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cient embedded vision applications requires exploring various algorithmic optimization trade-offs and
ardware architecture choices. This makes navigating the solution space and finding the design points with
rade-offs a challenge for developers. To help provide a fair baseline comparison, we conducted compr
accuracy, run-time, and energy efficiency of a wide range of vision kernels and neural networks on multiple e
M57 CPU, Nvidia Jetson TX2 GPU and Xilinx ZCU102 FPGA. Each platform utilizes their optimized lib
(OpenCV, VisionWorks and xfOpenCV) and neural networks (OpenCV DNN, TensorRT and Xilinx DPU). F
sults show that the GPU achieves an energy/frame reduction ratio of 1.1–3.2× compared to the others fo
ver, for more complicated kernels and complete vision pipelines, the FPGA outperforms the others with ener
s of 1.2–22.3×. For neural networks [Inception-v2 and ResNet-50, ResNet-18, Mobilenet-v2 and Squee
FPGA achieves a speed up of [2.5, 2.1, 2.6, 2.9 and 2.5]× and an EDP reduction ratio of [1.5, 1.1, 1.4, 2.4 a
e GPU FP16 implementations, respectively.

nchmarks, CPUs, GPUs, FPGAs, Embedded Vision, Neural Networks.

on

ision empowered with the recent advances in deep
a fundamental role in solving many problems
possible just a decade ago. The computational

d memory footprint of these algorithms keep in-
hance accuracy or solve more complex problems
d is driving the development of energy-efficient
utions, which are especially important for energy
strained real-time embedded systems. Often their
unication power budget or communication capa-
e them from streaming images to more powerful
ities.
ry and academia have explored the development
n engines to help meet the needs of embedded
tions. Three common types of such accelerators
ked in this case study: multicore CPUs, Graphic
its (GPUs), and Field Programmable Gate Arrays
h of these accelerators take a different approach
embedded vision applications. Multi-core CPUs
IMD instruction extensions, such as: the ARM

engine, Intel’s family of SSE, and dedicated vision
ts (VPU), such as Myriad [2]. The multi-threading
model has made GPUs highly popular in this do-
provide massively parallel execution resources
ory bandwidth. However, their high performance
cost of high power dissipation [3]. FPGAs of-
ies for using low-level fine-grained parallelism

by customizing processing/control units and data pa
requirements of a specific algorithm or application [4]

Embedded vision applications can exhibit vastly
performance characteristics depending on their underly
ware accelerator platform and compute fabrics [5]. Thi
behavior fundamentally stems from differences in accel
cro architectures, middleware support, and programmi
This mixture of factors makes choosing the best ap
to-accelerator mapping a nontrivial task for embedd
application developers. They must take into considera
rics, such as expected runtime performance, energy-e
and programmability. Moreover, running vision pip
heterogeneous platforms requires partitioning them in
that can run on the available accelerators in the most
and cost-effective manner.

Beside the broad spectrum of hardware architecture
for vision applications, there are various complexity-
algorithmic trade-offs that need to be explored [6]. Qua
and pruning are two examples of optimization method
used to reduce the computational complexity and me
quirement of vision algorithms but at the expense of
loss. Another design choice that need to be explored
ing whether neural network solutions are more suitab
compared to the traditional vision kernels for a speci
application. The traditional (hand-engineered) algor
mature, proven, and optimized for performance and p
ciency, while neural networks (learned algorithms) off

accuracy and versatility, but demand large amounts of c
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ame for different sources of data. While learned
ata-driven and adapt based on the training data.
complexity-accuracy trade-offs between neural
tions and traditional vision kernels need to be
sideration during the development process.
learly understand how different hardware architec-
act the performance of vision kernels and neural
analyze their performance on such accelerators.
we evaluate the performance of three commonly
lerators for vision applications: the ARM Cortex
son TX2 GPU, and ZCU102 FPGA in terms of
time performance (latency and throughput), and
cy. For vision kernel benchmarking, we propose
ducible approach that only uses publicly available
s: OpenCV, Nvidia VisionWorks and xfOpenCV,

any special platform specific code. We also eval-
rmance of neural network inference implementa-
ion-v2 and ResNet-50, ResNet-18, Mobilenet-v2
et] using OpenCV DNN module, Nvidia Ten-

inx Vitis AI frameworks running on these acceler-
hmark code is available at: https://github.com/isu-

ns. The main contributions of this paper are: (1)
presentative vision kernels and complete pipelines

, Visionworks and xfOpenCV libraries on the
, Nvidia Jetson TX2 (GPU-accelerated) and Xil-
(FPGA-accelerated), (2) Benchmark a set of five
ks implementations using OpenCV DNN mod-
nsorRT and Xilinx DPU, (3) Provide an insight

ns behind the observed run-time, power, and en-
tion performance for each evaluated platform and
ales for why a given underlying hardware archi-
y performs well or poorly, and (4) Provide easily
pen-source benchmarking templates that only use
ble vision libraries.
n. The remainder of this article is structured as

ion 2 reviews related work. Section 3 provides
e architectural differences between the hardware

valuated. It also provides details on the six cat-
ion algorithms and two neural networks used in
tion 4 presents the performance metrics used in
provide a detailed description of our measure-

logy. Section 5 discusses our experimental results
ns. Finally, Section 6 concludes the paper with
ture work.

ork

n, we take a look at existing benchmarking efforts
e that evaluate the performance of vision kernels
tworks on embedded platforms. Even though
chmarking efforts focus solely on comparing the
f a limited number of vision kernels or cover only
the embedded design space in evaluating neural

Vision kernels benchmarks. The comparison stu
analyzed the performance efficiency of FPGAs and GP
GPU-friendly benchmark suite (Rodinia). They ported
kernels using Vivado HLS for the FPGA and OpenCL
programs. The platforms used were a Xilinx Virtex-7 F
Nvidia Tesla K40c GPU. Although this study includ
vision kernels such as: GICOV, Dilate, SRAD and M
was not mainly focused on benchmarking vision al
it included other kernels for data mining, fluid dyna
physics simulation, etc [8].

Other comparison studies each focused on a subset
kernels. For example, the study in [9] and [10] eval
performance of sliding window applications on FPGA
and multi-core CPUs. They compared the performanc
applications: Sum of Absolute Differences (SAD), 2D
tion, and correntropy. The platforms used in their stud
Altera Stratix IV FPGA, an Nvidia GeForce GTX 56
Intel Xeon Core i7. Another study in [11] focused on c
the performance of morphological image filtering o
The authors utilized the OpenCV library for CPU a
(cv::CUDA module) implementations. For the FPGA
they used Vivado HLS video libraries and hand-optim
plementations. The platforms used in their study were t
Zynq 7020 FPGA, Nvidia Tegra K1, and Intel core
work in [12] also focused only on a subset of vision o
such as normalized cross correlation and finite impulse
(FIR) filters. This study’s evaluation included developm
component cost, and power consumption.

Neural networks benchmarks. There are two types of
learning benchmarks based on the classification of [13
chine learning (ML) benchmarks focus mainly on achie
test accuracy, independent of the hardware implication
ples of this kind of benchmarks are ILSVRC ImageNe
tion [14] and MLBench [15], (2) Performance benchma
on measuring performance metrics such as latency, th
and power consumption. This category of benchmarks
rithmic modifications freedom to reach the highest per
Examples include DeepBench [16], SPEC [17] and S
[18]. A more complete benchmarking suite has been pr
QuTiBench [13]. QuTiBench is a novel multi-tiered be
ing methodology that supports algorithmic optimiza
couple hardware performance with accuracy at the ap
level. It includes test suites at 4 levels of abstraction: (
includes roofline analysis that provides insight into the
and compute requirements, (2) level-1 focuses on the a
compute performance for different compute patterns, (
captures potential bottlenecks in data movements, and (
covers the system-level performance.

Our benchmark is exhaustive and energy-efficiency
we evaluate the accuracy, run-time, and energy consum
different embedded hardware platforms over a wide
standard vision kernels, vision pipelines and neural
The results are easily reproducible through the use
source benchmarking templates that only use publicly
vision and neural network libraries.
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on, we first present the characteristics of the hard-
tors evaluated in this study. Then, we briefly dis-
on libraries and neural network inference frame-
widely used with these accelerators. We group

nels into categories based on their characteris-
and the implications of the underlying hardware
n the performance of these kernels in their respec-
. Finally, we provide details on the used neural
els and their architectures.

d Platforms
ng are the three most common platforms used in
ion applications:

Processing Unit (CPU):
Us are able to perform SIMD (Single Instruction,
instructions using multiple ALUs. Such process-

ploit data level parallelism; there are simultaneous
utations, but only a single process (instruction) at

nt. These SIMD instruction sets are useful in the
ge processing, where operations are often repeti-
to a continuous stream of data. This is particularly
text of computer vision, where most operations are
r the entire image. Examples of SIMD architec-

NEON SIMD engine [19] and Intel’s streaming
ons (SSE) [20].

c Processing Unit (GPU):
d to general purpose CPUs, which have developed
ion extensions to help parallelize image process-
, GPUs have taken the direction of evolving into
IMD architecture. This specialization has led to

simpler processing cores than high-performance
se CPUs. For example, they have simpler control

no branch prediction or prefetch, and small per-
Simpler computing cores allow GPUs to pack

res into a chip than a general purpose CPU. GPU
erform extremely well on workloads that have lit-

hing conditions or data dependences. Additionally,
ures have specialized their memory architecture

h-speed data streaming for image processing. For
2 cache in the Jetson TX2 (Pascal GPU) is 2048
fit a 1080p grayscale image.

rogrammable Gate Array (FPGA):
aving a fixed processor-like design, FPGAs con-
y of logic blocks, DSPs, on-chip BRAMs, I/O
ing channels. In FPGA, custom data paths can be
stream pixels directly between computing units
g to read/write from/to external memory. More-

buted on-chip BRAMs can be used to exploit data
ion kernels by keeping pixels on-chip (e.g Zynq
SoC FPGA has 32.1 Mb on-chip memory). With
pers need to ensure that their customized designs
d space requirements.

the hardware platforms discussed in the previous sectio
work, we focused on the most complete and commo
libraries, as follows:

3.2.1. OpenCV:
OpenCV (Open Source Computer Vision Library)

facto standard C/C++ library for image and vision pr
[21]. It is used by the computer vision community
desktop and embedded vision applications. It has m
2500 optimized vision kernels, which includes a comp
set of both traditional and state-of-the-art vision and
learning algorithms. OpenCV has bindings for langua
as Python and Java. The latest version of OpenCV (a
of writing this paper) is 4.1.1.

3.2.2. NVIDIA VisionWorks:
VisionWorks is a toolkit for computer vision and im

cessing released by Nvidia in 2015 [22]. It implemen
tends the OpenVX standard, and is optimized for CUDA
GPUs. VisionWorks provides three programming mo
immediate mode which enables developers to easily
applications, (2) graph mode which enables advanced
tions such as: buffer reuse, efficient use of streaming an
textures, tiling and pipelining functions at sub-frame l
(3) CUDA API which enables developer with low-level
manage data allocations and transfer, scheduling and p
The latest version of VisionWorks is 1.6.

3.2.3. Xilinx xfOpenCV:
The xfOpenCV library is a set of OpenCV functions o

for Zynq, Zynq Ultrascale+, and Alveo FPGAs devices
[23]. It was first released in 2017, as part of the Xilinx r
stack. xfOpenCV kernels are implemented using HLS
in their SDx development environment and provides a
interface for building vision pipelines on FPGAs. Th
includes a set of 60+ vision kernels optimized to be ma
the programmable logic. The latest version of the xf
library is 2019.1.

3.3. Neural Network Inference Frameworks
In this work, we used the following three deep learn

ence frameworks to benchmark neural networks:

3.3.1. OpenCV DNN Module:
OpenCV DNN module has been promoted from th

repository to the main repository since the release of
3.3 [24]. The module now supports deep learning fra
such as Caffe, TensorFlow, and Torch/PyTorch. It only
the forward pass by importing weights from pre-traine
OpenCV DNN also includes a set of pre-processing fun
preparing images, such as: cropping, channel swappi
subtraction, etc. Examples of compatible network arch
include: GoogleLeNet, AlexNet, SqueezeNet, VGG
ResNet. The module supports SSE, AVX, NEON acc
and Halide backend.
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3.3.2. NVIDIA TensorRT:
TensorRT is a framework for implementing high-performance
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VIDIA GPUs [25]. TensorRT applies couple of
to deep learning networks such as: (1) Weight and
ision quantization to FP16 and INT8 to maximizes
ile maintaining accuracy, (2) Optimizing the use
ry and bandwidth by layer and tensor fusion, (3)
ning to select best data layers and algorithms

t GPU platform, (4) Dynamic tensor memory allo-
e memory efficiently, (5) Multi-stream execution
ltiple input streams in parallel. The integration of

TensorFlow allows for applying TensorRT GPU
within TensorFlow environment.

itis AI:
AI is a deep learning framework that provides a
f flexibility, high performance, low latency and
sumption for deploying deep learning inference
GAs and SoCs [26]. It allows for compressing

to reduce their size without loss of accuracy, and
N models into DPU instruction code before de-

nto the target DPU platform. Xilinx DPU provides
nd scalable overlay with ISA architecture for op-
implementations.
f other libraries and frameworks for embedded
tel OneDNN [27]: is a framework that supports
execution across Intel CPUs, Graphics, FPGAs
elerators VPUs. (2) ARM NN[28]: is a frame-

ble efficient translation of DNNs allowing them
tly across ARM Cortex-A CPUs, ARM, Mali
M Ethos NPUs. (3) FAST DNN[29]: is a frame-
timized for CPUs using SIMD instructions, linear
atch processing, sigmoid lookup and lazy output

s of Vision Kernels

ision algorithms can be grouped into six cate-
n their functionality, as shown in Figure 1. The

posed of kernels from other categories. The following
each category in more detail:

3.4.1. Input Processing:
The kernels in this group are usually used as pre-p

steps. They include simple arithmetic operations to ch
input format or number of channels into a desired form
examples of these kernels are: channel combine, chann
color conversion, and bitdepth conversion.

3.4.2. Image Arithmetic:
Image arithmetic applies standard arithmetic/logic o

to one or more images. Because of the multi-dimension
of these pixel based operations, these kernels can ben
highly parallel hardware architectures, such as GPU
GAs. Furthermore, the data being processed is very l
the algorithms can be distributed among different pr
units without concerns of data dependencies. These o
include: thresholding, absolute difference, addition/su
bitwise and/or/xor/not, multiplication, accumulate, ac
squared, and accumulate weighted.

3.4.3. Image Filters:
These algorithms compute the correlation between

image and a kernel (small matrix of fixed-size). The dat
algorithms are local to the size of the kernel which is
from the arithmetic case where the operations were p
on a pixel basis. When the underlying hardware ha
local memory to accommodate the kernel size, the a
is still easily distributed among parallel processing u
the other hand, nonlinear filters are more irregular as
branching conditions. This impedes their decompos
parallel blocks. These kernels include: filter2D, box fil
dilate, median, pyramid up, and pyramid down.

Split Combine RGB

HSV

Threshold AbsDiff

Bitwise_and Magnitude Accum. Weighted

Dilate Erode PyrUp
Down

Filter2D Median

esize Remap

Affine Warp Perspective Warp 

LookUp Hist. Equalization

Integral Image Histogram

sum

Canny Fast

StereoBM

Harris

Optical Flow

(1) Input Processing (2) Image Arithmetic (3) Image Filters 

(4) Geometric Transforms (5) Image Analysis (6) Image Features & Flow

Figure 1: Examples of Vision Kernels from the Six Categories.
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3.4.4. Image Analysis:
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and minimum
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age, such as color distribution, mean, maximum
pixel value, etc. Also, they are usually placed
ision pipelines to reduce the image into a deci-

min/max locations). These kernels are filled with
ditions and complex memory access patterns that
act their performance on CPUs and GPUs. These
lude: histogram, mean/std, min/max location, ta-
stogram equalization, and integral image.

tric Transformation:
tions in geometric space are essential to under-
D world through the lens of a 2D image sensor.
include matrix multiplication that map effectively
rallel architectures composed of simple comput-
g. GPU). While these kernels are simple, their
s negatively affected by irregular memory access
e kernels include: remap, resize, affine warp, and
rp.

site Kernels:
in this category are composed in part of kernels

iously described categories. Examples of these
els are: feature extraction, stereo block matching,
w. Feature extraction is used to find interesting
age. Once features are extracted, they are no

as a continuous block of adjacent pixels in mem-
es other kernels to load non-continuous memory
ich may hinder parallelism performance. Stereo
g uses two cameras, with known position and
, to compute disparity by comparing overlapped
g to a high computational load. Optical flow is
te the apparent motion of objects between two
ages. Optical flow can be computed for each

r a subset of pixels (sparse).

etworks

nal Neural Network (CNN) is a special class of
ural networks, designed to recognize and analyze
s directly from pixel images. They are usually
sequence of convolutional layers, activation func-
layers, fully connected layers and normalization
study, we focused on five CNNs: (1) Inception-v2:
twork that introduces a special 1x1 convolution,
bal average pooling instead of using fully con-
[30]. (2) ResNet-50, short for Residual Network.
e idea of (identity shortcut connection) that skips

ayers to address the vanishing gradient problem
ep residual network of 50 layers. (3) ResNet-18:
dual network variants. It consists of 18 layers. (4)
a small model built upon the idea of using depth-
convolutions as efficient building blocks [32]. (5)
s a family of models that achieve AlexNet-level
ageNet with 50x fewer parameters [33].

Init
Image
Read

Image
Pre-proc.

Data
Transfer

Compute
T

Figure 2: Steps involved in compute and system perform
measurements.

4. Experimental Methodology

This section describes the performance metrics,
and software environments used in our benchmarki
It also describes measurement techniques, and introd
benchmarking approach.

4.1. Performance Metrics
In this work, we evaluate the efficiency of vision ke

neural networks using four performance metrics: (1)
(2) run-time, (3) energy per frame, and (4) energy dela
(EDP). These metrics provide a fair way of comparison
different design points and a meaningful interpretation
design choices. In this subsection, we discuss the per
metrics, as follows:

4.1.1. Accuracy:
To evaluate the accuracy of vision kernels, we compu

norm error between the results generated by the GPU a
implementations and compare them to the CPU implem
Table 8 in the appendix shows the L1-norm errors. F
networks, classification accuracy (test error rate) is use
uate the CPU, GPU and FPGA implementations by co
their results to the ground truth in the whole Imagen
tion set with 50k images. The top-1 and top-5 clas
accuracy are reported in this paper for Inception-v2, R
ResNet-18, Mobilenet-v2 and SqueezeNe neural netw

4.1.2. Run-time:
There are two different types of run-time performa

surements: (1) Compute performance which measures
compute part of vision kernel or neural network excl
tential bottlenecks for moving data from/to the externa
Even though it doesn’t capture the application level per
it reflects the efficiency in preforming various compute
(2) System performance which measures the perform
the complete pipeline, including initialization, image
pre-processing, post-processing and data transfer. It
the un-optimized performance of the platform by captu
movement bottlenecks. Figure (2) shows steps involve
of the compute and systems performance measuremen

4.1.3. Energy:
Energy consumption per frame quantifies the amoun

trical energy dissipated by hardware accelerators to p
kernel’s operations on one frame. It is measured as t
consumed during the delay time to process a frame
power can be divided in two parts: (1) Static power: r
the amount of power consumed when no active comp
taking place (system is idle), (2) Dynamic power: repre
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amount of power consumed above the static power level when
the system is computing.

4.1.4. Energy
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-Delay Product (EDP):
r energy per frame alone do not show the entire
ware platform can be extremely low power while
to be of practical use. The Energy Delay Product
tric takes into account the throughput of the algo-
d in (ms/frame) along with the energy consumed
/frame). EDP is the product of energy/frame and
his way, a fair comparison can be made when
hardware architecture is better suited for specific

Lower EDP is better which means that the hard-
ure can finish specific computation tasks using
ess time.

ent Techniques and Platforms:
, we evaluated two popular platforms for deploy-
vision applications: Nvidia Jetson TX2 and Xil-

These platforms come equipped with an on-board
ing IC that can measure multiple power rails such
and GPU cores on the Jetson, and programmable
er CPU cores and low power CPU cores on the

m. On the Jetson TX2, shell scripts (running on
) sample power rails and log their values along
’s timestamp into text files. The act of measuring
es power, thus consequently affects the results.
data in this paper has been corrected for this.

02, a Python script is used to sample power rails
ible through the INA226 and are mapped to PS

al files in sysfs.
enchmark, we first processed 1000 frames on the
e platform and then 1000 frames on the hardware
rt of the platform. This can be seen in Figure
first two vertical lines mark the first 1000 frames
nd the following two lines mark the last 1000

hardware. We computed the average frame rate by
time between vertical lines and divided it by 1000.
resents the number of power samples taken for

. Note that the ZCU102 has a different sampling
X2. For vision kernels and pipelines, input frames
cale with 1080p resolution. For neural networks,
n RGB with 224×224 resolution. We also used
stead 1000 frames to have multiple of batch sizes.

re environments.
k, we used Xilinx Zynq UltraScale+ MPSoC
A board. It has a 16nm XCZU9EG FPGA, and
GB 64bit DDR4 RAM with a peak bandwidth
or GPU board, we used the Nvidia Jetson TX2
UDA cores (16nm)) has 8GBs of 128bit DDR4
eak bandwidth of 477.6 Gb/s. Both the FPGA

e on-chip ARM CPU cores with NEON SIMD

PU board supports three operating modes with
k frequencies and power consumptions, as fol-
-Q: (maximum energy efficiency) in this mode

Figure 3: Measuring power samples on the platform’s CPU
1000 frames), and its FPGA or GPU (second 1000 fram

all components on the TX2 are configured to achieve
power-throughput tradeoff. (GPU @ 0.85GHz). (2
this mode increases the GPU’s clock frequencies to inc
performance sacrificing the power (GPU @ 1.12GHz
Max-N: (maximum clock) is the maximum performan
allowing the TX2 to hit higher performance at the cos
energy efficiency (GPU @ 1.30GHz).

On the ZCU102 FPGA baord, the xfOpenCV FPGA
are clocked at 300 MHz, and the Xilinx DPU overlay
uration mode (3xB4096) runs at 333 MHz. The ARM
clocked at 1.7 GHz. Table 1 shows the theoretical pe
mance of the platform used in this paper.

Table 1: Theoretical Peak Performance of Hardware Platfo
Platform Configuration Data types Perf

ARM Cortex A57 - FP32, FP64
Xilinx ZCU102 - INT8
NVIDIA Jetson TX2 MaxN FP16, FP32 1.3
NVIDIA Jetson TX2 MaxP FP16, FP32 1.1
NVIDIA Jetson TX2 MaxQ FP16, FP32 0.8

4.2.2. Software environments.
We used three publicly available vision libraries: (1)

3.4, (2) Nvidia’s VisionWorks 1.6, and (3) Xilinx’s xf
2018.3. While the OpenCV code base already comes w
GPU accelerated code, it does not come with FPGA
For this purpose, we used OpenCV compatible C++

for xfOpenCV kernels [35]. With this wrapped functio
were able to compile the same OpenCV code for both
FGPA. Both OpenCV and VisionWorks support full
precision, while xfOpenCV supports 8 bit precision.

In neural network benchmarking, NVIDIA Tenso
Xilinx Vitis AI are used, since both are hardware-speci
works that are optimized for neural network inferenc
bedded GPUs and FPGAs, respectively. We used Ope
DNN module to evaluate the performance of ARM57
NVIDIA side we used Jetpack 3.3 on TX2 and Jetp
with corresponding TensorRT versions 1. For Xilinx p
the Xilinx Vitis AI framework version 1.1 is used.

4.3. Benchmarking Approach

In this study, we intentionally focused on evaluating t
mance of out-of-the-box kernels from publicly available
(without writing special platform specific code aroun
calls) to give a fair comparison in terms of developme
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For this reason, we first ran single kernel calls from OpenCV
and VisionWorks libraries on the CPU and GPU, respectively,
and instantiate
(even though
then measured
on the three H
efficiency on t

For single k
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d a single kernel from xfOpenCV in FPGA fabric
small kernels utilize few FPGA resources). We
the efficiency of representative vision pipelines

W accelerators to quantify their speed and energy
hese more complete vision applications.
ernel evaluation, we compared the efficiency of the
rs in terms of their energy consumption per frame.
a vision kernel’s dynamic power while excluding
r required to power the rest of the platform. This
the actual workload that is being deployed to the
certainly for small kernels, the compute energy
nsumed for computation only) and data transfer
ally dominated by the static power. In the vision
ation, we compared the performance of HW ac-
erms of their energy delay products (EDP). We
power consumption (static + dynamic), because
he actual power consumption when a complete
oyed. We also measured the maximum frame rate
e three HW accelerators. The theoretical frame
A is fixed for vision kernels that perform a single

nput image. Equation (1) shows an FPGA’s frame
clocked at 300MHz for 1080p images.

=
300MHz

1080 × 1920 × 1cycle/pixel
= 144 (1)

riments, we measure run-time as follow:

rnels: We measure the compute performance and
o transfer data from/to these kernels.

Vision Pipelines: We measure the compute per-
and the time to transfer data from/to the input

t of these pipelines. Communication between the
s kernels is local on the FPGA (through FIFOs)
nds on the caching on the GPU.

FPGA 6.945 0.41
GPU 1.298 0.19

• Neural Networks: Due to library limitations, we
measure the isolated compute only performance
networks. The weights and activation maps ne
streamed from/to off-chip memory between laye
fore, only the system performance of neural ne
measured and reported in this work.

In our experiments, we measure the power as follow

• Vision Kernels: dynamic power only using the f
power rails: (VCCINT) in the FPGA, (VDD SYS
the GPU, and (VDD SYS CPU) in CPU.
• Complete Vision Pipelines: total power (stat

namic) using the following power rails: (VCCIN
rail in the FPGA, (VDD SYS GPU) in the G
(VDD SYS CPU) in the CPU.
• Neural Networks: total power (static + dynamic)

following power rails: (VCCINT) power rail in th
(VDD SYS GPU) in the GPU, and (VDD SYS
the CPU.

In order to have a sense of the amount of energy cons
computation only, we measured the energy consumptio
movers in the FPGA and GPU. We implemented pas
kernels which copy pixels from one memory location t
without applying any arithmetic/logical operations. In t
implementation, Xilinx’s SDx tool instantiates data mo
for each input or output port to transfer data between the
mapped domain and the stream domain. Table 2 sh
FPGA takes 6.945 ms to copy an entire image (108
0.41 mJ/frame, while GPU takes 1.298 ms with 0.19 m
These values can be used to give a sense of the ratio
consumed for computation to data transfer in each ker
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5. Experimental Results
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first presents the benchmarking results of single
and a set of representative vision pipelines are
n, it shows the results of a set of neural networks.

rnel Performance:

ating the run-time performance and energy/frame
f single kernels on the HW accelerators, we first
vailable GPU implementations: OpenCV CUDA
vidia’s VisionWorks toolkit. The OpenCV GPU
ten using CUDA and as a result benefits from the
tem. The Visionworks library applies many opti-
iques to boost performance, such as buffer reuse,
efficient use of streaming and CUDA textures, au-
ling across processing units, tiling and pipelining
ns at the sub-frame level. Figure (4) shows the
ttom) and energy per frame (top) achieved by run-
nels on the Jetson TX2. The dark color represents
A module, and the light color represents Vision-
n observe that the VisionWorks implementation
e OpenCV module in frame rate over all kernels.
to a 9.7× speedup compared to the OpenCV mod-
nsumes less energy per frame over all kernels.
to a 6.3× reduction in energy consumption per

s reason, in the rest of the paper, we will use only
ks implementation for the GPU.
easured the energy per frame consumption of
from the following six categories: (1) input pro-
thmetic operations, (3) filter operations, (4) image
eometric transformation, and (6) composite ker-

ssing: The energy/frame of input processing ker-
in Figure (5). These kernels mapped well to
FPGA compared to the CPU because of their

a parallelism, low complexity, and no data depen-
U and FPGA achieved an average reduction ratio
1.41× in energy/frame compared to the CPU. It
t GPU’s implementation of bit-depth conversion
× reduction compared to FPGA, because of the ef-
treaming and CUDA textures in the VisionWorks
mentation. In all kernels, the GPU has an order
peed up compared to CPU and FPGA in terms of

combine
color conv

depth conv
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re 5: Input Processing Operations Kernels

such as: threshold, absDiff, add/sub, and bitwise and/o
be efficiently implemented by the CPU. However, the C
to perform poorly in kernels with multiplication operati
as: multiply, accumulate squared, weighted, magni
phase. The GPU has the lowest energy/frame compa
CPU and FPGA. The GPU’s implementations achieve
age reduction ratio in energy/frame of 4.6× and 7.2× c
to CPU and FPGA, respectively. An expected result
algorithms can be granulated into many pieces that ex
same operation (SIMT).

Image Filters: In Figure (7), the results of filtering o
show that the FPGA performs better than the GPU and
these kernels. The FPGA’s implementation achieved a
reduction ratio of 1.8× and 7.4× in energy/frame com
the GPU and CPU, respectively. The memory access
and mathematical complexity of linear filters (filter2D
ter, pyramid up and pyramid down) maps well to th
processing of the GPU and FPGA. Median filters, how
unlike linear filters. They do not use sequential data a
multiply-and-accumulate operations, but sort input elem
select the median of them, which makes them less st
ward to implement efficiently on a GPU. The morp
operations (dilate and erode) use hit and miss functio
structuring element. These functions are more difficult
ment than filtering functions due to comparison and b
This explains the low frame rate (as shown in Figure 2)
energy/frame consumption of VisionWorks’s implem
of small (3×3) filter kernels.

Image Analysis: The results of the image analysis k
shown in Figure (8). For kernels such as lookup table, h
and histogram equalization, the energy/frame consum
the FPGA achieves an average reduction of 1.2× com
the GPU. While for kernels with more branching c
and complex memory access patterns, such as integr
mean/std, and min/max locations, the FPGA’s implem
achieved an average reduction ratio of 3.5× compar
GPU.

Geometric Transformation: The results of the geome
formation kernels are shown in Figure (9). The CPU
poorly for these kind of operations compared to the
FPGA. Also, the FPGA was more energy efficient com
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hieved a reduction of 1.6× in energy/frame for the
ap kernels, and 2× for affine warp and perspective
The computations in the warp operations are more
pared to resize and remap as mapping addresses
erated from 2×3 or 3×3 matrices before starting
peration. The mapping process in these kernels is
tination to source in order to avoid sampling arti-
ing every pixel in the destination image multiple

Kernels: The last category in our study includes
) detecting image features (canny, fast and harris),
optical flow, and (3) computing disparity using
atching. Figure (10) shows that the FPGA imple-
eature extraction kernels (canny, fast and harris)
rgy-efficient compared to the CPU and GPU by
uction of 7.7× and 3.5×, respectively. The steps

arse optical flow using the pyramid Lucas-Kanade
udes extracting feature points from one frame and
in the next frame. The FPGA implementation
tect 488 Harris corners compared to 94 for Vi-
the same input frame and parameters. Also, it

ep track of these points in the next frame. This
igh energy/frame consumption in the FPGA im-
Moreover, the VisionWorks’s implementations

is not open sourced yet, so the number reported
s for the GPU implementation using OpenCV’s
e instead.
energy/frame reduction for the GPU and FPGA is
3. The ratio is with respect to CPU consumption

er). We can observe a trend from simple kernels
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Figure 10: Image Features, Optical Flow and Depth Ke

(top) to more complex kernels (bottom). The trend dem
that the performance of the GPU and FPGA compar
CPU improves as kernels’ complexity increases. Fo
kernels (input processing and image arithmetic), the GP
the highest performance/energy efficiency, while for m
plicated kernels (image filters, image analysis and g
transform), the FPGA shows the highest performanc
efficiency. Moreover, as the complexity of kernels inc
FPGA shows higher energy-efficiency compared to the
CPU. This occurs due to the fact that more complex a
naturally occupy more resources on the programmable
well as the fact that GPUs do not scale well for prob
are not easily divisible (data locality) or have many c
or complex memory access patterns.

Table 3: Ratios of Energy/Frame Reduction (Reference

CPU GPU

Input Processing 1 1.79×
Image Arithmetic 1 3.19×
Image Filters 1 3.17×
Image Analysis 1 2.34×
Geometric Transform 1 10.3×
Features/ OF/ StereoBM 1 7.44×

For completeness, we did a frame rate comparison
the ARM57 CPU OpenCV and GPU VisionWorks im
tations. Our result shows that VisionWorks implem
outperform OpenCV implementation by an average sp
2.9×, 4.2×, 6.3×, 3.9×, 42× and 4.5× for the six cate
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vision kernels. The FPGA’s frame rate met the theoretical rate
of Equation (1) for kernels performing a single pass over the
input image (1
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xfOpenCV ou
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44 fps @300MHz for 1080p). To validate kernels’
used OpenCV’s output image as our reference
pixel-wise subtraction with the VisionWorks and
tputs to measure differences. We had no differ-
ported vision kernels.

Vision Pipeline Performance:

on, we evaluated the performance of the HW ac-
four representative pipelines. Common steps in
er vision pipelines include: pre-processing, fea-
, and post-processing. The pipelines used in our
is structure: (1) background subtraction, (2) color
(3) stereo block matching, and (4) Harris corner

se pipelines are implemented on the GPU using
penVX graph mode to enable its advanced opti-
iques (buffer reuse, kernel fusion, etc.). We also
xecution of kernels on the FPGA at pixel/frame
penCV modules. In this way, the FPGA can lever-
at image pixels stays within the programmable
ids going back and forth to read/write from exter-
n terms of CV pipelines accuracy, the results in
hes the GPU and FPGA. The pipelines evaluated
re:

ound Subtraction:
und subtraction pipeline is used to detect changes
ences [37]. It is mainly used when regions of in-
round objects. The pipeline components include:
aussian filtering, threshold, erode and dilate, as
re (11).

Subtract Threshold

Gaussian

Erode Dilate

Output
: Background Subtraction Pipeline Components

egmentation:
e is used to partition an image into multiple seg-
n a specific range of colors. It converts the color
GB to HSV, then applies range thresholding to
els, and applies erode and dilate operations, as

re (12).

GB
2
SV

olor

Color
Threshold Erode Dilate

Output

12: Color Segmentation Pipeline Components

(mJ/f) (mJ.

Background Subtraction 1.74× 1.3
Color Segmentation 1.86× 1.4
Harris Corners Tracking 3.94× 2.6
Stereo Block Matching 8.83× 107

5.2.3. Harris Corners Tracking:
This pipeline is used to detect and track feature poin

of successive frames of a video. It takes in the current
frame as inputs. It computes Harris corners from th
frame and outputs a list of tracked corners in the ne
The pipeline uses five kernels: Gaussian pyramid, Har
detection, Optical flow and update corners kernels, as
Figure (13).

Prev

Next

Gaussian
Pyrmid

Gaussian
Pyrmid

Harris

Optical
Pyrmid

Corner
Update

Up
Co

Figure 13: Harris Corners Tracking Pipeline Compon

5.2.4. Stereo Block Matching:
This pipeline is used to generate a disparity map

camera parameters and inputs from a stereo camera s
used as a first step in creating a three dimensional m
environment. The main components involved in the
are shown in Figure (14). It consists of stereo rec
remapping, and disparity estimation using a local block
method.

Left

Right

Undistort
Rectify
Undistort
Rectify

Remap

Remap Stereo
BM

disp

Figure 14: Stereo Block Matching Pipeline Compone

Figure (15) plots the Energy/frame and EDP comp
the four pipelines, and shows the FPGA implementat
sume less energy/frame compared to the CPU and GP
pipelines. The FPGA is also more efficient in term
(lower EDP is better). The FPGA’s Energy/frame and
duction ratio with respect to the GPU is listed in Tab
the complexity of the pipeline grows, the energy/frame
reduction ratio increases. More complex vision pipe
use more of the FPGA programmable logic, reducin
ative impact of static power consumption. Addition
communicated between modules of the pipeline are kep
in the streaming FPGA implementation.
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Table 5: Top-5 (Top-1) Classification Accuracy

Library Inception-v2 ResNet-50 ResNet-18 MobileNet-v2 SqueezeNet

Open
Tens
Xilin

5.3. Neural N

In this secti
five different n
18, MobileNet
mentation usin
works on an A
FPGA, respec
ware optimiza
and FPGA), m
(GPU) and diff
tations are eva
test accuracy a
and EDP).

5.3.1. Accura
The Top-1

by Inception-
SqueezeNet im
DPU is show
ImageNet-1K
have different
ters size [MBs
their GOPs/M
50 (4 GOPs/ 9
(0.3 GOPs/ 14
sults show tha
DNN to FP16
5 (Top-1) acc
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ts ARM-
selected
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11
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CV DNN (FP32) 91.1 (72.75) 91.85 (74.44) 88.48 (68.32) 86.1 (64.75) 78.13 (54.38)
orRT (FP16) 90.8 (72.01) 91.15 (72.86) 89.30 (69.93) 86.4 (65.40) 76.30 (52.29)
x DPU (INT8) 90.30 (71.68) 91.31 (73.34) 88.25 (66.94) 85.06 (63.54) 76.58 (50.26)

etwork Inference Performance

on, we measure the accuracy and performance of
eural networks: Inception-v2, ResNet-50, ResNet-
-v2 and SqueezeNet. We benchmark their imple-
g OpenCV DNN, TensorRT, and Vitis AI frame-
RM-57 CPU, Jetson TX2 GPU, and ZCU102

tively. We also evaluate the performance of hard-
tions: reduced precision implementations (GPU
ultiple batch sizes and different operating modes
erent threads counts (FPGA). These implemen-
luated using the following performance metrics:
nd system performance (frame rate, energy/frame

cy:
and Top-5 classification accuracy achieved

v2, ResNet-50, ResNet-18, MobileNet-v2 and
plemented using OpenCV DNN, TensorRT and

n in Table 5. The accuracy is measured on the
validation set (ILSVRC-2012). These networks
computational complexity [GFOPs] and parame-
]. We listed these networks in the Table 5 based on
Bs ratio: Inception-v2 (6 GOPs/ 91MB), Resnet-
8MB), Resnet18 (2 GOPs/ 45MB), MobileNet-v2
MB) and SqueezeNet (0.36 GOPs/ 5MB). The re-
t reducing the bit precision from FP32 in OpenCV

in TensorRT and INT8 in DPU keeps the Top-
uracy loss within ∼ 2%(∼ 4%). This suggests

65
.9 15
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5
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0.
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0.
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19
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0
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0−
2

8
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Color
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33
5.

6 68
8

1,
88

3

20
.6

21
.8

30
0.

9 97
2.
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.7
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.8 11
0.

1

ARM57 GPU FPGA
PGA outperforms GPU and CPU in energy/frame

consumption and EDP

that these models can be used with precisions as low
which will reduce model complexity by 4x while ma
an acceptable accuracy loss.

5.3.2. System Performance:
System performance measures the efficiency of the

inference pipeline including its pre-processing, com
data movement, and post-processing stages which giv
into the actual performance achieved after deployme
tures potential memory bandwidth bottlenecks in data
between off-chip and on-chip memories.

In our experiment, we measure the performance of C
and FPGA implementations of Inception-v2, ResNet-50
18, MobileNet-v2 and SqueezeNet networks. We mea
performance at multiple batch sizes (b=1,b=2, ..., b=

thread counts (t=1, t=2, ..., t=8) to evaluate the eff

creasing batch size on data reuse and data movements
Figure 16 and 17 show the experimental results of Inc
and ResNet-50. The blue, green and red bars represen
57, GPU and FPGA, respectively. In these figures, we
the GPU’s most power efficient operating mode (M
its reduced precision (FP16). We measured the frame
EDP at different batch sizes and thread counts. The
lected the highest frame rate and lowest EDP among
the side-to-side comparison.

The results show that even with the limited mem
width in the FPGA, it was able to achieve higher fra
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PU and GPU. For Inception-v2, the FPGA (t=6)
d up of 2.5× and 65× compared to the GPU FP16
PU. For ResNet50, the FPGA (t=8) also achieves
.1×, and 77× compared to the GPU FP16 (b=128)
ectively. This speed-up comes from the low nu-

ion (INT8) used in FPGA compared to the (FP32
PU and GPU, as well as multiple optimizations

Xilinx Vitis AI framework such as: (1) memory
eduling and reusing, (2) node fusion/decomposi-
ata stream optimization. Moreover, it is noticed
vement in frame rate starts to saturate as batch
d count increases due to reaching the maximum
Another observations is that the FPGA implemen-
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tations of Inception-v2 and ResNet50 are 4.72× and 3
energy efficient when number of threads equals (t=8) c
to (t=1).

In terms of EDP, the FPGA implementations have lo
values compared to the CPU and GPU FP16 implem
Figure 16 shows that FPGA implementation (t=8) of I
v2 has an EDP reduction ratios of 1.5× compared to
FP16 (b=128). Figure 17 shows that FPGA implem
(t=8) of ResNet50 has 1.1× EDP reduction ratios com
the GPU FP16 (b=128).
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ResNet-18, the FPGA (t=6) achieves a speed up of 2.6× and 96×
compared to the GPU FP16 (b=128) and CPU. For Mobilenetv2,
the FPGA (t=7
pared to the G
FPGA (t=6) a
to the GPU FP

Table 6 sum
ratio compare
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F16 implemen
ResNet-18, M
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Inception-v2
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ResNet50 J.s/f2)
Platform compute

ZCU102 2.03
ZCU102 0.74
ZCU102 0.49
ZCU102 0.45
ZCU102 0.41
ZCU102 0.41
ZCU102 0.43
ZCU102 0.42

TX2, MaxN 1.54
TX2, MaxN 1.14
TX2, MaxN 1.01
TX2, MaxN 0.97
TX2, MaxN 0.92
TX2, MaxN 0.89
TX2, MaxN 0.89
TX2, MaxN 0.91
TX2, MaxN 5.31
TX2, MaxN 4.09
TX2, MaxN 3.82
TX2, MaxN 3.60
TX2, MaxN 3.44
TX2, MaxN 3.37
TX2, MaxN 3.51
TX2, MaxN 3.45

TX2, MaxQ 1.68
TX2, MaxQ 1.21
TX2, MaxQ 1.05
TX2, MaxQ 1.06
TX2, MaxQ 0.98
TX2, MaxQ 0.97
TX2, MaxQ 1.02
TX2, MaxQ 1.05
TX2, MaxQ 5.82
TX2, MaxQ 4.60
TX2, MaxQ 4.13
TX2, MaxQ 3.90
TX2, MaxQ 3.72
TX2, MaxQ 3.60
TX2, MaxQ 3.60
TX2, MaxQ 3.88

TX2, MaxP 1.40
TX2, MaxP 1.03
TX2, MaxP 0.91
TX2, MaxP 0.90
TX2, MaxP 0.84
TX2, MaxP 0.82
TX2, MaxP 0.87
TX2, MaxP 0.90
TX2, MaxP 5.02
TX2, MaxP 3.86
TX2, MaxP 3.63
TX2, MaxP 3.44
TX2, MaxP 3.26
TX2, MaxP 3.22
TX2, MaxP 3.36
TX2, MaxP 3.41
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Table 7: Inference Results ResNet50
Accuracy [%] Latency [ms] Throughput [fps] Power [W] Energy/Frame (mJ/f) EDP (m

Parameters Top-5 (Top-1) system compute system compute system compute system

INT8, t=1 90.85 (72.53) 17.78 14.82 43.75 67.64 9.3 212.6 137.5 4.86
INT8, t=2 90.85 (72.53) 18.59 15.57 107.37 127.66 12.1 112.7 94.8 1.05
INT8, t=3 90.85 (72.53) 20.69 17.61 120.67 169.74 14.05 116.4 82.8 0.96
INT8, t=4 90.85 (72.53) 24.62 21.52 161.76 183.81 15.19 93.9 82.6 0.58
INT8, t=5 90.85 (72.53) 29.96 27.05 165.99 193.02 15.13 91.2 78.4 0.55
INT8, t=6 90.85 (72.53) 35.5 32.48 167.64 193.79 15.59 93.0 80.4 0.55
INT8, t=7 90.85 (72.53) 41.59 38.55 168.13 190.79 15.56 92.5 81.6 0.55
INT8, t=8 90.85 (72.53) 47.61 44.41 167.29 191.91 15.53 92.8 80.9 0.55

FP16, b=1 92.12 (75.11) 13.99 10.68 70.96 93.94 13.62 191.9 145 2.7
FP16, b=2 92.12 (75.11) 23.65 18.25 84.38 110.83 14.0 165.9 126.3 1.97
FP16, b=4 92.12 (75.11) 43.79 34.23 91.16 118.09 14.08 154.5 119.2 1.69
FP16, b=8 92.12 (75.11) 84.79 65.86 94.33 121.41 14.23 150.9 117.2 1.6
FP16, b=16 92.12 (75.11) 162.58 126.23 98.41 126.5 14.65 148.9 115.8 1.51
FP16, b=32 92.12 (75.11) 317.87 247.34 100.91 129.51 14.95 148.2 115.4 1.47
FP16, b=64 92.12 (75.11) 620.08 490.37 103.53 130.42 15.18 146.6 116.4 1.42
FP16, b=128 92.12 (75.11) 1211.85 975.98 104.85 131.08 15.72 149.9 119.9 1.43
FP32, b=1 92.11 (75.15) 22.32 18.97 44.67 52.79 14.8 331.3 280.4 7.42
FP32, b=2 92.11 (75.15) 38.46 32.96 51.96 60.99 15.22 292.9 249.5 5.64
FP32, b=4 92.11 (75.15) 72.96 62.96 54.8 63.68 15.49 282.7 243.2 5.16
FP32, b=8 92.11 (75.15) 141.13 122.18 56.67 65.55 15.49 273.3 236.3 4.82
FP32, b=16 92.11 (75.15) 272.41 235.85 58.74 67.8 15.82 269.3 233.3 4.58
FP32, b=32 92.11 (75.15) 531.12 460.67 60.29 69.46 16.24 269.4 233.8 4.47
FP32, b=64 92.11 (75.15) 1042.67 913.42 61.3 69.93 17.15 279.8 245.2 4.56
FP32, b=128 92.11 (75.15) 2115.54 1810.9 59.95 70.53 17.15 286.1 243.2 4.77

FP16, b=1 92.12 (75.11) 20.46 15.86 48.71 64.29 6.96 142.9 108.3 2.93
FP16, b=2 92.12 (75.11) 34.65 26.69 57.57 75.47 6.88 119.5 91.2 2.08
FP16, b=4 92.12 (75.11) 64.53 50.01 61.88 80.15 6.77 109.4 84.5 1.77
FP16, b=8 92.12 (75.11) 124.75 96.69 64.08 82.73 7.23 112.8 87.4 1.76
FP16, b=16 92.12 (75.11) 239 185.17 66.86 86.3 7.3 109.2 84.6 1.63
FP16, b=32 92.12 (75.11) 466.49 362.02 68.56 88.37 7.61 111.0 86.1 1.62
FP16, b=64 92.12 (75.11) 924.53 717.12 69.19 89.11 8.1 117.1 90.9 1.69
FP16, b=128 92.12 (75.11) 1838.48 1429 69.47 89.51 8.45 121.6 94.4 1.75
FP32, b=1 92.11 (75.15) 32.66 27.94 30.49 36.17 7.61 249.6 210.4 8.19
FP32, b=2 92.11 (75.15) 56.36 48.32 35.41 41.56 7.95 224.5 191.3 6.34
FP32, b=4 92.11 (75.15) 106.84 92.09 37.41 43.48 7.8 208.5 179.4 5.57
FP32, b=8 92.11 (75.15) 207.45 179.45 38.56 44.61 7.76 201.2 174 5.22
FP32, b=16 92.11 (75.15) 398.74 344.35 40.1 46.48 8.03 200.2 172.8 4.99
FP32, b=32 92.11 (75.15) 779.69 673.93 41.01 47.46 8.1 197.5 170.7 4.82
FP32, b=64 92.11 (75.15) 1540.33 1333.2 41.52 47.97 8.29 199.7 172.8 4.81
FP32, b=128 92.11 (75.15) 3118.09 2650.9 40.85 48.2 9.02 220.8 187.1 5.41

FP16, b=1 92.12 (75.11) 16.52 12.46 60.12 81.87 9.36 155.7 114.3 2.59
FP16, b=2 92.12 (75.11) 28.1 20.92 70.93 96.51 9.59 135.2 99.4 1.91
FP16, b=4 92.12 (75.11) 52.22 39.14 76.53 102.41 9.59 125.3 93.6 1.64
FP16, b=8 92.12 (75.11) 100.21 75.54 79.74 105.97 10.09 126.5 95.2 1.59
FP16, b=16 92.12 (75.11) 193.89 145.36 82.51 110.08 10.13 122.8 92 1.49
FP16, b=32 92.12 (75.11) 375.86 283.47 85.21 112.82 10.39 121.9 92.1 1.43
FP16, b=64 92.12 (75.11) 733.74 562.74 87.2 113.88 11.34 130 99.6 1.49
FP16, b=128 92.12 (75.11) 1453.87 1121.2 87.78 113.94 11.64 132.6 102.2 1.51
FP32, b=1 92.11 (75.15) 26.16 22 38.03 46.07 10.66 280.3 231.4 7.37
FP32, b=2 92.11 (75.15) 45.07 37.86 44.26 53.12 10.88 245.8 204.8 5.55
FP32, b=4 92.11 (75.15) 85.31 72.25 46.88 55.54 11.19 238.7 201.5 5.09
FP32, b=8 92.11 (75.15) 165.16 140.36 48.43 57.1 11.23 231.9 196.7 4.79
FP32, b=16 92.11 (75.15) 318.38 270.54 50.22 59.16 11.42 227.4 193 4.53
FP32, b=32 92.11 (75.15) 621.3 528.54 51.51 60.52 11.8 229.1 195 4.45
FP32, b=64 92.11 (75.15) 1219.1 1046.8 52.38 61.08 12.52 239 205 4.56
FP32, b=128 92.11 (75.15) 2495.53 2076.5 50.94 61.52 12.9 253.2 209.7 4.97
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Category
GA

Image Arithm .0
.0
.0
.6
.0
.0
.55
.0
.0
.22
.23
.0

Input Process .0
.0
.0
.0
.0

Geometric Tr .0
.0
.35
.0

Filters .0
.36
.0
.0
.0
.0
.43

Analysis .0
.05
.0
.0
.0

Features /A
/A
.0
.0
.02
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Table 8: Frame Rate (fps) of Different Vision Kernels on CPU, GPU and FPGA

Kernel Frame Rate (fps) L1-norm Error
ARM GPU FPGA GPU FP

etic absolute diff 904 3717 133 0.0 0
accumulate 301 2262 127 0.0 0
accumulate squared 281 2283 128 0.0 0
accumulate weighted 286 3846 128 0.0 0
arithmetic add 913 4065 128 0.0 0
arithmetic subtract 884 4048 133 0.0 0
arithmetic multiply 259 2985 132 0.0 0
bitwise and, or, xor 879 3546 133 0.0 0
bitwise not 1612 4424 128 0.0 0
magnitude 227 1838 108 1.96 0
phase 150 2222 108 1.23 0
threshold 1996 3745 135 1.35 0

ing channel combine 881 2132 135 0.0 0
channel split 443 2277 138 0.0 0
color conversion 53 2147 132 0.0 0
bit depth conversion 1141 3344 137 0.0 0
table lookup 961 3058 32 0.0 0

ansforms affine warp 69 2739 365 0.11 0
perspective warp 36 2604 384 0.11 0
resize 690 2857 350 - 0
remap 33 996 1004 0.11 0

filter 2D 26 1285 134 0.0 0
box filter 253 2824 135 0.0 0
dilate 356 2638 134 6.4 0
erode 359 2645 134 6.8 0
median 323 858 121 0.0 0
pyr Down 377 2150 108 0.45 0
pyr Up 80 1375 104 0.40 0

histogram 354 2164 139 0.0 0
hist equalization 308 1349 69 0.0 0
integral image 235 682 122 0.0 0
mean std deviation 336 1277 141 0.0 0
min max locations 128 734 140 0.0 0

canny 64 101 99 N/A N
fast corner 169 339 49 N/A N
harris corner 11 501 113 0.0 0
optical flow 18 64 5 0.0 0
stereoBM 18 54 7 - 0
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