                                 (c)                                          (d) 

Figure 27.  Fringe images and phase errors if the exposure time is 16.67ms. (a) Fringe 

image for the FSP method; (b) Fringe image for the DBP method; (c) One cross section 

of the phase error map for the FSP method (RMS: 0.02 rad); (d) One cross section of 

the phase error map for the DBP  method (RMS: 0.02 rad). 

DBP method has a high quality. As a result, the phase error is much smaller (RMS 0.08 rad), 

as indicated in Figure 26(d). 

When the exposure time is set to be 16.67 ms, the camera captures the full projection 

cycle, thus, whether for the FSP method or the DBP method, the camera cannot miss any 
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information of one grayscale image projected by the projector. Figures 27(a)-(b) shows the 

fringe images captured by the FSP method and the DBP method, respectively, and both 

fringe images show sinusoidal patterns very clearly. Figures 27(c)-(d) show the one cross 

section of the phase error map for the FSP method and the DBP method, respectively, both 

phase errors appear to be random and smaller than those using the exposure time of 2.50 ms. 

Figure 28 compares the phase error introduced by these two methods under different 

exposure times. Figure 28(a) shows the phase error when the exposure time is less than one 

full projection cycle. It clearly indicates that for the DBP method, the phase error does not 

change very much when the exposure time alters, while the FSP method does, especially 

when a very short exposure time is needed, and the phase error is very large. This experiment 

shows that if a very short (or arbitrary) exposure time is needed, the DBP method clearly 

outperforms the FSP method for 3-D shape measurement. This provides a potential way to 

develop a fast 3-D shape measurement technique. 

Theoretically, the phase error is smaller when the exposure time increases due to the 

averaging effect. However, if the projection is not fully captured and the FSP method is used, 

the phase error is larger. When the exposure time is on full projection cycle, the FSP method 

should give better results if the gamma correction performs well. 6 different exposure times, 

16.67, 25.00, 50.00, 58.33, 83.33, and 91.67 ms, are used for data acquisition. The camera 

starts its exposure when the VSync signal comes and stops at both full projection cycle 

(16.67, 50.00, 83.33 ms) and half projection cycle (25.00, 58.33, 91.67 ms). Figure 28(b) 

shows the phase error with six different exposure times. It shows that the phase error for the 

FSP method is similar to that for the DBP approach when the exposure time is on full 

projection cycle. However, when the camera does not capture the full projection, the phase 
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(a)                                                                   (b) 

Figure 28.  Phase error for different exposure times. 

error caused by the FSP method is larger than that is induced by the DBP approach. 

To compare the 3-D shape measurement quality at various exposure times, 4 different 

exposure times (3.33, 6.67, 10.00, 16.67 ms) are used for data acquisition. Figure 29 shows 

3-D reconstruction results of a complex sculpture for the DBP and the FSP methods with 

different exposure times. Figures 29(a)-(d) shows the results by the DBP methods with 

exposure times 3.33, 6.67, 10.00, and 16.67 ms, respectively. Figures 29(e)-(h) shows the 

results by the FSP methods with exposure times 3.33, 6.67, 10.00, and 16.67 ms, 

respectively. When the exposure time is set to be less than one projection cycle, the FSP 

method cannot get correct 3-D measurement, as shown in Figures 29(e)-(g). This is because 

the camera cannot capture the full projection period. However, for the DBP approach, it still 

provides good 3-D measurement, as shown in Figures 29(a)-(c). When the exposure time is 

on full projection cycle, both methods give good results, as shown in Figure 29(d) and Figure 

29(h). The experimental results clearly indicate the DBP method outperforms the FSP 

method for 3-D shape measurement when the exposure time is less than one projection cycle. 
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(a)                              (b)                                (c)                                  (d) 

 

(e)                              (f)                                   (g)                                  (h) 

Figure 29.  Measurement results of a complex sculpture for the DBP and the FSP 

methods with different exposures. (a)-(d) Results by the DBP method; (e)-(f) Results by 

the FSP method. From left to right, exposure times are: 3.33, 6.67, 10.00, and 16.67 ms. 

5.4  Synchronization 

The synchronization between the camera and the projection is usually complicated in 

real-time 3D shape measurement. Because the DLP projector generates the grayscale image 

by time modulation [21], the camera should capture the whole channel projection in order to 

acquire correct grayscale images. Therefore, if sinusoidal fringe patterns are supplied to a 

DLP projector, the synchronization between the projector and the camera plays an important 
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role for high-quality 3-D shape measurement, especially when the exposure time is not long. 

The result in Figure 20(a) shows that when a pure green RGB = (0, 255, 0) image is sent to a 

projector, the output signal has five periods during one projection, and we can use any period 

signal to represent the whole projection signal. This indicates that the synchronization 

between the projector and the camera is not necessary for the DBP method. 

To test how the synchronization between the projector and the camera influences the 

measurement, the external trigger of the camera is disabled, and the fringe images are 

captured at any time when the user starts it. The camera is always in focus. A uniform flat 

surface is imaged. For the FSP method, the projector is in focus, and the nonlinear gamma of 

the projector is applied. For the DBP method, the projector is properly defocused. 

In this experiment, three specific exposure times are tested (3.33, 6.67, and 10.00 ms), 

while the starting timing is random. The exposure time is selected so that either one or 

several pulses of projection will be captured for the projection shown in Figure 20. For each 

exposure time, the software continuous runs with random delay between frames, and the 

camera captures 120 frames for future analysis. 

Figures 30(a)-(c) show the phase errors for the DBP method when the exposure time 

is set to be 3.33 ms, 6.67 ms, and 10.00 ms, respectively. Figures 30(d)-(f) show the phase 

error for the FSP method when the exposure time is set to be 3.33 ms, 6.67 ms, and 10.00 ms, 

respectively. This result indicates that for the same exposure time, the phase error for the 

DBP method is much smaller than that for the FSP method.  

Figure 31 shows some typical fringe images and corresponding cross sections for the 

DBP and the FSP methods when a very short exposure time of 0.5 ms is used. From Figures 

31(a)-(d), it clearly shows that the fringe images only change the intensity over time for the 
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DBP method, however, for the FSP method, these images vary both intensity and the profile, 

as shown in Figures 31(e)-(h). This experimental result indicates that the DBP method is less 

sensitive to the synchronization between the projector and the camera, and performs better 

than the FSP method when the camera is not precisely synchronized with the projector. 

 

(a)                                           (b)                                            (c) 

 

(d)                                          (e)                                            (f) 

Figure 30.  Phase error for different exposure times when the camera and the projector 

are not synchronized. (a) The DBP method with exposure time of 3.33 ms (RMS: 0.08 

rad); (b) The DBP method with exposure time of 6.67 ms (RMS: 0.04 rad); (c) The DBP 

method with exposure time of 10.00 ms (RMS: 0.03 rad); (d) The FSP method with 

exposure time of 6.67 ms (RMS: 0.14 rad);  (e) The FSP method with exposure time of 

3.33 ms (RMS: 0.20 rad); (f) The FSP method with exposure time of 10.00 ms (RMS:  

0.09 rad). 
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(a)                                (b)                                (c)                                 (d) 

                          

 

(e)                               (f)                                (g)                                 (h) 

Figure 31.  Examples for the 0.5 ms exposure time when the camera and the projector 

are not synchronized. (a)-(d) Examples of the DBP method, first row is the fringe 

patterns and second row is corresponding 100th cross section; (e)-(h) Examples of the 

FSP method, first row is the fringe patterns and second row is the corresponding 100th  

cross section. 
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(a)                              (b)                                (c)                                  (d) 

Figure 32.  Measurement results of a complex sculpture for the DBP and the FSP 

methods when the camera and the projector are not synchronized. (a) Result by the 

DBP method with an exposure time of 3.33 ms; (b) Result by the FSP method with an 

exposure time of 3.33 ms; (c) Result by the DBP method with an exposure time of 6.67 

ms; (d) Result by the FSP method with an exposure time of 6.67 ms. 

To compare the 3-D measurement quality when the projector and the camera are not 

synchronized, two specific exposure times are tested (3.33 ms and 6.67 ms), and the starting 

time is random. Figure 32 shows the measurement results with different exposure times. It 

clearly shows that for the DBP method, it can obtain a good 3-D shape, while for the FSP 

approach, it has a large measurement error without the synchronization between the projector 

and the camera.  

5.5  Projector nonlinear gamma 

The commercial video projector is usually a nonlinear device which is purposely 

designed to compensate for human vision. Therefore, to perform high-quality 3-D shape 

measurement using the FSP method, projector gamma calibration is usually mandatory. This 
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nonlinear response will result in non-sinusoidal waveforms if no compensation is used.  A 

variety of techniques have been studied including those to actively change the fringe to be 

projected [15, 16], and to passively compensate for the phase error [17-20]. These methods 

increase the complexity of the system development. Moreover, our experiments found that 

the projector nonlinear gamma changes overtimes, thus it need to be re-calibrated frequently 

for high quality measurement. While, for the DBP method, this should not be necessary 

because only two intensity values (0 and 255) are used, and the output light intensity does not 

change much when the input intensity is close to 0 or 255. 

To test and compare how the projector nonlinear gamma influences the measurement, 

one exposure time of 16.67 ms is used to alleviate the problem caused by the synchronization 

between the projector and the camera. A uniform flat surface is imaged. The camera is 

always in focus during the process, and for the DBP method, the projector is properly 

defocused to a certain degree. 

Figure 33(a) shows the one cross section of the phase error for the DBP method. The 

phase error is very small (RMS 0.02 rad) and appears to be random, which indicates that the 

phase error is not affected by the projector nonlinear gamma. Figure 33(b) shows the 

corresponding phase error for the FSP method without gamma correction. The phase error is 

significantly large (RMS 0.09 rad). Figure 33(c) is the phase error for the FSP method with 

applying gamma correction, and the phase error reduces to a very small number (RMS 0.02 

rad). This is because for the FSP method, a full intensity range (0-255) is used, and the 

nonlinear effect of the projector plays an important role. However, for the DBP method, only 

two intensity values are used and the intensity of the output light does not change much. 
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(a)                                            (b)                                           (c) 

Figure 33.  Phase errors (a) DBP method without projector gamma correction (RMS: 

0.02 rad); (b) FSP method without projector gamma correction (RMS: 0.09 rad); (c) 

FSP method with projector gamma correction (RMS: 0.02 rad). 

     

                          (a)                                             (b)                                          (c) 

Figure 34.  3-D measuring results of sculptures. (a) DBP method without projector 

gamma correction; (b) FSP method without projector gamma correction; (c) FSP 

method with projector gamma correction. 

To test and compare how the projector nonlinear gamma influences the 3-D shape 

measurement, the exposure time is set to be 16.67 ms to capture a full projection cycle, and 

the results are shown in Figure 34. It shows that if there is no projector gamma correction, 
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the FSP method would cause a large measure error, as shown in Figure 34(b), while for the 

DBP approach, it still can get a high-quality reconstruction shape, as shown in Figure 34(a). 

5.6  Discussion of results 

In this thesis, we designed four experiments to analyze the phase error caused by the 

following effects: (a) defocusing degree, (2) exposure time, (3) synchronization between the 

projector and the camera, and (4) projector nonlinear gamma. The experiment results indicate 

that compared with the FSP approach, generating sinusoidal fringe patterns by the DBP 

method has the following major advantages: 

(1) No precise synchronization between the projector and the camera is 

necessary. For the FSP method, the camera and the projector must be precisely 

synchronized for a high-quality 3-D shape measurement. On the contrast, for the DBP 

method, the sinusoidal fringe patterns are generated by defocusing binary patterns, 

and the synchronization is less important. 

(2) No gamma correction is required. For the FSP method a full intensity range (0-

255) is used, thus, projector gamma calibration is usually mandatory for a commercial 

digital video projector. On the contrast, the DBP method is not sensitive to the 

projector gamma because only two grayscale values are used. 

(3) It is very easy to generate sinusoidal fringe patterns. This is because no 

complicated algorithms are necessary. 

(4) The measurement is less sensitive to the exposure time used. Therefore, the 

defocused binary patterns method is advantageous for 3-D shape measurement using 

a commercial DLP projector. 
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However, compared with the FSP method, the DBP is not trouble free. It still has 

some shortcomings: 

(1)  More difficult to achieve high accuracy. Because the sinusoidal patterns are not 

generated directly by the computer, the degree of defocusing affects the 

measurement. It seems to be impossible to generate perfect sinusoidal fringe patterns 

by defocusing. Because the defocusing cannot act like a perfect low-pass filter with 

sharp edge, it can only suppress the high-frequency harmonics, but not get rid of it. 

The sinusoidal fringe pattern by properly defocusing always has high-frequency 

harmonics, which will cause measurement errors. On the contrast, the FSP method 

uses an in-focused projector, and it does not have this problem because the measuring 

objects are placed near its focal plane.  

(2) Small depth measurement range. For the DBP method, the projector must be 

properly defocused to generate ideal sinusoidal fringe patterns; otherwise, the 

nonsinusoidal waveform will cause large error. On the contrast, the FSP method is 

not very sensitive to this problem because the degree of defocusing will not affect the 

fringe profile.  

Nevertheless, compared with its shortcomings, the DBP method can still be very 

useful when a commercial DLP projector is used for flexible 3-D shape measurement. 

5.7  Conclusions 

This chapter had a comparison study about the performance of the DBP method and 

the FSP approach by analyzing the phase errors introduced by the following issues: (1) 

degree of defocusing, (2) exposure time, (3) synchronization, and (4) projector nonlinear 



 61 

gamma. Some real 3D measurement results were presented to compare these two methods. 

Our experimental results demonstrated that: (1) when the projector is defocused to a certain 

degree, the phase error induced by the DBP method is very close to that caused by the FSP 

method, thus, it is possible to generate ideal sinusoidal fringe patterns by the DBP method; 

(2) when a very short exposure time is needed, the DBP method definitely outperforms the 

FSP method for 3-D shape measurement; (3) the DBP method is less sensitive to the 

synchronization between the projector and the camera; and (4) no gamma correction is 

required for the DBP method. Phase error analysis and real 3-D shape measurement data 

were also presented to demonstrate and compare these two methods. 
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CHAPTER 6.  CONCLUSION AND FUTURE WORK 

This chapter summarizes this dissertation and provides some ideas of future work that 

might be important with this dissertation. 

6.1  Summary  

In this research, we have a comparison study about two different digital sinusoidal 

fringe generation techniques: DBP and FSP. We introduced the theory, and provided the 

simulation and experimental results to demonstrate the capabilities of generating sinusoidal 

fringe images by properly defocusing binary patterns. 

We analyzed the phase errors for both methods caused by the following effects: (1) 

degree of defocusing, (2) exposure time, (3) synchronization, and (4) projector nonlinear 

gamma. Both simulation and experiments showed that for the DBP method, when the 

projector is defocused to a certain degree, the phase error induced by the DBP method is very 

close to that produced by the FSP approach.  

The experiment results clearly show that for the DBP method, the phase error does 

not change significantly with the exposure time. This becomes important, especially, when a 

very short exposure time is needed, the DBP method definitely outperforms the FSP method 

for 3-D shape measurement. Thus, this DBP technique can be used to measure fast motion 

and the measurement speed can be greatly improved. Actually, some major pieces of work 

recently developed in our lab based on the DBP have verified that the projector defocusing 

technique can be used to reach the refreshing speed of a DLP projector: 120 HZ without 

significantly increasing the system cost [47], and achieve a 3-D shape measurement speed of 

2000 kHZ with a simple and inexpensive DLP projector with a Fourier method [48].  
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Generating sinusoidal fringe images by defocusing the binary patterns are less 

sensitive to the synchronization between the projector and the camera and the projector’s 

nonlinear gamma. On the contrast, for a conventional method where the sinusoidal fringe 

images are generated by the computer and projected by the focused projector, all these 

factors must be well controlled to ensure high-quality measurement.  

However, the DBP method is not trouble free. One of the major issues is that it seems 

to be impossible to generate ideal sinusoidal fringe patterns by defocusing, because the 

seemingly sinusoidal fringe pattern actually has high-frequency harmonics, which introduces 

measurement error. Another problem involves the depth range. Measurement range by using 

this technique is smaller than the conventional fringe generation methods. This is because the 

defocusing degree should be properly controlled, and cannot be too little or too much for 

high-quality measurement. We are currently seeking hardware and software approaches to 

solve these problems without sacrificing the merits of the proposed technique.  

The proposed technique to generate sinusoidal fringe patterns has significantly 

simplified the development of 3-D shape measurement system, and provides a potential way 

to develop high-speed imaging. Therefore, it has the potential to replace the conventional 

fringe generation technique for the 3-D shape measurement system based on fringe analysis 

and phase-shifting methods. 

6.2  Future work 

In this dissertation, we have studied a recently developed new sinusoidal fringe 

generation technique that generates sinusoidal fringe patterns with a DLP by using the DBP 

method instead of the traditional FSP method. This technique has significantly simplified the 
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3-D shape measurement system development since the projector nonlinearity does not bring 

any problems into the imaging system. This may lead to some breakthroughs in the field of 

high-speed 3-D shape measurement. However, there are a number of avenues to explore in 

order to advance this technique. The future work tasks fall into three areas: 

(1) Dealing with high-frequency harmonics phase errors. Essentially, defocusing 

is to suppress the high-frequency harmonic components of the binary structured 

patterns. However, some experiments developed based on the DBP technique found 

that the seemingly sinusoidal fringe patterns are still composed of high-frequency 

harmonics [47,48], and the nonsinusoidality of the fringe patterns causes phase errors. 

Therefore, to realize high-quality 3-D shape measurement, the phase errors 

introduced by the harmonics need to be reduced by either hardware or software 

means. 

(2) Increasing the measurement range. Given the results in Section 5.2, we notice 

that the degree of defocusing is controlled by manually adjusting the focal length of 

the projector. The phase error induced by the DBP method is very similar with that 

caused by the FSP method. Defocusing either too little or too much will influence the 

measurement. Therefore, the high-quality fringe patterns can be generated within a 

small depth range.  This means that the high-quality measurement can be obtained 

within a relatively small depth range. Future research needs to be conducted to 

increase the depth range. 

(3) Calibrating defocused projector. All the existing techniques assume the 

projector to be in focus, which is not the case for our system. The calibration 
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involving a defocused projector will be more complicated. Currently, we are seeking 

a new method to accurately calibrate a defocused projector.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 66 

ACKNOWLEDGEMENTS 

I would like to take this opportunity to express my gratitude and thanks to those who 

helped me with various aspects of conducting research and writing this thesis. Without their 

support, this would not be possible. 

First and foremost, I would like to thank my advisor Dr. Zhang. His inspiring advice 

guides me throughout my research and study during the past one and a half years. His 

kindness makes my work a pleasant experience. His support helped me with the challenges 

that arose during my research. I would like to express my respect and cordial thanks to him. 

Next, I would like to express my sincere gratitude to my committee member Dr. 

James Oliver, whose kindness helped me get a scholarship this fall semester, which gives me 

lots of confidence in my studies and research. Further, I would like to thank committee 

members Dr. Eliot Winer and Dr. Lie Tang, who are doing a favor for me by being on my 

committee. 

Next, I thank Yuanzheng Gong, Ying Xu, and Yajun Wang in the 3D Machine Vision 

Laboratory, for their help to me. 

Last but not least, I owe the success of this thesis to my family for their love and 

support. I would not be here today without their continued love and support. 

 

 

 

 

 

 



 67 

REFERENCES 

[1]  Gorthi, S. S. and Rastogi, P. (2010). Fringe projection techniques: whither we 

are?. Optics and Laser in Engineering, 48(2), 133-140. 

[2] Wang, Z., Nguyen, D. A., and Barnes, J. C. (2010). Some practical considerations 

in fringe projection profilometry. Optics and Laser in Engineering, 48(2), 218-225. 

[3] Zhang, S. (2010). Recent progresses on real-time 3D shape measurement using 

digital fringe projection techniques. Optics and Laser in Engineering, 48(2), 149-158. 

[4] Klette, R., Schluns, K. and Koschan, A. (1998). Computer vision: three-

dimensional data from images. New York: Springer. 

[5] Ribo, M. and Brandner, M. (2005). State of the art on vision-based structured light 

systems for 3-D measurements. IEEE International Workshop on Robotic Sensors: Robotic 

and Sensor Environments, Sep., 2-7. 

[6] Zhang, S. and Huang, P. S. (2006). High-resolution, real-time three-dimensional 

shape measurement. Optical Engineering, 45(12), 123601. 

[7] Chen, S., Li, Y., and Zhang, J. (2008). Vision processing for realtime 3-D data 

acquisition based on coded structured light. IEEE Transactions on Image Processing, 17(2), 

167-176.  

[8] Chen, X., Xi, J., Jiang, T. and Jin, Y. (2010). Research and development of an 

accurate 3D shape measurement system based on fringe projection: Model analysis and 

performance evaluation.  Precision Engineering, 32(3), 215-221. 

[9] Namboodiri, V. P. and Chaudhuri, S. (2007). On defocus, diffusion and depth 

estimation. Pattern Recognition Letters, 28(3), 311-319. 



 68 

[10] Hinojosa, C., Serrano-Heredia, A., and Ibarra, J. G. (1998). Recovery of three-

dimensional shapes by using defocused structured light. Optics & Laser Technology, 30(5), 

281-290. 

[11] Wang, Y., Gupta, M., Zhang, S., Gu, X., Samaras, D., et al. (2008). High 

resolution tracking of non-rigid 3D motion of densely sampled data using harmonic maps. 

International Journal of Computer Vision, 76(3), 283-300. 

[12] Chen, L., and Chang, Y. (2008). High accuracy confocal full-field 3-D surface 

profilometry for microlenses using a digital fringe projection strategy. Key Engineering 

Materials. 364-366, 113-116.  

[13] Radiohead (2008), Radiohead: house of cards. Online: 

http://www.youtube.com/watch?v=8nTFjVm9sTQ. 

[14] Zhou, G., Li, Z., Wang, C., and Shi, Y. (2009). A novel method for human 

expression rapid reconstruction. Tsinghua Science & Technology, 14(S1), 62-65.  

[15] Kakunai, S., Sakamoto, T. and Iwata, K. (1999). Profile measurement taken with 

liquid-crystal grating. Applied Optics, 38(13), 2824-2828. 

[16] Huang, P. S., Zhang, C. and Chiang, F. P. (2003). High-speed 3-D shape 

measurement based on digital fringe projection. Optical Engineering, 42(1), 163-168. 

[17] Zhang, S. and Huang, P. S. (2007). Phase error compensation for a 3-D shape 

measurement system based on the phase shifting method. Optical Engineering, 46(6), 

063601. 

[18] Zhang, S. and Yau, S. T. (2007). Generic nonsinusoidal phase error correction 

for three-dimensional shape measurement using a digital video projector. Applied Optics, 

46(1), 36-43. 

http://www.youtube.com/watch?v=8nTFjVm9sTQ


 69 

[19] Gao, H., He, H., and Chen, M. (2004). Gamma correction for digital fringe 

projection profilometry. Applied Optics, 43(14), 2906-2914. 

[20] Pan, B., Kemao, Q., Huang, L. and Asundi, A. (2009). Phase error analysis and 

compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection 

profilometry. Optics Letters, 34(4), 416-418. 

[21] Hornbeck, L. J. (1997). Digital light processing for high-brightness, high-

resolution application. Processing of SPIE, 3013, 27-40. 

[22] Höfling, R. (2004). High-speed 3D imaging by DMD technology. Processing of 

SPIE, 5303, 188-194. 

[23] Höfling, R. and Ahl, E. (2004). ALP: Universal DMD controller for metrology 

and testing. Processings of SPIE, 5289B, 322-329. 

[24] Lei, S and Zhang, S. (2009). Flexible 3-D shape measurement using projector 

defocusing. Optics Letters, 34(20), 3080-3082. 

[25] Backer, M. J., Xi, J., Chicharo,  J., and Li, E. (2005). A contrast between DLP 

and LCD digital projection technology for triangulation based optical profilometers. 

Processings of SPIE, 6000, 60000G. 

[26] Gong, Y. and Zhang, S. (2010). Ultrafast 3-D shape measurement with an off-

the-shelf DLP projector. Optical Express,18(19), 19743-19754.  

[27] Quan, C., Jay, C. J., Shang, H. M., and Bryanston-Cross, P. J. (1995). Contour 

measurement by fiber optics fringe projection and Fourier transform analysis. Optics 

Communications, 118(5-6), 479-483. 



 70 

[28] Pawlowski, M. E., Kujawinska, M., and Wgiel, M. G. (2002). Shape and motion 

measurement of time-varying three-dimensional objects based on spatiotemporal fringe-

pattern analysis. Optical Engineering, 41(2), 450-459. 

[29] Huang, Y. H., Quan, C., Jay, C. J. and Chen, L. J. (2005). Shape measurement by 

the use of digital image correlation. Optical Engineering, 44(8), 087011. 

[30] Takeda, M. (2010). Measurement of extreme physical phenomena by Fourier 

fringe analysis. AIP Conference Proceedings, 1236(1), 445-448. 

[31] Li, Y., Jin, K., Jin, H. and Wang, H. (2010). High-resolution, high-speed 3D 

measurement based on absolute phase measurement. AIP Conference Preceedings, 1236(1), 

389-394. 

[32] Lei, S. and Zhang, S. (2010). Digital sinusoidal fringe pattern generation: 

Defocusing binary patterns VS focusing sinusoidal patterns. Optics and LaserEngineering, 

48(5), 561-569. 

[33] Ghiglia, D. C. and Pritt, M. D. (1998). Two-dimensional phase unwrapping: 

theory, algorithms, and software. New York: Wiley. 

[34] Malacara, D. (2007). Optical shop testing. New York: John Wiley & Sons. 

[35] Subbarao, M., Yuan, T., and Tyan, J. K. (1997). Integration of defocus and focus 

analysis with stereo for 3D shape recovery. Proceedings of SPIE, 3204, 11-23. 

[36] Goodman, J. W. (2005). Introduction to Fourier optics. Englewood: Roberts & 

Co. 

[37] Wikipedia, http://en.wikipedia.org/wiki/Fourier_optics. 

[38] Yoshizawa, T. (2009). Handbook of optical metrology: principles and 

application. Boca Roton: CRC Press. 

http://en.wikipedia.org/wiki/Fourier_optics


 71 

            [39] Rossmann, K. (1969). Point spread-function, line spread-function, and 

modulation transfer function, tools for the study of imaging systems. Radiology, 93(2), 257-

272. 

[40] Wikipedia, http://en.wikipedia.org/wiki/Point_spread_function. 

[41] Wikipedia, http://en.wikipedia.org/wiki/Airy_disc. 

[42] Chaudhuri, S. and Rajagopalan, A. N. (1999). Depth from defocus: a real 

aperture imaging approach. New York: Springer. 

[43] Pentland, A. P. (1987). A new sense for depth of filed. IEEE transactions on 

Pattern Analysis and Machine Intelligence, 9(4), 523-531. 

[44] Mathworld: http://mathworld.wolfram.com/Convolution.html. 

[45] Ragulskies, M., Aleksa, A.  and Maskeliunas, R. (2009). Contrast enhancement 

of time-averaged fringes based on moving average mapping function. Optics  and Laser in 

Engineering, 47(7-8), 768-773. 

[46] Hutchison, D. C. (2008). Introducing brilliantColor
TM

  technology, Technical 

report, Texas Instrument. Online: http://www.scribd.com/doc/6695597/Introducing-Brilliant-

Color-Technology 

[47] Gong, Y. and Zhang, S. (2010). Improving 4-D shape measurement by using 

projector defocusing. Proceedings of SPIE, 7790, 77901A. 

[48] Li, J. and Zhang, S. (2010). Generating sinusoidal fringe by defocusing: 

potentials for unprecedentedly high-speed 3-D shape measurement using a DLP projector. 

Proceedings of SPIE, 7790, 77900B. 

 

http://en.wikipedia.org/wiki/Point_spread_function
http://en.wikipedia.org/wiki/Airy_disc
http://mathworld.wolfram.com/Convolution.html
http://www.scribd.com/doc/6695597/Introducing-Brilliant-Color-Technology
http://www.scribd.com/doc/6695597/Introducing-Brilliant-Color-Technology



