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Abstract

Developing efficient embedded vision applications requires exploring various algorithmic optimization trade-offs and a broad
spectrum of hardware architecture choices. This makes navigating the solution space and finding the design points with optimal
performance trade-offs a challenge for developers. To help provide a fair baseline comparison, we conducted comprehensive
benchmarks of accuracy, run-time, and energy efficiency of a wide range of vision kernels and neural networks on multiple embedded
platforms: ARMS57 CPU, Nvidia Jetson TX2 GPU and Xilinx ZCU102 FPGA. Each platform utilizes their optimized libraries for
vision kernels (OpenCV, VisionWorks and xfOpenCV) and neural networks (OpenCV DNN, TensorRT and Xilinx DPU). For vision
kernels, our results show that the GPU achieves an energy/frame reduction ratio of 1.1-3.2x compared to the others for simple
kernels. However, for more complicated kernels and complete vision pipelines, the FPGA outperforms the others with energy/frame
reduction ratios of 1.2-22.3x. For neural networks [Inception-v2 and ResNet-50, ResNet-18, Mobilenet-v2 and SqueezeNet], it
shows that the FPGA achieves a speed up of [2.5, 2.1, 2.6, 2.9 and 2.5]x and an EDP reduction ratio of [1.5, 1.1, 1.4, 2.4 and 1.7]x

compared to the GPU FP16 implementations, respectively.

Keywords: Benchmarks, CPUs, GPUs, FPGAs, Embedded Vision, Neural Networks.

1. Introduction

Computer vision empowered with the recent advances in deep
learning plays a fundamental role in solving many problems
that seemed impossible just a decade ago. The computational
complexity and memory footprint of these algorithms keep in-
creasing to enhance accuracy or solve more complex problems
[1]. This trend is driving the development of energy-eflicient
processing solutions, which are especially important for energy
or thermal constrained real-time embedded systems. Often their
limited communication power budget or communication capa-
bilities preclude them from streaming images to more powerful
computing entities.

Both industry and academia have explored the development
of acceleration engines to help meet the needs of embedded
vision applications. Three common types of such accelerators
are benchmarked in this case study: multicore CPUs, Graphic
Processing Units (GPUs), and Field Programmable Gate Arrays
(FPGAs). Each of these accelerators take a different approach
to accelerating embedded vision applications. Multi-core CPUs
make use of SIMD instruction extensions, such as: the ARM
NEON SIMD engine, Intel’s family of SSE, and dedicated vision
processing units (VPU), such as Myriad [2]. The multi-threading
programming model has made GPUs highly popular in this do-
main. GPUs provide massively parallel execution resources
and high memory bandwidth. However, their high performance
comes at the cost of high power dissipation [3]. FPGAs of-
fer opportunities for using low-level fine-grained parallelism
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by customizing processing/control units and data paths to the
requirements of a specific algorithm or application [4].

Embedded vision applications can exhibit vastly different
performance characteristics depending on their underlying hard-
ware accelerator platform and compute fabrics [5]. This varying
behavior fundamentally stems from differences in accelerator mi-
cro architectures, middleware support, and programming styles.
This mixture of factors makes choosing the best application-
to-accelerator mapping a nontrivial task for embedded vision
application developers. They must take into consideration met-
rics, such as expected runtime performance, energy-efficiency,
and programmability. Moreover, running vision pipelines on
heterogeneous platforms requires partitioning them into phases
that can run on the available accelerators in the most efficient
and cost-effective manner.

Beside the broad spectrum of hardware architectures choices
for vision applications, there are various complexity-accuracy
algorithmic trade-offs that need to be explored [6]. Quantization
and pruning are two examples of optimization methods that are
used to reduce the computational complexity and memory re-
quirement of vision algorithms but at the expense of accuracy
loss. Another design choice that need to be explored is decid-
ing whether neural network solutions are more suitable choice
compared to the traditional vision kernels for a specific vision
application. The traditional (hand-engineered) algorithms are
mature, proven, and optimized for performance and power effi-
ciency, while neural networks (learned algorithms) offer greater
accuracy and versatility, but demand large amounts of computing
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and resources. Moreover, the modeling capacity of traditional
vision kernels are limited by the fixed transformations (filters)
that stay the same for different sources of data. While learned
features are data-driven and adapt based on the training data.
Therefore, the complexity-accuracy trade-offs between neural
networks solutions and traditional vision kernels need to be
taken into consideration during the development process.

In order to clearly understand how different hardware architec-
tures may impact the performance of vision kernels and neural
networks, we analyze their performance on such accelerators.
In this paper, we evaluate the performance of three commonly
used HW accelerators for vision applications: the ARM Cortex
A57 CPU, Jetson TX2 GPU, and ZCU102 FPGA in terms of
accuracy, run-time performance (latency and throughput), and
energy efficiency. For vision kernel benchmarking, we propose
an easily reproducible approach that only uses publicly available
vision libraries: OpenCV, Nvidia VisionWorks and xfOpenCV,
without adding any special platform specific code. We also eval-
uate the performance of neural network inference implementa-
tion of [Inception-v2 and ResNet-50, ResNet-18, Mobilenet-v2
and SqueezeNet] using OpenCV DNN module, Nvidia Ten-
sorRT and Xilinx Vitis Al frameworks running on these acceler-
ators. All benchmark code is available at: https://github.com/isu-
rcl/cvBench.

Contributions. The main contributions of this paper are: (1)
Benchmark representative vision kernels and complete pipelines
using OpenCV, Visionworks and xfOpenCV libraries on the
ARMS7 CPU, Nvidia Jetson TX2 (GPU-accelerated) and Xil-
inx UltraScale (FPGA-accelerated), (2) Benchmark a set of five
neural networks implementations using OpenCV DNN mod-
ule, Nvidia TensorRT and Xilinx DPU, (3) Provide an insight
into the reasons behind the observed run-time, power, and en-
ergy consumption performance for each evaluated platform and
discuss rationales for why a given underlying hardware archi-
tecture innately performs well or poorly, and (4) Provide easily
reproducible open-source benchmarking templates that only use
publicly available vision libraries.

Organization. The remainder of this article is structured as
follows. Section 2 reviews related work. Section 3 provides
insights into the architectural differences between the hardware
accelerators evaluated. It also provides details on the six cat-
egories of vision algorithms and two neural networks used in
our study. Section 4 presents the performance metrics used in
this study and provide a detailed description of our measure-
ment methodology. Section 5 discusses our experimental results
and observations. Finally, Section 6 concludes the paper with
outlooks for future work.

2. Related Work

In this section, we take a look at existing benchmarking efforts
in the literature that evaluate the performance of vision kernels
and neural networks on embedded platforms. Even though
most prior benchmarking efforts focus solely on comparing the
performance of a limited number of vision kernels or cover only
subsections of the embedded design space in evaluating neural

networks performance, there are a few exceptions discussed in
this section.

Vision kernels benchmarks. The comparison study in [7]
analyzed the performance efficiency of FPGAs and GPUs on the
GPU-friendly benchmark suite (Rodinia). They ported 15 of its
kernels using Vivado HLS for the FPGA and OpenCL for host
programs. The platforms used were a Xilinx Virtex-7 FPGA and
Nvidia Tesla K40c GPU. Although this study included some
vision kernels such as: GICOV, Dilate, SRAD and MGVF, it
was not mainly focused on benchmarking vision algorithms;
it included other kernels for data mining, fluid dynamic, and
physics simulation, etc [8].

Other comparison studies each focused on a subset of vision
kernels. For example, the study in [9] and [10] evaluated the
performance of sliding window applications on FPGAs, GPUs
and multi-core CPUs. They compared the performance of three
applications: Sum of Absolute Differences (SAD), 2D convolu-
tion, and correntropy. The platforms used in their study were an
Altera Stratix IV FPGA, an Nvidia GeForce GTX 560, and an
Intel Xeon Core i7. Another study in [11] focused on comparing
the performance of morphological image filtering operations.
The authors utilized the OpenCV library for CPU and GPU
(cv::CUDA module) implementations. For the FPGA platform,
they used Vivado HLS video libraries and hand-optimized im-
plementations. The platforms used in their study were the Xilinx
Zynq 7020 FPGA, Nvidia Tegra K1, and Intel core i7. The
work in [12] also focused only on a subset of vision operations
such as normalized cross correlation and finite impulse response
(FIR) filters. This study’s evaluation included development time,
component cost, and power consumption.

Neural networks benchmarks. There are two types of machine
learning benchmarks based on the classification of [13]: (1) Ma-
chine learning (ML) benchmarks focus mainly on achieving high
test accuracy, independent of the hardware implications. Exam-
ples of this kind of benchmarks are ILSVRC ImageNet competi-
tion [14] and MLBench [15], (2) Performance benchmarks focus
on measuring performance metrics such as latency, throughput
and power consumption. This category of benchmarks give algo-
rithmic modifications freedom to reach the highest performance.
Examples include DeepBench [16], SPEC [17] and STREAM
[18]. A more complete benchmarking suite has been proposed in
QuTiBench [13]. QuTiBench is a novel multi-tiered benchmark-
ing methodology that supports algorithmic optimizations and
couple hardware performance with accuracy at the application
level. It includes test suites at 4 levels of abstraction: (1) level-0
includes roofline analysis that provides insight into the memory
and compute requirements, (2) level-1 focuses on the achievable
compute performance for different compute patterns, (3) level-2
captures potential bottlenecks in data movements, and (4) level-3
covers the system-level performance.

Our benchmark is exhaustive and energy-efficiency focused:
we evaluate the accuracy, run-time, and energy consumption of
different embedded hardware platforms over a wide range of
standard vision kernels, vision pipelines and neural networks.
The results are easily reproducible through the use of open-
source benchmarking templates that only use publicly available
vision and neural network libraries.



3. Background

In this section, we first present the characteristics of the hard-
ware accelerators evaluated in this study. Then, we briefly dis-
cuss three vision libraries and neural network inference frame-
works that are widely used with these accelerators. We group
the vision kernels into categories based on their characteris-
tics to understand the implications of the underlying hardware
architectures on the performance of these kernels in their respec-
tive categories. Finally, we provide details on the used neural
networks models and their architectures.

3.1. Embedded Platforms

The following are the three most common platforms used in
embedded vision applications:

3.1.1. Central Processing Unit (CPU):

Modern CPUs are able to perform SIMD (Single Instruction,
Multiple Data) instructions using multiple ALUs. Such process-
ing scheme exploit data level parallelism; there are simultaneous
(parallel) computations, but only a single process (instruction) at
a given moment. These SIMD instruction sets are useful in the
context of image processing, where operations are often repeti-
tively applied to a continuous stream of data. This is particularly
true in the context of computer vision, where most operations are
performed over the entire image. Examples of SIMD architec-
tures are: ARM NEON SIMD engine [19] and Intel’s streaming
SIMD extensions (SSE) [20].

3.1.2. Graphic Processing Unit (GPU):

As compared to general purpose CPUs, which have developed
SIMD instruction extensions to help parallelize image process-
ing type tasks, GPUs have taken the direction of evolving into
a specialized SIMD architecture. This specialization has led to
GPUs having simpler processing cores than high-performance
general purpose CPUs. For example, they have simpler control
logic, typically no branch prediction or prefetch, and small per-
core memory. Simpler computing cores allow GPUs to pack
many more cores into a chip than a general purpose CPU. GPU
architectures perform extremely well on workloads that have lit-
tle to no branching conditions or data dependences. Additionally,
GPU architectures have specialized their memory architecture
to support high-speed data streaming for image processing. For
example, the L2 cache in the Jetson TX2 (Pascal GPU) is 2048
KB, which can fit a 1080p grayscale image.

3.1.3. Field Programmable Gate Array (FPGA):

Instead of having a fixed processor-like design, FPGAs con-
sist of an array of logic blocks, DSPs, on-chip BRAMs, I/O
pads, and routing channels. In FPGA, custom data paths can be
architected to stream pixels directly between computing units
without needing to read/write from/to external memory. More-
over, the distributed on-chip BRAMs can be used to exploit data
locality in vision kernels by keeping pixels on-chip (e.g Zynq
UltraScale MPSoC FPGA has 32.1 Mb on-chip memory). With
FPGAs, developers need to ensure that their customized designs
meet timing and space requirements.

3.2. Computer Vision Libraries

A number of vision libraries have been optimized to target
the hardware platforms discussed in the previous section. In this
work, we focused on the most complete and commonly used
libraries, as follows:

3.2.1. OpenCV:

OpenCV (Open Source Computer Vision Library) is the de-
facto standard C/C++ library for image and vision processing
[21]. It is used by the computer vision community to create
desktop and embedded vision applications. It has more than
2500 optimized vision kernels, which includes a comprehensive
set of both traditional and state-of-the-art vision and machine
learning algorithms. OpenCV has bindings for languages such
as Python and Java. The latest version of OpenCV (at the time
of writing this paper) is 4.1.1.

3.2.2. NVIDIA VisionWorks:

VisionWorks is a toolkit for computer vision and image pro-
cessing released by Nvidia in 2015 [22]. It implements and ex-
tends the OpenVX standard, and is optimized for CUDA-capable
GPUs. VisionWorks provides three programming models: (1)
immediate mode which enables developers to easily port their
applications, (2) graph mode which enables advanced optimiza-
tions such as: buffer reuse, efficient use of streaming and CUDA
textures, tiling and pipelining functions at sub-frame level, and
(3) CUDA API which enables developer with low-level access to
manage data allocations and transfer, scheduling and pipelining.
The latest version of VisionWorks is 1.6.

3.2.3. Xilinx xfOpenCV:

The xfOpenCV library is a set of OpenCV functions optimized
for Zynq, Zynq Ultrascale+, and Alveo FPGAs devices by Xilinx
[23]. It was first released in 2017, as part of the Xilinx reVISION
stack. xfOpenCV kernels are implemented using HLS to work
in their SDx development environment and provides a software
interface for building vision pipelines on FPGAs. The library
includes a set of 60+ vision kernels optimized to be mapped into
the programmable logic. The latest version of the xfOpenCV
library is 2019.1.

3.3. Neural Network Inference Frameworks

In this work, we used the following three deep learning infer-
ence frameworks to benchmark neural networks:

3.3.1. OpenCV DNN Module:

OpenCV DNN module has been promoted from the contrib
repository to the main repository since the release of OpenCV
3.3 [24]. The module now supports deep learning frameworks
such as Caffe, TensorFlow, and Torch/PyTorch. It only supports
the forward pass by importing weights from pre-trained models.
OpenCV DNN also includes a set of pre-processing functions for
preparing images, such as: cropping, channel swapping, mean
subtraction, etc. Examples of compatible network architectures
include: GoogleLeNet, AlexNet, SqueezeNet, VGGNet and
ResNet. The module supports SSE, AVX, NEON acceleration
and Halide backend.



3.3.2. NVIDIA TensorRT:

TensorRT is a framework for implementing high-performance
inference on NVIDIA GPUs [25]. TensorRT applies couple of
optimizations to deep learning networks such as: (1) Weight and
activation precision quantization to FP16 and INTS8 to maximizes
throughput while maintaining accuracy, (2) Optimizing the use
of GPU memory and bandwidth by layer and tensor fusion, (3)
Kernel auto-tuning to select best data layers and algorithms
based on target GPU platform, (4) Dynamic tensor memory allo-
cation to re-use memory efficiently, (5) Multi-stream execution
to process multiple input streams in parallel. The integration of
TensorRT with TensorFlow allows for applying TensorRT GPU
optimizations within TensorFlow environment.

3.3.3. Xilinx Vitis Al:

Xilinx Vitis Al is a deep learning framework that provides a
combination of flexibility, high performance, low latency and
low power consumption for deploying deep learning inference
into Xilinx FPGAs and SoCs [26]. It allows for compressing
DNN models to reduce their size without loss of accuracy, and
compiling DNN models into DPU instruction code before de-
ploying them into the target DPU platform. Xilinx DPU provides
a customized and scalable overlay with ISA architecture for op-
timized DNNs implementations.

Examples of other libraries and frameworks for embedded
DNNs: (1) Intel OneDNN [27]: is a framework that supports
heterogeneous execution across Intel CPUs, Graphics, FPGAs
and vision accelerators VPUs. (2) ARM NNJ[28]: is a frame-
work that enable efficient translation of DNNs allowing them
to run efficiently across ARM Cortex-A CPUs, ARM, Mali
GPUs and ARM Ethos NPUs. (3) FAST DNN[29]: is a frame-
work that is optimized for CPUs using SIMD instructions, linear
quantization, batch processing, sigmoid lookup and lazy output
calculation.

3.4. Categories of Vision Kernels

Computer vision algorithms can be grouped into six cate-
gories based on their functionality, as shown in Figure 1. The

complexity of these kernels grows over the first five categories.
The last category includes composite kernels, which are com-
posed of kernels from other categories. The following discusses
each category in more detail:

3.4.1. Input Processing:

The kernels in this group are usually used as pre-processing
steps. They include simple arithmetic operations to change the
input format or number of channels into a desired format. Some
examples of these kernels are: channel combine, channel extract,
color conversion, and bitdepth conversion.

3.4.2. Image Arithmetic:

Image arithmetic applies standard arithmetic/logic operations
to one or more images. Because of the multi-dimensional nature
of these pixel based operations, these kernels can benefit from
highly parallel hardware architectures, such as GPUs and FP-
GAs. Furthermore, the data being processed is very localized;
the algorithms can be distributed among different processing
units without concerns of data dependencies. These operations
include: thresholding, absolute difference, addition/subtraction,
bitwise and/or/xor/not, multiplication, accumulate, accumulate
squared, and accumulate weighted.

3.4.3. Image Filters:

These algorithms compute the correlation between an input
image and a kernel (small matrix of fixed-size). The data in these
algorithms are local to the size of the kernel which is different
from the arithmetic case where the operations were performed
on a pixel basis. When the underlying hardware has enough
local memory to accommodate the kernel size, the algorithm
is still easily distributed among parallel processing units. On
the other hand, nonlinear filters are more irregular as they have
branching conditions. This impedes their decomposition into
parallel blocks. These kernels include: filter2D, box filter, erode,
dilate, median, pyramid up, and pyramid down.
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Figure 1: Examples of Vision Kernels from the Six Categories.
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3.4.4. Image Analysis:

Analytic kernels are typically used to understand character-
istics of an image, such as color distribution, mean, maximum
and minimum pixel value, etc. Also, they are usually placed
at the end of vision pipelines to reduce the image into a deci-
sion variable (min/max locations). These kernels are filled with
branching conditions and complex memory access patterns that
negatively impact their performance on CPUs and GPUs. These
operations include: histogram, mean/std, min/max location, ta-
ble lookup, histogram equalization, and integral image.

3.4.5. Geometric Transformation:

Transformations in geometric space are essential to under-
standing the 3D world through the lens of a 2D image sensor.
These kernels include matrix multiplication that map effectively
into highly parallel architectures composed of simple comput-
ing blocks (e.g. GPU). While these kernels are simple, their
performance is negatively affected by irregular memory access
patterns. These kernels include: remap, resize, affine warp, and
perspective warp.

3.4.6. Composite Kernels:

The kernels in this category are composed in part of kernels
from the previously described categories. Examples of these
composite kernels are: feature extraction, stereo block matching,
and optical flow. Feature extraction is used to find interesting
pixels in an image. Once features are extracted, they are no
longer stored as a continuous block of adjacent pixels in mem-
ory. This forces other kernels to load non-continuous memory
addresses, which may hinder parallelism performance. Stereo
block matching uses two cameras, with known position and
characteristics, to compute disparity by comparing overlapped
regions, leading to a high computational load. Optical flow is
used to estimate the apparent motion of objects between two
consecutive images. Optical flow can be computed for each
pixel (dense) or a subset of pixels (sparse).

3.5. Neural Networks

Convolutional Neural Network (CNN) is a special class of
multi-layer neural networks, designed to recognize and analyze
visual patterns directly from pixel images. They are usually
comprised of a sequence of convolutional layers, activation func-
tions, pooling layers, fully connected layers and normalization
layers. In this study, we focused on five CNNs: (1) Inception-v2:
a 22 layers network that introduces a special 1x1 convolution,
and using global average pooling instead of using fully con-
nected layers [30]. (2) ResNet-50, short for Residual Network.
It introduces the idea of (identity shortcut connection) that skips
one or more layers to address the vanishing gradient problem
[31]. It is a deep residual network of 50 layers. (3) ResNet-18:
one of the residual network variants. It consists of 18 layers. (4)
MobileNet: is a small model built upon the idea of using depth-
wise separable convolutions as efficient building blocks [32]. (5)
SqueezeNet: is a family of models that achieve AlexNet-level
accuracy on ImageNet with 50x fewer parameters [33].

System Performance Compute Performance

;
1

. Compute —H Data

1| Transfer

Image | | Data
Pre-proc. Transfer

Figure 2: Steps involved in compute and system performance
measurements.

4. Experimental Methodology

This section describes the performance metrics, hardware
and software environments used in our benchmarking setup.
It also describes measurement techniques, and introduces our
benchmarking approach.

4.1. Performance Metrics

In this work, we evaluate the efficiency of vision kernels and
neural networks using four performance metrics: (1) accuracy,
(2) run-time, (3) energy per frame, and (4) energy delay product
(EDP). These metrics provide a fair way of comparison between
different design points and a meaningful interpretation to make
design choices. In this subsection, we discuss the performance
metrics, as follows:

4.1.1. Accuracy:

To evaluate the accuracy of vision kernels, we compute the L1-
norm error between the results generated by the GPU and FPGA
implementations and compare them to the CPU implementation.
Table 8 in the appendix shows the L1-norm errors. For neural
networks, classification accuracy (test error rate) is used to eval-
uate the CPU, GPU and FPGA implementations by comparing
their results to the ground truth in the whole Imagenet valida-
tion set with 50k images. The top-1 and top-5 classification
accuracy are reported in this paper for Inception-v2, ResNet-50,
ResNet-18, Mobilenet-v2 and SqueezeNe neural networks.

4.1.2. Run-time:

There are two different types of run-time performance mea-
surements: (1) Compute performance which measures only the
compute part of vision kernel or neural network excluding po-
tential bottlenecks for moving data from/to the external memory.
Even though it doesn’t capture the application level performance,
it reflects the efficiency in preforming various compute patterns,
(2) System performance which measures the performance of
the complete pipeline, including initialization, image reading,
pre-processing, post-processing and data transfer. It measures
the un-optimized performance of the platform by capturing data
movement bottlenecks. Figure (2) shows steps involved in each
of the compute and systems performance measurement.

4.1.3. Energy:

Energy consumption per frame quantifies the amount of elec-
trical energy dissipated by hardware accelerators to perform a
kernel’s operations on one frame. It is measured as the power
consumed during the delay time to process a frame. Device
power can be divided in two parts: (1) Static power: represents
the amount of power consumed when no active computation is
taking place (system is idle), (2) Dynamic power: represents the



amount of power consumed above the static power level when
the system is computing.

4.1.4. Energy-Delay Product (EDP):

Run-time or energy per frame alone do not show the entire
picture. A hardware platform can be extremely low power while
being too slow to be of practical use. The Energy Delay Product
(EDP) [34] metric takes into account the throughput of the algo-
rithm measured in (ms/frame) along with the energy consumed
per frame (mJ/frame). EDP is the product of energy/frame and
delay time. This way, a fair comparison can be made when
deciding which hardware architecture is better suited for specific
computation. Lower EDP is better which means that the hard-
ware architecture can finish specific computation tasks using
less power in less time.

4.2. Measurement Techniques and Platforms:

In this study, we evaluated two popular platforms for deploy-
ing embedded vision applications: Nvidia Jetson TX?2 and Xil-
inx ZCU102. These platforms come equipped with an on-board
power measuring IC that can measure multiple power rails such
as: CPU cores and GPU cores on the Jetson, and programmable
logic, full power CPU cores and low power CPU cores on the
FPGA platform. On the Jetson TX2, shell scripts (running on
its ARM CPU) sample power rails and log their values along
with the system’s timestamp into text files. The act of measuring
power consumes power, thus consequently affects the results.
The presented data in this paper has been corrected for this.
On the ZCU102, a Python script is used to sample power rails
that are accessible through the INA226 and are mapped to PS
readable virtual files in sysfs.

For every benchmark, we first processed 1000 frames on the
CPU core of the platform and then 1000 frames on the hardware
accelerated part of the platform. This can be seen in Figure
(3), where the first two vertical lines mark the first 1000 frames
on the CPU and the following two lines mark the last 1000
frames on the hardware. We computed the average frame rate by
measuring the time between vertical lines and divided it by 1000.
The x-axis represents the number of power samples taken for
each platform. Note that the ZCU102 has a different sampling
rate than the TX2. For vision kernels and pipelines, input frames
were in gray-scale with 1080p resolution. For neural networks,
frames were in RGB with 224x224 resolution. We also used
1024 frames instead 1000 frames to have multiple of batch sizes.

4.2.1. Hardware environments.

In this work, we used Xilinx Zynq UltraScale+ MPSoC
7ZCU102 FPGA board. It has a 16nm XCZU9EG FPGA, and
an on-board 4GB 64bit DDR4 RAM with a peak bandwidth
of 136Gb/s. For GPU board, we used the Nvidia Jetson TX2
(Pascal 256 CUDA cores (16nm)) has 8GBs of 128bit DDR4
RAM with a peak bandwidth of 477.6 Gb/s. Both the FPGA
and GPU have on-chip ARM CPU cores with NEON SIMD
optimization.

The TX2 GPU board supports three operating modes with
different clock frequencies and power consumptions, as fol-
low: (1) Max-Q: (maximum energy efficiency) in this mode

ZCU102 FPGA Jetson TX2 GPU
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Figure 3: Measuring power samples on the platform’s CPU cores (first
1000 frames), and its FPGA or GPU (second 1000 frames).

all components on the TX2 are configured to achieve the best
power-throughput tradeoff. (GPU @ 0.85GHz). (2) Max-P:
this mode increases the GPU’s clock frequencies to increase the
performance sacrificing the power (GPU @ 1.12GHz), and (2)
Max-N: (maximum clock) is the maximum performance mode
allowing the TX2 to hit higher performance at the cost of some
energy efficiency (GPU @ 1.30GHz).

On the ZCU102 FPGA baord, the xfOpenCV FPGA kernels
are clocked at 300 MHz, and the Xilinx DPU overlay at config-
uration mode (3xB4096) runs at 333 MHz. The ARM-A57 is
clocked at 1.7 GHz. Table 1 shows the theoretical peak perfor-
mance of the platform used in this paper.

Table 1: Theoretical Peak Performance of Hardware Platforms [13]

| Platform | Configuration | Data types | Perf [TOPS] |
ARM Cortex A57 FP32, FP64 0.41
Xilinx ZCU102 - INTS8 6.71
NVIDIA Jetson TX2 MaxN FP16, FP32 1.33, 0.67
NVIDIA Jetson TX2 MaxP FP16, FP32 1.15, 0.57
NVIDIA Jetson TX2 MaxQ FP16, FP32 0.87,0.44

4.2.2. Software environments.

We used three publicly available vision libraries: (1) OpenCV
3.4, (2) Nvidia’s VisionWorks 1.6, and (3) Xilinx’s xfOpenCV
2018.3. While the OpenCV code base already comes with some
GPU accelerated code, it does not come with FPGA support.
For this purpose, we used OpenCV compatible C++ wrappers
for xfOpenCV kernels [35]. With this wrapped functionality we
were able to compile the same OpenCV code for both GPU and
FGPA. Both OpenCV and VisionWorks support full IEEE FP
precision, while xfOpenCV supports 8 bit precision.

In neural network benchmarking, NVIDIA TensorRT and
Xilinx Vitis Al are used, since both are hardware-specific frame-
works that are optimized for neural network inference on em-
bedded GPUs and FPGAs, respectively. We used OpenCV 3.4
DNN module to evaluate the performance of ARMS57 CPU. On
NVIDIA side we used Jetpack 3.3 on TX2 and Jetpack 4.1.1
with corresponding TensorRT versions 1. For Xilinx platforms,
the Xilinx Vitis Al framework version 1.1 is used.

4.3. Benchmarking Approach

In this study, we intentionally focused on evaluating the perfor-
mance of out-of-the-box kernels from publicly available libraries
(without writing special platform specific code around kernel
calls) to give a fair comparison in terms of development efforts.



For this reason, we first ran single kernel calls from OpenCV
and VisionWorks libraries on the CPU and GPU, respectively,
and instantiated a single kernel from xfOpenCV in FPGA fabric
(even though small kernels utilize few FPGA resources). We
then measured the efficiency of representative vision pipelines
on the three HW accelerators to quantify their speed and energy
efficiency on these more complete vision applications.

For single kernel evaluation, we compared the efficiency of the
HW accelerators in terms of their energy consumption per frame.
We measured a vision kernel’s dynamic power while excluding
the static power required to power the rest of the platform. This
better reflects the actual workload that is being deployed to the
system since certainly for small kernels, the compute energy
[4] (energy consumed for computation only) and data transfer
energy are usually dominated by the static power. In the vision
pipeline evaluation, we compared the performance of HW ac-
celerators in terms of their energy delay products (EDP). We
used the total power consumption (static + dynamic), because
it represents the actual power consumption when a complete
system is deployed. We also measured the maximum frame rate
achieved on the three HW accelerators. The theoretical frame
rate on the FPGA is fixed for vision kernels that perform a single
pass over the input image. Equation (1) shows an FPGA’s frame
rate when it is clocked at 300MHz for 1080p images.

300MHz

FPS = - =
1080 x 1920 X 1cycle/ pixel

6]

In our experiments, we measure run-time as follow:

o Vision Kernels: We measure the compute performance and
the time to transfer data from/to these kernels.

o Complete Vision Pipelines: We measure the compute per-
formance and the time to transfer data from/to the input
and output of these pipelines. Communication between the
pipeline’s kernels is local on the FPGA (through FIFOs)
and depends on the caching on the GPU.

73.7
73.3

Table 2: Data Movers Energy Consumption Measurements

‘ platform ‘ Time/frame (ms) ‘ Energy/frame (mJ/f) ‘
FPGA 6.945 0.41
GPU 1.298 0.19

e Neural Networks: Due to library limitations, we could not
measure the isolated compute only performance in neural
networks. The weights and activation maps need to be
streamed from/to off-chip memory between layers. There-
fore, only the system performance of neural networks is
measured and reported in this work.

In our experiments, we measure the power as follows:

e Vision Kernels: dynamic power only using the following
power rails: (VCCINT) in the FPGA, (VDD_SYS_GPU) in
the GPU, and (VDD_SYS_CPU) in CPU.

e Complete Vision Pipelines: total power (static + dy-
namic) using the following power rails: (VCCINT) power
rail in the FPGA, (VDD_SYS_GPU) in the GPU, and
(VDD_SYS_CPU) in the CPU.

e Neural Networks: total power (static + dynamic) using the
following power rails: (VCCINT) power rail in the FPGA,
(VDD.-SYS_GPU) in the GPU, and (VDD_SYS_CPU) in
the CPU.

In order to have a sense of the amount of energy consumed for
computation only, we measured the energy consumption of data
movers in the FPGA and GPU. We implemented passthrough
kernels which copy pixels from one memory location to another
without applying any arithmetic/logical operations. In the FPGA
implementation, Xilinx’s SDx tool instantiates data movers [36]
for each input or output port to transfer data between the memory
mapped domain and the stream domain. Table 2 shows that
FPGA takes 6.945 ms to copy an entire image (1080p) with
0.41 mJ/frame, while GPU takes 1.298 ms with 0.19 mJ/frame.
These values can be used to give a sense of the ratio of energy
consumed for computation to data transfer in each kernel.
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5. Experimental Results

This section first presents the benchmarking results of single
vision kernels and a set of representative vision pipelines are
evaluated. Then, it shows the results of a set of neural networks.

5.1. Single Kernel Performance:

Before evaluating the run-time performance and energy/frame
consumption of single kernels on the HW accelerators, we first
compare two available GPU implementations: OpenCV CUDA
module and Nvidia’s VisionWorks toolkit. The OpenCV GPU
module is written using CUDA and as a result benefits from the
CUDA ecosystem. The Visionworks library applies many opti-
mization techniques to boost performance, such as buffer reuse,
kernel fusion, efficient use of streaming and CUDA textures, au-
tomatic scheduling across processing units, tiling and pipelining
vision functions at the sub-frame level. Figure (4) shows the
frame rate (bottom) and energy per frame (top) achieved by run-
ning vision kernels on the Jetson TX2. The dark color represents
OpenCV CUDA module, and the light color represents Vision-
Works. We can observe that the VisionWorks implementation
outperforms the OpenCV module in frame rate over all kernels.
It achieved up to a 9.7x speedup compared to the OpenCV mod-
ule. It also consumes less energy per frame over all kernels.
It achieved up to a 6.3 reduction in energy consumption per
frame. For this reason, in the rest of the paper, we will use only
the VisionWorks implementation for the GPU.

Next, we measured the energy per frame consumption of
vision kernels from the following six categories: (1) input pro-
cessing, (2) arithmetic operations, (3) filter operations, (4) image
analysis, (5) geometric transformation, and (6) composite ker-
nels.

Input processing: The energy/frame of input processing ker-
nels is shown in Figure (5). These kernels mapped well to
the GPU and FPGA compared to the CPU because of their
significant data parallelism, low complexity, and no data depen-
dency. The GPU and FPGA achieved an average reduction ratio
of 1.79% and 1.41x in energy/frame compared to the CPU. It
also shows that GPU’s implementation of bit-depth conversion
achieved a 2.4% reduction compared to FPGA, because of the ef-
ficient use of streaming and CUDA textures in the VisionWorks
kernel’s implementation. In all kernels, the GPU has an order
of magnitude speed up compared to CPU and FPGA in terms of
frame rate.

Energy/Frame (mJ/f)

S\P\“

] [ ARM57 == GPU @ FPGA \

Figure 5: Input Processing Operations Kernels

Image Arithmetic: The performance of arithmetic/logic oper-
ations is shown in Figure (6). It shows that simple operations
such as: threshold, absDiff, add/sub, and bitwise and/or/xor can
be efficiently implemented by the CPU. However, the CPU starts
to perform poorly in kernels with multiplication operations, such
as: multiply, accumulate squared, weighted, magnitude and
phase. The GPU has the lowest energy/frame compared to the
CPU and FPGA. The GPU’s implementations achieved an aver-
age reduction ratio in energy/frame of 4.6x and 7.2x compared
to CPU and FPGA, respectively. An expected result, as these
algorithms can be granulated into many pieces that execute the
same operation (SIMT).

Image Filters: In Figure (7), the results of filtering operations
show that the FPGA performs better than the GPU and CPU for
these kernels. The FPGA’s implementation achieved an average
reduction ratio of 1.8 and 7.4X in energy/frame compared to
the GPU and CPU, respectively. The memory access patterns
and mathematical complexity of linear filters (filter2D, box fil-
ter, pyramid up and pyramid down) maps well to the parallel
processing of the GPU and FPGA. Median filters, however, are
unlike linear filters. They do not use sequential data access and
multiply-and-accumulate operations, but sort input elements and
select the median of them, which makes them less straightfor-
ward to implement efficiently on a GPU. The morphological
operations (dilate and erode) use hit and miss functions over a
structuring element. These functions are more difficult to imple-
ment than filtering functions due to comparison and branching.
This explains the low frame rate (as shown in Figure 2) and high
energy/frame consumption of VisionWorks’s implementations
of small (3x3) filter kernels.

Image Analysis: The results of the image analysis kernels are
shown in Figure (8). For kernels such as lookup table, histogram,
and histogram equalization, the energy/frame consumption of
the FPGA achieves an average reduction of 1.2x compared to
the GPU. While for kernels with more branching conditions
and complex memory access patterns, such as integral image,
mean/std, and min/max locations, the FPGA’s implementation
achieved an average reduction ratio of 3.5x compared to the
GPU.

Geometric Transformation: The results of the geometric trans-
formation kernels are shown in Figure (9). The CPU performs
poorly for these kind of operations compared to the GPU and
FPGA. Also, the FPGA was more energy efficient compared to
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the GPU. It achieved a reduction of 1.6X in energy/frame for the
resize and remap kernels, and 2x for affine warp and perspective
warp kernels. The computations in the warp operations are more
complex compared to resize and remap as mapping addresses
need to be generated from 2x3 or 3x3 matrices before starting
the mapping operation. The mapping process in these kernels is
done from destination to source in order to avoid sampling arti-
facts and visiting every pixel in the destination image multiple
times.

Composite Kernels: The last category in our study includes
kernels for: (1) detecting image features (canny, fast and harris),
(2) computing optical flow, and (3) computing disparity using
stereo block matching. Figure (10) shows that the FPGA imple-
mentation of feature extraction kernels (canny, fast and harris)
were more energy-efficient compared to the CPU and GPU by
an average reduction of 7.7x and 3.5X, respectively. The steps
to calculate sparse optical flow using the pyramid Lucas-Kanade
algorithm includes extracting feature points from one frame and
tracking them in the next frame. The FPGA implementation
was able to detect 488 Harris corners compared to 94 for Vi-
sionWorks for the same input frame and parameters. Also, it
was able to keep track of these points in the next frame. This
explains the high energy/frame consumption in the FPGA im-
plementation. Moreover, the VisionWorks’s implementations
of StereoBM is not open sourced yet, so the number reported
in this paper is for the GPU implementation using OpenCV’s
CUDA module instead.

The average energy/frame reduction for the GPU and FPGA is
shown in Table 3. The ratio is with respect to CPU consumption
(higher is better). We can observe a trend from simple kernels
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(top) to more complex kernels (bottom). The trend demonstrates
that the performance of the GPU and FPGA compared to the
CPU improves as kernels’ complexity increases. For simple
kernels (input processing and image arithmetic), the GPU shows
the highest performance/energy efficiency, while for more com-
plicated kernels (image filters, image analysis and geometric
transform), the FPGA shows the highest performance/energy
efficiency. Moreover, as the complexity of kernels increase, the
FPGA shows higher energy-efficiency compared to the GPU and
CPU. This occurs due to the fact that more complex algorithms
naturally occupy more resources on the programmable logic, as
well as the fact that GPUs do not scale well for problems that
are not easily divisible (data locality) or have many conditions
or complex memory access patterns.

Table 3: Ratios of Energy/Frame Reduction (Reference CPU)

\ | CPU | GPU | FPGA |
Input Processing 1 1.79% 1.41x
Image Arithmetic 1 3.19x% 2.93x
Image Filters 1 3.17x 3.89x
Image Analysis 1 2.34% 5.67x
Geometric Transform 1 10.3x 16.6x
Features/ OF/ StereoBM 1 7.44x 22.3x

For completeness, we did a frame rate comparison between
the ARMS7 CPU OpenCV and GPU VisionWorks implemen-
tations. Our result shows that VisionWorks implementations
outperform OpenCV implementation by an average speedup of
2.9x%,4.2%, 6.3%, 3.9%, 42x and 4.5x% for the six categories of



vision kernels. The FPGA’s frame rate met the theoretical rate
of Equation (1) for kernels performing a single pass over the
input image (144 fps @300MHz for 1080p). To validate kernels’
accuracy, we used OpenCV’s output image as our reference
and computed pixel-wise subtraction with the VisionWorks and
xfOpenCV outputs to measure differences. We had no differ-
ences for all reported vision kernels.

5.2. Complete Vision Pipeline Performance:

In this section, we evaluated the performance of the HW ac-
celerators for four representative pipelines. Common steps in
many computer vision pipelines include: pre-processing, fea-
ture extraction, and post-processing. The pipelines used in our
study follow this structure: (1) background subtraction, (2) color
segmentation, (3) stereo block matching, and (4) Harris corner
tracking. These pipelines are implemented on the GPU using
VisionWorks OpenVX graph mode to enable its advanced opti-
mization techniques (buffer reuse, kernel fusion, etc.). We also
pipelined the execution of kernels on the FPGA at pixel/frame
level using xfOpenCV modules. In this way, the FPGA can lever-
age the fact that image pixels stays within the programmable
fabric and avoids going back and forth to read/write from exter-
nal memory. In terms of CV pipelines accuracy, the results in
OpenCV matches the GPU and FPGA. The pipelines evaluated
in this paper are:

5.2.1. Background Subtraction:

The background subtraction pipeline is used to detect changes
in image sequences [37]. It is mainly used when regions of in-
terest are foreground objects. The pipeline components include:
subtraction, Gaussian filtering, threshold, erode and dilate, as
shown in Figure (11).

’ Subtract }—" Threshold }—" Erode }—" Dilate ‘
!

Figure 11: Background Subtraction Pipeline Components

5.2.2. Color Segmentation:

This pipeline is used to partition an image into multiple seg-
ments based on a specific range of colors. It converts the color
format from RGB to HSV, then applies range thresholding to
its three channels, and applies erode and dilate operations, as
shown in Figure (12).

RGB Color
2 Threshold | Erode — Dilate
HSV

l

Figure 12: Color Segmentation Pipeline Components
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Table 4: FPGA’s Reduction Ratios with respect to GPU

Pipeline Energy/frame EDP
(mJ/f) (mJ.s/f2)
Background Subtraction 1.74x 1.32x
Color Segmentation 1.86x 1.41x
Harris Corners Tracking 3.94x 2.65%
Stereo Block Matching 8.83% 107.7x

5.2.3. Harris Corners Tracking:

This pipeline is used to detect and track feature points in a set
of successive frames of a video. It takes in the current and next
frame as inputs. It computes Harris corners from the current
frame and outputs a list of tracked corners in the next frame.
The pipeline uses five kernels: Gaussian pyramid, Harris corner
detection, Optical flow and update corners kernels, as shown in
Figure (13).

Harris

Gaussian
rev Pyrmid
Corner

Gaussian
ex Update

Pyrmid
Figure 13: Harris Corners Tracking Pipeline Components
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5.2.4. Stereo Block Matching:

This pipeline is used to generate a disparity map given the
camera parameters and inputs from a stereo camera setup. It is
used as a first step in creating a three dimensional map of an
environment. The main components involved in the pipeline
are shown in Figure (14). It consists of stereo rectification,
remapping, and disparity estimation using a local block matching
method.

- Remap
: Undistort St - -
Right Rectify % % B’eﬁok disparity

Figure 14: Stereo Block Matching Pipeline Components
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Figure (15) plots the Energy/frame and EDP comparison of
the four pipelines, and shows the FPGA implementations con-
sume less energy/frame compared to the CPU and GPU for all
pipelines. The FPGA is also more efficient in terms of EDP
(lower EDP is better). The FPGA’s Energy/frame and EDP re-
duction ratio with respect to the GPU is listed in Table 4. As
the complexity of the pipeline grows, the energy/frame and EDP
reduction ratio increases. More complex vision pipelines can
use more of the FPGA programmable logic, reducing the rel-
ative impact of static power consumption. Additionally, data
communicated between modules of the pipeline are kept on-chip
in the streaming FPGA implementation.



Table 5: Top-5 (Top-1) Classification Accuracy

Library | Inception-v2 | ResNet-50 | ResNet-18 | MobileNet-v2 | SqueezeNet |
OpenCV DNN (FP32) 91.1 (72.75) 91.85 (74.44) | 88.48 (68.32) 86.1 (64.75) 78.13 (54.38)
TensorRT (FP16) 90.8 (72.01) 91.15 (72.86) | 89.30 (69.93) 86.4 (65.40) 76.30 (52.29)
Xilinx DPU (INTS) 90.30 (71.68) | 91.31(73.34) | 88.25(66.94) 85.06 (63.54) | 76.58 (50.26)

5.3. Neural Network Inference Performance

In this section, we measure the accuracy and performance of
five different neural networks: Inception-v2, ResNet-50, ResNet-
18, MobileNet-v2 and SqueezeNet. We benchmark their imple-
mentation using OpenCV DNN, TensorRT, and Vitis Al frame-
works on an ARM-57 CPU, Jetson TX2 GPU, and ZCU102
FPGA, respectively. We also evaluate the performance of hard-
ware optimizations: reduced precision implementations (GPU
and FPGA), multiple batch sizes and different operating modes
(GPU) and different threads counts (FPGA). These implemen-
tations are evaluated using the following performance metrics:
test accuracy and system performance (frame rate, energy/frame
and EDP).

5.3.1. Accuracy:

The Top-1 and Top-5 classification accuracy achieved
by Inception-v2, ResNet-50, ResNet-18, MobileNet-v2 and
SqueezeNet implemented using OpenCV DNN, TensorRT and
DPU is shown in Table 5. The accuracy is measured on the
ImageNet-1K validation set (ILSVRC-2012). These networks
have different computational complexity [GFOPs] and parame-
ters size [MBs]. We listed these networks in the Table 5 based on
their GOPs/MBs ratio: Inception-v2 (6 GOPs/ 91MB), Resnet-
50 (4 GOPs/ 98MB), Resnet18 (2 GOPs/ 45MB), MobileNet-v2
(0.3 GOPs/ 14MB) and SqueezeNet (0.36 GOPs/ SMB). The re-
sults show that reducing the bit precision from FP32 in OpenCV
DNN to FP16 in TensorRT and INTS8 in DPU keeps the Top-
5 (Top-1) accuracy loss within ~ 2%(~ 4%). This suggests
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Figure 15: FPGA outperforms GPU and CPU in energy/frame
consumption and EDP
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that these models can be used with precisions as low as INT8
which will reduce model complexity by 4x while maintaining
an acceptable accuracy loss.

5.3.2. System Performance:

System performance measures the efficiency of the complete
inference pipeline including its pre-processing, computation,
data movement, and post-processing stages which gives insight
into the actual performance achieved after deployment. It cap-
tures potential memory bandwidth bottlenecks in data copying
between off-chip and on-chip memories.

In our experiment, we measure the performance of CPU, GPU
and FPGA implementations of Inception-v2, ResNet-50, ResNet-
18, MobileNet-v2 and SqueezeNet networks. We measure their
performance at multiple batch sizes (b=1,b=2, ..., b=128) and
thread counts (t=1, t=2, ..., t=8) to evaluate the effect of in-
creasing batch size on data reuse and data movements reduction.
Figure 16 and 17 show the experimental results of Inception-v2
and ResNet-50. The blue, green and red bars represents ARM-
57, GPU and FPGA, respectively. In these figures, we selected
the GPU’s most power efficient operating mode (MaxQ) and
its reduced precision (FP16). We measured the frame rate and
EDP at different batch sizes and thread counts. Then, we se-
lected the highest frame rate and lowest EDP among them for
the side-to-side comparison.

The results show that even with the limited memory band-
width in the FPGA, it was able to achieve higher frame rates
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Figure 17: [System Performance] A comparison between CPU, GPU
and FPGA in terms of frame Rate (fps) and energy delay product
(EDP) for ResNet50 Network.

CPU

compared to CPU and GPU. For Inception-v2, the FPGA (t=6)
achieves a speed up of 2.5x and 65x compared to the GPU FP16
(b=128) and CPU. For ResNet50, the FPGA (t=38) also achieves
a speed up of 2.1x, and 77x compared to the GPU FP16 (b=128)
and CPU, respectively. This speed-up comes from the low nu-
merical precision (INT8) used in FPGA compared to the (FP32
and FP16) in CPU and GPU, as well as multiple optimizations
supported by Xilinx Vitis Al framework such as: (1) memory
allocation, scheduling and reusing, (2) node fusion/decomposi-
tion and (3) data stream optimization. Moreover, it is noticed
that the improvement in frame rate starts to saturate as batch
size and thread count increases due to reaching the maximum
chip capacity. Another observations is that the FPGA implemen-
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Figure 18: [System Performance] A comparison between CPU, GPU
and FPGA in terms of frame Rate (fps) and energy delay product
(EDP) for ResNet-18 Network.
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Figure 19: [System Performance] A comparison between CPU, GPU
and FPGA in terms of frame Rate (fps) and energy delay product
(EDP) for SqueezeNetV2 Network.

tations of Inception-v2 and ResNet50 are 4.72x and 3.8 more
energy efficient when number of threads equals (t=8) compared
to (t=1).

In terms of EDP, the FPGA implementations have lower EDP
values compared to the CPU and GPU FP16 implementations.
Figure 16 shows that FPGA implementation (t=8) of Inception-
v2 has an EDP reduction ratios of 1.5 compared to the GPU
FP16 (b=128). Figure 17 shows that FPGA implementation
(t=8) of ResNet50 has 1.1x EDP reduction ratios compared to
the GPU FP16 (b=128).

Figure 18, 20 and 19 show the experimental results for the
small networks: ResNet-18, Mobilenetv2 and SqueezeNet. For
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ResNet-18, the FPGA (t=6) achieves a speed up of 2.6x and 96x
compared to the GPU FP16 (b=128) and CPU. For Mobilenetv2,
the FPGA (t=7) also achieves a speed up of 2.9%, and 55X com-
pared to the GPU FP16 (b=128) and CPU. For SqueezeNet, the
FPGA (t=6) achieves a speed up of 2.5%, and 65.6x compared
to the GPU FP16 (b=128) and CPU.

Table 6 summarizes the FPGA’s frame rate and EDP reduction
ratio compared to the GPU FP16 implementations. The FPGA
is 2.1-2.9x faster and 1.1-2.4x more energy efficient than GPU
F16 implementations when running Inception-v2, ResNet-50,
ResNet-18, Mobilenetv2 and SqueezeNet.

6. Conclusion

The development of cost-efficient embedded vision applica-
tions is challenged in its initial design phase by the variety of
hardware solutions and software libraries. This paper performs
an in-depth benchmark analysis of three embedded platforms,
CPU, GPU- and FPGA-accelerated, evaluating the efficiency
of their different hardware architectures towards vision kernels,
complete vision pipelines and neural networks [Inception-v2,
ResNet-50, ResNet-18, MobileNet-v2 and SqueezeNet]. To
support reproducibility, the benchmark only relies on publically
available libraries and frameworks. Given the energy-efficiency
focus, three key metrics are collected in the benchmarks: energy
per frame, frame rate and energy delay product (EDP).

The experimental results show that many simple and easy-
to-parallelize vision kernels perform well on GPUs (1.1-3.2%
energy/frame reduction), but for more complete vision pipelines,
FPGAs outperform GPUs and CPUs (1.2-22.3% energy/frame
reduction). Moreover, FPGAs perform increasingly better as
the complexity of vision pipelines grow. This is evident by
the energy-delay product, a metric that not only takes into ac-
count the energy/frame, but also the throughput. The FPGA is
2.1-2.9% faster and 1.1-2.4x more energy efficient than GPU
F16 implementations when running Inception-v2, ResNet-50,
ResNet-18, Mobilenetv2 and SqueezeNet.

Our future work will update this analysis to the latest platform
generations, like Nvidia’s recently released AGX board, and will
include more vision kernels and neural networks. We will also
investigate instantiating multiple instances of single vision ker-
nels using xfOpenCV and compare it with GPUs. Additionally,
we will extend this benchmarking analysis to include popular
neural processing units (NPUs) in mobile processors such as
iPhone A13 Bionic, Samsung Exynos, Qualcomm Snapdragon,
etc.

Table 6: FPGA’s Speedup and EDP Reduction Ratios with Respect to
GPU FP16 when [b=128 and t=8]

Model | Frame Rate (fps) | EDP (ml.s/f2) |
Inception-v2 2.5% 1.5%
ResNet-50 2.1x 1.1x
ResNet-18 2.6x 1.4x
Mobilenet-v2 2.9%x 2.4x
SqueezeNet 2.5% 1.7%
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Table 7: Inference Results ResNet50

ResNet50 Accuracy [%] Latency [ms] Throughput [fps] | Power [W] | Energy/Frame (mJ/f) EDP (m].s/f2)
Platform Parameters | Top-5 (Top-1) | system compute | system compute system compute system compute
ZCU102 INTS, t=1 90.85 (72.53) 17.78 14.82 43.75 67.64 9.3 212.6 137.5 4.86 2.03
ZCU102 INTS, t=2 90.85 (72.53) 18.59 15.57 107.37 127.66 12.1 112.7 94.8 1.05 0.74
ZCU102 INTS, t=3 90.85 (72.53) 20.69 17.61 120.67 169.74 14.05 116.4 82.8 0.96 0.49
ZCU102 INTS, t=4 90.85 (72.53) 24.62 21.52 161.76 183.81 15.19 93.9 82.6 0.58 0.45
ZCU102 INTS, t=5 90.85 (72.53) 29.96 27.05 165.99 193.02 15.13 91.2 78.4 0.55 0.41
ZCU102 INTS, t=6 90.85 (72.53) 355 32.48 167.64 193.79 15.59 93.0 80.4 0.55 0.41
ZCU102 INTS, t=7 90.85 (72.53) 41.59 38.55 168.13 190.79 15.56 92.5 81.6 0.55 0.43
ZCU102 INTS, t=8 90.85 (72.53) 47.61 44.41 167.29 191.91 15.53 92.8 80.9 0.55 0.42
TX2,MaxN FP16, b=1 92.12 (75.11) 13.99 10.68 70.96 93.94 13.62 191.9 145 2.7 1.54
TX2,MaxN FP16, b=2 92.12 (75.11) 23.65 18.25 84.38 110.83 14.0 165.9 126.3 1.97 1.14
TX2, MaxN FP16, b=4 92.12 (75.11) 43.79 34.23 91.16 118.09 14.08 1545 119.2 1.69 1.01
TX2,MaxN FP16, b=8 92.12 (75.11) 84.79 65.86 94.33 121.41 14.23 150.9 117.2 1.6 0.97
TX2, MaxN FP16, b=16 92.12 (75.11) 162.58 126.23 98.41 126.5 14.65 148.9 115.8 1.51 0.92
TX2, MaxN FP16, b=32 92.12 (75.11) 317.87 247.34 100.91 129.51 14.95 148.2 1154 1.47 0.89
TX2, MaxN FP16, b=64 92.12 (75.11) | 620.08 490.37 103.53 130.42 15.18 146.6 116.4 1.42 0.89
TX2,MaxN FP16,b=128 | 92.12(75.11) | 1211.85  975.98 104.85 131.08 15.72 149.9 119.9 1.43 0.91
TX2,MaxN FP32, b=1 92.11 (75.15) 22.32 18.97 44.67 52.79 14.8 331.3 280.4 7.42 5.31
TX2,MaxN FP32, b=2 92.11 (75.15) 38.46 32.96 51.96 60.99 15.22 292.9 249.5 5.64 4.09
TX2, MaxN FP32, b=4 92.11 (75.15) 72.96 62.96 54.8 63.68 15.49 282.7 2432 5.16 3.82
TX2,MaxN FP32, b=8 92.11 (75.15) 141.13 122.18 56.67 65.55 15.49 2733 236.3 4.82 3.60
TX2, MaxN FP32,b=16 92.11 (75.15) | 272.41 235.85 58.74 67.8 15.82 269.3 233.3 4.58 3.44
TX2, MaxN FP32, b=32 92.11(75.15) | 531.12 460.67 60.29 69.46 16.24 269.4 233.8 4.47 3.37
TX2,MaxN FP32, b=64 92.11 (75.15) | 1042.67 913.42 61.3 69.93 17.15 279.8 245.2 4.56 3.51
TX2,MaxN FP32,b=128 | 92.11 (75.15) | 2115.54  1810.9 59.95 70.53 17.15 286.1 243.2 4.77 3.45
TX2,MaxQ FP16, b=1 92.12 (75.11) 20.46 15.86 48.71 64.29 6.96 142.9 108.3 2.93 1.68
TX2,MaxQ FP16, b=2 92.12 (75.11) 34.65 26.69 57.57 75.47 6.88 119.5 91.2 2.08 1.21
TX2,MaxQ FP16, b=4 92.12 (75.11) 64.53 50.01 61.88 80.15 6.77 109.4 84.5 1.77 1.05
TX2,MaxQ FP16, b=8 92.12 (75.11) 124.75 96.69 64.08 82.73 7.23 112.8 87.4 1.76 1.06
TX2, MaxQ FP16,b=16 92.12 (75.11) 239 185.17 66.86 86.3 73 109.2 84.6 1.63 0.98
TX2,MaxQ FP16, b=32 92.12(75.11) | 466.49 362.02 68.56 88.37 7.61 111.0 86.1 1.62 0.97
TX2, MaxQ FP16, b=64 92.12 (75.11) | 924.53 717.12 69.19 89.11 8.1 117.1 90.9 1.69 1.02
TX2,MaxQ FP16,b=128 | 92.12(75.11) | 1838.48 1429 69.47 89.51 8.45 121.6 94.4 1.75 1.05
TX2,MaxQ FP32, b=1 92.11 (75.15) 32.66 27.94 30.49 36.17 7.61 249.6 210.4 8.19 5.82
TX2, MaxQ FP32, b=2 92.11 (75.15) 56.36 48.32 35.41 41.56 7.95 224.5 191.3 6.34 4.60
TX2,MaxQ FP32, b=4 92.11 (75.15) 106.84 92.09 37.41 43.48 7.8 208.5 179.4 5.57 4.13
TX2,MaxQ FP32,b=8 92.11 (75.15) | 207.45 179.45 38.56 44.61 7.76 201.2 174 5.22 3.90
TX2, MaxQ FP32,b=16 92.11 (75.15) 398.74 344.35 40.1 46.48 8.03 200.2 172.8 4.99 3.72
TX2, MaxQ FP32, b=32 92.11 (75.15) | 779.69 673.93 41.01 47.46 8.1 197.5 170.7 4.82 3.60
TX2,MaxQ FP32, b=64 92.11 (75.15) | 1540.33 1333.2 41.52 47.97 8.29 199.7 172.8 4.81 3.60
TX2, MaxQ FP32,b=128 | 92.11(75.15) | 3118.09  2650.9 40.85 48.2 9.02 220.8 187.1 5.41 3.88
TX2, MaxP  FP16, b=1 92.12 (75.11) 16.52 12.46 60.12 81.87 9.36 155.7 114.3 2.59 1.40
TX2, MaxP  FP16, b=2 92.12 (75.11) 28.1 20.92 70.93 96.51 9.59 1352 99.4 191 1.03
TX2,MaxP  FP16, b=4 92.12 (75.11) 52.22 39.14 76.53 102.41 9.59 125.3 93.6 1.64 0.91
TX2, MaxP  FP16, b=8 92.12 (75.11) 100.21 75.54 79.74 105.97 10.09 126.5 95.2 1.59 0.90
TX2, MaxP  FP16, b=16 92.12 (75.11) 193.89 145.36 82.51 110.08 10.13 122.8 92 1.49 0.84
TX2,MaxP  FP16, b=32 92.12 (75.11) 375.86 283.47 85.21 112.82 10.39 121.9 92.1 1.43 0.82
TX2, MaxP  FP16, b=64 92.12 (75.11) | 733.74 562.74 87.2 113.88 11.34 130 99.6 1.49 0.87
TX2,MaxP  FP16,b=128 | 92.12(75.11) | 1453.87 1121.2 87.78 113.94 11.64 132.6 102.2 1.51 0.90
TX2,MaxP  FP32, b=1 92.11 (75.15) 26.16 22 38.03 46.07 10.66 280.3 231.4 7.37 5.02
TX2, MaxP  FP32, b=2 92.11 (75.15) 45.07 37.86 44.26 53.12 10.88 245.8 204.8 5.55 3.86
TX2,MaxP  FP32, b=4 92.11 (75.15) 85.31 72.25 46.88 55.54 11.19 238.7 201.5 5.09 3.63
TX2,MaxP  FP32, b=8 92.11 (75.15) 165.16 140.36 48.43 57.1 11.23 231.9 196.7 4.79 3.44
TX2, MaxP  FP32, b=16 92.11 (75.15) 318.38 270.54 50.22 59.16 11.42 2274 193 4.53 3.26
TX2, MaxP  FP32, b=32 92.11 (75.15) 621.3 528.54 51.51 60.52 11.8 229.1 195 4.45 3.22
TX2, MaxP  FP32, b=64 92.11 (75.15) 1219.1 1046.8 52.38 61.08 12.52 239 205 4.56 3.36
TX2,MaxP  FP32,b=128 | 92.11(75.15) | 2495.53  2076.5 50.94 61.52 12.9 2532 209.7 4.97 3.41
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Table 8: Frame Rate (fps) of Different Vision Kernels on CPU, GPU and FPGA

Category Kernel Frame Rate (fps) L1-norm Error
ARM ‘ GPU ‘ FPGA GPU ‘ FPGA
Image Arithmetic absolute diff 904 3717 133 0.0 0.0
accumulate 301 2262 127 0.0 0.0
accumulate squared 281 2283 128 0.0 0.0
accumulate weighted 286 3846 128 0.0 0.6
arithmetic add 913 4065 128 0.0 0.0
arithmetic subtract 884 4048 133 0.0 0.0
arithmetic multiply 259 2985 132 0.0 0.55
bitwise and, or, xor 879 3546 133 0.0 0.0
bitwise not 1612 4424 128 0.0 0.0
magnitude 227 1838 108 1.96 0.22
phase 150 2222 108 1.23 0.23
threshold 1996 3745 135 1.35 0.0
Input Processing channel combine 881 2132 135 0.0 0.0
channel split 443 2277 138 0.0 0.0
color conversion 53 2147 132 0.0 0.0
bit depth conversion 1141 3344 137 0.0 0.0
table lookup 961 3058 32 0.0 0.0
Geometric Transforms affine warp 69 2739 365 0.11 0.0
perspective warp 36 2604 384 0.11 0.0
resize 690 2857 350 - 0.35
remap 33 996 1004 0.11 0.0
Filters filter 2D 26 1285 134 0.0 0.0
box filter 253 2824 135 0.0 0.36
dilate 356 2638 134 6.4 0.0
erode 359 2645 134 6.8 0.0
median 323 858 121 0.0 0.0
pyr Down 377 2150 108 0.45 0.0
pyr Up 80 1375 104 0.40 0.43
Analysis histogram 354 2164 139 0.0 0.0
hist equalization 308 1349 69 0.0 0.05
integral image 235 682 122 0.0 0.0
mean std deviation 336 1277 141 0.0 0.0
min max locations 128 734 140 0.0 0.0
Features canny 64 101 99 N/A N/A
fast corner 169 339 49 N/A N/A
harris corner 11 501 113 0.0 0.0
optical flow 18 64 5 0.0 0.0
stereoBM 18 54 7 - 0.02
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