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ABSTRACT 

The modeling tools available for engineering design and analysis are traditionally created 

in isolation with features and capabilities geared toward a particular domain, that is, that many 

traditional engineering modeling tools are isolated, unable to readily connect to or be integrated 

into a larger tool set. With the advent of cloud computing and the success of delivering 

applications built using a microservices architecture, a more modern approach would allow an 

engineering design application to be composed of smaller independently developed and 

contributed applications within an environment capable of executing those applications without 

modification to the environment. This is somewhat analogous to an application store with one 

main difference. In the engineering design and analysis case, the goal is to enable the coupling of 

the applications together to perform higher level analysis, whereas in the application store, most 

applications are used independently.   

This work introduces an Application Coupling Interface (ACI), for declaring the 

semantics of the application programming interfaces (APIs) of a modeled subsystem, a central 

repository providing access to curated web enabled engineered subsystems via ACIs and an 

extension of an existing cloud enabled engineering modeling/design environment to incorporate 

a new messaging system capable of autonomously orchestrating the execution and exchange of 

data between the subsystems. Together, these components provide the basis for an extensible 

analysis and design platform that accelerates discovery and innovation through the promotion of 

contribution and reuse of web enabled engineering models. 



 

 

1 

CHAPTER 1.    INTRODUCTION 

1.1 Overview 

The term “Industry 4.0” is widely used to describe a future in which increasing wireless 

connectivity, reduced latency, edge devices, and cloud computing coupled with emerging 

manufacturing technologies, machine learning (ML), and other technologies change society by 

creating smart factories, smart cities, smart farming, and other smart entities. While 

acknowledging the critical importance of artificial intelligence (AI), 5G, and other technologies, 

one of the cornerstones of this revolution is the integration of all types of information sources—

data, sensor, model, human input, and others. The rise of the Internet of Things (IoT) and the 

Industrial Internet of Things (IIoT) has led to efforts in providing technical solutions to handling 

the unprecedented amounts of data generated by these technologies (Dastjerdi and Buyya, 2016). 

Recent research predicts that there will be 50 billion edge devices worldwide by 2030 (R. Miller, 

2019). Developing applications that leverage a mixture of edge computing (intelligent edge, e.g., 

Microsoft Azure, 2019) and cloud processing (intelligent cloud, e.g., Microsoft Azure, 2019) is 

one of the biggest challenges of Industry 4.0. Meeting this challenge requires interoperability 

between the various cyber-physical systems. This integration/federation of devices is creating a 

new computational fabric and is providing new opportunities for engineering and science. An 

essential requirement of this integration is the full development of semantic interoperability, 

where the meaningful context of the information exchanged between systems (and components 

of systems) enables the integration and execution of these systems (Nilsson & Sandin, 2018). 

While integration, federation, and semantic interoperability are central to this coming 

smart world, it is striking that in contrast to enterprise computing, much of engineering and 

scientific computing is still deployed as stand-alone applications. The ecosystem of tools and 



 

 

2 

technology available in the domains of engineering design and scientific modeling while 

plentiful, are highly specific and often isolated to a particular domain of the research. Many 

organizations and institutions attempt to develop their technologies and software in hopes of 

accelerating discovery and innovation; however, often, these efforts cannot be easily shared or 

leveraged in conjunction with other systems. Efforts at integration are usually conducted within 

the bounds of computational frameworks in which specific rules guide the development and 

modification of codes to fit within a specific framework but are not widely extensible to other 

computational frameworks or problems. Although there has been an effort across various 

industries to share innovation through open-sourcing their codes, the publication of findings and 

results, and providing common tools for foundational mathematical and scientific computation, 

today integrating these custom-developed engineering and scientific software systems is 

laborious and error-prone. 

Academic institutions such as the Texas Advanced Computing Center (TACC, 2019), 

publishes their software and provide hardware services for research in computation and 

visualization related to engineering and science. Similarly, a national research laboratory, 

Lawrence Livermore National Laboratory, maintains a popular software portal (LLNL, 2019) for 

the use of the tools it develops in research. The Open Science Foundation (OSF, 2019), a 

consortium for promoting collaboration in research, maintains tools for researchers to query and 

publish data related to their research. There is even an open-source code repository maintained 

by the United States government (Code.gov, 2019) for developing and providing access to 

publicly available data. Although there are plenty of options, these tools and systems are 

disparate and do not have the necessary elements to support semantic interoperability. 
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Much of this can be attributed to the fact that researchers in the scientific and engineering 

domain are not focused on the complex task of providing an integration solution for use in other 

systems, instead they are concerned with leveraging existing available technology to integrate 

solutions within the context of their own custom solutions tailored to the requirements and 

constraints of their domain. Whether or not the tools they leverage and develop internally can be 

integrated with systems used by other scientists and engineers external to their research is not 

their primary mission. Making technology accessible to others is a business on its own, let alone 

providing an integration platform as a service (Domo, 2019). The temporal and financial cost of 

supporting such an effort is not in line with the mantra of research and development in science 

and engineering. There are some groups of software developers and researchers who are working 

together to provide tools to aid in advancing engineering and scientific businesses and research. 

These tools, however, tend to address a specific high-level domain such as visualization (VTK, 

2019), simulation (SimScale,2019), computation (OpenFoam, 2019), or design (FreeCAD, 

2019). Ideally, scientists and engineers could pick and choose parts of these tools as needed to 

compose a broader application, but no cross-discipline, widely adopted integration platform 

exists. 
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Recognizing this challenge, Bryden (2014) has proposed a novel modeling/design 

environment in which microservices within a cloud platform are leveraged to provide a 

“decentralized integrated modeling environment appropriate for engineering and scientific 

computing.” The goal of this work is to provide an environment in which independently 

developed models could be deployed and integrated into a wide range of applications (systems 

models) in the same manner as app development for the web. This federated modeling 

architecture defines an environment in which for a given system domain model builders can 

create and contribute stateless models that represent single functionality subsystems that are then 

available as microservices (Wikipedia, Microservices, 2019). These stateless models can be 

executed independently or linked together within the environment, representing a potentially 

complex system of analysis. The execution of the models is orchestrated by making the results of 

the execution of each model available to the collective model. As a starting point the 

Figure 1.1: Engineering design and modeling environment leveraging cloud technologies 

(Bryden, 2014). 
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infrastructure for this modeling/design environment requires the development and deployment of 

a number of components including 

1. an overall architecture; 

2. an integration schema for the models that supports semantic interoperability; 

3. an easily implemented method for bringing new and existing models into the 

environment;  

4. a methodology for integrating the models together and creating the solution path 

through the system of microservice models; 

5. a solution schema that manages the information and calls the microservice members; 

6. front end components that support exploration of the available models, system 

assembly, and validation; 

7. a cloud-based library of available models; and  

8. user interfaces, including analytics to support exploration and understanding of the 

results. 

Suram, MacCarty and Bryden (2018) developed the initial overall architecture, which includes 

components 1 and 5 of the needed infrastructure. This research develops component 2 and parts 

of components 3 and 4. 

The initial overall architecture developed by Suram et al. (2018) can be summarized as a 

composition of several core components with the responsibilities as outlined in Table 1.1. This 

architecture lays the foundation for a platform whose capabilities can be easily extended by 

external contributions similar to other open-source technologies while evolving the overall 

platform. At a high level, the goal is to allow independently developed models to be registered 

with the design environment by developers, akin to the process of submitting a software 
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application to one of the popular mobile device application stores. At the heart of the architecture 

is the federation management system (FMS), which is responsible for orchestrating the execution 

of a user-designed system. The workflow is essentially an ordered execution (directed graph) of 

the subsystems required to represent the overall system. During execution, the platform 

maintains state, accumulating the necessary information from the preceding model’s result to 

move forward to the next model in the workflow. The platform processes the workflow, 

schedules execution of the first model(s) in the flow, and upon a response from that model, 

proceeds to marshal the results to the next model(s) scheduled for execution. This sequence 

repeats until all models have executed or an error has occurred. As stated by the authors (Suram 

et al. 2018), information exchange and protocols are vital components for the successful 

implementation of the architecture. Stateless microservices represent the models, which means 

access and metadata about the information from the successful execution of one model to other 

models within the workflow has to be clearly defined as well as easily distinguishable. 

Otherwise, linking of the models becomes more of a task requiring too much of the technical 

networking and architectural knowledge inherent to the model developers as opposed to the 

system designer. 
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Table 1.1: Components of a cloud-based systems modeling environment as defined by Suram et 

al. (2018). 

Component Description 

Solver Subsystem Individual microservices registered with the platform 

representing subcomponents of an overall system. 

Queuing System Execution of the workflow via linear queuing of data 

exchange between subcomponents. 

Federation management system 

(FMS) 

Orchestration of data passing and execution of 

models for user submitted workflows. 

Data Access Persistence of the workflow execution state (model 

output for an execution). 

Message contracts JavaScript Object Notation (JSON) definition of 

FMS workflow information + data exchanged within 

the workflow. 

Namespaces Scratch space assigned to a registered model for 

storing intermediate information during an execution. 

Web application programming 

interfaces 

APIs to access the system. 

 

The original federated modeling architecture and its implementation in software provide 

an environment in which model builders can create and contribute models that represent smaller 

singularly focused subsystems as microservices. These models, when appropriately registered 

within the FMS, can be utilized to design complex systems without requiring explicit knowledge 

of the implementation details of the models, thus providing a working federation modeling 

architecture. However, although this environment provides an extensible platform, it does not yet 

support the integration of models without user intervention. Currently, most of the workflow 

construction is a manual process of specifying input and connectivity within a particular data 

exchange format and then manually specifying the solution path.  

This thesis develops the initial schema and algorithms to enable autonomous linking of 

models together consistent with a federated modeling architecture. To do this, the research 
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initially poses the question, how can a system be defined such that a modeler (e.g., engineer, 

scientist, researcher) can externally compose computational models and then contribute these 

computational models as elements for use as subsystem models to enable others (here referred to 

as systems builders or modelers) to easily use these computational models in arbitrarily 

assembled systems? Although these systems builders are experts in the system of interest, they 

may not be (and are likely not) experts in each of the domains covered by the models they use, 

and so the computational models distributed as microservices need to be able to stand on their 

own.  This requires significant data orchestration and management of the execution of the 

involved subsystems to provide confidence in the system’s ability to capture the behavior of the 

real-world system being modeled. Similarly, how can a subsystem developed independently of 

the system execution environment be contributed to the system while explicitly proclaiming its 

intent and means of execution without restricting the flexibility of choice of the developer? 

These questions and their relation to dynamic system integration are the main topics of this 

research. 

To address these questions, this research proposes a simple lightweight specification for 

integrating scientific and engineering models without user intervention. Similar to an application 

programming interface (API), this specification provides a mechanism to abstract system 

integration information known by individual model developers into a form that is publishable to 

and consumable from a modern scientific and engineering modeling and design environment via 

modern web technologies. This integration specification is provisionally referred to in this work 

as an application coupling interface (ACI). 

In this thesis, this integration specification, ACI, is then realized as a suite of software 

services running on cloud architecture. These services leverage the information provided in the 
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context of the ACI to replace various operations that currently require manual intervention 

during the process of scientific and engineering design.  These processes include registration and 

visualization of models within the design environment, defining and editing of a system in the 

environment for execution, and validation of integration or “linking” of models within a system 

of models. Furthermore, the information provided by the specification can be leveraged by the 

design environment itself to enhance its capability to execute systems with complex integration 

and connectivity requirements (i.e., similar to a directed graph) while reducing the amount of 

data exchanged in the system by allowing concurrent model execution, as compared to the 

synchronous model execution of current architectures. This research will show that by 

incorporating the usage of services developed around the ACI into an existing scientific and 

engineering design environment, it will allow the iterative exploration of systems of varying 

complexity while taking advantage of the capabilities of modern cloud architectures. These 

components together provide the basis for an extensible engineering design and analysis platform 

allowing contribution and reuse of subsystems for accelerated discovery. 

1.2 Organization 

The remainder of this dissertation is organized as follows: 

• Chapter 2 provides background on cyber physical modeling and the microservices 

architecture pattern of software development. It also discusses a recently developed 

scientific and engineering modeling environment that leverages the cloud architecture 

and microservices as a basis for describing some concrete problems around system 

integration.  
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• Chapter 3 introduces the definition of the ACI, which enables us to address the gap of 

manual system integration, particularly in the area of scientific and engineering 

design.  

• Chapter 4 goes into detail about the messaging system of an engineering design 

environment and how incorporating the information provided by the ACI allows us to 

leverage enterprise integration patterns (Hophe and Woolf, 2004) within an existing 

scientific and engineering design environment. In doing so, the environment is 

significantly enhanced in its ability to handle the increasingly complex yet more 

realistically defined systems of models.  

• After defining the ACI, Chapter 5 describes the implementation of a set of 

microservices developed around the concept of the ACI that provides metadata about 

the ACIs for a model. It then defines a set of higher-level architectural components 

composed of the aforementioned tools that provides autonomous functionality for a 

client application to leverage.  

• Chapter 6 discusses the implementation of the extensible design environment running 

on the cloud and the process of contributing subsystem models to the design 

environment, thus providing dynamic system integration of the environment. By 

creating and registering an ACI for the subsystem model, it can be curated and 

contributed to a central repository for access in the design environment. 

• Chapter 7 discusses a prototype implementation of a design environment web 

application. The chapter goes into details about how the components of the 

application leverage the system ACI to provide an intuitive and extensible design 
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environment that can design and execute system models, moving closer toward the 

self-organizing systems described by Bryden (2014). 

• Finally, Chapter 8 discusses the results of this research and summarizes areas of 

future research. 
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CHAPTER 2.    BACKGROUND 

2.1 Monolithic Modeling and Modeling Frameworks 

With some notable exceptions, today there are two primary ways by which large-scale 

engineering and science models are built and deployed—monolithic models and closely 

coordinated modeling frameworks. In both cases the resultant model is generally deployed as a 

single software package on a specific set of hardware which may or may not be cloud-based. In 

the case of monolithic models, generally one team (or a small set of teams) develops and 

maintains the model. This maintains internal consistency but sacrifices scalability, flexibility, 

and extensibility to other modeling projects (Jamerillo, Nguyen, and Smart 2016). Specifically, 

the tightly coupled modeling approach required in monolithic modeling significantly slows 

changes and updates to the model and limits the use of the model for purposes not originally 

intended. An alternative to the monolithic modeling approach has been the development of 

modeling frameworks.  

The applications of modeling frameworks are relatively broad, and the term “framework” 

can refer to both software libraries and software applications. In the Concise Oxford English 

Dictionary, framework is “a basic structure underlying a system, or concept, or text” (Soanes and 

Stevenson 2004). Generally, in systems modeling framework refers to “a software application 

that is the basic structure utilized to integrate, simulate, and understand complex systems” (Muth 

and Bryden 2013). Alternately Rizzoli et al. (2008) working in the area of environmental 

modeling and assessment defined a framework as “a set of software libraries, classes, and 

components, which can be (re-)used to assemble and deliver an environmental decision support 

system (EDSS) or an integrated assessment tool (IAT)”. Following this definition, Lloyd et al. 

(2011) divided modeling frameworks into “traditional vs. lightweight” based on “invasiveness,” 
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which they defined as the “degree to which model code is coupled to the underlying framework.”   

Padula and Gillian (2006) introduce a number of ideas to the discussion of frameworks, 

including the need for validation and verification, knowledge capture, and user access to the 

results. As noted by Bryden and Muth (2016), “one of Padula and Gillian’s (2006) key ideas is 

that many frameworks center on creating data repositories that tie information to the components 

they represent. These repositories then enable the users of the frameworks to seamlessly query 

information on a per-component basis.”  

There are a large number of open and closed source modeling frameworks available 

addressing a wide range of problems. Searching Google Scholar with the terms “modeling 

framework” for articles published in 2018 and later yields approximately 16,600 results 

including articles titled “Water sector assumptions for the shared socioeconomic pathways in an 

integrated modeling framework,” “An integrated-process-property modeling framework for 

additive manufacturing,” and “An integrated modeling framework for energy economy and 

emissions modeling: a case for India.” These and other integration frameworks are generally 

based on coupling the models together by linking the inputs and the outputs via message passing 

between the component packages (i.e., models) such that adherence to a given data standard is 

maintained or alternately requires user intervention to identify and manage the data flow, and in 

many cases both. In addition, the concept of framework is most often utilized as a method for 

assembling and managing a project rather than ensuring the project is extensible. Because of this, 

many of these software frameworks are specific to the applications and are not readily extensible 

to other domains (or other problems within the same domain). There are a number of general-

purpose frameworks, and the environmental modeling community has been active in the 

development of a number of general-purpose frameworks. Reviewing these frameworks Suram 
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et al. (2016) noted that the environmental modeling community has been active in the 

development of a number of general-purpose model integration tools. All of these systems 

require models to have initialize, run, finalize, get, and set functions for basic control over the 

models; provide a code-based method for connecting the models together, using some form of 

XML file or some other type of configuration file, to create a low-level model-to-model 

interface; and require an agreed upon global ontology describing the variables passed between 

models. Nearly all of these general-purpose integration frameworks require that the models in the 

system use the same programming language.  

From this it can be seen that while modeling frameworks seek to simplify the engineering 

modeling workflow of model development, management, and deployment, the overhead costs of 

ensuring that models work together in a formally structured environment (i.e., a framework) 

make it difficult to create an adaptive and lightweight system of models that can be reused and 

extended to new applications. 

2.2 Engineering Modeling within a Cloud-Computing Environment 

At a high level the goal of the larger project that encompasses this research work is to 

create an easily extensible integration environment for scientific and engineering computing that 

is cloud native, supports user development and interaction with the integration environment, and 

can be coupled to a growing set of edge devices. That is, the integration environment being 

developed should be able to readily support interactive decision making about complex systems, 

create and maintain live digital twins, and support the development of cyber-physical systems 

including cyber-physical modeling. Suram (2016) proposed the following six principles for this 

type of distributed modeling environment: 

1. The models and data developed for an engineering application should be deployed as 

an Internet based service.  
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2. The models used in the design process should be easily composable into complex 

systems of models capable of answering critical engineering questions. That is, 

models should be able to be invoked as and when needed.  

3. These models must be readily publishable by their developers for use in systems 

models and analyses. 

4. Models must be able to exchange information with each other via an intermediary 

service and must be able to join a federation of models in order to solve a larger set of 

problems.  

5. To reduce the time needed to compute an answer from a detailed model, hybrid 

models consist of detailed computational models and reduced order models (ROMs). 

ROMs should be constructed on-the-fly in a manner that is transparent to the user and 

compatible with systems modeling.  

6. Engineering teams should be able to substitute one model in a system of models for 

another model (with more or less detail or information) without disrupting the system 

of models.  

Suram (2016) noted that implementing these principles requires a fundamental paradigm 

shift in the current modeling and design paradigm. In today’s modeling paradigm 

• Most detailed models enter the design and decision-making process as a single piece of 

information, 

• When a detailed model is needed the starting point is often an entirely new model, and  

• The creation of a large, complex systems model requires the development of a global 

ontology, a set of coupling protocols that is accepted and used by model builders at their 

points of interaction between the models. 
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As noted in Chapter 1, Suram et al. (2018) developed and deployed a cloud-based system 

modeling environment consistent with principles one and five discussed above. Critical to this 

implementation of this cloud-based systems modeling environment was the use of a microservice 

architecture and stateless computing.  

2.3 Microservices 

A microservice architecture pattern is based on the concept of composing “small, 

autonomous services … that are focused on doing one thing well” (Newman, 2015) to form a 

distributed application. Rather than specifying a strict standard for defining a microservice, when 

developing a microservice a general set of principles should be followed as outlined by Newman 

(2015): 

• A microservice should have a single responsibility and maintain autonomy. 

• A microservice should isolate its failures so as not to impact other functionality within an 

application not related to the microservice. 

• A microservice must be built in a way that they can be managed and deployed 

independently. 

 The popularity of microservices has arisen for a number of reasons such as reuse and 

composability of smaller functional components into a larger application that is loosely coupled 

to any one of the individual services it is composed of (Newman, 2015).  Even so, their usage in 

a distributed application comes with its own set of concerns, requiring solutions that are distinct 

from those used in traditional monolithic application development, particularly in the areas of 

fault tolerance, scale, resiliency and idempotency (Newman, 2015). An application built on 

microservices has to deal with the fact that internet access is not 100% reliable, which means one 

or more of the microservices composing the application is likely to fail at some point in its 
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lifetime. This has to be planned for as part of the development of the services and within the 

context of the application.  

Patterns have been developed and are available for many of these microservice 

architecture concerns, particularly in the area of connectivity. Robust implementations of 

resiliency and fault tolerant patterns are available in off the shelf technologies such as 

Resilience4j, which “is a lightweight, easy-to-use fault tolerance library inspired by Netflix 

Hystrix, but designed for Java 8 and functional programming.” (Introduction, Resilience4j, 

2019). This open source library addresses concerns of resiliency such as retrying failed requests, 

caching, and circuit breaking. 

Related to issues arising from failures in connectivity, any kind of failure during a data 

transaction causing an inconsistency in the integrity of the data could be catastrophic to the 

application if handled improperly. In most cases, distributed applications need to come to terms 

with the tradeoffs of handling data, commonly referred to as the CAP theorem (Gilbert and 

Lynch, 2002). The CAP theorem states that a distributed database can only have two of the 

following three properties: 

• C—High data consistency, meaning at any one time if the data is accessed it is the same 

no matter which application is querying it.  

• A—High data availability, meaning the service responsible for serving data from the 

database is available all the time, regardless of the consistency of the data. 

• P—Partition tolerance, meaning the system can deal with network failures due to data 

replication. 
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While the choice of choosing two of the three is a design consideration that depends on 

the needs of the application, there are also off the shelf technologies targeted at these concerns, 

such as Apache Spark (Zaharia et al., 2012) or Apache Kafka (Kreps et al., 2011).  

Another area of concern when it comes to distributed application development using 

microservices is that of integrating these microservices into functionality sufficient to deliver 

value to an end user in the application. Following a microservices architecture pattern when 

developing a distributed application implies that the application is likely to consist of many small 

services that need to communicate with each other over various web protocols. The integration 

of the microservices is challenging and requires substantial expertise to properly orchestrate the 

execution of the microservices, ensuring integrity of the application. Simplifying the process of 

integration has recently been the topic of research leading to integration languages such as 

Ballerina, “a statically typed concurrent programming language, focusing on network 

interaction and structured data” (Weerawarana et al., 2018). Although a tool or language such as 

Ballerina provides a mechanism for a developer to integrate a system of network services, it is 

targeted at the developer community as opposed to an end user who is not skilled in the art of 

software development or systems architecture. 

2.4 Integration in Cloud-Computing 

In Suram’s doctoral thesis (Suram, 2016) discussed above, the question of interactive 

integration of models and model management was left for further research. As systems models 

grow in complexity and size, manual integration of the components models creates significant 

challenges in deployment and maintenance similar to the drawbacks of framework packages—

that is, the need for an agreed upon ontology and manual routing and assembly of component 

models. As originally envisioned by Bryden (2014), this integration challenge would be handled 

by the development of a library of standard contracts that could be cited by the metadata 
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associated with each model, enabling each model to self-identify to the larger system, which 

could then assemble the model with limited intervention by the systems modeling team and 

without the need for manual assembly and routing. The contract approach, however, is 

challenging in that the input and output data are not just shared between two models in a 

sequential fashion. Rather, the data are generated by one (or more) model(s) and parts, and this 

data are then needed by multiple downstream models.  

This problem of system integration is not unique to the development of science and 

engineering software applications. The most common solution adopted for building large 

complex models in enterprise computing and software development is to acquire the resources of 

a software development team skilled in the specifics of distributed application development. This 

team is either currently knowledgeable in the application programming interfaces (APIs) of the 

microservices involved and begins to write code to integrate the usage of the microservices via 

their APIs, or they set out to learn the new APIs of those microservices they are unfamiliar with. 

This so-called middleware is the glue code where the orchestration of business logic is occurring 

in many of today’s technology applications (“Middleware”, n.d).  Of course, this manual process 

of system integration has a significant upfront cost. Because the integration between any two or 

more APIs is almost certainly unique, any changes to the system (add, remove, or substitute in a 

new subsystem) essentially triggers a repeat of the process to adapt to the new system. For a 

business whose technology is following a microservice architecture pattern, a single 

microservice within that architecture and how it is used may not change often (quarterly/yearly). 

However, in a highly exploratory environment, such as those in the areas of research and 

development of science and engineering, the overall system assembly and the use and reuse of 

sub-models is apt to fluctuate often. In an ideal situation, an environment supporting distributed 
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scientific and engineering design could accommodate fluctuating system integration 

requirements without necessitating manual code changes.  

System integration in the context of software technology is the process of assembling 

smaller software subsystems to represent a larger system (“System integration, n.d.). The current 

rise in popularity of microservices architecture has led to system integration of distributed 

enterprise applications being an area of focus for many organizations (App Developer, 2018). 

The issues concerning coordination and execution of the subsystems as well as the handling of 

information exchange between the distributed subsystems led to the development of Enterprise 

Integration Patterns (EIP) (Hophe, 2002), a set of cookbook techniques and principles to address 

the common architectural issues encountered in enterprise application development.  

Many commercial businesses have been highly successful delivering products that 

leverage a microservice architecture. Netflix™ and Uber™ have risen to become global 

technology companies whose technical engineering success has been directly attributed to 

application development using microservices architecture (Nginx, 2015) (Uber, 2016, 2019) and 

enterprise integration patterns for addressing system integration issues. Yet, when looking at 

scientific and engineering technologies, they have been slower to adopt and migrate to this style 

of development for their technical solutions (IDC, 2019). Only recently have there been serious 

efforts at reimagining the approach to scientific and engineering design leveraging cloud 

technologies such as OnShape (2019). While the cloud can certainly address the scale and most 

cost concerns associated with science and engineering problems, such as data access and parallel 

computation, system level modeling, design and execution are still a significant challenge for 

adoption of a cloud-based solution. Both of these concerns lie in the area of system integration. 



 

 

21 

Some researchers have taken the approach of defining a domain specific language (DSL) 

or something similar to address the problem of integration (Balasubramanian, 2009). However, 

in most cases this only addresses the modeling aspects of integration, i.e., defining relationships 

between entities within the system. And because of the static nature of a domain specific 

language, these approaches cannot help with the iterative and exploratory aspect of design and 

modeling within science and engineering.   

2.5 Application Programming Interfaces (API) 

Application programming interfaces (APIs) are the means to programmatically access the 

functionality of a particular piece of technology. An API’s documentation explicitly defines the 

functionality and how to invoke the functionality of the technology. The “how” is typically 

referred to as the protocol. APIs are very clear in expressing protocols and functionality however 

exchanging information between two or more APIs requires expert knowledge of the APIs.  

When APIs are referred to, most people think of the REST (Representational State 

Transfer) architectural style for the World Wide Web that is based in the concept of statelessness 

(Fielding and Taylor, 2000), where statelessness refers to the fact that multiple invocations of the 

API with the same input will yield the same output. Consider a web-based model, plus-one, 

which acts as a counter. The plus-one model adds 1 to the last number each time is called. In the 

stateful implementation of the plus-one model where the model is tracking the results of the last 

invocation internally, multiple invocations of the model will each yield a different result. In 

contrast, a stateless implementation of the plus-one model requires a number as its input and then 

uses this number as the value to increment by one. Multiple invocations of the stateless version 

with the same input would always yield the same result regardless of the order of invocation or 

the number of invocations of the model. In the stateful case the plus-one model maintains the 
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state (i.e., the current count), and in the stateless implementation the state must be maintained by 

the system. 

 The recent rise in popularity of distributed application development and the use of 

microservices has led to an increased focus on the design and standardization of how REST APIs 

are described (OpenAPI, 2019. The OpenAPI Initiative (OAI) “is focused on creating, evolving 

and promoting a vendor neutral description format” (OpenAPI, 2019). These efforts are required 

for effective programmatic use and comprehension of APIs and the systems they represent; 

however, they are not necessarily concerned with the autonomous integration of systems 

providing the functionality of these APIs. 

Given that REST is an architectural pattern, any API that follows the constraints of a 

client-server architecture in that it is stateless, is cacheable, has a uniform interface, and uses a 

layered system style can be considered to be a RESTful API. REST is one of the more 

commonly used protocols for public APIs because these are human readable and easily 

accessible. However, there are other protocols for communication between services within a 

cloud architecture that also provide stateless means of communication.  
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One such protocol is a remote procedure call. A remote procedure call (RPC) is an HTTP 

protocol in which code executing on one server calls code that is actually executed on another 

server or process space. The code, however, is written as if it were calling the method or 

procedure on the calling server. 

As illustrated in Figure 2.1., the general flow for an application communicating with a 

service using a remote procedure call as an API protocol is as follows: 

1. Application acquires a Client for the method call to invoke. 

2. Application sends input for a request to the Client. 

3. Client calls the ‘stub.’ 

4. Server, implementing the ‘stub’ receives the request. 

Figure 2.1:General sequence diagram of remote procedure a call for an application. 



 

 

24 

5. Server performs the method based on the request. 

6. Server creates the response and sends it back to the Client. 

7. Client receives the response and sends it to the Application. 

8. Application continues execution. 

Another protocol for communication between services is message queuing. A message 

queue “is a form of asynchronous service-to-service communication used in serverless and 

microservices architectures. Messages are stored on the queue until they are processed and 

deleted. Each message is processed only once, by a single consumer. Message queues can be 

used to decouple heavyweight processing, to buffer or batch work, and to smooth spiky 

workloads” (AWS, 2019). In this pattern, there are generally three parts: 

• Queue—Collection of a messages of a topic. 

• Producer—Places messages on the Queue for a given topic. 

• Consumer—Processes messages off the Queue for a given topic. 

There are various implementations of message queues with subtle differences in how messages 

are stored in the queue and how they are consumed from the queue. 

2.6 System Models as Microservices and the Problem of System Integration 

In the design environment developed by Suram et al. (2018), system models are 

implemented as microservices and the system execution environment is designed upon a 

microservice architecture pattern. Many enterprise computing applications use a microservice 

architecture. In this architecture a single application is developed by orchestrating the 

communication of separate services, each of which represent an independently running business 

functionality. The execution of the services is predicated via their published application 

programming interfaces or APIs. 
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A common scenario for the development and delivery of business functionality as 

software in a microservice architecture can be described as follows: a business development 

manager decides that enough of the market is requesting a certain new feature or functionality. 

They work with product managers across different functional areas (database, frontend server 

side, etc.) to develop the functional specifications required to meet the needs of the demand. The 

product managers then work with the technical leads of the various teams to add specifications to 

the requirements and break down the specifications into technical deliverables. Once there is an 

agreement between all parties, the development of the feature is scheduled, and the development 

team begins work. Each team then works on a small but functional subset of the feature and 

creates a deliverable in the form of a microservice. Then there are teams responsible for writing 

the code to wire these subcomponents together to execute the business layer using the 

independently developed microservices. If the requirements change, more code needs to be 

modified or even new code has to be written to satisfy the requirements.  

In this iterative development process, the cost implied by manual system integration is 

accepted as part of the process of the development of applications. For a domain such as science 

and engineering, changing the connections and links between subsystems and adopting a 

platform that incorporates models as microservices, which brings an additional “cost” for 

manually integrating the system, is a significant barrier.  

In science and engineering, the system designer’s time is best spent in modeling, 

experimentation, and analysis. Ideally, to most effectively leverage the benefits of a modeling 

environment, where the subsystems are implemented as microservices, the aspect of modifying 

the system to handle configuration changes related to model linking and system design should be 

abstracted in a way that maintains the seamless exploratory nature of science and engineering 
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solutions. In other words, large temporal context switches are not conducive for keeping the 

system designer engaged in their activity or in supporting science exploration. 

A given protocol for an API of a model is sufficient information for executing the 

functionality of the implementing service. In a typical scenario involving web services, a request 

conforming to the API of the service is invoked. The service typically has a validation layer for 

verifying the parameters of the request.  Upon successful validation the request parameters are 

routed on to the implementation layer for execution of the model. A response with a code 

indicating success or failure of any kind (including validation) is returned.  The response usually 

contains information of varying usefulness (as implemented by the developer) as to the results or 

its access or the reasoning for any error. These runtime validations and conditions are signals that 

there is some internally defined binding that is not easily expressible by the model’s API. Of 

course, the variables and responses are stated clearly in the API, and in some cases this is 

sufficient.  

Consider a single model that takes two inputs as an example. The explicit definition of 

the API, as shown in Figure 2.1, states how to call it, and it can be implied that the query 

parameter named “addends” allows a specification of some number of parameters that the model 

will attempt to add and return as the result. 

What is not clear from the API is the information pertaining to the inputs themselves. For 

instance, in some languages two strings can be summed, or for an even more abstract example, a 

number can be interpreted as a character and a set of characters can be summed, as in 

GET /addition?addends=1,2,3,4 

Figure 2.2:REST API defining the protocol for a service that calculates the sum of input 

numbers. 
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concatenated into a single set of characters. If the model has a RESTful API, the URL for the 

resource is typically a “string” and it's up to the model implementation to interpret the 

parameters and validate them before executing.  

Consider a technology company creating a new distributed application using a 

microservice architecture pattern. The integration of the various microservices in the traditional 

sense with only the information provided by the API of the microservice is typically performed 

during a standard development cycle. The iterative process of learning the APIs and integrating 

them to perform the required business functionality has relatively low impact on the end user of 

the application. In fact, until the microservices are fully integrated into the application, the effect 

of calling the APIs incorrectly only impacts the development of the application. This is a normal 

part of the development cycle, and its impact is limited to the development team. Once the 

integration of the APIs is complete for the business layer, it will have been tested sufficiently 

before being deployed. Also, as part of the development cycle, the final feature in the product 

will contain user interface level validation. That validation will be delivered as a way of keeping 

the user within bounds of the operating range of the static set of services that have been 

integrated to create the delivered feature. Once the feature is deployed, this microservice level 

code will have a very low probability of getting invoked with incorrect data.  

In contrast, the integration of microservices representing subsystem models in an 

engineering design environment, needs to be dynamic to accommodate the exploratory nature of 

science and engineering design; redefining the system by changing the order of execution of the 

subsystems involved or interchanging subsystem models to evaluate trade-offs between 

execution speed and accuracy, for example, is a typical design scenario for a single workflow. 

Remapping of the overall system is essentially redefining the system integration of the design 
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environment. The execution of the model being designed is not protected due to the nature of this 

dynamic system integration. Without the protections in place that are outlined above, the cost of 

trial and error of iterative design is exorbitant. A system designer modeling and executing a 

complex scientific workflow cannot afford to wait 30 minutes to eventually have a failure due to 

one of the models resulting in an input of the wrong type. Similarly, if the output of a model 

resulted in an input that was “out of range,” it could also be costly. For scientific and engineering 

design to fully take advantage of the benefits of cloud technology and a microservices 

architecture as described by  Suram and Bryden (2018), the issue of “dynamic system 

integration” needs to be addressed, particularly in a way that has a minimal negative impact on 

the users of the environment in terms of complexity of comprehension. Ideally, there is a 

representation of the subsystems and their API protocols that enable the system integration can 

be performed autonomously by the design environment. 

2.7 Semantic Interoperability 

The ubiquity of data combined with continually increasing availability of internet access 

and the relatively low cost of sensors used in instrumentation of systems has led to an evolution 

often termed Industry 4.0. This has also led to an emergence in the research of cyber-physical 

systems that refer to the integration of real-world physical objects with virtual computational 

representations. The physical system is instrumented to analyze and collect data about its 

operational conditions and state in real time. This information is also sent to the virtual 

components for a more complex analysis where any results requiring attention can be used to 

predict and even change operational conditions of the real-world system (Alam and Saddik, 

2017).  This wealth of available data can also be tied to the resurgence of popularity of artificial 

intelligence and machine learning technologies. For example, these technologies underpin the 

concept of the digital twin where the entirety of the data-driven virtual replica of the physical 
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system which, powered by AI, is theoretically able to respond and react in the same manner as 

the real-world system (Koulamas and Kalogeras, 2018). As the technologies supporting cyber 

physical systems become more mature, the issue will be less about deriving the algorithms and 

computational models to accurately represent the physical systems of the world but rather how 

can the information of these digital twins be integrated such that the impact of interactions 

between the systems provides an even more realistic representation of the real-world physical 

systems.  

Looking forward to a world with 50 billion edge computing devices, each providing data 

that will be linked together to build value, it becomes clear that automated integration of 

information is a critical area of research and development. An essential part of this is ensuring 

that these interacting information sources are able to attribute the same meaning to data which is 

exchanged, that is, there is semantic interoperability between the various information sources 

(Murdock, Bauer, Bassbouss, and Loginov 2016). Murdock, Bauer, Bassbouss, and Loginov 

(2016) in their white paper “Semantic Interoperability for the Web of Things” identify two types 

of semantic interoperability. 

Semantic interoperability is achieved when interacting systems attribute the same 

meaning to an exchanged piece of data, ensuring consistency of the data across systems 

regardless of individual data format. This consistency of meaning can be derived from pre-

existing standards or agreements on the format and meaning of data or it can be derived in a 

dynamic way using shared vocabularies either in a schema form and/or in an ontology-driven 

approach. In this paper we will use the term "data-model based semantic interoperability" to refer 

to the former, and "ontology based semantic interoperability" to refer to the latter.  
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Currently, the common approach to the information (and model) integration problem in 

framework packages and other applications is to implement an a priori fixed global ontology in 

which consistency of meaning between packages is maintained by a set of standards/agreements, 

e.g., knowledge of data formats, communication protocols, access rules, or APIs,—that is, data-

model based semantic interoperability. While effective, this data-base semantic interoperability 

requires that new applications and models know, understand, and comply with the existing rule 

sets, limiting the extensibility of the system and the ability to add new or disparate models.  

Through dynamic derivation of meaning an ontology based semantic interoperability 

approach overcomes the challenges of a fixed global ontology but poses its own challenges. 

Specifically, dynamic derivation requires the development of a shared vocabulary and meaning. 

A number of researchers have proposed that metadata can provide the link needed to derive 

meaning, however, the implementation of metadata to achieve derived meaning is a complex and 

multilayered process (Murdock et al., 2016). 

2.8 Conclusion 

This research is focused on the challenge of developing self-identifying models that are 

able to be integrated into an engineering modeling workflow with a minimum of interaction. 

Consistent with that, a lightweight method is needed for models to dynamically identify how 

they can be integrated into a system and to provide the needed data to update the existing 

ontology. As envisioned here, these models exist within a closed environment in which the 

federation management system accepts membership and updates the system ontology based on 

information provided by the model in the form of metadata. Chapter 3 extends the concept of an 

API to provide the needed information in a form, provisionally referred here as an ACI 

(Application Coupling Interface,) that can be automatically read by the federation management 

system. In Chapter 4 the federation management system is then updated to ensure semantic 
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coherence is maintained (i.e., the model inputs and outputs are consistent with each other) and to 

manage the information flow.  
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CHAPTER 3.    A SPECIFICATION FOR AUTONOMOUS SYSTEM INTEGRATION  

3.1 Overview 

As outlined in the previous chapter, an API is not sufficient for addressing the concerns 

related to the “dynamic system integration” that comes with the exploratory nature of system 

modeling/design. The intent of an API is an expression of usage, a protocol targeted at the 

programmatic invocation of the functionality exposed through the API. Although the availability 

of APIs somewhat lessens the burden of programmatic integration of systems, an environment 

providing autonomous integration of systems requires context about the information exchanged 

between systems that are not available in an API alone.  

This chapter proposes a solution targeted at providing autonomous system integration of 

externally contributed subsystems models to a system model/design. Derivation of the solution is 

arrived at by considering the challenge of abstracting the orchestration of information exchange 

between independently developed web-enabled systems such that neither a system model 

developer contributing a subsystem model to the design environment nor a system designer 

composing a system from externally contributed subsystem models is impacted by changes in the 

design of the system.     

3.2 The Challenge of Communication Between Dynamically Coupled Systems  

There are many examples of technology companies developing distributed applications 

successfully by adopting a microservices architecture pattern. However, the process of iterating 

through various attempts of coupling the microservices via their API, i.e., integrating the system, 

is internal to the development process. The delivered product is a statically coupled system in 

which the user interface constrains the input to the system.  
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In contrast, in a system modeling/design environment, the delivered product is a 

dynamically coupled system, defined as appropriated by the system modeler/designer, and the 

success of execution is left up to the system modeler/designer to apply the proper constraints. 

While this may be achievable by someone with intimate knowledge of all the operating 

constraints of models relevant to their domain that are available in the system, it is not likely that 

this is the case in a decentralized modeling/design environment. 

From a high level, the knowledge required of a user of a system modeling/design 

environment with the intent of composing and executing a system in an environment whose 

models are an ecosystem of subsystems implemented as microservices is as follows: 

1. What is the availability of models within the environment applicable to the modeled 

system? 

2. What are the capabilities of available models within the environment? 

3. What are the requirements and constraints of the available models within the 

environment? 

While the system designer can refer to a catalog containing all the available models in the 

environment, ascertaining the capabilities and requirements of those models to determine which 

are relevant to the actively designed system can be laborious, particularly if the system designer 

is unfamiliar with all the models available. This information is particular to each modeled 

subsystem and most likely resides with the developer who contributed the model. 

From the subsystem model developer’s perspective, the information they can provide to 

the system designer is vital. However, the context of the usage of the model is unknown, so the 

best tool available to communicate the intended usage of the model is currently through the API. 

The traditional context where an API is most useful is from the perspective of another developer 
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performing system integration of various APIs. If the developer wants to contribute their 

subsystem model to a modeling/design environment, allowing it to be dynamically integrated 

with other compatible subsystem models, the developer needs a way to provide the relevant 

integration information in a form consumable by the environment such that the environment can 

perform the integration without requiring manual (code) changes to the environment. 

Again, from a high level, the knowledge required of a model developer with the intent to 

contribute models as microservices to an ecosystem of subsystems to be integrated and executed 

as part of the modeled system in a decentralized modeling and design environment is as follows: 

1. What is the required information needed to integrate a model within the design 

environment? 

2. What is the process of specifying the information necessary to integrate a model within 

the design environment? 

3. For a given system integration specification, what is the process to register that 

information within the design environment? 

In traditional engineering design systems, system integration is not as big of a concern 

because the system designer and the model developer are one and the same or on a small team 

and can communicate directly with each other. However, in a “decentralized modeling 

environment” (Suram et al., 2018), interchanging models that are not well understood and 

contributed from anyone with access and knowledge of the modeling/design environment comes 

at the cost of system integration, which can be prohibitive. 
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What is desired is a way for the model developer to create models as they see suitable. If 

the developer then wishes to provide access to their model functionality within a “federation” 

(Suram et al.,  2018), the developer is provided access to tools that allow them to define the 

model API protocol, the constraints of the inputs to the model, and other information that helps 

uniquely define the model within the federation. Upon submission of this information it would 

be organized according to an ontology, whose semantics describe the properties about a model, 

how to invoke and consume information from a model, and various information about the 

model’s behavior, i.e., a system integration specification. 

Figure 3.1: Two perspectives of an integration specification. Left, a model developer declares 

operational concerns of a model, such as execution protocol and parameter constraints of the 

model. Right, validation and recommendations are yielded to the system modeler/designer 

during the process of coupling system models. 
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Given an environment that provides access to a collection of system integration 

specifications, a user working within the environment can access system integration 

specifications as the domain proxy objects to the modeled subsystems. If the environment is able 

to leverage the system integration specifications to communicate with the APIs of the modeled 

subsystems for system execution as well as validate data exchange between subsystems, the user 

of the environment is suddenly enabled to iteratively build systems without requiring changes to 

the configuration or implementation of the environment. The user could assemble larger, more 

complex systems simply by using these proxies while the environment leverages the underlying 

system integration specifications as the proxy to the model and its API to validate and 

orchestrate execution of a designed system. 

3.3 Application Coupling Interface: A System Integration Specification 

The goal is to define a simple specification that can be easily expressed by a developer 

with the intent to contribute models as microservices to the design environment while providing 

enough information to a system so that it can validate and execute a system composed of these 

models as microservices. Noting the complexity of engineering system modeling, the ACI of this 

research is not exhaustive. However, it is sufficient for proving the concept and is flexible 

enough to modify it as necessary. 

The Application Coupling Interface (ACI) is a lightweight schema definition written in 

JSON that defines the necessary means for integration of microservices with a well-defined API 

suitable for scientific and engineering design and simulation. The ACI consists of four distinct 

parts:  

• Metadata—This information about the model that uniquely defines it within the federation. 

Some of this is explicit, like a globally unique identifier, while other parts can be 

unstructured, descriptions or tags for examples. 
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• Protocol—This is descriptive information about the protocol for invoking the API of the 

model. While this is unique to each protocol, the details have been abstracted in a way that 

the system can validate the ACI upon submission to verify if the defined protocol is 

supported. 

• Parameters—These are the inputs and outputs as defined by the API that provide context 

such as units and measurement type. These can be of scalar form or vector (array) types with 

the only restriction that the array be of a single quantity type. These are used for linking 

validation during system integration. 

• Constraints—These are tied to parameters and provide validation during linking and also 

during execution before passing quantities along to the next model as input. 
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{ 

      “uid” : “b725a17b-046a-4ba8-8df9-0a78fd8e3d89”, 

      “name” : “Addition”, 

      “protocol” : { 
        “protocolKeys” : [ “io-fms-sqs-rout{ 

      “uid” : “b725a17b-046a-4ba8-8df9-0a78fd8e3d89”, 

      “name” : “Addition”, 

      “protocol” : { 

        “protocolKeys” : [ “io-fms-sqs-routing-queue-name-key” ] 
      }, 

      “protocolDetails” : { 

        “io-fms-sqs-routing-queue-name-key” : “addition” 

      }, 

      “messageType” : “addition”, 
      “variables” : [ { 

        “uid” : “ba56ffc2-acc7-46df-add3-d629fffb0d06”, 

        “name” : “addends”, 

        “unit” : “N/A”, 

        “typeName” : “array”, 
        “quantity” : “N/A” 

      } ], 

      “results” : [ { 

        “uid” : “76851b90-4d3b-4720-9a77-edf7d54bc85d”, 

        “name” : “total”, 
        “unit” : “N/A”, 

        “typeName” : “float”, 

        “quantity” : “N/A” 

      } ], 

      “constraints” : [ ], 
      “version” : “1”, 

      “description” : “Adds inputs as numbers”, 

      “status” : “SUBMITTED”, 

      “tags” : [ “sample”, “math”, “addition” ] 
}ing-queue-name-key” ] 

      }, 

      “protocolDetails” : { 

        “io-fms-sqs-routing-queue-name-key” : “addition” 

      }, 
      “messageType” : “addition”, 

      “variables” : [ { 

        “uid” : “ba56ffc2-acc7-46df-add3-d629fffb0d06”, 

        “name” : “addends”, 

        “unit” : “N/A”, 
        “typeName” : “array”, 

        “quantity” : “N/A” 

      } ], 

      “results” : [ { 

        “uid” : “76851b90-4d3b-4720-9a77-edf7d54bc85d”, 
        “name” : “total”, 

        “unit” : “N/A”, 

        “typeName” : “float”, 

        “quantity” : “N/A” 

      } ], 
      “constraints” : [ ], 

      “version” : “1”, 

      “description” : “Adds inputs as numbers”, 

      “status” : “SUBMITTED”, 

      “tags” : [ “sample”, “math”, “addition” ] 

} 

Figure 2.1: A sample ACI for an “Addition” model that uses Amazon Web Services 

Simple Queue Service for its protocol 

Figure 3.2: A sample ACI for an “Addition” model that uses Amazon Web Services 

Simple Queue Service for its protocol 
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3.4 JSON Schema 

As detailed earlier, the structure of the ACI is simple enough to be described in any web 

standard format for this work JSON Schema Draft 4 was chosen. The parts of the specification 

and how they are represented in JSON are detailed in the following sections. 

3.4.1 Metadata 

Each ACI registered within the environment has a section of required information that 

generally describes the model and its capabilities. It is required to have a universally unique 

identifier (UUID) and a name. The name can be anything the developer likes but it should 

typically be something that would be displayed to someone looking at a collection of 

specifications, so it is recommended to be human readable. The UUID on the other hand is 

something that the design environment can use to distinguish the specification from others, so it 

should be generated once upon the creation/registration of the specification. It is intended that 

this identifier will span the lifetime of a particular ACI even if other content within the 

specification changes. 

Schema representation: 

• uid—This property is the string representation of the UUID of the ACI. As of JSON 

schema version draft 4, UUIDs aren’t supported as a primitive type, so this is a string. 

Validation of the format should be done upon registration. 

• name—A human readable string for the name of the model represented by this 

specification. 

• description—A human readable string for a description of the model and its capabilities. 

• tags—An array of literal characters that can be used as an aid when applying search 

algorithms against a set of ACIs. These are optional. 
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• version—A literal character that is intended to help manage when changes occur in the 

definition of a particular ACI. These are typically numbers that increment with each 

published set of changes to the specification and are not necessarily related to changes in 

the API. 

• status—This is an indicator of the state of the ACI with respect to the design 

environment. Table 3.1 lists the status states that are currently defined as of the time of 

this research. 

Table 3.1: Submission status values for an ACI 

Status Description 

SUBMITTED The developer has submitted the specification 

for approval and registration within the design 

environment. 

ACCEPTED The ACI submission has been approved and 

validated for integration within the design 

environment. It registered and available for 

use within the environment. 

REJECTED The ACI submission has been rejected and is 

not registered and is not available for use 

within the environment. 

 

3.4.2 Protocol 

Recalling the various web standards available for calling a model such as REST or RPC, 

defining a generic specification could be tricky. However, in this research, a loose definition of 

the protocols was defined and is currently supported by the modeling/design environment. These 

registered protocols can be leveraged by an ACI editor and registration tools to restrict or 

validate the ACIs.  

With this in mind, the protocol can be defined in two parts, the protocol description itself 

and the expected parameters or details required for specifying the protocol. For example, a 
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protocol definition for a model that is accessed using REST requires a URI for the resource 

endpoint and possibly an http request method. However, when thinking about a model that is 

based on messaging queues such as RabbitMQ (RabbitMQ, 2019) or Amazon’s Simple Queue 

Service (SQS) (Amazon, 2019), the protocol is quite different. It can be boiled down to simply 

needing the name of the queue to send messages to. To address this, the protocol is represented 

as a set of “keys” and a corresponding set of “key-value pairs” that together define a protocol. 

For anyone (or machine) processing the specification, the protocol can be easily understood, and 

the code can be developed to handle an individual protocol type by simply accessing the keys 

and then using the keys to process the registered values as defined.  

As an example, a protocol and the protocol details for a REST model could be 

represented in the following manner: 

 

 

 

 

 

In Figure 3.3, the values corresponding to the keys of the protocol are defined for access 

to the model API, the actual method in the resource for invoking the model, and the HTTP 

method. Some resources have the same method for creating/reading/updating/deleting of a 

resource with only a variation in the http method. The details then specify the values for the 

corresponding keys, which can be used to reconstruct the method to call for execution of the 

{ 

  “protocol”: { 

    “protocolKeys”: [ 

      “io-fms-rest-method-key”, 

      “io-fms-rest-path-key”, 
      “io-fms-rest-resource-path-key” 

    ] 

  }, 

  “protocolDetails”: { 

    “io-fms-rest-method-key”: “POST”, 
    “io-fms-rest-path-key”: “/world-peace”, 

    “io-fms-rest-resource-path-key”:”http://problem.solver.org” 

  } 

} 

Figure 3.3: Protocol and Protocol Details declaration for a REST protocol. 
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model. How parameters are sent to the model (path, query, or payload) could also be specified 

here but that is not described in the above ACI. 

For a model using SQS as its API, the protocol and protocol details could be represented 

as follows: 

In Figure 3.4, the protocol details declare the name of the message queue that the model 

is configured to respond to as well as the name of the dead letter queue where the model will 

send any errors that are registered. This is just an example of how a model could be registered. 

Another registration process could be that this information is created for the model developer and 

the infrastructure is setup for the developer. After vetting, the developer of the model is given 

proper access credentials to set up their model to access the queue created during registration. 

SQS access requires proper authentication (as should most web services) for access. This 

could be incorporated as part of the registration of the ACI and the appropriate steps can be taken 

to provide access to the model from the modeling/design environment using tools such as cloud 

formation to create the appropriate Virtual Private Clouds (VPCs) (AWS, 2019) and Identity 

Access Management (IAM)  (AWS, 2019) roles. The implementation details for establishing 

these within a cloud hosting environment is out of the scope of this research, but more details of 

what could be investigated in this area as it pertains to the cloud hosted modeling/design 

environment are left for future work. 

{ 

   “protocol” : { 

        “protocolKeys” : [ “io-fms-sqs-routing-queue-name-key”,  

        “io-fms-sqs-dead-letter-queue-name-key” ] 
      }, 

   “protocolDetails” : { 

        “io-fms-sqs-routing-queue-name-key” : “addition”, 

        “io-fms-sqs-deadletter-queue-name-key” : “addition-dlq” 

  } 
} 

Figure 3.4:  Protocol and Protocol Details declaration for a model using Amazon 

Simple Queue Service as its API 
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Schema representation: 

• Protocol—A grouping defining the protocol to execute the model. It contains the keys and 

the associated key/value pairs needed to reconstitute the execution of the registered model for 

a given protocol 

o protocolKeys—The set of keys unique to the protocol 

o protocolDetails—The values specific to a given ACI for the associated keys in the 

protocol 

3.4.3 Parameters 

The input to a model as well as its output can be represented as a combination of scalar 

values and as a vector of scalar values. These scalars, as pertaining to engineering and science, 

often have units of measure. To define these inputs and outputs, define each as a vector of 

parameters and group the inputs and outputs into separate vectors.  

Schema representation: 

• Parameter - An input to or an output of an API of a subsystem modeled used in a 

microservice architecture: 

o name—Human readable name 

o uid—Universally unique identifier (UUID) 

o value—Scalar or array of scalars 

o unit—Unit of measure that is consistent for the value 

o typeName—Representation of a “scalar” or an “array of scalars” 

o quantity—Quantity of the unit of measure (length, time, or velocity for example) 
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3.4.4 Constraints 

With the Parameters defined as above, it is apparent that actual values are not part of the 

specification. This choice provides flexibility in the design of a system that provides validation 

of the values. Although a system can validate the matching of inputs to outputs while the user is 

designing the system by verifying that an output parameter definition is compatible with the 

input parameter definition for a set of given ACIs, validation of values of the quantities 

(magnitudes) produced from an execution of the model complying with the model constraints 

requires knowledge of ranges or operating conditions of the model.  

Therefore, a Constraint is defined that applies to a particular Parameter and can be used 

to validate further that the output of an upstream model satisfies the conditions necessary to be 

used as input of a downstream model. This validation can also be leveraged by a user interface to 

restrict any user input values from being entered that may potentially cause an error in the 

operation of the subsystem model.  

A Constraint can be expressed simply as a literal character arithmetic expression that can 

be interpreted by an expression parsing algorithm. There are various commercial and open 

source expression parsing frameworks available and the choice is not as important as providing 

mechanisms to express constraints and have the evaluation of constraints available within the 

environment. In fact, supported expression parsers and languages can be published by the 

development team of the modeling/design environment, and specifications can be validated 

against this during registration in similar validation tasks as the supported protocols.  

Each constraint is defined by a literal character expression and mappings to bind 

Parameter values to variables in the expression. The expression is resolved and evaluated by an 

expression parsing algorithm by a provided framework.  
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Schema representation: 

• Constraint—Conditions applicable to Parameter values supplied as input to a subsystem:  

o uid—Universally Unique Identifier 

o expression—Expression defining the constraint 

o expressionVariable—String representation of the variable in the expression to map to 

the value of the quantity that will have the constraint applied 

o parameterId—Universally Unique Identifier of the applicable Parameter  

3.5 Summary 

The ACI presented in this chapter provides a sufficient basis for abstracting system 

integration information of scientific and engineering design models developed using a 

microservices architecture pattern. By representing integration information as a proxy object to 

the underlying API of the model, a design environment built to leverage microservices can 

access the APIs of the microservices that implement the subsystems. 

With the ACI established, the next chapter presents the challenges of orchestrating the 

execution of the subsystems of an intricate system model/design, which will be outlined, and a 

novel solution for autonomous system integration using ACIs. 
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CHAPTER 4.    ENTERPRISE INTEGRATION PATTERNS IN SYSTEM MODELING 

4.1 Overview 

Chapter 3 introduced the ACI as a means of autonomously integrating subsystem models 

developed using a microservice architecture pattern into an engineering modeling/design 

environment. Chapter 3 also introduced tools to author, publish, and query information about 

modeled subsystems using their ACIs. In this chapter, rather than developing a new engineering 

modeling/design environment, two specific areas of the architecture presented by Suram (Suram 

et al., 2018) will be significantly enhanced such that the information provided by ACIs is used to 

enable autonomous complex workflow execution orchestration. In doing so, ACIs advance the 

capability of the environment to handle significantly more realistic system designs without 

adding additional complexity to the interactions or new requirements of the user. 

4.2 The Current Landscape  

The architecture outlined in Suram and Bryden (Suram, 2018) describes a system in 

which a user submits a prescribed execution schedule for the set of models representing 

subsystems within the overall system. The core of the system is the FMS, which handles the 

actual orchestration of execution, i.e., exchanging data on time for the execution of the 

appropriate subsystem. These subsystems are developed using a microservice architecture whose 

API is that of a messaging queue protocol. The FMS communicates with modeled subsystems by 

sending a message to the models prescribed topic on the queueing system. Upon receipt of a 

message, the model interprets the data it requires for input and executes. Upon completion, the 

modeled subsystem returns a message to the FMS on a prescribed queue. For this specific queue, 

the FMS knows the previous model completed, and the information is ready to pass along to the 

next model. This process repeats for each subsystem model until failure or completion of all 
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modeled subsystems in the prescribed workflow have executed. The FMS then returns the final 

message to the user who initially submitted the request. 

 

There are two aspects of the scenario described above that can be problematic for a user 

attempting to leverage this design environment. Firstly, the workflow submitted to the FMS is 

required to be complete and correct in all aspects. Although its structure is simple, as shown in 

Figure 4.1, the derivation of the contents is not as intuitive. The main challenge is determining 

the correct order of execution of the models. In the current architecture, the user is required to 

know the correct order of execution, which is adequate for simple linear workflows where all 

data is accessed from each subsystem sequentially; however, to model more complex designs, it 

becomes quite cumbersome for a user to determine the proper order of execution of the 

subsystems. It is also very tedious (error-prone) for a user to determine the compatibility of 

available models for inclusion in an existing system model design. 

Creating an appropriate user interface can partially address these issues but recalling that 

the current system is using a message queue as an API, the system itself cannot perform 

validation of data exchange between subsystems. The only validation that can be preemptively 

performed (before executing the workflow) is to verify that the message queue corresponding to 

the subsystems within the execution list is accessible. Beyond this, any other validation occurs 

{  

   “solverlist”:[“addition”, “multiplication”], 

   “workflowID”:” 80fc2d83-7fd7-45b4-a787-77012b587cc6”, 

    “input”:8, 

    “input2”: 2,  

    “input3”: 3, 

    “output”: 30 

} 

Figure 4.1: Example workflow message as described by Suram et al. (2018). 
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during the execution of the workflow, where it could be potentially devastating in terms of time 

lost, as described earlier. 

In a queue system, the assumption is that the subscriber (consumer) explicitly knows the 

information they are interested in, and that is all they care about. In the FMS architecture, the 

FMS is only responsible for sending messages to the queues of the subsystems (based on its 

registry of models) as prescribed in the workflow, and it is blissfully unaware of what 

information it is sending along to the next queue in the workflow. So, if the order in the user-

submitted workflow is incorrect, the FMS will send a message to the model with insufficient 

information to successfully execute. Similarly, as a response is received from the successful 

execution of a model, the FMS does not have enough information in place to determine if the 

received message has all the required input for the next prescribed subsystem in the workflow. 

The same is true in the case where execution times are various for models that are required to be 

completed before executing a model downstream in the workflow; a message queuing system 

alone isn’t sufficient to manage the timing required to wait until all necessary information is 

ready before proceeding, i.e., sending the message along to the next queue. 

4.3 Quick Wins 

The previous section described some issues that prevent the engineering modeling/design 

environment developed by Suram (Suram et al., 2018) from being easily leveraged for the 

modeling of a complex engineering system. As a quick solution, the development of a simple 

user interface that leverages information from the ACI to build the systems conforming to the 

specification of existing linear workflows may suffice. There is already support for integrating 

subsystems with a message queue API as their protocol. By creating user interactions that check 

input parameter type definitions against output parameter definitions when a user attempts to 

make a connection in a linear workflow, visual feedback could be provided to accept or reject the 
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connection. By establishing a valid connection between subsystems, the list of queue names 

required for the solver list can be looked up using the protocol keys corresponding to the queue 

name of the protocol. The user could specify input parameters in the workflow message as 

before, and this would be sufficient for allowing the user to submit a “grammatically correct” 

workflow representing a designed system to the FMS. Although this is an improvement towards 

the productization of the design environment introduced by Suram (Suram et al., 2018), this does 

not address the issues of complex systems design or iterative exploration of modeled systems. 

However, with some modifications to the messaging system of the engineering design 

environment of Suram (Suram et al., 2018), the ACI provides enough additional information to 

the system to automate the orchestration of asynchronous subsystem execution, as required for 

more realistic complex systems.  

4.4 Comprehending Realistic System Models 

Simulating real-world systems requires a significant amount of data orchestration 

between the subsystems. Allowing the user to express their design intent to the environment in a 

way that provides the system enough information to execute the system accurately and as 

efficiently as possible is a challenge. Although some systems present the user with all the 

available options and settings, these are most relevant for addressing the system scheduling and 

execution, i.e., system integration concerns, as opposed to the modeling and design aspects that 

are of user concern. Simplifying the expression of the system design while allowing the 

underlying environment to extract the orchestration complexity should be an area of focus for 

any newly developed engineering design environment. The following sections describe a unique 

representation of the execution of the workflow derived from information available in the ACI. 
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4.4.1 Directed graphs and model execution, workflow representation 

Accurate execution of subsystem models where the order determined by resolving the 

dependent parameter inputs with available outputs can be visualized as a directed graph 

consisting of relations between subsystem models within the system. 

Bang-Jensen and Gutin (2008) describe a directed graph by the following: 

“In formal terms, a Directed Graph is 

• V is a set whose elements are called vertices, nodes, or points; 

• A is a set of ordered pairs of vertices, called arrows, directed edges (sometimes simply 

edges with the corresponding set named E instead of A), directed arcs, or directed lines.” 

For the workflow execution within the engineering modeling/design system, simply 

creating nodes for the models and edges as connections between the models is not sufficient for 

the case of a decentralized design environment. If it were, it would mean that every model 

connection would need to supply all the required inputs to execute a subsystem from a single 

subsystem output, essentially coupling the subsystems to each other. A linear workflow 

execution definition restricts the subsystem model developer to adhere to a standard that may not 

comply with their intended usage, therefore lessening the desire to contribute their subsystem 

models to the design environment. Ideally, the goal is that the developer of a model publishes 

their intended usage of the model, and the system can validate whether or not the model is 

suitable for use within the modeled system.  

A directed graph, where nodes represent an instance of an ACI in a workflow, and the 

edges represent the bindings of an input parameter to an output parameter of a subsystem, allows 

subsystems to be developed as loosely coupled as possible and allows flexibility in the 

granularity of the assembly of a system.  
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This graph could then be traversed breath first, and then for each level of the graph, a 

reference for each subsystem whose parameter is a node at that level could be stored, resulting in 

a relational table of a level to subsystems. 

Table 4.1: Level to subsystem relational table for a system derived using parameter information 

of the ACIs of the subsystems. 

Level Sub Systems 

0 float_rnd_nmbr_gen,integer_rnd_nmbr_gen 

1 addition 

2 round_up,round_down 

 

Leveraging the directed graph removes the onus from the user for prescribing the 

execution order, which is not easily derived by a user. It also allows the user to define realistic 

system models, and the environment would be capable of resolving the arbitrarily complex 

Figure 4.2: A system composed of ACIs grouped by execution levels as determined 

by traversing a directed graph of the connected parameters. 
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workflow execution order using the directed graph. The graph is then used to generate the table, 

which is submitted as the “workflow execution order for the system.” Execution of the 

workflow, however, requires that the environment is capable of efficiently executing the models 

prescribed in the relational table that is the new representation of the workflow. The following 

section describes how this challenge was solved, leveraging software architecture techniques 

widely used in the industry and the information available in the ACI. 

4.4.2 Orchestrating execution of directed graph workflow  

The ability to handle more complex workflows is not as straightforward as a solution as 

adding a user interface for a couple of reasons. As an example, imagine a scenario where the user 

would like to model a system in which two sensors send data for aggregation into tuples. 

Downstream models consume each tuple for further analysis, returning the result to the user. 

While this fictitious scenario is trivial in describing a system to be modeled, the system is 

sufficient for illustrating the same challenges that are present when modeling more realistic 

systems. For instance, the models representing the sensors are not guaranteed to send 

information at the same time, but it is a requirement of the system that the “Tuple Maker” model 

send corresponding tuples, i.e., data from sensor 1 and sensor 2 that occurred at the same time, 

Figure 4.3: A “simple” complex system model design representing the aggregation of 

time varying data from sensors. 
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downstream to multiple models in the system. This challenge is also an issue for the sensors in 

the real world, and a developer would need to accommodate for this, perhaps correlating the data 

using logic based on time information available in the data read from the sensor. 

There are other reasons for correlating data from different models within a workflow; 

however, in the case of modeling realistic systems, correlation of data produced and consumed 

by the related subsystems is essential to ensuring the correctness of the results, particularly if the 

design environment is running on a cloud architecture. In this case, multiple users have access 

and the ability to submit workflows for execution. The correlation of subsystem workflow 

executions should be accessible to the overall environment in a way that allows the system to 

execute multiple user workflows simultaneously and send data from upstream execution to 

downstream models while keeping the data and any results of transformations of that data, 

distinct within the context of a given workflow. 

In the next phase of execution workflow for our “fictitious” system, the tuple output from 

the “Tuple Maker” model is required as input to both the Average model and the Delta model. 

These two models are entirely independent and can execute simultaneously rather than in a 

sequential manner, which would help decrease the overall time of execution of the designed 

system. The asynchronous execution of subsystem models requires the modeling/design 

environment to comprehend the sending of a single message to multiple models while again 

correlating the original data within the context of the workflow. 

The problems outlined here can be generally stated as “how can information and data be 

successfully ushered through a system where multiple transformations of the data and processing 

can simultaneously occur while maintaining its original context.” This problem is one among 

many other related issues common to “Enterprise Applications,” which, as described by Fowler 
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(2002), “are about the display, manipulation, and storage of large amounts of often complex 

data and the support or automation of business processes with that data.” 

Traditional engineering modeling/design applications are not thought of as “Enterprise 

Applications”; however, the concept of “routing information” is particularly of interest. Any 

industry-proven solutions suitable for handling issues of routing information between decoupled 

applications should be given consideration when developing a new distributed application, 

including those for engineering design and modeling. By leveraging the information from the 

ACI, they can be incorporated into the engineering design environment to overcome the 

challenges of routing information throughout the system while maintaining the originating 

context. In the next section, “Enterprise Integration Patterns” (Hophe & Woolf, 2004) are 

introduced. 

4.5 FMS 2.0: Introduction of Enterprise Integration Patterns  

The heart of the engineering modeling/design environment developed by Suram (Suram 

et al., 2018) is the FMS which orchestrates data exchange between and execution of decoupled 

microservices by producing messages on a prescribed queue of a message broker such as 

RabbitMQ (RabbitMQ, 2019) or a managed solution such as AWS Simple Queue Service 

(Amazon, 2019) within a message-oriented middleware architecture.  

A messaging system is a great solution that provides asynchronous, programming 

language agnostic, reliable communication between distributed applications. However, there are 

requirements to use it effectively. Hophe and Woolf (2004) describe a set of patterns that guide 

developers in overcoming challenges often encountered when deciding to implement an 

architecture based on a messaging system.   
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Table 4.2: Basic components of an enterprise messaging system (Hophe & Woolf, 2004) 

Component Description 

Channels  The means in which data is transmitted 

within the system. 

Messages  The immutable information that is sent 

from one system to another through a 

channel.  

Pipes and Filters  Process a message and its information 

before sending it along to a channel. 

Routing  Determines which channel a message 

should be sent to the next channel when it 

is not explicitly declared as part of the 

original message. 

Transformation  Convert a message to a format compatible 

with a receiving channel. 

Endpoints   Exposed means of communicating with 

applications external to the messaging 

system (Hophe & Woolf, 2004, p. 95). 

 

Considering the current architecture of the modeling/design environment of Suram 

(Suram et al., 2018) in terms of these components, the main message is the user-submitted 

workflow. The message payload contains input values relevant to the subsystems and an ordered 

list of message queues corresponding to subsystems in the system to call. Upon receipt of the 

initial workflow message, the message payload is transformed by adding information about the 

current execution step and forwarded to the channel corresponding to the subsystem of the 

current execution step. That channel then sends the message to the appropriate queue of the 

messaging broker endpoint with the corresponding input. The architecture receives messages 

from subsystems on an "incoming" endpoint. 

 When received, the message is transformed in the same manner as before, updating the 

current execution step and then forwarded to the next channel according to the subsystem list, 

repeating until the end of the list is reached. The system forwards the resulting message to a 
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prescribed "user result" channel, which then sends the result of the execution as a message to the 

queue of the messaging broker endpoint.  

Although the original architecture defined by Suram (Suram et al., 2018) does not explicitly 

declare its usage of any of the components of a messaging system, it is clear that any principles 

or patterns that apply to a messaging system also apply to their defined architecture. 

Simplification of the responsibilities of the underlying architecture of the modeling/design 

environment can be achieved with the use of some specific messaging components combined 

with the information of the ACI to enhance the overall modeling/design environment. 

4.5.1 Refactoring 

Recalling that the information of the ACI defined earlier in this writing can be used to 

facilitate the generation of a modeled system, and its subsystem execution workflow, the 

architecture of the design environment itself can be modified to accommodate these changes. A 

small change that yields a significant impact is the definition of the workflow execution. The 

workflow execution is currently defined as a linear list. The FMS orchestrates workflow 

execution, accumulating the results of each model into the messages forwarded in the workflow. 

Although the subsystems are stateless, this accumulation translates into the workflow execution 

message maintaining state during its execution. Without that state, access to information from 

upstream execution becomes challenging to manage. Accumulating the results is a requirement 

due to the synchronous execution nature of the current architecture. However, if the definition of 

the workflow execution is modified to allow defining asynchronous execution of subsystems, it 

would require the FMS architecture to handle asynchronous execution of subsystems, which will 

force state management to move outside of the workflow message and into some other aspect of 

the system. The integration patterns defined by Hophe & Woolf (2004) provide advice in this 

area. 
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The general issue outlined with the asynchronous workflow execution is that of 

correlation. The implicitly managed state maintained by modifying the workflow message needs 

correlation outside of the messages sent to the modeled subsystems. For a given level of our new 

workflow execution definition, the FMS should wait for the receipt of the results of all executed 

subsystems for that level and then aggregate the results into a single message with appropriate 

input for the next level of subsystems. Because the engineering design environment presented by 

Suram can support multiple users accessing any of the models within different modeled systems 

(Suram et al., 2018), asynchronous workflow execution requires that information needs to be 

correlated in the context of workflows throughout the lifecycle of the execution to ensure the 

correctness of the result. 

4.5.2 Approach 

• To successfully perform the asynchronous model execution as described in the 

previous section, these are the areas to consider during its execution: 

• When submitting a workflow for execution, the context of the workflow should be 

established and be uniquely identifiable. 

• When executing a level of a workflow that has multiple subsystems assigned to it, 

messages should be sent to each of the subsystems that contain appropriate inputs for 

the execution of the subsystem maintaining the context of the workflow. 

• When receiving messages from a subsystem, the system should maintain the context 

of the workflow by correlating messages of the workflow execution level using the 

workflow context. 
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4.5.3 Workflow context 

The context of a workflow merely is transient state information about the workflow that 

can be accessed and managed by the system. For asynchronous execution, the two pieces of 

information are a unique identifier for the submitted workflow and the currently executing level 

of the workflow. With this information, the progress of the execution of the workflow can be 

tracked, the correlation of messages with a workflow occurs naturally. 

Given a workflow execution derived from a directed graph of subsystem parameter 

bindings, as defined earlier, the execution of the entirety of that workflow would be defined as 

follows for each level of execution: 

1. Upon receipt of a workflow execution, generate a workflow context 

a. Generate a UUID for this execution. 

b. Set the “current workflow level” to the initial level, “0”.  

c. Create an initial message for workflow execution, specifying initial values in the 

payload of the message. 

2. Process a level in the workflow  

a. If completed at all levels, send result message to the user that submitted the 

workflow. 

b. If not completed at all levels 

i. For the “current workflow level” create a message for each subsystem 

prescribed to that level. 

ii. Set an attribute of the message to the value of the workflow context 

identifier. 

iii. Set parameter values in the payload of the message relevant to the 

subsystem’s input parameters as defined by the ACI. 
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c. Send the individual message to each subsystem using the protocol specified by the 

subsystem’s ACI. 

d. Track the total of messages sent for this level. 

3. Upon receipt of a subsystem execution complete message 

a. Check the workflow context attribute of the message. 

b. Group received messages by workflow context identifier and workflow level. 

4. Verify that the number of messages received for that workflow context and workflow 

level is equal to the number of messages sent for that level for the workflow context. 

a. If they are equal 

i. Aggregate the messages for that group into a single message. 

ii. Send the aggregated message to be processed, step 2. 

b. If they are not equal, wait for next receipt of message, step 3. 

5. Send result message to the user that submitted the workflow. 

4.5.4 Relevant message system integration patterns for routing 

Properly implementing an architecture for asynchronous workflow execution, as 

described in the previous section, has challenges categorizable under concerns of routing 

messages through the system. This routing is required to exchange information between loosely 

coupled applications typically using the APIs of the application, and recalling from Chapter 1, is 

a systems integration issue.   

Hophe and Woolf define integration patterns for messaging systems as “nuggets of advice 

that describe solutions to frequently recurring problems” (Hophe & Woolf, 2004). 
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When designing a new messaging system, these patterns, based on the experience of 

developing messaging systems by experts within the industry over time, can be consulted for 

guidance.   

Figure 4.4: The “Router” pattern as defined by Hophe and Woolf (Enterprise Integration 

Patterns, 2019) 

Hophe and Woolf define general routing concerns and propose a solution pattern as 

follows: 

“How can you decouple individual processing steps so that messages can be passed to 

different filters depending on a set of conditions?... Insert a special filter, a Message Router, 

which consumes a Message from one Message Channel and republishes it to a different Message 

Channel depending on a set of conditions.”  (Hophe & Woolf, 2004, p. 78). 

Although generally broad, the statement primarily applies to the architecture of the 

engineering design environment sending messages to the appropriate subsystem for execution. It 

does not cover the issues of receiving a single message and sending relevant information of that 

message as distinct messages to several different subsystems. For that, there is a more specific 

routing pattern, the “Splitter” pattern. 
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Figure 4.5: The “Splitter” pattern as defined by Hophe and Woolf (Enterprise Integration 

Patterns, 2019). 

“How can we process a message if it contains multiple elements, each of which may have 

to be processed in a different way?...Use a Splitter to break out the composite message into a 

series of individual messages, each containing data related to one item.” (Hophe & Woolf, 2004, 

p. 259). 

The “Splitter” pattern applied to single workflow messages distributes specific portions 

of the workflow message to subsystems with only relevant information to each subsystem, 

allowing asynchronous execution of the subsystems. 

Another aspect of routing to be considered for asynchronous execution of subsystems is 

receiving messages from subsystems of a particular level for a workflow context. Once a 

message has been split into multiple messages and forwarded to their respective subsystems, how 

can the system correlate a message received from a subsystem to an originating workflow 

context. For messaging correlation concerns, Hophe and Woolf define the "Aggregator" pattern. 
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Figure 4.6: The “Aggregator” pattern as defined by Hophe and Woolf (Enterprise Integration 

Patterns, 2019) 

“How do we combine the results of individual, but related messages so that they can be 

processed as a whole?...Use a stateful filter, an Aggregator, to collect and store individual 

messages until a complete set of related messages has been received. Then, the Aggregator 

publishes a single message distilled from the individual messages.” (Hophe & Woolf, 2002, p. 

268). 

The Aggregator pattern is a stateful pattern that relies on three key concepts: 

• Correlation—How does the system identify related messages? 

• Completeness Condition—When has the system received all (or enough of) the 

correlated messages? 

• Message Aggregation—How does the system combine the correlated messages 

once the Completion Condition is satisfied? 

An implementation of the "Aggregator" pattern must work in concert with a routing 

integration pattern defined upstream of its execution. The implementation of the "Splitter" must 

provide the correlation context to the messages as well as an indicator of what condition should 

be satisfied before aggregation of a group of related messages occurs, to accommodate 

asynchronous execution of models, as in the case of an engineering modeling/design 

environment.  
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The "Aggregator" implementation is where the state tracking occurs but is only required 

to be maintained within the system implementation of the Aggregator pattern as opposed to 

ensuring it is on the data being exchanged between the subsystems. 

By using the enterprise integration patterns for concerns of routing within an engineering 

design environment, the Aggregator pattern in concert with the Splitter pattern provides the 

necessary mechanisms for orchestrating the asynchronous execution of realistically designed 

system models, whose execution order dependency is that of a resolved directed graph of bound 

parameters between the subsystems within the modeled system. 

4.5.5 Implementation 

The previous section outlines the requirements of an engineering design environment 

capable of orchestrating the successful execution of a user-defined system of realistic 

complexity, composed of subsystems represented as web services using a microservice 

architecture pattern. The following is an outline of the changes to the messaging system of the 

engineering design environment of Suram (Suram et al., 2018) which incorporate ACIs and 

enterprise integration patterns to address the issues of autonomous system integration and more 

realistic workflow design and execution as outlined in the previous sections: 

• Conversion of the FMS to a messaging system capable of defining and using specific 

components as prescribed by Hophe and Woolf (Hophe & Woolf, 2002). 

• Implementation of specific messaging components capable of leveraging information 

from ACIs of subsystems of a workflow: 

o Message System Endpoint 

▪ Sends and receives messages to/from the system using a prescribed 

messaging protocol. 
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▪ Sends and receives messages to/from subsystems using the defined 

protocol defined in the ACI. 

o Splitter sends correlated asynchronous messages to subsystems within a 

workflow context based on the protocol details of the subsystem ACI. 

o Aggregator receives correlated messages from subsystems for a workflow 

context based on the workflow context level and workflow context identifier. 

o Router routes messages to the next message channel, particularly in the 

context of the next subsystem, using the protocol details of the ACI. Other 

conditions are applicable such as sending responses to the submitter of the 

system workflow. 

• Workflow tools creates execution workflow from directed graph of parameter 

relationships. 

4.5.6 Framework 

Investigation of several off the shelf Open Source technologies, such as Apache Camel 

(Apache, 2019) and Spring Integration (Spring Integration, 2019) was performed, in hopes of 

expediting the modifications of the FMS to leveraging the ACI and the enterprise integration 

patterns for a messaging system, For this work, Spring Integration framework was eventually 

chosen purely based on the author’s familiarity with the Spring Framework (Spring Framework, 

2019) and time constraints. The purpose of Spring Integration as detailed on its main website is 

as follows: 

“Extends the Spring programming model to support the well-known Enterprise 

Integration Patterns. Spring Integration enables lightweight messaging within Spring-based 

applications and supports integration with external systems via declarative adapters. Those 

adapters provide a higher-level of abstraction over Spring’s support for remoting, messaging, 
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and scheduling. Spring Integration’s primary goal is to provide a simple model for building 

enterprise integration solutions while maintaining the separation of concerns that is essential for 

producing maintainable, testable code.” (Spring Integration, 2019) 

The Spring Integration framework supports most of the integration patterns for a 

messaging system as defined by Hophe and Woolf (Hophe & Woolf, 2002) and is written in the 

Open Source Java (Oracle, 2019) programming language. The work presented here was not 

explicitly designed for a particular implementation of the enterprise integration patterns, so the 

details of the capabilities of the Spring Integration framework will not be discussed 

unnecessarily in this work. 

When describing implementations of the referenced integration patterns, the discussion 

will be limited to the details specific to the context of the engineering modeling/design 

environment architecture. In particular, the implementations of the “Splitter,” “Aggregator” and 

the general “Router” pattern that leveraged the information in the ACI of Chapter 3 as used in 

the system, are presented. 

4.5.7 Asynchronous subsystem execution of modeled workflows 

Once a message requesting execution of the modeled system is submitted to the 

environment, the smaller independent tasks, can be defined as follows: 

• Route a message to channel for processing based on the channel it was received in. 

• Route a message to channel for processing based on the channel it was received in. 

• Create an order dependent workflow execution for the subsystems of the designed model 

using ACIs. 

• Create an initial workflow execution message containing the workflow execution and the 

values set for the initial level of subsystems using ACIs. 
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• Process a workflow execution message sequentially by each level where each subsystem 

within a level can be processed independently (asynchronously). 

• Send a workflow execution message to a subsystem based on its protocol and protocol 

details of its ACI. 

• Correlate by workflow context level, a workflow execution message received from a 

subsystem with others received into a single workflow execution message. 

• Route a message to outbound Endpoint based on state of the execution of the workflow. 

As illustrated in Figure 4.7, an engineering design environment implementing a 

messaging system architecture can simplify the complexity of managing the asynchronous 

subsystem execution by breaking the execution down as a series of routing and transformations 

of the incoming message based on the origination of the incoming message. These 

transformations and routings, when chained together are described by Hophe and Woolf (2002, 

p. 70) as tasks of a Pipes and Filter architecture style.  

Figure 4.7: Flow diagram for asynchronous subsystem execution using a messaging system 

architecture and enterprise integration patterns. 
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Figure 4.8: Pipes and Filters architectural style for a messaging system (Enterprise Integration 

Patterns, 2019). 

“In a messaging system, the Pipe and Filters architectural style is recommended to break 

down the overall task of executing the workflow into smaller tasks that can be accomplished as 

independently of each other as possible” (Hophe & Woolf, 2002, p. 70). 

 In this architecture style, “filters” perform any processing where the input is a message, 

and the output is the result of processing the message. “Pipes” connect filters and define the path 

of flow for the message between the “filters”. In the case of executing a user-designed system, 

modeled as an ordered execution of subsystems, the following two distinct routing and 

transformation filters for processing are obtained by combining the previously listed 

responsibilities.: 

• Workflow Execution Task (Received from User) 

o Transformer - Create the workflow execution order message, grouping 

subsystems by level, based on the directed graph of dependent parameters 

created from the initial system execution request and the information in the 

ACIs of the subsystems. 

o Splitter - For each level remaining in the workflow execution order, create a 

subsystem execution message for each subsystem of that workflow context 

level. 
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o Router - Send each subsystem execution message to the appropriate 

subsystem using the protocol details of the subsystem’s ACI. 

• Workflow Level Subsystem Execution Task (Received from Subsystem) 

o Aggregator - Create a single workflow message from 1 or more subsystem 

execution response messages. State of the workflow context is updated by the 

Aggregator to reflect the current level of execution. 

o Router - Send a workflow execution message based on the remaining levels of 

workflow execution 

▪ If there are levels remaining in the workflow execution order, send the 

message through a Pipe whose Filter is the Splitter of the Workflow 

Execution Task for each subsystem of that workflow context level. 

▪ If there are no levels remaining in the workflow execution order send a 

message to the user response channel 

Figure 4.9: Enterprise Integration Patterns applied to the engineering modeling/design environment 

following a messaging system architecture. 
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With the “filters” defined, it is a matter of prescribing the “pipes”, i.e., message channels, 

connecting the “filters” necessary to perform the tasks of the system execution. 

4.5.8 Routing inbound messages 

The functionality of the engineering design environment, as defined in this work, is 

invoked using the protocols of the messaging broker. As such, there is defined a primary 

messaging endpoint that communicates with a message broker, such as RabbitMQ (RabbitMQ, 

2019) or Amazon Simple Queue Service™ (Amazon, 2019),  that is able to subscribe and 

consume any of the messages posted to topics as designated by the implementation of the 

messaging system, i.e., the engineering design environment. By connecting the messaging 

endpoint to a router implementation that forwards the incoming message to the channel 

designated for either the "Workflow Execution Task" or the "Workflow Level Subsystem 

Execution Task", the system can dynamically process the relevant messages. The router 

implementation developed in this work inspects the headers of the received message for the 

queue/topic in which it was received. This information is provided by the implementation of the 

message broker, in that it adds this information as an attribute in the header of the message. The 

router implementation can then forward the incoming message to the appropriate channel. 

Although this is specific to the implementation, the only requirement of a router implementation 

is that it can explicitly determine which task to invoke based on the incoming message. For 

example, the content of the body of the message could also be inspected to determine the 

destination channel. 

The following table describes the channels that must be accessible in the message 

brokering system from both the engineering design environment and external systems, such as a 

user interface for submitting system designs for execution or an external subsystem used by a 

modeled subsystem, to successfully communicate between the systems. 
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Table 4.3: Channel mappings used by an enterprise integration inbound “Router pattern” 

implementation for design environment incoming messages. 

Inbound 

Messaging 

Channel 

Intent Publisher Message Content Destination 

Task 

Execution 

Request 

Channel 

Execute a 

designed system 

External system 

requesting the 

simulation of a 

designed system 

User designed 

system 

Workflow 

Execution Task 

Subsystem 

Response 

Channel 

Result of an 

execution of 

a subsystem  

Subsystem Results of an 

execution of 

a subsystem as 

defined by the ACI  

Workflow Level 

Subsystem 

Execution Task 

 

4.5.9 Routing internal messages 

Internal routing of messages occurs internal to the messaging system of the engineering 

design environment and is dictated by the current workflow context level. If there are no 

remaining workflow levels in the workflow execution context, the message is routed to an 

outbound channel. If there are remaining levels, the message is routed internally to the channel 

of the “Splitter” to continue processing the workflow.  

4.5.10 Routing outbound messages 

Similar to inbound messages to the environment, there are outbound messaging endpoints 

registered in the environment corresponding to the supported protocols of the modeling/design 

environment. One is required for communicating with the user and is analogous to the incoming 

messaging endpoint in that it should be of the same protocol as the incoming messaging endpoint 

for consistency. It could be confusing for a developer interacting with the design environment to 

publish a message to the modeling/design environment and then have to make an HTTP request 

using a REST protocol to retrieve the results. As described in an earlier chapter, the protocol-

service is available to communicate with developers the supported protocols within the context 
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of the modeling/design environment so that the ACI of a subsystem is only allowed to specify 

such protocols. These same protocols correspond to the available outbound messaging endpoints, 

which the outbound router pattern implementation uses to send execution requests to a 

subsystem model. In this work, only a single messaging endpoint was implemented using the 

same protocol the messaging broker used for sending messages to the user. For sending 

messages to a subsystem model, the queue/topic of the message broker that a message is 

published by the engineering modeling/design environment is defined by the protocol details of 

the ACI. 

Table 3.3 describes the channels that must be accessible in the message brokering system 

from both the engineering design environment and external systems, such as a user interface for 

receiving messages from. 

Table 4.4: Channel mappings used by an enterprise integration outbound “Router pattern” 

implementation for design environment outgoing messages. 

Outbound 

Messaging 

Channel 

Intent Consumer Notes 

Execution 

Response 

Channel 

Response of 

simulation of a 

designed system  

External system requesting the 

response to a request for the 

simulation of a designed 

system 

As supported by the 

protocols defined in 

the protocol-service 

Subsystem 

Channel 

Request execution 

of a Subsystem 

Subsystem Derived from Protocol 

Details 

The flexibility provided by the router pattern implementation combined with the 

information of the ACI of a subsystem is a crucial component to automating the system 

integration of the environment. By abstracting the API protocols of the subsystem into the 

protocol details, an implementation of the router pattern can “dynamically integrate” two 

decoupled systems by merely providing the appropriate value bindings as inputs in a message 
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and invoking the API as prescribed by the ACI. A change in the connectivity of the designed 

system has little to no impact on the architecture of the messaging system as long as the protocol 

is supported by the environment. Similarly, the connectivity of subsystems is unrestricted by the 

protocol of any particular subsystem to exchange information. This is only limited by the 

protocols that are supported by the messaging system of the overall design environment. Once 

support for a new protocol is added to the messaging system of the design environment, and the 

protocol is published, new subsystems matching that protocol can be registered within the system 

used for modeling and design. 

To add support to the messaging system of the engineering design environment for new 

protocols between subsystems, the following is required: 

• Create the new protocol specification for the protocol-service. 

• Add a new outbound messaging endpoint that can send messages with a provider of the 

new protocol. This may require a transformer to convert the output to a format suitable by 

the consuming API. 

• Add a new inbound messaging endpoint that can receive messages with the new protocol. 

o May require a transformer to convert the input to a format consumable by the 

messaging system (attributes and payload). 

o Route this to the channel prescribed for the Workflow Level Subsystem 

Execution Task. 

• Update the logic of the outbound router pattern implementation to route messages to 

corresponding outbound channel as dictated by the new protocol details. 

• Publish a new version of the messaging system of the engineering design environment.  

• Publish the new protocol specification to protocol-service 
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The enhancements to the messaging system of the engineering design environment of Suram 

(Suram et al., 2018) described in this research provide an environment capable of handling 

realistically designed system models while automatically updating the integration of the 

decoupled subsystems of the overall model. However, recall that the enhanced messaging system 

requires as input a set of connected ACIs whose parameters have been bound and validated. In 

Chapter 5, a new service that leverages the parameter and constraint information of the ACI is 

defined to simplify the process of defining inputs to the engineering design environment that are 

compatible with its enhanced messaging system. 
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CHAPTER 5.    LEVERAGING THE ACI IN SYSTEM MODELING 

5.1 Overview 

With the ACI defined, there is now a basis for creating tools to address the issues defined 

earlier in providing dynamic system integration as a feature of an engineering modeling and 

design environment. The set of tools directly addresses the requirements of model developers 

with the intent to contribute their modeled subsystem to the engineering design environment as a 

microservice. Recalling from earlier, those are: 

• What is the required information needed to integrate a model within the design 

environment? 

• What is the process of specifying the information necessary to integrate a model within 

the design environment? 

• For a given ACI, what is the process to register that information within the design 

environment? 

In Suram (Suram et al., 2018), the authors described a need for an ontology describing the 

models but also a need for the models to be available to the environment without modification to 

the existing infrastructure, allowing a developer to freely contribute their work to something akin 

to an App Store™ (Apple, 2019). An ACI facilitates this by providing a mechanism in which a 

developer can clearly state the purpose of their contribution. An ACI also declares how to 

leverage the contribution in the context of a more extensive system. It is implicit that the 

developer is also agreeing to comply with a defined mechanism for integrating their models 

within the engineering modeling/design environment. 

To further aid in the contribution of models within the environment, a few essential tools are 

required. There needs to be a repository or library of registered and validated ACIs available to 
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access the design environment. There also need to be some tools for creating a new ACI and 

editing an existing integrations specification. Once created, there should be a way to submit, 

validate, and register the specification with an existing engineering design environment. 

The next section describes in detail an implementation of these tools and their architecture 

and how they relate to incorporating the ACI into the engineering design process. The tools were 

developed following a general microservice architecture pattern with a RESTful API and 

optional data access and persistence layer, as depicted in Figure 5.1. The services were 

developed only to the extent that they are sufficient to validate the concepts developed in this 

research and their merits to solving the problem of dynamic system integration in an extensible, 

modern engineering design environment. 

5.2 General Setup  

 

Figure 5.1: General microservices (µ) architecture used for supporting tools. 
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Each service uses off the shelf open-source software to bootstrap the components together 

into a deployable artifact. While deployment and issues of development operations (DevOps) are 

outside of the scope of this research, overall, this research maintained best practices and 

leveraged industry-standard tools while making some concessions for time. The services are 

designed using a general microservices architecture pattern, depicted in Figure 5.1, with a 

RESTful API defined for its protocol. The code is compiled and “containerized” (Google, 2018), 

and the container is published to a registry where they are accessed by any container 

orchestration platform such as Kubernetes (Kubernetes, 2019) or Amazon Elastic Container 

Service (Amazon, 2019). 

The development of the code for the services uses open source off the shelf technologies. 

SpringBoot (Spring Boot, 2019), an open-source technology written in Java 8 (Oracle, 2019) 

programming language, provides the framework for quickly bootstrapping a web server and 

providing a RESTful API. 

Apache Maven (Apache, 2019) is the build tool used for the microservices outlined in this 

work. Maven has a mature plugin ecosystem, which was leveraged to help automate some 

portions of the deployment, such as generating container images from the built code (Google, 

2018) and eventual publishing of the artifacts to the Amazon Elastic Container Registry 

(Amazon, 2019). Provisioning of the services leveraged Fargate (Amazon, 2019) tasks using 

Amazon Elastic Container Service (Amazon, 2019).   All code for these services is hosted in a 

Git source code repository, leveraging built-in continuous integration and continuous 

deployment facilities to automate the build, test, and deployment of the services during the 

development of the services. 
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5.3 Discovering Subsystem Models 

In the context of the ACI, a “library” is simply a repository of submitted, validated, and 

registered ACIs that are web-accessible to an engineering modeling/design environment. An 

instance of the ACI is simply a JSON file conforming to the specification defined in the previous 

section; any web-accessible repository can host ACIs. 

For the implementation in this research, a NoSQL (non-relational) database MongoDB 

(MongoDB, 2019) was chosen, running as part of a Fargate Task (Amazon, 2019) in an Amazon 

Elastic Container Service (Amazon, 2019) framework. The ACI Repository microservice 

provides access to the specifications in the library, following a simple Create Read Update and 

Delete (CRUD) style API generated using an open-source off the shelf technology, Spring Data 

Rest (Spring, 2019) which with MongoDB integration. The only real requirement for hosting a 

library of ACIs is that the API of the hosting service needs to provide easy access to the ACIs 

from any other decentralized service. Registered ACIs could just as easily reside in a cloud-

hosted storage location such as Amazon Simple Storage Service (Amazon, 2019) or even a 

repository within GitHub (GitHub, 2019).     

5.4 Authoring ACIs 

As described earlier, the ACI schema is simple and relatively straightforward to understand; 

however, manual editing of the specification could be error-prone. This “ease of use” issue is 

easily addressable by creating an editor for the ACI. The main requirement is that the editor is 

capable of validating the input against a JSON schema for the proper structure. There are plenty 

of open source technologies available that a developer could use as an extensible desktop 

integration platform technology, like NetBeans (Apache, 2019) or Visual Studio Code 

(Microsoft, 2019), that provides out of the box JSON file editing and format validation. There 
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are even tools that will generate a web UI form based on a given JSON schema that can be used 

to create the editor. 

Once the specification is created, and its structure validated in an editor, it needs to be 

registered with the existing library. Although access to the ACI Repository API is available via 

its RESTful API, directly calling this API is not recommended. In general, this API is an internal 

API to be called by other preprocessing services. 

For example, requesting to create a new ACI in the repository will skip required steps such as 

validation of the constraints and protocols within the ACI and could cause problems down the 

line at runtime when it is too late in the process, leading to significant frustration that would 

cause a user in the modeling/design environment to reach out to the developer to determine the 

cause of the problems. Separate microservices have been created around managing access to 

registering ACIs within the environment to avoid encountering this and other possible 

frustrations after the ACI has left the developers' control. 

5.5 Publishing and Registration 

The publishing process is slightly more complicated than just the CRUD semantics of a 

standard datastore API. As described earlier, there are validation steps to perform on the 

submitted ACI before registering it within the library of available specifications. Rather than 

modifying the repository API to encompass this functionality, separate microservices are created 

to encompass the various validations and to perform the registration. One microservice has the 

responsibility of verifying the capability of expression parsing and validation. The other 

microservice maintains the responsibility of verifying functionality and validation of protocols. 

At the moment, these are the only two steps of the registration validation process, but splitting 

these out into separate microservices provides flexibility in the system so that as registration 

requirements evolve, the capability can be incrementally developed and tested without impacting 
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the current implementation. As it is deemed ready, the new capability can be integrated, and a 

new version of the registration microservice can be published. 

5.6 Constraint Microservice 

The constraint microservice is responsible for validating any constraints specified for 

parameters in a given ACI. The constraint expression is a literal expression that evaluates to 

“true” or “false,” and the constraint microservice provides two endpoints, one for verifying a 

given value against a constraint that is intended to be used by the modeling/design environment 

at runtime during the execution of a workflow. A separate call is used for verifying the 

expression syntax against the current expression evaluator for usage during the registration 

process. 

The implementation in this research uses EvalEx (EvalEx, 2019) to evaluate and validate 

arithmetic constraints and have exposed a simplified version of their API as a RESTful protocol. 

Below is an example of a call to the API for validation of a constraint using cURL (curl, 2019). 

For verifying the syntax of a Constraint expression, a similar API is available. Below is an 

example of a call to the API (/constraints/verifyExpression), again using cURL (curl, 2019). 

It should be noted that while the payload of the request is the same as the validate API, the 

“valueAsAString” field is ignored in the “/constraints/verifyExpression” API, as this method is 

only validating the syntax of the expression. The full API is listed as an Open API (OpenAPI, 

2019) specification in Appendix A. 

curl -X POST “http://localhost:8081/constraints/validate” -H “accept: */*” -H “Content-Type: application/json” -d “{ \”expression\”: \”a < 2 

&& 1< a\”, \”variableBindings\”: [ { \”expressionVariableName\”: \”a\”, \”parameterType\”: \”float\”, \”valueAsString\”: \”1.5\” } ]}” 

curl -X POST “http://localhost:8081/constraints/verifyExpression” -H “accept: */*” -H “Content-Type: application/json” -d “{ 

\”expression\”: \”1< a <= 2\”, \”variableBindings\”: [ { \”expressionVariableName\”: \”a\”, \”parameterType\”: \”float\”, \”valueAsString\”: 

\”5\” } ]}” 

Figure 5.3: An example of a call to the API(/constraints/verifyExpression) using cURL. 

Figure 5.2: An example of a call to the API (/constraints/validate) for validation of a constraint 

using cURL. 



 

 

80 

5.7 Protocol Microservice 

The Protocol Microservice is responsible for providing access to protocols available and 

supported by a design environment. For the developer of an ACI, this microservice provides 

methods that can verify a protocol declared in their ACI by validating its expected keys and its 

defined “protocolDetails” with those of a given protocol registered in the design environment. 

The service also provides the currently registered Protocols supported in the design environment, 

showing the protocol’s required keys whose values should be set in an ACI “protocolDetails” 

mappings. 

 During the development of the tools in this research, the default supported protocol is for 

a messaging queuing system. Implementations of other protocols such as REST is left for future 

work. Below is an example of a GET request to the API (/protocols) for checking which 

protocols are available to the design environment, using cURL (curl, 2019). 

The response from the call is a JSON object with the array of available protocols and its 

expected keys, as described in section 2.2.2. The values of the “protocolDetails” are specific to 

the ACI as described earlier in this chapter and should be specified when creating a new ACI. 

Appendix B contains the listing of the full API as an Open API (OpenAPI, 2019) specification. 

  

curl -X GET “http://localhost:8082/protocols” -H “accept: */*” 

Figure 5.4: Example request to query registered protocols of the environment using 

cURL. 
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5.8 Registration Microservice 

The registration microservice is the service that a model developer will interact with 

when they are ready to contribute their model(s) to the modeling/design environment. The 

service does not maintain any state internally. It is merely a service to run the prerequisite 

validations on a given ACI before submitting the ACI to the library.  

 The validation process intends that a developer creates a new ACI and then invokes a 

request to the registration microservice with a JSON payload consisting of the ACI that the 

developer intends to register.  Upon receipt of the request, the registration service delegates 

validation of the ACI to the Constraint Microservice and the Protocol Microservice to validate 

the specification given. Upon successful validation, as determined by the two services, the 

registration service invokes the integration service repository API to create a new specification in 

the repository.  If validation fails or the submission itself fails, a response with relevant 

information will be returned. Otherwise, the response will return the location to access the ACI 

within the library. This location is not necessarily needed outside of the design environment 

because the ACI repository API will provide this access as needed. The API for registering a 

new ACI using the registration microservice is shown below using cURL. 

In terms of the “SubmissionStatus”, the registration microservice sets the value to 

“SUBMITTED”. As of this writing, all ACIs that are of the state “SUBMITTED” are available 

to the modeling/design environment. The author envisions future implementations of other 

curl -X POST “http://localhost:8080/integration/specification/register” -H “accept: */*” -H “Content-Type: application/json” -d “{\”uid\”: 

\”1e2b1d64-36c8-4177-b7e1-75598bb34a55\”, \”name\”: \”Test Registration\”, \”protocol\”: { \”protocolKeys\”: [\”io-fms-sqs-routing-queue-

name-key\”] }, \”protocolDetails\”: { \”io-fms-sqs-routing-queue-name-key\”: \”test-registration\” }, \”messageType\”: \”testregistration\”, 
\”variables\”: [ { } ], \”results\”: [ { } ], \”constraints\”: [], \”version\”: \”1\”, \”description\”: \”Testing Registration\”, \”status\”: 

\”SUBMITTED\”, \”tags\”: [\”sample\”, \”registration\”, \”test\”]}” 

Figure 5.5: Example request to register a new ACI for a modeled subsystem in the design 

environment. 
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services that provide further setup and verification of the submitted ACIs, and the corresponding 

states will be set based on the results of those services. Correspondingly any design environment 

could adjust to filter out available ACIs based on a tolerable level of “SubmissionStatus” 

(preferably “ACCEPTED”). Appendix D lists the full API as an Open API (OpenAPI, 2019) 

specification.  

 

  

Figure 5.6: Sequence diagram for the registration of an ACI. 
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5.9 Designing realistic systems 

Creating an environment for engineering design and analysis of a complex composition 

of subsystem models that is intuitive for a user is a challenging task. Most systems try initializing 

themselves in a way such that a user of the system can use it successfully without making many 

modifications to the settings outside of the realm of their expertise. For a so-called power user, 

“adjusters” are progressively exposed to provide more fidelity in the interface and inputs as a 

way to try to allow the user to provide as much detail as input to the system as needed to obtain a 

satisfactory analysis. 

Bryden (2014) described an environment where the user “chooses the subcomponents of 

the system they would like to design and linked them together”... “With the correct information, 

the technology systems of today should be able to tell a user if two components can link together 

relatively easily.” Suram and Bryden (2016) laid the foundations for the architecture of such an 

environment, and this chapter lays out the enhancements to the environment to enable the system 

to handle the higher complexity of system models. That said, the problem of representing the 

modeled system in a way that can be leveraged by the enhanced messaging system of Suram and 

Bryden (2016) engineering design environment still remains; however, the information of the 

ACI should allow tools to be developed to solve some of the issues. 

 For example, the ACIs of two subsystems each express their required input types 

expected output types as well as details of restrictions on their inputs through their parameter and 

constraint definitions. This information can be used to validate connections and also recommend 

connections between subsystems by merely querying information about the subsystems in the 

environment through the library of registered ACIs. By aiding a user in this way, subsystem 

components can be added to a system by the user and connected while the underlying 

information is validated by the system using the relevant information of the ACI. Similarly, the 
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system could validate missing input or connections during the design of the system, preventing 

the user from submitting un-executable workflows to the messaging system of the engineering 

modeling/design environment. With that in mind, the next section describes an implementation 

of a microservice that was developed during this work to aid in simply creating and validating a 

workflow suitable for submitting to the engineering design environment for execution, a so-

called workflow microservice. 

5.10 Workflow Microservice 

The workflow microservice is a composition of individual microservices (application) 

developed to simplify the creation of valid system design definitions suitable for execution in the 

messaging system of an engineering design system, such as defined by Suram et al., (2018) using 

the information of registered ACIs, as described in Chapter 2. It is an example API created as a 

conduit for a thin client application, to support defining connectivity of subsystems in a format 

suitable for generating the workflow execution in the context of the messaging system of the 

engineering environment described in the previous sections.  

The service provides the following overall capabilities using a RESTful API as its 

protocol: 

• Creating a new system representation (workflow). 

• Adding/removing a subsystem to the system representation. 

• Adding/removing user defined input from the system representation. 

• Creating/removing connections between subsystems. 

• Creating/removing parameter bindings between subsystem connections. 

• Validating connections between subsystems. 

• Binding user input values to input parameters of subsystems. 
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• Recommending parameter bindings for connections between subsystems. 

• Validation of a system representation (workflow). 

• Making a system representation of a workflow available to the engineering design 

environment. 

The following areas of responsibility divide the workflow microservice API, which could 

ideally be split and managed as individual microservices, but in this work, maintained as one. 

• Connections API 

o Creation and removal of “connections” between one or more subsystems 

represented by their ACIs. 

o Creation and removal of parameter bindings between one or more subsystems 

represented by their ACIs where a parameter binding represents the mapping of 

the result of one subsystem execution to the input variable of another subsystem. 

• User Input API 

o Creation and removal of parameter bindings specified by the user. 

o Initialization and editing of parameter values specified by the user. 

• Recommendations API 

o Recommend “connections” between one or more subsystems based on similarity 

of their parameters.  

o Recommend parameter bindings within connections between subsystems based on 

similarity of the parameters. 

• Workflow API 

o Creation of new system execution workflows consisting of connected subsystems 

represented by their ACI. 
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o Addition and removal of a subsystem to a system execution workflow by 

referencing the subsystem’s ACI. 

o Validation of system execution workflows by verifying fulfillment of the 

subsystem requirements as defined by their ACI. 

o Persistence of a system execution workflow that is accessible by the messaging 

system of the user. 

The full API is listed as an Open API (OpenAPI, 2019) specification in Appendix C 

along with a programmatic illustration of the process of using the APIs in the workflow 

microservice to create a simple system model/design representation for a system that adds the 

user input and returns the result. The result of the illustration is a representation of the system 

that is compatible with the messaging system defined earlier in this work. 

5.11 Applications of the ACI   

Earlier, this work outlined the ACI and the details of various supporting services. Going 

back to the original idea of Bryden (2014), in which a decentralized system design environment 

aids a system designer in the composition of the digital representation of systems, i.e., cyber-

physical system design, this research set out to develop the pieces of the environment that were 

remaining after the initial implementation of Suram et al. (2018). By introducing the ACI, the 

system modeling environment provides autonomous integration of the various subsystem models 

defined by an abstracted form published by their creator and consumed by the infrastructure on 

which they are running. 

The four applications listed below, composed of the microservices mentioned earlier in 

this work, together provide the necessary pieces to begin implementing the ideas laid out by 

Bryden (2014) and demonstrated by Suram et al. (Suram, 2018). The services provide 

autonomation in areas of system modeling by leveraging the ACI, overcoming some of the 
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challenges of dynamically integrating systems as outlined earlier in this work. The composite 

services and a description of their functionality are as follows: 

• ACI Registration Service—A service targeted at client facing applications that 

provides a means for subsystem model developers to extend the design environment 

by contributing reusable subsystem models. The subsystem models can then be 

accessed by a system designer in the environment, without requiring manual 

intervention by either the developer or the designer. 

• Autonomous System Design Service—A service targeted at client facing applications 

that leverages an ACI to validate and recommend couplings between subsystem 

models by analyzing the parameters and constraints of the API as defined by a 

corresponding registered ACI. 

• Autonomous Integration Processing Engine—A service targeted at use by other 

services, that leverages an ACI to generate a directed graph-like structure 

representing the required order of execution for a defined set of coupled subsystems 

by analyzing the parameters and constraints of the API as defined by a corresponding 

registered ACI. 

• Autonomous Routing Engine—The messaging system of the FMS enhanced to 

autonomously route and transform messages between web enabled subsystems using 

enterprise integration patterns. 
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Figure 5.8: Autonomous Integration Processing Engine leverages the parameters 

declared in the ACIs to derive a directed graph of ordered execution of 

subsystems from a validated linking of ACIs from the Autonomous System 

Design Service. 

Figure 5.7: Autonomous Routing Engine leverages the protocols declared in ACIs to orchestrate 

execution of the prescribed system workflow using EIP in the FMS. 
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Figure 5.9: Autonomous System Design Service recommends links between subsystems based 

on the parameters defined in a given set of ACIs 
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Figure 5.10: Services developed leveraging the ACI, enabling automation of various aspects in 

system modeling and design. 
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CHAPTER 6.    AN EXTENSIBLE FRAMEWORK FOR SYSTEM MODELING/DESIGN 

6.1 Overview 

So far, this work has demonstrated how the ACI provides the abstraction of the 

communication and execution of the associated subsystem models of a larger system model. The 

details of how the messaging system of the engineering modeling/design environment can be 

enhanced by incorporating enterprise integration patterns and leveraging the ACI provides the 

capability for the system to correctly execute asynchronous workflows defined by complex user-

defined systems modeled from real-world systems. 

 This work previously detailed the process of contributing individually developed 

subsystem models to the modeling/design environment by registering ACIs to a web-accessible 

central repository as well as the development of supporting tools and microservices that allow a 

user interface to be developed to access a deployment of the new FMS and ACI services to 

design and analyze systems of varying complexity. 

This chapter will discuss the implementations of several prototype applications developed 

to leverage the services supporting the ACI. The prototypes are meant to demonstrate the 

contribution of modeled subsystems to the modeling/design environment by declaring an ACI 

and registering it with the central repository. These models are made readily available in the 

environment and can be used in the iterative design and analysis process by “linking” their 

representative ACIs in a declarative manner. As a proof of concept for future investigation, this 

chapter also demonstrates the idea of the modeling/design environment providing “hints” of 

compatible “linking” by merely leveraging information in the ACIs. 

The new modeling/design environment was executed using a client application developed 

to support this research and deployed in a cloud hosting environment such as Amazon Web 
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Services (AWS, 2019). For the development of the required subsystem models as individual 

microservices, an API protocol that is a message queue was chosen. For each microservice 

subsystem, an ACI was created and registered with the design environment using the techniques 

and tools described earlier in this work. The microservices were each deployed and provisioned 

such that the services could consume messages from a messaging queue as prescribed by its ACI 

and could publish to the messaging queue corresponding to the workflow level execution task of 

the modeling/design environment as defined earlier in this work. The development of the 

subsystems and the microservices defining their functionality is not the main subject of this 

research, and the specifics of the implementation of the models are not discussed in detail here. 

Instead, the details of their requirements as it pertains to the system integration and microservice 

architecture principles (Newman, 2015) within the design environment are referred to in the 

context of their associated ACIs. 

6.2 Contributing a Web Enabled Subsystem Model  

A previous chapter described the registration of a microservice and its functionality as a 

means to allow contributions of independently developed web-enabled models to be registered 

with the modeling/design environment. The requirements to contribute a web-enabled system 

model are as follows: 

• A web enabled system model, of which there is an API accessible by the messaging 

system of the design environment of one of its supported protocols. 

• Access to the registration microservice of the design environment. 

• A valid ACI for the web enabled system model that is to be contributed. 

6.3 Creating a Web Enabled Subsystem Model 

Web-enabled models can use various protocols for their APIs. For this work, the models 

use a messaging publisher and consumer architecture and the related protocols. Using Python 
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(Rossum, 1995) as the development language, a set of tools to create and publish a new model 

using this protocol can be managed in a few lines of code. Similarly, using managed cloud 

technologies for storage, messaging frameworks, and serverless computing, a model can be 

developed relatively quickly, and the tools will take care of setting up the infrastructure. 

The process for creating the model begins simply by providing a developer with access to 

a template that has defined all the necessary methods for allowing the model to communicate 

with the deployed messaging system. Using a templating project generation tool such as 

cookiecutter (CookeCutter, 2019), the user will be prompted to specify some metadata 

information about the project, such as the name and the description. Upon completion, the new 

model will be generated in a directory of the model name and in that directory will reside a 

Python (Rossum,1995) file of the same name. 

The result is a fully functional model and can be run using Python (Rossum,1995), but it 

is only implemented to return a message containing a sample response; it is left to the developer 

to create an implementation of the model by editing the code defined in the model file. The 

"main" function has a place holder for sample input that is useful for locally testing the 

functionality of the model using a local Python (Rossum, 1995) interpreter.  
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Deployment into the managed cloud environment occurs once the developer is satisfied 

with the implementation of the model.                  

 Figure 6.1 depicts a serverless computing pipeline established in this research to create 

the resources representing the web-enabled model. The pipeline is configured to respond to 

notifications of newly uploaded files to a specific cloud storage location. Upon receipt of a 

notification for a new model, the pipeline deploys the model as a new, separate serverless 

compute application and creates a message queue for communicating with the model. The 

pipeline then creates a notification mapping that executes the serverless compute application of 

the model upon receipt of a message in its queue. The resource identifier of the queue, which is 

the means of communicating with the model, is returned from the pipeline and should be set as 

the “queue name” in the protocol details of the corresponding ACI declared for this model. 

Verification of the success of the deployment of the model and its ability to execute using 

the message queue can then be tested using the mechanisms provided by the cloud hosting 

Figure 6.1: Publishing a model written in the Python programming language as a web service 

using messaging protocols. 
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environment. In most cases, this can be achieved simply by sending a message to the message 

queue with the input parameters specified in the body of the message.   

6.4 Creating an ACI for a Web Enabled Model 

With a web-enabled system model satisfying the protocol requirements and providing 

access to the registration service, the generation of an ACI can be done in several ways with 

varying degrees of complexity. In the most basic case, the ACI has a defined schema, and rather 

than focusing on developing a user interface, leverage existing functionality of a JSON editor 

such as Visual Studio Code™ as outlined 

here: https://code.visualstudio.com/docs/languages/json#_json-schemas-and-settings. The 

developer only needs access to the schema to allow the editor to validate any ACI. During this 

research, a Maven plugin has been developed to generate an updated schema specification 

whenever changes to the definition of the ACI specification are detected. Although this is 

certainly feasible and the editor will validate the syntax, there are still opportunities for errors, 

such as the “uid” fields. This field is a UUID (Universally Unique Identifier); however, in JSON, 

it is specified as a literal character array. 

The effect of this error is a failure of registration, which could have been avoided. 

Similarly, the details of the protocol that the modeling/design environment supports should be 

explicitly defined by the protocol service, as described in Chapter 5, where the keys for a 

protocol are prescribed. Otherwise, these fields also cannot be validated until after the creation 

and attempt of registering (during the validation process) the ACI. 

 For the schemas that are available, there are published web tools that will generate 

generic forms for creating and editing an object according to its schema, parsing the schema, and 

creating a form specific to the type of the defined property. 

. 

https://code.visualstudio.com/docs/languages/json#_json-schemas-and-settings
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{ 

  “uid”: “b725a17b-046a-4ba8-8df9-0a78fd8e3d89”, 

  “name”: “Addition”, 

  “protocol”: { 
    “protocolKeys”: [ 

      “io-fms-sqs-routing-queue-name-key” 

    ] 

  }, 

  “protocolDetails”: { 
    “io-fms-sqs-routing-queue-name-key”: “addition” 

  }, 

  “messageType”: “addition”, 

  “variables”: [ 

    { 
      “uid”: “ba56ffc2-acc7-46df-add3-d629fffb0d06”, 

      “name”: “addends”, 

      “unit”: “N/A”, 

      “typeName”: “array”, 

      “quantity”: “N/A” 
    } 

  ], 

  “results”: [ 

    { 

      “uid”: “76851b90-4d3b-4720-9a77-edf7d54bc85d”, 
      “name”: “total”, 

      “unit”: “N/A”, 

      “typeName”: “float”, 

      “quantity”: “N/A” 

    } 
  ], 

  “constraints”: [], 

  “version”: “1”, 

  “description”: “Adds inputs as numbers”, 
  “status”: “SUBMITTED”, 

  “tags”: [ 

    “sample”, 

    “math”, 

    “addition” 
  ] 

} 

Figure 6.2: Manually created ACI for a model that adds its inputs. 
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 An open-source example of such a tool is available at the following GitHub 

repository: https://github.com/brutusin/json-forms. Using this tool and directly loading the 

schema as described in the documentation, a resulting HTML web page will display a form that 

supplies input components to set values for an ACI. The library also provides minimal validation 

of the data entered into the form based on the schema. Extracting the generated data is also 

available through the library. Using a form such as the one in Figure 6.3, a developer with the 

intent to contribute a modeled system as a web service can specify the values required as defined 

by the schema specific to their web-enabled model to create an ACI directly in the form. A 

simple user interface for creating and editing an ACI can be integrated into any application as 

long as the ACI schema is made publicly available using a library such as json-forms. 

Figure 6.3: Simple web-based form for creating an ACI using an open source form generator. 

https://github.com/brutusin/json-forms
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. 

Figure 6.4 shows that by leveraging the schema to generate the web form, protections can 

easily be put in place to prevent incorrect data entry by defining validation of the fields within 

the form or using the built-in validation. For example, a regular expression validator can be 

added to the fields requiring UUIDs, to validate that the data entered into the field is of the 

proper format. In this case, this field is disabled, and the form auto-generates the UUID upon 

creating the new ACI. Similarly, submission of the new specification is performed by adding a 

user interface element that calls the registration service with the generated ACI using the API 

described in earlier in this work. 

Figure 6.4: Simple validation provided by the generated form. 
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Visual programming is a paradigm in which the user creates programs in specific 

languages by visually assembling blocks representing the logic of the program rather than 

manually writing the code in a specific language. This has been used as a teaching tool to lower 

the learning curve for programming, specifically for younger audiences interested in 

Figure 6.5: A generated ACI is shown in a confirmation dialog of the editor. 
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programming. There are a few examples of visual programming toolkits that provide a 

framework for building these programs, such as MIT’s Scratch (Resnick et al. 2009) and 

Google’s Blockly (Pasternak, Fenichel, and Marshall, 2017).  

One specific use case of these tools is configuration (Pasternak et al., 2017). “Blockly is a 

library from Google for building beginner-friendly block-based programming languages” 

(Google Developers, 2019). 

As a developer tool, Blockly provides a workspace for configuring and creating blocks that can 

be used in other Blockly applications and generating the code for them.1 The tool has a “fixed” 

block with predefined inputs. Rather than the generated information being a program for 

 

1 https://blockly-demo.appspot.com/static/demos/blockfactory/index.html 
 

Figure 6.6: Block Factory demo from Googles Blockly 

https://blockly-demo.appspot.com/static/demos/blockfactory/index.html
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execution, the generated code is the definition of a “Block” usable in other programs that support 

Blockly. 

A similar application could further simplify the process of authoring an ACI. In a similar 

manner, a toolkit such as Blockly provides visual feedback and validation of data entry while 

also providing an intuitive “non-technical” interface for defining an ACI. The toolkit is highly 

extensible; to apply this concept to the creation of ACIs would require the following: 

• Creating a web page to host the visual programming canvas. 

• Defining blocks representing the configurable properties. 

• Defining validation for the connectivity of the blocks. 

• Defining a generator for converting blocks to the ACI format in JSON for submission 

to the registration service. 
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.

Figure 6.7: Blockly workspace for creating ACIs using visual programming. 
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Figure 6.8: Using Blockly to configure ACIs. 

Figure 6.8 shows an ACI defined by placing blocks in the appropriate slots of a main 

“ACI” block. The input on these blocks is simple text entry and drop-down box selection. 

Generation of UUIDs for entries is not displayed on the blocks because that information is not 

necessarily relevant to the user. The system is only concerned with defining the ACI and 

therefore the UUIDs can be left to be generated when the blocks are converted to JSON. 
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Figure 6.9: ACI generated for a model using a visual programming framework, Blockly. 

6.5 Registering an ACI for a Web Enabled Model 

With an ACI generated for a web-enabled model, the final step in contributing to the 

design environment is to register the web-enabled model with the design environment. As 

mentioned earlier in this work, the Registration Service is available for this. By submitting the 

generated ACI to the service, the defined protocol can be checked for the availability of the 

registered model. After successful validation, the specification status is changed to 

"SUBMITTED," and any remaining verification of the model and its interaction can be 

performed as deemed necessary by the maintainers of the design environment. 
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CHAPTER 7.    AUTONOMOUS SYSTEM INTEGRATION USING ACI’S 

7.1 Overview 

Representing a real-world system by modeling and composing subsystems requires the 

user to design the orchestration of the execution of those subsystems and the exchange of the 

data constituting the results of the executions. Consequently, an application performing the 

orchestration of the execution should facilitate the execution of these subsystems as efficiently as 

possible while allowing the user of the application to express the intent of the design efficiently. 

The application should not require the user to create unfamiliar representations of the system 

model. The ACI and the enhancements of the FMS outlined in this work, provide the basis for 

such an application. As such, a prototype implementation of a web application was developed. 

The web application was written using modern HTML5 technologies for the components 

described. Once deployed, systems of varying complexity were designed and executed within the 

enhanced design environment leveraging the ACI and enterprise integration patterns 

incorporated in the messaging system of the FMS architecture to verify the effectiveness of the 

implementation.  

7.2 Architectural Considerations for Subsystem Models as Microservices in a Cloud 

Environment 

One advantage of representing subsystem models as microservices is that it provides the 

flexibility to design and develop the implementation of the model as necessitated by the 

developer. Developers creating new applications are easily afforded flexibility and freedom of 

design; however, to transition from traditional monolithic architectures to a microservices 

architecture requires careful consideration and planning (Balalaie, Heydarnoori, and Jamshidi, 

2016). It is not just a matter of running the application on a server on the web or harvesting the 

algorithms from existing applications and putting them behind a REST API; the context of the 
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model usage needs to be understood. A careful analysis of the dependencies required to run the 

model in a stateless manner successfully should occur so that the transition to a microservice 

architecture ensures the execution of the model is purely independent of the existence of any 

external application or data source. Data, once accessible within the application running under 

the same process, needs to be available through separate microservices.  Communication and 

information exchange between the model and the data is bound to the APIs of the services rather 

than the state of the implementation of the model. The microservice providing access to the data 

can express the form of the data in a fashion appropriate for external consumption, independent 

of the underlying storage mechanism. Similarly, if there are changes to the underlying data 

storage implementation (new choice of the storage provider, for example), external services that 

consume the data, are not affected by changes such as migrations of the internal data storage. 

Another consideration is that of scale. For a traditional monolithic application restricted 

by the capacity of the resources available on the host server, the only means of handling more 

substantial data or more load is to scale vertically, i.e., spend money on more hardware (RAM, 

CPU, GPU) capable of handling the load; which is neither maintainable nor cost-effective 

considering the fluctuation in demand on an application. Architectures should scale horizontally, 

meaning, the application addresses the additional stress of more load by adding more instances 

of the microservices to accommodate the increase in demand. As demand decreases, 

microservices can be removed to control costs.  
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Consider the "energy need" system model diagram in Figure 7.1, where MacCarty (2015) 

developed this subsystem as part of a model used to evaluate the impact and practicality of 

replacing traditional third-world energy devices, such as three stone cookstoves, with more 

efficient devices that were deemed less harmful to the villagers and their environment. The 

complexity of the analysis is that while modern devices are more efficient than traditional energy 

sources, the increase in expense for fuel, the practicality of their reuse and the time spent 

learning to use the new devices could make their adoption less than ideal for the people actually 

using them in their everyday life (MacCarty, 2015). This design of the system model begins by 

Figure 7.1: System model diagram of the energy needs subsystem of 

a third world village (MacCarty, 2015). 
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loading data into tables that represent the various energy services or tasks to run comparative 

analysis on the various devices and their related properties, such as efficiency, used to perform 

the applicable tasks, and the fuels used to operate the devices. Based on a user selection of tasks 

to compare, each subsystem model within the system model consumes an aggregation of valid 

combinations of tasks, devices, and fuels. Each model then calculates its output for each 

combination of task, device, and fuel to assemble into the resulting energy need table. This table 

is then passed on to the next system; the technology needs model. The migration of this system 

to a microservices architecture presents a couple of challenges. Firstly, from the description 

above, it can be seen that the design of each of the modeled subsystem implementations assumed 

the existence of a table that could be iterated over to acquire data specific to the task, device, and 

fuel. While not an incorrect assumption, in a microservices architecture, this is against the 

principle of scale as well as isolation (Newman, 2015). If for some reason, the tables were not 

accessible within the memory space of the system, all of the models would unusable. Secondly, 

without the tables, the models are not reusable. Consider a system model used in a climate 

change study in which the designer would like to use the climate and health hazard models of the 

energy needs system (MacCarty, 2015). Their use in a microservice architecture without 

modifications would require that the new application also provide the model's access to the input 

tables. Similarly, the introduction of new fuels and or devices into the tables forces all models 

that accessed these tables, wherever accessed, to update to account for this change accordingly.  
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 Lastly, the current implementation of the models assumes that the combination of tasks, 

devices, and fuels all fit within the address space of a single process. Although the assumption is 

sufficient for the analysis in the work of MacCarty (2015),  consider the case of this model 

incorporated into a system model where data is collected from various villages around the world, 

and the number of tasks to be analyzed is increased by an order of magnitude. The current design 

of the models would suffer from CPU bottlenecks iterating over the tables.   

For this work, the energy needs subsystem was analyzed and redesigned using a 

microservices architecture. The main algorithms were the same except, instead of each model 

calculating their output for all the combinations of tasks, devices, and fuels, each model's input 

was changed to calculate a single combination of task, device, and fuel so that the entire system 

would scale based on the number of individual combinations. As part of this redesign, it became 

apparent that the tables are specific to the application, i.e., village energy, and as such were 

Figure 7.2: Microservices architecture for subsystem models calculating Annual Energy 

Consumption portion of the energy sub need system model for a single chosen task, device and 

fuel combination. 
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extracted and provided from their microservice models to allow them to be accessed 

independently from the energy needs subsystem models.   

As an example of rearchitecting the village energy models following microservices 

architecture principals, Figure 7.2 depicts a simplified application architecture in which there are 

three components: the client application which provides a user interface to drive the application; 

a set of microservices providing access to the data for the tables of devices, tasks, and fuel; and 

the design environment responsible for orchestrating the execution of the modeled subsystem. 

Figure 7.2 only shows a portion of the energy needs subsystem to highlight the separation of the 

data from the individual microservices. It also reveals that in this migration of the models to a 

distributed cloud architecture, new supporting microservices may need to be developed, such as 

the “fuel used” microservice. 

The models in the original work of MacCarty (2015) defined implicit relationships with 

the tables encapsulated within each model. Each model previously had access to all the tables; 

calculating the “fuel used” based on the device type was simply a lookup of the device table 

cross-referenced with the fuel table. 

Moving the selection of the task and the device out of the models to make them stateless 

means selection is handled outside of the models, and the result is passed into any downstream 

model requiring it as input. Creating a separate model that takes as its input a “device” and 

performing the lookup of the fuel used is a simple model that satisfies this requirement, 

providing a clean separation between the device selection and the fuel used. As of this work, the 

information available for the fuel used is simply a lookup; however, if a more sophisticated  

implementation is required, a model or combination of models that adhere to the input of 

“device” output of “fuel used," can be substituted in place of the original “fuel used” 
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microservice. This new model would need to be registered as outlined in the previous chapter, 

and once validated, it would appear in the library of the design environment as an option for 

inclusion in the design.  

7.3 High Level Architecture of a Decentralized Design Environment 

Given a set of ACIs representing subsystems available to use as components in a system 

model design, a distributed application can be developed to allow a user to design and execute 

the digital representation of the system. Although the application design and development were 

not the focus of this research, the implementation aids in demonstrating the practical 

contributions of the research. 

Figure 7.3 depicts a high-level architecture of a prototypical system modeling and design 

environment. Due to the nature of the microservices developed in this research being web-

enabled, there is flexibility in the architecture requirements of the client application, with the 

Figure 7.3: Architecture of a decentralized design environment, that leverages microservices 

defined in this research for autonomous system integration. 
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only real restriction being proper access to the cloud hosting environment and services providing 

the functionality defined in this research.  The high-level architecture depicts four main client 

components interacting with the services outlined in this work, either directly or indirectly, as 

follows: 

• Subsystem library—A component that provides access to the available registered 

subsystem models and metadata information about them provided by their ACI by 

querying the ACI Registration Service. The subsystem representation of this component 

is left up to the developer of the client application, but the ACI has enough information 

available to give flexibility in these decisions. 

• Design Canvas—A component that is used to design system models by composing 

subsystem models that are available as determined by the Subsystem library. The Design 

Canvas makes requests to the Autonomous System Design Service to create strong 

couplings between subsystems as dictated by their ACIs. Overall system validation can 

be incorporated into the Design Canvas as this information is available from the 

Autonomous System Design Service for any particular system model. The choices of 

canvas interactions and the representations of the system and subsystem models are left 

up to the developer of the client application, but the ACI and the Autonomous System 

Design Service provide enough information to give flexibility in these decisions. 

• Submission—A component that is responsible for submitting system model designs to the 

FMS for execution. Due to the asynchronous design of the FMS (Suram et al. 2018), 

handling of the results is the responsibility of a different component. Here, the 

submission request will respond with a UUID to be used to look up the results when they 

are made available. Overall system validation can be incorporated into the Submission, as 
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this information is available from the Autonomous System Design Service for any 

particular system model. 

• Results Viewer—A component that is used to visualize the results of a system model 

execution. Due to the asynchronous nature of the FMS (Suram et al., 2018), the client 

application should poll the FMS for a result of a submission using the UUID from the 

response of the corresponding submission request. The results will be in a form similar to 

that as defined by Suram et al. (2018) in that it will contain the workflow execution table 

(solver list) and the resulting parameters of the system execution. 

The remainder of this chapter will describe an implementation of the components of a 

web application and how the work presented in this research, mainly the ACI and the enhanced 

messaging system of the FMS were leveraged to create an initial implementation of the cyber-

physical system design environment inspired by the ideas of Bryden (2014). 

. 

7.4 Web Client Application 

Usage of the application is initialized by visiting the hosting web site and entering the 

location of the registered subsystems that the user would like to use for designing a system. As of 

Figure 7.4: Specifying the location of the repository of registered ACIs. 
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this work, there is only one valid location and a single set of subsystems available within the 

environment, as depicted in Figure 7.4; however, it is conceivable that the interface presented 

here could provide the user a choice of “categories” that could be selected from to initialize the 

catalog of the design environment. These types of user experience considerations are left for 

future research. Upon entering the design environment, the user is presented with a visual 

representation of curated ACIs representing the subsystems available for designing cyber-

physical systems. The ACIs are made available using the ACI Registration Service defined 

earlier in this work. As depicted in Figure 7.5, the library of subsystems is a simple grid-like 

display, in which the “name” field of each subsystem’s ACI is displayed along with a button that 

allows the user to see more of the detailed metadata as registered in the ACI. Information about 

each subsystem is available and accessible from within the application using the metadata 

information of the corresponding ACI. 

Figure 7.5: The library of available subsystems accessed by querying the ACI 

Repository Microservice. 
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 The most interactive component of the prototype application is the modeling/design 

canvas. The modeling/design canvas is the main work area of the application where the user 

assembles subsystems into an overall larger system model by defining connections between the 

models, “linking “them together. The application accesses the ACI and the supporting services 

defined earlier in this work to guide the user throughout the design process in several ways.  

 

 

Figure 7.7: Information of subsystems available to the user for composing systems by 

querying the ACI Registration Microservice. 

Figure 7.6: The system modeling/design canvas. 
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Firstly, the system can leverage the information provided by the ACIs of the subsystems 

to preventing incompatible linkages between models. A parameter validation algorithm can 

quickly evaluate the semantics of the parameters involved in the linking, providing immediate 

feedback on the validity of the connections. The microservice takes as input a pair of parameters 

and evaluates if they are compatible based on the “typeName” field defined and a comparison of 

the “unit” and “quantity” fields defined by the ACIs. The sophistication of the validation 

algorithm implementation is not the focus of this research but by incorporating an 

implementation of the algorithm within a microservice, the validation can easily be enhanced in 

its sophistication by updating the existing implementation or creating an entirely new 

microservice and deploying it alongside the existing implementation, updating the main 

application at the discretion of the developers of the application. 

Secondly, in the event of an incompatible coupling, the environment can also leverage 

the parameter information declared in the ACIs of the subsystems to recommend a more suitable 

option for linking between subsystems based on models registered in the environment and the 

state of those models already added to the system. As with the validation service, the 

recommendation service developed in this work is a microservice that can easily be improved 

upon by providing a new implementation and updating the application to access it when ready. 

Lastly, as discussed earlier, the integration and orchestration execution of these 

subcomponents of the model system is completely handled by the design environment. As a 

designer is iteratively exploring a system design, the “connectivity” changes of the subsystems 

correspond to changes in the integration of the underlying subsystem models. The Autonomous 

System Design Service will validate these changes by inspecting the ACIs of the subsystems, 

ensuring a viable execution graph of the subsystems can be derived. This graph can then be 
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interpreted as a system integration of the involved subsystems. Combined with the incorporation 

of enterprise integration patterns to the messaging system of the FMS, the design environment 

can handle arbitrarily complex system designs without intervention from the user.  

Figure 7.6 depicts a simple system modeled on the Design Canvas of the web client. The 

model is composed of a model that provides a random decimal number, a model that provides a 

random whole number and a model that adds its two inputs together. 

7.5 Desktop Client Application 

As stated earlier, interfacing with the design environment and the new services for 

autonomous system model design is not restricted to web applications. A desktop application 

with similar functionality can interact with the autonomous service and the FMS. The following 

images are of an analogous desktop client developed using the same services as the web client 

described in the previous section. 

Figure 7.6: A system model composed of three models: a) Float Source a subsystem that 

generates a float value; b) Integer Source, a subsystem that generates an integer value; and c) 

Addition, a subsystem that computes the sum total of its inputs. 
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Figure 7.8: Desktop client application component allowing the user to specify the location of the 

ACI Repository. 

 

 

Figure 7.9: Desktop version of the modeling/design environment with the same “Addition” 

model as described in Figure 6.7. 
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Figure 7.10: Annual energy consumption model of Figure 6.2, modeled and designed in the 

desktop client. 
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Figure 7.11: Results retrieved from within a desktop client application interfacing with the FMS 

and the autonomous system modeling/design services. 
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CHAPTER 8.    CONCLUSIONS AND FUTURE WORK 

8.1 Overview 

This chapter summarizes the research presented in this dissertation and the impacts of the 

work. The concluding section is a discussion of future work to consider for further improvements 

and analysis.  

8.2 Conclusion 

The work presented in this dissertation is aimed at furthering the progress of modernizing 

the engineering modeling/design process. Prior research in this area demonstrated that the overall 

modeling/design process could benefit from leveraging cloud technologies but not without 

introducing new challenges, particularly in the area of system integration. This research details 

how system integration is a common concern in traditional distributed applications but presents a 

unique challenge to an engineering design application due to the exploratory nature of the design 

process. System integration needs to be dynamic in this case and handled by the application, i.e., 

autonomous, rather than the developer of the application. This research provides a solution by 

expanding on the work of Bryden (2014) and Suram et al. (2018) by developing the following 

components: 

• Definition of an application coupling interface (ACI), an abstraction of the execution and 

protocols of distributed applications that provide the basis for automation of integration 

distributed systems. By creating ACIs for microservices representing individual disparate 

subsystems, the subsystems can be intuitively composed together to constitute a complex 

system model in a modern engineering design environment. 

• Subsystem execution order can be derived using the information provided by the ACI and 

a specified connection between them to construct a “directed graph like” execution of the 
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subsystems: traversing the graph structure breadth first, adjacent nodes in the graph 

corresponding to a level in the graph and, achieving asynchronous execution of the 

subsystems. 

• Incorporation of enterprise integration patterns that leverage the protocol and protocol 

details of the ACI to provide dynamic routing between distributed subsystem models and 

asynchronous execution paradigms necessary to orchestrate the execution of complex 

system models. 

• Demonstration of authoring tools and contributing web-enabled models to a repository 

accessible to the design environment. 

• Demonstration of iterative design and execution of a system composed of decentralized 

web-enabled subsystem models. 

The schema of the ACI was developed independently of any particular design environment. 

In this work, it was shown to provide a means for the developer of the subsystem model to 

contribute their work in a manner that is composable with other subsystems within the 

modeling/design environment. The ACI also provides the intelligence about the subsystems to 

the environment of their composition and execution this is sufficient for automation of the 

validation and orchestration of the subsystems, decreasing the burden associated with system 

integration for a system modeler/designer. 

8.3 Future Work 

8.3.1 Self organization 

One of the end goals in the vision of Bryden (2014) is the concept of self-organizing 

systems. The idea is that by collecting enough information about similar systems over time, a 

system could analyze the historical data and leverage it to accept and properly place a new 

component introduced into the system or reject it altogether without human intervention. While 
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an increase in the size and complexity of the digital representation of these cyber-physical 

systems ideally provides a higher quality of analysis and insight into the physical systems, the 

cost of maintenance and improving the system increases, so much so that the need for 

automatically organizing, editing, and assembling subcomponents into the system is required. 

The ACI already provides a minimal level of automation at the system integration level, but 

more investigation should be done to determine whether an ACI can be leveraged to facilitate 

some aspect of the self-organization of systems.  

8.3.2 Breadth of systems model domains 

The engineering modeling/design environment presented by Suram et al. (2018), allowed 

defining a system in which derived workflow execution could be run iteratively by defining a 

criterion for completion (Suram, 2016). While this work did not explicitly address this, the 

changes developed in the messaging system of the environment do not preclude the ability to 

execute iteratively. Further work could include the investigation of additional integration patterns 

and possible modifications of the completeness condition of the aggregator pattern to incorporate 

the concept of “iterations” within the levels of execution as well as for the entire workflow.  

Similarly, the work defined in this research does not exclude systems models that vary in the 

temporal or spatial domain; however, this research did not investigate systems with these 

requirements.  

8.3.3 Additional protocols for endpoints and routing 

In this work, a single web protocol, queue-based messaging, was implemented for 

extension of the environment; however, the definition of the ACI and its protocol details are 

flexible enough to accommodate other protocols. Chapter 3 described the preliminary steps for 

adding support for other protocols to the messaging system presented in this work, and further 

investigation should be done to provide implementations supporting popular microservice 
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protocols such as Representational State Transfer (REST). Once the protocol is supported, 

investigation in providing supporting tools such as model templates that ease cloud resource 

provisioning and integration to encourage contribution to the environment further.  

8.3.4 Constraint verification 

In this work, definitions for constraints on parameters of inputs to subsystems were 

outlined; however, implementations enforcing these constraints were minimally investigated, 

only enough to validate that the ACI definition accommodates the specification of constraints. 

Further investigation of constraint evaluation at runtime and incorporation as part of the 

validation during the registration process is needed. 

8.3.5 Human computer interaction 

In this work, the implementation of a microservice to simplify building user 

representations of systems has been developed. However, the intent was limited to the scope of 

this research. Leveraging the information of the ACI lessens the interactions and requirements of 

the user; however, the investigation of intuitive tools and the associated interactions for a user of 

a modern engineering modeling/design environment should be done. In traditional engineering 

modeling/design environment user interfaces, the designer interacts with a palette of models of 

which they can drag and drop onto a canvas, which constitutes the subsystems composing the 

model. Once on the canvas, the interaction is typically that of “linking” to define connectivity or 

data exchange between subsystems. This work implemented this type of interface; however, 

research in user interaction of engineering modeling/design applications should be performed. 

The information provided by the ACI could be leveraged to develop tools that aid in providing a 

more intuitive user experience, such as a recommender system. 
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8.3.6 Registration process  

In this work, while the microservices were all developed as separate artifacts, these 

artifacts were deployed in a cloud hosting environment that allowed for unrestricted 

communication with the messaging system of the engineering design environment. Orchestration 

of the deployment and provisioning of the modeled subsystems as microservices was not the 

focus of this research and remains for future investigation. An ACI is akin to a “contract,” which 

may lead to interesting consumer-driven testing paradigms integrated into the submission 

process and validation, yielding automation to validate the execution of the protocols and 

protocol details upon submission of a new ACI. 

8.3.7 Transient workflow execution information 

In this work, this system did not persist data calculated during the construction and 

execution of the workflow, such as the directed graph, the “level to subsystem relational table” 

described in Chapter 4, or any intermediate subsystem execution values. The system sustained 

intermediate results during the life of the execution in a cache. However, in the context of spatial 

and temporal varying domains, this will be more critical. Ideally, these could be stored in the 

namespace, as described by Suram et al. (2018) for future reference and troubleshooting 

purposes.  

8.3.8 Parameters 

One of the key aspects of the ACI and its ability to provide autonomous linking of 

subsystems lies in the definition of its parameters. During this research, where the development 

and creation of ACIs for subsystems were relatively controlled, there was a high likelihood that 

parameters that were intended to be coupled would be successfully coupled; however, in an 

environment with less regulation and restrictions, values for parameter quantities, types, unit, etc. 

can be ambiguous. This work referred to enforcing parameters and constraint definitions via the 
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specification validation and editor tools; however, there are aspects of this that weren't 

investigated in this work. An example is that there isn't a formal system of valid values for 

“typeNames.” In this work, “typeNames” were restricted to a known set; however, this may not 

be applicable or may be too flexible to reliably allow the system to determine if subsystems can 

be linked. 
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APPENDIX A.    CONSTRAINTS MICROSERVICE API  

Endpoints 

BasicErrorController 

errorUsingDELETE 

DELETE /error 

error 

Description 

Parameters 

Return Type 

??? 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK Map[???] 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

errorUsingGET 

GET /error 

error 

Description 

Parameters 

Return Type 

??? 
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Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK Map[???] 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

errorUsingHEAD 

HEAD /error 

error 

Description 

Parameters 

Return Type 

??? 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK Map[???] 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

errorUsingOPTIONS 

OPTIONS /error 

error 
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Description 

Parameters 

Return Type 

??? 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK Map[???] 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

errorUsingPATCH 

PATCH /error 

error 

Description 

Parameters 

Return Type 

??? 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK Map[???] 

204 No Content <<>> 

401 Unauthorized <<>> 
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403 Forbidden <<>> 

Samples 

errorUsingPOST 

POST /error 

error 

Description 

Parameters 

Return Type 

??? 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK Map[???] 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

errorUsingPUT 

PUT /error 

error 

Description 

Parameters 

Return Type 

??? 
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Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK Map[???] 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

ConstraintController 

validateUsingPOST 

POST /constraints/validate 

validate 

Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

request request  ConstraintValidationRequest X   

Return Type 

 ConstraintValidationResponse 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  ConstraintValidationResponse 

201 Created <<>> 

401 Unauthorized <<>> 
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403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

verifyExpressionUsingPOST 

POST /constraints/verifyExpression 

verifyExpression 

Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

request request  ConstraintValidationRequest X   

Return Type 

 ExpressionValidationResponse 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  ExpressionValidationResponse 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

Models 

ConstraintValidationRequest ConstraintValidationRequest 

Field Name Required Type Description Format 

expression  String  _ 

variableBindings  List of  ConstraintVariable  _ 
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ConstraintValidationResponse ConstraintValidationResponse 

Field Name Required Type Description Format 

evaluation  String  Enum: _ VALID, VIOLATION, _ 

expression  String  _ 

result  String  _ 

ConstraintVariable ConstraintVariable 

Field Name Required Type Description Format 

expressionVariableName  String  _ 

parameterType  String  _ 

valueAsString  String  _ 

ExpressionValidationResponse ExpressionValidationResponse 

Field Name Required Type Description Format 

evalution  String  Enum: _ VALID, INVALID, _ 

validationMessage  String  _ 

ModelAndView ModelAndView 

Field 
Name 

Require
d 

Type Descriptio
n 

Format 

empty  Boolea

n 

 _ 

model  Object  _ 

modelMa

p 

 Map of 

??? 

 _ 

reference  Boolea

n 

 _ 

status  String  Enum: _ 100 CONTINUE, 101 

SWITCHING_PROTOCOLS, 102 

PROCESSING, 103 CHECKPOINT, 200 

OK, 201 CREATED, 202 ACCEPTED, 203 

NON_AUTHORITATIVE_INFORMATION

, 204 NO_CONTENT, 205 

RESET_CONTENT, 206 

PARTIAL_CONTENT, 207 

MULTI_STATUS, 208 

ALREADY_REPORTED, 226 IM_USED, 

300 MULTIPLE_CHOICES, 301 

MOVED_PERMANENTLY, 302 FOUND, 

302 MOVED_TEMPORARILY, 303 

SEE_OTHER, 304 NOT_MODIFIED, 305 

USE_PROXY, 307 
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TEMPORARY_REDIRECT, 308 

PERMANENT_REDIRECT, 400 

BAD_REQUEST, 401 UNAUTHORIZED, 

402 PAYMENT_REQUIRED, 403 

FORBIDDEN, 404 NOT_FOUND, 405 

METHOD_NOT_ALLOWED, 406 

NOT_ACCEPTABLE, 407 

PROXY_AUTHENTICATION_REQUIRED

, 408 REQUEST_TIMEOUT, 409 

CONFLICT, 410 GONE, 411 

LENGTH_REQUIRED, 412 

PRECONDITION_FAILED, 413 

PAYLOAD_TOO_LARGE, 413 

REQUEST_ENTITY_TOO_LARGE, 414 

URI_TOO_LONG, 414 

REQUEST_URI_TOO_LONG, 415 

UNSUPPORTED_MEDIA_TYPE, 416 

REQUESTED_RANGE_NOT_SATISFIABL

E, 417 EXPECTATION_FAILED, 418 

I_AM_A_TEAPOT, 419 

INSUFFICIENT_SPACE_ON_RESOURCE, 

420 METHOD_FAILURE, 421 

DESTINATION_LOCKED, 422 

UNPROCESSABLE_ENTITY, 423 

LOCKED, 424 FAILED_DEPENDENCY, 

426 UPGRADE_REQUIRED, 428 

PRECONDITION_REQUIRED, 429 

TOO_MANY_REQUESTS, 431 

REQUEST_HEADER_FIELDS_TOO_LAR

GE, 451 

UNAVAILABLE_FOR_LEGAL_REASONS

, 500 INTERNAL_SERVER_ERROR, 501 

NOT_IMPLEMENTED, 502 

BAD_GATEWAY, 503 

SERVICE_UNAVAILABLE, 504 

GATEWAY_TIMEOUT, 505 

HTTP_VERSION_NOT_SUPPORTED, 506 

VARIANT_ALSO_NEGOTIATES, 507 

INSUFFICIENT_STORAGE, 508 

LOOP_DETECTED, 509 

BANDWIDTH_LIMIT_EXCEEDED, 510 

NOT_EXTENDED, 511 

NETWORK_AUTHENTICATION_REQUI

RED, _ 

view  View  _ 
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viewNam

e 

 String  _ 

View View 

Field Name Required Type Description Format 

contentType  String  _ 
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APPENDIX B.    PROTOCOLS MICROSERVICE API DOCUMENTATION 

Endpoints 

BasicErrorController 

errorHtmlUsingDELETE 

DELETE /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

errorHtmlUsingGET 

GET /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 
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Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

errorHtmlUsingHEAD 

HEAD /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

errorHtmlUsingOPTIONS 

OPTIONS /error 

errorHtml 
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Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

errorHtmlUsingPATCH 

PATCH /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 
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Samples 

errorHtmlUsingPOST 

POST /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

errorHtmlUsingPUT 

PUT /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 
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Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

ProtocolController 

availableProtocolsUsingGET 

GET /protocols 

availableProtocols 

Description 

Parameters 

Return Type 

array[ Protocol] 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK List[ Protocol] 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

verifyProtocolUsingPOST 

POST /protocols/verify 

verifyProtocol 
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Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

request request  Protocol X   

Return Type 

 ProtocolVerifyResponse 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  ProtocolVerifyResponse 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

Models 

ModelAndView ModelAndView 

Field 
Name 

Require
d Type 

Descriptio
n Format 

empty  Boolea

n 

 _ 

model  Object  _ 

modelMa

p 

 Map of 

??? 

 _ 

reference  Boolea

n 

 _ 

status  String  Enum: _ 100 CONTINUE, 101 

SWITCHING_PROTOCOLS, 102 

PROCESSING, 103 CHECKPOINT, 200 OK, 

201 CREATED, 202 ACCEPTED, 203 

NON_AUTHORITATIVE_INFORMATION, 

204 NO_CONTENT, 205 RESET_CONTENT, 

206 PARTIAL_CONTENT, 207 
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MULTI_STATUS, 208 

ALREADY_REPORTED, 226 IM_USED, 300 

MULTIPLE_CHOICES, 301 

MOVED_PERMANENTLY, 302 FOUND, 

302 MOVED_TEMPORARILY, 303 

SEE_OTHER, 304 NOT_MODIFIED, 305 

USE_PROXY, 307 

TEMPORARY_REDIRECT, 308 

PERMANENT_REDIRECT, 400 

BAD_REQUEST, 401 UNAUTHORIZED, 

402 PAYMENT_REQUIRED, 403 

FORBIDDEN, 404 NOT_FOUND, 405 

METHOD_NOT_ALLOWED, 406 

NOT_ACCEPTABLE, 407 

PROXY_AUTHENTICATION_REQUIRED, 

408 REQUEST_TIMEOUT, 409 CONFLICT, 

410 GONE, 411 LENGTH_REQUIRED, 412 

PRECONDITION_FAILED, 413 

PAYLOAD_TOO_LARGE, 413 

REQUEST_ENTITY_TOO_LARGE, 414 

URI_TOO_LONG, 414 

REQUEST_URI_TOO_LONG, 415 

UNSUPPORTED_MEDIA_TYPE, 416 

REQUESTED_RANGE_NOT_SATISFIABLE

, 417 EXPECTATION_FAILED, 418 

I_AM_A_TEAPOT, 419 

INSUFFICIENT_SPACE_ON_RESOURCE, 

420 METHOD_FAILURE, 421 

DESTINATION_LOCKED, 422 

UNPROCESSABLE_ENTITY, 423 LOCKED, 

424 FAILED_DEPENDENCY, 426 

UPGRADE_REQUIRED, 428 

PRECONDITION_REQUIRED, 429 

TOO_MANY_REQUESTS, 431 

REQUEST_HEADER_FIELDS_TOO_LARG

E, 451 

UNAVAILABLE_FOR_LEGAL_REASONS, 

500 INTERNAL_SERVER_ERROR, 501 

NOT_IMPLEMENTED, 502 

BAD_GATEWAY, 503 

SERVICE_UNAVAILABLE, 504 

GATEWAY_TIMEOUT, 505 

HTTP_VERSION_NOT_SUPPORTED, 506 

VARIANT_ALSO_NEGOTIATES, 507 

INSUFFICIENT_STORAGE, 508 

LOOP_DETECTED, 509 
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BANDWIDTH_LIMIT_EXCEEDED, 510 

NOT_EXTENDED, 511 

NETWORK_AUTHENTICATION_REQUIRE

D, _ 

view  View  _ 

viewNam

e 

 String  _ 

Protocol Protocol 

Field Name Required Type Description Format 

name  String  _ 

protocolDetails  Map of ???  _ 

protocolKeys  List of ???  _ 

ProtocolVerifyResponse ProtocolVerifyResponse 

Field Name Required Type Description Format 

message  String  _ 

validation  String  Enum: _ VALID, INVALID, _ 

View View 

Field Name Required Type Description Format 

contentType  String  _ 
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APPENDIX C.    WORKFLOW SERVICE API DOCUMENTATION 

Endpoints 

BasicErrorController 

errorHtmlUsingDELETE 

DELETE /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

errorHtmlUsingGET 

GET /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 
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Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

errorHtmlUsingHEAD 

HEAD /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

errorHtmlUsingOPTIONS 

OPTIONS /error 

errorHtml 
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Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

errorHtmlUsingPATCH 

PATCH /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 
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Samples 

errorHtmlUsingPOST 

POST /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

errorHtmlUsingPUT 

PUT /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 
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Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

ConnectionsController 

createWorkflowConnectionParameterBindingUsingPOST 

POST /connections/parameter/binding 

createWorkflowConnectionParameterBinding 

Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

request request  CreateConnectionParameterBindingRequest X   

Return Type 

 WorkflowParameterBinding 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  WorkflowParameterBinding 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 
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Samples 

createWorkflowConnectionUsingPOST 

POST /connections 

createWorkflowConnection 

Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

request request  CreateConnectionRequest X   

Return Type 

 WorkflowMCIConnection 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  WorkflowMCIConnection 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

getWorkflowConnectionsUsingGET 

GET /connections/{workflowId} 

getWorkflowConnections 

Description 

Parameters 

Path Parameters 

Name Description Required Default Pattern 

workflowId workflowId X null  
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Return Type 

array[ WorkflowMCIConnection] 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK List[ WorkflowMCIConnection] 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

removeWorkflowConnectionParameterBindingUsingDELETE 

DELETE /connections/parameter/binding 

removeWorkflowConnectionParameterBinding 

Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

request request  RemoveConnectionParameterBindingRequest X   

Return Type 

 WorkflowParameterBinding 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  WorkflowParameterBinding 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 
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Samples 

removeWorkflowConnectionUsingDELETE 

DELETE /connections 

removeWorkflowConnection 

Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

request request  RemoveConnectionRequest X   

Return Type 

 WorkflowMCIConnection 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  WorkflowMCIConnection 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

RecommenderController 

recommendAllConnectionsUsingGET 

GET 
/recommendations/{workflowId}/connections/{integrationSpecificationId} 

recommendAllConnections 
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Description 

Parameters 

Path Parameters 

Name Description Required Default Pattern 

integrationSpecificationId integrationSpecificationId X null  

workflowId workflowId X null  

Return Type 

 RecommendConnectionsResponse 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  RecommendConnectionsResponse 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

recommendConnectionParameterBindingsUsingGET 

GET /recommendations/{workflowId}/{connectionId} 

recommendConnectionParameterBindings 

Description 

Parameters 

Path Parameters 

Name Description Required Default Pattern 

connectionId connectionId X null  

workflowId workflowId X null  

Return Type 

 RecommendParametersResponse 

Content Type 

• / 
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Responses 

http response codes 

Code Message Datatype 

200 OK  RecommendParametersResponse 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

UserController 

addParameterToUserIntegrationSpecificationUsingPOST 

POST /userinput/parameter 

addParameterToUserIntegrationSpecification 

Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

request request  AddUserParameterRequest X   

Return Type 

 WorkflowMCI 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  WorkflowMCI 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 
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Samples 

removeParameterFromUserIntegrationSpecificationUsingDELETE 

DELETE /userinput/parameter 

removeParameterFromUserIntegrationSpecification 

Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

request request  RemoveUserParameterRequest X   

Return Type 

 WorkflowMCI 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  WorkflowMCI 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

setUserInputParameterUsingPOST 

POST /userinput/parameter/value 

setUserInputParameter 

Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

request request  SetUserParameterValueRequest X   
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Return Type 

 ParameterBinding 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  ParameterBinding 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

WorkflowController 

addModelCouplingInterfaceToWorkflowUsingPOST 

POST /workflows/integration/specification 

addModelCouplingInterfaceToWorkflow 

Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

request request  AddSpecificationRequest X   

Return Type 

 WorkflowMCI 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  WorkflowMCI 
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201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

createFlowUsingPOST 

POST /workflows 

createFlow 

Description 

Parameters 

Return Type 

 Flow 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  Flow 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

createUserIntegrationSpecificationForWorkflowUsingPOST 

POST /workflows/{workflowId}/userinput 

createUserIntegrationSpecificationForWorkflow 

Description 

Parameters 

Path Parameters 

Name Description Required Default Pattern 

workflowId workflowId X null  
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Return Type 

 WorkflowMCI 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  WorkflowMCI 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

deleteModelCouplingInterfaceFromWorkflowUsingDELETE 

DELETE /workflows/integration/specification 

deleteModelCouplingInterfaceFromWorkflow 

Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

request request  RemoveSpecificationRequest X   

Return Type 

 WorkflowMCI 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  WorkflowMCI 

204 No Content <<>> 

401 Unauthorized <<>> 
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403 Forbidden <<>> 

Samples 

getFlowUsingGET 

GET /workflows/{workflowId} 

getFlow 

Description 

Parameters 

Path Parameters 

Name Description Required Default Pattern 

workflowId workflowId X null  

Return Type 

 Flow 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  Flow 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

getFlowsUsingGET 

GET /workflows 

getFlows 

Description 

Parameters 

Return Type 

??? 
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Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK List[???] 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

getWorkflowIntegrationSpecificationsUsingGET 

GET /workflows/{workflowId}/integration/specifications 

getWorkflowIntegrationSpecifications 

Description 

Parameters 

Path Parameters 

Name Description Required Default Pattern 

workflowId workflowId X null  

Return Type 

array[ WorkflowMCI] 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK List[ WorkflowMCI] 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 
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Samples 

persistWorkflowUsingPOST 

POST /workflows/{workflowId}/persist 

persistWorkflow 

Description 

Parameters 

Path Parameters 

Name Description Required Default Pattern 

workflowId workflowId X null  

Return Type 

 PersistWorkflowResponse 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  PersistWorkflowResponse 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

validateWorkflowUsingGET 

GET /workflows/{workflowId}/validate 

validateWorkflow 

Description 

Parameters 

Path Parameters 

Name Description Required Default Pattern 

workflowId workflowId X null  
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Return Type 

 WorkflowValidationResponse 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  WorkflowValidationResponse 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

Models 

AddSpecificationRequest AddSpecificationRequest 

Field Name Required Type Description Format 

integrationSpecification  ModelCouplingInterface  _ 

workflowId  UUID  uuid _ 

AddUserParameterRequest AddUserParameterRequest 

Field Name Required Type Description Format 

connectionId  UUID  uuid _ 

socketMCI  UUID  uuid _ 

socketParameterId  UUID  uuid _ 

userMCIAsPlug  UUID  uuid _ 

workflowId  UUID  uuid _ 

Constraint Constraint 

Field Name Required Type Description Format 

expression  String  _ 

expressionVariable  String  _ 

id  String  _ 

parameterId  UUID  uuid _ 

uid  UUID  uuid _ 

CreateConnectionParameterBindingRequest 

CreateConnectionParameterBindingRequest 

Field Name Required Type Description Format 

connectionId  UUID  uuid _ 
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plugId  UUID  uuid _ 

socketId  UUID  uuid _ 

workflowId  UUID  uuid _ 

CreateConnectionRequest CreateConnectionRequest 

Field Name Required Type Description Format 

plugId  UUID  uuid _ 

socketId  UUID  uuid _ 

workflowId  UUID  uuid _ 

Flow Flow 

Field Name Required Type Description Format 

description  String  _ 

id  String  _ 

links  List of  FlowLinkage  _ 

name  String  _ 

tags  List of ???  _ 

uid  UUID  uuid _ 

FlowLinkage FlowLinkage 

Field Name Required Type Description Format 

id  String  _ 

plug  ParameterBinding  _ 

socket  ParameterBinding  _ 

uid  UUID  uuid _ 

InvalidIntegrationSpecificationInWorkflow 

InvalidIntegrationSpecificationInWorkflow 

Field Name Required Type Description Format 

invalidInputs  List of  WorkflowUnboundedParameter  _ 

workflowMCIId  UUID  uuid _ 

ModelAndView ModelAndView 

Field 
Name 

Require
d Type 

Descriptio
n Format 

empty  Boolea

n 

 _ 

model  Object  _ 

modelMa

p 

 Map of 

??? 

 _ 

reference  Boolea

n 

 _ 

status  String  Enum: _ 100 CONTINUE, 101 

SWITCHING_PROTOCOLS, 102 

PROCESSING, 103 CHECKPOINT, 200 OK, 



 

 

171 

201 CREATED, 202 ACCEPTED, 203 

NON_AUTHORITATIVE_INFORMATION, 

204 NO_CONTENT, 205 RESET_CONTENT, 

206 PARTIAL_CONTENT, 207 

MULTI_STATUS, 208 

ALREADY_REPORTED, 226 IM_USED, 300 

MULTIPLE_CHOICES, 301 

MOVED_PERMANENTLY, 302 FOUND, 

302 MOVED_TEMPORARILY, 303 

SEE_OTHER, 304 NOT_MODIFIED, 305 

USE_PROXY, 307 

TEMPORARY_REDIRECT, 308 

PERMANENT_REDIRECT, 400 

BAD_REQUEST, 401 UNAUTHORIZED, 

402 PAYMENT_REQUIRED, 403 

FORBIDDEN, 404 NOT_FOUND, 405 

METHOD_NOT_ALLOWED, 406 

NOT_ACCEPTABLE, 407 

PROXY_AUTHENTICATION_REQUIRED, 

408 REQUEST_TIMEOUT, 409 CONFLICT, 

410 GONE, 411 LENGTH_REQUIRED, 412 

PRECONDITION_FAILED, 413 

PAYLOAD_TOO_LARGE, 413 

REQUEST_ENTITY_TOO_LARGE, 414 

URI_TOO_LONG, 414 

REQUEST_URI_TOO_LONG, 415 

UNSUPPORTED_MEDIA_TYPE, 416 

REQUESTED_RANGE_NOT_SATISFIABLE

, 417 EXPECTATION_FAILED, 418 

I_AM_A_TEAPOT, 419 

INSUFFICIENT_SPACE_ON_RESOURCE, 

420 METHOD_FAILURE, 421 

DESTINATION_LOCKED, 422 

UNPROCESSABLE_ENTITY, 423 LOCKED, 

424 FAILED_DEPENDENCY, 426 

UPGRADE_REQUIRED, 428 

PRECONDITION_REQUIRED, 429 

TOO_MANY_REQUESTS, 431 

REQUEST_HEADER_FIELDS_TOO_LARG

E, 451 

UNAVAILABLE_FOR_LEGAL_REASONS, 

500 INTERNAL_SERVER_ERROR, 501 

NOT_IMPLEMENTED, 502 

BAD_GATEWAY, 503 

SERVICE_UNAVAILABLE, 504 

GATEWAY_TIMEOUT, 505 
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HTTP_VERSION_NOT_SUPPORTED, 506 

VARIANT_ALSO_NEGOTIATES, 507 

INSUFFICIENT_STORAGE, 508 

LOOP_DETECTED, 509 

BANDWIDTH_LIMIT_EXCEEDED, 510 

NOT_EXTENDED, 511 

NETWORK_AUTHENTICATION_REQUIRE

D, _ 

view  View  _ 

viewNam

e 

 String  _ 

ModelCouplingInterface ModelCouplingInterface 

Field Name Required Type Description Format 

constraints  List of  

Constraint 

 _ 

description  String  _ 

id  String  _ 

messageType  String  _ 

name  String  _ 

protocol  Protocol  _ 

protocolDetails  Map of ???  _ 

results  List of  

Parameter 

 _ 

status  String  Enum: _ SUBMITTED, 

ACCEPTED, REJECTED, _ 

tags  List of ???  _ 

uid  UUID  uuid _ 

variables  List of  

Parameter 

 _ 

version  String  _ 

Parameter Parameter 

Field Name Required Type Description Format 

id  String  _ 

name  String  _ 

quantity  String  _ 

typeName  String  _ 

uid  UUID  uuid _ 

unit  String  _ 

uri  String  _ 

ParameterBinding ParameterBinding 

Field Name Required Type Description Format 

bindingParameterId  UUID  uuid _ 

contract  ModelCouplingInterface  _ 
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id  String  _ 

mciFlowView  UUID  uuid _ 

uid  UUID  uuid _ 

value  Object  _ 

PersistWorkflowResponse PersistWorkflowResponse 

Field Name Required Type Description Format 

persistedFlow  String  _ 

workflowId  UUID  uuid _ 

Protocol Protocol 

Field Name Required Type Description Format 

protocolKeys  List of ???  _ 

RecommendConnectionsResponse RecommendConnectionsResponse 

Field Name Required Type Description Format 

asPlugRecommendations  List of  

WorkflowMCIConnection 

 _ 

asSocketRecommendations  List of  

WorkflowMCIConnection 

 _ 

workflowId  UUID  uuid _ 

workflowMCIId  UUID  uuid _ 

RecommendParametersResponse RecommendParametersResponse 

Field Name Required Type Description Format 

connectionId  UUID  uuid _ 

recommendations  List of  WorkflowParameterBinding  _ 

unboundParameters  List of  

WorkflowUnboundedParameter 

 _ 

workflowId  UUID  uuid _ 

RemoveConnectionParameterBindingRequest 

RemoveConnectionParameterBindingRequest 

Field Name Required Type Description Format 

connectionId  UUID  uuid _ 

plugId  UUID  uuid _ 

socketId  UUID  uuid _ 

workflowId  UUID  uuid _ 

RemoveConnectionRequest RemoveConnectionRequest 

Field Name Required Type Description Format 

connectionId  UUID  uuid _ 

workflowId  UUID  uuid _ 



 

 

174 

RemoveSpecificationRequest RemoveSpecificationRequest 

Field Name Required Type Description Format 

integrationSpecificationId  UUID  uuid _ 

workflowId  UUID  uuid _ 

RemoveUserParameterRequest RemoveUserParameterRequest 

Field Name Required Type Description Format 

parameterId  UUID  uuid _ 

userMCIId  UUID  uuid _ 

workflowId  UUID  uuid _ 

SetUserParameterValueRequest SetUserParameterValueRequest 

Field Name Required Type Description Format 

parameterId  UUID  uuid _ 

userMCIId  UUID  uuid _ 

value  Object  _ 

workflowId  UUID  uuid _ 

View View 

Field Name Required Type Description Format 

contentType  String  _ 

WorkflowMCI WorkflowMCI 

Field Name Required Type Description Format 

instanceId  UUID  uuid _ 

mci  ModelCouplingInterface  _ 

WorkflowMCIConnection WorkflowMCIConnection 

Field Name Required Type Description Format 

bindings  List of  WorkflowParameterBinding  _ 

plug  WorkflowMCI  _ 

socket  WorkflowMCI  _ 

uid  UUID  uuid _ 

workflowId  UUID  uuid _ 

WorkflowParameterBinding WorkflowParameterBinding 

Field Name Required Type Description Format 

connectionId  UUID  uuid _ 

plugParameter  Parameter  _ 

socketParameter  Parameter  _ 

WorkflowUnboundedParameter WorkflowUnboundedParameter 

Field Name Required Type Description Format 

unboundParameterId  UUID  uuid _ 
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workflowId  UUID  uuid _ 

workflowMCI  UUID  uuid _ 

WorkflowValidationResponse WorkflowValidationResponse 

Field Name Required Type Description Format 

invalidMCIs  List of  

InvalidIntegrationSpecificationInWorkflow 

 _ 

workflowId  UUID  uuid _ 

 

 Example usage 

import requests 

import json 

import argparse 

import os 

 

parser = argparse.ArgumentParser(description=“Create a new workflow”) 

parser.add_argument(“url”, help=“Endpoint of workflow-service”) 

 

 

def create_flow(workflow_service): 

    r = requests.post(workflow_service + “/workflows/”) 

    return r.json() 

 

 

def create_user_input(workflow_service, workflow_id): 

    r = requests.post(workflow_service + “/workflows/” + workflow_id + 

“/userinput”) 

    return r.json() 

 

 

def add_aci_to_workflow(workflow_service, workflow_id, aci): 

    aci_add_request = { 

        “integrationSpecification”: aci[“integrationSpecification”], 

        “workflowId”: workflow_id 

    } 

    r = requests.post(workflow_service + 

“/workflows/integration/specification”, json=aci_add_request) 

    return r.json() 

 

 

def add_connection_to_workflow(workflow_service, workflow_id, plug_id, 

socket_id): 

    add_connection_request = { 

        “plugId”: plug_id, 

        “socketId”: socket_id, 

        “workflowId”: workflow_id 

    } 

    r = requests.post(workflow_service + “/connections”, 

json=add_connection_request) 

    return r.json() 
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def create_user_parameter_binding(workflow_service, workflow_id, 

connection_id, socket_id, 

                                  socket_parameter_to_add_to_user, 

plug_id): 

    add_user_parameter = { 

        “connectionId”: connection_id, 

        “socketMCI”: socket_id, 

        “socketParameterId”: socket_parameter_to_add_to_user, 

        “userMCIAsPlug”: plug_id, 

        “workflowId”: workflow_id 

    } 

    r = requests.post(workflow_service + “/userinput/parameter”, 

json=add_user_parameter) 

    return r.json() 

 

 

def set_user_parameter_value(workflow_service, workflow_id, 

user_input_mci_id, 

                             parameter_id, value): 

    set_user_parameter = { 

        “parameterId”: parameter_id, 

        “userMCIId”: user_input_mci_id, 

        “value”: value, 

        “workflowId”: workflow_id 

    } 

    r = requests.post(workflow_service + “/userinput/parameter/value”, 

json=set_user_parameter) 

    return r.json() 

 

 

def connect_parameter_connection_between_acis(workflow_service, 

workflow_id, connection_id, plug_id, socket_id): 

    create_parameter_connection = { 

        “connectionId”: connection_id, 

        “plugId”: plug_id, 

        “socketId”: socket_id, 

        “workflowId”: workflow_id 

    } 

    r = requests.post(workflow_service + “/connections/parameter/binding”, 

json=create_parameter_connection) 

    return r.json() 

 

 

def recommend_parameter_bindings(workflow_service, workflow_id, 

connection_id): 

    r = requests.get(workflow_service + “/recommendations/” + workflow_id 

+ “/” + connection_id) 

    return r.json() 

 

 

def validate_workflow(workflow_service, workflow_id): 

    r = requests.get(workflow_service + “/workflows/” + workflow_id + 

“/validate”) 
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    return r.json() 

 

 

def persist_workflow(workflow_service, workflow_id): 

    r = requests.post(workflow_service + “/workflows/” + workflow_id + 

“/persist”) 

    return r.json() 

 

 

# def 

add_parameter_to_user_input(workflow_service,workflow_id,connection_id,) 

def load_aci_from_directory(directory, aci_file): 

    aci_file_location = os.path.join(directory, aci_file) 

 

    with open(aci_file_location, 'r') as aci_from_file: 

        data = json.load(aci_from_file) 

 

    return data 

 

 

# simulates what a user working through the UI would do to create a 

workflow  and the underlying APIS 

# in workflow-service that are used 

def main(): 

    args = parser.parse_args() 

    print(“Using Workflow Service endpoint:”, args.url) 

    workflow_service = args.url 

    # create new flow 

    workflow = create_flow(workflow_service) 

    print(“Created new workflow:”, json.dumps(workflow, indent=4)) 

    # add specification (ACI) 

    addition_aci = load_aci_from_directory(“./acis”, 

“addition.workflow.mci”) 

    print(“Adding ACIs to workflow...”) 

    addition_aci_instance = add_aci_to_workflow(workflow_service, 

workflow[“uid”], addition_aci) 

    print(“Add Addition:”, addition_aci_instance) 

    # create user input 

    user_input_aci = create_user_input(workflow_service, workflow[“uid”]) 

    print(“Created User input:”, user_input_aci) 

 

    # create connection between the two 

    print(“Creating connection between [{}] --> [{}] 

...”.format(user_input_aci[“mci”][“name”], 

                                                                 

addition_aci_instance[“mci”][“name”])) 

 

    connection = add_connection_to_workflow(workflow_service, 

workflow[“uid”], user_input_aci[“instanceId”], 

                                            

addition_aci_instance[“instanceId”]) 

    print(“Connection created... “, connection) 

 

    # validate workflow ...should be invalid at this point 
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    print(“Validating workflow”) 

    validation = validate_workflow(workflow_service, workflow[“uid”]) 

    is_valid = 1 if len(validation[“invalidMCIs”]) == 0 else 0 

    if not is_valid: 

        print(“Validation failed:”, validation) 

        # it failed because there is no connection to the additon aci 

        # lets create a user input parameter for it 

        # this is the list of invalid parameters for the addition aci 

        number_of_unbound_parameters_to_create_user_input_for = 1 

        for i in range(0, 

number_of_unbound_parameters_to_create_user_input_for): 

            invalid_input = 

validation[“invalidMCIs”][0][“invalidInputs”][0]  # theres only one 

available, addition 

            user_input_binding = 

create_user_parameter_binding(workflow_service, 

invalid_input[“workflowId”], 

                                                               

connection[“uid”], 

                                                               

invalid_input[“workflowMCI”], 

                                                               

invalid_input[“unboundParameterId”], 

                                                               

user_input_aci[“instanceId”]) 

            print(“Updated User Input With Parameter...”, 

user_input_binding) 

            # set the value for the user input...here its a float 

value...The UI should use ACI info to validate 

            # this input before setting it on the parameter binding 

            parameter_binding_with_value = 

set_user_parameter_value(workflow_service, workflow[“uid”], 

                                                                    

user_input_binding[“instanceId”], 

                                                                    

user_input_binding[“mci”][“variables”][0][“uid”], 

                                                                    [10, 

15.3]) 

            print(“Set User input value:”, parameter_binding_with_value) 

 

    # now see if there are recommendations for parameter bindings, ie map 

user input result to addition variables 

    recommendations = recommend_parameter_bindings(workflow_service, 

workflow[“uid”], connection[“uid”]) 

    print(“Recommendations...”, recommendations) 

 

    # use the recommendations ... these could be presented to the user to 

apply or not 

    # there could be multiple recommendations but here we know there is 

only one 

    print(“Applying recommendations...”) 

    for recommendation in recommendations[“recommendations”]: 
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        parameter_connection = 

connect_parameter_connection_between_acis(workflow_service, 

workflow[“uid”], 

                                                                         

recommendation[“connectionId”], 

                                                                         

recommendation[“plugParameter”][“uid”], 

                                                                         

recommendation[“socketParameter”][“uid”]) 

        print(“Created parameter connection...”, parameter_connection) 

 

    # validate workflow ...should be invalid at this point 

    print(“Validating workflow”) 

    validation = validate_workflow(workflow_service, workflow[“uid”]) 

    is_valid = 1 if len(validation[“invalidMCIs”]) == 0 else 0 

    # should be valid now 

    if not is_valid: 

        print(“Validation failed:”, validation) 

        raise RuntimeError(validation) 

 

    # save the workflow to the repo 

    persisted_workflow = persist_workflow(workflow_service, 

workflow[“uid”]) 

    print(“Saved workflow...”, json.dumps(persisted_workflow, indent=3)) 

 

    # todo submit this workflow which has user input 

    # todo still need interpret them on the FMS side 

    # right now submitting this would just stall out because 

    # the FMS is expecting user input to represent a model executing some 

code 

    # rather than just plucking it from somewhere 

 

 

if __name__ == “__main__”: 

    main() 
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APPENDIX D.    REGISTRATION MICROSERVICE API DOCUMENTATION 

Endpoints 

BasicErrorController 

errorHtmlUsingDELETE 

DELETE /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

errorHtmlUsingGET 

GET /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 
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Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

errorHtmlUsingHEAD 

HEAD /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

errorHtmlUsingOPTIONS 

OPTIONS /error 

errorHtml 
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Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

Samples 

errorHtmlUsingPATCH 

PATCH /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

204 No Content <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 
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Samples 

errorHtmlUsingPOST 

POST /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 

Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

errorHtmlUsingPUT 

PUT /error 

errorHtml 

Description 

Parameters 

Return Type 

 ModelAndView 

Content Type 

• text/html 
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Responses 

http response codes 

Code Message Datatype 

200 OK  ModelAndView 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 

Samples 

RegistrationController 

registerIntegrationSpecificationUsingPOST 

POST /integration/specification/register 

registerIntegrationSpecification 

Description 

Parameters 

Body Parameter 

Name Description Required Default Pattern 

mci mci  ModelCouplingInterface X   

Return Type 

 RegistrationResponse 

Content Type 

• / 

Responses 

http response codes 

Code Message Datatype 

200 OK  RegistrationResponse 

201 Created <<>> 

401 Unauthorized <<>> 

403 Forbidden <<>> 

404 Not Found <<>> 
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Samples 

Models 

Constraint Constraint 

Field Name Required Type Description Format 

expression  String  _ 

expressionVariable  String  _ 

id  String  _ 

parameterId  UUID  uuid _ 

uid  UUID  uuid _ 

ModelAndView ModelAndView 

Field 
Name 

Require
d Type 

Descriptio
n Format 

empty  Boolea

n 

 _ 

model  Object  _ 

modelMa

p 

 Map of 

??? 

 _ 

reference  Boolea

n 

 _ 

status  String  Enum: _ 100 CONTINUE, 101 

SWITCHING_PROTOCOLS, 102 

PROCESSING, 103 CHECKPOINT, 200 OK, 

201 CREATED, 202 ACCEPTED, 203 

NON_AUTHORITATIVE_INFORMATION, 

204 NO_CONTENT, 205 RESET_CONTENT, 

206 PARTIAL_CONTENT, 207 

MULTI_STATUS, 208 

ALREADY_REPORTED, 226 IM_USED, 300 

MULTIPLE_CHOICES, 301 

MOVED_PERMANENTLY, 302 FOUND, 

302 MOVED_TEMPORARILY, 303 

SEE_OTHER, 304 NOT_MODIFIED, 305 

USE_PROXY, 307 

TEMPORARY_REDIRECT, 308 

PERMANENT_REDIRECT, 400 

BAD_REQUEST, 401 UNAUTHORIZED, 

402 PAYMENT_REQUIRED, 403 

FORBIDDEN, 404 NOT_FOUND, 405 

METHOD_NOT_ALLOWED, 406 

NOT_ACCEPTABLE, 407 

PROXY_AUTHENTICATION_REQUIRED, 

408 REQUEST_TIMEOUT, 409 CONFLICT, 
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410 GONE, 411 LENGTH_REQUIRED, 412 

PRECONDITION_FAILED, 413 

PAYLOAD_TOO_LARGE, 413 

REQUEST_ENTITY_TOO_LARGE, 414 

URI_TOO_LONG, 414 

REQUEST_URI_TOO_LONG, 415 

UNSUPPORTED_MEDIA_TYPE, 416 

REQUESTED_RANGE_NOT_SATISFIABLE

, 417 EXPECTATION_FAILED, 418 

I_AM_A_TEAPOT, 419 

INSUFFICIENT_SPACE_ON_RESOURCE, 

420 METHOD_FAILURE, 421 

DESTINATION_LOCKED, 422 

UNPROCESSABLE_ENTITY, 423 LOCKED, 

424 FAILED_DEPENDENCY, 426 

UPGRADE_REQUIRED, 428 

PRECONDITION_REQUIRED, 429 

TOO_MANY_REQUESTS, 431 

REQUEST_HEADER_FIELDS_TOO_LARG

E, 451 

UNAVAILABLE_FOR_LEGAL_REASONS, 

500 INTERNAL_SERVER_ERROR, 501 

NOT_IMPLEMENTED, 502 

BAD_GATEWAY, 503 

SERVICE_UNAVAILABLE, 504 

GATEWAY_TIMEOUT, 505 

HTTP_VERSION_NOT_SUPPORTED, 506 

VARIANT_ALSO_NEGOTIATES, 507 

INSUFFICIENT_STORAGE, 508 

LOOP_DETECTED, 509 

BANDWIDTH_LIMIT_EXCEEDED, 510 

NOT_EXTENDED, 511 

NETWORK_AUTHENTICATION_REQUIRE

D, _ 

view  View  _ 

viewNam

e 

 String  _ 

ModelCouplingInterface ModelCouplingInterface 

Field Name Required Type Description Format 

constraints  List of  

Constraint 

 _ 

description  String  _ 

id  String  _ 

messageType  String  _ 

name  String  _ 
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protocol  Protocol  _ 

protocolDetails  Map of ???  _ 

results  List of  

Parameter 

 _ 

status  String  Enum: _ SUBMITTED, 

ACCEPTED, REJECTED, _ 

tags  List of ???  _ 

uid  UUID  uuid _ 

variables  List of  

Parameter 

 _ 

version  String  _ 

Parameter Parameter 

Field Name Required Type Description Format 

id  String  _ 

name  String  _ 

quantity  String  _ 

typeName  String  _ 

uid  UUID  uuid _ 

unit  String  _ 

uri  String  _ 

Protocol Protocol 

Field Name Required Type Description Format 

protocolKeys  List of ???  _ 

RegistrationResponse RegistrationResponse 

Field Name Required Type Description Format 

message  String  _ 

validation  String  Enum: _ VALID, INVALID, _ 

View View 

Field Name Required Type Description Format 

contentType  String  _ 
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APPENDIX E.    ATTRIBUTIONS 

 Font Awesome was used for some images in this work https://fontawesome.com/license 
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