

This is not a peer-reviewed article.

Paper Number: 033089
An ASAE Meeting Presentation

An Object-Oriented Architecture for Field Data
Acquisition, Processing and Information Extraction

Dev S. Shrestha, Brian L. Steward, Cory Van Wyngarden
Iowa State University, Agricultural and Biosystems Engineering Department
139 Davidson, Ames, IA-50011, USA

Written for presentation at the
2003 ASAE Annual International Meeting

Sponsored by ASAE
Riviera Hotel and Convention Center

Las Vegas, Nevada, USA
27- 30 July 2003

Abstract. Software architecture was developed to automate site specific field data acquisition,
processing, and geo-referenced crop plant parameters extraction. The architecture supported
acquisition and processing of different data streams such as digital video for machine vision and
digital serial communications of NMEA strings. The number of channels for data import could be
easily expanded for multiple video, GPS, and other signal sources. The architecture was object-
oriented and each component in the architecture was developed as a separate class. A key
component of this architecture was a supervisor class, which communicated and coordinated the
operations on all other classes. Based on this framework, early stage corn population estimation
(ESCOPE) software was developed which grabs pre-recorded digital video from a vehicle-mounted
camera, that was passed over corn rows, and acquires GPS strings which were modulated and
recorded on the audio channel. A digital video (DV) capture class was written to acquire video using
Microsoft’s DirectShow® technology which enables camera control and video acquisition using higher
level hardware functions. After completion of software development, reusability and extensibility
characteristics were demonstrated by adding a class to acquire images from the hard drive and also
by deriving a new image analyzer class to extract an additional feature. The architecture forms a
general framework for developing reusable and extensible software for field data sensing systems.

Keywords. Precision agriculture, machine vision, object-oriented software architecture, image
processing, unified modeling language, field sensing

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily
reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not
constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review
process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should
state that it is from an ASAE meeting paper. EXAMPLE: Author's Last Name, Initials. 2003. Title of Presentation. ASAE Meeting
Paper No. 03xxxx. St. Joseph, Mich.: ASAE. For information about securing permission to reprint or reproduce a technical
presentation, please contact ASAE at hq@asae.org or 69-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA).

Introduction
Precision agriculture (PA) is an important technological development in contemporary
agriculture for managing the spatial variability that naturally occurs in crop production (Schueller
et al., 2002). The National Research Council (1997) refers to PA as a management strategy that
uses information technologies to bring data from multiple sources to bear on decisions
associated with crop production. The key idea behind PA is to measure and manage in-field
variability to optimize the crop production system. Li et al. (1998) categorized variability into six
categories – yield variability, field variability, soil variability, crop variability, variability in
anomalous factors, and management variability.
Past research has developed models to predict the effect of different variables on crop yield.
However, most crop models account for a small number of factors that may limit yields in the
field (Gary et al., 1998; Irmak et al., 2001; Schueller et al., 2002). Pierce and Nowak (1999)
point out that currently no complete precision agriculture system exists; rather various
components of traditional crop management systems have been addressed separately
regarding their potential for site-specific management. To face the challenge of diversity,
modelers will certainly have to adopt more generic approaches (Gary et al., 1998). Part of the
reason that researchers were bound to include only a small set of variables in their model was
that the characterization of field-level variability had been generally inaccessible or prohibitively
expensive to acquire. Advances in electronics, communications, and software over the past
several decades have removed those earlier impediments. Inexpensive sensors and
microprocessors coupled with integrating software now enable agricultural producers to collect
vast amounts of geo-referenced data (Schmoldt, 2001).
Different sensors have been developed to measure field scale variability in several crop
production parameters. Yield sensors for major crops are approaching maturity and are
commercially available (Zhang et al., 2002). Sensors have been developed for measuring soil
properties such as soil organic matter and moisture content (Hummel et al., 2001), electrical
conductivity (Lund et al., 2000) and nutrients (Birrell and Hummel, 2000). Sensors have also
been developed to measure plant parameters such as corn population (Birrell and Sudduth,
1995), N-status (Goel et al., 2003) and leaf area index (Johnson et al., 2003). While not applied
to field scale deployment, image-based crop growth measurement has been shown to be
effective in measuring and modeling crop plant growth in laboratory or greenhouse applications
(Morden et al., 1997; Tarbell et al., 1991; Tarbell and Reid, 1991; Van Henten and Bontsema,
1995). Machine vision based algorithms have been developed to estimate several plant growth
parameters such as plant shape and size, plant spacing, plant height and leaf color (El-Faki et
al., 2000; Nishiwaki et al., 2001; Shrestha and Steward, 2003; Tang et al., 2000).
Bottlenecks in successful application of PA include a lack of (1) developed sensing technologies
needed to adequately characterize field-scale spatial variability, (2) a flexible data acquisition
and processing system that can be deployed in a field to gather and process data, and (3)
agronomic knowledge relating crop inputs and plant response to those inputs. This work
focuses on the second of these bottlenecks.
Considering these facts, it is important to develop a system which can acquire and combine
different types of geo-referenced data simultaneously and process these data to extract plant
growth and soil parameters. An ideal system would receive data from different information
channels, then process the information as it arrives, and extract the parameters of interest. The
system should also be able to accommodate future developments with minimal effort and be
reusable when new algorithms are added to the software.
Developing a software system architecture prior to its construction or renovation is as essential
as having a blueprint for a large building. There are many advantages to developing system

2

architecture. First, it breaks down the entire task into individual standalone modules so that an
individual or small group of individuals can work on a component. Second, it offers ease in
management of individual components. Third, architecture facilitates reuse, modification and
improvement of the software. Fourth, the architecture helps isolate errors and allows individual
module testing. Fifth, it improves readability and brings clarity.
A growing body of literature illustrates the utility of object-oriented architectures in agricultural
applications. Object-oriented architectures are being investigated in the area of crop growth
modeling (Beck et al., 2003; Pan et al., 2000). The development of agricultural autonomous
vehicles is being facilitated through the use of object-oriented architectures which is helping to
maximize the development of dispersed research groups (Blackmore et al., 2002; Sorensen et
al., 2002; Torrie et al., 2002; Will et al., 2002). These architectures enable reuse of software
components and facilitate communication between collaborating research groups. In addition,
object-oriented design enables design abstraction and systematic thinking about highly complex
systems.
The objective of this research was to develop a software architecture for a data acquisition and
processing system which can receive data from many sources, process these data, and output
desired parameter estimates. Based on this architecture, an early stage corn population
estimation (ESCOPE) system was developed. ESCOPE grabs pre-recorded digital video from a
vehicle-mounted camera that was passed over corn rows and acquires GPS strings which were
modulated and recorded on the audio channel. Using ESCOPE as a case study, we will show
how this architecture has the following characteristics:
1. Expansibility of data acquisition from different input data channels through the use of

standard hardware interfaces.
2. Reusability of the developed algorithm.
3. Extensibility through ease in incorporating new data processing algorithms.
This architecture would be particularly beneficial for several different groups of people. The first
group of the people is researchers trying to extract a crop growth parameter from video such as
crop greenness, spectral reflectance, plant spacing, plant height, or top projected canopy area.
The benefit for this group of people comes from reducing the distractions typically encountered
when introducing new information streams or processing algorithms into a system. The
architecture helps to develop such a system with minimal overload as it is designed to use a
standard hardware interface which greatly reduces the unnecessary distractions from a
research point of view. Another group is crop modelers who need different field level variability
data to calibrate models, develop input prescriptions, and assess economic and environmental
risks. As PA is further developed, crop consultants and agricultural producers will benefit from
such a system as a component within a larger decision support system.

System Architecture
An object-oriented programming (OOP) approach was followed because of its many advantages
over structural programming. In general, OOP uses software objects that resemble real world
objects which are easier to understand and conceptualize. OOP also enables the reuse of an
object and easy modification through class inheritance and is less prone to error because of its
capability of data encapsulation. Object-oriented systems can be effectively described using
Unified Modeling Language (UML). UML is a language for specifying, visualizing, constructing,
and documenting the artifacts of software systems, as well as for business modeling and other
non-software systems (Object Management Group, 2003). UML is widely accepted by the
software engineering community for constructing and analyzing the early stages of system

3

development (Aleman and Alvarez, 2000). The architecture is described in three different steps
as system activities, use case scenario, and class diagram.

System Activities
The chronological activity of the entire system is shown in a flow chart-like diagram called the
context diagram. For a field data acquisition, processing and information extraction system, the
system must first read the field data recorded in the form of magnetic tape or other digital
formats (fig. 1). In order for the system to be flexible, it should be able to accept different types
of data from different ports. The data could be one-dimensional numeric data like soil
temperature or two-dimensional data like an image, or it could be a string of characters like the
NMEA string associated with the GPS signal. For all three different scenarios, the system being
developed should accept, parse, and correlate data from different channels.
Once the data are read from the port, it is temporarily stored in computer RAM. Processing of
stored data can be done in two different modes, batch mode and continuous mode. In the batch
mode, a chunk of data is stored in memory and then processed. The external devices have to
be paused during data processing. Only after completion of processing, the computer RAM is
freed and another chunk of data is logged. This architecture is simple in that processing of one
chunk of data is completed before another process starts, and sequence of processing is well
defined. If processing time is longer than capturing time, then the user must do batch
processing of data. In the continuous mode, the processing and capturing of data occurs in
parallel. The data is read to fill a portion of computer memory, and the system starts processing
that data; while processing, the computer reads in more data into another part of the memory.
As soon as data processing for the first part of memory is finished, it starts processing the next
chunk of data. This mode is suitable for real time processing and is feasible only when the
processing time is less than or equal to the data capture time.

Data Analysis

Decision

Storage

Field Data

Information extraction

Management

Crop Modeling

GIS database

Data input

Figure 1. Context diagram for field data acquisition, processing and information extraction

system. The software architecture developed acquires recorded data, analyzes, produces site-
specific information, and stores into hard drive (Non-grayed boxes).

In either case, once the analysis of the captured data is completed, the system extracts the site-
specific information and then passes it to the storage system; usually a hard drive (fig. 1). The
extracted information may be used in a crop model to establish the relationship between yields

4

and a set of indicator variables. This relationship may be used by farmers to optimize crop
production in the field. The development of a reliable crop model may require several years of
data; crop management, however, may also use single year data combined with prior
experiences for management decisions. The information may also be used to produce a GIS
database, which can be used by farm management for field variability mapping.

Use-case scenario
A use-case model attempts to graphically depict the system users – called actors – and actions
– called use-cases. The main actors of the system are digital data, video and GPS signals,
researchers and management. In a typical field application scenario, the system reads different
data (fig. 2); researchers and farm managers then decide on what kind of information is
extracted after processing. The choices of type of information to extract depend on the type of
field data and the capability of the software. Researchers may also add new processing
modules into the system to extract more information. The management can make a future field-
management decision based on the extracted information.

Reads data

Field Data Analysis
System

Video

Develops and adds data
processing modules

Researcher

Management

Selects output features

Selects output format

GPS

Digital Data

Figure 2. Use-case diagram. The field data analysis system interacts primarily with these actors:

digital data, Video, GPS, researcher and management.

Class Diagram
Class diagrams are used to show the relationship among systems objects. A group of activities
pertaining to some specific task was identified from a use-case scenario and developed as a
separate class. In order to synchronize and to instruct each of these classes to perform in
harmony, a Supervisor class was designed. When the program was initiated, the Supervisor
class was created, and this class, in turn, initialized all other classes as needed (fig. 3). The
components of the system architecture are described in the following sections.

Grabber Class
Standardization of hardware and software communication protocols has made program code
reusable. One piece of software can use the service provided by some other software without
having to understand the details of that software. The Component Object Model (COM)
technology developed by Microsoft® (Redmond, WA) is a software model which provides a
standard protocol for object intercommunication and reusability (Root and Boer, 1999). It is
much easier and safer to use standard components than writing a new program to do the same

5

task. The DVCapture class takes advantage of freely available DirectShow® technology which is
a COM object for FireWire communication.

CUnknown ISampleGrabberCB

Grabber

+GetFrame()
+SetMemory()

DVCapture

+StartCapture()
+StopCapture()
+Pause()
+CreateFGraph()

DVIterator

+SetFrame()
+GetFrame()
+GetPosition()
+SetPosition()

Supervisor

+StartProcess()
+EndProcess()
+EndSession()
+Serialize()

GPSCapture

+OpenComPort()
+CloseComPort()
+SetMemory()
+Parse()

GPSIterator

+GetFirst()
+GetNext()
+GetLast()

ImageAnalyzer View

PortUtility

+GetPortNum()
+SetPortNum()
+SetBaud()
+GetBaud()

CDocument

Figure 3. Class diagram. Supervisor class is the heart of the structure, which manages all other

classes and activities.
COM is a platform-independent object-oriented system for creating software components that
can interact. COM objects can be created with a variety of programming languages. Each COM
object is an instance of a particular class, and each supports one or more interfaces. Each
interface provides a set of functionality that the COM object provides. An interface specifies the
interface's member functions, calling methods, their return types, the number and types of their
parameters, and what they must do (MSDN Documentation, 2003c).
DirectX® (Microsoft Corp., Redmond, WA) consists of a group of COM objects, which provides a
standard development platform for Windows-based PCs by enabling software developers to
access specialized hardware features without having to write hardware-specific code. This
enables developers to spend more time on working on the features of the application, and less
time worrying about the different hardware configurations. The hardware capabilities of each
device can be queried at the application run time, giving the application the ability to adjust itself
to specific hardware implementations.
DirectShow is one of the member components of DirectX. DirectShow technology can be used
to control video cameras for playback and image acquisition. DirectShow automatically detects
and uses video and audio acceleration hardware when available, but also supports systems

6

without acceleration hardware. DirectShow simplifies media playback, format conversion, and
capture tasks.
DirectShow divides the processing of multimedia tasks such as video playback into a set of
steps known as filters. Filters can be used in sequence to perform a specific task. A filter graph
is developed to capture video and to split it into the individual frames (MSDN Documentation,
2003b).
The Grabber class is derived from the DirectX base class, CUnknown, and the
ISampleGrabberCB interface. This class was designed for communicating with a digital
camcorder through FireWire. Since this class is derived from CUnknown, it is a COM object by
itself. This strategy allows some call back methods of ISampleGrabberCB to be overwritten for
user-defined memory management. It also allows the absolute track number of the video frame
being acquired to be assigned so frame drops can be detected during image acquisition.

DVCapture Class
To call the camera controlling function, it is necessary that the COM object first be created. The
DVCapture class creates the Grabber COM object. A filter graph is created in this class to
capture video frames. It is helpful to think of a filter graph as a specialized class for video
parsing. Once the filter was built, different functions were written so that more intuitive camera
commands like StartCapture and StopCapture could be used to control the camera from the
Supervisor class. Some of the important tasks this class performs are 1) finding video input
devices, 2) watching for events such as end of tape or stop camera, 3) getting video streams
and splitting them into frames, 4) playing, pausing, and stopping the camera, and seeking to a
location.

DVIterator Class
The DVIterator class serves as a container class for captured image frames. On initialization,
the Grabber class creates this class and passes a pointer to this class to the DVCapture class.
In turn, the DVCapture class passes back the pointer to the Supervisor class, so that the
Supervisor class can pass it to any class that requests the image storage location. This class
keeps track of the image frames in computer RAM, so that the frames can be retrieved in
sequence for processing. In addition, once the processing is completed, memory can be freed
for storing new data. Some of the tasks done by this class are 1) moving to the first or last
image frame, 2) reading the frame from a specified location, and 3) replacing a frame at a
specified location.

PortUtility class
The PortUtility class initializes serial port settings. In this architecture, the software is expected
to read the digital data like GPS and other measurements through serial ports. This class
relieves programmers from writing their own serial port setting class repeatedly for each
channel.

GPSCapture class
The GPSCapture class uses the PortUtility class to capture the digital data from the serial port.
The GPSCapture class then initializes the GPSIterator class to store the data. This class also
provides the functionalities to parse NMEA strings.

7

GPSIterator Class
The GPSIterator class serves as a container to store GPS data. This class is created by the
GPSCapture Class, which holds a pointer to this class and passes this pointer back to the
Supervisor class so that the Supervisor class can pass it to the classes that act on GPS data.
The GPSIterator class provides functionalities to step through the acquired GPS data in RAM.
The function of this class is similar to the DVIterator class except that the class handles GPS
data rather than video data.

Supervisor Class
The Supervisor class is the main controller of all classes. It initiates, controls and releases all
other classes as needed. This class holds a pointer to each of the classes it creates and keeps
track of all the events of the application. The Supervisor class was derived from the Microsoft
Foundation Class (MFC) CDocument class (MSDN Documentation, 2003a). This inherits many
functionalities of the CDocument class to manage the application data and share the data with
the View class.
All of the Windows messages are handled through the Supervisor class. The Windows
messages are routed to one of the relevant class functions and then depending on that
message type and class’s response, the Supervisor takes the next action. When the user runs
the software to acquire data from selected sources, the Supervisor class creates relevant
capture classes which checks the hardware for its readiness. If the hardware is not ready, the
Supervisor class displays a warning message. The user can turn on or off any of the data input
channels. The Supervisor class communicates with other classes through messaging system.
The action taken by Supervisor class strictly depends on the type of message it receives. For
instance, while receiving the images from a camcorder, the DVCapture class may send the end
of tape message to the Supervisor class. Then the Supervisor class calls the function pertaining
to that specific message. Each step from reading the data to final output of information is
coordinated by this class. The message handling functions are made virtual so that if a new
class is added in the architecture which needs a different message handling method, a new
Supervisor class can be derived from the old Supervisor class to overwrite the message
handling functions.
Depending on the data channels selected, the Supervisor class allows the user to choose from
the list of information that the software can extract. The processing time will vary depending on
the selected type and amount of information to extract.
When a new data processing algorithm is developed to be added into the software, the following
steps needed to be performed:

1. Decide on data channels needed and list those channels in the Supervisor class.
2. Set the message type and handling function in the Supervisor class for the new

information extracted.
3. Add an entry in the output database structure for newly extracted information.

With these three steps, future researchers can add any number of data processing algorithms.
Some of the important tasks the Supervisor class performs through different classes (fig. 3) are:
1) initialization of different data acquisition classes, 2) setup of the database structure, 3)
message handling, and 4) extracted information output.

8

Case Study
Based on the architecture described above, software was developed to measure corn plant
population and spacing with machine vision. Software development was done using Visual C++
(Microsoft, Redmond, WA) to perform batch processing of video.

ESCOPE performance

Video acquisition
Video was recorded in the field and then brought to the laboratory for analysis. Video data was
transferred to the computer through an IEEE 1394 (fire wire) connection, whereas GPS was
transferred using serial port. For spatial correlation, GPS data were saved along with video
frame data. A commercially available VMS 200 unit (Red Hen systems Inc, Fort Collins, CO)
was used to modulate the GPS signal and record it in the audio track of videotape. The VMS
200 unit was also used to demodulate and combine the video time code from the camcorder’s
LANC® serial output with the GPS signal.

Image processing
Image processing was accomplished in the ImageAnalyzer class. This class operated on the
video frames stored in RAM. The Supervisor class provided a pointer to the DVIterator Class
and the GPSIterator class to the ImageAnalyzer class. This class was designed to run on its
own thread so that during real time analysis, the processing and capturing could be done in
parallel.
The ImageAnalyzer class extracted the memory location of each video frame from the
DVIterator class and mosaicked them to discard the overlapped amount of image from an image
frame sequence. After sequencing the images, two features were extracted from each image:
the total number of plant pixels, and their median position. Adjacent rows of the same class
were grouped together and iteratively refined for final plant counting. The details of the
ImageAnalyzer class are out of the scope of this discussion and are application dependent.
However, the reusability of the class comes from the fact that the communication between the
ImageAnalyzer class and the Supervisor class remains the same. ImageAnalyzer class not only
detects the plants, but it also detects the field markers, and reports the detected plant center
and marker center locations in terms of pixel count from the beginning of the image chunk to the
Supervisor class.
To synchronize video images with GPS data, the video time code was used. The video time
code was associated with each frame and also with the GPS signal. This provided a basis for
geo-referencing each plant detected through image processing. However, the GPS signal
update rate was much lower than the frame rate; hence the GPS locations for intermediate
frames were linearly interpolated. Once the Supervisor class receives updates from the
ImageAnalyzer class, it interpolates the location of each plant for its GPS location and writes to
the output database table.

Information display and output
A plant-centric database format was used to output the information. In the plant-centric
database, other data such as GPS location are interpolated for each detected plant. A plant-
centric database is more suitable where information about individual plants is more important
than statistics over a region like in the study of plant spacing and canopy area measurement.

9

Figure 4. Interface of the program developed to estimate the plant location and spacing

measurement. The program was names ESCOPE for early stage corn population estimation.
In order to display the extracted information, a View class was written. Once a chunk of an
image is processed, depending on user preference, the Supervisor class sends a message to
the View class to update itself and provides a pointer to the memory location of the database.
Then the Supervisor class gets the data and plots the information on the computer screen. The
View class produces three different windows panes to display different information. The first
pane displays the chain of overlapped images (fig. 4). This window permits visual evaluation of
image correspondence and plant detection performance. A red square is displayed over each
detected plant location.
In the second window pane, plant population is displayed in the form of a bar graph. Maximum
and minimum and current plant density measured in the field is also displayed (fig. 4). The third
pane displays processing and other information in text format which is used during
development. Finally, the program outputs a file structure with information for every plant
detected (fig. 5). The first column in the database is the plant number. The second and third
column show the plant location in terms of number of pixels from the beginning of a video
chunk. The fourth column shows plot number. The fifth column shows the video time code
when that particular plant was found. The last two columns are interpolated latitude and
longitude of a plant.

Discussion
The object-oriented architecture provided a framework for developing video acquisition and
image processing software. Direct Show® was successfully implemented for camera control
and video acquisition. Use of the architecture led to more intelligent software development and
efficient data flow and processing.
On average, for 60 seconds of video, ESCOPE took 43 seconds for image correspondence, and
5 seconds for feature extraction and plant counting on a computer with a 1.7 GHz Pentium-IV
processor. A majority (91%) of the processing time was spent on image correspondence.
In order to demonstrate reusability of components, after coding the program for acquiring video
signal from the camera, a feature was added to acquire images from the series of images stored
in hard drive. A separate class called FileCapture was developed to read serial images and
incorporated into the program. Only the Supervisor class needed to be modified to incorporate

10

the FileCapture class. The FileCapture class also used DirectShow® and has similar
functionality as DVCapture except for camera control.

Figure 5. Plant output of ESCOPE. First column shows plant detected. x and y shows plant

position from the top of the row in pixels. Time code is the video time when plants were found.
Latitude and Longitude are estimated GPS location of the plant.

To test the extensibility of the program, a class was derived from the ImageAnalyzer class with
the functionality needed to calculate the top projected canopy area (TPCA) of each plant. The
changes needed to accommodate this new feature were in the database structure in the
Supervisor class and output format. The new class estimated the plant location in inches
instead of the original pixel measurements. When the video frames were read from the hard
drive using the FileCapture class and processed with the new ImageAnalyzer class, the output
table contained different information than the original table (fig. 6).

Figure 6. Output from modified ESCOPE. A FileCapture class read the images sequence from
hard drive without GPS and new ImageAnalyzer calculated top projected canopy area of each

plant.

Conclusion
An object-oriented architecture was developed and used successfully for a field data acquisition,
processing and information extraction system. DirectX was used to control the camera, acquire
video images and split the video images into individual images. The use of DirectX technology
reduced the burden of taking care of every detail for hardware control and allowed the
researchers to focus more on image processing and analysis. The architecture was reusable
and extensible since none of the classes except for the Supervisor class needed to be modified
to when incorporating a new image processing class.

Acknowledgements
This journal paper of the Iowa Agriculture and Home Economics Experiment Station, Ames,
Iowa, Project No. 4003, was supported by Hatch Act and State of Iowa funds. Additional
research support was provided by Pioneer Hi-Bred International Inc and the Iowa State
University Center for Advanced Technology Development.

11

References
Aleman, J. L. F. and A. T. Alvarez. 2000. Can intuition become rigorous? Foundations for UML

model verification tools. In 11th International Symposium on Software Reliability
Engineering 344-355. IEEE.

Beck, H. W., P. Papajorgji, R. Braga, C. Porter, and J. W. Jones. 2003. Object-oriented
approach to crop modeling: concepts and issues. In Proc. World Congress on
Computers In Agriculture and Natural Resources 297-305. F. Zazueta and J. Xin, eds.
St. Joseph, Mich.: ASAE.

Birrell, S. J. and J. W. Hummel. 2000. Membrane selection and isfet configuration evaluation for
soil nitrate sensing. Transactions of the ASAE 43(2): 197-206.

Birrell, S. J. and K. A. Sudduth. 1995. Corn population sensor for precision farming ASAE Paper
No. 951334. St. Joseph, Mich.: ASAE.

Blackmore, S., S. Fountas, and H. Have. 2002. A proposed system architecture to enable
behavioral control of an autonomous tractor. In Proceedings of automation technology
for off-road equipment 13-23. Q.Zhang, eds. Chicago, IL. St. Joseph Mich.: ASAE.

El-Faki, M. S., N. Zhang, and D. E. Peterson. 2000. Weed detection using color machine vision.
Transactions of the ASAE 43(6): 1969-1978.

Gary, C., J. W. Jones, and M. Tchamitchian. 1998. Crop modelling in horticulture: state of the
art. Scientia Horticulturae 74(1-2): 3-20.

Goel, P. K., S. O. Prasher, R. M. Patel, J. A. Landry, R. B. Bonnell, and A. A. Viau. 2003.
Classification of hyperspectral data by decision trees and artificial neural networks to
identify weed stress and nitrogen status of corn. Computers and Electronics in
Agriculture 39(2): 67-93.

Hummel, J. W., K. A. Sudduth, and S. E. Hollinger. 2001. Soil moisture and organic matter
prediction of surface and subsurface soils using an NIR soil sensor. Computers and
Electronics in Agriculture 32(2): 149-165.

Irmak, A., J. W. Jones, W. D. Batchlor, and J. O. Paz. 2001. Estimating spatially variable soil
properties for application of crop models in precision farming. Transactions of the ASAE
44(5): 1343-1353.

Johnson, L. F., D. E. Roczen, S. K. Youkhana, R. R. Nemani, and D. F. Bosch. 2003. Mapping
vineyard leaf area with multispectral satellite imagery. Computers and Electronics in
Agriculture 38(1): 33-44.

Li, Z., P. P. Ling, and G. A. Giacomelli. 1998. Machine vision monitoring of plant growth and
motion. Life Support.Biosph.Sci. 5(2): 263-270.

Lund, E. D., C. D. Christy, and P. E. Drummond. 2000. Using yield and soil electrical
conductivity (EC) maps to derive crop production performance information. In
Proceedings of Fifth International Conference on Precision Agriculture, P.C.Robert,
R.H.Rust, and W.E.Larson, eds. Bloomington, MN, USA. Precision Agriculture Center,
University Of Minnesota.

Morden, R. E., P. P. Ling, and G. A. Giacomelli. 1997. An automated plant growth monitoring
system using machine vision. ASAE Paper No. 974033. St. Joseph, Mich.: ASAE.

MSDN Documentation. 2003a. CDocument. Microsoft Inc. Available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wcemfc/htm/cdocumnt_2.asp. Accessed on 29 May 2003.

MSDN Documentation. 2003b. Introduction to DirectShow. Microsoft Inc. Available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/directx9_c/directx/htm/introductiontodirectshow.asp. Accessed on 25 Apr. 2003.

12

MSDN Documentation. 2003c. The Component Object Model. Microsoft Inc. Available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/com_757w.asp.
Accessed on 25 Apr. 2003.

National Research Council. 1997. Geospatial and information technologies in crop
management. National Academy Press. Washington.

Nishiwaki, K., T. Togashi, K. Amaha, and K. Matsuo. 2001. Estimate crop position using
template matching in rice production. ASAE Paper no. 013103. St. Joseph, Mich.: ASAE.

Object Management Group. 2003. Unified modeling language specification, Ver.1.5. OMG
object management group. Available at:
http://www.omg.org/technology/documents/formal/uml.htm. Accessed on 25 Apr. 2003.

Pan, X., J. D. Hesketh, and M. D. Huck. 2000. OWSimu: an object-oriented and Web-based
simulator for plant growth. Agricultural Systems 63(1): 33-47.

Pierce, F. J. and P. Nowak. 1999. Aspects of precision agriculture. Advances in Agronomy 67:
1-85.

Root, M. D. and J. R. Boer. 1999. DirectX Complete. Ch. 1, 3-18. NY:McGraw-Hill.
Schmoldt, D. L. 2001. Precision agriculture and information technology. Computers and

Electronics in Agriculture 30(1-3): 5-7.
Schueller, J. K., J. D. Whitney, T. A. Wheaton, and L. A. Balastreire. 2002. Accuracy and data

characterization analysis in precision agriculture using matlab. ASAE Paper No. 021044.
St. Joseph, Mich.: ASAE.

Shrestha, D. S. and B. L. Steward. 2003. Automatic corn plant population measurement using
machine vision. Transactions of the ASAE 46(2): 559-565.

Sorensen, C. G., H. J. Olsen, A. P. Ravn, and P. Makowski. 2002. Planning and operation of an
autonomous vehicle for weed inspection ASAE Paper No. 021177. St. Joseph, Mich.:
ASAE.

Tang, L., L. Tian, and B. L. Steward. 2000. Color image segmentation with genetic algorithm for
in field weed sensing. Transactions of the ASAE 43(4): 1019-1027.

Tarbell, K. A. and J. F. Reid. 1991. A computer vision system for characterizing corn growth and
development. Transactions of the ASAE 34(5): 2245-2255.

Tarbell, K. A., D. K. Tcheng, and J. F. Reid. 1991. Corn growth and development attributes
obtained using inductive learning techniques. Transactions of the ASAE 34(5): 2264-
2271.

Torrie, M. W., D. L. Cripps, and J. P. Swensen. 2002. Joint architecture for unmanned ground
systems(JAUGS) applied to autonomous agricultural vehicles. In Proceedings of
Automation Technology for Off-road Equipment Conference 1-12. Q.Zhang, eds.
Chicago, IL.

Van Henten, E. J. and J. Bontsema. 1995. Non-destructive crop measurements by image
processing for crop growth control. J.Agric.Engng Res. 61: 97-105.

Will, J. D., J. F. Reid, N. Noguchi, and Q. Zhang. 2002. Software architecture design for
automation of off-road equipment. In Proceedings of Automation Technology for Off-road
Equipment 43-50. Q.Zhang, eds. Chicago, IL.

Zhang, N. Q., M. H. Wang, and N. Wang. 2002. Precision agriculture - a worldwide overview.
Computers and Electronics in Agriculture 36(2-3): 113-132.

13

	System Architecture
	System Activities
	Use-case scenario
	Class Diagram
	Grabber Class
	DVCapture Class
	DVIterator Class
	PortUtility class
	GPSCapture class
	GPSIterator Class
	Supervisor Class

	Case Study
	ESCOPE performance
	Video acquisition
	Image processing
	Information display and output

	Discussion
	�
	Conclusion
	Acknowledgements
	References

