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Abstract: ConceptGrid provides a template-style approach to check natural language responses 
by students using a model-tracing style intelligent tutoring system. The tutor-author creates, 
using a web-based authoring system, a lattice-style structure that contains the set of required 
concepts that need to be in a student response. The author can also create just-in-time feedback 
based on the concepts present or absent in the student’s response. ConceptGrid is integrated 
within the xPST authoring tool and was tested in two experiments, both of which show the 
efficacy of the technique to check student answers. The first study tested the tutor’s effectiveness 
overall in the domain of statistics. The second study investigated ConceptGrid’s use by non-
programmers and non-cognitive scientists. ConceptGrid extends existing capabilities for 
authoring of intelligent tutors by using this template-based approach for checking sentence-
length natural language input. 
 
Keywords: intelligent tutoring; natural language; authoring tool; model-tracing; web-based 
authoring; just-in-time feedback; xPST. 
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Using ConceptGrid As an Easy Authoring Technique to Check Natural Language Responses  

There is broad interest in allowing students to respond to certain questions using natural 

language in a computer-based intelligent tutoring system (e.g., Graesser et al., 2004; VanLehn et 

al., 2002). It intuitively seems that such an approach would be more convenient to the student in 

many situations while also allowing a deeper assessment of their knowledge. For example, 

allowing students to type in their own response to a question such as, “What is the difference 

between nominal and ordinal style data?” in a statistics and research methods tutor provides a 

richer experience and a more stringent test of their knowledge than asking the same question but 

having students pick from a small set of choices. Achieving this richer experience requires 

solving the difficult task of automating the evaluation of the students’ responses. Computer 

tutors are good at checking answers that are arrived at by formula, algorithm, or from pre-set 

choices. Judging the correctness of natural language, however, is much more challenging and 

what ConceptGrid attempts to make more tractable. 

ITS researchers also have a broader interest in opening up the authoring process to a 

wider class of people, including educators that are not trained in designing intelligent tutoring 

systems (ITSs), non-cognitive scientists, and non-programmers (Murray et al., 2003). By making 

the creation of ITSs easier, more people will create ITSs and the systems will become more 

prolific. Many ITS systems have demonstrated impressive learning results (e.g., Graesser et al., 

2004; Mitrovic et al., 2001; Ritter, et al., 2007; VanLehn et al., 2005), so broadening the base of 

systems will benefit students and other learners. With ConceptGrid the desire is to extend the 

ease of authoring into responses requiring natural language.  

Related Work 
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Past intelligent tutoring systems have given participants the capability of responding in 

natural language. Two notable tutors that accept natural language responses are Why2-Atlas 

(VanLehn et al., 2002) and AutoTutor (Graesser et al., 2004). Students in Why2-Atlas respond to 

qualitative physics problems using natural language. For example, the tutor might pose a 

problem about what happens if a person on a quickly descending elevator lets go of an object 

(see Jordan et al., 2006). Students need to type out their responses in plain English, and the tutor 

checks their answer based on a first-order predicate logic analysis of the sentences. Why2-Atlas 

uses a variety of techniques to deeply understand what the student typed, and then has a 

sophisticated method for managing the dialogue interaction with the student. This allows Why2-

Atlas to check student answers at a very precise level of detail and follow-up with very targeted 

questions for the student to address. 

AutoTutor, another tutor that accepts natural language, has been deployed in a variety of 

domains, such as physics, computer literacy, and critical thinking. Unlike Why2-Atlas, 

AutoTutor primarily uses Latent Semantic Analysis (LSA; Landauer et al., 1998) to check 

student responses (Graesser et al., 2000). While using LSA might make encoding ideal responses 

less time consuming, it limits the sophistication with which it can check actual student responses. 

For example, LSA largely ignores word order, and it cannot always recognize negation. 

Furthermore, LSA scores the actual student answer against the ideal set of answers, and so might 

not be able to indicate what exactly is wrong with the student response. However, as mentioned 

above, AutoTutor has been successful in assisting student learning in a variety of different 

domains. 

Other tutors that support natural language dialog with students also exist, such as Ms. 

Lindquist for algebra symbolization (Heffernan and Koedinger, 2002), CIRCSIM Tutor for 
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medical word matching (Glass, 2001), and Summary Street for writing (Wade-Stein and Kintsch, 

2004). These use a combination of techniques such as those discussed above. All of these tutors 

point to the potential power of enabling students to respond in natural language, possibly to 

support justifying numeric answers. Aleven and colleagues (1999) required students to provide 

reasons for steps taken in a geometry tutor. While their answers were not natural language in a 

strict sense, students had to select their reasons from a glossary of known choices, providing the 

reasons led to better learning. Students who did such explanations learned more than those who 

did not. Perhaps the most basic cause for why having students explain their reasoning, giving 

their answers in natural language, is the self-explanation effect (Chi et al., 1989). Students who 

explain their thinking, those who connect consciously one idea to the next, perform better than 

those who do not. Computer tutors that have students explain their reasoning are making use of 

this effect. Tutors should capitalize on this finding by accepting natural language answers. 

Concerning the broader interest in opening up the authoring process of intelligent tutors 

to a wider class of people, a number of researchers are now working towards that goal with a 

number of different types of ITSs. A volume by Murray and colleagues (2003) contains 

description and discussion on some of these efforts; also see the International Journal of 

Artificial Intelligence, volume 19, number 2, an issue dedicated to authoring tools for intelligent 

tutors. Furthermore, Dolog and colleagues (2007) survey a number of research projects 

concerning the authoring of adaptive systems. As one specific example, Munoz and Ortigosa 

(2007) discuss a method to allow instructor-authors to easily create courses based on adaptive 

hypermedia. 

However, none of these systems address the issue of how to easily author natural 

language responses. Why2-Atlas had an authoring system, but it is not clear how usable it was by 
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someone not familiar with programming concepts. With Autotutor’s use of LSA, there is no true 

authoring within it. What might come closest to ConceptGrid is using regular expressions (i.e., 

regex) to perform pattern matching. Brown and Hardistry (2007) describe a tutor that instructs 

students on such expressions. With limited exposure (one class period), students who used the 

regex tutor performed better at simple problems involving regular expressions than control 

students. Additionally Blackwell (2001) discusses different techniques, including graphical ones, 

to assist in the creation of regular expressions. However, these techniques at pattern matching are 

clearly not meant to provide validation for the types of natural language expressions, clauses, and 

sentences that ConceptGrid is meant to validate. ConceptGrid serves to fill a particular and novel 

niche in that regards. 

As stated previously, ConceptGrid was designed to be usable by non-programmers, 

sometimes referred to as end-user programmers (Scaffidi et al., 2005). However, like any 

computer-based authoring tool, it still requires computational thinking (Wing, 2006). To 

accommodate this, ConceptGrid’s user interface was designed in the spirit of visual 

programming tools such as Scratch (Maloney et al., 2008), Alice (Pausch et al., 1995), and 

LabView (Wells and Travis, 1996), in which non-programmers can create algorithms by 

chaining together atomic components that can be triggered to execute and take actions on objects 

represented elsewhere in the interface. This approach was also taken by Aleven and colleagues 

(2009) in their CTAT tool for authoring model-tracing intelligent tutors using behavior graphs. 

Nardi’s review of visual programming literature (Nardi, 1993) notes that while this graphical 

approach is not always more effective than other interaction designs, it has strong advantages for 

representing abstraction.  
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ConceptGrid is part of a larger project, the Extensible Problem Specific Tutor (xPST). 

xPST allows non-programmers and non-cognitive scientists to create model-tracing ITSs 

(Blessing et al., 2009). Authors create the instruction in an easy-to-use text-based authoring 

environment, and xPST contains the mechanisms that allow the instruction to be displayed in a 

variety of different student interfaces, such as existing websites, Paint.NET, and the Torque 

game engine. ConceptGrid produces output compatible with xPST, but could be extended to 

work in the context of other authoring systems whose designers desire to accept natural language 

input. More information concerning both ConceptGrid and xPST can be found at 

http://xpst.vrac.iastate.edu. 

A Way to Ease the Authoring of Natural Language Responses 

 ConceptGrid tutors on short natural language responses, the typical length being a 

sentence or two. It is designed to evaluate semi-structured natural language, meaning text in 

which you can expect to find certain words, phrases, and known types of sentence structures. 

Experience building ITSs has demonstrated many instances in which it would be helpful to 

provide an opportunity to provide this kind of tutoring, such as for a definition or comparison 

between ideas. The ConceptGrid author creates templates that match expected phrases within the 

student’s answers to achieve this.  

Figure 1 illustrates this method for a question that might be found in a statistics and 

research methods course, “What two things must be true for the mean to be preferred over mode 

or median?” The instructor expects a correct student response to contain these two concepts: 1) 

the data must be normally distributed, and 2) the data must be either interval or ordinal. Within 

ConceptGrid, the author creates a set of templates to recognize each concept. A student can 

phrase these concepts in a variety of different ways, and either concept can be mentioned first. 
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For instance, both of these responses would be correct: 1) “The data must be normally 

distributed, and their type must be either interval or ratio,” and 2) “The numbers need to be either 

ratio or interval, and the distribution needs to be a bell curve.” These responses are both shown 

in Figure 1. In ConceptGrid, one set of templates would correspond to the different ways of 

indicating the data are normally distributed, and another set of templates would check to make 

sure the student mentions the correct measurement scales.  ConceptGrid works best when the 

author narrows down the key phrase or idea that epitomizes the concept. Figure 1 demonstrates 

this. The templates that check for some statement about normality check narrowly for either 

“normal distribution” or “bell curve.” If the student uses any of those phrases in the answer, they 

should probably get credit for knowing that part of the answer. Given how ConceptGrid checks 

for word variants and misspellings, as will be described below, “normally distributed” can match 

to “normal distribution” depending on parameters. That is, ConceptGrid is more powerful than 

simple substring matches. The second set of templates then ensures that the words “interval” and 

“ratio” appear in the answer, in either order. (As an alternate approach, one template could just 

check for “interval,” with the author adding a third template to check for “ratio.”) 

In addition to defining the templates for a correct solution, authors can also define 

templates that would indicate buggy knowledge (Brown and Burton, 1978) for which the author 

might want to provide remediation. For instance, the author could add a buggy third concept to 

Figure 1 that checks to see if the student typed something that would match “skewed 

distribution” and a buggy fourth concept that would match “nominal” or perhaps “ordinal” 

answers. ConceptGrid can then offer feedback to the student concerning these common 

misconceptions (described further below). 
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 This template method for ConceptGrid balances the easy approach present in many 

systems (e.g., allow a test-maker to identify a list of words or phrases that would be acceptable 

for an answer) with the much more sophisticated approach of a system like Why2-Atlas where 

the author produces detailed code in order to indicate a proper response. The easy “list of phrases 

approach” can be learned in minutes by any interested party, but lacks power. The sophisticated 

approach can be much more flexible and powerful in how it checks student responses, but 

requires much training, even by those already knowledgeable about linguistic representations and 

cognitive science. ConceptGrid strikes a good balance, allowing some amount of expressiveness 

found in more sophisticated techniques while remaining easy to learn.  

 Before describing the details of ConceptGrid, Figure 2 shows the overall functional 

process behind the ConceptGrid approach. First, using the web-based tool, an author creates the 

tutor. At instruction time, the learner will input their response to a question. That response is 

checked against the templates as mentioned in the example above. The tutor chooses the 

feedback based on how these templates match, and finally the tutor presents the feedback to the 

student. Each of these functional steps is described in more detail in the next section.  

ConceptGrid Details 

Templates within ConceptGrid contain one or more atomic checktypes. A checktype is a 

function that tests for the presence or absence of a particular set of words. The current system 

contains the checktypes seen in Table 1. Each checktype in a template processes text 

independent of other checktypes. To provide additional information beyond what is contained in 

Table 1, the Levenshtein(n, wordList) checktype performs fuzzy string searching and tries to find 

a string that matches a pattern approximately, based on Levenshtein distance (Levenshtein, 

1966). This distance measure equals the number of single-character primitive operations 
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(insertion, deletion and substitution) required to change one word to another. For example, the 

Levenshtein distance between “normal” and “normally” is 2, whereas the distance between 

“distributed” and “distribution” is 3. The argument n indicates the maximum of number of 

operations that can be performed. The NoVowels(wordList) checktype is an alternative to 

Levenshtein that removes vowels and then checks the word; that is, it returns true if a literal 

match is found, after ignoring vowels, with any of the words in word list.  In addition to the word 

matching checktypes (Exact, Levenshtein, NoVowels, and Synonym), there are two checktypes 

that provide additional power to the author. The Not(n, direction) checktype checks for negation. 

It ensures that the n words appearing to the left or right (specified by the parameter direction) of 

a specific word do not contain the words present in the list below. The Any(m, n) checktype 

matches a sequence of words that is at least m words and at most n words long. For example, to 

recognize the phrase, “the data must be normally distributed,” an author might create a 

ConceptGrid template that looks for phrases in which the words “data” or “numbers” occur 

within 1-5 words of the word “normally,” which in turn should be next to “distributed” or 

“distribution” (see Figure 3).  

The manner in which the checktypes work is a key feature of ConceptGrid. The implicit 

sequencing of checktypes in the lattice approach means that the resulting templates are finite 

parsers. That is, progress through the lattice corresponds to progress left-to-right in processing 

the input. The templates are represented internally as and-or trees, which are reductions into 

checktypes. The algorithm involves a combination of recursion and memoization to efficiently 

process the input. Since the algorithm might need to backtrack many times, memoization helps 

speed up the processing by having function calls avoid repeating the calculation of results for 
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previously processed inputs. ConceptGrid’s approach is focused on words and numerical 

analysis, rather than grammar and logic and is hence non-structural. 

A complete analysis of the expressive power of ConceptGrid as a system for recognizing 

sets of language formalisms has not been conducted. However, it is worth noting that while a 

ConceptGrid template does not have the full power of a regular expression, since templates 

cannot contain words of arbitrary length, such as strings that match the regular expression 

[A-Za-z], ConceptGrid templates would be classified as a more expressive, context-sensitive 

grammar rather than a context-free or regular grammar, since the Not checktype allows left-right 

position-based structures. Higher expressivity within a language usually leads to a more complex 

parsing process, and given that the goal of ConceptGrid is to be easily parsed by tutor authors, 

the current level of expressive power seems sufficient.  

ConceptGrid allows for the creation of these concept templates through the web-based 

graphic user interface (GUI) shown in Figure 3. This interface is available for use at 

http://xpst.vrac.iastate.edu, and the source code is available to interested researchers. In this 

“lattice,” tutor authors can type a sample student response and then edit a lattice automatically 

produced from that response, or provide the dimensions of the template to define the initial 

template size. Once defined, rows and columns can be added or deleted from the template by 

clicking the appropriate “+” to add a row or column or “X” to delete a row or a column. The 

checktype for a column (i.e., a word position in the template) is chosen from the drop-down 

menu. The arguments for the chosen concept are entered to the menu’s right, and the relevant 

words are listed beneath the checktype, one per row, if there are multiple words that might 

appear in that position. 
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The template that appears in Figure 3 checks for one of the possible answers to the 

question featured in Figure 1, “What two things must be true for the mean to be preferred over 

mode or median?” The two concepts of normality and interval or ratio data are part of the 

answer, and the template shown in Figure 3 relates to normality. The template involves four 

atomic checktypes. The first checks for the strings “data,” “numbers,” or “distribution” (that 

could differ by a Levenshtein distance of 1, so “dta” and “number” would also qualify), the next 

checks for a run of between 1 and 5 words of any kind, and the last two checks make sure the 

phrase ends in something close to “normal distribution” or “bell curve.”  All word options in the 

columns are possible, so technically “bell distribution” would also be accepted, though unlikely. 

Note that these templates can match any subpart of the total student input, and do not have to 

match just the whole of the student input. As long as the pattern contained within the template 

matches any part of the student input, then that concept is considered to have matched. A second 

template could be created for this concept to handle alternative phrasings, or perhaps to include a 

Not checktype to rule out phrases like “the numbers don’t form a bell curve.”  These templates 

would have to be created according to the author’s experience, until real student responses can be 

examined to see how students naturally answer these sorts of questions. 

Tutor authors can define as many concept templates as needed to adequately check a 

student response. Once all concepts and templates within those concepts have been defined, the 

tutor author fills out the Feedback Table, a ternary truth table specifying feedback to give the 

students based on their input, given the presence or absence of the relevant concepts in their 

answer. For example, consider the question that was posed in Figure 1, “What two things must 

be true for mean to be preferred over mode or median?” Recall the two concepts the instructor 

desired in a student answer, one being the normality of the data, and the other the type of 
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variable being investigated. Figure 4a shows a Feedback Table for this example based on these 

two concepts. Each row in the Feedback Table corresponds to a possible state of a student 

answer, given the presence or absence of concepts. The green checks in the table correspond to 

when the concept is present in the student input, and the red X’s to when the concept is absent. 

For example, the author might understand the first two rows of the table as, “If the Normality 

concept is present, and the DataType concept is present, then the answer must be right, so give 

the feedback, “Good answer!” If the Normality concept is there, but the student forgot the 

DataType concept (red X), then give the feedback that affirms the answer for normality but asks 

for more information. In addition to the present and absent options, there is also a third option 

(indicated by a yellow hyphen icon) to indicate that it does not matter if the concept is present or 

absent for the system to consider if the student input matches that state (i.e., ignore, or “don’t 

care”). The user interface allows the user to cycle between all three options by clicking on the 

corresponding icon. 

Each student answer is run through the concepts, and then the matching row or rows are 

found in the Feedback Table to provide feedback to the student—perhaps a statement of 

correctness, or maybe a statement indicating that a concept is missing, or a concept is there but 

should not be. Figure 4b illustrates the example when the author implemented a buggy third 

concept discussed above that checks to see if the student thought the distribution had to be 

skewed. In the case of that fifth row, an author might understand the row to mean, “If the student 

response contains the skewed concept, then I don’t care whether or not it talks about Normality 

or DataType (yellow hyphens). I need to address the skewed idea first with this feedback.” If 

multiple feedback responses in the Feedback Table match the response, the feedback of each 

response is concatenated.  
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With regards to the lattice structure of ConceptGrid discussed previously and shown in 

Figure 3, its design was based on the English structure of reading left to right (the columns of the 

lattice) and the common use in English narrative of sequential bulleted lists for alternatives (the 

rows of the lattice).  This structure, including its affordances for inserting and removing rows 

and columns, is somewhat familiar for users of spreadsheets, despite the different content of the 

cells. The ternary logic structure that underlies the Feedback Table (Figure 4) is more abstract, 

and represents a set of logical decisions graphically. Both of these structures graphically 

represent to the author the underlying logic within ConceptGrid. As has been demonstrated by 

previous research on effective representations of decisions, particularly in the software LabView, 

graphics have been shown to be particularly effective for non-programmers (Kiper et al., 1997).  

 The approach to evaluating ConceptGrid is described below. Experiment 1 ensured the 

efficiency of the approach. Using data collected in a real-world setting, the experiment evaluated 

how well ConceptGrid could score student answers when ConceptGrid was used by an 

experienced user, one versed in cognitive science and programming. The student answers were 

obtained in an actual tutor within the domain of statistics. In Experiment 2, people who were 

both non-programmers and non-cognitive scientists used ConceptGrid to evaluate answers 

provided by students to questions an actual instructor might ask on a quiz or homework exercise, 

again in the realm of statistics.  

Experiment 1 

 The first experiment served as a test of feasibility of the lattice-style approach of 

ConceptGrid as an effective natural language analysis tool for student answers. A separate 

project by Maass and Blessing (2011) using xPST to develop a college-level statistics tutor was 

used to collect a corpus. This project, called xSTAT, gave students web-based homework 
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problems in which they evaluated and interpreted t-tests. The final step in these data-driven, real-

world based problems was to interpret the results of the t-test, which entailed stating in one or 

two sentences whether or not the null hypothesis should be rejected or not, and then to conclude 

with a statement of how the independent variable affected the dependent variable. For instance, 

one question contained data about the effects of music on learning, and the student had to 

interpret the results of the t-test by writing something like, “Reject the null hypothesis. There is a 

significant difference in memory recall between the rock music and no music conditions” in a 

free-response text box. There are numerous variations the student could type as an answer to 

these questions, such as, “A significant difference exists between the no music and rock 

conditions upon memory recall. The researcher should reject the null hypothesis.” All of these 

variations should be accepted. This answer has five separate concepts that must be examined: 1) 

a statement of rejection of the null hypothesis; 2) the significance of the results; 3) ensuring that 

the statement concerning the null hypothesis matched that of the statement of significance 4) a 

mention of the independent variable; and 5) a mention of the dependent variable. Experiment 1 

was designed to ensure that an experienced ConceptGrid user could create the templates that 

adequately evaluated the responses to this style of question. 

Participant 

 The second author of this paper, ConceptGrid’s programmer and co-creator, used 

ConceptGrid to create templates for the student answers concerning the interpretation of t-tests. 

The participant was enrolled during this research in a Master’s program in Human-Computer 

Interaction and was an accomplished programmer with some cognitive science knowledge. 

Materials and Procedures 
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 The corpus that the author’s ConceptGrid was checked against was created through the 

xSTAT project. For one homework assignment in a college-level statistics course, students used 

xSTAT to solve six real-world problems (i.e., in each problem a data set was provided to 

students, and they had to use SPSS to solve the numeric aspects of the problem) that required 

some type of t-test to solve. The last question in each problem asked for the interpretation of the 

test, as exemplified above. For purposes of the xSTAT project, half of the students used a 

version of xSTAT that provided feedback for each step of the problem (problems contained 

between seven and nine sub-answers; all except for the last answer could easily be checked by 

comparing a numeric answer or a selection from a radio button or pop-up menu). The other half 

of participants received no feedback. For the tutored version of xSTAT that checked the last 

question of these problems (i.e., the free response interpretation question), xPST code was 

directly entered without benefit of ConceptGrid’s user interface that provides the benefits of a 

visual programming editor. This non-lattice approach had to be done by a cognitive scientist and 

programmer (the first author) who found it difficult to do. This challenge provided impetus for 

the ConceptGrid approach.  

 Forty-one students participated in the xSTAT project. As a group they received 233 total 

multi-step problems from the set of six problems (there is no record for 13 students of a sixth 

problem; either a database error occurred or the students closed the web browser before the sixth 

problem saved). The last step of each problem contained the natural language response. Because 

the students in the tutored condition might attempt this last step multiple times on the same 

problem, the corpus contained 554 unique responses. An instructor and a teaching assistant 

scored the responses based on the presence or absence of the five concepts listed above in the 

example (rejection, significance, the match between these two, and the independent and 
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dependent variables). The participant for this experiment then used ConceptGrid to produce 

templates, attempting to match the way the instructor and teaching assistant scored the answers. 

Results 

 The participant for this experiment used ConceptGrid to produce a total of 22 templates 

to check student answers. Ten of these templates checked for the rejection, significance, and 

match between these two across all six problems. The remaining 12 templates checked 

specifically for the independent and dependent variables in those problems.  

 Table 2 displays the results for how these templates matched across the 554 responses. 

For three of the concepts of interest (rejection, significance, and match between these two), the 

correct answer depended on the results of the calculations. For half the problems, the student 

should reject the null hypothesis (and with corresponding adjustments for significance and the 

match), and for the other half of the problems the student should fail to reject the null hypothesis. 

The table displays how well the ConceptGrid template matches those two separate outcomes 

with both true positives and true negatives. Also displayed in the table is the overall accuracy of 

the templates, the sum of true positives and true negatives divided by the total number of 

responses, plus an accounting of the false positives, when the template matched but should not 

have, and false negatives, when the template did not match but should have. Given that this 

approach uses atomic components within a template that are somewhat similar to regular 

expression matching, it may be surprising to see the number of false negatives in matching some 

student responses. However, this approach is more expressive, as it checks responses by looking 

for smaller concepts and key phrases with the help of checktypes rather than literal word 

matching. For example, one student typed, “Fail to reject the null hypothes [sic]. There is an 

increase between males and females but not a significant one.” In part, this response resulted for 
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its particular question in a true positive for the rejection-fail concept despite the misspelling (and 

a true-negative for the rejection-true concept) and a false negative for the significant-fail concept 

(the human graders considered it correct, but it did not match the ConceptGrid template). 

Discussion 

 The overall average accuracy of .97 was satisfying, and this result shows the overall 

efficacy of the ConceptGrid approach at representing the knowledge of the instructor accurately 

within a tutor for natural language responses to this particular problem. Unfortunately it is 

difficult to give an overall time estimate of how long it took the participant to create all the 

templates, as he was fixing bugs and making efficiencies in the implementation of ConceptGrid 

as he went along. However, the effort was ultimately not that great to create the 22 templates 

using the ConceptGrid interface. 

 The participant here was a computer programmer and had some knowledge of cognitive 

science. Even if the tool was only usable by that class of person, it would still have value within 

the authors’ research group, and the approach might be attractive to other research groups 

creating similar tutors. However, the intent was to develop a tool usable by non-programmers 

and non-cognitive scientists, so that the authoring process for this class of tutor could be 

available to wider variety of people. Experiment 2 was designed to examine the usability of 

ConceptGrid by non-programmers. 

Experiment 2 

 Experiment 2 had a similar structure as Experiment 1. Participants played the role of tutor 

authors using ConceptGrid to check natural language answers from an existing corpus. This 

corpus was obtained from students doing an actual homework assignment in a college-level 

statistics class. Unlike in Experiment 1, the participants in Experiment 2 were not programmers, 
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and neither were they cognitive scientists. This experiment, then, examined whether 

ConceptGrid was usable by those outside of a research lab.  

Participants 

Two current instructors of a college-level statistics course participated as tutor authors for 

this study. Both had taught statistics multiple times in the past. While both had Ph.D.’s within 

psychology, neither had cognitive psychology or computer science as their specialty, nor used a 

symbolic processing language like R or command line SPSS to perform statistics. Neither 

received compensation for their participation. In addition, the first author of this paper served as 

a third participant with intermediate skill level, as he understood the design intent of 

ConceptGrid, but had never used it to score actual student answers.  

Materials and Procedure 

 The participants created tutoring using ConceptGrid around statistics-based content. Six 

questions were created that a student halfway through his or her first semester in an introductory 

statistics course should know. After initial construction of the question set, the set of six 

questions was finalized in consultation with the participants to confirm that these were questions 

that a majority of their students should know. The concepts for each question were derived from 

these consultations with the participants. The nature of the questions led to broad agreement as to 

what constituted a good answer. In addition participants created a ConceptGrid for a seventh 

question, one of the six used in Experiment 1, where the answer was to write a conclusion 

statement for a hypothesis test. The final list of seven questions is shown in Table 3. As can be 

seen, the questions are in roughly increasing order of complexity, from one where there is a 

single correct answer, to ones where there are multiple parts (i.e., concepts) but limited answers, 

and ones with multiple parts and open-ended phrasings. Each participant’s task was to use the 
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ConceptGrid website to create seven ConceptGrids, one for each question. Each ConceptGrid 

could have as many templates as the participants desired to address each question’s concepts.  

 The college instructors learned about ConceptGrid in one 45-minute face-to-face training 

session conducted by the first author of this paper. A four-page document was given to the 

instructors that contained an overview of ConceptGrid, login procedures for the ConceptGrid 

website, interface instructions on creating concepts and using the Feedback Table, and the list of 

seven questions to be tutored. The 4-page instruction set contained one simple ConceptGrid 

example (one that involved two concepts about Christopher Columbus), and during the short 

training session another example was developed. Neither example involved statistical content. 

 In order to test the ConceptGrids created by the tutor authors, a corpus of responses to 

these questions was needed. For Question 7, the 112 responses to that last question of the 

problem generated by real students for Experiment 1 were selected. To generate responses to the 

other six questions in this experiment, 87 current students from five different sections in a first 

semester college statistics course answered all questions using an online form. This generated 

another 522 responses. The responses from one of the sections were given to each participant as 

they were creating their initial ConceptGrids. This one section’s worth of responses was meant to 

provide the participants at least a little insight as they started their ConceptGrids. Providing only 

a small subset of the data is a technique often used to train machine learning classifiers or neural 

networks so that the data are not overfit. 

 The participants had two weeks to complete their initial ConceptGrids after the training 

session. They were told to plan on it taking about two hours and were encouraged to email or ask 

any questions they might have as they went along. The authors spent about ten minutes with both 

novice participants answering questions of both a technical nature (e.g., what exactly the 
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argument for Levenshtein means) but also of a more conceptual nature (e.g., the best approach 

for making a template). 

 After completion of their initial set of ConceptGrids, the participants’ solutions were 

tested against the entire corpus of 634 student responses. They were provided feedback 

concerning the accuracy of their ConceptGrids, and given the text of half the student responses 

their ConceptGrids miscategorized. Only half were used so that again they would not be tempted 

to overfit the data. They had two days to modify their ConceptGrids to see how much they might 

improve upon their accuracy rate, at which time their ConceptGrids were tested once more 

against the entire corpus. An overall high accuracy rate was expected, over .90, but decreasing 

with the increasing level of question complexity. 

Results 

 Each participant created 14 ConceptGrids within the first iteration, and then updated 

them in a second iteration. The website kept track of how long participants worked on each of 

their ConceptGrids. The two beginning authors spent an average of 1.11 hours editing their first 

set of ConceptGrids. The intermediate author spent 0.39 hours. This is the time spent actually 

editing. The website also logged the total amount of time logged in, which would account for 

planning time. Unfortunately, one beginner user kept logged in while doing off-task behavior, so 

an accurate measure could not be obtained. For the other two users, there is a 2:1 ratio of total 

time to editing time. Precise timing data is not available for the second iteration due to a 

technical issue. Anecdotal evidence indicates users spent approximately 45 minutes on this 

second iteration. 

 A research assistant and the first author scored all the student responses for correctness. 

The seven total discrepancies between the raters (.01 of the corpus) were resolved by verbal 
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agreement. After each participant indicated he or she was done working on the initial 

ConceptGrid for each question, the ConceptsGrids were checked against the student responses. 

In such a way an accuracy score for each participant’s ConceptGrids was obtained, indicating the 

percentage of time his or her ConceptGrids correctly rejected and correctly accepted the student 

responses.  Table 3 displays the mean accuracy by concept.  Note that for Question 7, the 

question from the previous experiment, the participants were asked only to check for the 

statement of rejection and significance and only one form was needed, as the correct answer was 

to fail to reject the null hypothesis. 

 Examining individual accuracy results, the two beginners scored an overall average of .78 

and .88 on the first iteration, and then increased to .86 and .88 on the second iteration, 

respectively. The intermediate user went from .86 to .93. Questions 5 and 7 proved most 

difficult, due to the wide variability in student responses that was not reflected in the initial 

corpus subset that participants were given. Considering the improvement across all of the 

patterns that the participants authored, where the average went from .84 to .89, a significant 

difference with a non-trivial effect size was observed (t(41) = 2.36, p = .023, d = 0.36), 

demonstrating a marked learning trajectory. 

 The types of errors made by the authors’ initial ConceptGrids are analysed below, and the 

total set of true positives, true negatives, false positives, and false negatives can be seen in Table 

4. Like the expert user in Experiment 1, most errors were false negatives (545 in total, which 

equals .85 of all errors, or .13 of all checked responses). The false positives were fewer in 

number (99 total, .15 of all errors, .03 of all responses). The number of false negatives is higher 

than false positives, mainly because the ConceptGrid authors did not consider all possible 

representations of valid responses, particularly on certain questions. With practice ConceptGrid 
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authors will likely to design templates that cater to a wider range of responses. This process was 

observed with the revision data, as the number of false negatives decreased to 302 (.08 of all 

responses). 

 Participants tended towards authoring short templates. This indicates a strategy across 

questions to focus on a particular phrase that indicates student understanding and create a 

concept template for that phrase. This makes logical sense for some questions where the concept 

is a single word (e.g., all three concepts for the second question), but the participants adopted a 

minimalist approach for the other questions as well. The average number of atomic checktypes 

used per concept in the first iteration was 2.90, and that decreased slightly to 2.85 in the second 

iteration. All the different atomic checktypes were used at least once, but the Levenshtein and 

Any checktypes were used most often. 

Discussion 

 These results for Experiment 2 were good, though the final accuracy was not quite above 

the desired .90 for the beginning authors. A slight decrease in accuracy with increasing 

complexity was observed, yet some of the more complex questions enjoyed a high accuracy. 

Also, some concepts enjoyed a noticeable improvement between attempts, indicating the 

usefulness of an iterative approach. 

General Discussion 

 Both experiments show the efficacy of the ConceptGrid approach. As seen in Experiment 

1, the creator of ConceptGrid enjoyed an accuracy rate above .97 in checking answers given in 

real-world problem scenarios. These were the type of non-trivial, multi-phrase answers that 

ConceptGrid was designed to tutor. Experiment 2 again provided evidence as to the worthiness 

of the approach, as not only did an intermediate-level user successfully use the tool, but non-
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programmers and non-cognitive scientists also quickly learned how to use ConceptGrid in order 

to check answers given on a typical homework assignment. Taken together, this research 

indicates the utility of ConceptGrid in providing meaningful tutoring for natural language 

responses. 

 It will be worth evaluating how well ConceptGrid generalizes to additional situations and 

also to a wider range of users. ConceptGrid was used in the realm of statistics, to check not only 

basic statistical knowledge as it might appear in a homework or test situation (i.e., the items used 

in Experiment 2), but also to check the phrasing of a sentence as it might appear in an APA-style 

paper (the responses in Experiment 1). This result lends confidence that ConceptGrid would be 

useful across a wide variety of domains, such as economics (e.g., interpreting supply and demand 

curves), geometry (e.g., justifying answers via the appropriate theorem), or physics (e.g., 

providing qualitative answers to certain problem). If connected with a speech recognition system, 

ConceptGrid could also be useful in contexts in which spoken communication must follow strict 

syntax, such as in the military, for example, when a combat medic issues a MEDEVAC request. 

These requests follow a strict 9-line template, and a tutor using ConceptGrid could give feedback 

on the medic's consistency with the template. In a new research project, ConceptGrid will be 

used to create feedback for engineering undergraduates as they complete a reflective process of 

framing problems before they begin working on them. Answers to questions such as, “What are 

the critical forces in this problem?” and “What are the relationships between the unknowns?” 

should be addressable by ConceptGrid.  

 The fact that the novice users in Experiment 2 were able to use ConceptGrid effectively 

with minimal training and assistance demonstrates the viability of the approach with this class of 

instructor. This result demonstrates that non-programmers and non-cognitive scientists can create 
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this type of tutoring. Both novice participants in Experiment 2 reported that the system was easy 

to use, with a short learning curve. This is consistent with past work on the larger xPST system 

(e.g., Gilbert et al., 2011; Roselli et al., 2008). Novice users, who are non-programmers and non-

cognitive scientists, can create meaningful and effective tutoring. Furthermore, the lattice-style 

approach that ConceptGrid is based on is not specific to xPST. Other authoring tools that aim at 

broadening the base of ITS authors could also use this approach to enable tutoring on similar 

natural language responses. 

 There are improvements that could be made within ConceptGrid, and these were 

particularly noted after experiences within Experiment 2. The feedback given for how well an 

author’s ConceptGrids matched an existing corpus was not immediate. The author created the 

ConceptGrids and Feedback Tables, and then had to wait for the second author to manually run 

the corpus through what the author had done. This manual step should be automated. One could 

imagine loading a corpus into ConceptGrid, and then clicking a single button to check the corpus 

against the currently loaded ConceptGrids. This immediate feedback would be an obvious 

benefit to authors helping them to iterate faster. 

 Also of benefit to authors would be more understandable feedback regarding the correct 

and incorrect matches. The feedback currently consists of a grid of numbers, whose size was 

determined by the number of concepts and the size of the corpus. It is a lot of numbers (a large 

table of -1’s, 0’s, and 1’s) and hard to decipher, particularly for non-programmers. The user 

design challenge is how to present all that data to be maximally effective to the author.  

 An automated approach could also be provided to developers and authors in constructing 

templates. After a corpus has been collected and scored by an instructor, it could then be used to 

generate the templates. That is, the patterns could be learned directly from the student responses. 
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This would still require a ConceptGrid author to structure and classify the templates into 

concepts, and produce a Feedback Table to provide appropriate responses to the student. 

However, this might serve to minimize the false positive and false negatives that are initially 

generated. 

Lastly, even though the novice authors took to ConceptGrid without much instruction or 

oversight, there is room for improvement within the authoring tool itself. For example, confusion 

as to how the numerical argument to the Levenshtein checktype worked caused the acceptance of 

some false positives. If set too high, particularly for shorter words, that checktype will be too 

permissive in what it matches. A user interface simplification improvement might be to take 

away that numerical argument all together, and simply set the Levenshtein value dynamically as 

a function of the length of the corresponding word. 

 In conclusion, the two experiments demonstrate how effective ConceptGrid is as an 

authoring tool to check sentence-length natural language answers. The resulting tutoring has 

been deployed in actual classroom settings and has shown to improve student learning. This 

approach will prove useful across a variety of domains and authors. 
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Table 1 

ConceptGrid Checktypes 
 

Checktype Description 
Any(m,n) Allows a match of an arbitrary sequence of words between m and 

n words, when the words themselves are not important  
Exact (wordList) Returns true if a literal word match with any of the words in 

wordList is found 
Levenshtein(n, wordList) Returns true if the least Levenshtein distance between a word in 

wordList and matched word is <= n 
Not(n, wordList, direction) Checks to make sure a word in wordList does not appear in the 

sequence in the given direction; allows for a check of negation 
NoVowels(wordlist) Returns true if a literal match, after ignoring vowels, with any of 

the words in word_list is found 
Synonym(wordList) Uses the WordNet corpus to match synonyms, with an implied 

Levenshtein distance of 2 
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Table 2 

Results of Experiment 1: Evaluation of ConceptGrid templates across 554 responses 

 
Concept 

True 
Positives 

True 
Negatives 

False 
Positives 

False 
Negatives 

 
Accuracy 

Rejection-true 308 211 1 34 .94 
Rejection-fail 246 297 6 5 .98 
Significance-true 298 248 1 7 .99 
Significance- fail 256 285 12 1 .98 
Independent Variable 244 286 1 3 .99 
Dependent Variable 217 331 4 3 .99 
Conclusion-true 244 306 0 24 .96 
Conclusion- fail 310 237 6 0 .99 
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Table 3 

Questions and Accuracy Results of Experiment 2 
 

 
 

Questions 

First 
Iteration 
Accuracy 

Second 
Iteration 
Accuracy 

1. What statistic is the square root of variance?   
 Concept 1.1 (“standard deviation”) .98 1.00 
2. What are the 3 main measures of central tendency?    
 Concept 2.1 (“mean”) 1.00 1.00 
 Concept 2.2 (“median”) 1.00 1.00 
 Concept 2.3 (“mode”) 1.00 1.00 
3. What is at least one aspect that differentiates a true 
experiment from a descriptive experiment?  

 
 

 
 

 Concept 3.1 (“manipulation”) .71 .74 
 Concept 3.2 (“control”) .88 .85 
 Concept 3.3 (“causality”) .98 .98 
4. What two things must be true for mean to be preferred 
over mode or median?  

 
 

 
 

 Concept 4.1 (“nomality”) .78 .90 
 Concept 4.2 (“data type”) .96 .96 
5. What is the difference between nominal and ordinal 
style data?  

 
 

 
 

 Concept 5.1 (“nominal”) .62 .71 
 Concept 5.2 (“ordinal”) .65 .73 
6. What does parsimony mean?    
 Concept 6.1 (“simplicity”) .99 .98 
7. What do you conclude based on these results? [this 
came after a hypothesis test had been conducted] 

 
 

 
 

 Concept 7.1 (“rejection-fail”) .57 .96 
 Concept 7.2 (“significance- fail”) .63 .64 
   
Overall .84 .89 
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Table 4 

Results of Experiment 2: Evaluation of ConceptGrid templates across 3 authors (Questions 1-6 
had 87 responses; Question 7 had 112 responses 
 
First Iteration Performance 
 

 
Concepts 

True 
Positives 

True 
Negatives 

False 
Positives 

False 
Negatives 

 
Accuracy 

Concept 1.1 195 60 3 3 .98 
Concept 2.1 222 39 0 0 1.00 
Concept 2.2  207 54 0 0 1.00 
Concept 2.3  210 51 0 0 1.00 
Concept 3.1 39 147 18 57 .71 
Concept 3.2 8 222 12 19 .88 
Concept 3.3 84 173 0 4 .98 
Concept 4.1 42 162 0 57 .78 
Concept 4.2 111 140 0 10 .96 
Concept 5.1 69 93 30 69 .62 
Concept 5.2 80 90 9 82 .65 
Concept 6.1 73 186 0 2 .99 
Concept 7.1 74 117 0 145 .57 
Concept 7.2 29 183 27 97 .63 

 
Second Iteration Performance 
 

 
Concepts 

True 
Positives 

True 
Negatives 

False 
Positives 

False 
Negatives 

 
Accuracy 

Concept 1.1 198 62 1 0 1.00 
Concept 2.1 222 39 0 0 1.00 
Concept 2.2  207 54 0 0 1.00 
Concept 2.3  210 51 0 0 1.00 
Concept 3.1 55 149 16 41 .74 
Concept 3.2 15 208 26 12 .85 
Concept 3.3 83 172 1 5 .98 
Concept 4.1 79 155 7 20 .90 
Concept 4.2 111 140 0 10 .96 
Concept 5.1 79 105 18 59 .71 
Concept 5.2 102 89 10 60 .73 
Concept 6.1 75 182 4 0 .98 
Concept 7.1 214 109 8 5 .96 
Concept 7.2 36 179 31 90 .64 
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Figure 1. The natural language approach of ConceptGrid.  
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Figure 2. Process flow of ConceptGrid use. 
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Figure 3. An example of a ConceptGrid template that would recognize phrases such as “data are 

normally distributed,” “numbers form a normal distribution,” or “distribution needs to be a bell 

curve.”  
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Figure 4. Examples of ternary Feedback Tables: (a) illustrates feedback possibilities for all true 

(green)/false (red) combinations of the two concepts Normal and Datatype; (b) illustrates the 

yellow hyphen to mean “ignore.”  

 


