
Journal Pre-proof

Benchmarking vision kernels and neural network inference accelerators
on embedded platforms

Murad Qasaimeh, Kristof Denolf, Alireza Khodamoradi,
Michaela Blott, Jack Lo, Lisa Halder, Kees Vissers, Joseph Zambreno,
Phillip H. Jones

PII: S1383-7621(20)30169-7
DOI: https://doi.org/10.1016/j.sysarc.2020.101896
Reference: SYSARC 101896

To appear in: Journal of Systems Architecture

Received date : 30 August 2019
Revised date : 17 August 2020
Accepted date : 9 September 2020

Please cite this article as: M. Qasaimeh, K. Denolf, A. Khodamoradi et al., Benchmarking vision
kernels and neural network inference accelerators on embedded platforms, Journal of Systems
Architecture (2020), doi: https://doi.org/10.1016/j.sysarc.2020.101896.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.sysarc.2020.101896
https://doi.org/10.1016/j.sysarc.2020.101896

Benchmarking Vision Kernels and Neural Network Inference

Murad Qas oseph

Abstract

Developing effi a broad
spectrum of h optimal
performance t ehensive
benchmarks of mbedded
platforms: AR raries for
vision kernels or vision
kernels, our re r simple
kernels. Howe gy/frame
reduction ratio zeNet], it
shows that the nd 1.7]×
compared to th

Keywords: Be

1. Introducti

Computer v
learning plays
that seemed im
complexity an
creasing to en
[1]. This tren
processing sol
or thermal con
limited comm
bilities preclud
computing ent

Both indust
of acceleratio
vision applica
are benchmar
Processing Un
(FPGAs). Eac
to accelerating
make use of S
NEON SIMD
processing uni
programming
main. GPUs
and high mem
comes at the
fer opportunit

ths to the
.
different
ing hard-
s varying
erator mi-
ng styles.
plication-
ed vision
tion met-
fficiency,
elines on
to phases
efficient

s choices
accuracy
ntization
s that are
mory re-
accuracy
is decid-

le choice
fic vision
ithms are
ower effi-
er greater
omputing

Preprint submitte st 17, 2020

Manuscript File Click here to view linked References

Journal Pre-proof
Accelerators on Embedded Platforms
aimeha, Kristof Denolfb, Alireza Khodamoradic, Michaela Blottb, Jack Lob, Lisa Halderb, Kees Vissersb, J

Zambrenoa, Phillip H. Jonesa

aIowa State University, IA, USA
bXilinx Research Labs, USA and Ireland

cUC San Diego, CA, USA

cient embedded vision applications requires exploring various algorithmic optimization trade-offs and
ardware architecture choices. This makes navigating the solution space and finding the design points with
rade-offs a challenge for developers. To help provide a fair baseline comparison, we conducted compr
accuracy, run-time, and energy efficiency of a wide range of vision kernels and neural networks on multiple e
M57 CPU, Nvidia Jetson TX2 GPU and Xilinx ZCU102 FPGA. Each platform utilizes their optimized lib
(OpenCV, VisionWorks and xfOpenCV) and neural networks (OpenCV DNN, TensorRT and Xilinx DPU). F
sults show that the GPU achieves an energy/frame reduction ratio of 1.1–3.2× compared to the others fo
ver, for more complicated kernels and complete vision pipelines, the FPGA outperforms the others with ener
s of 1.2–22.3×. For neural networks [Inception-v2 and ResNet-50, ResNet-18, Mobilenet-v2 and Squee
FPGA achieves a speed up of [2.5, 2.1, 2.6, 2.9 and 2.5]× and an EDP reduction ratio of [1.5, 1.1, 1.4, 2.4 a
e GPU FP16 implementations, respectively.

nchmarks, CPUs, GPUs, FPGAs, Embedded Vision, Neural Networks.

on

ision empowered with the recent advances in deep
a fundamental role in solving many problems
possible just a decade ago. The computational

d memory footprint of these algorithms keep in-
hance accuracy or solve more complex problems
d is driving the development of energy-efficient
utions, which are especially important for energy
strained real-time embedded systems. Often their
unication power budget or communication capa-
e them from streaming images to more powerful
ities.
ry and academia have explored the development
n engines to help meet the needs of embedded
tions. Three common types of such accelerators
ked in this case study: multicore CPUs, Graphic
its (GPUs), and Field Programmable Gate Arrays
h of these accelerators take a different approach
embedded vision applications. Multi-core CPUs
IMD instruction extensions, such as: the ARM

engine, Intel’s family of SSE, and dedicated vision
ts (VPU), such as Myriad [2]. The multi-threading
model has made GPUs highly popular in this do-
provide massively parallel execution resources
ory bandwidth. However, their high performance
cost of high power dissipation [3]. FPGAs of-
ies for using low-level fine-grained parallelism

by customizing processing/control units and data pa
requirements of a specific algorithm or application [4]

Embedded vision applications can exhibit vastly
performance characteristics depending on their underly
ware accelerator platform and compute fabrics [5]. Thi
behavior fundamentally stems from differences in accel
cro architectures, middleware support, and programmi
This mixture of factors makes choosing the best ap
to-accelerator mapping a nontrivial task for embedd
application developers. They must take into considera
rics, such as expected runtime performance, energy-e
and programmability. Moreover, running vision pip
heterogeneous platforms requires partitioning them in
that can run on the available accelerators in the most
and cost-effective manner.

Beside the broad spectrum of hardware architecture
for vision applications, there are various complexity-
algorithmic trade-offs that need to be explored [6]. Qua
and pruning are two examples of optimization method
used to reduce the computational complexity and me
quirement of vision algorithms but at the expense of
loss. Another design choice that need to be explored
ing whether neural network solutions are more suitab
compared to the traditional vision kernels for a speci
application. The traditional (hand-engineered) algor
mature, proven, and optimized for performance and p
ciency, while neural networks (learned algorithms) off

accuracy and versatility, but demand large amounts of c

d to Elsevier Augu

Jo
ur

na
l P

re
-p

ro
of

and resources. Moreover, the modeling capacity of traditional
vision kernels are limited by the fixed transformations (filters)
that stay the s
features are d
Therefore, the
networks solu
taken into con

In order to c
tures may imp
networks, we
In this paper,
used HW acce
A57 CPU, Jet
accuracy, run-
energy efficien
an easily repro
vision librarie
without adding
uate the perfo
tion of [Incept
and SqueezeN
sorRT and Xil
ators. All benc
rcl/cvBench.

Contributio
Benchmark re
using OpenCV
ARM57 CPU
inx UltraScale
neural networ
ule, Nvidia Te
into the reaso
ergy consump
discuss ration
tecture innatel
reproducible o
publicly availa

Organizatio
follows. Sect
insights into th
accelerators e
egories of vis
our study. Sec
this study and
ment methodo
and observatio
outlooks for fu

2. Related W

In this sectio
in the literatur
and neural ne
most prior ben
performance o
subsections of

networks performance, there are a few exceptions discussed in
this section.

dy in [7]
Us on the
15 of its
for host

PGA and
ed some
GVF, it

gorithms;
mic, and

of vision
uated the
s, GPUs

e of three
convolu-

y were an
0, and an
omparing
perations.
nd GPU
platform,
ized im-

he Xilinx
i7. The

perations
response
ent time,

machine
]: (1) Ma-
ving high
s. Exam-

t competi-
rks focus
roughput
give algo-
formance.
TREAM
oposed in
nchmark-
tions and
plication
1) level-0
memory

chievable
3) level-2
4) level-3

focused:
ption of

range of
networks.
of open-
available

Journal Pre-proof
ame for different sources of data. While learned
ata-driven and adapt based on the training data.
complexity-accuracy trade-offs between neural
tions and traditional vision kernels need to be
sideration during the development process.
learly understand how different hardware architec-
act the performance of vision kernels and neural
analyze their performance on such accelerators.
we evaluate the performance of three commonly
lerators for vision applications: the ARM Cortex
son TX2 GPU, and ZCU102 FPGA in terms of
time performance (latency and throughput), and
cy. For vision kernel benchmarking, we propose
ducible approach that only uses publicly available
s: OpenCV, Nvidia VisionWorks and xfOpenCV,

any special platform specific code. We also eval-
rmance of neural network inference implementa-
ion-v2 and ResNet-50, ResNet-18, Mobilenet-v2
et] using OpenCV DNN module, Nvidia Ten-

inx Vitis AI frameworks running on these acceler-
hmark code is available at: https://github.com/isu-

ns. The main contributions of this paper are: (1)
presentative vision kernels and complete pipelines

, Visionworks and xfOpenCV libraries on the
, Nvidia Jetson TX2 (GPU-accelerated) and Xil-
(FPGA-accelerated), (2) Benchmark a set of five
ks implementations using OpenCV DNN mod-
nsorRT and Xilinx DPU, (3) Provide an insight

ns behind the observed run-time, power, and en-
tion performance for each evaluated platform and
ales for why a given underlying hardware archi-
y performs well or poorly, and (4) Provide easily
pen-source benchmarking templates that only use
ble vision libraries.
n. The remainder of this article is structured as

ion 2 reviews related work. Section 3 provides
e architectural differences between the hardware

valuated. It also provides details on the six cat-
ion algorithms and two neural networks used in
tion 4 presents the performance metrics used in
provide a detailed description of our measure-

logy. Section 5 discusses our experimental results
ns. Finally, Section 6 concludes the paper with
ture work.

ork

n, we take a look at existing benchmarking efforts
e that evaluate the performance of vision kernels
tworks on embedded platforms. Even though
chmarking efforts focus solely on comparing the
f a limited number of vision kernels or cover only
the embedded design space in evaluating neural

Vision kernels benchmarks. The comparison stu
analyzed the performance efficiency of FPGAs and GP
GPU-friendly benchmark suite (Rodinia). They ported
kernels using Vivado HLS for the FPGA and OpenCL
programs. The platforms used were a Xilinx Virtex-7 F
Nvidia Tesla K40c GPU. Although this study includ
vision kernels such as: GICOV, Dilate, SRAD and M
was not mainly focused on benchmarking vision al
it included other kernels for data mining, fluid dyna
physics simulation, etc [8].

Other comparison studies each focused on a subset
kernels. For example, the study in [9] and [10] eval
performance of sliding window applications on FPGA
and multi-core CPUs. They compared the performanc
applications: Sum of Absolute Differences (SAD), 2D
tion, and correntropy. The platforms used in their stud
Altera Stratix IV FPGA, an Nvidia GeForce GTX 56
Intel Xeon Core i7. Another study in [11] focused on c
the performance of morphological image filtering o
The authors utilized the OpenCV library for CPU a
(cv::CUDA module) implementations. For the FPGA
they used Vivado HLS video libraries and hand-optim
plementations. The platforms used in their study were t
Zynq 7020 FPGA, Nvidia Tegra K1, and Intel core
work in [12] also focused only on a subset of vision o
such as normalized cross correlation and finite impulse
(FIR) filters. This study’s evaluation included developm
component cost, and power consumption.

Neural networks benchmarks. There are two types of
learning benchmarks based on the classification of [13
chine learning (ML) benchmarks focus mainly on achie
test accuracy, independent of the hardware implication
ples of this kind of benchmarks are ILSVRC ImageNe
tion [14] and MLBench [15], (2) Performance benchma
on measuring performance metrics such as latency, th
and power consumption. This category of benchmarks
rithmic modifications freedom to reach the highest per
Examples include DeepBench [16], SPEC [17] and S
[18]. A more complete benchmarking suite has been pr
QuTiBench [13]. QuTiBench is a novel multi-tiered be
ing methodology that supports algorithmic optimiza
couple hardware performance with accuracy at the ap
level. It includes test suites at 4 levels of abstraction: (
includes roofline analysis that provides insight into the
and compute requirements, (2) level-1 focuses on the a
compute performance for different compute patterns, (
captures potential bottlenecks in data movements, and (
covers the system-level performance.

Our benchmark is exhaustive and energy-efficiency
we evaluate the accuracy, run-time, and energy consum
different embedded hardware platforms over a wide
standard vision kernels, vision pipelines and neural
The results are easily reproducible through the use
source benchmarking templates that only use publicly
vision and neural network libraries.

2

Jo
ur

na
l P

re
-p

ro
of

3. Background

In this secti
ware accelera
cuss three visi
works that are
the vision ker
tics to underst
architectures o
tive categories
networks mod

3.1. Embedde
The followi

embedded vis

3.1.1. Central
Modern CP

Multiple Data)
ing scheme ex
(parallel) comp
a given mome
context of ima
tively applied
true in the con
performed ove
tures are: ARM
SIMD extensi

3.1.2. Graphi
As compare

SIMD instruct
ing type tasks
a specialized S
GPUs having
general purpo
logic, typically
core memory.
many more co
architectures p
tle to no branc
GPU architect
to support hig
example, the L
KB, which can

3.1.3. Field P
Instead of h

sist of an arra
pads, and rout
architected to
without needin
over, the distri
locality in vis
UltraScale MP
FPGAs, develo
meet timing an

3.2. Computer Vision Libraries
A number of vision libraries have been optimized to target

n. In this
nly used

is the de-
ocessing
to create
ore than

rehensive
machine
ges such

t the time

age pro-
ts and ex-
-capable
dels: (1)

port their
optimiza-
d CUDA
evel, and
access to
ipelining.

ptimized
by Xilinx
eVISION

to work
software
e library

pped into
OpenCV

ing infer-

e contrib
OpenCV
meworks
supports

d models.
ctions for
ng, mean
itectures
Net and
eleration

Journal Pre-proof
on, we first present the characteristics of the hard-
tors evaluated in this study. Then, we briefly dis-
on libraries and neural network inference frame-
widely used with these accelerators. We group

nels into categories based on their characteris-
and the implications of the underlying hardware
n the performance of these kernels in their respec-
. Finally, we provide details on the used neural
els and their architectures.

d Platforms
ng are the three most common platforms used in
ion applications:

Processing Unit (CPU):
Us are able to perform SIMD (Single Instruction,
instructions using multiple ALUs. Such process-

ploit data level parallelism; there are simultaneous
utations, but only a single process (instruction) at

nt. These SIMD instruction sets are useful in the
ge processing, where operations are often repeti-
to a continuous stream of data. This is particularly
text of computer vision, where most operations are
r the entire image. Examples of SIMD architec-

NEON SIMD engine [19] and Intel’s streaming
ons (SSE) [20].

c Processing Unit (GPU):
d to general purpose CPUs, which have developed
ion extensions to help parallelize image process-
, GPUs have taken the direction of evolving into
IMD architecture. This specialization has led to

simpler processing cores than high-performance
se CPUs. For example, they have simpler control

no branch prediction or prefetch, and small per-
Simpler computing cores allow GPUs to pack

res into a chip than a general purpose CPU. GPU
erform extremely well on workloads that have lit-

hing conditions or data dependences. Additionally,
ures have specialized their memory architecture

h-speed data streaming for image processing. For
2 cache in the Jetson TX2 (Pascal GPU) is 2048
fit a 1080p grayscale image.

rogrammable Gate Array (FPGA):
aving a fixed processor-like design, FPGAs con-
y of logic blocks, DSPs, on-chip BRAMs, I/O
ing channels. In FPGA, custom data paths can be
stream pixels directly between computing units
g to read/write from/to external memory. More-

buted on-chip BRAMs can be used to exploit data
ion kernels by keeping pixels on-chip (e.g Zynq
SoC FPGA has 32.1 Mb on-chip memory). With
pers need to ensure that their customized designs
d space requirements.

the hardware platforms discussed in the previous sectio
work, we focused on the most complete and commo
libraries, as follows:

3.2.1. OpenCV:
OpenCV (Open Source Computer Vision Library)

facto standard C/C++ library for image and vision pr
[21]. It is used by the computer vision community
desktop and embedded vision applications. It has m
2500 optimized vision kernels, which includes a comp
set of both traditional and state-of-the-art vision and
learning algorithms. OpenCV has bindings for langua
as Python and Java. The latest version of OpenCV (a
of writing this paper) is 4.1.1.

3.2.2. NVIDIA VisionWorks:
VisionWorks is a toolkit for computer vision and im

cessing released by Nvidia in 2015 [22]. It implemen
tends the OpenVX standard, and is optimized for CUDA
GPUs. VisionWorks provides three programming mo
immediate mode which enables developers to easily
applications, (2) graph mode which enables advanced
tions such as: buffer reuse, efficient use of streaming an
textures, tiling and pipelining functions at sub-frame l
(3) CUDA API which enables developer with low-level
manage data allocations and transfer, scheduling and p
The latest version of VisionWorks is 1.6.

3.2.3. Xilinx xfOpenCV:
The xfOpenCV library is a set of OpenCV functions o

for Zynq, Zynq Ultrascale+, and Alveo FPGAs devices
[23]. It was first released in 2017, as part of the Xilinx r
stack. xfOpenCV kernels are implemented using HLS
in their SDx development environment and provides a
interface for building vision pipelines on FPGAs. Th
includes a set of 60+ vision kernels optimized to be ma
the programmable logic. The latest version of the xf
library is 2019.1.

3.3. Neural Network Inference Frameworks
In this work, we used the following three deep learn

ence frameworks to benchmark neural networks:

3.3.1. OpenCV DNN Module:
OpenCV DNN module has been promoted from th

repository to the main repository since the release of
3.3 [24]. The module now supports deep learning fra
such as Caffe, TensorFlow, and Torch/PyTorch. It only
the forward pass by importing weights from pre-traine
OpenCV DNN also includes a set of pre-processing fun
preparing images, such as: cropping, channel swappi
subtraction, etc. Examples of compatible network arch
include: GoogleLeNet, AlexNet, SqueezeNet, VGG
ResNet. The module supports SSE, AVX, NEON acc
and Halide backend.

3

Jo
ur

na
l P

re
-p

ro
of

3.3.2. NVIDIA TensorRT:
TensorRT is a framework for implementing high-performance

inference on N
optimizations
activation prec
throughput wh
of GPU memo
Kernel auto-tu
based on targe
cation to re-us
to process mu
TensorRT with
optimizations

3.3.3. Xilinx V
Xilinx Vitis

combination o
low power con
into Xilinx FP
DNN models
compiling DN
ploying them i
a customized a
timized DNNs

Examples o
DNNs: (1) In
heterogeneous
and vision acc
work that ena
to run efficien
GPUs and AR
work that is op
quantization, b
calculation.

3.4. Categorie

Computer v
gories based o

complexity of these kernels grows over the first five categories.
The last category includes composite kernels, which are com-

discusses

rocessing
ange the
at. Some
el extract,

perations
al nature
efit from
s and FP-
ocalized;
ocessing
perations
btraction,
cumulate

an input
a in these
different

erformed
s enough
lgorithm
nits. On

they have
ition into
ter, erode,

R

Journal Pre-proof
VIDIA GPUs [25]. TensorRT applies couple of
to deep learning networks such as: (1) Weight and
ision quantization to FP16 and INT8 to maximizes
ile maintaining accuracy, (2) Optimizing the use
ry and bandwidth by layer and tensor fusion, (3)
ning to select best data layers and algorithms

t GPU platform, (4) Dynamic tensor memory allo-
e memory efficiently, (5) Multi-stream execution
ltiple input streams in parallel. The integration of

TensorFlow allows for applying TensorRT GPU
within TensorFlow environment.

itis AI:
AI is a deep learning framework that provides a
f flexibility, high performance, low latency and
sumption for deploying deep learning inference
GAs and SoCs [26]. It allows for compressing

to reduce their size without loss of accuracy, and
N models into DPU instruction code before de-

nto the target DPU platform. Xilinx DPU provides
nd scalable overlay with ISA architecture for op-
implementations.
f other libraries and frameworks for embedded
tel OneDNN [27]: is a framework that supports
execution across Intel CPUs, Graphics, FPGAs
elerators VPUs. (2) ARM NN[28]: is a frame-

ble efficient translation of DNNs allowing them
tly across ARM Cortex-A CPUs, ARM, Mali
M Ethos NPUs. (3) FAST DNN[29]: is a frame-
timized for CPUs using SIMD instructions, linear
atch processing, sigmoid lookup and lazy output

s of Vision Kernels

ision algorithms can be grouped into six cate-
n their functionality, as shown in Figure 1. The

posed of kernels from other categories. The following
each category in more detail:

3.4.1. Input Processing:
The kernels in this group are usually used as pre-p

steps. They include simple arithmetic operations to ch
input format or number of channels into a desired form
examples of these kernels are: channel combine, chann
color conversion, and bitdepth conversion.

3.4.2. Image Arithmetic:
Image arithmetic applies standard arithmetic/logic o

to one or more images. Because of the multi-dimension
of these pixel based operations, these kernels can ben
highly parallel hardware architectures, such as GPU
GAs. Furthermore, the data being processed is very l
the algorithms can be distributed among different pr
units without concerns of data dependencies. These o
include: thresholding, absolute difference, addition/su
bitwise and/or/xor/not, multiplication, accumulate, ac
squared, and accumulate weighted.

3.4.3. Image Filters:
These algorithms compute the correlation between

image and a kernel (small matrix of fixed-size). The dat
algorithms are local to the size of the kernel which is
from the arithmetic case where the operations were p
on a pixel basis. When the underlying hardware ha
local memory to accommodate the kernel size, the a
is still easily distributed among parallel processing u
the other hand, nonlinear filters are more irregular as
branching conditions. This impedes their decompos
parallel blocks. These kernels include: filter2D, box fil
dilate, median, pyramid up, and pyramid down.

Split Combine RGB

HSV

Threshold AbsDiff

Bitwise_and Magnitude Accum. Weighted

Dilate Erode PyrUp
Down

Filter2D Median

esize Remap

Affine Warp Perspective Warp

LookUp Hist. Equalization

Integral Image Histogram

sum

Canny Fast

StereoBM

Harris

Optical Flow

(1) Input Processing (2) Image Arithmetic (3) Image Filters

(4) Geometric Transforms (5) Image Analysis (6) Image Features & Flow

Figure 1: Examples of Vision Kernels from the Six Categories.

4

Jo
ur

na
l P

re
-p

ro
of

3.4.4. Image Analysis:
Analytic kernels are typically used to understand character-

istics of an im
and minimum
at the end of v
sion variable (
branching con
negatively imp
operations inc
ble lookup, hi

3.4.5. Geome
Transforma

standing the 3
These kernels
into highly pa
ing blocks (e.
performance i
patterns. Thes
perspective wa

3.4.6. Compo
The kernels

from the prev
composite kern
and optical flo
pixels in an im
longer stored
ory. This forc
addresses, wh
block matchin
characteristics
regions, leadin
used to estima
consecutive im
pixel (dense) o

3.5. Neural N

Convolutio
multi-layer ne
visual pattern
comprised of a
tions, pooling
layers. In this
a 22 layers ne
and using glo
nected layers
It introduces th
one or more l
[31]. It is a de
one of the resi
MobileNet: is
wise separable
SqueezeNet: i
accuracy on Im

Data
ransfer

Compute PerformanceSystem Performance

ance

hardware
ng setup.
uces our

rnels and
accuracy,
y product
between
to make

formance

te the L1-
nd FPGA
entation.

or neural
d to eval-
mparing

et valida-
sification
esNet-50,
orks.

nce mea-
only the

uding po-
l memory.
formance,

patterns,
ance of
reading,

measures
ring data
d in each
t.

t of elec-
erform a
he power
. Device
epresents
utation is
sents the

Journal Pre-proof
age, such as color distribution, mean, maximum
pixel value, etc. Also, they are usually placed
ision pipelines to reduce the image into a deci-

min/max locations). These kernels are filled with
ditions and complex memory access patterns that
act their performance on CPUs and GPUs. These
lude: histogram, mean/std, min/max location, ta-
stogram equalization, and integral image.

tric Transformation:
tions in geometric space are essential to under-
D world through the lens of a 2D image sensor.
include matrix multiplication that map effectively
rallel architectures composed of simple comput-
g. GPU). While these kernels are simple, their
s negatively affected by irregular memory access
e kernels include: remap, resize, affine warp, and
rp.

site Kernels:
in this category are composed in part of kernels

iously described categories. Examples of these
els are: feature extraction, stereo block matching,
w. Feature extraction is used to find interesting
age. Once features are extracted, they are no

as a continuous block of adjacent pixels in mem-
es other kernels to load non-continuous memory
ich may hinder parallelism performance. Stereo
g uses two cameras, with known position and
, to compute disparity by comparing overlapped
g to a high computational load. Optical flow is
te the apparent motion of objects between two
ages. Optical flow can be computed for each

r a subset of pixels (sparse).

etworks

nal Neural Network (CNN) is a special class of
ural networks, designed to recognize and analyze
s directly from pixel images. They are usually
sequence of convolutional layers, activation func-
layers, fully connected layers and normalization
study, we focused on five CNNs: (1) Inception-v2:
twork that introduces a special 1x1 convolution,
bal average pooling instead of using fully con-
[30]. (2) ResNet-50, short for Residual Network.
e idea of (identity shortcut connection) that skips

ayers to address the vanishing gradient problem
ep residual network of 50 layers. (3) ResNet-18:
dual network variants. It consists of 18 layers. (4)
a small model built upon the idea of using depth-
convolutions as efficient building blocks [32]. (5)
s a family of models that achieve AlexNet-level
ageNet with 50x fewer parameters [33].

Init
Image
Read

Image
Pre-proc.

Data
Transfer

Compute
T

Figure 2: Steps involved in compute and system perform
measurements.

4. Experimental Methodology

This section describes the performance metrics,
and software environments used in our benchmarki
It also describes measurement techniques, and introd
benchmarking approach.

4.1. Performance Metrics
In this work, we evaluate the efficiency of vision ke

neural networks using four performance metrics: (1)
(2) run-time, (3) energy per frame, and (4) energy dela
(EDP). These metrics provide a fair way of comparison
different design points and a meaningful interpretation
design choices. In this subsection, we discuss the per
metrics, as follows:

4.1.1. Accuracy:
To evaluate the accuracy of vision kernels, we compu

norm error between the results generated by the GPU a
implementations and compare them to the CPU implem
Table 8 in the appendix shows the L1-norm errors. F
networks, classification accuracy (test error rate) is use
uate the CPU, GPU and FPGA implementations by co
their results to the ground truth in the whole Imagen
tion set with 50k images. The top-1 and top-5 clas
accuracy are reported in this paper for Inception-v2, R
ResNet-18, Mobilenet-v2 and SqueezeNe neural netw

4.1.2. Run-time:
There are two different types of run-time performa

surements: (1) Compute performance which measures
compute part of vision kernel or neural network excl
tential bottlenecks for moving data from/to the externa
Even though it doesn’t capture the application level per
it reflects the efficiency in preforming various compute
(2) System performance which measures the perform
the complete pipeline, including initialization, image
pre-processing, post-processing and data transfer. It
the un-optimized performance of the platform by captu
movement bottlenecks. Figure (2) shows steps involve
of the compute and systems performance measuremen

4.1.3. Energy:
Energy consumption per frame quantifies the amoun

trical energy dissipated by hardware accelerators to p
kernel’s operations on one frame. It is measured as t
consumed during the delay time to process a frame
power can be divided in two parts: (1) Static power: r
the amount of power consumed when no active comp
taking place (system is idle), (2) Dynamic power: repre

5

Jo
ur

na
l P

re
-p

ro
of

amount of power consumed above the static power level when
the system is computing.

4.1.4. Energy
Run-time o

picture. A hard
being too slow
(EDP) [34] me
rithm measure
per frame (mJ
delay time. T
deciding which
computation.
ware architect
less power in l

4.2. Measurem
In this study

ing embedded
inx ZCU102.
power measur
as: CPU cores
logic, full pow
FPGA platfor
its ARM CPU
with the system
power consum
The presented
On the ZCU1
that are access
readable virtu

For every b
CPU core of th
accelerated pa
(3), where the
on the CPU a
frames on the
measuring the
The x-axis rep
each platform
rate than the T
were in gray-s
frames were i
1024 frames in

4.2.1. Hardwa
In this wor

ZCU102 FPG
an on-board 4
of 136Gb/s. F
(Pascal 256 C
RAM with a p
and GPU hav
optimization.

The TX2 G
different cloc
low: (1) Max

cores (first
es).

the best
) Max-P:
rease the
), and (2)
ce mode

t of some

kernels
at config-

-A57 is
ak perfor-

rms [13]
[TOPS]

0.41
6.71
3, 0.67
5, 0.57
7, 0.44

OpenCV
OpenCV
ith some
support.

wrappers
nality we
GPU and
IEEE FP

rRT and
fic frame-
e on em-
nCV 3.4
CPU. On
ack 4.1.1
latforms,

he perfor-
libraries
d kernel

nt efforts.

Journal Pre-proof
-Delay Product (EDP):
r energy per frame alone do not show the entire
ware platform can be extremely low power while
to be of practical use. The Energy Delay Product
tric takes into account the throughput of the algo-
d in (ms/frame) along with the energy consumed
/frame). EDP is the product of energy/frame and
his way, a fair comparison can be made when
hardware architecture is better suited for specific

Lower EDP is better which means that the hard-
ure can finish specific computation tasks using
ess time.

ent Techniques and Platforms:
, we evaluated two popular platforms for deploy-
vision applications: Nvidia Jetson TX2 and Xil-

These platforms come equipped with an on-board
ing IC that can measure multiple power rails such
and GPU cores on the Jetson, and programmable
er CPU cores and low power CPU cores on the

m. On the Jetson TX2, shell scripts (running on
) sample power rails and log their values along
’s timestamp into text files. The act of measuring
es power, thus consequently affects the results.
data in this paper has been corrected for this.

02, a Python script is used to sample power rails
ible through the INA226 and are mapped to PS

al files in sysfs.
enchmark, we first processed 1000 frames on the
e platform and then 1000 frames on the hardware
rt of the platform. This can be seen in Figure
first two vertical lines mark the first 1000 frames
nd the following two lines mark the last 1000

hardware. We computed the average frame rate by
time between vertical lines and divided it by 1000.
resents the number of power samples taken for

. Note that the ZCU102 has a different sampling
X2. For vision kernels and pipelines, input frames
cale with 1080p resolution. For neural networks,
n RGB with 224×224 resolution. We also used
stead 1000 frames to have multiple of batch sizes.

re environments.
k, we used Xilinx Zynq UltraScale+ MPSoC
A board. It has a 16nm XCZU9EG FPGA, and
GB 64bit DDR4 RAM with a peak bandwidth
or GPU board, we used the Nvidia Jetson TX2
UDA cores (16nm)) has 8GBs of 128bit DDR4
eak bandwidth of 477.6 Gb/s. Both the FPGA

e on-chip ARM CPU cores with NEON SIMD

PU board supports three operating modes with
k frequencies and power consumptions, as fol-
-Q: (maximum energy efficiency) in this mode

Figure 3: Measuring power samples on the platform’s CPU
1000 frames), and its FPGA or GPU (second 1000 fram

all components on the TX2 are configured to achieve
power-throughput tradeoff. (GPU @ 0.85GHz). (2
this mode increases the GPU’s clock frequencies to inc
performance sacrificing the power (GPU @ 1.12GHz
Max-N: (maximum clock) is the maximum performan
allowing the TX2 to hit higher performance at the cos
energy efficiency (GPU @ 1.30GHz).

On the ZCU102 FPGA baord, the xfOpenCV FPGA
are clocked at 300 MHz, and the Xilinx DPU overlay
uration mode (3xB4096) runs at 333 MHz. The ARM
clocked at 1.7 GHz. Table 1 shows the theoretical pe
mance of the platform used in this paper.

Table 1: Theoretical Peak Performance of Hardware Platfo
Platform Configuration Data types Perf

ARM Cortex A57 - FP32, FP64
Xilinx ZCU102 - INT8
NVIDIA Jetson TX2 MaxN FP16, FP32 1.3
NVIDIA Jetson TX2 MaxP FP16, FP32 1.1
NVIDIA Jetson TX2 MaxQ FP16, FP32 0.8

4.2.2. Software environments.
We used three publicly available vision libraries: (1)

3.4, (2) Nvidia’s VisionWorks 1.6, and (3) Xilinx’s xf
2018.3. While the OpenCV code base already comes w
GPU accelerated code, it does not come with FPGA
For this purpose, we used OpenCV compatible C++

for xfOpenCV kernels [35]. With this wrapped functio
were able to compile the same OpenCV code for both
FGPA. Both OpenCV and VisionWorks support full
precision, while xfOpenCV supports 8 bit precision.

In neural network benchmarking, NVIDIA Tenso
Xilinx Vitis AI are used, since both are hardware-speci
works that are optimized for neural network inferenc
bedded GPUs and FPGAs, respectively. We used Ope
DNN module to evaluate the performance of ARM57
NVIDIA side we used Jetpack 3.3 on TX2 and Jetp
with corresponding TensorRT versions 1. For Xilinx p
the Xilinx Vitis AI framework version 1.1 is used.

4.3. Benchmarking Approach

In this study, we intentionally focused on evaluating t
mance of out-of-the-box kernels from publicly available
(without writing special platform specific code aroun
calls) to give a fair comparison in terms of developme

6

Jo
ur

na
l P

re
-p

ro
of

For this reason, we first ran single kernel calls from OpenCV
and VisionWorks libraries on the CPU and GPU, respectively,
and instantiate
(even though
then measured
on the three H
efficiency on t

For single k
HW accelerato
We measured
the static powe
better reflects
system since
[4] (energy co
energy are usu
pipeline evalu
celerators in t
used the total
it represents t
system is depl
achieved on th
rate on the FPG
pass over the i
rate when it is

FPS

In our expe

• Vision Ke
the time t

• Complete
formance
and outpu
pipeline’
and depe

Table 2: Data Movers Energy Consumption Measurements

platform Time/frame (ms) Energy/frame (mJ/f)

could not
in neural
ed to be

rs. There-
tworks is

s:

ollowing
GPU) in

ic + dy-
T) power
PU, and

using the
e FPGA,
CPU) in

umed for
n of data
sthrough
o another
he FPGA
vers [36]
memory

ows that
0p) with
J/frame.

of energy
nel.

0

2

4

6

8

4.
38

45
.6

12
4.

6

11
3.

1

7.
18

48
.4

0

E
ne

rg
y/

F
(m

J/
f)

split

combi

co
ptica

l

ste
reo

BM*
0

2,000

4,000

1,
04

9

10
4

32 39

50
2

64 0

FP
S

Figure 4: Visi n of the

Journal Pre-proof
d a single kernel from xfOpenCV in FPGA fabric
small kernels utilize few FPGA resources). We
the efficiency of representative vision pipelines

W accelerators to quantify their speed and energy
hese more complete vision applications.
ernel evaluation, we compared the efficiency of the
rs in terms of their energy consumption per frame.
a vision kernel’s dynamic power while excluding
r required to power the rest of the platform. This
the actual workload that is being deployed to the
certainly for small kernels, the compute energy
nsumed for computation only) and data transfer
ally dominated by the static power. In the vision
ation, we compared the performance of HW ac-
erms of their energy delay products (EDP). We
power consumption (static + dynamic), because
he actual power consumption when a complete
oyed. We also measured the maximum frame rate
e three HW accelerators. The theoretical frame
A is fixed for vision kernels that perform a single

nput image. Equation (1) shows an FPGA’s frame
clocked at 300MHz for 1080p images.

=
300MHz

1080 × 1920 × 1cycle/pixel
= 144 (1)

riments, we measure run-time as follow:

rnels: We measure the compute performance and
o transfer data from/to these kernels.

Vision Pipelines: We measure the compute per-
and the time to transfer data from/to the input

t of these pipelines. Communication between the
s kernels is local on the FPGA (through FIFOs)
nds on the caching on the GPU.

FPGA 6.945 0.41
GPU 1.298 0.19

• Neural Networks: Due to library limitations, we
measure the isolated compute only performance
networks. The weights and activation maps ne
streamed from/to off-chip memory between laye
fore, only the system performance of neural ne
measured and reported in this work.

In our experiments, we measure the power as follow

• Vision Kernels: dynamic power only using the f
power rails: (VCCINT) in the FPGA, (VDD SYS
the GPU, and (VDD SYS CPU) in CPU.
• Complete Vision Pipelines: total power (stat

namic) using the following power rails: (VCCIN
rail in the FPGA, (VDD SYS GPU) in the G
(VDD SYS CPU) in the CPU.
• Neural Networks: total power (static + dynamic)

following power rails: (VCCINT) power rail in th
(VDD SYS GPU) in the GPU, and (VDD SYS
the CPU.

In order to have a sense of the amount of energy cons
computation only, we measured the energy consumptio
movers in the FPGA and GPU. We implemented pas
kernels which copy pixels from one memory location t
without applying any arithmetic/logical operations. In t
implementation, Xilinx’s SDx tool instantiates data mo
for each input or output port to transfer data between the
mapped domain and the stream domain. Table 2 sh
FPGA takes 6.945 ms to copy an entire image (108
0.41 mJ/frame, while GPU takes 1.298 ms with 0.19 m
These values can be used to give a sense of the ratio
consumed for computation to data transfer in each ker

4.
56 4.
69

0.
81

0.
87

0.
76

0.
64

0.
47 1.

09 1.
79

3.
37 4.

12

2.
27

4.
07

73
.7

73
.3

4.
02

35
.5

24
.4

4.
24

20
.6

2.
57

2.
54

1.
96

7.
72

2.
1

1.
8

0.
6

4.
4

4.
3 4.

9

35
.4

7.
19

1.
11

1.
01

2.
22

0.
57 0.
79

0.
72

0.
62

0.
54 0.
84

0.
91

0.
87

0.
91 1.

2

1.
27 1.
39

1.
39

1.
46

2.
92

5.
17

1.
35

14
.7

0.
72

0.
74

1.
71

5.
61

1.
92

1.
98

0.
28

2.
23

1.
91

1.
3

28
.7

7.
67

ne

lor conv

depth conv

thres
hold

absD
iff
add/s

ub

and/o
r/x

or

multip
ly

acc
umulate

square
d

weig
hted

magnitu
de

phase
dilat

e
ero

de

boxFilte
r

filter
2D
median

pyrD
own

pyrU
p
lookup

histo
gram

hist
equl

integ
ral

mean
/std

min/
max

res
izerem

ap

affi
ne warp

pers
p warp

can
ny

fas
t
harr

is
o

97
6

52
2

3,
28

9

3,
27

9 4,
08

2

3,
86

1

3,
74

5

2,
96

7

1,
25

3

71
2

49
1 1,

22
5

91
1

63 63

93
2

13
1

11
0

94
0

21
2

1,
25

0

1,
08

5

1,
36

8

45
6 82

5

73
0

4,
92

6

76
4

96
2

86
2

84 44
8

2,
27

8

2,
13

2

1,
17

0

3,
34

4

3,
74

5

3,
71

7

4,
06

5

3,
54

6

2,
98

5

2,
26

2

2,
28

3

2,
17

4

1,
83

8

2,
22

2

2,
63

9

2,
64

6

2,
82

5

1,
28

5

85
8

2,
15

1 2,
90

3

3,
05

8

2,
16

5

1,
35

0

68
2 1,

27
7

73
4

2,
12

8

99
6

2,
74

0

2,
60

4

10
1 34
0

CV::CUDA VisionWorks

onWorks outperforms OpenCV CUDA module in terms of frame rate and energy/frame. *VisionWorks’s implementatio
stereoBM kernel is not publicly available.

7

Jo
ur

na
l P

re
-p

ro
of

5. Experimental Results

This section
vision kernels
evaluated. The

5.1. Single Ke

Before evalu
consumption o
compare two a
module and N
module is writ
CUDA ecosys
mization techn
kernel fusion,
tomatic schedu
vision functio
frame rate (bo
ning vision ker
OpenCV CUD
Works. We ca
outperforms th
It achieved up
ule. It also co
It achieved up
frame. For thi
the VisionWor

Next, we m
vision kernels
cessing, (2) ari
analysis, (5) g
nels.

Input proce
nels is shown
the GPU and
significant dat
dency. The GP
of 1.79× and
also shows tha
achieved a 2.4
ficient use of s
kernel’s imple
of magnitude s
frame rate.

split
0

2

4

3.
1

1.
14 1.
2

E
ne

rg
y/

Fr
am

e
(m

J/
f)

Figu

Image Arithmetic: The performance of arithmetic/logic oper-
ations is shown in Figure (6). It shows that simple operations

r/xor can
PU starts
ons, such
tude and
red to the
d an aver-
ompared

, as these
ecute the

perations
CPU for

n average
pared to
patterns
, box fil-

e parallel
ever, are

ccess and
ents and

raightfor-
hological
ns over a
to imple-
ranching.
and high

entations

ernels are
istogram,
ption of
pared to

onditions
al image,
entation

ed to the

tric trans-
performs
GPU and

pared to

e

6.
1

1.
3 1.
4

Journal Pre-proof
first presents the benchmarking results of single
and a set of representative vision pipelines are
n, it shows the results of a set of neural networks.

rnel Performance:

ating the run-time performance and energy/frame
f single kernels on the HW accelerators, we first
vailable GPU implementations: OpenCV CUDA
vidia’s VisionWorks toolkit. The OpenCV GPU
ten using CUDA and as a result benefits from the
tem. The Visionworks library applies many opti-
iques to boost performance, such as buffer reuse,
efficient use of streaming and CUDA textures, au-
ling across processing units, tiling and pipelining
ns at the sub-frame level. Figure (4) shows the
ttom) and energy per frame (top) achieved by run-
nels on the Jetson TX2. The dark color represents
A module, and the light color represents Vision-
n observe that the VisionWorks implementation
e OpenCV module in frame rate over all kernels.
to a 9.7× speedup compared to the OpenCV mod-
nsumes less energy per frame over all kernels.
to a 6.3× reduction in energy consumption per

s reason, in the rest of the paper, we will use only
ks implementation for the GPU.
easured the energy per frame consumption of
from the following six categories: (1) input pro-
thmetic operations, (3) filter operations, (4) image
eometric transformation, and (6) composite ker-

ssing: The energy/frame of input processing ker-
in Figure (5). These kernels mapped well to
FPGA compared to the CPU because of their

a parallelism, low complexity, and no data depen-
U and FPGA achieved an average reduction ratio
1.41× in energy/frame compared to the CPU. It
t GPU’s implementation of bit-depth conversion
× reduction compared to FPGA, because of the ef-
treaming and CUDA textures in the VisionWorks
mentation. In all kernels, the GPU has an order
peed up compared to CPU and FPGA in terms of

combine
color conv

depth conv

2.
9

2.
4

4.
5

1.
06 1.
1

0.
5

1.
1 1.

3

1.
2

ARM57 GPU FPGA
re 5: Input Processing Operations Kernels

such as: threshold, absDiff, add/sub, and bitwise and/o
be efficiently implemented by the CPU. However, the C
to perform poorly in kernels with multiplication operati
as: multiply, accumulate squared, weighted, magni
phase. The GPU has the lowest energy/frame compa
CPU and FPGA. The GPU’s implementations achieve
age reduction ratio in energy/frame of 4.6× and 7.2× c
to CPU and FPGA, respectively. An expected result
algorithms can be granulated into many pieces that ex
same operation (SIMT).

Image Filters: In Figure (7), the results of filtering o
show that the FPGA performs better than the GPU and
these kernels. The FPGA’s implementation achieved a
reduction ratio of 1.8× and 7.4× in energy/frame com
the GPU and CPU, respectively. The memory access
and mathematical complexity of linear filters (filter2D
ter, pyramid up and pyramid down) maps well to th
processing of the GPU and FPGA. Median filters, how
unlike linear filters. They do not use sequential data a
multiply-and-accumulate operations, but sort input elem
select the median of them, which makes them less st
ward to implement efficiently on a GPU. The morp
operations (dilate and erode) use hit and miss functio
structuring element. These functions are more difficult
ment than filtering functions due to comparison and b
This explains the low frame rate (as shown in Figure 2)
energy/frame consumption of VisionWorks’s implem
of small (3×3) filter kernels.

Image Analysis: The results of the image analysis k
shown in Figure (8). For kernels such as lookup table, h
and histogram equalization, the energy/frame consum
the FPGA achieves an average reduction of 1.2× com
the GPU. While for kernels with more branching c
and complex memory access patterns, such as integr
mean/std, and min/max locations, the FPGA’s implem
achieved an average reduction ratio of 3.5× compar
GPU.

Geometric Transformation: The results of the geome
formation kernels are shown in Figure (9). The CPU
poorly for these kind of operations compared to the
FPGA. Also, the FPGA was more energy efficient com

threshold
absDiff

add/sub
and/or/xor

multiply

accumulate
squared

weighted
magnitude

phas
0

1

2

3

4

0.
6

1

0.
9

0.
9

3.
5

2.
7

3.
2 3.

4

6.
3

0.
8

0.
7

0.
6

0.
5 0.

8 0.
9

0.
8 0.
9 1.

2

0.
8 0.
9

0.
8

0.
7

1.
3

1.
2

1.
1

1.
1 1.

3

E
ne

rg
y/

Fr
am

e
(m

J/
f)

ARM57 GPU FPGA
Figure 6: Arithmetic Operations Kernels

8

Jo
ur

na
l P

re
-p

ro
of

dilate e
0

2

4
3

4.
5

1.
3

4.
18

1.
11

E
ne

rg
y/

Fr
am

e
(m

J/
f)

lookup
histo

0

2

4

6

2.
2

0.
7

0.
6

E
ne

rg
y/

Fr
am

e
(m

J/
f)

Fig

the GPU. It ac
resize and rem
warp kernels.
complex com
need to be gen
the mapping o
done from des
facts and visit
times.

Composite
kernels for: (1
(2) computing
stereo block m
mentation of f
were more ene
an average red
to calculate sp
algorithm incl
tracking them
was able to de
sionWorks for
was able to ke
explains the h
plementation.
of StereoBM
in this paper i
CUDA modul

The average
shown in Table
(higher is bett

p

6

26
.4

54
.2

12
.1

59
.1

3.
4

1.
7

/f
)

ls

BM

22
7

11
3

30
.8

rnels

onstrates
ed to the
r simple
U shows
ore com-
eometric
e/energy

rease, the
GPU and
lgorithms

logic, as
lems that
onditions

CPU)

FPGA

1.41×
2.93×
3.89×
5.67×
16.6×
22.3×

between
plemen-

entations
eedup of
gories of

Journal Pre-proof
rode
boxFilter

filter2D
median

pyrDown
pyrUp

2.
9 3.

1

3.
1

2.
4 2.

7

1.
4

1.
3 1.
47

2.
92

1.
75

1.
11

0.
67 0.
74 0.
89

1.
57

1.
43

ARM57 GPU FPGA
Figure 7: Filters Operations Kernels

gram
hist equl

integral
mean/std

min/max

4.
3

5.
7

4.
5 4.

9

6.
5

0.
7

1.
7

2.
4 2.

9

5.
6

1.
1

1.
1

0.
7 0.
8

1.
5

ARM57 GPU FPGA
ure 8: Image Analysis Operations Kernels

hieved a reduction of 1.6× in energy/frame for the
ap kernels, and 2× for affine warp and perspective
The computations in the warp operations are more
pared to resize and remap as mapping addresses
erated from 2×3 or 3×3 matrices before starting
peration. The mapping process in these kernels is
tination to source in order to avoid sampling arti-
ing every pixel in the destination image multiple

Kernels: The last category in our study includes
) detecting image features (canny, fast and harris),
optical flow, and (3) computing disparity using
atching. Figure (10) shows that the FPGA imple-
eature extraction kernels (canny, fast and harris)
rgy-efficient compared to the CPU and GPU by
uction of 7.7× and 3.5×, respectively. The steps

arse optical flow using the pyramid Lucas-Kanade
udes extracting feature points from one frame and
in the next frame. The FPGA implementation
tect 488 Harris corners compared to 94 for Vi-
the same input frame and parameters. Also, it

ep track of these points in the next frame. This
igh energy/frame consumption in the FPGA im-
Moreover, the VisionWorks’s implementations

is not open sourced yet, so the number reported
s for the GPU implementation using OpenCV’s
e instead.
energy/frame reduction for the GPU and FPGA is
3. The ratio is with respect to CPU consumption

er). We can observe a trend from simple kernels

resize remap
affine warp

persp war
0

2

4

1.
1 1.
3

2.
9

0.
8

0.
7

1.
6

E
ne

rg
y/

Fr
am

e
(m

J

ARM57 GPU FPGA
Figure 9: Geometric Transforms Operations Kerne

canny fast harris
0

20

40

23
.1

22
.9

28
.4

18
.7

7.
6

7.
1

4.
9

2.
6

1.
9

E
ne

rg
y/

Fr
am

e
(m

J/
f)

ARM57 GPU FPGA

optical
stereo

0

50

100

150

200

19
7

44
69

Figure 10: Image Features, Optical Flow and Depth Ke

(top) to more complex kernels (bottom). The trend dem
that the performance of the GPU and FPGA compar
CPU improves as kernels’ complexity increases. Fo
kernels (input processing and image arithmetic), the GP
the highest performance/energy efficiency, while for m
plicated kernels (image filters, image analysis and g
transform), the FPGA shows the highest performanc
efficiency. Moreover, as the complexity of kernels inc
FPGA shows higher energy-efficiency compared to the
CPU. This occurs due to the fact that more complex a
naturally occupy more resources on the programmable
well as the fact that GPUs do not scale well for prob
are not easily divisible (data locality) or have many c
or complex memory access patterns.

Table 3: Ratios of Energy/Frame Reduction (Reference

CPU GPU

Input Processing 1 1.79×
Image Arithmetic 1 3.19×
Image Filters 1 3.17×
Image Analysis 1 2.34×
Geometric Transform 1 10.3×
Features/ OF/ StereoBM 1 7.44×

For completeness, we did a frame rate comparison
the ARM57 CPU OpenCV and GPU VisionWorks im
tations. Our result shows that VisionWorks implem
outperform OpenCV implementation by an average sp
2.9×, 4.2×, 6.3×, 3.9×, 42× and 4.5× for the six cate

9

Jo
ur

na
l P

re
-p

ro
of

vision kernels. The FPGA’s frame rate met the theoretical rate
of Equation (1) for kernels performing a single pass over the
input image (1
accuracy, we
and computed
xfOpenCV ou
ences for all re

5.2. Complete

In this secti
celerators for
many comput
ture extraction
study follow th
segmentation,
tracking. The
VisionWorks O
mization techn
pipelined the e
level using xfO
age the fact th
fabric and avo
nal memory. I
OpenCV matc
in this paper a

5.2.1. Backgr
The backgro

in image sequ
terest are foreg
subtraction, G
shown in Figu

Input

Background
Figure 11

5.2.2. Color S
This pipelin

ments based o
format from R
its three chann
shown in Figu

Input
R

H

C
Figure

Table 4: FPGA’s Reduction Ratios with respect to GPU

Pipeline Energy/frame EDP
s/f2)

2×
1×
5×
.7×

ts in a set
and next
e current
xt frame.
ris corner
shown in

dated
rners
ents

given the
etup. It is
ap of an
pipeline

tification,
matching

arity

nts

arison of
ions con-
U for all

s of EDP
EDP re-
le 4. As
and EDP
lines can
g the rel-
ally, data
t on-chip

Journal Pre-proof
44 fps @300MHz for 1080p). To validate kernels’
used OpenCV’s output image as our reference
pixel-wise subtraction with the VisionWorks and
tputs to measure differences. We had no differ-
ported vision kernels.

Vision Pipeline Performance:

on, we evaluated the performance of the HW ac-
four representative pipelines. Common steps in
er vision pipelines include: pre-processing, fea-
, and post-processing. The pipelines used in our
is structure: (1) background subtraction, (2) color
(3) stereo block matching, and (4) Harris corner

se pipelines are implemented on the GPU using
penVX graph mode to enable its advanced opti-
iques (buffer reuse, kernel fusion, etc.). We also
xecution of kernels on the FPGA at pixel/frame
penCV modules. In this way, the FPGA can lever-
at image pixels stays within the programmable
ids going back and forth to read/write from exter-
n terms of CV pipelines accuracy, the results in
hes the GPU and FPGA. The pipelines evaluated
re:

ound Subtraction:
und subtraction pipeline is used to detect changes
ences [37]. It is mainly used when regions of in-
round objects. The pipeline components include:
aussian filtering, threshold, erode and dilate, as
re (11).

Subtract Threshold

Gaussian

Erode Dilate

Output
: Background Subtraction Pipeline Components

egmentation:
e is used to partition an image into multiple seg-
n a specific range of colors. It converts the color
GB to HSV, then applies range thresholding to
els, and applies erode and dilate operations, as

re (12).

GB
2
SV

olor

Color
Threshold Erode Dilate

Output

12: Color Segmentation Pipeline Components

(mJ/f) (mJ.

Background Subtraction 1.74× 1.3
Color Segmentation 1.86× 1.4
Harris Corners Tracking 3.94× 2.6
Stereo Block Matching 8.83× 107

5.2.3. Harris Corners Tracking:
This pipeline is used to detect and track feature poin

of successive frames of a video. It takes in the current
frame as inputs. It computes Harris corners from th
frame and outputs a list of tracked corners in the ne
The pipeline uses five kernels: Gaussian pyramid, Har
detection, Optical flow and update corners kernels, as
Figure (13).

Prev

Next

Gaussian
Pyrmid

Gaussian
Pyrmid

Harris

Optical
Pyrmid

Corner
Update

Up
Co

Figure 13: Harris Corners Tracking Pipeline Compon

5.2.4. Stereo Block Matching:
This pipeline is used to generate a disparity map

camera parameters and inputs from a stereo camera s
used as a first step in creating a three dimensional m
environment. The main components involved in the
are shown in Figure (14). It consists of stereo rec
remapping, and disparity estimation using a local block
method.

Left

Right

Undistort
Rectify
Undistort
Rectify

Remap

Remap Stereo
BM

disp

Figure 14: Stereo Block Matching Pipeline Compone

Figure (15) plots the Energy/frame and EDP comp
the four pipelines, and shows the FPGA implementat
sume less energy/frame compared to the CPU and GP
pipelines. The FPGA is also more efficient in term
(lower EDP is better). The FPGA’s Energy/frame and
duction ratio with respect to the GPU is listed in Tab
the complexity of the pipeline grows, the energy/frame
reduction ratio increases. More complex vision pipe
use more of the FPGA programmable logic, reducin
ative impact of static power consumption. Addition
communicated between modules of the pipeline are kep
in the streaming FPGA implementation.

10

Jo
ur

na
l P

re
-p

ro
of

Table 5: Top-5 (Top-1) Classification Accuracy

Library Inception-v2 ResNet-50 ResNet-18 MobileNet-v2 SqueezeNet

Open
Tens
Xilin

5.3. Neural N

In this secti
five different n
18, MobileNet
mentation usin
works on an A
FPGA, respec
ware optimiza
and FPGA), m
(GPU) and diff
tations are eva
test accuracy a
and EDP).

5.3.1. Accura
The Top-1

by Inception-
SqueezeNet im
DPU is show
ImageNet-1K
have different
ters size [MBs
their GOPs/M
50 (4 GOPs/ 9
(0.3 GOPs/ 14
sults show tha
DNN to FP16
5 (Top-1) acc

100

101

102

103

0.
49

E
D

P
(m

J.
s/

f2
)

Backgr
Subtra

101

102

103

30
.8

E
ne

rg
y/

F
(m

J/
f)

Figure 15: F

as INT8
intaining

complete
putation,

es insight
nt. It cap-

copying

PU, GPU
, ResNet-
sure their
128) and
ect of in-
reduction.
eption-v2
ts ARM-
selected

axQ) and
rate and

n, we se-
them for

ory band-
me rates

0.
11

0.
11

0.
11

t=
6

t=
7

t=
8

36
4

36
3

36
3

8)

PU, GPU
product

Journal Pre-proof
CV DNN (FP32) 91.1 (72.75) 91.85 (74.44) 88.48 (68.32) 86.1 (64.75) 78.13 (54.38)
orRT (FP16) 90.8 (72.01) 91.15 (72.86) 89.30 (69.93) 86.4 (65.40) 76.30 (52.29)
x DPU (INT8) 90.30 (71.68) 91.31 (73.34) 88.25 (66.94) 85.06 (63.54) 76.58 (50.26)

etwork Inference Performance

on, we measure the accuracy and performance of
eural networks: Inception-v2, ResNet-50, ResNet-
-v2 and SqueezeNet. We benchmark their imple-
g OpenCV DNN, TensorRT, and Vitis AI frame-
RM-57 CPU, Jetson TX2 GPU, and ZCU102

tively. We also evaluate the performance of hard-
tions: reduced precision implementations (GPU
ultiple batch sizes and different operating modes
erent threads counts (FPGA). These implemen-
luated using the following performance metrics:
nd system performance (frame rate, energy/frame

cy:
and Top-5 classification accuracy achieved

v2, ResNet-50, ResNet-18, MobileNet-v2 and
plemented using OpenCV DNN, TensorRT and

n in Table 5. The accuracy is measured on the
validation set (ILSVRC-2012). These networks
computational complexity [GFOPs] and parame-
]. We listed these networks in the Table 5 based on
Bs ratio: Inception-v2 (6 GOPs/ 91MB), Resnet-
8MB), Resnet18 (2 GOPs/ 45MB), MobileNet-v2
MB) and SqueezeNet (0.36 GOPs/ 5MB). The re-
t reducing the bit precision from FP32 in OpenCV

in TensorRT and INT8 in DPU keeps the Top-
uracy loss within ∼ 2%(∼ 4%). This suggests

65
.9 15

5.
5

1,
51

6

0.
11

0.
12

19
.1

28
0

8
·1

0−
2

8
·1

0−
2

7.
27

2.
66

ound
ction

Color
Segmentation

Harris
Tracking

Stereo
BlockM

33
5.

6 68
8

1,
88

3

20
.6

21
.8

30
0.

9 97
2.

2

11
.7

11
.8

76
.8 11
0.

1

ARM57 GPU FPGA
PGA outperforms GPU and CPU in energy/frame

consumption and EDP

that these models can be used with precisions as low
which will reduce model complexity by 4x while ma
an acceptable accuracy loss.

5.3.2. System Performance:
System performance measures the efficiency of the

inference pipeline including its pre-processing, com
data movement, and post-processing stages which giv
into the actual performance achieved after deployme
tures potential memory bandwidth bottlenecks in data
between off-chip and on-chip memories.

In our experiment, we measure the performance of C
and FPGA implementations of Inception-v2, ResNet-50
18, MobileNet-v2 and SqueezeNet networks. We mea
performance at multiple batch sizes (b=1,b=2, ..., b=

thread counts (t=1, t=2, ..., t=8) to evaluate the eff

creasing batch size on data reuse and data movements
Figure 16 and 17 show the experimental results of Inc
and ResNet-50. The blue, green and red bars represen
57, GPU and FPGA, respectively. In these figures, we
the GPU’s most power efficient operating mode (M
its reduced precision (FP16). We measured the frame
EDP at different batch sizes and thread counts. The
lected the highest frame rate and lowest EDP among
the side-to-side comparison.

The results show that even with the limited mem
width in the FPGA, it was able to achieve higher fra

0

0.2

0.4

0.6

19
4

E
D

P
[m

J.
s/

f2
]

0.
22

0.
21

0.
19

0.
18

0.
17

0.
17

0.
17

0.
17

Inception-v2

0.
52

0.
21

0.
13

0.
12

0.
12

cp
u

0

200

400

5.
58

CPU

Fr
am

e/
Se

c

b=
1

b=
2

b=
4

b=
8

b=
16

b=
32

b=
64

b=
12

8

10
3

11
8

12
8

13
4

13
9

14
2

14
4

14
4

GPU MaxQ FP16

ARM57 GPU(FP16) FPGA

t=
1

t=
2

t=
3

t=
4

t=
5

13
7

23
9

32
6

34
1

35
6

FPGA (INT

Figure 16: [System Performance] A comparison between C
and FPGA in terms of frame Rate (fps) and energy delay

(EDP) for Inception-v2 Network.

11

Jo
ur

na
l P

re
-p

ro
of

0

1

2

1,
15

6

E
D

P
[m

J.
s/

f2
]

ResNet50
ar

m
-5

7

0

100

200

2.
21

CPU

Fr
am

e/
Se

c

Figure 17: [Sys
and FPGA in

compared to C
achieves a spee
(b=128) and C
a speed up of 2
and CPU, resp
merical precis
and FP16) in C
supported by
allocation, sch
tion and (3) d
that the impro
size and threa
chip capacity.

0

0.1

0.2

0.3

0.4

23
1

E
D

P
[m

J.
s/

f2
]

cp
u

0

200

400

600

5.
17

CPU

Fr
am

e/
Se

c

Figure 18: [Sys
and FPGA in

6
·10−214

.1 SqueezeNet

0.
01

0.
01

0.
01

t=
6

t=
7

t=
8

1,
32

0

1,
30

8

1,
30

1

T8)

PU, GPU
product

.8× more
ompared

wer EDP
entations.
nception-
the GPU
entation
pared to

ts for the
eNet. For

0.
02

0.
02

0.
02

t=
6

t=
7

t=
8

62
8

62
8

62
7

8)

PU, GPU
product

Journal Pre-proof
0.
82

0.
67

0.
61

0.
58

0.
55

0.
53

0.
53

0.
53

1.
79

0.
7

0.
51

0.
49

0.
48

0.
47

0.
47

0.
47

b=
1

b=
2

b=
4

b=
8

b=
16

b=
32

b=
64

b=
12

8

60 69 73 76 79 80 81 82

GPU MaxQ FP16

ARM57 GPU(FP16) FPGA

t=
1

t=
2

t=
3

t=
4

t=
5

t=
6

t=
7

t=
8

73

12
7

16
2

16
7

17
0

17
2

17
2

17
2

FPGA (INT8)

tem Performance] A comparison between CPU, GPU
terms of frame Rate (fps) and energy delay product

(EDP) for ResNet50 Network.

PU and GPU. For Inception-v2, the FPGA (t=6)
d up of 2.5× and 65× compared to the GPU FP16
PU. For ResNet50, the FPGA (t=8) also achieves
.1×, and 77× compared to the GPU FP16 (b=128)
ectively. This speed-up comes from the low nu-

ion (INT8) used in FPGA compared to the (FP32
PU and GPU, as well as multiple optimizations

Xilinx Vitis AI framework such as: (1) memory
eduling and reusing, (2) node fusion/decomposi-
ata stream optimization. Moreover, it is noticed
vement in frame rate starts to saturate as batch
d count increases due to reaching the maximum
Another observations is that the FPGA implemen-

0.
1

0.
11

0.
11

0.
11

0.
1

0.
1

0.
09

0.
09

ResNet-18

0.
31

0.
12

0.
08

0.
07

0.
07

0.
06

0.
06 0.
07

b=
1

b=
2

b=
4

b=
8

b=
16

b=
32

b=
64

b=
12

8

14
5

16
0

16
5

17
2

18
0

18
4

18
6

18
6

GPU MaxQ FP16

ARM57 GPU(FP16) FPGA

t=
1

t=
2

t=
3

t=
4

t=
5

t=
6

t=
7

t=
8

17
4

31
0

42
7 45

8 49
3

49
8

49
8

49
7

FPGA (INT8)

tem Performance] A comparison between CPU, GPU
terms of frame Rate (fps) and energy delay product

(EDP) for ResNet-18 Network.

0

2

4

E
D

P
[m

J.
s/

f2
]

0.
01

0.
01

0.
01 0.
01

0.
01

0.
01

0.
01

0.
01

0.
04

0.
02

0.
01

0.
01

0.
01

ar
m

-5
7

0

500

1,000

1,500

20
.1

CPU

Fr
am

e/
Se

c

b=
1

b=
2

b=
4

b=
8

b=
16

b=
32

b=
64

b=
12

8

31
9

36
9 43

8

47
2

47
6

51
1

51
7

52
1

GPU MaxQ FP16

ARM57 GPU(FP16) FPGA

t=
1

t=
2

t=
3

t=
4

t=
5

42
7

76
0

1,
07

0

1,
20

0

1,
30

0

FPGA (IN

Figure 19: [System Performance] A comparison between C
and FPGA in terms of frame Rate (fps) and energy delay

(EDP) for SqueezeNetV2 Network.

tations of Inception-v2 and ResNet50 are 4.72× and 3
energy efficient when number of threads equals (t=8) c
to (t=1).

In terms of EDP, the FPGA implementations have lo
values compared to the CPU and GPU FP16 implem
Figure 16 shows that FPGA implementation (t=8) of I
v2 has an EDP reduction ratios of 1.5× compared to
FP16 (b=128). Figure 17 shows that FPGA implem
(t=8) of ResNet50 has 1.1× EDP reduction ratios com
the GPU FP16 (b=128).

Figure 18, 20 and 19 show the experimental resul
small networks: ResNet-18, Mobilenetv2 and Squeez

0

0.1

0.2

0.3

0.4

45
.7

2

E
D

P
[m

J.
s/

f2
]

0.
08

0.
07

0.
06

0.
06

0.
06

0.
06

0.
06

0.
06

MobileNet-V2

0.
16

0.
06

0.
03

0.
03

0.
03

cp
u

0

200

400

600

800

11
.3

4

CPU

Fr
am

e/
Se

c

b=
1

b=
2

b=
4

b=
8

b=
16

b=
32

b=
64

b=
12

8

15
1 18
2

20
1

20
5

21
1

21
4

21
5

21
5

GPU MaxQ FP16

ARM57 GPU(FP16) FPGA

t=
1

t=
2

t=
3

t=
4

t=
5

21
6

38
5

54
0 57

7 61
5

FPGA (INT

Figure 20: [System Performance] A comparison between C
and FPGA in terms of frame Rate (fps) and energy delay

(EDP) for MobileNet Network.

12

Jo
ur

na
l P

re
-p

ro
of

ResNet-18, the FPGA (t=6) achieves a speed up of 2.6× and 96×
compared to the GPU FP16 (b=128) and CPU. For Mobilenetv2,
the FPGA (t=7
pared to the G
FPGA (t=6) a
to the GPU FP

Table 6 sum
ratio compare
is 2.1–2.9× fas
F16 implemen
ResNet-18, M

6. Conclusion

The develop
tions is challe
hardware solu
an in-depth be
CPU, GPU- a
of their differe
complete visio
ResNet-50, R
support reprod
available libra
focus, three ke
per frame, fram

The experim
to-parallelize
energy/frame r
FPGAs outper
reduction). M
the complexit
the energy-de
count the ener
2.1–2.9× faste
F16 implemen
ResNet-18, M

Our future w
generations, li
include more
investigate ins
nels using xfO
we will extend
neural proces
iPhone A13 B
etc.

Table 6: FPGA’
GPU FP16 whe

Model

Inception-v2
ResNet-50
ResNet-18
Mobilenet-v2
SqueezeNet

References

M.-L. Shyu,
, techniques,
018) 92.
otential for

f gpus from
putational

the energy-
systems: A
nternational
e (ISPASS),

g compute-
pecific Pro-
01–107.

, G. V. Her-
. traditional

Computer
8–144.

derstanding
6th Annual
Computing

K. Skadron,
: Workload
posium on,

fpgas, gpus,
sactions on
5) 2.
nergy com-
pplications,
m on Field

ri, N. Wehn,
dy of mor-
Computer
ymposium

ementations
ed systems,
n (2013).
rking neural
shed (2019).
ageNet: A

.
chmarking

dings of the
endowment

nt hardware,
-08-17.
p://spec.

high perfor-
/stream/,

.arm.com/

accessed:

ww.intel.

79/

encv.org/

r.nvidia.

w.xilinx.

Journal Pre-proof
) also achieves a speed up of 2.9×, and 55× com-
PU FP16 (b=128) and CPU. For SqueezeNet, the
chieves a speed up of 2.5×, and 65.6× compared
16 (b=128) and CPU.
marizes the FPGA’s frame rate and EDP reduction
d to the GPU FP16 implementations. The FPGA
ter and 1.1–2.4× more energy efficient than GPU
tations when running Inception-v2, ResNet-50,

obilenetv2 and SqueezeNet.

ment of cost-efficient embedded vision applica-
nged in its initial design phase by the variety of
tions and software libraries. This paper performs
nchmark analysis of three embedded platforms,
nd FPGA-accelerated, evaluating the efficiency
nt hardware architectures towards vision kernels,
n pipelines and neural networks [Inception-v2,

esNet-18, MobileNet-v2 and SqueezeNet]. To
ucibility, the benchmark only relies on publically
ries and frameworks. Given the energy-efficiency
y metrics are collected in the benchmarks: energy

e rate and energy delay product (EDP).
ental results show that many simple and easy-

vision kernels perform well on GPUs (1.1–3.2×
eduction), but for more complete vision pipelines,
form GPUs and CPUs (1.2–22.3× energy/frame
oreover, FPGAs perform increasingly better as
y of vision pipelines grow. This is evident by
lay product, a metric that not only takes into ac-
gy/frame, but also the throughput. The FPGA is
r and 1.1–2.4× more energy efficient than GPU
tations when running Inception-v2, ResNet-50,

obilenetv2 and SqueezeNet.
ork will update this analysis to the latest platform

ke Nvidia’s recently released AGX board, and will
vision kernels and neural networks. We will also
tantiating multiple instances of single vision ker-
penCV and compare it with GPUs. Additionally,
this benchmarking analysis to include popular

sing units (NPUs) in mobile processors such as
ionic, Samsung Exynos, Qualcomm Snapdragon,

s Speedup and EDP Reduction Ratios with Respect to
n [b=128 and t=8]

Frame Rate (fps) EDP (mJ.s/f2)

2.5× 1.5×
2.1× 1.1×
2.6× 1.4×
2.9× 2.4×
2.5× 1.7×

[1] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes,
S.-C. Chen, S. Iyengar, A survey on deep learning: Algorithms
and applications, ACM Computing Surveys (CSUR) 51 (5) (2

[2] M. H. Ionica, D. Gregg, The movidius myriad architecture’s p
scientific computing, IEEE Micro 35 (1) (2015) 6–14.

[3] S. Collange, D. Defour, A. Tisserand, Power consumption o
a software perspective, in: International Conference on Com
Science, Springer, 2009, pp. 914–923.

[4] H. Giefers, P. Staar, C. Bekas, C. Hagleitner, Analyzing
efficiency of sparse matrix multiplication on heterogeneous
comparative study of gpu, xeon phi and fpga, in: 2016 IEEE I
Symposium on Performance Analysis of Systems and Softwar
IEEE, 2016, pp. 46–56.

[5] S. Che, J. Li, J. W. Sheaffer, K. Skadron, J. Lach, Acceleratin
intensive applications with gpus and fpgas, in: Application S
cessors, 2008. SASP 2008. Symposium on, IEEE, 2008, pp. 1

[6] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli
nandez, L. Krpalkova, D. Riordan, J. Walsh, Deep learning vs
computer vision, in: K. Arai, S. Kapoor (Eds.), Advances in
Vision, Springer International Publishing, Cham, 2020, pp. 12

[7] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, S. Zhang, Un
performance differences of fpgas and gpus, in: 2018 IEEE 2
International Symposium on Field-Programmable Custom
Machines (FCCM), IEEE, 2018, pp. 93–96.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
Rodinia: A benchmark suite for heterogeneous computing, in
Characterization, 2009. IISWC 2009. IEEE International Sym
Ieee, 2009, pp. 44–54.

[9] P. Cooke, J. Fowers, G. Brown, G. Stitt, A tradeoff analysis of
and multicores for sliding-window applications, ACM Tran
Reconfigurable Technology and Systems (TRETS) 8 (1) (201

[10] J. Fowers, G. Brown, P. Cooke, G. Stitt, A performance and e
parison of fpgas, gpus, and multicores for sliding-window a
in: Proceedings of the ACM/SIGDA international symposiu
Programmable Gate Arrays, ACM, 2012, pp. 47–56.

[11] C. Brugger, L. Dal’Aqua, J. A. Varela, C. De Schryver, M. Sad
M. Klein, M. Siegrist, A quantitative cross-architecture stu
phological image processing on cpus, gpus, and fpgas, in:
Applications & Industrial Electronics (ISCAIE), 2015 IEEE S
on, IEEE, 2015, pp. 201–206.

[12] E. Fykse, Performance comparison of gpu, dsp and fpga impl
of image processing and computer vision algorithms in embedd
Master’s thesis, Institutt for elektronikk og telekommunikasjo

[13] M. Blott, L. Halder, M. Lesser, L. Doyle, Qutibench: Benchma
networks on heterogeneous hardware, ACCEPTED to be publi

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Im
Large-Scale Hierarchical Image Database, in: CVPR09, 2009

[15] Y. Liu, H. Zhang, L. Zeng, W. Wu, C. Zhang, Mlbench: Ben
machine learning services against human experts, in: Procee
VLDB Endowment (VLDB 2018), proceedings of the vldb
(vldb 2018) Edition, 2018.

[16] Deepbench: Benchmarking deep learning operations on differe
https://svail.github.io/DeepBench/, accessed: 2019

[17] Spec 2018. standard performance evaluation corporation, htt
org, accessed: 2019-08-17.

[18] J. D. McCalpin, Stream: Sustainable memory bandwidth in
mance computers. (2018), https://www.cs.virginia.edu
accessed: 2019-08-17.

[19] Arm neon technology, https://developer

architectures/instruction-sets/simd-isas/neon,
2019-08-17.

[20] Intel instruction set extensions technology, https://w

com/content/www/us/en/support/articles/0000057

processors.htmln, accessed: 2019-08-17.
[21] G. Bradski, Open source computer vision library, https://op

opencv-4-0-0.html (2018).
[22] NVIDIA., Nvidia visionworks toolkit, https://develope

com/embedded/visionworks (2018).
[23] Xilinx., xfopencv library functions., https://ww

13

Jo
ur

na
l P

re
-p

ro
of

com/support/documentation/sw_manuals/xilinx2018_3/

ug1233-xilinx-opencv-user-guide.pdf (2018).
[24] Deep neura

master/d2

cessed: 201
[25] NVIDIA., N

//develop

[26] Xilinx
design-to

[27] Openvino t
org/lates

[28] Software
ip-produc

2020-04-17
[29] fast-dnn, ht

04-17.
[30] C. Szegedy

han, V. Van
Proceedings
nition, 2015

[31] K. He, X. Z
nition, in: P
pattern reco

[32] M. Sandler,
Inverted res
conference
4520.

[33] F. N. Iandola
Squeezenet
mb model s

[34] M. Horowit
Scaling, po
2005. IEDM

[35] Computer v
PYNQ-Comp

[36] V. Boppana
Ultrascale+

2015 IEEE,
[37] Background

tutorial_

Journal Pre-proof
l networks (dnn module), https://docs.opencv.org/

/d58/tutorial_table_of_content_dnn.html, ac-
9-08-17.
vidia tensorrt: Programmable inference accelerator, https:
er.nvidia.com/tensorrt (2019).
vitis ai, https://www.xilinx.com/products/

ols/vitis/vitis-ai.html, accessed: 2020-04-17.
oolkit documentation, https://docs.openvinotoolkit.
t/index.html, accessed: 2020-04-17.
developer kit (sdk), https://developer.arm.com/

ts/processors/machine-learning/arm-nn, accessed:
.
tps://github.com/ahmetaa/fast-dnn, accessed: 2020-

, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
houcke, A. Rabinovich, Going deeper with convolutions, in:
of the IEEE conference on computer vision and pattern recog-
, pp. 1–9.
hang, S. Ren, J. Sun, Deep residual learning for image recog-
roceedings of the IEEE conference on computer vision and
gnition, 2016, pp. 770–778.
A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2:
iduals and linear bottlenecks, in: Proceedings of the IEEE
on computer vision and pattern recognition, 2018, pp. 4510–

, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K. Keutzer,
: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5
ize, arXiv preprint arXiv:1602.07360 (2016).
z, E. Alon, D. Patil, S. Naffziger, R. Kumar, K. Bernstein,
wer, and the future of cmos, in: Electron Devices Meeting,

Technical Digest. IEEE International, IEEE, 2005.
ision overlays on pynq, https://github.com/Xilinx/

uterVision, accessed: 2018-12-17.
, S. Ahmad, I. Ganusov, V. Kathail, V. Rajagopalan, R. Wittig,
mpsoc and fpga families, in: Hot Chips 27 Symposium (HCS),
IEEE, 2015, pp. 1–37.

subtraction, https://docs.opencv.org/3.4/db/d5c/

py_bg_subtraction.html, accessed: 2018-12-17.

14

Jo
ur

na
l P

re
-p

ro
of

ResNet50 J.s/f2)
Platform compute

ZCU102 2.03
ZCU102 0.74
ZCU102 0.49
ZCU102 0.45
ZCU102 0.41
ZCU102 0.41
ZCU102 0.43
ZCU102 0.42

TX2, MaxN 1.54
TX2, MaxN 1.14
TX2, MaxN 1.01
TX2, MaxN 0.97
TX2, MaxN 0.92
TX2, MaxN 0.89
TX2, MaxN 0.89
TX2, MaxN 0.91
TX2, MaxN 5.31
TX2, MaxN 4.09
TX2, MaxN 3.82
TX2, MaxN 3.60
TX2, MaxN 3.44
TX2, MaxN 3.37
TX2, MaxN 3.51
TX2, MaxN 3.45

TX2, MaxQ 1.68
TX2, MaxQ 1.21
TX2, MaxQ 1.05
TX2, MaxQ 1.06
TX2, MaxQ 0.98
TX2, MaxQ 0.97
TX2, MaxQ 1.02
TX2, MaxQ 1.05
TX2, MaxQ 5.82
TX2, MaxQ 4.60
TX2, MaxQ 4.13
TX2, MaxQ 3.90
TX2, MaxQ 3.72
TX2, MaxQ 3.60
TX2, MaxQ 3.60
TX2, MaxQ 3.88

TX2, MaxP 1.40
TX2, MaxP 1.03
TX2, MaxP 0.91
TX2, MaxP 0.90
TX2, MaxP 0.84
TX2, MaxP 0.82
TX2, MaxP 0.87
TX2, MaxP 0.90
TX2, MaxP 5.02
TX2, MaxP 3.86
TX2, MaxP 3.63
TX2, MaxP 3.44
TX2, MaxP 3.26
TX2, MaxP 3.22
TX2, MaxP 3.36
TX2, MaxP 3.41

Journal Pre-proof
Table 7: Inference Results ResNet50
Accuracy [%] Latency [ms] Throughput [fps] Power [W] Energy/Frame (mJ/f) EDP (m

Parameters Top-5 (Top-1) system compute system compute system compute system

INT8, t=1 90.85 (72.53) 17.78 14.82 43.75 67.64 9.3 212.6 137.5 4.86
INT8, t=2 90.85 (72.53) 18.59 15.57 107.37 127.66 12.1 112.7 94.8 1.05
INT8, t=3 90.85 (72.53) 20.69 17.61 120.67 169.74 14.05 116.4 82.8 0.96
INT8, t=4 90.85 (72.53) 24.62 21.52 161.76 183.81 15.19 93.9 82.6 0.58
INT8, t=5 90.85 (72.53) 29.96 27.05 165.99 193.02 15.13 91.2 78.4 0.55
INT8, t=6 90.85 (72.53) 35.5 32.48 167.64 193.79 15.59 93.0 80.4 0.55
INT8, t=7 90.85 (72.53) 41.59 38.55 168.13 190.79 15.56 92.5 81.6 0.55
INT8, t=8 90.85 (72.53) 47.61 44.41 167.29 191.91 15.53 92.8 80.9 0.55

FP16, b=1 92.12 (75.11) 13.99 10.68 70.96 93.94 13.62 191.9 145 2.7
FP16, b=2 92.12 (75.11) 23.65 18.25 84.38 110.83 14.0 165.9 126.3 1.97
FP16, b=4 92.12 (75.11) 43.79 34.23 91.16 118.09 14.08 154.5 119.2 1.69
FP16, b=8 92.12 (75.11) 84.79 65.86 94.33 121.41 14.23 150.9 117.2 1.6
FP16, b=16 92.12 (75.11) 162.58 126.23 98.41 126.5 14.65 148.9 115.8 1.51
FP16, b=32 92.12 (75.11) 317.87 247.34 100.91 129.51 14.95 148.2 115.4 1.47
FP16, b=64 92.12 (75.11) 620.08 490.37 103.53 130.42 15.18 146.6 116.4 1.42
FP16, b=128 92.12 (75.11) 1211.85 975.98 104.85 131.08 15.72 149.9 119.9 1.43
FP32, b=1 92.11 (75.15) 22.32 18.97 44.67 52.79 14.8 331.3 280.4 7.42
FP32, b=2 92.11 (75.15) 38.46 32.96 51.96 60.99 15.22 292.9 249.5 5.64
FP32, b=4 92.11 (75.15) 72.96 62.96 54.8 63.68 15.49 282.7 243.2 5.16
FP32, b=8 92.11 (75.15) 141.13 122.18 56.67 65.55 15.49 273.3 236.3 4.82
FP32, b=16 92.11 (75.15) 272.41 235.85 58.74 67.8 15.82 269.3 233.3 4.58
FP32, b=32 92.11 (75.15) 531.12 460.67 60.29 69.46 16.24 269.4 233.8 4.47
FP32, b=64 92.11 (75.15) 1042.67 913.42 61.3 69.93 17.15 279.8 245.2 4.56
FP32, b=128 92.11 (75.15) 2115.54 1810.9 59.95 70.53 17.15 286.1 243.2 4.77

FP16, b=1 92.12 (75.11) 20.46 15.86 48.71 64.29 6.96 142.9 108.3 2.93
FP16, b=2 92.12 (75.11) 34.65 26.69 57.57 75.47 6.88 119.5 91.2 2.08
FP16, b=4 92.12 (75.11) 64.53 50.01 61.88 80.15 6.77 109.4 84.5 1.77
FP16, b=8 92.12 (75.11) 124.75 96.69 64.08 82.73 7.23 112.8 87.4 1.76
FP16, b=16 92.12 (75.11) 239 185.17 66.86 86.3 7.3 109.2 84.6 1.63
FP16, b=32 92.12 (75.11) 466.49 362.02 68.56 88.37 7.61 111.0 86.1 1.62
FP16, b=64 92.12 (75.11) 924.53 717.12 69.19 89.11 8.1 117.1 90.9 1.69
FP16, b=128 92.12 (75.11) 1838.48 1429 69.47 89.51 8.45 121.6 94.4 1.75
FP32, b=1 92.11 (75.15) 32.66 27.94 30.49 36.17 7.61 249.6 210.4 8.19
FP32, b=2 92.11 (75.15) 56.36 48.32 35.41 41.56 7.95 224.5 191.3 6.34
FP32, b=4 92.11 (75.15) 106.84 92.09 37.41 43.48 7.8 208.5 179.4 5.57
FP32, b=8 92.11 (75.15) 207.45 179.45 38.56 44.61 7.76 201.2 174 5.22
FP32, b=16 92.11 (75.15) 398.74 344.35 40.1 46.48 8.03 200.2 172.8 4.99
FP32, b=32 92.11 (75.15) 779.69 673.93 41.01 47.46 8.1 197.5 170.7 4.82
FP32, b=64 92.11 (75.15) 1540.33 1333.2 41.52 47.97 8.29 199.7 172.8 4.81
FP32, b=128 92.11 (75.15) 3118.09 2650.9 40.85 48.2 9.02 220.8 187.1 5.41

FP16, b=1 92.12 (75.11) 16.52 12.46 60.12 81.87 9.36 155.7 114.3 2.59
FP16, b=2 92.12 (75.11) 28.1 20.92 70.93 96.51 9.59 135.2 99.4 1.91
FP16, b=4 92.12 (75.11) 52.22 39.14 76.53 102.41 9.59 125.3 93.6 1.64
FP16, b=8 92.12 (75.11) 100.21 75.54 79.74 105.97 10.09 126.5 95.2 1.59
FP16, b=16 92.12 (75.11) 193.89 145.36 82.51 110.08 10.13 122.8 92 1.49
FP16, b=32 92.12 (75.11) 375.86 283.47 85.21 112.82 10.39 121.9 92.1 1.43
FP16, b=64 92.12 (75.11) 733.74 562.74 87.2 113.88 11.34 130 99.6 1.49
FP16, b=128 92.12 (75.11) 1453.87 1121.2 87.78 113.94 11.64 132.6 102.2 1.51
FP32, b=1 92.11 (75.15) 26.16 22 38.03 46.07 10.66 280.3 231.4 7.37
FP32, b=2 92.11 (75.15) 45.07 37.86 44.26 53.12 10.88 245.8 204.8 5.55
FP32, b=4 92.11 (75.15) 85.31 72.25 46.88 55.54 11.19 238.7 201.5 5.09
FP32, b=8 92.11 (75.15) 165.16 140.36 48.43 57.1 11.23 231.9 196.7 4.79
FP32, b=16 92.11 (75.15) 318.38 270.54 50.22 59.16 11.42 227.4 193 4.53
FP32, b=32 92.11 (75.15) 621.3 528.54 51.51 60.52 11.8 229.1 195 4.45
FP32, b=64 92.11 (75.15) 1219.1 1046.8 52.38 61.08 12.52 239 205 4.56
FP32, b=128 92.11 (75.15) 2495.53 2076.5 50.94 61.52 12.9 253.2 209.7 4.97

15

Jo
ur

na
l P

re
-p

ro
of

Category
GA

Image Arithm .0
.0
.0
.6
.0
.0
.55
.0
.0
.22
.23
.0

Input Process .0
.0
.0
.0
.0

Geometric Tr .0
.0
.35
.0

Filters .0
.36
.0
.0
.0
.0
.43

Analysis .0
.05
.0
.0
.0

Features /A
/A
.0
.0
.02

Journal Pre-proof
Table 8: Frame Rate (fps) of Different Vision Kernels on CPU, GPU and FPGA

Kernel Frame Rate (fps) L1-norm Error
ARM GPU FPGA GPU FP

etic absolute diff 904 3717 133 0.0 0
accumulate 301 2262 127 0.0 0
accumulate squared 281 2283 128 0.0 0
accumulate weighted 286 3846 128 0.0 0
arithmetic add 913 4065 128 0.0 0
arithmetic subtract 884 4048 133 0.0 0
arithmetic multiply 259 2985 132 0.0 0
bitwise and, or, xor 879 3546 133 0.0 0
bitwise not 1612 4424 128 0.0 0
magnitude 227 1838 108 1.96 0
phase 150 2222 108 1.23 0
threshold 1996 3745 135 1.35 0

ing channel combine 881 2132 135 0.0 0
channel split 443 2277 138 0.0 0
color conversion 53 2147 132 0.0 0
bit depth conversion 1141 3344 137 0.0 0
table lookup 961 3058 32 0.0 0

ansforms affine warp 69 2739 365 0.11 0
perspective warp 36 2604 384 0.11 0
resize 690 2857 350 - 0
remap 33 996 1004 0.11 0

filter 2D 26 1285 134 0.0 0
box filter 253 2824 135 0.0 0
dilate 356 2638 134 6.4 0
erode 359 2645 134 6.8 0
median 323 858 121 0.0 0
pyr Down 377 2150 108 0.45 0
pyr Up 80 1375 104 0.40 0

histogram 354 2164 139 0.0 0
hist equalization 308 1349 69 0.0 0
integral image 235 682 122 0.0 0
mean std deviation 336 1277 141 0.0 0
min max locations 128 734 140 0.0 0

canny 64 101 99 N/A N
fast corner 169 339 49 N/A N
harris corner 11 501 113 0.0 0
optical flow 18 64 5 0.0 0
stereoBM 18 54 7 - 0

16

Jo
ur

na
l P

re
-p

ro
of

Mura

Unive
unive
hardw gn.

Kristo

vision ool
Brugg sity
(2000 and
indus st-
efficie

Alirez t the

Unive UC
San D from
Azad

Micha m of

intern hine
learni ity of
Kaise and
board avily
involv nizer
(H2R FPL,
ISFPG

Jack n

applic . He
has o and
simpl
levera

Lisa H as

carrie
heter
Reutl

Kees , the

Nethe ssor
desig e he
worke d on
sever O at
Cham CTO
office age
proce ming
enviro f the
techn

Jose ty

since , IL,
where
Electr
2001. ting,
and h for
softw

Philli

Unive on
Unive
Engin e
comp ecific
accel

Author Biography Journal Pre-proof
d Qasaimeh: is a Ph.D. candidate in the Department of Electrical and Computer Engineering at Iowa State

rsity. He received his B.S. in computer engineering from JUST university (2011), and his M.Sc. from AUS
rsity (2014). His research interests include image and video processing, parallel hardware architectures,
are accelerators, FPGA/ASIC design, system on chip (SoC) design, and real-time embedded systems desi

f Denolf is a Principal Engineer at Xilinx Research where he is working on video processing and computer

 applications to shape future Xilinx devices. He earned a M.Eng. in electronics from the Katholieke Hogesch
e-Oostende (1998), now part of KULeuven, a M.Sc. in electronic system design from Leeds Beckett Univer
) and a Ph.D. from the Technical University Eindhoven (2007). He has over 20 years of combined research
try experience at IMEC, Philips, Barco, Apple and Xilinx. His main research interest are all aspects of the co
nt design of video, vision and graphics systems.

a Khodamoradi is currently a Ph.D. candidate in the Department of Computer Science and Engineering a

rsity of California, San Diego. He received a master of advanced studies in wireless embedded systems from
iego, master of science from the University of Kerman, and bachelor of science in Electrical Engineering

University, Najafabad.

ela Blott is a Distinguished Engineer at Xilinx Research in Dublin, Ireland, where she heads a tea

ational scientists driving exciting research to define new application domains for Xilinx devices, such as mac
ng, in both embedded and hyperscale deployments. She earned her Master’s degree from the Univers
rslautern in Germany and brings over 25 years of leading edge computer architecture and advanced FPGA
 design, in research institutions (ETH Zurich and Bell Labs) and development organizations. She is he
ed with the international research community serving as the technical co-chair of FPL’2018, workshop orga
C), industry advisor on numerous EU projects, and member of numerous technical program committees (

A, DATE, etc.).

Lo is a Staff Design Engineer at Xilinx Research working on optimizing video processing and computer visio

ations for future Xilinx devices. He earned his B.S. in electrical engineering from Stanford University (1998)
ver 20 years of research and industry experience at Xilinx. His main research interests include accelerating
ifying design entry and specification for various application domains (video, vision, graphics) to optimally
ge Xilinx FPGA technology.

alder finished her M.Sc. in Computer Science at Ulm University in 2019. During her master thesis, which w

d out at Xilinx Research Dublin, she worked at Benchmarking of Neural Networks on different types of
ogenous hardware platforms. Currently she is working as Software Developer at Institut Dr. Foerster in
ingen.

 Vissers: graduated from Delft University in the Netherlands. He worked at Philips Research in Eindhoven

rlands, for many years. The work included Digital Video system design, HW –SW co-design, VLIW proce
n and dedicated video processors. He was a visiting industrial fellow at Carnegie Mellon University, wher
d on early High Level Synthesis tools. He was a visiting industrial fellow at UC Berkeley where he worke
al models of computation and dataflow computing. He was a director of architecture at Trimedia, and CT
eleon Systems. For more than a decade he is heading a team of international researchers at Xilinx in the

. The research topics include machine learning applications and architectures, wireless applications, im
ssing applications and new datacenter applications. These applications drive next generation program
nments and architectures. He has been instrumental in the High-Level Synthesis technology and one o

ical leads of the AI Engines in Versal. He is a Fellow at Xilinx.

ph Zambreno has been with the Department of Electrical and Computer Engineering at Iowa State Universi

 2006, where he is currently a Professor. Prior to joining ISU he was at Northwestern University in Evanston
 he graduated with his Ph.D. degree in Electrical and Computer Engineering in 2006, his M.S. degree in
ical and Computer Engineering in 2002, and his B.S. degree summa cum laude in Computer Engineering in
 His research interests include computer architecture, compilers, embedded systems, reconfigurable compu
ardware/software co-design, with a focus on run-time reconfigurable architectures and compiler techniques
are protection.

p H. Jones received his B.S. degree in 1999 and M.S. degree in 2002 in electrical engineering from the

rsity of Illinois at Urbana-Champaign, and his Ph.D. degree in 2008 in computer engineering from Washingt
rsity in St. Louis. Currently, he is an Associate Professor in the Department of Electrical and Computer
eering at Iowa State University, Ames, where he has been since 2008. His research interests are in adaptiv
uting systems, reconfigurable hardware, embedded systems, and hardware architectures for application-sp
eration.

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

We flicts

of int own
confli ork
that c med
autho rther
confir

We this
work ct to
intelle ning
intelle lved
either dies
and th or is
the so ice).
He/sh final
appro the
Corre y all
autho

Journal Pre-proof
AUTHORS DECLARATION

wish to draw the attention of the Editor to the following facts which may be considered as potential con
erest and to significant financial contributions to this work. [OR] We wish to confirm that there are no kn
cts of interest associated with this publication and there has been no significant financial support for this w
ould have influenced its outcome. We confirm that the manuscript has been read and approved by all na
rs and that there are no other persons who satisfied the criteria for authorship but are not listed. We fu
m that the order of authors listed in the manuscript has been approved by all of us.

confirm that we have given due consideration to the protection of intellectual property associated with
and that there are no impediments to publication, including the timing of publication, with respe
ctual property. In so doing we confirm that we have followed the regulations of our institutions concer
ctual property. We further confirm that any aspect of the work covered in this manuscript that has invo
experimental animals or human patients has been conducted with the ethical approval of all relevant bo
at such approvals are acknowledged within the manuscript. We understand that the Corresponding Auth
le contact for the Editorial process (including Editorial Manager and direct communications with the off
e is responsible for communicating with the other authors about progress, submissions of revisions and
val of proofs. We confirm that we have provided a current, correct email address which is accessible by
sponding Author and which has been configured to accept email from (​qasaimeh@iastate.edu​) Signed b
rs as follows:

● Murad Qasaimeh: (08/26/19)

● Lisa Halder:

● Kristof Denolf:

● Kees Vissers:

● Michaela Blott:

● Joseph Zambreno:

● Alireza Khodamoradi:

● Phillip H. Jones:

● Jack Lo:

 Jo
ur

na
l P

re
-p

ro
of

