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CHAPTER 1. Introduction

1.1 Introduction

The first part of this thesis contains Chapters 2 and 3, where we investigate the statistical in-

ference for high dimensional data. High dimensional data are more and more easily collected in

scientific research, engineering, financial and medical areas. In genetic studies, high-throughput

technologies such as microarray and next generation sequencing produce thousands of measure-

ments in a single chip. For example, microarray allows researchers monitor the expression levels

of thousands of genes in an experiment to study effects of treatments and diseases on gene ex-

pression. Next generation sequencing can examine DNA copy numbers at thousands sites of

a genome by mapping tens of millions of short reads. For more examples and statistical chal-

lenges in high dimensional data, see Donoho (2000), Johnstone and Titterington (2009) and

Fan and Lv (2010). Chapters 2 and 3 focus on high dimensional simultaneous tests. Chapter

2 considers the high dimensional tests for regression coefficients while Chapter 3 is on tests for

high dimensional means under sparsity and dependency. We examine the limitation of some

classical tests and propose new tests which are applicable in the high dimension and small

sample size scenarios.

The second part of this thesis is on ANOVA test for longitudinal data. Longitudinal studies

collect repeated measurements on each individual, which can be collected either prospectively or

retrospectively. The benefit of a longitudinal study is the ability to distinguish the time effects

(i.e., changes over time) and cohort effects (i.e., differences between subjects at baseline). For

this reason, longitudinal studies are widely used in clinical trials and social science studies. De-

spite its advantages, the modelling of the correlation structure, missing values and unbalanced

designs are challenging. Chapter 4 of this thesis proposes empirical likelihood based tests for
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comparing the treatment effects including time effects and cohort effects in longitudinal studies

with missing values.

In the rest of this chapter, we will review some important issues and developments in high

dimensional simultaneous tests in Section 1.2. Section 1.3 provides an introduction to ANOVA

test for longitudinal data. Section 1.4 reviews concepts of empirical likelihood. More literature

reviews can be found in each chapter.

1.2 High Dimensional Tests

High dimensionality is one aspect of the massive data we encounter nowadays. The small

sample size is another typical situation we face. Due to financial restrictions and the resources

available to produce many replicates, we often have very limited sample sizes. For example,

sample sizes for most microarray data are less than one hundred. High dimensionality itself

poses a challenge to classical statistical inference, together with small sample size makes the

situation more difficult. This is the so-called “large p, small n” problem.

Classical asymptotic statistical inference typically assumes that the dimension p fixed but

the sample size n goes to infinity. This “large n, fixed p” setup is of course not suitable for high

dimensional data where p is much larger than n. It is natural to consider p increasing to infinity

as n goes to infinity. So it is important to evaluate how the classical methods perform when

the data dimension increases with the sample size and what is the limit of the dimensionality

in the classical methods. More importantly, we need new methods that are able to handle the

high dimensionality.

The historic development can be traced back to Neyman and Scott (1948), who pointed

out the inconsistency of some parameter estimators when the dimension increases with the

sample size. Huber (1973), Yohai and Maronna (1979) and Portnoy (1984, 1985) treated

the consistency and asymptotic normality of least square and M-estimators of the regression

parameters when the number of parameters grows with the sample size. In analysis of spectral

density of the large dimensional sample covariance matrix, the dimension of the covariance

matrix is often assumed to increase with the sample size. The pioneering works in this area

include Marčenko and Pastur (1967) and Pastur (1972, 1973). See Bai and Siliverman (2006)
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for a review.

The literature on high dimensional tests is expanding quickly as other fields in high di-

mensional statistical inference. Portnoy (1988) considered the asymptotic distribution of the

maximum likelihood estimator (MLE) for exponential families. He showed that the asymptotic

normality of MLE would hold if p2/n→ 0 and if p3/2/n→ 0, the likelihood ratio test statistic Λn

for a simple hypothesis has a chi-square distribution in the sense that (−2 log(Λn)− p)/
√

2p→

N(0, 1). Bai and Saranadasa (1996) showed that the Hotelling T 2 test lose power when p is

close to n and proposed a new method, which is further improved by Chen and Qin (2010).

Ledoit and Wolf (2002) studied two likelihood ratio tests (John 1971, 1972 and Nagao 1973)

for the sphericity and identity covariance matrix hypotheses for high-dimensional normally dis-

tributed random vectors when p/n→ c for a finite constant c. They found the sphericity test

is robust under p/n → c, whereas the identity test is untenable. Some recent developments

on testing the high dimensional covariance matrix including Chen, Zhang and Zhong (2010),

Schott (2006), Srivastava (2005) and Srivastavaa and Yanagiharab (2010) among others. Fan

and Peng (2004) studied the penalized likelihood ratio test with diverging number of parameters

and they showed that Wilks’ theorem holds if p5/n→ 0.

To better illustrate the high dimensional asymptotics and the effect of high dimensionality,

let us take a look at an example from Bai and Silverstein (2006):

Example: Let Xi = (Xi1, · · · , Xip)′ where Xij are independent and identically distributed

(IID) random variables with N(0,1). Define the sample covariance Sn = 1
n

∑n
i=1XiX

′
i. An

important test statistic in multivariate statistics is

Tn = log{det(Sn)} =
p∑

i=1

log(λ̂i) (1.2.1)

where λ̂1, · · · , λ̂p are the eigenvalues of Sn. When p is fixed, we know that Sn is distributed

as Wp(n, 1
nIp), the Wishart distribution with n degrees of freedom and covariance matrix 1

nIp.

Then by a result from multivariate statistics (see Muirhead, 1982, page 102),√
n

2p
Tn

d→ N(0, 1). (1.2.2)

This result holds for any fixed p and n→∞. However, this result is not true if p goes to infinity

at the same rate as n. Let us consider p/n→ c ∈ (0, 1) as n→∞ and c is a constant. We can
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write 1
pTn as

1
p
Tn =

1
p

p∑
i=1

log(λ̂i) =
∫

log(x)dFS(x)

where FS(x) is the empirical spectral distribution of Sn defined as

FS(x) =
1
p
#{j ≤ p : λ̂j ≤ x}.

By Theorem 3.5 in Bai and Silverstein (2005), with probability one,

sup
x
|FS(x)− F (x)| → 0,

where F (x) is the so-called Marčenko-Pastur (MP) law that has a density

fc(x) =


1

2πxc

√
(b− x)(x− a), if a ≤ x ≤ b;

0, otherwise

and has a point mass 1− 1/c at 0 if c > 1, where a = (1−
√
c)2 and b = (1 +

√
c)2. Therefore,

with probability one,

1
p
Tn →

∫
log(x)dF (x) =

c− 1
c

log(1− c)− 1 < 0, (1.2.3)

which implies that as p/n→ c and n→∞, almost surely,√
n

2p
Tn =

√
np

2
1
p
Tn → −∞.

This small example shows that using the asymptotic distribution given in (1.2.2) for high

dimensional data is no longer adequate, and new asymptotics have to be developed for high

dimensional inference.

1.2.1 High Dimensional Tests for Regression Coefficients

Let us consider a high dimensional linear model

Y = Xβ + ε,

where Y = (Y1, · · · , Yn), ε = (ε1, · · · , εn) and X = (X1, · · · , Xn)′ is a n×p matrix of predictors.

Assume that p → ∞ as n → ∞. In the variable selection context, much attention has been
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focused on the consistency of the model selection and estimation efficiency in the “large p,

small n” scenario. See for example, Chen and Chen (2008), Greenshtein and Ritov (2004),

Meinshausen and Bühlnann (2006) and Zhao and Yu (2006).

Our purpose in Chapter 2 is to test

H0 : β = 0 vs H1 : β 6= 0. (1.2.4)

This was motivated by the latest need in biology to identify significant sets of genes, which are

associated with certain clinical outcome, rather than identifying individual gene. As advocated

by Subramanian et al. (2005), gene-set testing gives more consistent results across different

studies and can detect much smaller effects than the single gene based methods. There are

several resampling methods proposed to test the significance of a gene-set. The basic idea

is to test if a given set is over represented or enriched by significant genes. Subramanian

et al. (2005) proposed a gene-set enrichment score method (GSEA). Efron and Tibshirani

(2007) further improved GSEA by using the maxmean statistic for summarizing gene-sets and

restandardization for more accurate inferences. Newton et al. (2007) improved the GSEA by

considering the size of the gene sets and the dependence among enrichment scores. However,

all of these methods fail to account for the dependence among the genes in the gene sets and

essentially use the marginal regression coefficients.

In the fixed dimensional case, the F-test is often used for testing regression coefficients

simultaneously in a linear model. Under the conditional normality assumption, the F-test is

the uniformly most powerful (UMP) test. However, if p > n, the F-test is not applicable. In a

similar but essentially different problem, Meinshausen, Meier and Bühlmann (2008) discussed a

multi-split method for assigning p-values to each regression coefficient instead of the regression

coefficient vector in high dimensional regression context, which extends the single split method

proposed by Wasserman and Roeder (2008).

More closely related studies were pioneered by Portnoy (1984, 1985), who studied the

consistency and the asymptotic normality of the M-estimator β̂ when p goes to infinity as n

goes to infinity, where β̂ is the solution of the following equation:
n∑

i=1

XiΨ(Yi −X ′
iβ) = 0
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and Ψ is a given function satisfying some conditions. They showed that β̂ is still consistent

if p log(p)/n → 0 and further if {p log(p)}3/2/n → 0, d2
Ψ

σ2
Ψ

(β̂ − β)′X ′X(β̂ − β) d→ χ2
p, where

dΨ = E(Ψ′(εi)) and σ2
Ψ = E(Ψ2(εi)). Thus we may formulate a test by rejecting the null

hypothesis at level α if
d2

Ψ

σ̂2
Ψ

β̂′X ′Xβ̂ > χ2
p; α,

where σ̂2
Ψ is a consistent estimator of σ2

Ψ. But this method only works for very mild dimension-

ality, i.e. {p log(p)}3/2/n→ 0.

Goeman et al. (2006, 2009) proposed an Empirical Bayes (EB) method to test the regression

coefficients, which can be applied to the high dimensional case. Basically, they assumed that

β is a random vector with mean 0 and covariance τ2Ip. Then testing hypothesis of (1.2.4) is

equivalent to testing

H0 : τ2 = 0 vs H1 : τ2 6= 0. (1.2.5)

Suppose that Y ∼ N(Xβ, σ2I) and L(β;Y ) be the likelihood of β given Y. Then the marginal

density of Y is given by f̄(τ2; y) = Eβ|τ2{L(β;Y )}, where Eβ|τ2{·} is the expectation with

respect to prior distribution of β given τ2. A score test (Goeman et al., 2006) can be used to

test (1.2.5), which is

S =
∂ log{f̄(0;Y )}

∂τ2
.

The test statistics is equivalent to S′ = y′XX′y
y′y . In Goeman et al. (2009), they derived an

asymptotic distribution for S′. However, the asymptotic distribution was based on fixed p but

sample size n goes to infinity.

Although the test for regression coefficients was motivated by gene-set testing, it can be also

applied to many other possible situations. One possibility is for functional data. The functional

data are similar to longitudinal data with repeated measures for each individual. The difference

exists in the dimension of the repeated measurements for each individual. The functional data

usually have a much higher dimension than the longitudinal data. If we assume that Xi(t) were

collected at time t1, · · · , tp and Xi = (Xi(t1), · · · , Xi(tp))′, then the corresponding model can

be written as

Yi =
p∑

j=1

Xi(tj)β(tj) + εi.
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Thus the hypothesis (1.2.4) is equivalent to

H0 : β(t) = 0 vs H1 : β(t) 6= 0

for t = t1, · · · , tp. The null hypothesis means that the functional data are not significant

associated with the response Y.

In Chapter 2, we proposed new test statistics and derived the asymptotic distributions of

the test statistics under the “large p, small n” scenarios. We allow the dimension p to grow

much faster than the sample size n. Our simulation showed that the test performs better than

the F-test and EB test both in moderate and high dimensional cases.

1.2.2 Threshold Test for High Dimensional Mean under Dependency

In the last section, we discussed the test for high dimensional regression coefficients β. The

test is suitable to test against both non-sparse and sparse alternatives. However, due to high

dimensionality, the test potentially loses power in the sparse case. The purpose of this section

is to discuss the high dimensional test under sparsity and dependency. The sparsity condition

is the key to many variable selection procedures, which makes the high dimensional parameter

estimation possible (Fan and Lv, 2010).

Suppose X1, · · · , Xn are IID p-dimensional vectors with mean µ. We consider testing for

the high dimensional mean under sparsity i.e., testing

H0 : µ = 0 vs H1 : µ 6= 0 (1.2.6)

where µ = (µ1, · · · , µp)′ and we assume that only a small fraction p−β (β > 1/2) of the p

components of µ are not zero under the alternative, which is a very sparse case. The hypothesis

has been considered by several other papers including Fan (1996), Donoho and Jin (2004) and

Kim and Akritas (2010) among others. The Donoho and Jin (2004)’s study provided an elegant

analysis on the asymptotic detection boundary of the higher criticism in the (β, r) plane for

independent and normally distributed data with non-zero signals µi =
√

2r log(p).

Multiple comparison is a way for simultaneously testing (1.2.6). The challenges in multiple

testing include controlling the family wise error rate (FWER) or false discovery rate (FDR),
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and accounting for the dependence among marginal test statistics. There is a huge amount

literature on multiple comparison. See Benjamini and Hochberg (1995), Hommel (1988), Simes

(1986) for controlling FDR or FWER procedures; Storey (2002, 2003), Storey et al. (2004)

and Storey (2007) for controlling positive FDR and optimal discovery procedure. See Efron

et al. (2001) for local FDR. For testing grouped hypothesis, Cai and Sun (2009) introduced

a procedure minimizing the false nondiscovery rate while controlling the false discovery rate.

However, these multiple comparison methods are not able to provide a p-value for indicating

the significance of the grouped hypothesis (1.2.6) and most of methods are only justified for

independent hypotheses. Some exceptions are Benjamini and Yekutieli (2001) and Hall and

Wang (2010).

It is a common practice to apply t-tests or tests based on asymptotic normality in multiple

comparison. Normal distribution or t-distribution can serve as good calibrations for the null

distributions of the test statistics in low dimensional inference. However, are these calibrations

accurate enough in “large p, small n” scenarios when the underlying distribution is non-normal?

An interesting study conducted by Fan, Hall and Yao (2007) showed that the level of the simul-

taneous test based on p-values calculated from normality approximation is accurate provided

that log(p) increases at a strictly slower rate than n1/3 as n diverges, see also Kosorov and Ma

(2007) for more discussion.

Chen and Qin (2010) proposed a method for simultaneous testing high dimensional two

sample means. Their method can be applied to the test above hypothesis (1.2.6). Basically,

we can formulate a test statistic

TCQ =
1

n(n− 1)

∑
i6=j

X ′
iXj .

As shown by Chen and Qin (2010), the test statistic nTCQ√
2tr(Σ2)

d→ N(0, 1) under the null hy-

pothesis. The advantage of this proposal is that the asymptotic distribution does not depend

on the underlying distribution of X and it can adapt to a wide range of high dimensionality.

However, this test statistic is not effective in testing sparse alternatives, see the simulation

results in Chen and Qin (2010).

To better account for the sparsity and dependency, we propose a threshold test statistic for
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testing (1.2.6) in Chapter 3. The test statistic is

Tn =
p∑

i=1

Yi,nI{Yi,n > λn} (1.2.7)

where Yi,n = nX̄i
2
, X̄i = 1

n

∑n
j=1Xij/σi is the scaled sample mean of the i-th component of X

and λn = 2s log(p) is the level of threshold where 0 < s < 1. Fan (1996) showed the asymptotic

distribution of Tn assuming Zi =
√
nX̄is are normally distributed and the components of X

are independent. However, some questions remain unanswered.

(a) Is the threshold test able to attain the optimal detection boundary for dependent and

non-normal data?

(b) When can the normal calibration for Zi be used? i.e., the robustness of the distribution

assumption.

(c) How does the dependence among the components of Xi affect the asymptotic distribution

of Tn?

The purpose of Chapter 3 is to answer these questions. We showed that the normal cal-

ibration to Zi is valid if log(p) = o(n1/3) and the Cramér condition holds. The asymptotic

normality of the threshold test statistic was established for strong mixing sequences. To avoid

selection of threshold parameter, we also propose a maximum test, which maximizes the stan-

dardized threshold test statistic over a range of threshold values. It is shown that the maximum

threshold test can attain the optimal detection boundary (Donoho and Jin, 2004).

1.3 ANOVA Tests for Longitudinal Data

The ANOVA test is one of the most common problems for many practitioners. The ANOVA

table can be easily constructed for balanced data. We can treat balanced longitudinal data

as a split plot design, each individual as a whole plot while each repeated measurements as a

split plot. Thus the ANOVA for split plot designs can be used for longitudinal data. Linear

mixed-effect models have a long history for modelling longitudinal data. Let Yjim be the m−th

measurement of the i−th individual in the j−th treatment. A mixed effect model corresponding
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to split plot design is

Yjim = µ+ βj + αm + (αβ)jm + ωi(j) + εijk

where βjs are the treatment effects, αms are the time effects, (αβ)jms are the interactions

between time and treatment, ωi(j)
iid∼ N(0, σ2

w) are the whole plot errors and εijk
iid∼ N(0, σ2)

are split plot error, ωi(j) and εijk are independent. An elegant variance decomposition can be

done for balanced data and F-test can be applied to test treatment, time and interaction effects.

However, it is only appropriate for balanced data and it has very restrictive assumptions on

the covariance structure for the repeated measures on the same subject. See Diggle, Liang and

Zeger (1994) for more detail.

Multivariate analysis of variance (MANOVA) is another alternative for ANOVA test for

longitudinal data (see Muirhead, 1982). MANOVA is intended to test the effect of treatments

on multivariate dependent random vectors. In contrast to univariate ANOVA, it can accom-

modate more general covariance structure. However, MANOVA requires balanced data and

missing values are not allowed. Furthermore, both univariate and multivariate ANOVA are

based on normality assumptions and are purely parametric, hence lacking robustness to model

longitudinal data. There is also a line of ANOVA methods for longitudinal data based on

derived variables. See Fitzmaurice et al. (2009) for a review on these methods for longitudinal

data.

We considered modelling longitudinal data by semi-linear models, which includes nonpara-

metric functions to increase the flexibility of modelling the time-effect and unbalanced data.

More specifically,

Yji(t) = Xτ
ji(t)βj0 +M τ (Xji(t), t)γj0 + gj0(t) + εji(t), j = 1, 2, · · · , k

where {Yji(t), Xτ
ji(t)} are response and covariates measured at time t, M is a known interaction

function and gj0(t)s represent time effects. The ANOVA tests we considered in Chapter 4

contain both ANOVA for βj0s, i.e., the treatment effects with respect to covariates and ANOVA

for nonparametric time-effect functions gj0(t)s.

Drop-outs (Missing values) are very common in longitudinal studies and may be due to many

reasons. If the drop-out is related to treatment effects, we need to consider missing mechanism
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to avoid possible bias in estimating the parameters and nonparametric time-effect functions.

Rubin (1976) gave a general discussion on missing mechanism. An overview can be found in

Little and Rubin (2002). Three commonly methods are used in handling the missing values

in longitudinal data: multiple imputation (Rubin, 1978), likelihood based methods (Dempster,

Laird and Rubin, 1977; Little, 1995) and propensity weighted methods (Robins et al., 1995). We

adjusted for missing value using the weighted propensity method and extended the monotone

missing (Robins et al., 1995) to a more general missing mechanism which can utilize a sequence

of observations after some casual drop outs. More details can be found in Chapter 4.

We formulated ANOVA test statistics by using the empirical likelihood, a nonparametric

likelihood introduced by Owen (1990). A brief review on empirical likelihood is presented

in the next section. We extended the Wilk’s theorem to multi-sample case for longitudinal

data with missing values. The asymptotic distributions of the ANOVA test statistics for the

nonparametric time-effect functions were also given in the paper. But the converge rate based

on the asymptotic distribution may be slow. So we further generalized the wild Bootstrap (Wu,

1986) to implement the ANOVA tests for time-effect functions.

1.4 Empirical Likelihood

Empirical likelihood is a nonparametric likelihood introduced by Owen (1990, 2001). Un-

like the parametric likelihood, empirical likelihood does not assume any specific underlying

distributions, therefore it is more robust than parametric likelihood. Besides it’s robustness,

it also enjoys good properties as the parametric likelihood. The Wilks’ theorem for empirical

likelihood, which resembles the Wilks’ theorem for the parametric likelihood, was obtained by

Owen (1990). The empirical likelihood is also Bartlett correctable (DiDicco and Hall, 1990;

Chen and Cui, 2006). For more developments of the empirical likelihood, see Hall and La Scala

(1990) for methodology and algorithms, Qin and Lawless (1994) for empirical likelihood for

general estimating equations, Kitamura (1997) for dependent data. See also Chen and van

Keilegom (2009) for a review on empirical likelihood for regressions.

Let X1, · · · , Xn be independent and identically distributed random variables with common
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distribution F. The empirical likelihood is defined as

Ln(F ) =
n∏

i=1

pi

with pi ≥ 0 and
∑

i pi = 1. Notice that Ln(F ) attains its maximum when pi = 1/n, which

corresponding to F = Fn where Fn is the empirical cumulative distribution of Xi.

Suppose we are interested in making inference for a parameter θ(F ) ∈ Rp which could be

defined by q dimensional estimating equation g(X; θ) such that Eg(X; θ0) = 0, where θ0 is

the true value of θ. For example, θ(F ) = E(X) =
∫
xdF (x) and g(X; θ) = X − θ such that

Eg(X; θ0) = 0. The just identifiable and over identified cases corresponding to q = p and q > p

respectively. Assuming that 0 is in the convex hull of g(X1; θ), · · · , g(Xn; θ), the empirical

likelihood ratio for θ is defined as

R(θ) = sup

{
n∏

i=1

npi :
n∑

i=1

pig(Xi; θ) = 0,
n∑

i=1

pi = 1, pi ≥ 0

}
.

By using the Langrange multiplier, it can be shown that

`(θ) = −2 log{R(θ)} = 2
n∑

i=1

log{1 + λ′g(Xi; θ)},

where λ satisfies
n∑

i=1

g(Xi; θ)
1 + λ′g(Xi; θ)

= 0.

The maximum empirical likelihood estimate of θ is defined as θ̂ = arg maxθ R(θ). Under some

conditions, Qin and Lawless (1994) showed that

`(θ0)− `(θ̂) d→ χ2
p.

It is easy to see that if q = p, θ̂ is the solution of the empirical version of the estimating

equation, i.e., 1
n

∑n
i=1 g(Xi; θ̂) = 0 which corresponding to `(θ̂) = 0. Thus, `(θ0)

d→ χ2
p.

In Chapter 4, we consider ANOVA test statistics formulated by empirical likelihood. Sup-

pose we have Xj1, · · · , Xjnj ∼ Fj for j = 1, · · · , k and our interests is on θj := θ(Fj) ∈ Rp

which are defined by p dimensional estimating equations ψj such that E{ψj(Xji; θj)} = 0. The

empirical likelihood ratio for (θ1, · · · , θk) is defined as

R(θ1, · · · , θk) = sup


k∏

j=1

nj∏
i=1

njpji :
n∑

i=1

pjiψj(Xji; θj) = 0,
n∑

i=1

pji = 1, pji ≥ 0

 .
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Then an empirical likelihood ratio test statistic for testing H0 : θ1 = θ2 = · · · = θk is

`n : = −2 log
{

maxθ1=···=θk
R(θ1, · · · , θk)

maxθ1,··· ,θk
R(θ1, · · · , θk)

}
= −2 max

θ1=···=θk

log{R(θ1, · · · , θk)}+ 2 max
θ1,··· ,θk

log{R(θ1, · · · , θk)}

= 2 min
θ1=···=θk

k∑
j=1

nj∑
i=1

log{1 + λ′jψj(Xji; θj)} (1.4.8)

where λjs satisfy

nj∑
i=1

ψj(Xji; θj)
1 + λ′jψj(Xji; θj)

= 0.

Notice that we used maxθ1,··· ,θk
log{R(θ1, · · · , θk)} = 0. It is shown in Chapter 4 that `n →

χ2
(k−1)p under the null hypothesis. We also consider the ANOVA test for time effect functions,

i.e., comparing nonparametric functions, H0 : g1(·) = · · · = gk(·). Suppose for each time t,

E{ϕj(Xji; gj(t))} = 0. Then we can construct an empirical likelihood ratio statistic at each

time t,

Ln{g(t)} : = 2 min
g1(t)=···=gk(t)

k∑
j=1

nj∑
i=1

log{1 + ηjϕj(Xji; gj(t))} (1.4.9)

where ηjs satisfy

nj∑
i=1

ϕj(Xji; gj(t))
1 + ηjϕj(Xji; gj(t))

= 0.

We then use

Tn =
∫ 1

0
Ln(g(t))$(t)dt (1.4.10)

as a test statistic for ANOVA test for nonparametric functions where $(t) is a weight function.

The asymptotic distribution of Tn is also derived in Chapter 4.

1.5 Thesis Organization

Chapter 2 proposes a high dimensional simultaneous test for regression coefficients in linear

model, a short version of which is published in the Journal of American Statistical Association.

This test aims to test the significance of a large number of covariates simultaneously under the



14

so-called “large p, small n” situations where the conventional F-test is no longer applicable.

We derive the asymptotic distribution of the proposed test statistic under the high dimensional

null hypothesis and various scenarios of the alternatives, which allow power evaluations. We

further extend the result to linear model with factorial designs. We also evaluate the power of

the F-test under very mild dimensionality, namely p < n and p/n → c ∈ (0, 1). The proposed

tests are employed to analyze a micro-array data on Yorkshire Gilts to find gene ontology terms

which are significantly associated with the thyroid hormone after accounting for the designs of

the experiment.

Chapter 3 considers a test for high dimensional means under sparsity and dependency. We

propose a threshold test statistic, which is designed to detect sparse and faint signal. The

asymptotic distribution is obtained for non normal and dependent data under the “large p,

small n” setting, where the data dimension can grow exponentially fast as the sample size

grows. A maximum test, which maximizes the standardized threshold test statistic over a

range of thresholds, is also proposed. It is shown that the maximum test can attain the

optimal detection boundary, in the sense that asymptotically, all the tests would be powerless

below the boundary.

Chapter 4 is a longer version of a paper published in the Annals of Statistics, which contains

analysis of variance (ANOVA) tests for treatment effects in longitudinal studies with missing

values. The treatment effects are modelled semiparametrically via a partially linear regres-

sion which is flexible in quantifying the time effects of treatments. The empirical likelihood is

employed to formulate model-robust nonparametric ANOVA tests for treatment effects with re-

spect to covariates, the nonparametric time-effect functions and interactions between covariates

and time. The proposed tests can be readily modified for a variety of data and model com-

binations, that encompass parametric, semiparametric and nonparametric regression models;

cross-sectional and longitudinal data, and with or without missing values.
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CHAPTER 2. Tests for High Dimensional Regression Coefficients with

Factorial Designs
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Abstract

We propose simultaneous tests for coefficients in high dimensional linear regression models

with factorial designs. The proposed tests are designed for the “large p, small n” situations

where the conventional F-test is no longer applicable. We derive the asymptotic distribution of

the proposed test statistic under the high dimensional null hypothesis and various scenarios of

the alternatives, which allow power evaluations. We also evaluate the power of the F-test under

very mild dimensionality. The proposed tests are employed to analyze a micro-array data on

Yorkshire Gilts to find significant gene ontology terms which are significantly associated with

the thyroid hormone after accounting for the designs of the experiment.

KEY WORDS: Factorial Design; Gene-set test; High dimensional regression; Large p, small n;

U-statistics.

2.1 Introduction

The emergence of high-dimensional data, such as the gene expression values in microarray

and the single nucleotide polymorphism (SNP) data, brings challenges to many traditional
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statistical methods and theory. One important aspect of the high-dimensional data under the

regression setting is that the number of covariates greatly exceeds the sample size. For example,

in microarray data, the number of genes (p) is in the order of thousands whereas the sample size

(n) is much less, usually less than fifty due to limitation to replicate. This is the so-called “large-

p, small-n” paradigm, which translates to a regime of asymptotics where p → ∞ much faster

than n. See Kosorok and Ma (2007), Fan, Hall and Yao (2007), Huang, Wang and Zhang (2007),

Chen and Qin (2010) among others. Kosorok and Ma (2007) considered uniform convergence for

a large number of marginal discrepancy measures targeted on univariate distributions, means

and medians. Chen and Qin (2010) proposed a two sample test on high dimensional means.

Both of these two aforementioned papers considered testing under “large-p, small-n” without a

regression structure, which is the focus of the present paper. Much earlier, for more moderate

dimensions, Portnoy (1984, 1985) had considered consistency and asymptotic normality for the

M-estimators of linear regression coefficients when the dimension p of the covariates grows to

infinity faster than the square root of the sample size n. The rates for p that Portnoy considered

were p = o(n/ log(p)) for consistency and p = o(n2/3/ log(p)) for asymptotic normality of the

M-estimators.

Covariate selection for high dimensional linear regression has attracted much attention and

has been intensively considered in recent years. Penalizing methods are alternatives to the

traditional least square estimator for simultaneous variable selection and shrinkage estimation.

These include the LASSO (Tibshirani, 1996) with a L1-penalty, the bridge regression with a

L2-penalty (Frank and Friedman, 1996), the SCAD penalty proposed by Fan and Li (2001)

and Candes and Tao (2007)’s Dantzig selector; see also Fan and Lv (2008) and Wang (2009)

for other methods of variable selection. There is also a line of works on ANOVA with diverging

number of treatments while the number of replications (cell sample sizes) is small and can be

regarded as fixed. This includes the rank based nonparametric tests proposed by Brownie and

Boos (1994), Boos and Brownie (1995), Akritas and Arnold (2000), Bathke and Lankowski

(2005), Bathke and Harrar (2008), Harrar and Bathke (2008), and Wang and Akritas (2009).

The problem can be viewed as “large p, fixed n” in contrast to the conventional “fixed p, large

n” setting and the “large p, small n” paradigm we are considering.
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This chapter is aimed at developing simultaneous tests on linear regression coefficients that

can accommodate high dimensionality and factorial designs. The latter is often encountered in

statistical experiments especially those in biology, and there is no exception for high dimensional

data. Testing hypotheses on the regression coefficients is a necessity in determining the effects of

covariates on certain outcome variable. Our interest here is on testing the significance of a large

number of covariates simultaneously. This is motivated by the latest need in biology to identify

significant sets of genes (Subramanian et al., 2005; Efron and Tibshirani, 2007; Newton et al.,

2007), which are associated with certain clinical outcome, rather than identifying individual

gene. As the dimension of a gene-set ranges from a few to thousands, and the gene-sets can

overlap as they share common genes, there are both high dimensionality and multiplicity in

gene-set testing. In order to test for the significance of a gene-set, the P-value associated

with a hypothesis regarding the regression coefficient corresponding to the gene-set is needed.

This calls for multivariate tests for regression coefficients that can accommodate both high

dimensionality and dependence among the covariates.

We propose tests for high dimensional regression coefficients for both simple random or

factorial designs. A feature of the tests is that they do not require explicit relationships be-

tween the growth rates of p and n, which makes the tests adaptable to a wide range of high

dimensionality. The tests also account for a variety of dependence among the high dimensional

covariate. These together with their accommodation to factorial designs makes the tests more

applicable in applications. The F-test is the conventional test for regression coefficients simul-

taneously under the normality and p < n−1. We take the opportunity to study the F-test and

find that it is adversely affected by an increasing dimension.

The chapter is organized as follows. We first study the F-test and propose a new test

statistic in Section 2.2 for simple random designs. Section 2.3 discusses some general properties

of U-statistics under high dimensionality. Section 2.4 establishes the main properties of the

proposed test. Extensions to factorial designs are made in Section 2.5. Section 2.6 reports

results from simulation studies. Empirical analyses on a microarray dataset on Yorkshire Gilts

with factorial designs are reported in Section 2.7. All technical details are relegated to the

Appendix.
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2.2 Models and Test Statistics

Consider a linear regression model

E(Yi|Xi) = α+X
′
iβ and V ar(Yi|Xi) = σ2 (2.2.1)

for i = 1, . . . , n where X1, · · · , Xn are independent and identically distributed p-dimensional

covariates and Y1, · · · , Yn are independent responses, β is the vector of regression coefficients,

and α is a nuisance intercept. We do not impose any specific distribution on Yi given Xi except

when studying the F-test in the next subsection.

The true parameter (α, β) in the linear regression model is defined as

(α, β) = arg min
α̃∈R1,β̃∈Rp

E(Yi − α̃−X ′
iβ̃)2.

To make β identifiable, we assume that Σ = Var(Xi) > 0. This is weaker than the sparse Riesz

condition in Zhang and Huang (2008), which requires the eigenvalues of Σ are all bounded from

below and above. The sparse Riesz condition is for the purpose of parameter estimation and

variable selection, which are different from the agenda of this Chapter.

Our interest is in testing a high dimensional hypothesis

H0 : β = β0 vs H1 : β 6= β0 (2.2.2)

for a specific β0 ∈ Rp. For instance β0 = 0 which arises in the context of gene-set testing with

H0 indicating a particular set of genes to be insignificant.

2.2.1 F-test and Its Performances under High Dimensionality

When the conditional distribution of Yi given Xi is normally distributed, the conventional

test for (2.2.2) is the F-test when p < n − 1. The F-statistic is a monotone function of the

likelihood ratio statistic and is distributed as a non-central F distribution under the alternative

(Anderson, 2003). It is interesting to know the power implication on the F-test when p/n →

ρ ∈ (0, 1) when both p and n diverge to infinity.

Let U = (1, X) which is assumed to be of full rank and A = (0, Ip), where 1 denotes the

n-dimensional vector of 1′s. Let γT = (α, βT ) and γT
0 = (α, βT

0 ), then the null hypothesis in
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(2.2.2) becomes H0 : Aγ = Aγ0. The F statistic for testing H0 (Rao et al., 2008, p51) is

Gn,p =
(γ̂ − γ0)′A′(A(U ′U)−1A′)−1A(γ̂ − γ0)/p

Y ′(In − PU )Y/(n− p− 1)

=
(β̂ − β0)′(A(U ′U)−1A′)−1(β̂ − β0)/p

Y ′(In − PU )Y/(n− p− 1)
(2.2.3)

where γ̂ = (α̂, β̂′)′ = (U ′U)−1U ′Y is the least square estimator of γ and Y = (Y1, · · · , Yn)′.

Under H0, Gn,p ∼ Fp, n−p−1. Hence, an α-level F-test rejects H0 if Gn,p > Fp, n−p−1;α, the

upper α quantile of the Fp, n−p−1 distribution.

In this chapter, we use Im to denote the m×m identity matrix and Φ(·) as the distribution

function of N(0,1). To facilitate our analysis, like Bai and Saranadasa (1996), we assume that

There exists a m-variate random vector Zi = (Zi1, · · · , Zim)
′

for

some m ≥ p so that Xi = ΓZi + µ, where Γ is a p × m ma-

trix such that ΓΓ′ = Σ, and E(Zi) = 0, Var(Zi) = Im; each Zil

has finite 8-th moment, E(Z4
il) = 3 + ∆ for some constant ∆;

for any
∑d

ν=1 `ν ≤ 8 and i1 6= · · · 6= id, E(Z`1
1i1
Z`2

1i2
· · ·Z`d

1id
) =

E(Z`1
1i1

)E(Z`2
1i2

) · · ·E(Z`d
1id

).

(2.2.4)

Model (2.2.4) resembles a factor model where the p-variate X is linearly generated by a

m-variate factor Z. However, unlike the factor model which assumes far less number of factors

than p so as to achieve a dimension reduction, we assume here the number of factors m is at

least as larger as p. Model (2.2.4) slightly differs from the one assumed in Bai and Saranadasa

(1996) in relaxing their assumption of Zi having independent components. We also require the

existence of the 8-th moments for Zi.

The power property of the F-test when p/n→ ρ ∈ (0, 1) is depicted in the following theorem.

Theorem 1 Assume Yi|Xi ∼ N(X ′
iβ, σ

2), Model (2.2.4), (β − β0)′Σ(β − β0) = o(1) and ρn =

p/n→ ρ ∈ (0, 1) as n→∞ then ΩF (‖β − β0‖), the power of the F-test, satisfies

ΩF (‖β − β0‖)− Φ

(
−zα +

√
(1− ρ)n

2ρ
(β − β0)′Σ(β − β0)

)
→ 0. (2.2.5)

We notice that the denominator of the F statistic (2.2.3) estimates σ2. When p is closer to

n, there are fewer degrees of freedom left to estimate σ2. The impact of the dimensionality on



26

the F-test is revealed in Theorem 1 by
√

(1− ρ)/ρ being a decreasing function of ρ. Hence,

the power is adversely impacted by an increased dimension even p < n−1, reflecting a reduced

degree of freedom in estimating σ2 when the dimensionality is close to the sample size.

2.2.2 A New Test Statistic

We have seen two limitations with the F-test under mild dimensionality above. One is that

p can not be larger than n− 1; and the other is the conditional normality assumption. To test

for regression coefficients in the “large p, small n” paradigm without the normality assumption,

we modify the F-statistic in two aspects. One is to remove the denominator as it is a major

contributor to F-test’s fragile power performance under even mild dimensionality as shown in

Theorem 1. Another is to renovate the numerator to make it more effective in measuring the

discrepancy between β and β0. We note that when α = 0, ‖Y −Xβ0‖2 is a measure between

β and β0, whose expectation is (β − β0)′E(X ′X)(β − β0) + nσ2. To avoid the nσ2 term, we

consider (Yi −X ′
iβ0)(Yj −X ′

jβ0) for i 6= j and a U-statistic with X ′
iXj(Yi −X ′

iβ0)(Yj −X ′
jβ0)

as the kernel. Our proposal here is similar to the effort made in improving the Wald type

F-statistics as demonstrated in Brunner, Dette and Munk (1997) and Ahmad, Brunner and

Werner (2008).

When the nuisance parameter α 6= 0, to remove α, we consider a U-statistic

Tn,p =
1
P 4

n

∗∑
φ(i1, i2, i3, i4), (2.2.6)

where φ(i1, i2, i3, i4) = 1
4(Xi1 −Xi2)

′(Xi3 −Xi4)∆i1,i2∆i3,i4 (2.2.7)

and ∆i,j = Yi − Yj − (Xi − Xj)′β0. Through this Chapter, we use
∗∑

to denote summations

over distinct indices. For example, in (2.2.6), the summation is over the set {i1 6= i2 6= i3 6=

i4, for i1, i2, i3, i4 ∈ {1, · · · , n}} and Pm
n = n!/(n −m)!. As Tn,p is invariant to location shifts

in both Xi and Yi. We assume, without loss of generality, that α = µ = 0 in the rest of this

Chapter.

The set of conditions we use to regulate for the “large p, small n” is

p(n) →∞ as n→∞, Σ > 0 and tr(Σ4) = o{tr2(Σ2)}. (2.2.8)
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These conditions do not impose any explicit relative growth rates between p and n, and they

are quite mild. Assuming Σ being positive definite assures the identification of the regression

coefficient. We allow some eigenvalues of Σ diverge to infinity as p→∞. If all the eigen-values

are bounded, the last part of (2.2.8) is trivially true for any p.

2.3 U-Statistics under High Dimensionality

As Tn,p is a U-statistic, we devote this section to discuss U-statistics for high dimensional

data. The theory of U-statistics for fixed dimensional data, as pioneered by Hoeffding (1948),

has been well documented; see Serfling (1980) and Lee (1990) for summaries. We will demon-

strate below that, while some results in the classical U-statistic remain valid, others may not

be directly applicable if p diverges.

Suppose W1,W2, · · · ,Wn are independent and identically distributed observations from a

distribution F on Rq, where q may diverge. Consider a U-statistic of s-th order for a fixed

s < n

Un,q =
1(
n
s

) ∑
Cn,s

h(Wi1 , · · · ,Wis),

where Cn,s = {all distinct combinations of {i1, i2, · · · , is} from {1, · · · , n}}. The kernel h is

symmetric so that its value is invariant to the permutations of its arguments. Let E{h(W1, · · · ,

Ws)} = θ(F ), say. In our current testing problem, q = p+ 1, s = 4 and θ(F ) = ‖Σ(β − β0)‖2.

Let hc(w1, · · · , wc) = E{h(w1, · · · , wc,Wc+1, · · · ,Ws)} be projections of h to lower dimen-

sional sample spaces, h̃ = h− θ(F ) and h̃c = hc − θ(F ) for c = 1, · · · , s. Let gc(w1, · · · , wc) =

h̃c −
∑c−1

j=1

∑
1≤i1<···<ij≤c gj(wi1 , · · · , wij ) where g1(w1) = h̃1(w1), and

Mnc =
∑

1≤i1<···<ic≤n

gc(wi1 , · · · , wic).

The following theorem provides the Hoeffding decompositions (Hoeffding, 1948) for Un,q

and its variance respectively, which are valid regardless of q being fixed or diverging.

Proposition 1 Assume E{h2(W1, · · · ,Ws)} exist and let ζc = Var(hc) for c = 1, 2, · · · , s.

Then (i) ζc+1 ≥ ζc; (ii)

Un,q − θ(F ) =
s∑

c=1

(
s

c

)(
n

c

)−1

Mnc (2.3.9)
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and (iii)

Var(Un,q) =
(

n
s

)−1 s∑
c=1

(
s
c

)(
n− s
s− c

)
ζc. (2.3.10)

The proof in Hoeffding (1948)(see also Serfling, 1980) is applicable even when q is in-

creasing to infinity. Specifically, the result in (i) is implied by E{hc+1(w1, · · · , wc,Wc+1)} =

hc(w1, · · · , wc) and

ζc+1 = E{Var(hc+1(W1, · · · ,Wc+1)|W1, · · · ,Wc)}+ ζc.

The variance decomposition for the variance in (2.3.10) reflects the decomposition of the U-

statistic in (2.3.9) as {Mnc,Fc}c≥1 forms a forward martingale where Fc denotes the σ-field

generated by {W1, . . . ,Wc} and Var(Mnc) = O(ζc).

When q → ∞, unlike the fixed dimension cases, ζc may no longer be bounded and can

diverge. This brings ambiguity in assessing the relative orders of terms in the decomposition

(2.3.9). To appreciate this point, we note that if q is fixed, all ζc are bounded provided ζs <∞,

hence the (c+ 1)-th term in the variance decomposition (2.3.10) is a smaller order of the c-th

term. This means that the asymptotic behavior of the U-statistic is determined by the c-th

term where c is the smallest integer such that ζc 6= 0. However, if q diverges, ζc may diverge

and a higher order projection Mn(c+1) may be at the same order or higher than Mnc. Hence,

for high dimensional data, the leading order terms of the U-statistics may consist of multiple

terms.

As ζc is monotone non-decreasing, the following strategy may be applied to determine the

dominant terms of Un,q. We can start evaluating ζcs from the two ends, namely ζ1 and ζs. If

ζ1 and ζs are of the same order, then Un,q will be dominated by the first term so that

Un,q − θ(F ) =
(
s

1

)(
n

1

)−1

Mn1{1 + op(1)}.

If ζs and ζ1 are not the same order, but ζ2 and ζs are, then Un,q will be dominated by the first

two terms so that

Un,q − θ(F ) =
2∑

c=1

(
s

c

)(
n

c

)−1

Mnc{1 + op(1)}.

This process can be continued until the dominating terms are found. We will employ this

strategy on the proposed test statistic Tn,p in the next section.
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2.4 Main Results

We first symmetrize φ defined in (2.2.7) by

h(Wi,Wj ,Wk,Wl) = 1
3{φ(i, j, k, l) + φ(i, k, j, l) + φ(i, l, j, k)}

where Wi = (Xτ
i , εi)

τ and εi = Yi −X
′
iβ0. Then,

Tn,p =
1(
n
4

) ∑
Cn,4

h(Wi,Wj ,Wk,Wl). (2.4.11)

It can be shown that the projections of h are, respectively,

h1(w1) = 1
2(β − β0)′(x1x

′
1 + Σ)Σ(β − β0) + 1

2ε1x
′
1Σ(β − β0),

h2(w1, w2) = 1
6

{
(β − β0)′(x1 − x2)(x1 − x2)′Σ(β − β0)

+(ε1 − ε2)(x1 − x2)′Σ(β − β0)

+((β − β0)′(x1x
′
1 + Σ) + ε1x

′
1)(ε2x2 + (x2x

′
2 + Σ)(β − β0))

}
and

h3(w1, w2, w3) = 1
12{(x1 − x2)′(β − β0) + (ε1 − ε2)}(x1 − x2)′{(x3x

′
3 + Σ)(β − β0) + x3ε3}

+ 1
12{(x1 − x3)′(β − β0) + (ε1 − ε3)}(x1 − x3)′{(x2x

′
2 + Σ)(β − β0) + x2ε2}

+ 1
12{(x2 − x3)′(β − β0) + (ε2 − ε3)}(x2 − x3)′{(x1x

′
1 + Σ)(β − β0) + x1ε1}.

Let Bi = (β − β0)′Σi(β − β0) for i = 1, 2, 3, A0 = Γ′Γ, A1 = Γ′(β − β0)(β − β0)′Γ,

A2 = Γ′Σ(β − β0)(β − β0)′ΣΓ and A3 = Γ′ΣΓ. Derivations given in the Appendix show that

ζ1 = 1
4ζ

∗
1 and ζ2 = 1

36ζ
∗
2 where

ζ∗1 = (B1 + σ2)B3 +B2
2 + ∆tr(A1 ◦A2) and

ζ∗2 = σ4tr(Σ2) + 21B2
2 + 22B1B3 + 22σ2B3 +B2

1tr(Σ
2) + 2σ2tr(Σ2)B1

+ 2∆(B1 + σ2)tr(A1 ◦A3) + 20∆tr(A1 ◦A2) + ∆2tr{(A0diag(A1))2},

where C ◦B = (cijbij) for matrices C = (cij) and B = (bij), and diag(A) = diag{a11, · · · , amm}

for A = (aij)m×m. The proof of the following theorem in the Appendix shows that {ζc}4c=2

are of the same order. This means that the test statistic is dominated by the first two terms

corresponding Mn1 and Mn2.
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Theorem 2 Under Model (2.2.4) and as n→∞,

(i) E(Tn,p) = ‖Σ(β − β0)‖2 and Var(Tn,p) = { 4
nζ

∗
1 + 2

n(n−1)ζ
∗
2}{1 + o(1)};

(ii) Tn,p−‖Σ(β−β0)‖2 = {42

n Mn1+ 2×62

n(n−1)Mn2}{1+op(1)}, where E(M2
n1) = ζ1 and E(M2

n2) =

ζ2 − 2ζ1.

Under H0 : β = β0, A1 = A2 = Bi = 0 for i = 1, 2, 3. Thus, ζ1 = 0 and Tn,p is a degenerate

U-statistic dominated by Mn2. In this case,

Var(Tn,p) =
2

n(n− 1)
σ4tr(Σ2){1 + o(1)}.

This form of the variance for Tn,p is also valid under a subclass of H1 specified by

(β − β0)′Σ(β − β0) = o(1) and (2.4.12)

(β − β0)′Σ3(β − β0) = o{n−1tr(Σ2)}.

As this subclass prescribes a smaller difference between β and β0, we call it the local alternatives.

Under the local alternatives, ζ1 = o(n−1ζ2) which means like the case under H0, Mn2 is also

the dominating term while Mn1 is of smaller order.

Theorem 3 Assume Model (2.2.4) and Condition (2.2.8), then under either H0 or the local

alternatives (2.4.12), as n→∞,

n

σ2
√

2tr(Σ2)
(Tn,p − ‖Σ(β − β0)‖2)

d→ N(0, 1). (2.4.13)

To formulate a test procedure based on Tn,p, we need to estimate tr(Σ2) and σ2 appeared

in the asymptotic variance. We will use the estimator of tr(Σ2) proposed in Chen, Zhang

and Zhong (2010). Specifically, let Y1n = 1
P 2

n

∗∑
(X ′

i1
Xi2)

2, Y2n = 1
P 3

n

∗∑
X ′

i1
Xi2X

′
i2
Xi3 and

Y3n = 1
P 4

n

∗∑
X ′

i1
Xi2X

′
i3
Xi4 . Then an unbiased and ratio consistent estimator of tr(Σ2) is

t̂r(Σ2) = Y1n − 2Y2n + Y3n.

We note here that a closely related estimator, that only employs Y1,n, has been proposed in

Ahmad, Werner and Brunner (2008) for normally distributedXi with zero mean. The estimator

of σ2 under H0 is

σ̂2 =
1

n− 1

n∑
i=1

(Yi −Xiβ0 − Ȳ + X̄β0)2. (2.4.14)
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Applying Theorem 3 and the Slutsky Theorem, the proposed test rejects H0 at a significant

level α if

nTn,p ≥
√

2t̂r(Σ2)σ̂2zα, (2.4.15)

where zα is the upper-α quantile of N(0, 1).

Theorem 3 also implies that ΩL(‖β−β0‖), the asymptotic power of the proposed test under

the local alternatives is

ΩL(‖β − β0‖)
.= Φ

(
−zα +

n‖Σ(β − β0)‖2√
2tr(Σ2)σ2

)
. (2.4.16)

The power is largely impacted by ηn(β − β0,Σ, σ2) = n‖Σ(β − β0)‖2/{
√

2tr(Σ2)σ2}, which

may be viewed as a signal to noise ratio (SNR). In particular, the power converges to α if

ηn(β − β0,Σ, σ2) = o(1) which means that the test can not distinguish H0 from the local

alternative in this case. If it is of a larger order of 1, the power converges to 1, indicating

consistency of the test.

Let λ1 ≤ λ2 ≤ · · · ≤ λp be the eigenvalues of Σ. Then, a sufficient condition for the test to

have a non-trivial power is ‖β − β0‖ = O(n−1/2S
1/4
λ λ−1

1 ) where Sλ =
∑p

i=1 λ
2
i . Suppose all the

eigenvalues are bounded from zero and infinity, let δβ = ‖β − β0‖/
√
p define “signal strength”,

then the test has non-trivial power if δβ is of order n−1/2p−1/4. This is a smaller order than

n−1/2, the corresponding “signal” strength for the fixed dimensional case.

We can also evaluate power of the proposed test under other scenarios of H1 such that

(β − β0)′Σ(β − β0) is not o(1) (2.4.17)

violating the first part of (2.4.12) in the specification of the local alternatives. We consider two

scenarios of fixed alternatives under (2.4.17). One is

(β − β0)′Σ3(β − β0) = o

{
1
n

(β − β0)′Σ(β − β0)tr(Σ2)
}
, (2.4.18)

which complements (2.4.12). If (β − β0)′Σ(β − β0) is truly bounded, (2.4.18) implies (β −

β0)′Σ3(β − β0) = o
{

1
n tr(Σ

2)
}

which mimics the second part of (2.4.12).

A complement to both (2.4.12) and (2.4.18) is

1
n

(β − β0)′Σ(β − β0)tr(Σ2) = o
{
(β − β0)′Σ3(β − β0)

}
. (2.4.19)
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If (β − β0)′Σ(β − β0) is bounded, (2.4.19) implies 1
n tr(Σ

2) = o
{
(β − β0)′Σ3(β − β0)

}
, which

prescribes a larger discrepancies between β and β0. Without causing much confusion, we call

both (2.4.18) and (2.4.19) under (2.4.17) as fixed alternatives.

To quantify the asymptotic power, we define

σ2
A1

= 2σ4tr(Σ2) + 2B2
1tr(Σ

2) + 4σ2tr(Σ2)B1 + 4∆(B1 + σ2)tr(A1 ◦A3)

+2∆2tr{(A0diag(A1))2} and

σ2
A2

= (B1 + σ2)B3 +B2
2 + ∆tr(A1 ◦A2).

We note that σ2
A1

is part of the variance of Mn2, where we only keep the leading order terms

under (2.4.18) and σ2
A2

is the same as ζ1, the variance of Mn1 up to a constant.

Theorem 4 Assume Model (2.2.4), Conditions (2.2.8) and (2.4.17), then (i) under the first

fixed alternatives (2.4.18)

n

σA1

(Tn,p − ‖Σ(β − β0)‖2)
d→ N(0, 1); (2.4.20)

(ii) under the second fixed alternatives (2.4.19)

√
n

σA2

(Tn,p − ‖Σ(β − β0)‖2)
d→ N(0, 1). (2.4.21)

The theorem implies that the asymptotic power of the test under the first fixed alternatives

(2.4.18) is

ΩH1(‖(β − β0)‖)
.= Φ

(
−
√

2tr(Σ2)σ2zα
σA1

+
n‖Σ(β − β0)‖2

σA1

)
. (2.4.22)

Since B1 is not o(1) and σ2
A1

> 2B2
1tr(Σ

2), the first term
√

2tr(Σ2)σ2zα/σA1 < σ2zα/B1 is

always bounded from infinity. In particular, if B1 diverges to ∞, the first term converges to 0.

Hence, the test attains at least 50% power in this case. If n‖Σ(β − β0)‖2/σA1 →∞, the power

converges to 1.

The asymptotic power under the second fixed alternatives (2.4.19) is

ΩH2(‖(β − β0)‖)
.= Φ

−√2tr(Σ2)σ2zα√
(n− 1)σ2

A2

+
√
n‖Σ(β − β0)‖2

σA2

 .
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As (2.4.19) implies 1
n tr(Σ

2)/σ2
A2

= o(1), the proposed test is consistent as long as

√
n‖Σ(β − β0)‖2/σA2 →∞. (2.4.23)

Even if
√
n‖Σ(β−β0)‖2/σA2 does not converge to ∞, the power is still at least 50% asymptot-

ically. The power of the test under the fixed alternatives attains at least 50% power is assuring

and it can be shown that the proposed test is more powerful under two fixed alternatives than

the local alternative if all the eigenvalues are of the same order. It is also the reason that we

call the two alternatives in (2.4.18) and (2.4.19) as fixed alternatives. It may be shown that a

sufficient condition for (2.4.23) is λp/λ1 = o(n).

2.5 Generalization to Factorial Designs

So far we have assumed that {(Xi, Yi)}n
i=1 is a simple random sample. However, in many

scientific studies, observations are obtained via certain designs of experiments. For example, a

randomized factorial design was used in a micro-array study that we will analyze in the next

section. In this section, we provide an extension of the proposed high dimensional regression

test to accommodate factorial designs.

For ease of expedition, we will concentrate on two way factorial designs with two factors A

and B, where A has I levels and B has J levels. Let c indicate a cell for c = 1, · · · , IJ , which

has nc observations in the cell. The observations (X ′
ijk, Yijk) in the i−th level of A and j−th

level of B satisfy a linear model

E(Yijk|Xijk) = α0 + γi + θj + γθij +X ′
ijkβ, k = 1, · · · , nc, (2.5.24)

where γi represent for the effect of A, θj for that of B, and γθij for their interactions. These

effects could be either random effects or fixed effects. Our purpose in this section is to generalize

the test given in Section 2.4 for

H0 : β = β0 vs H1 : β 6= β0 (2.5.25)

for Model (2.5.24) while treating (α0, γi, θj , γθij) as nuisance parameters.

Let µij = α0 + γi + θj + γθij . Model (2.5.24) can be written as

E(Yijk|Xijk) = µij +X ′
ijkβ, k = 1, · · · , nc. (2.5.26)
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Define Y = (Y 1′, · · · , Y IJ ′)′, X = (X1′, X2′, · · · , XIJ ′)′ where

Xc = (Xij1, · · · , Xijnc)
′ := (Xc1, · · · , Xcnc)

′

and Y c = (Yij1, · · · , Yijnc)′ := (Yc1, · · · , Ycnc)′ for c = (i− 1)J + j. Then,

E(Y |X) = Dα+Xβ, (2.5.27)

where D = IIJ ⊗ 1nc is the design matrix, α corresponding to the cell means parameters µij .

Multiply I − PD on both sides of (2.5.27) where PD = D(D′D)−D′ = IIJ ⊗ n−1
c 1nc1

′
nc

is the

projection matrix of D, we have

E{(I − PD)Y |X} = (I − PD)Xβ,

where we eliminate the nuisance parameters α in (2.5.27). So a natural generalization of Tn,p

to the factorial design is

Tn,p =
1
IJ

IJ∑
c=1

(P 4
nc

)−1
∗∑
φ(i, j, k, l), (2.5.28)

where φ(i, j, k, l) = 1
4(Xci−Xcj)′(Xck−Xcl)∆(i, j)∆(k, l), ∆(i, j) = {Yci−Ycj−(Xci−Xcj)′β0},

and the second summation is over distinct observations in the c-th cell.

As an extension to Model (2.2.4), we assume in each cell

Xci = ΓcZci + µc, (2.5.29)

where Γc is a p × m matrix for some m ≥ p such that ΓcΓ′c = Σc = Var(Xijk) for c =

(i − 1)J + j, and Zci are independent and identically distributed random vectors having the

same qualifications as in Model (2.2.4). An extension of Condition (2.2.8) is

p(nc) →∞ as minc nc →∞, Σc > 0 and tr(Σ4
c) = o{tr2(Σ2

c)}. (2.5.30)

For c = 1, · · · , IJ, the factorial design version of the local alternative hypothesis (2.4.12) is

(β − β0)′Σc(β − β0) = o(1) and (2.5.31)

(β − β0)′Σ3
c(β − β0) = o{n−1

c tr(Σ2
c)}.

The following corollary can be readily established by modifying the proof of Theorem 3.
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Corollary 1 Assume Model (2.5.29) and assumption (2.5.30), then under either H0 or (2.5.31),

σ−1
fac,0

(
Tn,p − 1

IJ

∑IJ
c=1 ‖Σc(β − β0)‖2

)
d→ N(0, 1), (2.5.32)

where σ2
fac,0 = 2σ4

(IJ)2
∑IJ

c=1 tr(Σ
2
c)/{nc(nc − 1)}.

Let t̂r(Σ2
c) be the analog of the tr(Σ2) estimator given in (2.4.14) and σ̂2 = 1

IJ

∑
i,j

1
nc−1

∑nc
k=1

(Yijk −X ′
ijkβ0 − Ȳij· + X̄ ′

ij·β0)2, where Ȳij· = 1
nc

∑nc
k=1 Yijk and X̄ij· = 1

nc

∑nc
k=1Xijk. Then, an

α-level test for the factorial design rejects H0 if

Tn,p ≥
σ̂2zα
(IJ)

{2
IJ∑
c=1

t̂r(Σ2
c)/{nc(nc − 1)}}1/2.

Similar to our analysis in the last Section for the simple random design, we can also evaluate

the power of the test for two fixed alternatives under

(β − β0)′Σc(β − β0) is not o(1) for any c. (2.5.33)

One is

(β − β0)′Σ3
c(β − β0) = o

{
1
nc

(β − β0)′Σc(β − β0)tr(Σ2
c)
}

(2.5.34)

and the other is

n−1
c (β − β0)′Σc(β − β0)tr(Σ2

c) = o
{
(β − β0)′Σ3

c(β − β0)
}
. (2.5.35)

Let

σ2
A1,fac = (IJ)−2

IJ∑
c=1

{
2(σ4 +B2

1c)tr(Σ
2
c) + 4σ2tr(Σ2

c)B1c

+4∆(σ2 +B1c)tr(A1c ◦A3c) + 2∆2tr{(A0cdiag(A1c))2}
}
/P 2

nc

and

σ2
A2,fac =

1
(IJ)2

IJ∑
c=1

{
(B1c + σ2)B3c +B2

2c + ∆tr(A1c ◦A2c)
}
/nc

where Bic and Aic are the factorial design versions of Ai and Bi respectively.

The following corollary establishes the asymptotic normality of Tn,p under the two fixed

alternatives, whose proof can be made by modifying that of Theorem 4 in Appendix.
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Corollary 2 Assume Model (2.5.29) and (2.5.33), then as minc nc → ∞, (i) under the fixed

alternative (2.5.34),

σ−1
A1,fac(Tn,p − 1

IJ

∑IJ
c=1 ‖Σc(β − β0)‖2)

d→ N(0, 1); (2.5.36)

(ii) under the fixed alternatives (2.5.35),

σ−1
A2,fac(Tn,p − 1

IJ

∑IJ
c=1 ‖Σc(β − β0)‖2)

d→ N(0, 1). (2.5.37)

The results in the above corollaries can be used to evaluate the power properties of the

proposed test under factorial designs in a fashion similar to that in last Section.

2.6 Simulation Study

We conducted numerical simulations to evaluate the finite sample performance of the pro-

posed tests under both simple random and factorial designs. For comparison purposes, we also

carried out simulation for the F-test and an Empirical Bayes (EB) test proposed by Goeman et

al. (2009). The empirical Bayes test is formulated via a score test on the hyper-parameter of

a prior distribution assumed on the regression coefficients. As it allows p > n, it is applicable

for high dimensional data.

The first set of simulations were designed to evaluate the performance of the test for the

linear regression model with the simple random designs:

Yi = α+X
′
iβ + εi, (2.6.38)

where Var(εi) = σ2 = 4. Two distributions were experimented for εi. One was N(0, 4); the

other was a centralized gamma distribution with the shape parameter 1 and the scale parameter

0.5. The hypotheses to be tested were

H0 : β = 0p×1 vs H1 : β 6= 0p×1.

Independent and identically distributed covariates X1, · · · , Xn with Xi = (Xi1, · · · , Xip)′

were generated according to a moving average model

Xij = ρ1Zij + ρ2Zi(j+1) + · · ·+ ρTZi(j+T−1) + µj , j = 1, · · · , p; (2.6.39)
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for some T < p. Here Zi = (Zi1, . . . , Zi(p+T−1))′ is a (p+T − 1)-dimensional N(0, Ip+T−1) ran-

dom vector, {µj}p
j=1 were fixed constants generated from the Uniform (2,3) distribution. The

coefficients {ρl}T
l=1 were generated independently from the Uniform (0, 1) distribution and were

kept fixed once generated. Model (2.6.39) implied that Σ =
(∑T−|j−l|

k=1 ρkρk+|j−l|I{|j − l| < T}
)
.

Hence the correlation among Xij and Xil were determined by |j−l| and T . We chose two values

of T, 10 and 20, to generate different levels of dependence. The auto-correlation functions for

model (2.6.39) are displayed in Figure 2.1.
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Figure 2.1 The auto-correlation functions for series {Xij}p
j=1.

Two configurations of the alternative hypothesis H1 were experimented. One allocated

half of the β-components of equal magnitude to be non-zeros, the so-called the “non-sparse

case”. The other has only five non-zero components of equal magnitude, the so-called “sparse

case”. In both cases, we fixed ‖β‖2 at three levels: 0.02, 0.04 and 0.06. To gain information

on the performance of the proposed test, we consider two settings regarding p and n. One

is p < n, which allowed F-test; and the other one is p >> n. In the first setting, we set

ρn = p/n = (0.85, 0.90, 0.95), where p = 34, 54, 76 and n = 40, 60, 80 respectively. For the

setting of p >> n, we chose p = 310, 400 and 550, which was increased exponentially, according

to p = exp(n0.4) + 230 for n = 40, 60, 80 respectively. All the results were based on 1000
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simulation replicates.

Tables 2.1 and 2.2 summarize the empirical sizes and powers of the proposed tests as well

as those for the F-tests and EB tests with the normally and the centralized gamma distributed

residuals for p < n. The empirical sizes of the proposed tests, EB tests and the F-tests were

quite reasonably around 0.05. We find that the proposed tests consistently outperformed the

EB and the F-tests for both normally and gamma distributed residuals, for different levels of

dependence (T=10 or 20), and for both the sparse and the non-sparse settings. In particular,

in the sparse setting, although there were some reduction of power for all three tests, the power

reduction in the F-test was the most significant. The empirical power of the proposed test was

quite responsive to the signal to the noise ratio (SNR), which is n‖Σ(β−β0)‖2/{
√

2tr(Σ2)σ2}, in

all the settings. We also computed the theoretical power given in (2.4.16) derived from Theorem

3 under the so-called local alternatives. It was found that there was a good agreement between

the empirical power and the theoretical power when the SNR was relatively small. This makes

sense as a small SNR is much in tune with the local alternatives.

Table 2.3 and 2.4 report the empirical powers and sizes of the proposed tests and the EB

tests when p were much larger than n, which makes F-test unapplicable. We observe that the

sizes of the proposed tests became closer to the nominal level 0.05 than Table 2.1 and 2.2. This

is also confirmed by the null distributions plots in Figure 2.2. The power of the proposed test

were increased quite rapidly as the SNR was increased. In contrast, the EB test suffered from

rather severe size distortion for all cases considered. At the meanwhile, the power of the EB

test endured very low power when T = 10. This alarming performance may be due to the fact

that its justification as in Goeman et al. (2009) was made for p being fixed while n→∞.

Considering that the proposed test is an asymptotic test, we plotted in Figure 2.2 the kernel

density estimates for the standardized test statistics of proposed test under H0 for T = 10 and

compared them with the standard normal distribution. It shows that the null distribution

was quite closer to that of N(0, 1), which confirmed the asymptotic null distribution of the

standardized test statistic given in Theorem 3. There was some right skewness when p is less

than n. However, as p was increased, this skewness was largely reduced when p was increased.

The second set of the simulations were designed to understand performance of the proposed
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Table 2.1 Empirical size and power of the F-test, the EB test and the proposed test (new) for
H0 : β = 0p×1 vs H1 : β 6= 0p×1 at significant level 5% for normal residual. LP
represents the theoretical local power.

T = 10 T = 20
(n, p) ‖β‖2 SNR F-test EB New LP SNR F-test EB New

(a) Non-sparse case
(40, 34) 0.00 (size) 0.00 0.05 0.04 0.06 0.05 0.00 0.05 0.04 0.07

0.02 0.96 0.16 0.19 0.26 0.25 4.31 0.19 0.65 0.71
0.04 1.92 0.31 0.36 0.44 - 8.62 0.35 0.90 0.93
0.06 2.89 0.41 0.48 0.57 - 12.94 0.51 0.97 0.98

(60, 54) 0.00 (size) 0.00 0.05 0.03 0.06 0.05 0.00 0.05 0.04 0.06
0.02 1.48 0.21 0.26 0.34 - 8.19 0.28 0.92 0.95
0.04 2.95 0.43 0.53 0.62 - 16.38 0.53 1.00 1.00
0.06 4.44 0.62 0.70 0.80 - 24.57 0.72 1.00 1.00

(80, 76) 0.00 (size) 0.00 0.06 0.03 0.06 0.05 0.00 0.04 0.04 0.06
0.02 1.25 0.19 0.24 0.33 0.35 6.19 0.25 0.87 0.91
0.04 2.51 0.34 0.48 0.56 - 12.39 0.41 0.99 1.00
0.06 3.76 0.52 0.68 0.77 - 18.58 0.56 1.00 1.00

(b) Sparse case
(40, 34) 0.02 0.59 0.08 0.12 0.18 0.15 1.41 0.09 0.25 0.32

0.04 1.19 0.12 0.19 0.27 0.32 2.82 0.15 0.43 0.52
0.06 1.78 0.17 0.29 0.38 - 4.23 0.20 0.60 0.68

(60, 54) 0.02 0.81 0.09 0.14 0.22 0.20 2.22 0.09 0.42 0.50
0.04 1.63 0.13 0.26 0.36 - 4.45 0.18 0.68 0.76
0.06 2.44 0.18 0.40 0.50 - 6.68 0.22 0.85 0.90

(80, 76) 0.02 0.62 0.07 0.11 0.17 0.15 1.67 0.09 0.34 0.42
0.04 1.25 0.10 0.22 0.33 0.35 3.35 0.11 0.57 0.67
0.06 1.87 0.13 0.32 0.44 - 5.03 0.16 0.80 0.87
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Table 2.2 Empirical size and power of the F-test, the EB test and the proposed test (new)
for H0 : β = 0p×1 vs H1 : β 6= 0p×1 at significant level 5% for centralized gamma
residual. LP represents the theoretical local power.

T = 10 T = 20
(n, p) ‖β‖2 SNR F-test EB New LP SNR F-test EB New

(a) Non-sparse case
(40, 34) 0.00 (size) 0.00 0.04 0.04 0.05 0.05 0.00 0.05 0.04 0.06

0.02 0.96 0.14 0.22 0.28 0.25 4.31 0.20 0.67 0.73
0.04 1.92 0.30 0.36 0.45 - 8.62 0.35 0.88 0.92
0.06 2.89 0.47 0.49 0.59 - 12.94 0.52 0.95 0.96

(60, 54) 0.00 (size) 0.00 0.06 0.03 0.06 0.05 0.00 0.05 0.04 0.06
0.02 1.48 0.22 0.29 0.39 - 8.19 0.28 0.90 0.93
0.04 2.95 0.46 0.55 0.63 - 16.38 0.53 0.99 0.99
0.06 4.44 0.63 0.73 0.79 - 24.57 0.72 1.00 1.00

(80, 76) 0.00 (size) 0.00 0.04 0.03 0.06 0.05 0.00 0.05 0.04 0.06
0.02 1.25 0.21 0.23 0.31 0.35 6.19 0.24 0.86 0.90
0.04 2.51 0.38 0.48 0.58 - 12.39 0.41 0.98 0.98
0.06 3.76 0.51 0.68 0.75 - 18.58 0.59 1.00 1.00

(b) Sparse case
(40, 34) 0.02 0.59 0.07 0.13 0.20 0.15 1.41 0.09 0.26 0.35

0.04 1.19 0.14 0.22 0.31 0.32 2.82 0.13 0.49 0.58
0.06 1.78 0.15 0.29 0.40 - 4.23 0.21 0.62 0.70

(60, 54) 0.02 0.81 0.09 0.15 0.23 0.20 2.22 0.09 0.42 0.49
0.04 1.63 0.11 0.30 0.40 - 4.45 0.17 0.69 0.76
0.06 2.44 0.15 0.45 0.56 - 6.68 0.24 0.86 0.91

(80, 76) 0.02 0.62 0.06 0.11 0.18 0.15 1.67 0.08 0.37 0.43
0.04 1.25 0.10 0.24 0.33 0.35 3.35 0.12 0.65 0.72
0.06 1.87 0.12 0.35 0.48 - 5.03 0.14 0.77 0.84
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Table 2.3 Empirical size and power of the EB test and the proposed test (new) forH0 : β = 0p×1

vs H1 : β 6= 0p×1 at significant level 5% for normal residual. LP represents the
theoretical local power.

T = 10 T = 20
(n, p) ‖β‖2 SNR EB New LP SNR EB New LP

(a) Non-sparse case
(40, 310) 0.00 (size) 0.00 0.00 0.06 0.05 0.00 0.02 0.06 -

0.02 0.30 0.01 0.09 0.09 1.99 0.26 0.46 -
0.04 0.61 0.01 0.15 0.15 3.99 0.47 0.68 -
0.06 0.92 0.05 0.21 0.23 5.98 0.62 0.81 -

(60, 400) 0.00 (size) 0.00 0.01 0.05 0.05 0.00 0.01 0.05 -
0.02 0.49 0.02 0.14 0.12 2.51 0.30 0.54 -
0.04 0.98 0.05 0.23 0.25 5.03 0.63 0.82 -
0.06 1.47 0.08 0.31 - 7.54 0.83 0.93 -

(80, 550) 0.00 (size) 0.00 0.00 0.05 0.05 0.00 0.02 0.06 -
0.02 0.55 0.02 0.15 0.14 4.02 0.63 0.79 -
0.04 1.11 0.08 0.29 0.30 8.05 0.91 0.96 -
0.06 1.66 0.13 0.37 - 12.08 0.98 0.99 -

(b) Sparse case
(40, 310) 0.02 0.16 0.01 0.08 0.07 0.58 0.05 0.15 0.14

0.04 0.32 0.01 0.12 0.09 1.17 0.09 0.23 0.32
0.06 0.48 0.01 0.11 0.12 1.75 0.12 0.30 -

(60, 400) 0.02 0.27 0.01 0.08 0.08 0.60 0.05 0.16 0.15
0.04 0.54 0.02 0.14 0.13 1.21 0.09 0.25 0.33
0.06 0.82 0.04 0.18 0.20 1.82 0.14 0.35 -

(80, 550) 0.02 0.35 0.02 0.10 0.10 1.05 0.11 0.24 0.28
0.04 0.70 0.03 0.16 0.17 2.11 0.25 0.46 -
0.06 1.05 0.05 0.25 0.28 3.17 0.38 0.58 -
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Table 2.4 Empirical size and power of the EB test and the proposed test (new) forH0 : β = 0p×1

vsH1 : β 6= 0p×1 at significant level 5% for centralized gamma residual. LP represents
the theoretical local power.

T = 10 T = 20
(n, p) ‖β‖2 SNR EB New LP SNR EB New LP

(a) Non-sparse case
(40, 310) 0.00 (size) 0.00 0.01 0.06 0.05 0.00 0.01 0.06 -

0.02 0.30 0.01 0.12 0.09 1.99 0.24 0.45 -
0.04 0.61 0.03 0.19 0.15 3.99 0.52 0.70 -
0.06 0.92 0.05 0.24 0.23 5.98 0.69 0.83 -

(60, 400) 0.00 (size) 0.00 0.01 0.04 0.05 0.00 0.01 0.04 -
0.02 0.49 0.02 0.13 0.12 2.51 0.35 0.57 -
0.04 0.98 0.05 0.24 0.25 5.03 0.65 0.82 -
0.06 1.47 0.10 0.36 - 7.54 0.82 0.93 -

(80, 550) 0.00 (size) 0.00 0.01 0.05 0.05 0.00 0.02 0.05 -
0.02 0.55 0.03 0.16 0.14 4.02 0.67 0.82 -
0.04 1.11 0.07 0.23 0.30 8.05 0.91 0.97 -
0.06 1.66 0.16 0.40 - 12.08 0.97 0.99 -

(a) Sparse case
(40, 310) 0.02 0.16 0.01 0.08 0.07 0.58 0.05 0.16 0.14

0.04 0.32 0.01 0.10 0.09 1.17 0.11 0.25 0.32
0.06 0.48 0.02 0.14 0.12 1.75 0.14 0.33 -

(60, 400) 0.02 0.27 0.02 0.09 0.08 0.60 0.04 0.15 0.15
0.04 0.54 0.02 0.12 0.13 1.21 0.10 0.25 0.33
0.06 0.82 0.04 0.20 0.20 1.82 0.18 0.38 -

(80, 550) 0.02 0.35 0.01 0.10 0.10 1.05 0.10 0.24 0.28
0.04 0.70 0.03 0.17 0.17 2.11 0.27 0.48 -
0.06 1.05 0.06 0.25 0.28 3.17 0.39 0.60 -
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Figure 2.2 The null distributions of standardized Tn,p.

test under the factorial designs. We simulated a two-factor balanced design with two levels for

each factor:

Yijk = αij +X ′
ijkβ + εijk, k = 1, 2, · · · , nc (2.6.40)

where c = 2(i − 1) + j and i, j = 1, 2, corresponding to (i, j)-th cell and the parameters

(α11, α12, α21, α22) = (1, 3, 3, 4). The sparsity set-ups for β were the same to those for simple

random designs used in (2.6.38). Within each cell, independent and identically distributed

p-dimensional Xijk were generated from the moving average model (2.6.39) with T = Tc, where

Tc equals to 10, 15, 20 and 25 for c = 1, 2, 3, 4 respectively. Using the different T values was to

generate different dependence structure in Σ. We assigned the nc = 20 and 30 in all cells, and

three values of p: 100, 150 and 200. The simulation results for the proposed test are summarized
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in Table 2.5. We observe that the sizes of the proposed test were satisfactorily around 0.05.

The power of the test increased as the SNRf , the factorial design version of SNR, was increased.

When the sample size was increased from 20 to 30, we observed significant increase in the power

under all settings.

Table 2.5 Empirical size and power of the proposed test for H0 : β = 0p×1 in a 2× 2 factorial
design with n1 = 20 and n2 = 30 replicates in each cell.

Non-sparse Sparse
p ‖β‖2 SNRf n1 SNRf n2 SNRf n1 SNRf n2

(a) Normal residuals
100 0.00 (size) 0.00 0.06 0.00 0.06 0.00 0.07 0.00 0.05

0.02 3.05 0.65 4.58 0.85 0.70 0.20 1.06 0.26
0.04 6.10 0.88 9.16 0.98 1.41 0.29 2.12 0.48
0.06 9.16 0.96 13.74 1.00 2.12 0.44 3.18 0.65

150 0.00 (size) 0.00 0.06 0.00 0.06 0.00 0.05 0.00 0.06
0.02 2.59 0.57 3.89 0.77 0.57 0.15 0.85 0.21
0.04 5.18 0.84 7.78 0.97 1.14 0.28 1.71 0.39
0.06 7.78 0.94 11.67 0.99 1.71 0.35 2.57 0.54

200 0.00 (size) 0.00 0.07 0.00 0.06 0.00 0.07 0.00 0.06
0.02 2.28 0.50 3.43 0.73 0.49 0.14 0.73 0.18
0.04 4.57 0.78 6.86 0.94 0.98 0.22 1.47 0.35
0.06 6.86 0.89 10.29 0.99 1.47 0.31 2.21 0.48

(b) Gamma residuals
100 0.00 (size) 0.00 0.07 0.00 0.05 0.00 0.07 0.00 0.06

0.02 3.05 0.66 4.58 0.83 0.70 0.15 1.06 0.28
0.04 6.10 0.86 9.16 0.97 1.41 0.31 2.12 0.48
0.06 9.16 0.95 13.74 0.99 2.12 0.47 3.18 0.66

150 0.00 (size) 0.00 0.07 0.00 0.05 0.00 0.04 0.00 0.06
0.02 2.59 0.57 3.89 0.78 0.57 0.16 0.85 0.22
0.04 5.18 0.81 7.78 0.96 1.14 0.28 1.71 0.39
0.06 7.78 0.93 11.67 0.99 1.71 0.37 2.57 0.57

200 0.00 (size) 0.00 0.05 0.00 0.06 0.00 0.06 0.00 0.05
0.02 2.28 0.53 3.43 0.74 0.49 0.14 0.73 0.18
0.04 4.57 0.77 6.86 0.93 0.98 0.24 1.47 0.32
0.06 6.86 0.89 10.29 0.98 1.47 0.30 2.21 0.48
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2.7 Association Test for Gene-sets

We applied the proposed test for association between gene-sets and certain clinical outcomes

in a randomized factorial design experiment applied to 24 six-month-old Yolkshire gilts. The

gilts were genotyped according to the melanocortin-4 receptor gene, 12 of them with D298

and the other with N298. Two diet treatments were randomly assigned to the 12 gilts in each

genotype. One treatment is ad libitum (no restrictions) in the amount of feed consumed; the

other is fasting. More details of the experiment could be found at Lkhagvadorj et al.(2009).

The genotypes and the diet treatments were the two factors in the factorial experiments. The

purpose of our study was to identify associations between gene-sets and triiodothyronine (T3)

measurement, a vital thyroid hormone that increases the metabolic rate, protein synthesis and

stimulates breakdown of cholesterol.

The gene expression values were obtained for 24,123 genes in liver tissues, as well as mea-

surements of T3 in the blood on each gilt. Gene sets are defined by Gene Ontology (GO term)

(The Gene Ontology Consortium, 2000), which classifies genes into different sets according to

their biological functions among three broad categories: cellular component, molecular function

and biological process. The data-set contained 6176 GO terms. Our objective is to find the

GO terms which are significantly correlated with T3 after accounting for the design factors.

Let i, j, k be indices for treatment, genotype and observations, respectively. For instance,

Yijk denote the T3 measurement for the k−th gilt in the i−th treatment with j−th genotype,

and Xg
ijk be the corresponding pg-dimension gene expressions for the g−th GO term. We

consider the following four models corresponding to four types of designs:

Design I: Yk = α+Xg′

k β
g + εgk, k = 1, · · · , 24;

Design II: Yik = α+ µi +Xg′

ikβ
g + εgik, k = 1, · · · , 12;

Design III: Yjk = α+ τj +Xg′

jkβ
g + εgjk, k = 1, · · · , 12;

Design IV: Yijk = α+ µi + τj + µτij +Xg′

ijkβ
g + εgijk, k = 1, · · · , 6

for i = 1, 2, j = 1, 2 and g = 1, · · · , G where G = 6176 is the total number of the GO terms,

µi stand for diet treatment effects, τj for genotype effects and µτij represent the interaction
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between treatment and genotype. For each GO term, we tested for

H0 : βg = 0 vs H1 : βg 6= 0.

Among the 6176 GO terms, the dimension pg of the gene-sets ranged from 1 to 5158, and

many of the gene-sets shared common genes. Hence, there were both high dimensionality and

multiplicity. We applied the proposed high dimensional test for pg ≥ 5 and the F-test for

pg < 5. Without confusion, we call this combination of the proposed high dimensional test and

F-test as the proposed test in this Section. For comparison purposes, the Empirical Bayes test

was also carried out.
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Figure 2.3 Histograms of the p-values on all GO terms using the proposed tests.

Figure 2.3 and 2.4 display histograms of p-values of the proposed tests and the EB tests

under the four designs (I-IV) for all the gene-sets, respectively. Both Figures 2.3 and 2.4 show

that the histograms for Designs I and III were very similar, so were the histograms of Designs

II and IV. This was confirmed by Figure 2.5 where we plots the histograms for the differences
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Figure 2.4 Histograms of the p-values on all GO terms using Empirical Bayes (EB) tests.

in the p-values from the proposed tests. We observed that the p-values from Design I and III

had higher portion of small p-values than those under Design II and IV. These features show

that the form of design is important and it is necessary to account for different designs into the

analysis.

By controlling the false discover rate (FDR) for the p-values from the proposed tests at 5%,

129, 23, 51 and 40 GO terms were declared statistically significant under designs I-IV respec-

tively. We list in Table 2.6 significant GO terms identified by the proposed tests under at least

three designs, together with their p-values and dimensions. They include GO terms that signifi-

cant under all four designs: GO:0005086, GO:0007528 and GO:0032012. GO:0005086 is related

to the molecular function, which stimulates the exchange of guanyl nucleotides associated with

the GTPase ARF. GO:0007528 belongs to the biological process category. GO:0032012 also

belongs to the biological process, which was also found significant by the EB test.
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Figure 2.5 Differences in the p-values among Designs I-IV.

The EB tests detected one significant GO term for each design: GO:0032012 for Designs I

and III, and GO:0004731 for Designs II and IV. They were all among the significant GO terms

discovered by the proposed tests. That the EB test detected quite few gene-sets is not entirely

unexpected as our simulation has shown it tends to have relative low power.

2.8 Appendix: Technical Details

In this appendix, we give technical proofs for the results we presented in Sections 2.2 and

2.4. We will use δβ = β − β0 through the Appendix. Let tr(A ◦ B) =
∑

iAiiBii, and without

loss of generality, assume A0 is symmetric in X ′A0X as we could use A = (A0 + A′0)/2 to

replace A0.

Lemma 1 (i) For any symmetric matrix A and B, tr2(A ◦ B) ≤ tr(A ◦ A)tr(B ◦ B) ≤

tr(A2)tr(B2).
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Table 2.6 P-values of the GO terms which are significant under at least three designs using the
proposed test, and their number of genes.

GO term Design I Design II Design III Design IV No. of Genes
GO:0004115 3.253E-04 2.774E-06 1.992E-06 8
GO:0005086 2.345E-10 1.945E-05 7.220E-06 1.629E-05 14
GO:0005677 1.082E-04 3.102E-06 7.575E-05 5
GO:0006342 3.068E-04 3.444E-06 5.951E-05 5
GO:0007528 1.110E-16 7.922E-07 2.235E-08 3.203E-04 8
GO:0017136 1.082E-04 3.102E-06 7.575E-05 5
GO:0032012 0.000E-04 2.586E-06 2.746E-10 5.418E-06 12
GO:0050909 1.545E-09 3.842E-05 4.216E-05 5

(ii) For any symmetric non-negative matrix Q and vector a, a′Qaa′Q3a ≥ (a′Q2a)2.

Proof (i) By Cauchy-Schwarz inequality, we have

tr2(A ◦B) = (
∑

i

AiiBii)2 ≤ (
∑

i

A2
ii)(
∑

i

B2
ii) = tr(A ◦A)tr(B ◦B).

Notice that tr(A2) =
∑

iA
2
ii +

∑
i6=j A

2
ij ≥ tr(A ◦A). The second inequality follows.

(ii) Since for any symmetric matrix, there exist an orthogonal matrix P such that Q =

Pdiag(λ1, · · · , λp)P ′. Plugging this decomposition and applying the Cauchy-Schwarz inequality

again, the inequality follows immediately. 2

Lemma 2 For random variables Z1 and Z2 from the model assumption (2.2.4), we have

(i) For any m×m symmetric matrices B1 and B2,

E{(Z ′1B1Z1)(Z ′1B2Z1)} = tr(B1)tr(B2) + 2tr(B1B2) + ∆tr(B1 ◦B2);

(ii) Let A0 = Γ′Γ. Then

E{(Z ′1AZ2)4} = 3tr2(Σ2) + 6tr(Σ4) + 6∆tr(A2
0 ◦A2

0) + ∆2
m∑

i,k=1

(A0,ik)4.

(iii) For any m×m symmetric matrices B1 and B2 then there exists a finite constant C such

that

E{(Z ′1B1Z1 − tr(B1))(Z ′1B2Z1 − tr(B2))}2 ≤ Ctr(B2
1)tr(B2

2)
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(iv) For any m×m symmetric matrices A,B and D and suppose that E(Z6
11) = τ6. Then

E{Z ′1AZ1Z
′
1BZ1Z

′
1DZ1} = 8tr(ABC) + 2tr(AB)tr(D) + 2tr(BD)tr(A)

+ tr(A)tr(B)tr(D) + ∆{tr(A)tr(B ◦D) + tr(B)tr(A ◦D) + tr(D)tr(A ◦B)

+ tr(AB ◦D) + tr(AD ◦B) + tr(BD ◦A)}+ (τ6 − 15− 6∆)tr(A ◦B ◦D).

Proof Let zi denotes the i-th entry of Z1. To derive part (i), we denote the (j, k)-th entry of

Bi by B(i)
jk , for i = 1, 2. Then, by model assumption (2.2.4),

E{(Z ′1B1Z1)(Z ′1B2Z1)}

=
∑

i1,··· ,i4

B
(1)
i1i2

B
(2)
i3i4

E(zi1zi2zi3zi4)

=
m∑

i=1

b
(1)
ii B

(2)
ii E(z4

i ) +
∑
i1 6=i2

B
(1)
i1i1

B
(2)
i2i2

E(z2
i1)E(z2

i2) + 2
∑
i1 6=i2

B
(1)
i1i2

B
(2)
i1i2

E(z2
i1)E(z2

i2)

= tr(B1)tr(B2) + 2tr(B1B2) + ∆tr(B1 ◦B2).

For (ii), due to the independence between Z1 and Z2, (ii) follows by applying twice the

result in (i). In particular,

E{(Z ′1AZ2)4} = 3E{(Z ′1A2Z1)2}+ ∆
m∑

i=1

E{(Z ′1Aeie′iAZ1)2},

where ei is an m-vector with all the components 0 except the i-th component being 1. Then

applying (i) again, the asserted result follows.

To show (iii), notice that the left hand side of the inequality can be written as

E
{(∑

i

B
(1)
ii (z2

i − 1) +
∑
j 6=l

B
(1)
jl zizl

)(∑
k

B
(2)
kk (z2

k − 1) +
∑
s 6=t

B
(2)
st zszt

)}2

≤ J1 + J2 + J3 + J4

where

J1 = 4
∑

i,k,i1,k1

B
(1)
ii B

(2)
kk B

(1)
i1i1

B
(2)
k1k1

(z2
i − 1)(z2

i1 − 1)(z2
k − 1)(z2

k1
− 1),
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J2 = 4
∑

i,i1,s 6=t,s1 6=t1

B
(1)
ii B

(2)
st B

(1)
i1i1

B
(2)
s1t1

(z2
i − 1)(z2

i1 − 1)zsztzs1zt1 ,

J3 = 4
∑

k,k1,j 6=l,j1 6=l1

B
(2)
kk B

(1)
jl B

(2)
k1k1

B
(1)
j1l1

(z2
k − 1)(z2

k1
− 1)zjzlzj1zl1 and

J4 = 4
∑

s 6=t,s1 6=t1,j 6=l,j1 6=l1

B
(1)
jl B

(2)
st B

(1)
j1l1

B
(2)
s1t1

zjzlzsztzj1zl1zs1zt1 .

In the rest of the appendix, we use C to denote finite positive constants whose values may

change and |Bi| = (|B(i)
kl |)kl for i = 1, 2. Then,

|J1| ≤ C
(
2
∑

i

(B(1)
ii B

(2)
ii )2 +

∑
i6=k

(B(1)
ii B

(2)
kk )2 +

∑
i6=k

|B(1)
ii ||B

(2)
ii ||B

(1)
kk ||B

(2)
kk |
)

= C
(∑

i,k

(B(1)
ii B

(2)
kk )2 +

∑
i,k

|B(1)
ii ||B

(2)
ii ||B

(1)
kk ||B

(2)
kk |
)

= C
(
tr(B1 ◦B1)tr(B2 ◦B2) + tr(|B1| ◦ |B2|)tr(|B1| ◦ |B2|)

)
≤ Ctr(B2

1)tr(B2
2).

Applying Cauchy-Schwarz inequality,

|J2| ≤ C
(∑

i,s 6=t

(B(1)
ii B

(2)
st )2 +

∑
i6=i1

|B(1)
ii ||B

(1)
i1i1
|(B(2)

ii1
)2
)

≤ C
(∑

i

(B(1)
ii )2

∑
s,t

(B(2)
st )2 +

∑
i

|B(1)
ii |
(∑

i1

(B(1)
i1i1

)2
)1/2(∑

i1

(B(2)
ii1

)4
)1/2)

≤ C
(
tr(B1 ◦B1)tr(B2

2) +
(∑

i

(B(1)
ii )2

)(∑
i

∑
i1

(B(2)
ii1

)4
)1/2)

≤ Ctr(B2
1)tr(B2

2).

Similarly, we have |J3| ≤ Ctr(B2
1)tr(B2

2). Finally,

|J4| ≤ C
( ∑

j 6=l,s 6=t

(B(1)
jl B

(2)
st )2 +

∑
j 6=l,s 6=t

|B(1)
jl ||B

(2)
jl ||B

(1)
st ||B

(2)
st |

+
∑

j 6=l,t 6=l1
j 6=t,l 6=l1

|B(1)
lj ||B

(2)
jt ||B

(2)
tl1
||B(1)

l1l |+
∑

j 6=l,j 6=j1
j1 6=l1,l6=l1

|B(1)
lj ||B

(2)
jj1
||B(1)

j1l1
||B(2)

l1l |
)

≤ C
(∑

jl

(B(1)
jl )2

∑
s,t

(B(2)
st )2 +

∑
j,l

|B(1)
jl ||B

(2)
jl |
∑
s,t

|B(1)
st ||B

(2)
st |

+ 2
∑
l,j

(B(1)
lj )2

∑
t,l1

(B(2)
tl1

)2
)

≤ Ctr(B2
1)tr(B2

2).
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Therefore, (iii) is true. The conclusion (iv) could be established based on the fact

E{Z ′1AZ1Z
′
1BZ1Z

′
1DZ1} = τ6

∑
i

AiiBiiDii + (3 + ∆)
(∑

i6=k

AiiBkkDkk + 4
∑
i6=j

AijBijDjj

+ 4
∑
i6=j

AijBjjDij +
∑
i6=k

AiiBkkDii +
∑
i6=k

AiiBiiDkk +
∑
i6=k

AiiBkiDki

)
+
∑

i6=k 6=s

AiiBkkDss + 2
∑

i6=j 6=s

AijBijDss + 2
∑

i6=j 6=k

AijBkkDij

+ 2
∑

i6=k 6=l

AiiBklDkl + 8
∑

i6=j 6=l

AijBilDlj .

2

Proof of Theorem 1 Let γ0 = (α, βτ
0 )τ . By plugging in the least square estimate γ̂, we

could write the F-statistics in (2.2.3) as

Gn,p =
(Y − Uγ0)′PAu(Y − Uγ0)/p
Y ′(In − PU )Y/(n− p− 1)

where PAu = U(U ′U)−1A′(A(U ′U)−1A′)−1A(U ′U)−1U ′, PU = U(U ′U)−1U ′ and P1 = 11′/n

be the projection matrices of U(U ′U)−1A′, U and 1 respectively. By applying the matrix

inverse formula on (U ′U)−1, U(U ′U)−1A′ = (I − P1)X{X ′(I − P1)X}−1. It then follows that

PAu = (I − P1)X(X ′(I − P1)X)−1X ′(I − P1).

Since PAu(I − PU ) = 0, the numerator and the denominator of Gn,p are independent, and

PAu is an idempotent matrix with rank p. We may write

p

n− p− 1
Gn,p

d=
{Qε+Q(U(γ − γ0))}′diag(1′p,0′n−p){Qε+Q(U(γ − γ0))}

z1
′z1

,

where ε = (ε1, · · · , εn)′ ∼ N(0, In) and z1 ∼ N(0, In−p−1) are independent random variables,

and Q is an orthogonal matrix such that PAu = Q′diag(1′p,0
′
n−p)Q. Here d= means the two

random vectors on either side have the same distribution. Write Q = (Q1, Q2, · · · , Qn)′. Note

that Qε d= ε. Furthermore, write pGn,p/(n− p− 1) as

p

n− p− 1
Gn,p

d=
p∑

i=1

{ε2i + 2εiQ′
iXδβ}/z1

′z1 + δ′βX
′PAuXδβ/z1

′z1 (2.8.41)

where X ′PAuX = X ′(I − P1)X = ΓZ ′(I − P1)ZΓ′ and Z = (Z1, · · · , Zn)′.
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For the numerator of the (2.8.41), we can show that under Model (2.2.4), E{δ′βX ′PAuXδβ} =

(n− 1)δ′βΣδβ. It is easy to see that E{
∑p

i=1 εiQ
′
iXδβ} = 0 and

Var{
p∑

i=1

εiQ
′
iXδβ} = (n− 1)σ2δ′βΣδβ. (2.8.42)

It can be shown that

Var{δ′βX ′PAuXδβ} = 2(n− 1)(δ′βΣδβ)2 + (n+ 2 + 1/n)∆tr(A1 ◦A1). (2.8.43)

Direct calculation shows that E
(

1
z1

′z1

)
= 1/(n − p − 3) and E

(
1

z1
′z1

)2 = 1/{(n − p −

3)(n − p − 5)}. (2.8.42) implies that
∑p

i=1 εiQ
′
iXδβ/z1

′z1 = Op{ 1√
n

√
δ′βΣδβ} and note that

E(X ′PAuX) = (n− 1)Σ. Then (2.8.43) yields

δ′βX
′PAuXδβ

z1
′z1

=
δ′βΣδβ
1− ρ

+Op{ 1√
n
δ′βΣδβ}.

If δ′βΣδβ = o(1), then

p

n− p− 1
Gn,p

d=
p∑

i=1

ε2i
z1

′z1
+
δ′βΣδβ
1− ρ

+ op(n−1/2).

From Bai and Saranadasa (1996),

p

n− p− 1
Fp, n−p−1;α =

ρn

1− ρn
+

√
2ρ

(1− ρ)3n
zα + o(n−1/2),

where zα is the α quantile of N(0,1) and it can be shown√
(1− ρ)3n

2ρ

(
p∑

i=1

ε2i
z1

′z1
− ρn

1− ρn

)
d→ N(0, 1).

Therefore the power of the F-test is

ΩF (‖β − β0‖) = P

(
p

n− p− 1
Gn,p >

p

n− p− 1
Fp, n−p−1;α

)
= P

{√(1− ρ)3n
2ρ

(
p∑

i=1

ε2i
z1

′z1
− ρn

1− ρn

)
> zα −

√
(1− ρ)3n

2ρ
δ′βΣδβ
1− ρ

+ op(1)
}

= Φ

(
−zα +

√
(1− ρ)n

2ρ
δ′βΣδβ

)
+ o(1).

2
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Proof of Theorem 2 It is straightforward to show that E(Tn,p) = ‖Σδβ‖2. To derive

Var(Tn,p), we need to derive the variance of h1, h2, h3 and h and then apply the variance

decomposition given in (2.3.10).

Let A0 = Γ′Γ, A1 = Γ′δβδ′βΓ, A2 = Γ′Σδβδ′βΣΓ, A3 = Γ′ΣΓ and Bi = δ′βΣiδβ. It can be

shown that

ζ1 =
1
4
B1B3 +

1
4
σ2B3 +

1
4
B2

2 +
1
4
∆tr(A1 ◦A2). (2.8.44)

We can also show that

ζ2 =
1
36

{
σ4tr(Σ2) + 21B2

2 + 22B1B3 + 22σ2B3 +B2
1tr(Σ

2) + 2σ2tr(Σ2)B1

+ 2∆{B1 + σ2}tr(A1 ◦A3) + 20∆tr(A1 ◦A2) + ∆2tr{A0diag(A1)}2
}
, (2.8.45)

where we needs the following facts: E[(ε1 − ε2)(X1 −X2)′Σδβ]2 = 4σ2B3,

E[δ′β(X1 −X2)(X1 −X2)′Σδβ]2 = 2∆tr(A1 ◦A2) + 8B2
2 + 4B1B3,

E[ε1X ′
1(X2X

′
2 + Σ)δβ ]2 = 5σ2B3 + σ2tr(Σ2)B1 + ∆σ2tr(A1 ◦A3),

E[δ′β(X1X
′
1 + Σ)(X2X

′
2 + Σ)δβ]2 = tr[5Σδβδ′βΣ + δ′βΣδβΣ + ∆Γdiag(A1)Γ′]2

= 25B2
2 +B2

1tr(Σ
2) + ∆2tr{A0diag(A1)}2 + 10B1B3 + 10∆tr(A1 ◦A2)

+ 2∆B1tr(A1 ◦A3) and

E[2δ′β(X1 −X2)(X1 −X2)′Σδβδ′β(X1X
′
1 + Σ)(X2X

′
2 + Σ)δβ]

= E[2δ′β(X1X
′
1 +X2X

′
2)Σδβδ

′
β(X1X

′
1 + Σ)(X2X

′
2 + Σ)δβ ]

= 8E[δ′βX1X
′
1Σδβδ

′
βX1X

′
1Σδβ ] + 8[δ′βΣ2δβ]2 = 8∆tr(A1 ◦A2) + 8B1B3 + 24B2

2 .

As ζ4 ≥ ζ3, we first derive ζ4. It may be shown that

E(h2(W1,W2,W3,W4)) = 1
9E{φ(1, 2, 3, 4) + φ(1, 3, 2, 4) + φ(1, 4, 2, 3)}2

= 1
3Eφ

2(1, 2, 3, 4) + 2
9Eφ(1, 2, 3, 4)φ(1, 3, 2, 4)

+ 2
9Eφ(1, 2, 3, 4)φ(1, 4, 2, 3) + 2

9Eφ(1, 3, 2, 4)φ(1, 4, 2, 3)

= 1
3Eφ

2(1, 2, 3, 4) + 2
3Eφ(1, 2, 3, 4)φ(1, 3, 2, 4)
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where

1
3Eφ

2(1, 2, 3, 4) = 1
3σ

4tr(Σ2) + 4
3B

2
2 + 4

3B1B3 + 4
3σ

2B3 + 1
3B

2
1tr(Σ

2) + 2
3σ

2tr(Σ2)B1

+ 1
3{B1 + σ2}∆tr(A1 ◦A3) + 2

3∆tr(A1 ◦A2) + 1
12∆2tr{A0diag(A1)}2 and

2
3Eφ(1, 2, 3, 4)φ(1, 3, 2, 4) = 1

24

{
8σ4tr(Σ2) + 32B2

2 + 32B1B3 + 32σ2B3 + 16σ2B1tr(Σ2)

+ 8B2
1tr(Σ

2) + 16∆tr(A1 ◦A2) + 8∆σ2tr(A1 ◦A3) + 8∆B1tr(A1 ◦A3)

+ 2∆2tr{A0diag(A1)}2
}
.

It then follows that

ζ4 = 1
24

{
12σ4tr(Σ2) + 45B2

2 + 65B1B3 + 40σ2B3 + 10B2
1tr(Σ

2) + 24σ2tr(Σ2)B1

+ 12{B1 + σ2}∆tr(A1 ◦A3) + 37∆tr(A1 ◦A2) + 4∆2tr{A0diag(A1)}2
}
. (2.8.46)

Note that (2.8.45) and (2.8.46) show that ζ2 and ζ4 are both the linear combination of

tr(Σ2), B2
2 , B1B3, B3, B

2
1tr(Σ

2), B1tr(Σ2), (B1+σ2)tr(A1◦A3), tr(A1◦A2) and tr{A0diag(A1)}2.

So it implies that ζ2 and ζ4 are of the same order. By Proposition 1, ζ2, ζ3 and ζ4 are of the

same order. Hence, the third and fourth term in the Hoeffding decomposition are all of smaller

order. Thus Var(Tn,p) =
{

16
n ζ1 + 72

n(n−1)ζ2

}
{1 + o(1)}. Substituting ζ1 and ζ2, the results in

Theorem 2 follow. 2

The following two inequalities will be useful in the proof of Theorem 3. By the Cauchy-

Schwarz inequality together with (2.8.44) and (2.8.45), we have

ζ1 ≤
{
(
1
2

+
1
4
∆)B1 +

1
4
σ2
}
B3, (2.8.47)

ζ2 ≤
1
36

{
[σ2 + (∆ + 1)B1]2tr(Σ2) + [22σ2 + (43 + 20∆)B1]B3

}
. (2.8.48)

Proof of Theorem 3 Let

T̂n,p − ‖Σδβ‖2 =
12

n(n− 1)

∑
1≤i1<i2≤n

h̃2(Wi1 ,Wi2) (2.8.49)

be the projection of Tn,p. We can decompose Tn,p − ‖Σδβ‖2 = T̂n,p − ‖Σδβ‖2 + (Tn,p − T̂n,p),

where Tn,p − T̂n,p can still be written as a U-statistics with kernel

H(W1,W2,W3,W4) = h̃(W1,W2,W3,W4)−
∑

1≤i1<i2≤4

h̃2(Wi1 ,Wi2). (2.8.50)
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The projections ofH areH1(w1) = −2h̃1(w1), H2(w1, w2) = −2
∑2

i=1 h̃1(wi) andH3(w1, w2, w3) =

h̃3(w1, w2, w3) −
∑3

i=1 h̃1(wi) −
∑

1≤i<j≤3 h̃2(wi, wj). Thus if the null hypothesis or the local

alternatives conditions (2.4.12) hold, Var(h1) = o(n−1ζ2). By Hoeffding’s variance formula,

Var(T̂n,p) = O(n−2ζ2) and Var(Tn,p − T̂n,p) = o(n−2ζ2). Here we used the fact that ζ2, ζ3 and

ζ4 are of the same order as we have shown in Theorem 2. Thus,

Tn,p − ‖Σδβ‖2√
Var(T̂n,p)

=
T̂n,p − ‖Σδβ‖2√

Var(T̂n,p)
+ op(1).

Hence we only need to show that

T̂n,p − ‖Σδβ‖2√
Var(T̂n,p)

d→ N(0, 1). (2.8.51)

From (2.8.49), T̂n,p − ‖Σδβ‖2 = T̂
(1)
n,p + T̂

(2)
n,p where

T̂ (1)
n,p =

(
n

2

)−1 ∑
1≤i<j≤n

{
[δ′β(Xi −Xj) + (εi − εj)](Xi −Xj)′Σδβ

+ [δ′β(XiX
′
i + Σ) + εiX

′
i](XjX

′
j + Σ)δβ + εjX

′
j(XiX

′
i + Σ)δβ

}
− 6‖Σδβ‖2

and T̂
(2)
n,p =

(
n
2

)−1∑
1≤i<j≤n εiεjX

′
iXj . Under the assumptions of this theorem and following

(2.8.47) and (2.8.48), Var(T̂n,p) = Var(T̂(2)
n,p){1+o(1)} and T̂ (1)

n,p/
√

Var(T̂n,p) = op(1). To prove

the theorem, we only need to show

T̂ (2)
n,p/

√
Var(T̂(2)

n,p) =

√(
n

2

)
T̂ (2)

n,p/
√
σ4tr(Σ2) d→ N(0, 1). (2.8.52)

Now write T̃nk =
√(

n
2

)
T̂

(2)
n,p =

∑k
i=2 Zni and T̃nn = T̃n,p, where Zni =

∑i−1
j=1 εiεjX

′
iXj/

√(
n
2

)
.

Let Fi = σ
{(

X1

ε1

)
, · · · ,

(
Xi
εi

)}
be the σ−field generated by {(Xτ

j , εj), j ≤ i}. It is easy to see

that E(Zni|Fi−1) = 0 and it follows that {T̃nk,Fk : 2 ≤ k ≤ n} is a zero mean martingale. Let

vni = E(Z2
ni|Fi−1), 2 ≤ i ≤ n and Vn =

∑n
i=2 vni. The central limit theorem will hold (Hall

and Heyde, 1980) if we can show
Vn

Var(T̃n,p)
p→ 1 (2.8.53)

and for any ε > 0

n∑
i=1

σ−4tr−1(Σ2)E{Z2
niI(|Zni| > εσ2

√
tr(Σ2))|Fi−1}

p→ 0. (2.8.54)
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It can be shown that vni =
(
n
2

)−1
σ2
{∑i−1

j=1 ε
2
jX

′
jΣXj + 2

∑
1≤j<k<i εjεkX

′
jΣXk

}
and

Vn

Var(T̃n,p)
=

1(
n
2

)2
tr(Σ2)σ2

{ n−1∑
j=1

jε2jX
′
jΣXj + 2

∑
1≤j<k≤n

εjεkX
′
jΣXk

}
= Cn1 + Cn2, say.

We know that E(Cn1) = 1 and

Var(Cn1) =
1(

n
2

)4
tr2(Σ2)σ4

E
{ n−1∑

j=1

j2(ε4j (X
′
jΣXj)2 − tr2(Σ2)σ4)

}
.

As tr(Σ4) = o{tr2(Σ2)} implies E{(X ′
jΣXj)2} = o(n)tr2(Σ2). Hence, Var(Cn1) → 0 and

Cn1
p→ 1. Similarly, E(Cn2) = 0 and

Var(Cn2) =
4(
n
2

)4{ n∑
i=3

(
i

2

)
+

n−1∑
i=3

(n− i)
(
i

2

)} tr(Σ4)
tr2(Σ2)

.

Thus, tr(Σ4) = o{tr2(Σ2)} implies Cn2
p→ 0. In summary, (2.8.53) holds.

It remains to show (2.8.54). Since

E{Z2
niI(|Zni| > εσ2

√
tr(Σ2))|Fi−1} ≤ E(Z4

ni|Fi−1)/(ε2σ4tr(Σ2)),

by the law of large numbers, we only need to prove that

n∑
i=1

E(Z4
ni) = o{σ4tr2(Σ2)}. (2.8.55)

Let κ4 = E(ε4) which is assumed to be finite. Then

n∑
i=1

E(Z4
ni) ≤

(
n

2

)−1

κ2
4

(
3tr2(Σ2) + (6 + 6∆ + ∆2)tr(Σ4)

)
+
(
n

2

)−2 1
3
(n3 − 3n2 + 2n)κ4σ

4
(
tr2(Σ2) + (2 + ∆)tr(Σ4)

)
.

Under the assumption that tr(Σ4) = o{tr2(Σ2)}, (2.8.55) follows immediately. This completes

the proof. 2

We need the following lemma in the proof of Theorem 4.

Lemma 3 Let η1 = ε1X1 + (X1X
′
1 − Σ)δβ and A be a symmetric matrix, where δβ = β − β0.

Assume E(Z8
11) <∞. Then for some finite positive constants C,
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(i) E(η′1Aη1) = tr(AΣ){B1 + σ2}+ δ′βΣAΣδβ + ∆tr(Γ′AΓ ◦ Γ′δβδ′βΓ).

(ii) E(η′1Aη2)2 ≤ Ctr(AΣAΣ){B1 + σ2}2 + C{B1 + σ2}δ′βΣAΣAΣδβ + {δ′βΣAΣδβ}2.

(iii) E(η′1Aη1)2 ≤ Ctr(AΣAΣ){B2
1 + σ4}+ Ctr2(AΣ){B2

1 + σ4}+ C{δ′βΣAΣδβ}2

+ C{B1 + σ2}δ′βΣAΣAΣδβ + Ctr(AΣ)tr(Γ′AΓ ◦ Γ′δβδ′βΓ).

Proof The first result is immediately obtained from (i) in Lemma 2. We only show (ii) and

(iii). For (ii), notice that E(η2η
′
2) = (B1+σ2)Σ+Σδβδ′βΣ+Γdiag(Γ′δβδ′βΓ)Γ′ and E(η′1Aη2)2 =

E[E(η′1Aη2η
′
2Aη1|η2)] = E[η′2AΣAη2(B1 + σ2) + η′2AΣδβδ′βΣAη2 + ∆tr(Γ′Aη2η

′
2AΓ ◦Γ′δβδ′βΓ)].

Applying the formula in (i) again and note that tr(Γ′AΓdiag(Γ′δβδ′βΓ)Γ′AΓ ◦ Γ′δβδ′βΓ) ≤

tr(AΣAΣ)B2
1 , and tr(Γ′AΣAΓ ◦ Γ′δβδ′βΓ) ≤ tr(AΣAΣ)B1 the result in (ii) follows immedi-

ately. Using Cauchy-Schwartz inequality, we have

E(η′1Aη1)2 ≤ 24E[(X ′
1AX1 − tr(AΣ))(X ′

1δβδ
′
βX1 −B1)] + 24B2

1tr
2(AΣ)

+ 24tr2(AΣ)E[(X ′
1δβδ

′
βX1 −B1)]2 + 24B2

1E[(X ′
1AX1 − tr(AΣ))]2

+ 24E[X ′
1AΣδβδ′βX1]2 + 6(δ′βΣAΣδβ)2 + 8σ2E[(X ′

1AX1)2X ′
1δβδ

′
βX1]

+ 8δ′βΣAΣAΣδβ + 2σ4E(X ′
1AX1)2. (2.8.56)

The first term on the right hand side of (2.8.56) is bounded by Ctr(AΣAΣ)B2
1 , which is an

implication of (iii) in Lemma 2. The 7-th term on the right hand side of (2.8.56) can be

calculated by the formula given in (iv) in Lemma 2. Applying (i) in Lemma 2, all the other

expectations in (2.8.56) can be calculated. Then the result (iii) could be obtained by some

algebras. 2

Proof of Theorem 4 We first show the conclusion in (i). Following the proof of Theorem 3,

we only need to show that (2.8.51) hold under the fixed alternative condition (2.4.18). Write

T̂n,p − ‖Σδβ‖2 = T̂
(1)
n,p + T̂

(2)
n,p where

T̂ (1)
n,p =

(
n

2

)−1 ∑
1≤i<j≤n

{
[δ′β(Xi −Xj) + (ε1 − ε2)](Xi −Xj)′Σδβ

}
− 2‖Σδβ‖2

and T̂ (2)
n,p =

(
n
2

)−1∑
1≤i<j≤n{η′iηj + 2δ′βΣηj + 2δ′βΣηi}.
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Utilizing the facts listed in the proof of Theorem 2, we see that T̂ (1)
n,p is a smaller order term

of T̂ (2)
n,p . Therefore, we only need to show the asymptotic normality of T̂ (2)

n,p . Using Proposition 1,

Var(T̂(2)
n,p) = 4(n−2)

n(n−1)ζ1 + 2
n(n−1)ζ2, where ζ1 = E(2δ′βΣη1)2 and ζ2 = E(η′iηj +2δ′βΣηj +2δ′βΣηi)2.

Under condition (2.4.18), it is can be shown that Var(T̂(2)
n,p) = 2

n(n−1)ζ2{1 + o(1)}.

Let T̃n,p =
∑n

i=2 Zni, where Zni =
(
n
2

)−1
2
∑i−1

j=1{η′iηj + 2δ′βΣηj + 2δ′βΣηi}. Then Z2
ni =

Z
2(1)
ni + Z

2(2)
ni , where Z2(1)

ni =
(
n
2

)−1∑i−1
j=1{η′iηj + 2δ′βΣηj + 2δ′βΣηi}2 and

Z
2(2)
ni =

(
n

2

)−1 i−1∑
1≤j<k≤i−1

{η′iηj + 2δ′βΣηj + 2δ′βΣηi}{η′iηk + 2δ′βΣηk + 2δ′βΣηi}.

It follows that

V
(1)
ni = E(Z2(1)

ni |Fi−1) =
(
n

2

)−1 i−1∑
j=1

{
(B1 + σ2)η′jΣηj + ∆tr(Γ′ηjη

′
jΓ ◦ Γ′δβδ′βΓ)

+ 4(B1 + σ2)δ′βΣ3δβ + 5η′jΣδβδ
′
βΣη′j + 4∆tr(Γ′Σδβδ′βΣΓ ◦ Γ′δβδ′βΓ) + 4B2

2

+ 4(B1 + σ2)δ′βΣ2ηj + 4δ′βΣ2δβδ
′
βΣ2ηj + 4∆tr(Γ′ηjδ

′
βΣΓ ◦ Γ′δβδ′βΓ)

}
.

Let Vn1 =
∑n

i=2 V
(1)
ni . It is easy to see that E(Vn1) = ζ2. Then

Var(Vn1) ≤
(
n

2

)−2 n−1∑
j=1

j2
{

6(B1 + σ2)2E[η′jΣηj − E(η′jΣηj)]2 + 6∆2E(η′jΣηj)2

+ 30E[η′jΣδβδ
′
βΣηj − E(η′jΣδβδ

′
βΣηj)]2 + 24B2

1E[η′jΣδβδ
′
βΣηj ]

+ 24{(B1 + σ2)2 + ∆2B2
1}E[η′jΣ

2δβδ
′
βΣ2ηj ]

}
.

Applying Cauchy-Schwarz inequality, the summand on the right hand side of the above inequal-

ity is smaller than C
{

(δ′βΣδβ)4[tr(Σ4)+tr2(Σ2)]+B2
3B

2
1 +B3

1B5 +B4
2

}
. Using Cauchy-Schwarz

inequality, we can shown that

B3
1B5 ≥ B2

3B
2
1 ≥ B4

2 . (2.8.57)

Hence, Var(Vn1) ≤ C
(
n
2

)−2∑n−1
j=1 j2

{
B4

1[tr(Σ
4) + tr2(Σ2)] + B3

1B5

}
. As tr(Σ4) = o{tr2(Σ2)}

implies that λ4
p = o{(

∑p
i=1 λ

2
i )

2}, B3
1B5 = o

{
B4

1tr
2(Σ2)

}
. Therefore, Var(Vn1)/ζ2

2 → 0 as

n→∞, which means Vn1
p→ ζ2.

V
(2)
ni = E(Z(2)2

ni |Fi−1) =
(
n

2

)−1 ∑
1≤j<k≤i−1

I2jk,
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where I2jk = I1jk + I1k + I1j +C0, C0 = 4δ′βΣ3δβ(B1 + σ2) + 4B2
2 + ∆tr(Γ′Σδβδ′βΣΓ ◦Γ′δβδ′βΓ)

and

I1jk = (B1 + σ2)η′jΣηk + 5ηjΣδβδ′βηk + ∆tr(Γ′ηkηjΓ ◦ Γ′δβδ′βΓ) and

I1k = 2(B1 + σ2)η′kΣ
2δβ + 2ηkΣδβδ′βΣ2δβ + 2∆tr(Γ′ηkδ

′
βΣΓ ◦ Γ′δβδ′βΓ).

Let Vn2 =
∑n

i=2 V
(2)
ni . Then E(Vn2) = 0 and

Var(Vn2) =
(

n
2

)−2 n−1∑
k=2

k−1∑
j=1

(n− k)2E{I2jk − E(I2jk)}2

+
(
n

2

)−2

2
n−1∑
k=2

k−1∑
j<j1

(n− k)2E(I2
1k) +

(
n

2

)−2

2
n−1∑
k<k1

k∑
j=1

(n− k)(n− k1)E(I2
1j).

It can be shown that, by Lemma 3 and (2.8.57),

E{I2jk − E(I2jk)}2 ≤C
{

(B1 + σ2)4tr(Σ4) + (B1 + σ2)3B5

}
and E{I1k}2 ≤ C(B1 + σ2)3B5. Thus, under the condition given in Theorem 4, as n → ∞,

Var(Vn2)/ζ2
2 ≤ CE{I2jk − E(I2jk)}2/ζ2

2 → 0, which implies that Vn2/ζ2
p→ 0. In summary, we

have E(
∑n

i=2 Z
2
ni|Fi−1)

p→ ζ2.

It remains to establish the second condition (2.8.55). Note that

E(Z4
ni) ≤ 2E(Z2(1)

ni )2 + 2E(Z2(2)
ni )2 =: J1i + J2i.

Let Sij = η′iηj + 2δ′βΣηj + 2δ′βΣηi. Then

J1i = 2
(
n

2

)−2 i−1∑
j=1

E{S4
ij}+ 2

(
n

2

)−2 i−1∑
j 6=k

E{S2
ijS

2
ik} ≤ (2i− 2)

(
n

2

)−2 i−1∑
j=1

E{S4
ij}.

By Cauchy-Schwarz inequality, E(S4
ij) ≤ 8E(η′iηjη

′
jηi)2+211E(η′jΣδβδ

′
βΣηj)2. Again, by Lemma

3, E(η′iηjη
′
jηi)2 ≤ C(B2

1+σ4)2{tr(Σ4)+tr2(Σ2)}+CB2
1B

2
3+CB3

1B5+CB4
2 andE(η′jΣδβδ

′
βΣηj)2 ≤

CB2
1B

2
3 + CB4

2 .

Therefore,
∑n

i=1 J1i/ζ
2
2 = 4(2n3−3n2+n)

3n2(n−1)2
E(S4

ij)/ζ
2
2 → 0 as n→∞. Write

J2i = 4
(
n

2

)−2 i−1∑
j 6=k

E{S2
ijS

2
ik}+ 8

(
n

2

)−2 i−1∑
j 6=k 6=l

E{S2
ijSikSil}

+ 2
(
n

2

)−2 i−1∑
j 6=k 6=l 6=m

E{SijSikSilSim} =: J (1)
2i + J

(2)
2i + J

(3)
2i ,
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where

J
(2)
2i = 8

(
n

2

)−2 i−1∑
j 6=k 6=l

E{4(δ′βΣηi)2(η′iηj)2 + 16(δ′βΣηi)4 + 16(δ′βΣηi)2(δ′βΣηj)2}

≤ C i(i−1)(i−2)
n2(n−1)2

E(S4
ij).

J
(3)
2i = 32

(
n

2

)−2 i−1∑
j 6=k 6=l 6=m

E(δ′βΣηi)4 ≤ C i(i−1)(i−2)(i−3)
n2(n−1)2

B2
1B

2
3 .

Under conditions given in Theorem 4,
∑n

i=1 J1i/ζ
2
2 → 0 as n→∞.Hence,

∑n
i=1E(Z4

ni) = o(ζ2
2 ).

By the Martingale Central Limit Theorem, the asymptotic normality holds for Tn,p, which

completes the proof of part (i).

Now we turn to part (ii). Let T̂F
n,p − ‖Σδβ‖2 = 2

n

∑n
i=1 h̃1(Wi) be the projection of Tn,p.

Similar to the local alternatives cases, we may decompose Tn,p−‖Σδβ‖2 into two parts. One is

T̂F
n,p−‖Σδβ‖2, which is asymptotically normal and the other is Tn,p− T̂F

n,p which is a U-statistic

with kernel HF (W1,W2,W3,W4) = h̃(W1,W2,W3,W4)−
∑4

i=1 h̃1(Wi). It is straightforward to

show that the projections of HF are HF
1 (w1) = 0, HF

2 (w1, w2) = h̃2(w1, w2)−
∑2

i=1 h̃1(wi) and

HF
3 (w1, w2, w3) = h̃3(w1, w2, w3) −

∑3
i=1 h̃1(wi). Suppose conditions (2.4.19) hold, Var(h2) =

o{Var(h1)}.We observe that Var(T̂F
n,p) = O(n−1ζ1) and Var(Tn,p−T̂F

n,p) = O(n−2ζ1). Therefore

the asymptotic normality can be obtained by the asymptotic normality of T̂F
n,p. The latter is

obtained by the conventional central limit theorem. This completes the proof of part (ii). 2
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CHAPTER 3. Threshold Test for High Dimensional Mean under

Dependency

Song Xi Chen and Pingshou Zhong

Department of Statistics

Iowa State University

Ames, IA 50011, USA

Abstract

We consider a test for high dimensional means under sparsity and dependency. A threshold

test statistic is proposed, and the asymptotic distribution is obtained for dependent data under

the “large p, small n” paradigm without a specific distribution assumption. To avoid selection

of threshold parameter, we also propose a maximum test, which maximizes the standardized

threshold test statistic over a range of threshold values. It is shown that the maximum threshold

test is able to attain the optimal detection boundary (Donoho and Jin, 2004). Our analysis

provides conditions under which the threshold test based on an independence assumption can

be justified for weakly dependent data.

KEY WORDS: Detection boundary; Large deviation; Large p, small n; Sparsity; Strong mixing;

Threshold test.

3.1 Introduction

Assume we have independent identically distributed p-variate random vectorsX1, · · · , Xn ∼

F and

Xj = Wj + µ j = 1, · · · , n, (3.1.1)
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where µ = (µ1, · · · , µp)T is a p−dimensional unknown vector, Wj = (W1j , · · · ,Wpj)T and

{Wij}p
i=1 is a sequence of dependent random variables with mean 0 and variance σ2

i . We are

interested in testing the high dimensional mean vector

H0 : µ = 0 vs H1 : µ 6= 0. (3.1.2)

We assume the nonzero components in µ are sparse, namely most of µis are 0 and only a small

portion p−β of them are non-zero. Fan (1996), Fan and Lin (1998), Donoho and Jin (2004) and

Hall and Jin (2008) elaborated various applications of above high dimensional test problem,

including signal detection, analysis of variance for functional data and goodness-of-fit tests for

distributions.

Many traditional multivariate tests suffer low power and may even be invalid in “large p,

small n” scenarios. In an important work of Bai and Saranadasa (1996), they raised such

concern about Hotelling’s T2-test when p/n → c ∈ (0, 1) and proposed a test that is valid

when p/n → c ∈ (0,∞). Chen and Qin (2010) further improved the test proposed by Bai

and Saranadasa (1996) by allowing p to grow much faster than n. See also Chen, Zhang and

Zhong (2010), Ledoit and Wolf (2002), Goeman et al. (2006) and Zhong and Chen (2011) for

high dimensional tests in testing covariances and regression coefficients. These proposals are

designed to detect weak signals that are non-sparse, i.e., the signals exist in many dimensions.

These tests could lose power in sparse settings (see the simulation results Zhong and Chen,

2011). Another way testing (3.1.2) could be based on multiple comparisons. There is a huge

literature on multiple comparisons. See for example, Simes (1986), Benjamini and Hochberg

(1995) and Storey (2002, 2003). Principle methods are used to control the family-wise error

rate or the false discovery rate (FDR) based on the p-values of the marginal tests, which do not

efficiently use the dependence among the components of Xi. Furthermore, these methods are

not able to provide a p-value for indicating the significance of the grouped hypothesis (3.1.2).

As shown in Donoho and Jin (2004), the FDR procedure is not able to attain the optimal

detection boundary in moderately sparse case (0.5 < β < 0.75), in the sense that under the

detection boundary all the tests are asymptotically powerless (Donoho and Jin, 2004; Chen

and Xu, 2011).
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This chapter aims at improving the above high dimensional tests when the signal is sparse

and faint. We consider the following threshold statistic for testing hypothesis (3.1.2)

Tn(λn) =
p∑

i=1

Yi,nI{Yi,n > λn} (3.1.3)

where Yi,n = nX̄i
2
, X̄i = 1

n

∑n
j=1Xij/σi is the scaled sample mean of the i-th component of

X and λn = 2s log(p) is the level of threshold where 0 < s < 1. Without causing confusion,

we will suppress λn and write Tn(λn) as Tn except in Section 3.4. For discussion simplicity,

we shall assume that σ2
i is known. When σ2

i is unknown, we may use the sample variance to

estimate σ2
i which results in the t-statistic. This estimate would put less restrictive conditions

on the validity of our test procedure, because the large deviation results for t-statistic, a self-

normalized statistic, can be established under mild moment conditions (see Shao, 1997; Wang

and Hall, 2009 and Delaigle et al., 2011). However, to keep the essential, we will continue

assuming that σ2
i is known and σ2

i = 1. We also extend the threshold test to a maximum test,

which maximizes the standardized T (λn) in searching for a good threshold λn. We show that

the maximum threshold test is able to achieve the optimal detection boundary. In some part

of the detectable region, the maximum test could achieve the same power as an oracle test up

to an order log(p), where the oracle test is constructed by assuming that the exact locations

of non-zero signals were known in advance. Donoho and Jin (2004) used such an idea in the

so-called “higher criticism” for detecting sparse and weak signals by maximizing the normalized

indicator function I{Yi >
√

2s log(p)} over a range of s ∈ (0, 1) where Yi is the test statistic

with standard normal distribution for each component.

Using a threshold statistic to test (3.1.2) is particularly appealing when the signal is sparse

(the location of signal is unknown) and the components of Xj are dependent to each other.

Because of the high dimensionality and sparse signal, most of the components of Xj contribute

to noise. The threshold is designed to remove the noisy components and retain the components

that contribute to the signal. The idea of threshold was used in selecting significant wavelet

coefficients in Donoho and Johnstone (1994). Moreover, the formulation (3.1.3) allows us to

account for dependence explicitly. In this Chapter, we consider the asymptotic distributions of

Tn by assuming that {Xij}p
i=1 is a strong mixing dependent sequence. Although the dependence
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exists in the original data, we show that the effect of dependence on the threshold test statistics

is small and asymptotically negligible under some conditions. In other words, the threshold

test building on the independence assumption may be applicable to weakly dependent data

without causing large error. This feature mimics the asymptotic tail independence of two

random variables that are jointly bivariate normally distributed with correlation less than one

(Sibuya, 1960).

In a closely related work, Fan (1996) considered testing (3.1.2) by assuming the components

of X are independent identically normally distributed with mean µi and unit variance. Despite

the common use of the normality assumption in many works, in reality, data are rarely exactly

normal. The robustness of the distribution assumption is a concern in practice, especially for

high dimension data, because the level accuracy of the high dimensional simultaneous test

often depends on the accuracy of the distribution approximation. Fan, Hall and Yao (2006)

showed that if log(p) = o(n1/3), using the p-values calculated from the normal approximation

for multiple comparison is still able to control the false discovery rate (FDR) or false family-wise

error rate (FWER) at the given level. Delaigle, Hall and Jin (2011) showed that the standard

higher criticism (Donoho and Jin, 2004) based on normality assumption could perform poorly

when the underlying data deviate from the normal distribution. These works motivate us to

consider the robustness of the distribution assumption in the threshold test. We study the

threshold test for a class of distributions satisfying the Cramér condition. We show that within

this class, the normal approximation to marginal distribution of X is justified.

The rest of the chapter is organized as follows. In Section 3.2, we approximate the mean

and variance of the threshold test statistic using the large deviation method. The asymptotic

distribution of Tn under the “large p, small n” is provided in Section 3.3. We extend the

threshold test statistic to a maximum test in Section 3.4. The detectable region of the maximum

test and the best power are discussed in Section 3.5. Section 3.6 summarizes the simulation

results. All the technical details are relegated to the Appendix.
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3.2 Large Deviation Approximation to the Mean and Variance

We begin by deriving the mean and variance of the threshold test statistic (3.1.3). Because

the underlying distribution of X is unknown and purely nonparametric, direct calculation is

impossible. However, we could approximate the mean and variance with enough accuracy. Due

to the threshold, the moments of the test statistic highly depend on the tail of the distribution.

Notice that

E{Y I(Y > λn)} = λnP (Y ≥ λn) +
∫ ∞

λn

P (Y ≥ z)dz.

Since λn → ∞ as p → ∞, we approximate the tail probability P (Y ≥ z) using the large

deviation results. The large deviation results for random variable can be found in Petrov

(1995). To study the variance of Tn, we further establish a similar large deviation result for a

bivariate random vector, which is given in the Appendix.

Let η−ni =
√
λn −

√
nµi, η

+
ni =

√
λn +

√
nµi and Zi,n(λn) = Yi,nI(Yi,n > λn). Throughout

this chapter we use Lp = C logb(p) to denote slow varying functions for some constants b

and positive C, φ(·) and Φ̄(·) are the density and survival functions of the standard normal

distribution, respectively. Let ρk be the correlation coefficient between X1i and X(k+1)i and

write ρ1 = ρ for simplicity. Let

Q(an1, an2; ρ) = φ(an1)Φ̄(
an2 − ρan1√

1− ρ2
), q(an1, an2; ρ) = φ(an1)φ(

an2 − ρan1√
1− ρ2

) and

U(a, b; ρ) = {2π(1− ρ2)
1
2 }−1

∫ ∞

a

∫ ∞

b
exp{−y

2
1 + y2

2 − 2ρy1y2

2(1− ρ2)
}dy1dy2.

We write µTn,0 and σ2
Tn,0 as the mean and variance of Tn under the null hypothesis and

µTn,1 and σ2
Tn,1 as the corresponding mean and variance under the alternative. The following

theorem summarizes the mean and variance of the test statistics Tn, whose proof is given in

the Appendix. This theorem suggests that under some conditions, we could approximate the

mean and variance of the test statistic Tn as though
√
nX̄i are normally distributed.

Theorem 1 Assume λn = o(n1/3), nµ2
i = O(log p) and there exists a positive H such that

E(eh
′(Xd

ki,X
d
li)) < ∞ for h ∈ [−H,H] × [−H,H], 1 < d ≤ 2 and any k 6= l ∈ {1, · · · , p}. Then

E(Tn) =
∑p

i=1GTn,i, where

GTn, i =
{

(η+
ni)φ(η−ni) + (η−ni)φ(η+

ni) + (nµ2
i + 1)(Φ̄(η−ni) + Φ̄(η+

ni))
}
{1 + o(1)}
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and

Var(Tn) =
{ p∑

i=1

ν(µi, λn) + 2
p∑

i=1

p∑
j=i+1

γj−i(
√

nµi,
√

nµj, λn)
}
{1 + o(1)} (3.2.4)

where

ν(µi, λn) = [(
√
λn)3 + (

√
nµi)3 +

√
nµiλn + n

√
λnµ

2
i + 5

√
nµi + 3

√
λn]φ(η−ni)

+ [(
√
λn)3 − (

√
nµi)3 −

√
nµiλn + n

√
λnµ

2
i − 5

√
nµi + 3

√
λn]φ(η+

ni)

+ [n2µ4
i + 6nµ2

i + 3]
(
Φ̄(η−ni) + Φ̄(η+

ni)
)
−G2

Tn, i and (3.2.5)

γj−i(
√
nµi,

√
nµj , λn) = Ẽ{Zi,n(λn)Zj,n(λn)} −GTn, iGTn, j (3.2.6)

with the expression of Ẽ{Zi,n(λn)Zj,n(λn)} given in the Appendix.

Using Theorem 1, we now evaluate the order of the mean and variance of test statistics

Tn under model (3.1.1) when all the non-zero signal µi are on the same level
√

2r log(p)/n in

corollary 1.

Corollary 1 Assume the conditions in Theorem 1 and
∑

k |ρk| < ∞. If p1−β non-zero com-

ponents of X with mean
√

2r log(p)/n, then

E(Tn) = L(1)
p max{p1−β, p1−s}I(r > s) + L(2)

p max{p1−(
√

s−
√

r)2−β, p1−s}I(r < s) and

Var(Tn) = L(1)
p max{p1−β, p1−s}I(r > s) + L(2)

p max{p1−(
√

s−
√

r)2−β, p1−s}I(r < s)

where L(1)
p and L(2)

p may be different slow varying functions in each appearance.

It is interesting to notice that the mean and variance given in Corollary 1 are in the same

order as that of Tn for X having independent components and have the same slow varying

functions L(1)
p and L(2)

p in the leading order. This implies that the threshold test building on the

independent assumption is valid for weakly dependent data in the leading order asymptotically.

To appreciate this, let S0 be the set of indices where µi = 0 and S1 be the set of indices

where µi 6= 0.

Tn =
∑
i∈S0

nX̄i
2
I{nX̄i

2
> λn}+

∑
i∈S1

nX̄i
2
I{nX̄i

2
> λn} := Tn(S0) + Tn(S1).
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Then

E(Tn) = E{Tn(S0)}+ E{Tn(S1)} = 2
√

2s log pφ(
√

2s log p)(1− p−β)p

+
[
2 log p(

√
r +

√
s)φ(2(

√
s−

√
r)
√

log p)

+ (2r log p+ 1)Φ̄(2(
√
s−

√
r)
√

log p)
]
p1−β

= Lpp
1−s + [Lpp

1−βI(r > s) + Lpp
1−(

√
s−
√

r)2−βI(r < s)]

= L(1)
p max{p1−β, p1−s}I(r > s) + L(2)

p max{p1−(
√

s−
√

r)2−β , p1−s}I(r < s). (3.2.7)

To know the order of the variance, note that

Var(Tn) = Var{Tn(S0)}+ Var{Tn(S1)}+ 2Cov{Tn(S0),Tn(S1)}

and

Var(Tn) =
p∑

j=1

Var{Zj(λn)}+
∑
j1 6=j2

j1,j2∈S0

Cov{Zj1(λn),Zj2(λn)}+
∑
j1 6=j2

j1,j2∈S1

Cov{Zj1(λn),Zj2(λn)}

+
∑

j1 6=j2
j1∈S1,j2∈S0

Cov{Zj1(λn), Zj2(λn)}

:= I(1) + I(2) + I(3) + I(4). (3.2.8)

It can be shown that

I(1) = L(1)
p max{p1−β, p1−s}I(r > s) + L(2)

p max{p1−(
√

s−
√

r)2−β, p1−s}I(r < s),

which is the same as the variance of Tn if X have independent components. Since
∑

k |ρk| <∞,

only finite number of |ρk| > 1− ε for some ε > 0. From the derivation given in the Appendix,

we know that,

|I(2)| ≤
∑

j1 6=j2
j1,j2∈S0

|γ|j1−j2|(0, 0, λn)| = Lp

∑
j1 6=j2

j1,j2∈S0

|ρ|j1−j2||p
− 2s

1+|ρ|j1−j2|
|

≤ Lp

∑
j1 6=j2

j1,j2∈S0

|ρ|j1−j2||p
−2s/(2−ε)I{|ρ|j1−j2|| < 1− ε}

+ Lp

∑
j1 6=j2

j1,j2∈S0

|ρ|j1−j2||p
−sI{|ρ|j1−j2|| > 1− ε} ≤ Lpp

1−2s/(2−ε) + Lpp
−s

∼ Lpp
1−2s/(2−ε). (3.2.9)
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and for s < r, I(3) = 4r log(p)
∑

j1 6=j2
j1,j2∈S1

ρ|j1−j2|U(η−n1, η
−
n1; ρ|j1−j2|){1 + o(1)} which is a smaller

order of O(log2(p)p1−β), the order of L(1)
p p1−β in I(1) and for s > r

|I(3)| ≤
∑

j1 6=j2
j1,j2∈S1

|ρ|j1−j2|||ρ
−1
|j1−j2|γ|j1−j2|(

√
nµj1 ,

√
nµj2 , λn)|I{ρ|j1−j2| 6= 0}

≤ Lp

∑
j1 6=j2

j1,j2∈S1

|ρ|j1−j2||p
− 2(

√
s−

√
r)2

1+|ρ|j1−j2|
| ≤ Lpp

1−β−2(
√

s−
√

r)2/(2−ε). (3.2.10)

Also,

|I(4)| ≤
∑

j1 6=j2
j1∈S1,j2∈S0

|γ|j1−j2|(
√
nµj1 , 0, λn)| ≤ Lp

∑
j1 6=j2

j1∈S1,j2∈S0

|ρ|j1−j2||p
−s ≤ Lpp

1−s−β. (3.2.11)

In summary, I(2), I(3) and I(4) are smaller order than I(1). By (3.2.8), we have

Var(Tn) = L(1)
p max{p1−β,p1−s}I(r > s) + L(2)

p max{p1−(
√

s−
√

r)2−β,p1−s}I(r < s). (3.2.12)

The difference in the variance of Tn between independent and weakly dependent data exists

in the terms I(2), I(3) and I(4) in (3.2.8). As we shown in (3.2.9), (3.2.10) and (3.2.11), these

terms are all negligible comparing to I(1).

3.3 Asymptotic Distribution of Tn

In this section, we will discuss the asymptotic distribution of the threshold statistics Tn.

The asymptotic distribution is derived for α−mixing (strong mixing) sequences {Xij}p
i=1. Let

us firstly recall two concepts that will be used in the following.

Definition 1. Assume that a sequence of random variables {Vi}p
i=1 is defined on the same

probability space (Ω,F , P ) and F b
a = σ{Vi : i ∈ (a, b)} is the σ−algebras generated by {Vi}b

i=a.

Then the sequence of {Vi}p
i=1 (not necessary stationary) is said to be an α-mixing array if

limk→∞ αV (k) = 0 where

αV (k) = sup
i∈Z

α(F i
−∞,F

∞
i+k),

α(A ,B) = supA∈A ,B∈B |P (A ∩B)− P (A)P (B)| and A ,B are σ−algebras in Ω.

Definition 2. A stochastic process Wt is called weak stationary if E{Wt} = E{Wt+δ}

for any δ and covariance Cov{Wt,Wt+δ} exists and only depends on δ.
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Assume the sequence {Xij}p
i=1 satisfy the α-mixing condition for each replicate j. Because

{Xij}n
j=1 is a sequence of IID random variables and Zi,n is a Borel function of {Xi1, · · · , Xin},

the α-mixing coefficient αZ(k) for Zi,n satisfy (Refer to Theorem 5.2 in Bradley, 2005)

αZ(k) ≤
n∑

j=1

αXj (k) = nαX(k), for each k = 1, · · · , p,

where αX(k) = αXj (k) for j = 1, · · · , n (since Xj are IID random vectors). Suppose k depends

on n and denote it by k(n). If αX{k(n)} → 0 as k(n) → ∞ and αX{k(n)} = o(n−1), then

αZ{k(n)} → 0 as k(n) → ∞, which means that {Zi,n}p
i=1 is also an α−mixing sequence. If∑∞

k(n)=1 αX{k(n)} <∞, then αX{k(n)} = o{k(n)−1}, which is a smaller order of n−1 if k(n) is

a higher order than n, in this case, we can take k(n) large enough than n such that αZ(k) → 0.

Recall that γk(µ1, µk+1, λn) = Cov{Z1,n(λn), Zk+1,n(λn)} and define

σ2
0(p;λn) = Var{Z1,n(λn)}+ 2

p−1∑
k=1

γk(0, 0, λn).

The following theorem provides the asymptotic distributions of the test statistic Tn under the

null hypothesis and alternatives. The proof is provided in the Appendix.

Theorem 2 Suppose {Xij}p
i=1 is an α-mixing sequence for each sample j and {Wij}p

i=1 in

model (3.1.1) is a weak stationary sequence. Let µ(i)
Tn,0 and µ

(i)
Tn,1 be the mean of Zi,n(λn)

under the null and alternative, respectively. Under the conditions in Theorem 1 and assume∑∞
k=1 kα

δ/(4+δ)
X (k) <∞ for some δ > 0 and p6a/5n4/5α

4/5
X (pc) → 0 for some a and c ∈ (0, 1−a).

(i) If there exists a ∈ ((4+2δ)s/(4+ δ), 1) such that nδ/(4+δ)p(4+2δ)s/(4+δ)−a → 0, then under

the null hypothesis in (3.1.2),

p−1/2Sn
d→ N(0, 1),

where Sn = σ−1
0 (p;λn)

∑p
i=1{Zi,n(λn)− µ

(i)
Tn,0}.

(ii) Let µi =
√

2ri log(p)/n. Suppose that there exist σ2
1(p;λn) such that

Hl = sup
j≥1

∣∣∣l−1Var
{ j+l−1∑

i=j

Zi,n(λn)
}
− σ2

1(l;λn)
∣∣∣→ 0 as l→∞, (3.3.13)

and σ2
1(p;λn) = Lpp

−h1 (0 ≤ h1 ≤ s). Assume (a) maxi ri > s and exists a ∈ (2h1, 1)

such that nδ/(4+δ)p2h1−a → 0; (b) maxi ri < s and exists a ∈ (2h1 − 4s∗

4+δ , 1) such that
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nδ/(4+δ)p2h1− 4s∗
4+δ

−a → 0 where s∗ = (
√
s−maxi

√
ri)2. Then either under (a) or (b),

p−1/2σ−1
1 (p;λn)

p∑
i=1

{Zi,n(λn)− µ
(i)
Tn,1}

d→ N(0, 1).

Remark 1. Under the null hypothesis, {Zi,n(λn)}p
i=1 is a weak stationary sequence. The

condition
∑∞

k=1 kα
δ/(4+δ)
X (k) = O(1) assures that

lim
p→∞

Var
{
p−1/2

p∑
i

Zi,n(λn)
}

= σ2
0(p;λn) <∞.

Remark 2. Assume p = κn for some constant κ ∈ (0,∞) and αX(p) = p−4(4+δ)/δ. Let

δ = 1 and a = 6s/5 + ∆ with some ∆ > 1/5 and s < 2/3. Then nδ/(4+δ)p(4+2δ)s/(4+δ)−a =

κ−∆n1/5−∆ → 0 and p6a/5n4/5α
4/5
X (pc) = κ(36s+30∆)/25−16cn(20+36s+30∆)/25−16c → 0 for c ∈

((10 + 18s + 15∆)/200, 1 − 6s/5 −∆) and s < 0.57. Thus, in this case, a sufficient condition

such that the asymptotic normality holds under the null hypothesis is s < 0.57. The conditions

p6a/5n4/5α
4/5
X (pc) → 0 and nδ/(4+δ)p(4+2δ)s/(4+δ)−a → 0 are more easily to be satisfied if p

increases at a faster rate than n. These conditions can be relaxed to p6a/5α
4/5
X (pc) → 0 and

p(4+2δ)s/(4+δ)−a → 0 if αZ(k) ≤ CαX(k) for some constant C.

Under the conditions in Theorem 1, µ(i)
Tn,0 = GTn{1 + o(1)} where

GTn = 2
√
λnφ(

√
λn) + 2Φ̄(

√
λn)

and σ2
0(p;λn) = σ̃2

0(p;λn){1 + o(1)} where

σ̃2
0(p;λn) = 2[(

√
λn)3 + 3

√
λn]φ(

√
λn) + 6Φ̄(

√
λn) + 2

p−1∑
k=1

γk(0, 0, λn)−G2
Tn

(3.3.14)

where

γk(0, 0, λn) = 4(λ3/2
n ρ2

k + (1 + 2ρ2
k)λ

1/2
n )φ(λ1/2

n )[Φ̄(θλ1/2
n ) + Φ̄(θ−1λ1/2

n )]

+ 2
√

1− ρ2
k((1 + 2ρk)λn + 3ρk)φ(θλ1/2

n )φ(λ1/2
n )

+ 2
√

1− ρ2
k((1− 2ρk)λn − 3ρk)φ(θ−1λ1/2

n )φ(λ1/2
n )

+ 2(1 + 2ρ2
k)[U(λ1/2

n , λ1/2
n ; ρk) + U(λ1/2

n , λ1/2
n ;−ρk)]−G2

Tn
(3.3.15)

and θ =
√

(1− ρk)/(1 + ρk).
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From (3.2.9), we know GTn = Lpp
−s and σ̃0(p;λn) = Lpp

−s/2. So the approximation error is

o{GTn/σ̃0(p;λn)} = o(Lpp
−s/2) → 0. Therefore, by Theorem 2, we can construct an asymptotic

α level test which rejects the null hypothesis if

{p−1/2(Tn − pGTn) > zασ̃0(p;λn)}.

An estimate of σ̃2
0(p;λn) is necessary for implement the above test. To estimate γk(0, 0, λn),

we need an estimate of ρk, An estimate of the ρk for any fixed k < p is

ρ̂k =
1

(n− 1)(p− k)

p−k∑
i=1

n∑
j=1

(Xij − X̄i)(X(i+k)j − X̄(i+k)) (3.3.16)

where X̄i is the sample mean of the i−th components of X. For each fixed k, ρ̂k is a
√
np-

consistent estimator. Hence, a consistent estimate of σ̃2
0(p;λn) can be obtained though formula

(3.3.14). Another method for estimating σ̃2
0(p;λn) is to use the smoothed spectral density g(w)

of {Z0
i,n(λn) := nW̄i

2
I(nW̄i

2
> λn)}p

i=1, which is given in the Appendix.

3.4 Extension to the Maximum Test

We now extend the threshold test to a maximum test, which avoids the choice of λn. The

basic idea is to maximize the threshold test statistic in a reasonable range of threshold values.

To emphasize the dependence on threshold, we write µTn,0 and σTn,0 as µTn,0(λn) and σTn,0(λn).

Define the standardized version of Tn(λn) as

TS(λn) =
Tn(λn)− µTn,0(λn)

σTn,0(λn)
.

Under the null hypothesis, TS(λn) is a zero mean stochastic process with respect to λn. For

any different thresholds λn and ηn, the correlation between TS(λn) and TS(ηn) is

Ω(λn, ηn) := Corr{TS(λn), TS(ηn)} =
Cov{Tn(λn), Tn(ηn)}
σTn,0(λn)σTn,0(ηn)

(3.4.17)

where σ2
Tn,0(λn) = pσ2

0(p;λn). It can be shown that, under the null hypothesis,

p−1Cov{Tn(λn), Tn(ηn)} =
{

2[(
√
λ∗n)3 + 3

√
λ∗n]φ(

√
λ∗n) + 6Φ̄(

√
λ∗n)

+ 2
p−1∑
k=1

γ̃k(
√
λn,

√
ηn)− pGTn(λn)GTn(ηn)

}
{1 + o(1)},



77

where λ∗n = max(λn, ηn), GTn(λn) = 2
√
λnφ(

√
λn) + 2Φ̄(

√
λn) and

γ̃k(λn, ηn) = 2(1 + 2ρ2
k)[U(λn, ηn; ρk) + U(λn, ηn;−ρk)] (3.4.18)

+ 2(λ3
nρ

2
k + (1 + 2ρ2

k)λn)[Q(λn, ηn; ρk) +Q(λn, ηn;−ρk)]

+ 2(η3
nρ

2
k + (1 + 2ρ2

k)ηn)[Q(ηn, λn; ρk) +Q(ηn, λn;−ρk)]

+ 2
√

1− ρ2
k(ρkη

2
n + λnηn + ρkλ

2
n + 3ρk)q(ηn, λn; ρk)

− 2
√

1− ρ2
k(ρkη

2
n − λnηn + ρkλ

2
n + 3ρk)q(ηn, λn;−ρk).

Theorem 3 Let λn = (λn1, · · · , λnd)′ = 2 log(p)(s1, · · · , sd)′ ∈ Λ and for any λnk ∈ Λ,

TS(λnk) is asymptotically normally distributed, namely the conditions given in Theorem 2(i)

hold for λnk. Then TS(λn) := (TS(λn1), · · · , TS(λnd))′ is asymptotically multivariate normally

distributed with mean 0 and covariance (Ω(λns, λnt))s,t under the null hypothesis.

It might be further shown that TS(t) converges uniformly to a zero mean Gaussian process

N (t) with covariance Cov{N (s),N (t)} = Ω(s, t) under the null hypothesis. We define the

maximum test as

Mn = max
λn∈Λ

TS(λn),

which converges to B := maxt∈ΛN (t) under the null hypothesis. Therefore, an asymptotic α

level rejection region is {Mn > Bα} where Bα is the α quantile of B. The distribution of B can

be obtained by simulation. For a set of λn = (λn1, · · · , λnd)′ ∈ Λ, simulating a large number

NB of normally distributed d−variate random vectors ξi = (ξi1, · · · , ξid)′ (i = 1, · · · , NB) with

mean 0 and covariance (Ω(λns, λnt))s,t. For each ξi, we can get Bi = maxj∈{1,··· ,d} ξij . Then Bα

can be estimated by the α quantile of {Bi}NB
i=1.

3.5 Optimal Detection Boundary and the Best Power

In this section, we would like to compare the proposed threshold test with an oracle test and

give the best power that could be attained by the threshold test in the detectable region. We

will also show that the maximum test is able to attain the optimal detection boundary (Donoho



78

and Jin, 2004). For discussion simplicity, we shall assume that all the non-zero signals are equal

to µi := rn =
√

2r log p/n = o(1).

The oracle test assumes that there were an oracle who knows the non-zero components’

locations in advance. An oracle test can be constructed through the non-zero components

without involving with a large amount of noises, which should perform the best. The oracle

test statistic can be defined as Toc,n =
∑

i∈S1
nX̄2

i . As shown in Theorem 1, we can approximate

the mean and variance by assuming that
√
nX̄i is normally distributed. And similar to Theorem

2, we could also show the asymptotic normality of Toc,n. Under the null hypothesis,

E(Toc,n) = p1 and Var(Toc,n) = 2p1 + 2
∑
i6=j

i,j∈S1

ρ2
|i−j| = 2p1{1 + o(1)}

where p1 = p1−β is the number of non-zero components in S1. Under the alternative, E(Toc,n) =

(nr2n + 1)p1 and

Var(Toc,n) = 2(2nr2n + 1)p1 +
∑
i6=j

i,j∈S1

(2ρ2
|i−j| + 4ρ|i−j|nr2n) = 2(2nr2n + 1)p1{1 + o(1)}.

An α level oracle test will reject the null hypothesis if {Toc,n >
√

2p1zα + p1}. It can be shown

that the asymptotic power of the oracle test is Φ
(
− zα +

√
p1

2 nr
2
n

)
.

Now comparing the oracle test with the proposed threshold test. Our purpose here is to

see what is the best power the threshold test can achieve under cases regarding r and β. Recall

that µTn,0 and σ2
Tn,0 are the mean and variance of Tn under the null and µTn,1 and σ2

Tn,1 are

the corresponding mean and variance under the alternative. We will reject the null hypothesis

if Tn > µTn,0 + σTn,0zα at α−level, where zα is the upper α quantile of the standard normal

distribution. So the power of the threshold test will be

β(µ) = Φ
(
−
σTn,0

σTn,1
zα +

µTn,1 − µTn,0

σTn,1

)
. (3.5.19)

From (3.2.7) and (3.2.12), we have

µTn,1 − µTn,0 = L(1)
p p1−βI{r > s}+ L(2)

p p1−(
√

s−
√

r)2−βI(r ≤ s) (3.5.20)
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and

σTn,1 = L(1)
p max{p(1−β)/2, p(1−s)/2}I{r > s}

+ L(2)
p max{p(1−(

√
s−
√

r)2−β)/2, p(1−s)/2}I(r ≤ s). (3.5.21)

We should discuss the best power in the detectable region on (β, r) plane. An alternative

H1 is said to be asymptotically detectable if H0 and H1 can be separated asymptotically and

otherwise it is not detectable. Let αn → 0 as n → ∞ be the significant level and {Tn ≥

µTn,0 + σTn,0zαn} be the rejection region of the threshold test with type I error αn. Then the

sum of type I error and type II error is

Errαn := αn + Φ̄
(
−
σTn,0

σTn,1
zαn +

µTn,1 − µTn,0

σTn,1

)
.

An alternative is asymptotically detectable if Errαn → 0 as n → ∞ and undetectable if

Errαn → 1. Because σTn,1 ≥ σTn,0 asymptotically, a necessary and sufficient condition for

detectable is that
µTn,1 − µTn,0

σTn,1

→∞.

We verified this condition for any point in the detectable region of (β, r) plane, i.e., there exists

a λn = 2s log(p) such that the above condition holds for any point in the detectable region. The

detail of the verification is provided in the Appendix. The detectable region is summarized in

Figure 3.1, which is the union of regions marked by I-IV. The boundary of this region is given

by

%(β) =

 β − 1/2, 1/2 ≤ β ≤ 3/4;

(1−
√

1− β)2, 3/4 < β < 1.

This boundary is optimal, in the sense if r < %(β), all the tests are powerless (Donoho and Jin,

2004).

It turns out the best rates can be classified by three different areas in above detectable

region. We summarize the best power that the threshold test may achieve in Figure 3.1, whose

derivation is given in Appendix. In the regions II and IV with blue color (encircled by r = β,

r = β/3 and r = (1 −
√

1− β)2), the best power is of order Lpp
1
2 −

1
2(r + β)2/(4r). In the
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Figure 3.1 The detectable region of the threshold and the maximum test in (β, r) plane, which
is the union of I-IV areas in the plot.
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region III with gray color (encircled by r = β/3, r = β − 1
2 and r = 0), the best power is of

order Lpp
1
2 − β + r. In the region I where r > β, the best power is of order Lpp

(1−β)/2, which

has the power the same order as the oracle test up to a slow varying function Lp. This means

that in the region I, the power of the threshold test and the oracle test are only different by a

slow varying function Lp.

In practice, we have to choose the threshold λn to implement the threshold test. Therefore,

the optimal detection boundary may not be attained for the threshold test. However, we would

like to show that the optimal detection boundary can be achieved by the maximum test given

in Section 3.4.

To this end, we only need to show that the sum of type I and II errors of the maximum

test goes to 0 in the detectable region of (β, r) defined in Figure 3.1 as the significant level αn

goes to 0. Because of the maximum test is an asymptotic αn level test, the type I error less

than αn → 0 as n→∞. Thus, it suffices to show that the power of the maximum test goes to

1 in the detectable region as n goes to infinity.

To appreciate this point, recall that the αn level rejection region for the maximum test is

Rαn = {Mn > Bαn}. The tightness of T (λn) for λn ∈ Λ ensures the existence of M <∞ such

that Bαn < M with probability one. Then it is enough to show

P (Mn →∞) → 1, as n→∞ (3.5.22)

at every point (β, r) in the detectable region. Notice that Mn ≥ T (λn) everywhere for any

fixed λn ∈ Λ. Therefore, (3.5.22) is true if for any point in the detectable region, there exists a

λn such that P (T (λn) →∞) → 1. For any fixed M <∞, we want to show

P (T (λn) > M) = Φ
(
−
σTn,0

σTn,1
M +

µTn,1 − µTn,0

σTn,1

)
→ 1. (3.5.23)

Because of σTn,0 ≤ σTn,1 and finiteness of M, (3.5.23) is true as long as µTn,1−µTn,0

σTn,1
→ ∞. As

we have shown in the Appendix, at every point in the detectable region, there exist a λn such

that µTn,1−µTn,0

σTn,1
→∞. This concludes that T (λn) →∞ with probability one for some λn and

hence the Mn at every point in the detectable region given in Figure 3.1, which means that

the maximum test can attain the optimal detection boundary.
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3.6 Simulation Results

The simulation was designed to understand the performance of the threshold test, the

maximum test and compare them with false discovery rate (Benjamini and Hochberg, 1995),

oracle test and the test (C-Q test) proposed by Chen and Qin (2010).

Independent and identically distributed random vectors Xj were generated by model (3.1.1)

i.e.,

Xj = Wj + µj , j = 1, · · · , n

where Wj = (W1j , · · · ,Wpj)′ is a random vector and the sequence {Wij}p
i=1 was a realization

of a stochastic process. Two processes were considered in the simulation, one is the Gaussian

process, which is simulated according to the method proposed by Wood and Chan (1994). The

other process was generated exactly the same as the Gaussian process except the marginal

distribution used was the standardized Gamma(2,2). We set an autoregressive correlation

structure. That is Cov(Wi1,Wj1) = ρ|i−j| and ρ was set to be 0.6 in the simulation. The

sparsity was controlled by setting β = 0.6, 0.7 and 0.8. The non-zero signals µi =
√

2r log(p)/n

were set at the same levels and r were fixed at 0.4, 0.6 and 0.9. The dimension p of Xj

was chosen to be 1000, 2000 and 2500, and the sample size was chosen to be 20, 30 and 40

respectively in the simulation. All the simulation results were based on 1000 replicates.

The null distributions of the standardized threshold test statistics Tn were plotted in Figure

3.2, 3.3 and 3.4 for {Xij}p
i=1 generated from Guassian process. We also obtained null distri-

bution plots for processes with marginal centralized Gamma(2,2) and Gamma(1,2). Because

there were largely the same as the plots for Gaussian process, we only present the null distri-

butions of Tn from Gaussian process. In each plot, Tn was standardized by theoretical variance

(3.3.14) with
∑p−1

k=1 γk(0, 0, λn) replaced by
∑p−1

k=1(1 −
k
p )γk(0, 0, λn) using the true value of ρ

and known covariance structure (“Theoretical” in the plot legend), estimated variance (“Plug-

in” in the plot legend) using the same variance expression as “Theoretical” but with plug-in

estimates of ρk provided in (3.3.16) and the spectral density based kernel smooth estimate of

the variance (“Spectral” in the plot legend) of Tn given in the Appendix. We plotted his-

tograms of the null distributions of the standardized Tn with thresholds at λn = 2s log(p) for
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s = 0.50, 0.55, 0.60, 0.65. It can be seen that the null distributions which are standardized by

plug-in variance are closer to the standard normal than that by spectral smoothed variance.

Thus we only report the simulation results utilizing plug-in variance in the following.
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Figure 3.2 The histograms for the simulated null distributions of standardized Tn using plug-in,
theoretical variance (3.3.14) estimate and spectral smoothed variance estimate in-
troduced in the Appendix. The (p, n) is (1000,20). Marginal distribution: Gaussian.

Table 3.1 and 3.2 summarize the sizes of the oracle test, FDR, maximum test and threshold

test for different threshold levels for Gaussian process and process with marginal standardized

Gamma distributions. The maximum test statistic maximizes the standardized threshold test

statistic at threshold levels with λn = {2s log(p) : s = 0.50, 0.55, 0.60, · · · , 0.90}. The cutoff
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Figure 3.3 The histograms for the simulated null distributions of standardized Tn using plug-in,
theoretical variance (3.3.14) estimate and spectral smoothed variance estimate in-
troduced in Appendix. The (p, n) is (2000,30). Marginal distribution: Gaussian.
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Figure 3.4 The histograms for the simulated null distributions of standardized Tn using plug-in,
theoretical variance (3.3.14) estimate and spectral smoothed variance estimate in-
troduced in Appendix. The (p, n) is (2500,40). Marginal distribution: Gaussian.
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points were based on the simulated distributions of B provided in Section 3.4. It is observed

that the threshold tests preserved sizes reasonably at all levels in Table 3.1 and 3.2. There are

some slightly larger sizes at level 0.025 but it is getting better when the levels increase. From

Table 3.2, we see that the non-normal marginal distributions had little impact on the sizes of

the tests. The maximum test was conservative at high significance level for α > 0.10.

Figure 3.5, 3.6 and 3.7 present the receiver operating characteristic (ROC) curves with type

I error between 0 and 0.2 for oracle tests, FDR, C-Q tests, maximum tests and threshold tests

at several levels. We observed that (i) in all the cases, the threshold tests were more powerful

than the C-Q tests and FDR. (ii) the powers of the threshold tests were not responsive to the

threshold levels for sparsity parameter β = 0.6 and 0.7. The threshold tests can have significant

improvement in power for proper choices of threshold levels when β = 0.8. This is a quite sparse

case, notice that [10000.2] = 3, [20000.2] = 4 and [25000.2] = 4, so there are only a few locations

with signals. Thus, high threshold levels are preferable in the threshold test. (iii) the C-Q tests

is suitable for data with non-sparsity signals while the FDR is good to use when the signal is

very sparse. (iv) when the signal level r is high, the threshold tests could achieve the power of

oracle tests. But it is hard to achieve in most cases. (v) The maximum test almost attained

the best power among all the tests (except the oracle test) even though it has relative smaller

sizes than the other tests on high significant levels.

3.7 Appendix: Technical Details

In this Appendix, we give the expression of Ẽ(Z1,n(λn)Z2,n(λn)) in Theorem 1, present the

derivation of I(2) − I(4) in Section 3.2, verify the detection boundary of the threshold test and

outline the proofs of the Theorems presented in Sections 3.2, 3.3 and 3.4.
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Table 3.1 Empirical sizes of the Oracle test, C-Q test, FDR, maximum test and threshold tests
with different threshold levels λn = 2s log(p) for Guassian process.

s

α Oracle C-Q FDR MAX 0.50 0.55 0.60 0.65 0.70 0.75
(p,n)=(1000,20)

0.025 0.050 0.033 0.016 0.048 0.031 0.039 0.041 0.042 0.049 0.046
0.050 0.066 0.062 0.044 0.064 0.056 0.059 0.056 0.069 0.072 0.058
0.075 0.078 0.080 0.068 0.074 0.089 0.069 0.078 0.087 0.086 0.078
0.100 0.087 0.109 0.096 0.084 0.100 0.098 0.098 0.105 0.113 0.110
0.125 0.100 0.129 0.129 0.093 0.127 0.122 0.116 0.127 0.137 0.144
0.150 0.112 0.138 0.155 0.105 0.145 0.139 0.131 0.144 0.146 0.158
0.175 0.120 0.175 0.183 0.113 0.162 0.156 0.157 0.164 0.158 0.164
0.200 0.132 0.199 0.211 0.130 0.188 0.182 0.178 0.185 0.169 0.167

(p,n)=(2000,30)
0.025 0.035 0.023 0.036 0.040 0.034 0.039 0.042 0.043 0.044 0.037
0.050 0.048 0.042 0.063 0.058 0.057 0.064 0.069 0.071 0.064 0.078
0.075 0.063 0.060 0.080 0.079 0.088 0.087 0.093 0.092 0.093 0.087
0.100 0.077 0.081 0.098 0.091 0.107 0.106 0.111 0.113 0.108 0.098
0.125 0.093 0.094 0.120 0.100 0.130 0.129 0.132 0.136 0.124 0.127
0.150 0.105 0.124 0.138 0.111 0.143 0.150 0.158 0.155 0.149 0.160
0.175 0.116 0.150 0.163 0.123 0.167 0.168 0.172 0.164 0.171 0.188
0.200 0.130 0.177 0.194 0.138 0.190 0.184 0.193 0.178 0.193 0.195

(p,n)=(2500,40)
0.025 0.035 0.022 0.022 0.046 0.026 0.031 0.039 0.036 0.046 0.039
0.050 0.048 0.041 0.046 0.061 0.047 0.056 0.057 0.061 0.068 0.069
0.075 0.063 0.073 0.070 0.081 0.071 0.073 0.076 0.090 0.089 0.085
0.100 0.077 0.095 0.093 0.089 0.099 0.096 0.098 0.103 0.108 0.103
0.125 0.093 0.119 0.118 0.101 0.117 0.126 0.118 0.119 0.124 0.126
0.150 0.105 0.137 0.145 0.116 0.133 0.150 0.139 0.139 0.145 0.151
0.175 0.116 0.166 0.167 0.132 0.152 0.169 0.159 0.164 0.173 0.196
0.200 0.130 0.179 0.184 0.140 0.183 0.184 0.181 0.188 0.202 0.224
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Table 3.2 Empirical sizes of the Oracle test, C-Q test, FDR, maximum test and threshold
tests with different threshold levels λn = 2s log(p) for process with standardized
Gamma(2,2) marginal distribution.

s

α Oracle C-Q FDR MAX 0.50 0.55 0.60 0.65 0.70 0.75
(p,n)=(1000,20)

0.025 0.052 0.034 0.021 0.041 0.035 0.029 0.034 0.032 0.036 0.039
0.050 0.067 0.061 0.039 0.055 0.051 0.052 0.054 0.052 0.057 0.057
0.075 0.076 0.091 0.069 0.067 0.075 0.076 0.072 0.077 0.072 0.079
0.100 0.085 0.114 0.094 0.073 0.093 0.097 0.088 0.095 0.094 0.107
0.125 0.097 0.142 0.120 0.085 0.115 0.117 0.109 0.115 0.121 0.132
0.150 0.109 0.165 0.144 0.092 0.138 0.140 0.125 0.142 0.142 0.153
0.175 0.121 0.184 0.160 0.108 0.157 0.157 0.152 0.162 0.158 0.159
0.200 0.133 0.203 0.186 0.118 0.182 0.180 0.172 0.171 0.177 0.161

(p,n)=(2000,30)
0.025 0.057 0.026 0.023 0.033 0.031 0.030 0.040 0.039 0.037 0.034
0.050 0.075 0.054 0.042 0.050 0.056 0.056 0.066 0.061 0.059 0.059
0.075 0.082 0.077 0.062 0.063 0.078 0.080 0.093 0.086 0.080 0.064
0.100 0.097 0.104 0.081 0.074 0.108 0.107 0.108 0.102 0.099 0.081
0.125 0.109 0.133 0.103 0.088 0.128 0.128 0.127 0.131 0.123 0.110
0.150 0.120 0.150 0.122 0.103 0.154 0.147 0.150 0.147 0.146 0.140
0.175 0.134 0.172 0.150 0.111 0.175 0.164 0.177 0.161 0.179 0.168
0.200 0.150 0.199 0.175 0.122 0.190 0.191 0.193 0.181 0.200 0.182

(p,n)=(2500,40)
0.025 0.057 0.033 0.022 0.045 0.027 0.032 0.039 0.039 0.044 0.042
0.050 0.075 0.056 0.052 0.066 0.059 0.056 0.063 0.053 0.069 0.080
0.075 0.082 0.080 0.076 0.080 0.085 0.088 0.085 0.079 0.097 0.095
0.100 0.097 0.100 0.092 0.087 0.108 0.110 0.106 0.098 0.115 0.104
0.125 0.109 0.116 0.123 0.098 0.123 0.129 0.126 0.120 0.123 0.119
0.150 0.120 0.147 0.144 0.103 0.140 0.146 0.137 0.145 0.140 0.150
0.175 0.134 0.162 0.173 0.120 0.161 0.165 0.161 0.171 0.168 0.181
0.200 0.150 0.184 0.201 0.132 0.174 0.181 0.174 0.184 0.188 0.198
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Figure 3.5 The ROC curves of the Oracle test, C-Q test, FDR test, Maximum test and
the threshold test at different levels with Type I error between 0-0.2. From top
to bottom, r = 0.4, 0.6 and 0.9. From left to right panels β = 0.6, 0.7, 0.8.
(p = 1000, n = 20)
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Figure 3.6 The ROC curves of the Oracle test, C-Q test, FDR test, Maximum test and
the threshold test at different levels with Type I error between 0-0.2. From top
to bottom, r = 0.4, 0.6 and 0.9. From left to right panels β = 0.6, 0.7, 0.8.
(p = 2000, n = 30)
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Figure 3.7 The ROC curves of the Oracle test, C-Q test, FDR test, Maximum test and
the threshold test at different levels with Type I error between 0-0.2. From top
to bottom, r = 0.4, 0.6 and 0.9. From left to right panels β = 0.6, 0.7, 0.8.
(p = 2500, n = 40)
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Expression of Ẽ{Z1,n(λn)Z2,n(λn)} in Theorem 1:

Ẽ{Z1,n(λn)Z2,n(λn)} (3.7.24)

= A(η−n1,
√
nµ1,

√
nµ2; ρ)Q(η−n1, η

−
n2; ρ) +A(η−n2,

√
nµ2,

√
nµ1; ρ)Q(η−n2, η

−
n1; ρ)

+B(η−n1, η
−
n2,
√
nµ1,

√
nµ2; ρ)q(η−n1, η

−
n2; ρ) + C(

√
nµ1,

√
nµ2; ρ)U(η−n1, η

−
n2; ρ)

+A(η+
n1,−

√
nµ1,−

√
nµ2; ρ)Q(η+

n1, η
+
n2; ρ) +A(η+

n2,−
√
nµ2,−

√
nµ1; ρ)Q(η+

n2, η
+
n1; ρ)

+B(η+
n1, η

+
n2,−

√
nµ1,−

√
nµ2; ρ)q(η+

n1, η
+
n2; ρ) + C(−

√
nµ1,−

√
nµ2; ρ)U(η+

n1, η
+
n2; ρ)

+A(η−n1,
√
nµ1,−

√
nµ2;−ρ)Q(η−n1, η

+
n2;−ρ) +A(η+

n2,−
√
nµ2,

√
nµ1;−ρ)Q(η+

n2, η
−
n1;−ρ)

+B(η−n1, η
+
n2,
√
nµ1,−

√
nµ2;−ρ)q(η−n1, η

+
n2;−ρ) + C(

√
nµ1,−

√
nµ2;−ρ)U(η−n1, η

+
n2;−ρ)

+A(η+
n1,−

√
nµ1,

√
nµ2;−ρ)Q(η+

n1, η
−
n2;−ρ) +A(η−n2,

√
nµ2,−

√
nµ1;−ρ)Q(η−n2, η

+
n1;−ρ)

+B(η+
n1, η

−
n2,−

√
nµ1,

√
nµ2;−ρ)q(η+

n1, η
−
n2;−ρ) + C(−

√
nµ1,

√
nµ2;−ρ)U(η+

n1, η
−
n2;−ρ)

where

A(η, µ1, µ2; ρ) = η3ρ2 + (1 + 2ρ2)η + 2µ2(η2ρ+ 2ρ) + 2µ1(1 + ρ2 + ρ2η2)

+ 4µ1µ2ρη + µ2
2η + µ2

1ρ
2η + 2µ1µ

2
2 + 2ρµ2

1µ2;

B(η1, η2, µ1, µ2; ρ) =
√

1− ρ2(ρη2
1 + η1η2 + ρη2

2 + 3ρ

+ 2µ2(η1 + ρη2) + 2µ1(η2 + ρη1) + 4µ1µ2 + ρ(µ2
1 + µ2

2));

C(µ1, µ2; ρ) = 1 + 2ρ2 + 4µ1µ2ρ+ µ2
1 + µ2

2 + µ2
1µ

2
2.

2

Derivation of I(2) − I(4) in Section 2: To obtain the order of I(2), notice that in set S0, we

have µ1 = µk+1 = 0 and λn = 2s log(p).

γk(0, 0, λn) = 4ρ2
k(λ

3/2
n + 2λ1/2

n )φ(λ1/2
n )[Φ̄(θλ1/2

n ) + Φ̄(θ−1λ1/2
n )]

+ 4λ1/2
n φ(λ1/2

n )[Φ̄(θλ1/2
n ) + Φ̄(θ−1λ1/2

n )− 2Φ̄(λ1/2
n )]

+ 2λnφ(λ1/2
n )[

√
1− ρ2

kφ(θλ1/2
n ) +

√
1− ρ2

kφ(θ−1λ1/2
n )− 2φ(λ1/2

n )]

+ 2ρk

√
1− ρ2

k(2λn + 3)φ(θλ1/2
n )φ(λ1/2

n )− 2ρk

√
1− ρ2

k(2λn + 3)φ(θ−1λ1/2
n )φ(λ1/2

n )

+ 2[U(λ1/2
n , λ1/2

n ; ρk) + U(λ1/2
n , λ1/2

n ;−ρk)− 2Φ̄2(θλ1/2
n )]

+ 4ρ2
k[U(λ1/2

n , λ1/2
n ; ρk) + U(λ1/2

n , λ1/2
n ;−ρk)] (3.7.25)
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where θ =
√

(1− ρk)/(1 + ρk). From the above expression of γk(0, 0, λn), we notice that the

value of γk(0, 0, λn) is the same if we replace ρk by −ρk. Thus, without loss of generality, assume

ρk ≥ 0.

Because φ(λ1/2
n ) = 1√

2π
p−s and φ(θλ1/2

n ) = 1√
2π
p−θ2s, φ(θλ1/2

n )φ(λ1/2
n ) ∼ p

− 2s
1+ρk , where “∼”

represents that both sides are at the same order. It can be shown that if x → ∞ and x > 0,

Φ̄(x) ∼ 1
xφ(x). By an inequality given in Willink (2004), we have for ρk ≥ 0,

Φ̄(θλ1/2
n )Φ̄(λ1/2

n ) ≤ U(λ1/2
n , λ1/2

n ; ρk) ≤ Φ̄(θλ1/2
n )Φ̄(λ1/2

n )(1 + ρk). (3.7.26)

By the Mean Value theorem, there exist a θ0 ∈ (θ, 1) such that Φ̄(θx)− Φ̄(x) = φ(θ0x)(1− θ)x

and (1− θ)/ρk → 1 as ρk → 0. Therefore,

Φ̄(θλ1/2
n )− Φ̄(λ1/2

n )

ρkλ
1/2
n φ(θ0λ

1/2
n )

→ 1. (3.7.27)

Similarly, there exists θ′0 ∈ (θ, 1) such that√
1− ρ2

kφ(θx)− φ(x) =
√

1− ρ2
k{φ(θx)− φ(x)}+ (

√
1− ρ2

k − 1)φ(x)

=
√

1− ρ2
kφ(θ′0x)(θ

′
0x)(1− θ)x+ (

√
1− ρ2

k − 1)φ(x)

and (
√

1− ρ2
k − 1)/ρ2

k → 1 as ρk → 0. Thus√
1− ρ2

kφ(θλ1/2
n )− φ(λ1/2

n )

ρkλnφ(θ′0λ
1/2
n ) + ρ2

kφ(λ1/2
n )

→ 1. (3.7.28)

By (3.7.26) and (3.7.27), we conclude that

U(λ1/2
n , λ

1/2
n ; ρk)− Φ̄2(λ1/2

n )

ρkλ
1/2
n φ(θ0λ

1/2
n )Φ̄(λ1/2

n )
→ 1. (3.7.29)

Replacing θ with θ−1 in (3.7.27), (3.7.28) and (3.7.29) show that Φ̄(θ−1λ
1/2
n )− Φ̄(λ1/2

n ),√
1− ρ2

kφ(θ−1λ
1/2
n )−φ(λ1/2

n ) and U(λ1/2
n , λ

1/2
n ;−ρk)−Φ̄2(λ1/2

n ) are all higher order terms. Thus,

in summary, γk(0, 0, λn) ∼ ρkLpp
− 2s

1+ρk .

To evaluate I(3), we consider µ1 = µk+1 =
√

2r log(p)/n and λn = 2s log(p). Assuming

ρk ≥ 0, it can be shown that the leading order terms of (3.7.24) are the first fourth terms.
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Hence,

γk(
√
nµ1,

√
nµk+1, λn) = E{Z1,n(λn)Zk+1,n(λn)} −

{
(η+

n1)φ(η−n1) + (nµ2
1 + 1)(Φ̄(η−n1))

}2

= 2A(η−n1,
√
nµ1,

√
nµk+1; ρk)Q(η−n1, η

−
n(k+1); ρk)− 2(η+

n1)(nµ
2
1 + 1)φ(η−n1)Φ̄(η−n1)

+B(η−n1, η
−
n(k+1),

√
nµ1,

√
nµk+1; ρk)q(η−n1, η

−
n(k+1); ρk)− (η+

n1)
2φ2(η−n1)

+ C(
√
nµ1,

√
nµk+1; ρk)U(η−n1, η

−
n(k+1); ρk)− (nµ2

1 + 1)2Φ̄2(η−n1) (3.7.30)

where

A(η−n1,
√
nµ1,

√
nµk+1; ρk)Q(η−n1, η

−
n(k+1); ρk)− (η+

n1)(nµ
2
1 + 1)φ(η−n1)Φ̄(η−n1)

= (η+
n1)(nµ

2
1 + 1)φ(η−n1){Φ̄(θη−n1)− Φ̄(η−n1)}+ ρk{η−n1

3
ρk + 2ρkη

−
n1 + 2

√
nµk+1(η−n1

2 + 2)

+ 2
√
nµ1(ρk + η−n1

2) + 4nµ1µk+1η
−
n1 + nµ2

1ρkη
−
n1 + 2n3/2µ2

1µk+1}Q(η−n1, η
−
n(k+1); ρk);

(3.7.31)

B(η−n1, η
−
n(k+1),

√
nµ1,

√
nµk+1; ρk)q(η−n1, η

−
n(k+1); ρk)− (η+

n1)
2φ2(η−n1)

= {
√

1− ρ2
kφ(θη−n1)− φ(η−n1)}φ(η−n1)(η

+
n1)

2

+
√

1− ρ2
kρk{(η−n1 +

√
nµ1)2 + (η−n(k+1) +

√
nµk+1)2 + 3}q(η−n1, η

−
n(k+1); ρk) (3.7.32)

and

C(
√
nµ1,

√
nµk+1; ρk)U(η−n1, η

−
n(k+1); ρk)− (nµ2

1 + 1)2Φ̄2(η−n1)

= {U(η−n1, η
−
n(k+1); ρk)− Φ̄2(η−n1)}(nµ

2
1 + 1)2 + 2ρk(ρk + 2nµ1µk+1)U(η−n1, η

−
n(k+1); ρk)

= Φ̄(η−n1){cΦ̄(θη−n1)− Φ̄(η−n1)}(nµ
2
1 + 1)2 + 2ρk(ρk + 2nµ1µk+1)U(η−n1, η

−
n(k+1); ρk) (3.7.33)

for some c ∈ [1, 1 + ρk] and ρk ≥ 0.

Notice that Φ̄(−θη−n1)− Φ̄(−η−n1) = Φ̄(η−n1)− Φ̄(θη−n1) and U(−η−n1,−η
−
n2; ρk)− Φ̄2(−η−n1) =

U(η−n1, η
−
n2; ρk)− Φ̄2(η−n1). So no matter η−n1 > 0 or < 0, the above differences maintain the same

order. Hence, without loss of generality, we can assume η−n1 > 0. Similar to (3.7.27), (3.7.28)

and (3.7.29), we have {ρkη
−
n1φ(θ0η−n1)}−1(Φ̄(θη−n1)− Φ̄(η−n1)) → 1,√

1− ρ2
kφ(θη−n1)− φ(η−n1)

ρkη
−2

n1 φ(θ′0η
−
n1) + ρ2

kφ(η−n1)
→ 1 and

U(η−n1, η
−
n2; ρk)− Φ̄2(η−n1)

ρkη
−
n1φ(θ0η−n1)Φ̄(η−n1)

→ 1.
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Thus it can be shown that the orders of the first term in (3.7.31), (3.7.32) and (3.7.33) are

small order of ρkLpp
− 2

1+ρk
(
√

s−
√

r)2
. It can be also shown that, q(η−n1, η

−
n2; ρk) ∼ p

− 2
1+ρk

(
√

s−
√

r)2
,

Q(η−n1, η
−
n2; ρk) ∼ I(s > r)Lpp

− 2
1+ρk

(
√

s−
√

r)2 + I(s < r)Lpp
−(
√

s−
√

r)2 and

U(η−n1, η
−
n2; ρk) ∼ I(s > r)Lpp

− 2
1+ρk

(
√

s−
√

r)2 + I(s < r)4r log(p)U(η−n1, η
−
n2; ρk).

In summary, we have for ρk ≥ 0

γk(
√
nµ1,

√
nµk+1, λn) ∼ I(s > r)ρkLpp

− 2
1+ρk

(
√

s−
√

r)2 + I(s < r)ρk4r log(p)U(η−n1, η
−
n2; ρk).

(3.7.34)

For ρk < 0, note that for any η > 0, Φ̄(θη)Φ̄(η)(1 + ρk) ≤ U(η, η; ρk) ≤ Φ̄(θη)Φ̄(η). Then it

can be shown that the leading order terms of γk(
√
nµ1,

√
nµk+1, λn) are

γk(
√
nµ1,

√
nµk+1, λn) = J1I(ρ2

ks < (ρk − 1)2r) + J2I(ρ2
ks > (ρk − 1)2r)

where

J1 : = 2A(η−n1,
√
nµ1,

√
nµk+1; ρk)Q(η−n1, η

−
n(k+1); ρk)− 2(η+

n1)φ(η−n1)(nµ
2
k+1 + 1)Φ̄(η−n(k+1))

+B(η−n1, η
−
n(k+1),

√
nµ1,

√
nµk+1; ρk)q(η−n1, η

−
n(k+1); ρk)− (η+

n1)
2φ2(η−n1)

+ C(
√
nµ1,

√
nµk+1; ρk)U(η−n1, η

−
n(k+1); ρk)− (nµ2

k+1 + 1)2Φ̄2(η−n(k+1))

and

J2 : = A(η+
n(k+1),−

√
nµk+1,

√
nµ1;−ρk)Q(η+

n(k+1), η
−
n1;−ρk)− (η−n(k+1))φ(η+

n(k+1))(nµ
2
1 + 1)Φ̄(η−n1)

+A(η+
n1,−

√
nµ1,

√
nµk+1;−ρk)Q(η+

n1, η
−
n(k+1);−ρk)− (η−n1)φ(η+

n1)(nµ
2
k+1 + 1)Φ̄(η−n(k+1))

+B(η−n1, η
−
n(k+1),

√
nµ1,−

√
nµk+1; ρk)q(η−n1, η

+
n(k+1);−ρk)− η+

n(k+1)η
−
n1φ(η−n1)φ(η+

n(k+1))

+B(η−n1, η
−
n(k+1),−

√
nµ1,

√
nµk+1; ρk)q(η+

n(k+1), η
−
n1;−ρk)− η+

n(k+1)η
−
n1φ(η−n1)φ(η+

n(k+1))

+ 2C(
√
nµ1,−

√
nµ(k+1);−ρ)U(η−n1, η

+
n(k+1);−ρ)− (nµ2

k+1 + 1)2Φ̄(η−n(k+1))Φ̄(η+
n(k+1)).
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In a similar fashion as that for ρk ≥ 0, we will have for ρk < 0,

ρ−1
k γk(

√
nµ1,

√
nµk+1, λn) ∼ I

(
r < min

{
ρ2

k

(ρk − 1)2
,
(ρk + 1)2

(ρk − 1)2

}
s

)
Lpp

−2( s
1−ρk

+ r
1+ρk

)

+ I

(
s > r > min

{
ρ2

k

(ρk − 1)2
,
(ρk + 1)2

(ρk − 1)2

}
s

)
Lp max

{
p
− 2

1+ρk
(
√

s−
√

r)2
, p−(

√
s+
√

r)2
}

+ I(s < r)4r log(p)U(η−n1, η
−
n2; ρk)

≤ I(s > r)Lpp
− 2

1−ρk
(
√

s−
√

r)2 + I(s < r)4r log(p)U(η−n1, η
−
n2; ρk). (3.7.35)

Thus, together with (3.7.34), we have for ρk 6= 0,

ρ−1
k γk(

√
nµ1,

√
nµk+1, λn) ≤ I(s > r)Lpp

− 2
1+|ρk|

(
√

s−
√

r)2 + I(s < r)4r log(p)U(η−n1, η
−
n2; ρk).

(3.7.36)

and the “∼” relation holds if r > s. I(3) follows from the above expression.

For I(4), assume µ1 =
√

2r log(p)/n, µk+1 = 0. Let γk(µ1, 0, λn; ρk) be the covariance be-

tween Z1,n(λn) and Zk+1,n(λn). Notice that γk(µ1, 0, λn; ρk) = γk(µ1, 0, λn;−ρk). Thus, we only

need to show I(4) for ρk ≥ 0. It can be shown that the leading order terms of (3.7.24) are

γk(µ1, 0, λn) = {A(η−n1,
√
nµ1, 0; ρk)Q(η−n1, η

−
n(k+1); ρk)− (η+

n1)φ(η−n1)Φ̄(η−n(k+1))}I(s > r)

+ {A(η−n1,
√
nµ1, 0;−ρk)Q(η−n1, η

+
n(k+1);−ρk)− (η+

n1)φ(η−n1)Φ̄(η+
n(k+1))}I(s < r)

+A(η−n(k+1), 0,
√
nµ1; ρk)Q(η−n(k+1), η

−
n1; ρk)− (η+

n(k+1))(nµ
2
1 + 1)φ(η−n(k+1))Φ̄(η−n1)

+B(η−n1, η
−
n(k+1),

√
nµ1, 0; ρk)q(η−n1, η

−
n(k+1); ρk)− (η+

n1)(η
+
n(k+1))φ(η−n1)φ(η−n(k+1))

+ C(
√
nµ1, 0; ρk)U(η−n1, η

−
n(k+1); ρk)− (nµ2

1 + 1)Φ̄(η−n1)Φ̄(η−n(k+1))

:= PI + PII + PIII + PIV + PV . (3.7.37)

Let ξ = 2(1−ρk)
√

s(
√

s−
√

r)+r
1−ρ2

k
. Firstly, for PI , we only need consider s > r,

PI = ρk{η−n1
3
ρk + 2ρkη

−
n1 + 2

√
nµ1(ρk + η−n1

2) + nµ2
1ρkη

−
n1}Q(η−n1, η

−
n(k+1); ρk)

+ (η+
n1)φ(η−n1){Φ̄

(η−n(k+1) − ρkη
−
n1√

1− ρ2
k

)
− Φ̄(η−n(k+1))};

where Q(η−n1, η
−
n(k+1); ρk) ∼ Lpp

−ξ and

Φ̄
(η−n(k+1) − ρkη

−
n1√

1− ρ2
k

)
− Φ̄(η−n(k+1)) ∼ ρk

{
I(s > 1

4(1 + θ−1)2r)Lpp
− [(1−ρk)

√
s+ρk

√
r]2

1−ρ2
k

− I(r < s < 1
4(1 + θ−1)2r)Lpp

−s
}
.
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Thus PI ∼ ρk

{
I(s > 1

4(1 + θ−1)2r)Lpp
−ξ − I(r < s < 1

4(1 + θ−1)2r)Lpp
−s−(

√
s−
√

r)2
}
.

For PII , we only need consider s < r,

PII = ρk{η−n1
3
ρk + 2ρkη

−
n1 + 2

√
nµ1(ρk − η−n1

2) + nµ2
1ρkη

−
n1}Q(η−n1, η

+
n(k+1); ρk)

+ (η+
n1)φ(η−n1){Φ̄

(η+
n(k+1) + ρkη

−
n1√

1− ρ2
k

)
− Φ̄(η−n(k+1))}

where

Q(η−n1, η
+
n(k+1);−ρk) ∼ I(s < ρ2

kr/(1 + ρk)2)Lpp
−(
√

s−
√

r)2

+ I(r > s > ρ2
kr/(1 + ρk)2)Lpp

−ξ− 4ρk

1−ρ2
k
(s−

√
sr)

and

Φ̄
(η+

n(k+1) + ρkη
−
n1√

1− ρ2
k

)
− Φ̄(η−n(k+1)) ∼ ρk

{
I(s < ρ2

kr/(1 + ρk)2)C

+ I(ρ2
kr/(1 + ρk)2 < s < r)Lpp

− [(1+ρk)
√

s−ρk
√

r]2

1−ρ2
k

}
.

Thus PII ∼ ρk

{
I(s < ρ2

k
(1+ρk)2

r)Lpp
−(
√

s−
√

r)2 + I( ρ2
k

(1+ρk)2
r < s < r)Lpp

−ξ− 4ρk

1−ρ2
k
(s−

√
sr)}

.

Now let us consider PIII ,

PIII = ρk{η−n(k+1)

3
ρk + 2ρkη

−
n(k+1) + 2

√
nµ1(2 + η−n(k+1)

2)}Q(η−n(k+1), η
−
n1; ρk)

+ (η+
n(k+1))(nµ

2
1 + 1)φ(η−n(k+1)){Φ̄

(η−n1 − ρkη
−
n(k+1)√

1− ρ2
k

)
− Φ̄(η−n1)}

where Q(η−n(k+1), η
−
n1; ρk) ∼ I(s > r/(1− ρk)2)Lpp

−ξ + I(s < r/(1− ρk)2)Lpp
−s and

Φ̄
(η−n1 − ρkη

−
n2√

1− ρ2
k

)
− Φ̄(η−n1) ∼ ρk

{
I(s >

r

(1− ρk)2
)Lpp

− [(1−ρk)
√

s−
√

r]2

1−ρ2
k

+ I(r < s <
r

(1− ρk)2
)C + I(s < r)Lpp

−(
√

s−
√

r)2
}
.

Thus PIII ∼ ρk

{
I(s > r/(1− ρk)2)Lpp

−ξ + I(s < r/(1− ρk)2)Lpp
−s
}
.

Next, we evaluate PIV

PIV = ρk

√
1− ρ2

k(η
2
n1 + η2

n(k+1) + 3 + 2
√
nµ1ηn1 + nµ2

1)q(η
−
n1, η

−
n(k+1); ρk)

+ (η+
n1)(η

+
n(k+1)){

√
1− ρ2

kq(η
−
n1, η

−
n(k+1); ρk)− φ(η−n1)φ(η−n(k+1))}
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where q(η−n1, η
−
n(k+1); ρk) ∼ p−ξ and

√
1− ρ2

kq(η
−
n1, η

−
n(k+1); ρk)−φ(η−n1)φ(η−n(k+1)) ∼ ρkp

−ξ. Thus

PIV ∼ ρkLpp
−ξ. Finally, taking a look at PV

PV = 2ρ2
kU(η−n1, η

−
n2; ρk) + (nµ2

1 + 1){U(η−n1, η
−
n2; ρk)− Φ̄(η−n1)Φ̄(η−n2)}.

Because U(η−n1, η
−
n2; ρk) = z(ρk)Φ̄(η−n2)Φ̄

(
η−n1−ρkη−n2√

1−ρ2
k

)
for some z(ρk) → 1 as ρk → 0, PV has the

same order as PIII up to a slow varying function.

Thus, in summary,

γk(
√
nµ1, 0, λn) ∼ρk

{
I(s < ρ2

kr/(1 + ρk)2)Lpp
−(
√

s−
√

r)2

+ I(ρ2
kr/(1 + ρk)2 < s < r/(1− ρk)2)Lpp

−s + I(s > r/(1− ρk)2)Lpp
−ξ
}
.

Since s < ρ2
kr/(1 + ρk)2, we have

√
r ≥ (1/ρk + 1)

√
s ≥ 2

√
s. It follows that (

√
s −

√
r)2 −

s =
√
r(
√
r − 2

√
s) ≥ 0. It is easy to see ξ − s = ((1 − ρk)

√
s −

√
r)2 ≥ 0. It follows that

|γk(
√
nµ1, 0, λn)| ≤ |ρk|Lpp

−s. 2

Spectral Density Based Estimation of σ2
0(p;λn): Let ι2 = −1 be the imaginary number.

The spectral density of {Z0
i,n(λn)}p

i=1 is

g(w) = (2π)−1
∞∑

k=−∞
γk(0, 0, λn) exp(−ιkw) for w ∈ [−π, π].

According to Brockwell and Davis (2009), limp→∞ σ2
0(p;λn) = 2πg(0). Hence we can estimate

σ2
0(p;λn) by estimating g(0). To estimate g(0), we will introduce periodogram of Z0

i,n(λn) which

is defined as

Ip(wk) =
1
p

∣∣∣∣∣
p∑

t=1

Z0
t,n(λn)e−ιtwk

∣∣∣∣∣
2

, k = −[(p− 1)/2], · · · ,−1, 0, 1, · · · , [p/2],

where wk = 2πk/p. By Theorem 2.13 in Fan and Yao (2005), we know that for k ∈ T =

{−[(p− 1)/2], · · · ,−1, 1, · · · , [p/2]},

Ip(wk) =
p−1∑

τ=−(p−1)

γ̂(τ)e−ιτwk ,

where γ̂(τ) = 1
p

∑p−τ
t=1 (Z0

t,n(λn) − Z̄0)(Z0
t+τ,n(λn) − Z̄0) and Z̄0 = 1

p

∑p
t=1 Z

0
t,n. Notice that

Z0
t,n(λn) is unobservable when the data coming from the alternative, hence we can not use it
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directly. However, because γ̂(τ) is a consistent estimate of γτ (0, 0, λn), we can replace γ̂(τ) by

γ̂τ (0, 0, λn) with ρ̂k being estimated and plugging in to (3.3.15). Hence we have

Îp(wk) =
p−1∑

τ=−(p−1)

γ̂τ (0, 0, λn)e−ιτwk .

By Brillinger (1981) for k ∈ T ,

Ip(wk) = 2πg(wk)Ek +Rk (3.7.38)

where {Ek} are independent standard exponential random variables and {Rk} are asymptoti-

cally negligible terms. As commonly used method for estimating the spectral density (see Fan

and Yao, 2005; Fuller, 1996; Chen and Tang, 2005), let Wk = log{Îp(wk)/(2π)} + 0.57721,

εk = log(Ek) + 0.57721 and m(w) = log{g(w)}. Then (3.7.38) can be approximated as

Wk = m(wk) + εk,

where εk are IID random variables with mean 0 and variance π2/6. Hence we can estimate

m(w) by

m̂h(w) =
∑

k∈T Kh(w − wk)Wk∑
k∈T Kh(w − wk)

,

whereKh(t) = K(t/h)/h, K(·) is the kernel function and h is the bandwidth. Then an estimator

of g(0) is ĝ(0) = exp{m̂h(0)} and σ̂2
0(p;λn) = 2πĝ(0). 2

Detection Boundary of the Threshold Test: The analyses are similar to the analyses

given by Chen and Xu (2011) for the normal and independent random variables. We will

discuss the detection boundary of the threshold test by four cases. For each case, we find the

corresponding detectable region and the union of the four detectable regions is the detectable

region of threshold test.

Case 1: s ≤ r and s ≤ β. In this case, µTn,1 − µTn,0 = Lpp
1−β and σTn,1 = σTn,0 =

Lpp
(1−s)/2. Hence

µTn,1 − µTn,0

σTn,1
= Lpp

(1+s−2β)/2. (3.7.39)

So to make the test detectable, i.e. such that (µTn,1 − µTn,0)/σTn,1 → ∞, s > 2β − 1. It

follows that the detectable region in (β, r) plane for this case is r ≥ 2β − 1 (Chen and Xu,
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2011). If we could select s = min{r, β}, then the best power of the threshold test is of order

Lpp
(1+min{r,β}−2β)/2.

Case 2: s ≤ r and s > β. In this case, µTn,1 − µTn,0 = Lpp
1−β, σTn,1 = Lpp

(1−β)/2, and

σTn,0 = Lpp
(1−s)/2. Then

µTn,1 − µTn,0

σTn,1
= Lpp

(1−β)/2. (3.7.40)

So the detectable region in (β, r) plane is r > β. In this detection region, the best power is of

order Lpp
(1−β)/2.

Case 3: s > r and s ≤ (
√
s−

√
r)2 +β. The case is equivalent to

√
r <

√
s ≤ (r+β)/(2

√
r).

In this case, µTn,1 − µTn,0 = Lpp
1−(

√
s−
√

r)2−β , σTn,1 = σTn,0 = Lpp
(1−s)/2. Then

µTn,1 − µTn,0

σTn,1
= Lpp

1
2 − β + r − (

√
s− 2

√
r)2/2. (3.7.41)

So to make the test detectable, we want (3.7.41) goes to infinity. It follows that we need

2
√
r −

√
1− 2β + 2r <

√
s < 2

√
r +

√
1− 2β + 2r.

Thus the detectable region in (β, r) plane must satisfy

√
r < (r + β)/(2

√
r), 1− 2β + 2r > 0 and 2

√
r −

√
1− 2β + 2r ≤ (r + β)/(2

√
r).

It is corresponding to the detectable region

r < β, r > β − 1
2 and {r ≤ β/3 or (r > β/3 and r ≥ (1−

√
1− β)2)}.

Now in the above detectable region, if 2
√
r ≤ (r + β)/(2

√
r), i.e., r ≤ β/3 then we can

take
√
s = 2

√
r. So the best power under area r ≤ β/3 in the detectable region is of order

Lpp
1
2 − β + r. If r > β/3, the best power is of order Lpp

1
2 −

1
2(r + β)2/(4r), which is attained

at
√
s = (r + β)/(2

√
r).

Case 4: s > r and s > (
√
s−

√
r)2+β. This is equivalent to

√
s > max{(r+β)/(2

√
r),
√
r}.

In this case, µTn,1 − µTn,0 = Lpp
1−(

√
s−
√

r)2−β , σTn,1 = Lpp
(1−(

√
s−
√

r)2−β)/2. Then

µTn,1 − µTn,0

σTn,1
= Lpp

(1−(
√

s−
√

r)2−β)/2. (3.7.42)
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The detectable condition requires that

√
r −

√
1− β <

√
s <

√
r +

√
1− β.

In order to find an s such that we could implement the test, we need
√
r+

√
1− β > max{(r+

β)/(2
√
r),
√
r}. If

√
r > (r+β)/(2

√
r), i.e. r > β, then the above inequality is obviously true. If

r ≤ β, then
√
r+

√
1− β > (r+β)/(2

√
r) is equivalent to r > (1−

√
1− β)2. So the detectable

region is r > (1−
√

1− β)2.

When r > β, we can take s = r such that (3.7.42) is of order Lpp
(1−β)/2. If (1−

√
1− β)2 <

r ≤ β, then the best rate of (3.7.42) is attained at
√
s = (r + β)/(2

√
r), where the best rate is

Lpp
1
2 −

1
2(r + β)2/(4r). 2

Lemma 1 Let Xi = (Xi1, Xi2)′ be IID random vectors with mean zero and covariance Σ.

Suppose that there exist a positive H such that E(eh
′Xi) <∞ for h ∈ [−H,H]× [−H,H]. Then

for t = (t1, t2)′ > 0, we have

1− Fn(t1, t2) = exp
{θ(t1, t2)√

n

}
Φ̄0,Σ(t){1 +O(n−1/2t)} (3.7.43)

hold uniformly for t1, t2 = o(n1/2) where Φ̄0,Σ(t) = (2π|Σ|1/2)−1
∫∞
t exp

(
− 1

2y
′Σ−1y

)
dy and

θ(t1, t2) = b30t
3
1 + b12t

2
1t2 + b21t1t

2
2 + b03t

3
2 with

b30 =
1
2
κ(2,1)c

2
1c2 +

1
2
κ(1,2)c1c

2
2 +

1
3!
κ(3,0)c

3
1 +

1
3!
κ(0,3)c

3
2,

b03 =
1
2
κ(2,1)c1c

2
2 +

1
2
κ(1,2)c

2
1c2 +

1
3!
κ(3,0)c

3
2 +

1
3!
κ(0,3)c

3
1,

b12 =
1
2
κ(2,1)(c

3
1 + 2c1c22) +

1
2
κ(1,2)(c

3
2 + 2c21c2) +

1
2
κ(3,0)c

2
1c2 +

1
2
κ(0,3)c1c

2
2 and

b21 =
1
2
κ(2,1)(c

3
2 + 2c21c2) +

1
2
κ(1,2)(c

3
1 + 2c1c22) +

1
2
κ(3,0)c1c

2
2 +

1
2
κ(0,3)c

2
1c2,

where c1 = −(κ2
(1,1) − κ(0,2)κ(2,0))−1κ(0,2) and c2 = (κ2

(1,1) − κ(0,2)κ(2,0))−1κ(1,1).

Proof Let V (x1, x2) be the distribution function of Xi. Introduce a conjugate random vector

X̃i with a common distribution function

Ṽ (x1, x2) =
1

R(h)

∫ x1

−∞

∫ x2

−∞
eh

′ydV (y)

where R(h) = E(eh
′X1) =

∫∞
−∞

∫∞
−∞ eh

′ydV (y).
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Define v(t1, t2) = E{exp(it′X1)}, ṽ(t1, t2) = E{exp(it′Σ̃−1
2 X̃1)}, m̃ = E(X̃1), Σ̃ = Var(X̃1),

Sn =
∑n

j=1Xj and S̃n =
∑n

j=1 Σ̃−1
2 X̃j . Let x be a two-dimensional vector. Wn(x) = P (Sn <

x), W̃n(x) = P (S̃n < x), wn(t) = E(eit
′Sn), w̃n(t) = E(eit

′S̃n).

Fn(x) = P (
1√
n

n∑
i=1

Xi < x), and F̃n(x) = P (
1√
n

n∑
i=1

Σ̃−1
2 (X̃i − m̃) < x).

Then Fn(x) = Wn(
√
nx), F̃n(x) = W̃n(

√
nx+ nΣ̃−1

2 m̃), wn(t) = vn(t) and w̃n(t) = ṽn(t).

ṽ(t) =
∫ ∫

exp{it′Σ̃−1
2x}dṼ (x) =

1
R(h)

∫ ∫
exp{(h− it′Σ̃−1

2 )x}dV (x)

=
1

R(h)
v(Σ̃−1

2 t− ih).

So, v(t) = Rṽ(Σ̃
1
2 (t+ ih)) and wn(t) = Rnw̃n(Σ̃

1
2 (t+ ih)). Hence,

Wn(x) =
∫ x

−∞

1
(2π)2

∫ ∞

−∞
exp(−it′y)wn(t)dtdy

=
∫ x

−∞

1
(2π)2

∫ ∞

−∞
exp(−it′y)w̃n(Σ̃

1
2 (t+ ih))dtdy

=
∫ x

−∞
Rne−h′y|Σ̃|−

1
2

1
(2π)2

∫ ∞

−∞
exp(−iz′Σ̃−1

2 y)w̃n(z)dzdy

=
∫ x

−∞
Rne−h′y|Σ̃|−

1
2 fS̃n

(Σ̃−1
2 y)dy =

∫ x

−∞
Rne−h′ydW̃n(Σ̃−1

2 y).

So it follows that

1− Fn(x) = 1−Wn(
√
nx) =

∫ ∞

√
nx
Rne−h′ydW̃n(Σ̃−1

2 y)

=
∫ ∞

√
nx
Rne−h′ydF̃n(

1√
n

Σ̃−1
2 y −

√
nΣ̃−1

2 m̃)

=
∫

B
Rne−h′(

√
nΣ̃

1
2 t+nm̃)dF̃n(t)

= exp{n logR− nhm̃}
∫

B
e−

√
nh′Σ̃

1
2 tdF̃n(t),

where B = {t : Σ̃
1
2 t > x−

√
nm̃}.
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Now let x =
√
nm̃, we get

1− Fn(
√
nm̃) = exp{n logR− nhm̃}

∫
{t: Σ̃

1
2 t>0}

e−
√

nh′Σ̃
1
2 tdF̃n(t)

= exp{n logR− nhm̃}
∫
{t: Σ̃

1
2 t>0}

e−
√

nh′Σ̃
1
2 tdΦ0,I2(t) (3.7.44)

+ exp{n logR− nhm̃}
∫
{t: Σ̃

1
2 t>0}

e−
√

nh′Σ̃
1
2 td(F̃n(t)− Φ0,I2(t)) (3.7.45)

: = exp{n logR− nhm̃}{I + II} = PI + PII .

Now let us firstly take a look at (3.7.44). Then

exp{n logR− nhm̃}
∫
{t: Σ̃

1
2 t>0}

e−
√

nh′Σ̃
1
2 tdΦ0,I2(t)

= exp{n logR− nhm̃} 1
2π
|Σ̃|−

1
2

∫ ∞

0
exp{−

√
nh′ξ − ξ′Σ̃−1ξ

2
}dξ

=exp{n logR− nhm̃+
nh′Σ̃h

2
} 1
2π
|Σ̃|−

1
2

∫ ∞

0
exp{−(ξ +

√
nΣ̃h)′Σ̃−1(ξ +

√
nΣ̃h)

2
}dξ.

(3.7.46)

For sufficient small h,

logR(h) =
∞∑

|ν|=1

kν

ν!
hν

where kν is the cumulant of order ν = (ν1, ν2). kν = 0 if |ν| = 1. kν = Cov(Xi1, Xi2) if ν = (1, 1).

kν = µ(2,0) − µ2
(1,0) if ν = (2, 0). kν = µ(0,2) − µ2

(0,1) if ν = (0, 2).

m̃ = E(X̃1) =
1

R(h)

∫
y exp(h′y)dV (y) =

∂ logR(h)
∂h

.

Then

∂ logR(h)
∂h1

= k(1,1)h2 + k(2,0)h1 + 1
2k(3,0)h

2
1 + k(2,1)h1h2 + 1

2k(1,2)h
2
2

∂ logR(h)
∂h2

= k(1,1)h1 + k(0,2)h2 + 1
2k(3,0)h

2
2 + k(1,2)h1h2 + 1

2k(2,1)h
2
1.

Let a = m̃ and a1

a2

 =

 k(1,1)h2 + k(2,0)h1 + 1
2k(3,0)h

2
1 + k(2,1)h1h2 + 1

2k(1,2)h
2
2

k(1,1)h1 + k(0,2)h2 + 1
2k(3,0)h

2
2 + k(1,2)h1h2 + 1

2k(2,1)h
2
1

 .
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Then the approximate solution of above equations are: h1

h2

 =

 c1a1 + c2a2

d1a1 + d2a2

 (3.7.47)

where d1 = c2 and d2 = c1. We can also know that

Σ̃ =
∂2 logR(h)
∂h∂h

=

 k(2,0) + k(3,0)h1 + k(2,1)h2 k(1,1) + k(2,1)h1 + k(1,2)h2

k(1,1) + k(2,1)h1 + k(1,2)h2 k(0,2) + k(0,3)h2 + k(1,2)h1


h1,h2→0−→

 k(2,0) k(1,1)

k(1,1) k(0,2)

 = Σ.

Thus Σ̃h = m̃{1 +O(h)} and Σ̃ = Σ{1 +O(h)}. It follows that

logR− hm̃+
h′Σ̃h

2
= 1

2k(2,1)h
2
1h2 + 1

2k(1,2)h1h
2
2 + 1

3!k(3,0)h
3
1 + 1

3!k(0,3)h
3
2 +O(h4). (3.7.48)

Plugging (3.7.47) into (3.7.48), we get

logR− hm̃+
h′Σ̃h

2
= θ(a1, a2) +O(a4)

where θ(a1, a2) is given in Lemma 1. Now combing it with (3.7.46) and replacing m̃ by a, we

get

PI = exp
{
nθ(a1, a2)

} 1
2π
|Σ|−

1
2

∫ ∞

0
exp{−(ξ +

√
na)′Σ−1(ξ +

√
na)

2
}dξ. (3.7.49)

If PII is a smaller order of PI in (3.7.44), Then it can be seen that, 1−Fn(
√
na) = PI{1+o(1)}.

Let t =
√
na. we obtain the result (3.7.43).

It remains to show that PII is a smaller order of PI . We only need to show II is a small

order of I. Choosing h = (h1, h2) such that h1, h2 → 0 as n → ∞ and nh2
1, nh

2
2 ≤ C0 for

sufficient large n. Following from (3.7.46), we know

I =
1
2π
|Σ̃|−

1
2

∫ ∞

0
exp{−

√
nh′ξ − ξ′Σ̃−1ξ

2
}dξ

= exp{nh
′Σ̃h
2

} 1
2π
|Σ̃|−

1
2

∫ ∞

0
exp{−(ξ +

√
nΣ̃h)′Σ̃−1(ξ +

√
nΣ̃h)

2
}dξ.
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Assume Σ̃ =

 a2 acρ̃

acρ̃ c2

 and L =

 a 0

0 c

 . Let ξ = Lξ∗. Then

1
2π
|Σ̃|−

1
2

∫ ∞

0
exp{−(ξ +

√
nΣ̃h)′Σ̃−1(ξ +

√
nΣ̃h)

2
}dξ

=
1
2π
|L||Σ̃|−

1
2

∫ ∞

0
exp{−(ξ∗ + L−1Σ̃

√
nh)′(L−1Σ̃L−1)−1(ξ∗ + L−1Σ̃

√
nh)

2
}dξ∗

=
1
2π
|Σ̃∗|−

1
2

∫ ∞

0
exp{−(ξ∗ + L−1Σ̃

√
nh)′Σ̃∗−1

(ξ∗ + L−1Σ̃
√
nh)

2
}dξ∗

=U(
√
n(ah1 − cρ̃h2),

√
n(aρ̃h1 − ch2); ρ̃)

where Σ̃∗ =

 1 ρ̃

ρ̃ 1

 . It follows that

I = exp{nh
′Σ̃h
2

}U(
√
n(ah1 − cρ̃h2),

√
n(aρ̃h1 − ch2); ρ̃).

According to the choice of h,
√
n(ah1−cρ̃h2) and

√
n(aρ̃h1−ch2) are bounded constants. Thus,

I is bounded away from 0 and infinity for sufficient large n.

Now let us show that II = O(n−
1
2 ). Let Q(t) = F̃n(t) − Φ0,I2(t) and B0 = {t : Σ̃

1
2 t > 0}.

Let A1 = {t : Q(t) > 0} and A2 = {t : Q(t) < 0} be the sets where Q take positive and negative

values. Writing Q+(t) and Q−(t) to represent the positive and negative parts of the function

Q(t). Then Q(t) = Q+(t)−Q−(t). Denote F̃n,Q+(A) = F̃n(A∩A1) and F̃n,Q−(A) = F̃n(A∩A2).

Similarly, we could define Φ0,I2,Q+(A) and Φ0,I2,Q−(A). Then

Q+(A) = F̃n,Q+(A)− Φ0,I2,Q+(A) and Q−(A) = F̃n,Q−(A)− Φ0,I2,Q−(A).

It follows that∫
B0

e−
√

nh′Σ̃
1
2 tdQ+(t) =

∫
B0

e−
√

nh′Σ̃
1
2 tdF̃n,Q+(t)−

∫
B0

e−
√

nh′Σ̃
1
2 tdΦ0,I2,Q+(t).

Then
∫
B0
e−

√
nh′Σ̃

1
2 tdF̃n,Q+(t) =

∫
B0∩A1

e−
√

nh′Σ̃
1
2 tdF̃n(t). Since e−

√
nh′Σ̃

1
2 t is positive and∫

B0
e−

√
nh′Σ̃

1
2 tdF̃n(t) < ∞, we have

∫
B0∩A1

e−
√

nh′Σ̃
1
2 tdF̃n(t) ≤

∫
B0
e−

√
nh′Σ̃

1
2 tdF̃n(t) < ∞,

which means
∫
B0
e−

√
nh′Σ̃

1
2 tdF̃n,Q+(t) <∞. Similarly, we can show

∫
B0
e−

√
nh′Σ̃

1
2 tdΦ0,I2,Q+(t) <

∞. Thus ∫
B0

e−
√

nh′Σ̃
1
2 tdQ+(t) <∞.
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Fix ε > 0, there exist a finite C > 0 such that
∫
B0∩D0

e−
√

nh′Σ̃
1
2 tdQ+(t) < ε/2, where D0 =

{e−
√

nh′Σ̃
1
2 t > C}. Then∫

B0

e−
√

nh′Σ̃
1
2 tdQ+(t) =

∫
B0∩Dc

0

e−
√

nh′Σ̃
1
2 tdQ+(t) +

∫
B0∩D0

e−
√

nh′Σ̃
1
2 tdQ+(t)

≤ CQ+(B0 ∩Dc
0) + ε/2 = CQ(B0 ∩Dc

0 ∩A1) + ε/2. (3.7.50)

By the Berry-Essen bounds given by Bhattacharya (1968), we have

sup
B
|Q(B)| = sup

B
|F̃n(B)− Φ0,I2(B)| ≤ cn−

1
2 θ

3(1+δ)/(3+δ)
3+δ ,

where θs =
∑2

i=1E|X̃1i|s. As shown on page 181 in Petrov (1995), if the Cramér’s condition

hold, then θ3+δ < ∞. Therefore, Q(B0 ∩ Dc
0 ∩ A1) ≤ Cn−

1
2 . Because of the arbitrary of ε

and from (3.7.50), we know
∫
B0
e−

√
nh′Σ̃

1
2 tdQ+(t) = O(n−

1
2 ). Similarly, we can also show that∫

B0
e−

√
nh′Σ̃

1
2 tdQ−(t) = O(n−

1
2 ). Hence, II = O(n−

1
2 ) and II is a smaller order of I. Therefore,

PII is a smaller order of PI . This completes the proof of Lemma 1. 2

Lemma 2 Let (X,Y ) be bivariate normal random vector

(X,Y )′ ∼ N

(0, 0)′,

 1 ρ

ρ 1


 .

Using the definition of U(λ, η; ρ), Q(λ, η; ρ) and q(λ, η; ρ) given in Section 2, we have

(i) E{X2Y 2I(X > η)I(Y > λ)} = (1 + 2ρ2)U(λ, η; ρ) + (λ3ρ2 + (1 + 2ρ2)λ)Q(λ, η; ρ)

+ (η3ρ2 + (1 + 2ρ2)η)Q(η, λ; ρ) +
√

1− ρ2(ρη2 + λη + ρλ2 + 3ρ)q(η, λ; ρ);

(ii) E{X2Y I(X > η)I(Y > λ)} = (2 + η2)ρQ(η, λ; ρ) + (1 + λ2ρ2 + ρ2)Q(λ, η; ρ)

+
√

1− ρ2ηq(η, λ; ρ) + ρ
√

1− ρ2λq(λ, η; ρ);

(iii) E{XY I(X > η)I(Y > λ)} = ρηQ(η, λ; ρ) + ρλQ(λ, η; ρ) +
√

1− ρ2q(η, λ; ρ);
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(iv) E{XI(X > η)I(Y > λ)} = Q(η, λ; ρ) + ρQ(λ, η; ρ);

(v) Let η′1 = η − µ1 and λ′2 = λ− µ2. Then

E{(X + µ1)2(Y + µ2)2I((X + µ1) > η)I((Y + µ2) > λ)}

= E{X2Y 2I(X > η′1)I(Y > λ′2)}+ 2µ2E{X2Y I(X > η′1)I(Y > λ′2)}

+ 2µ1E{XY 2I(X > η′1)I(Y > λ′2)}+ µ2
2E{X2I(X > η′1)I(Y > λ′2)}

+ µ2
1E{Y 2I(X > η′1)I(Y > λ′2)}+ 4µ1µ2E{XY I(X > η′1)I(Y > λ′2)}.

The proof of Lemma 2 is straightforward but tedious, hence we omit it here.

Proof of Theorem 1 We first calculate the mean of the test statistic. By Fubini’s theorem,

E(Tn) =
p∑

i=1

E{Yi,nI(Yi,n ≥ λn)} =
p∑

i=1

∫ ∞

0

∫ ∞

z∨λn

dF (y)dz

=
p∑

i=1

λnP (Yi,n ≥ λn) +
p∑

i=1

∫ ∞

λn

P (Yi,n ≥ z)dz

=
p∑

i=1

λnP (
√
n|X̄i| ≥

√
λn) + 2

p∑
i=1

∫ ∞

√
λn

zP (
√
n|X̄i| ≥ z)dz. (3.7.51)

Without loss of generality, we would assume µi = E(Xi) ≥ 0 as we can replace Xi with

X∗
i = −Xi in (3.7.51). This replacement won’t change the value in (3.7.51), so the following

analysis hold exactly the same for X∗
i .

Followed by (3.7.51), we have

E(Tn) =
p∑

i=1

λn{P (
√
n(X̄i − µi) ≥ η−ni) + P (

√
n(X̄i − µi) ≤ −η+

ni)}

+ 2
p∑

i=1

∫ ∞

√
λn

z{P (
√
n(X̄i − µi) ≥ z −

√
nµi) + P (

√
n(X̄i − µi) ≤ −z −

√
nµi)}dz.

(3.7.52)

By the result given on page 183 in Petrov (1995), we have

P (
√
n(X̄i − µi) ≥ y) = Φ̄(y)

{
exp

(
κ3y

3

6σ3n1/2

)}[
1 + o

(1 + y

n1/2

)]
and

P (
√
n(X̄i − µi) ≤ −y) = Φ̄(y)

{
exp

(
− κ3y

3

6σ3n1/2

)}[
1 + o

(1 + y

n1/2

)]
hold uniformly for any y = o(n1/6). Based on this result we know that for the integral in

(3.7.52), we can use the normal approximation if z+
√
nµi = o(n1/6) while for z+

√
nµi is high
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order than n1/6 we can not use normal approximation. However, the Cramér’s condition in the

theorem implies that (Lemma 2.2 in Petrov (1995))

P (|Xij − µi| > x) ≤ be−xd
. (3.7.53)

Hence, under the exponential tail assumption (3.7.53), the integral above high order n1/6 is

actually a smaller order than the first term in (3.7.52).

We give an evaluation of the first term of (3.7.52). From the following inequality, for y > 0,

y√
2π(1 + y2)

e−
y2

2 ≤ Φ̄(y) ≤ 1√
2πy

e−
y2

2

and hence for a sufficient large y, Φ̄(y) ∼ 1√
2πy

e−
y2

2 . It follows that if
√
λn >

√
nµi, then

P (
√
n(X̄i − µi) ≥ η−ni) + P (

√
n(X̄i − µi) ≤ −η+

ni) = {Φ̄(η−ni) + Φ̄(η+
ni)}{1 + o(1)}

={(
√

2π(η−ni))
−1 exp(−1

2(η−ni)
2) + (

√
2π(η+

ni))
−1 exp(−1

2(η+
ni)

2)}{1 + o(1)}. (3.7.54)

If
√
λn <

√
nµi,

P (
√
n(X̄i − µi) ≥ η−ni) + P (

√
n(X̄i − µi) ≤ −η+

ni)

=1− P (
√
n(X̄i − µi) ≤ η−ni) + P (

√
n(X̄i − µi) ≤ −η+

ni)

={1− Φ̄(−η−ni) + Φ̄(η+
ni)}{1 + o(1)}

={1− (
√

2π(−η−ni))
−1 exp(−1

2(η−ni)
2) + (

√
2π(η+

ni)
−1 exp(−1

2(η+
ni)

2)}{1 + o(1)}. (3.7.55)

Let ε > 0 be an arbitrary small number and ξn = O(n1/6−ε) such that ξn is a large order

than λ1/2
n and

√
nµi. Consider the third and fourth terms of the integral in (3.7.52), which can

be written as∫ ∞

√
λn

zP (
√
n(X̄i − µi) ≥ z −

√
nµi)dz =

∫ Cξn

√
λn

zP (
√
n(X̄i − µi) ≥ z −

√
nµi)dz (3.7.56)

+
∫ ∞

Cξn

zP (
√
n(X̄i − µi) ≥ z −

√
nµi)dz. (3.7.57)

and∫ ∞

√
λn

zP (
√
n(X̄i − µi) ≤ −z −

√
nµi)dz =

∫ Cξn

√
λn

zP (
√
n(X̄i − µi) ≤ −z −

√
nµi)dz (3.7.58)

+
∫ ∞

Cξn

zP (
√
n(X̄i − µi) ≤ −z −

√
nµi)dz. (3.7.59)
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We want to show that both (3.7.57) and (3.7.59) are smaller order than the first term

in (3.7.52). To obtain the bound for (3.7.57) and (3.7.59), we need the following inequality.

Assume 1 < d ≤ 2 in (3.7.53) and
∑n

j=1 a
2
j = 1, we have (See, Huang et al., 2008)

max
aj

P

∣∣∣ n∑
j=1

ajXij − µi

∣∣∣ > t

 ≤ exp(−td/M),

where M is a constant. Notice that ξn −
√
nµi → ∞. Then the sum of (3.7.57) and (3.7.59)

can be bounded by∫ ∞

Cξn

zP (
√
n(X̄i − µi) ≥ z −

√
nµi)dz +

∫ ∞

Cξn

zP (
√
n(X̄i − µi) ≤ −z −

√
nµi)dz

≤ 2
∫ ∞

Cξn

zP (
√
n|X̄i − µi| ≥ z −

√
nµi)dz (3.7.60)

≤ 2
∫ ∞

Cξn−
√

nµi

z exp(−zd/M)dz + 2
√
nµi

∫ ∞

Cξn−
√

nµi

exp(−zd/M)dz (3.7.61)

≤M2(Cξn −
√
nµi)2−2d exp(−(Cξn −

√
nµi)2/M)/d. (3.7.62)

If Cξn = (λnM)1/d and
√
λn >

√
nµi, then we know

(Cξn −
√
nµi)2−2d exp(−(Cξn −

√
nµi)2/M)

λn(
√
λn −

√
nµi)−1 exp(−(

√
λn −

√
nµi)2/2)

∼ λ
2
d
− 3

2
n exp(−λn/2) → 0, (3.7.63)

which means that (3.7.57) and (3.7.59) are smaller order than the first term if
√
λn >

√
nµi. If

√
λn <

√
nµi, the first term in (3.7.52) is even larger order than the case when

√
λn >

√
nµi.

Hence, (3.7.57) and (3.7.59) are smaller order of the first term in (3.7.52). Therefore,

E(Tn) =
{ p∑

i=1

λn{P (
√
n(X̄i − µi) ≥ η−ni) + P (

√
n(X̄i − µi) ≤ −η+

ni)}

+ 2
p∑

i=1

∫ Cξn

√
λn

z{P (
√
n(X̄i − µi) ≥ z −

√
nµi)

+ P (
√
n(X̄i − µi) ≤ −z −

√
nµi)}dz

}
{1 + o(1)}. (3.7.64)

It follows that ∫ Cξn

√
λn

zP (
√
n(X̄i − µi) ≥ z −

√
nµi) =

∫ Cξn

√
λn

zΦ̄(z −
√
nµi)dz

+
∫ Cξn

√
λn

z{P (
√
n(X̄i − µi) ≥ z −

√
nµi)− Φ̄(z −

√
nµi)}dz (3.7.65)
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where (3.7.65) equals to∣∣∣ ∫ Cξn

√
λn

zΦ̄(z −
√
nµi)

P (
√
n(X̄i − µi) ≥ z −

√
nµi)− Φ̄(z −

√
nµi)

Φ̄(z −
√
nµi)

dz
∣∣∣

≤
∫ Cξn

√
λn

zΦ̄(z −
√
nµi)

∣∣∣P (
√
n(X̄i − µi) ≥ z −

√
nµi)− Φ̄(z −

√
nµi)

Φ̄(z −
√
nµi)

∣∣∣dz
≤ sup

z=o(n1/6)

∣∣∣P (
√
n(X̄i − µi) ≥ z −

√
nµi)− Φ̄(z −

√
nµi)

Φ̄(z −
√
nµi)

∣∣∣ ∫ Cξn

√
λn

zΦ̄(z −
√
nµi)dz

= o(1)×
∫ Cξn

√
λn

zΦ̄(z −
√
nµi)dz.

So, we have∫ Cξn

√
λn

zP (
√
n(X̄i − µi) ≥ z −

√
nµi) =

∫ Cξn

√
λn

zΦ̄(z −
√
nµi)dz{1 + o(1)}. (3.7.66)

Thus,

E(Tn) =
[ p∑

i=1

λn(Φ̄(η−ni) + Φ̄(η+
ni)) + 2

p∑
i=1

∫ Cξn

√
λn

z{Φ̄(z −
√
nµi) + Φ̄(z +

√
nµi)}dz

]
{1 + o(1)}

=
[ p∑

i=1

λn(Φ̄(η−ni) + Φ̄(η+
ni)) + 2

p∑
i=1

∫ ∞

√
λn

z{Φ̄(z −
√
nµi) + Φ̄(z +

√
nµi)}dz

]
{1 + o(1)}.

Equivalently, we can assume
√
nX̄i ∼ N(

√
nµi, 1). Then we get

E(nX̄2
i I{nX̄2

i > λn}) =
{ 1√

2π

∫ ∞

√
λn

x2 exp(−(x−
√
nµi)2

2
)dx

+
1√
2π

∫ −
√

λn

−∞
x2 exp(−(x−

√
nµi)2

2
)dx
}
{1 + o(1)}

=
{

(η+
ni)φ(η−ni) + (η−ni)φ(η+

ni) + (nµ2
i + 1)(Φ̄(η−ni) + Φ̄(η+

ni))
}
{1 + o(1)}.

Hence the expectation of Tn is

E(Tn) =
p∑

i=1

{
(η+

ni)φ(η−ni) + (η−ni)φ(η+
ni) + (nµ2

i + 1)(Φ̄(η−ni) + Φ̄(η+
ni))
}
{1 + o(1)}. (3.7.67)

Next, we want to calculate the variance of the test statistics Tn. The variance of the test

statistics is

Var(Tn) =
p∑

i=1

Var(nX̄2
i I{nX̄2

i > λn}) +
p∑

i 6=j

Cov(nX̄2
i I{nX̄2

i > λn},nX̄2
j I{nX̄2

j > λn}).

Each term in the summation of first part in the variance of Tn can be written as

Var(nX̄2
i I{nX̄2

i > λn}) = E(n2X̄4
i I{nX̄2

i > λn})− (E(nX̄2
i I{nX̄2

i > λn}))2.
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Let us consider the first term, which can be expressed as

E(n2X̄4
i I{nX̄2

i > λn}) = λ2
nP (

√
n|X̄i| ≥

√
λn) + 4

∫ ∞

√
λn

z3P (
√
n|X̄i| ≥ z)dz.

Similar to the calculation of the expectation for Tn, we want to show that for some ξn = o(n1/6)

and ξn is higher order than
√
nµi,∫ ∞

ξn

z3P (
√
n|X̄i| ≥ z)dz = o{λ2

nP (
√
n|X̄i| ≥

√
λn)}. (3.7.68)

We have ∫ ∞

ξn

z3P (
√
n|X̄i| ≥ z)dz =

∫ ∞

ξn

z3P (
√
n(X̄i − µi) ≥ z −

√
nµi)dz

+
∫ ∞

ξn

z3P (
√
n(X̄i − µi) ≤ −z −

√
nµi)dz.

Then followed by the exponential tail assumption,∫ ∞

ξn

z3P (
√
n(X̄i − µi) ≥ z −

√
nµi)dz ≤

∫ ∞

ξn−
√

nµi

(z +
√
nµi)3 exp(−zd/M)dz

=
∫ ∞

ξn−
√

nµi

(z3 + 3z2√nµi + 3znµ2
i + n3/2µ3

i ) exp(−zd/M)dz.

It is straightforward to show that∫ ∞

ξn−
√

nµi

za exp(−zd/M)dz =
1
d

∫ ∞

(ξn−
√

nµi)d

u
a+1

d
−1 exp(−u/M)du

≤ (ξn −
√
nµi)(a+1)(1−d)Ma+1

∫ ∞

(ξn−
√

nµi)d/M
ua exp(−u)du

= M2(ξn −
√
nµi)(a+1−2d) exp(−(ξn −

√
nµi)d/M){1 + o(1)}.

From (3.7.54) and (3.7.55), we could take ξn to be (M max(λn, nµ
2
i ))

1/d such that (3.7.68)

holds. It follows that

E(n2X̄4
i I{nX̄2

i > λn}) =
{ 1√

2π

∫ ∞

√
λn

x4 exp(−(x−
√
nµi)2

2
)dx

+
1√
2π

∫ −
√

λn

−∞
x4 exp(−(x−

√
nµi)2

2
)dx
}
{1 + o(1)}.
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By integrate by parts, we have

E(n2X̄4
i I{nX̄2

i > λn}) =
{

[(η−ni)
3 + 4

√
nµi(η−ni)

2 + 3(1 + 2nµ2
i )(η

−
ni) + 4

√
nµi(2 + nµ2

i )]φ(η−ni)

+ [(η+
ni)

3 − 4
√
nµi(η+

ni)
2 + 3(1 + 2nµ2

i )(η
+
ni)− 4

√
nµi(2 + nµ2

i )]φ(η+
ni)

+ [n2µ4
i + 6nµ2

i + 3]Φ̄(η−ni) + [n2µ4
i + 6nµ2

i + 3]Φ̄(η+
ni)
}
{1 + o(1)}

=
{

[(
√
λn)3 + (

√
nµi)3 +

√
nµiλn + n

√
λnµ

2
i + 5

√
nµi + 3

√
λn]φ(η−ni)

+ [(
√
λn)3 − (

√
nµi)3 −

√
nµiλn + n

√
λnµ

2
i − 5

√
nµi + 3

√
λn]φ(η+

ni)

+ [n2µ4
i + 6nµ2

i + 3]
(
Φ̄(η−ni) + Φ̄(η+

ni)
)}
{1 + o(1)}.

Therefore

V (µi, λn) =
{

[(
√
λn)3 + (

√
nµi)3 +

√
nµiλn + n

√
λnµ

2
i + 5

√
nµi + 3

√
λn]φ(η−ni)

+ [(
√
λn)3 − (

√
nµi)3 −

√
nµiλn + n

√
λnµ

2
i − 5

√
nµi + 3

√
λn]φ(η+

ni)

+ [n2µ4
i + 6nµ2

i + 3]
(
Φ̄(η−ni) + Φ̄(η+

ni)
)

− [(η+
ni)φ(η−ni) + (η−ni)φ(η+

ni) + (nµ2
i + 1)(Φ̄(η−ni) + Φ̄(η+

ni))]
2
}
{1 + o(1)}. (3.7.69)

Recall that Yi,n = nX̄2
i and by Fubini’s Theorem, we have

E{Y1,nY2,nI(Y1,n > λn)I(Y2,n > λn)} = λ2
nP (Y1,n > λn, Y2,n > λn) (3.7.70)

+ λn

∫ ∞

λn

P (Y1,n > z1, Y2,n > λn)dz1 (3.7.71)

+ λn

∫ ∞

λn

P (Y1,n > λn, Y2,n > z2)dz2 (3.7.72)

+
∫ ∞

λn

∫ ∞

λn

P (Y1,n > z1, Y2,n > z2)dz1dz2. (3.7.73)

For the purpose of evaluation of (3.7.70), (3.7.71) (3.7.72) and (3.7.73), we need use Lemma

1 regarding the large deviation results for bivariate random vectors. Based on this lemma,

we could approximate (3.7.70) by assuming
√
n(X̄1,n, X̄2,n)′ is a bivariate normally distributed
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vector. Without loss of generality, suppose ρ > 0. Because

P (Y1,n > λn, Y2,n > λn) = P (
√
n(X̄1,n − µ1) > η−n1,

√
n(X̄2,n − µ2) > η−n2)

+ P (
√
n(X̄∗

1,n + µ1) > η+
n1,
√
n(X̄2,n − µ2) > η−n2)

+ P (
√
n(X̄1,n − µ1) > η−n1,

√
n(X̄∗

2,n + µ2) > η+
n2)

+ P (
√
n(X̄∗

1,n + µ1) > η+
n1,
√
n(X̄∗

2,n + µ2) > η+
n2)

and we observe that

P (
√
n(X̄1,n − µ1) > η−n1,

√
n(X̄2,n − µ2) > η−n2) ≥ P (

√
n(X̄1,n − µ1) > η+

n1,
√
n(X̄2,n − µ2) > η−n2)

≥ Φ̄(η+
n1)Φ̄(

−ρη+
n1 + η−n2√
1− ρ2

) ≥ Φ̄(η+
n1)Φ̄(

ρη+
n1 + η−n2√
1− ρ2

)

≥ P (
√
n(X̄∗

1,n + µ1) > η+
n1,
√
n(X̄2,n − µ2) > η−n2),

it is easy to see that

P (Y1,n > λn, Y2,n > λn) ∼ P (
√
n(X̄1,n − µ1) > η−n1,

√
n(X̄2,n − µ2) > η−n2).

Assume η−n1 > 0 or η−n2 > 0. Without loss of generality, let η−n2 > 0. It can be seen that

P (Y1,n > λn, Y2,n > λn) ≥ Φ̄(η−n2)Φ̄(
−ρη−n2 + η−n1√

1− ρ2
).

When η−n1 > 0 such that η−n1 − ρη−n2 > 0,

P (Y1,n > λn, Y2,n > λn) ≥
√

1− ρ2

η−n2(η
−
n1 − ρη−n2)

exp
{
− η−

2

n2 + η−
2

n2 − 2ρη−n2η
−
n1

2(1− ρ2)

}
∼ C1λ

−1
n exp{−C2λn}.

Otherwise, P (Y1,n > λn, Y2,n > λn) ≥ Φ̄(η−n2)
(
1− Φ̄(ρη−n2−η−n1√

1−ρ2
)
)
∼ C3λ

−1/2
n exp{−C4

√
λn}.

Let ξn = o(n1/6) such that ξn is higher order than
√
nµi

λn

∫ ∞

ξn

P (Y1,n > z1, Y2,n > λn)dz1

≤2λn

∫ ∞

ξn

z1P (
√
n|X̄1,n − µ1| > z1 −

√
nµ1,

√
n|X̄2,n − µ2| > η−n2)dz1

≤2λn

∫ ∞

ξn

z1P (
√
n|X̄1,n − µ1| > z1 −

√
nµ1)dz1.
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Thus, like (3.7.63), we can find ξn such that λn

∫∞
ξn
P (Y1,n > z1, Y2,n > λn)dz1 is a higher

order of λ2
nP (Y1,n > λn, Y2,n > λn). If η−n1 ≤ 0 and η−n2 ≤ 0, then it is easy to see that

λn

∫∞
ξn
P (Y1,n > z1, Y2,n > λn)dz1 is a higher order of λ2

nP (Y1,n > λn, Y2,n > λn). Similarly,

λn

∫∞
ξn
P (Y1,n > λn, Y2,n > z2)dz2 are smaller order of λ2

nP (Y1,n > λn, Y2,n > λn). We may also

show that ∫ ∞

ξn

∫ ∞

ξn

P (Y1,n > z1, Y2,n > z2)dz1dz2

is a smaller order than λ2
nP (Y1,n > λn, Y2,n > λn). So we can approximate E{Y1,nY2,nI(Y1,n >

λn)I(Y2,n > λn)} by assuming normal assumption Xi = (Xi1, Xi2)′ ∼ N(
√
n(µ1, µ2)′,Σ).

Let X∗ = −X and Y ∗ = −Y. Then

E{Y1,nY2,nI(Y1,n > λn)I(Y2,n > λn)} = E{Y1,nY2,nI(
√
nX̄1,n >

√
λn)I(

√
nX̄2,n >

√
λn)}

+ E{Y1,nY
∗
2,nI(

√
nX̄1,n >

√
λn)I(

√
nX̄∗

2,n >
√
λn)}

+ E{Y ∗
1,nY2,nI(

√
nX̄∗

1,n >
√
λn)I(

√
nX̄2,n >

√
λn)}

+ E{Y ∗
1,nY

∗
2,nI(

√
nX̄∗

1,n >
√
λn)I(

√
nX̄∗

2,n >
√
λn)}.

Applying the formula given in Lemma 2, we can approximate above expectations by (3.7.24).

It follows that

γ1(µ1, µ2, λn) : = Cov{Y1,nI(Y1,n > λn), Y2,nI(Y2,n > λn)}

= E{Y1,nY2,nI(Y1,n > λn)I(Y2,n > λn)}

−
{

(η+
n1)φ(η−n1) + (η−n1)φ(η+

n1) + (nµ2
1 + 1)(Φ̄(η−n1) + Φ̄(η+

n1))
}

×
{

(η+
n2)φ(η−n2) + (η−n2)φ(η+

n2) + (nµ2
2 + 1)(Φ̄(η−n2) + Φ̄(η+

n2))
}
. (3.7.74)

So the variance of Tn is Var(Tn) =
∑p

i=1 V(µi, λn) + 2
∑p

i=1

∑p
j=i+1 γj−i(

√
nµi,

√
nµj, λn).

This completes the proof of Theorem 1. 2

The following lemma is from Kim (1994), which will be useful for the proofs of Theorem 2

and 3.

Lemma 3 Suppose {Zi}p
i=1 is a sequence of dependent zero mean random variables satisfying

M2r+δ = supi ‖Zi‖2r+δ <∞ for some δ > 0 and r ≥ 1. If
∞∑
i=1

ir−1α(i)δ/(2r+δ) <∞,
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then

E
( p∑

i=1

Zi

)2r
≤ Cpr

[
M2r

2r +M2r
2r+δ

∞∑
i=1

ir−1α(i)δ/(2r+δ)
]

(3.7.75)

where C is a finite constant only depending on r.

Proof of Theorem 2 (i) Let k′ →∞, k′/k → 0 and k/p→ 0 as n→∞. Define b = k + k′.

Set integer r such that rb ≤ p ≤ (r + 1)b.

T̃i,n = Zi,n(λn)− µ
(i)
Tn,0.

We will use Bernstein’s blocking method to show the central limit theorem. For this purpose,

define large blocks

ζ̃j,n = σ−1
0 (p;λn)

k∑
i=1

T̃(j−1)b+i,n

and small blocks

ζ̃ ′j,n = σ−1
0 (p;λn)

k′∑
i=1

T̃(j−1)b+k+i,n

for j = 1, · · · , r. Also the residual block δn = σ−1
0 (p;λn)

∑p
i=rb+1 T̃i,n. Then

p−1/2Sn = p−1/2
r∑

j=1

ζ̃j,n + p−1/2
r∑

j=1

ζ̃ ′j,n + p−1/2δn := Sn,1 + Sn,2 + Sn,3.

It follows that E(Sn,1) = E(Sn,2) = E(Sn,3) = 0.

By the Davydov’s inequality (Bosq, 1998), for some q > 2

|ρk| ≤
2q
q − 2

(2αX(k))1−2/q‖Xij‖2q = Cα
1−2/q
X (k)

and from (3.7.37), |γk(0, 0, λn)| = C|ρk|Lpp
− 2s

1+|ρk| ≤ Cα
1−2/q
X (k)p−s. Since

∑∞
k=1 kα

δ/(4+δ)
X (k) <

∞, taking q > 2 + δ/2, then
∑∞

k=1 α
1−2/q
X (k) <

∑∞
k=1 α

δ/(4+δ)
X (k) < ∞. It follows that∑∞

k=1 |γk(0, 0, λn)| = O(p−s).

Because for j ≥ 1,

∣∣Cov(ζ̃ ′1,n, ζ̃
′
j+1,n)

∣∣ = ∣∣∣ k′∑
i=1

k′∑
i′=1

Cov(Zk+i,n(λn), Zjb+k+i′,n(λn))
∣∣∣

=
∣∣∣ k′∑

i=1

k′∑
i′=1

γjb+(i−i′)(0, 0, λn)
∣∣∣ ≤ k′∑

i=1

∣∣γjb+(i−k′)(0, 0, λn)
∣∣,
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we have

Var(Sn,2) = p−1σ−2
0 (p;λn)

{
rk′σ2

0(k
′;λn) + 2

r−1∑
j=1

(r − j)Cov(ζ̃ ′1,n, ζ̃
′
j+1,n)

}

≤ p−1σ−2
0 (p;λn)

{
rk′σ2

0(k
′;λn) + 2

r−1∑
j=1

(r − j)
k′∑

i=1

|γjb+(i−k′)(0, 0, λn)|
}

≤ p−1σ−2
0 (p;λn)

{
rk′σ2

0(k
′;λn) + 2r

∞∑
k=1

|γk(0, 0, λn)|
}

= O(rk′/p) → 0,

where we use σ2
0(p;λn) = σ2

0(k
′;λn) = O(Lpp

−s) and
∑∞

k=1 |γk(0, 0, λn)| = O(p−s). Similarly,

we have Var(Sn,3) → 0. Hence,

p−1/2Sn = p−1/2
r∑

j=1

ζ̃j,n + op(1). (3.7.76)

By Bradley’s lemma, there exist independent random variables Wj,n such that Wj,n and ζ̃j,n

are identically distributed and for any ε > 0,

P (|ζ̃j,n −Wj,n| ≤ εp1/2/r) ≤ 11(εp1/2/r)−2/5(E(ζ̃2))1/5α
4/5
Z (k′) ≤ Cε−2/5r1/5α

4/5
Z (k′).

Let ∆n = Sn,1 − p−1/2
∑r

j=1Wj,n. Then

P (|∆n| > ε) ≤
r∑

j=1

P (|ζ̃j,n −Wj,n| ≤ εp1/2/r) ≤ C1ε
−2/5r6/5α

4/5
Z (k′).

Choosing r = pa for a ∈ (0, 1), b = p1−a and k′ = pc for c ∈ (0, 1− a). Because

p6a/5α
4/5
Z (pc) ≤ p6a/5n4/5α

4/5
X (pc) → 0, as p→∞,

then ∆n = op(1). It follows that

p−1/2Sn = p−1/2
r∑

j=1

Wj,n + op(1)

= ( rk
p )1/2 σ0(k;λn)

σ0(p;λn) (rk)
−1/2

∑r
j=1W

∗
j,n + op(1),

where W ∗
j,n = σ0(p;λn)

σ0(k;λn)Wj,n and W ∗
j,n are independent random variables with mean 0 and vari-

ance k. We also know that ( rk
p )1/2 σ0(k;λn)

σ0(p;λn) → 1. Therefore, we only need to show

(rk)−1/2
r∑

j=1

W ∗
j,n

d→ N(0, 1).
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It suffices to show the Lyapounov’s condition, which is

lim
r→∞

r−2
r∑

j=1

E|k−1/2W ∗
j,n|4 = 0. (3.7.77)

By Lemma 3, we can get that

E|k−1/2W ∗
j,n|4 = k−2σ−4

0 (k;λn)E

{
k∑

i=1

(Zi,n(λn)− µ
(i)
Tn,0)

}4

≤ Cσ−4
0 (k;λn)

[
M4

4 +M4
4+δ

∞∑
i=1

iαZ(i)δ/(4+δ)

]
.

where M4
4 = E(Zi,n(λn) − µ

(i)
Tn,0)

4. From (3.3.14), we know that σ2
0(k;λn) ∼ Lpp

−s. We can

also show that M4
4 = O{(log p)7/2p−s} and M4

4+δ = O{(log p)
4δ+14
4+δ p−

4s
4+δ }. Because

∞∑
i=1

iαZ(i)δ/(4+δ) ≤ nδ/(4+δ)
∞∑
i=1

iαX(i)δ/(4+δ) ≤ Cnδ/(4+δ),

we have E|k−1/2W ∗
j,n|4 ≤ Lpn

δ/(4+δ)p(4+2δ)s/(4+δ). If we take r = pa with a > (4 + 2δ)s/(4 + δ)

such that nδ/(4+δ)p(4+2δ)s/(4+δ)−a → 0, then (3.7.77) holds. Hence, the central limit theorem

holds for p−1/2Sn,1 and by Slutsky’s theorem, it is also hold for p−1/2Sn. The proof of (i) is

completed.

(ii) The proof of (ii) is similar to the proof of (i). We can also define ζ̃j,n, ζ̃ ′j,n and δn by

replacing σ0(p;λn) with σ1(p;λn), replacing µ(i)
Tn,0 with µ

(i)
Tn,1 in the proof of (i). Similarly, we

can define Sn,1, Sn,2 and Sn,3. Notice that, by Davydov’s inequality, for any µ1 and µk+1 satisfy

the conditions in Theorem 1,

|γk(µ1, µk+1, λn)| ≤ CLp|ρk| ≤ CLpα
1−2/q
X (k). (3.7.78)

Hence, if
∑∞

k=1 kα
δ/(4+δ)
X (k) < ∞, then it is similar as part (i) to show that p−1/2Sn,2 and

p−1/2Sn,3 are op(1). Then by applying the Bradley’s lemma, there exist independent random

variables W̃j,n such that

W̃j,n
d= ζ̃j,n := σ−1

1 (p;λn)
k∑

i=1

{Zi,n(λn)− µ
(i)
Tn,1}

and

p−1/2Sn = p−1/2
r∑

j=1

W̃j,n + op(1).
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We are left to show the Lyapounov’s condition:

{ r∑
j=1

E(W̃ 2
j,n)
}−2

r∑
j=1

E(W̃ 4
j,n) → 0. (3.7.79)

Note that by condition (3.3.13),

∣∣∣1
p

r∑
j=1

E(W̃ 2
j,n)− 1

∣∣∣ = ∣∣∣1
p

r∑
j=1

E(ζ̃2
j,n)− 1

∣∣∣ ≤ 1
p

r∑
j=1

|E(ζ̃2
j,n)− k|+ p−1|rk − p|

≤ rkHk/p+ p−1|rk − p| → 0.

Now we will use Lemma 3 to show that

1
p2

r∑
j=1

E(W̃ 4
j,n) =

(rk)2

p2

1
r2

r∑
j=1

E{(k−1/2W̃j,n)4} → 0. (3.7.80)

Similar to part (i),

E|k−1/2W̃j,n|4 = k−2σ−4
1 (k;λn)E

{
k∑

i=1

(Zi,n(λn)− µ
(i)
Tn,1)

}4

≤ Cσ−4
1 (k;λn)

[
M4

4 +M4
4+δ

∞∑
i=1

iαZ(i)δ/(4+δ)

]
.

where M4
4 = maxiE(Zi,n(λn)− µ

(i)
Tn,1)

4 and M4
4+δ = maxi{E(Zi,n(λn)− µ

(i)
Tn,1)

4+δ}
4

4+δ .

Suppose the mean of the i-th component of X is
√

2ri log p/n. Similar to Theorem 1, we

can approximate the moments by assuming normality assumption. It follows that

E{Zi,n(λn)− µ
(i)
Tn,1}

d =
2d∑
i=0

(
2d
i

)
(
√

2ri log p)i 1√
2π

∫
2(
√

s−√ri)
√

log p
y2d−i exp(−y2/2)dy.

(3.7.81)

When i is an even number,∫
2(
√

s−√ri) log p
y2d−i exp(−y2/2)dy = {2(

√
s−

√
ri)
√

log p}2d−i−1φ(2(
√
s−

√
ri)
√

log p){1 + o(1)}

+ Φ(2(
√
s−

√
ri)
√

log p).

When i is an odd number,∫
2(
√

s−√ri) log p
y2d−i exp(−y2/2)dy = {2(

√
s−

√
ri)
√

log p}2d−i−1φ(2(
√
s−

√
ri)
√

log p){1 + o(1)}.
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Therefore, E{Zi,n(λn) − µ
(i)
Tn,1}d = L

(1)
p I(ri > s) + L

(2)
p p−(

√
s−√ri)

2
I(ri < s). Then it can be

seen that M4
4 = L

(1)
p I(maxi ri > s) + L

(2)
p p−(

√
s−maxi

√
ri)

2
I(maxi ri < s). Suppose σ1(p;λn) ∼

Lpp
−h1 . If maxi ri > s, then E|k−1/2W̃j,n|4 ≤ Lpn

δ/(4+δ)p2h1 . Now if we take r = pa with

a > 2h1 such that nδ/(4+δ)p2h1−a → 0, then the Lyapounov’s condition holds.

If maxi ri < s, then E|k−1/2W̃j,n|4 ≤ Lpn
δ/(4+δ)p2h1− 4s∗

4+δ where s∗ = (
√
s −maxi

√
ri)2. In

this case, if we take a > 2h1− 4s∗

4+δ such that nδ/(4+δ)p2h1− 4s∗
4+δ

−a → 0, the Lyapounov’s condition

holds. 2

Proof of Theorem 3 Let λn = (λn1, · · · , λnd)′ = 2 log(p)(s1, · · · , sd)′. We want to show

that (TS(λn1), · · · , TS(λnd)) are multivariate normally distributed. Applying the Cramér-wold

device, we only need to show that for any ck such that
∑

k c
2
k = 1, TS∗ :=

∑d
k=1 ckTS(λnk) is

normally distributed. Let

TS∗i,n =
d∑

k=1

ck
Zi,n(λnk)− µ

(i)
Tn,0(λnk)

σ0(p;λnk)
.

By the definition of TS(λnk), we have TS∗ = 1√
p

∑p
i=1 TS

∗
i,n. Let k∗

′ → ∞, k∗
′
/k∗ → 0 and

k∗/p → 0 as n → ∞. As in the proof of Theorem 2, define ζ̃∗j,n =
∑k∗

i=1 TS
∗
(j−1)b+i,n, ζ̃

∗′
j,n =∑k∗

′

i=1 TS
∗
(j−1)b+i,n and δ∗n to be the large, small and residual blocks, and their corresponding

partial sums Sn,1 = p−1/2
∑r

j=1 ζ̃
∗
j,n, Sn,2 = p−1/2

∑r
j=1 ζ̃

∗′
j,n and Sn,3.

Using the expression (3.4.18), it can be shown that, if sk > sk′ ,

γ̃k(
√
λnk,

√
λnk′)−GTn(λnk)GTn(λnk′)

σ0(p;λnk)σ0(p;λnk′)
= Lpρjp

−
sk−sk′

2 I(sk′ ≤ ρ2
jsk)

+ Lpρjp
−

ρ2
j

1−ρ2
j

(
√

sk′−
√

sk)2

I(sk′ > ρ2
jsk).

and 2[(
√
λ∗n)3 + 3

√
λ∗n]φ(

√
λ∗n) = Lpp

−
sk−sk′

2 σ0(p;λnk)σ0(p;λnk′) where λ∗n = max(λnk, λnk′).

Thus, if
∑

k |ρk| <∞ and λnk 6= λnk′ , Cov(TS(λnk), TS(λnk′)) = o(1). It follows that Var(TS∗) =

(
∑d

k=1 c
2
k){1 + o(1)} = 1 + o(1). We can also show that Var(ζ̃∗

′
j,n) = k∗

′{1 + o(1)} and

Cov(TS∗1,n, TS∗j+1,n) =
d∑

k=1

d∑
k′=1

ckck′
{
Lpρjp

sk′−sk
2 I(sk′ ≤ ρ2

jsk)

+ Lpρjp
−

ρ2
j

1−ρ2
j

(
√

sk′−
√

sk)2

I(sk′ > ρ2
jsk)

}
.
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By the same arguments in the proof of Theorem 2, we obtain

Var(Sn,2) ≤ p−1{rVar(ζ̃∗
′

j,n) + 2r
∞∑

k=1

|Cov(TS∗1,n, TS∗j+1,n)|} = O(rk∗
′
/p) → 0.

Similarly, we could show that Var(Sn,3) = o(1). Therefore, TS∗ = Sn,1 + op(1). Following the

proof of Theorem 2, we only need to verify the Lyapounov’s condition:

lim
r→∞

r−2
r∑

j=1

E|k∗−
1
2 ζ̃∗j,n|4 = 0.

Again, by Lemma 3, E|k∗ζ̃∗j,n|4 ≤ C[M4
4 +M4

4+δ

∑∞
i=1 iαZ(i)δ/(4+δ)] where

M4
4 = E(TS∗i,n)4 ≤ d3

d∑
k=1

E

ckZi,n(λnk)− µ
(i)
Tn,0(λnk)

σ0(p;λnk)

4

= Lpd
3

d∑
k=1

c4kp
sk = O(Lpp

maxk sk).

and similarly, we have M4
4+δ = O(Lpp

(4+2δ)maxk sk/(4+δ)). It follows that

E|k∗−
1
2 ζ̃∗j,n|4 ≤ Lpn

δ/(4+δ)p(4+2δ)maxk sk/(4+δ).

If we take r = pa with a > (4+2δ) maxk sk/(4+δ) such that nδ/(4+δ)p(4+2δ)maxk sk/(4+δ)−a → 0,

then the Lyapounov’s condition holds. If all TS(λnk) are normally distributed, by Theorem

2(i), the above condition holds. Thus, TS∗ is normally distributed with mean 0 and variance

1. Hence, the (TS(λn1), · · · , TS(λnd)) is normally distributed with mean 0 and covariance

(Ω(λns, λnt))st. 2
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CHAPTER 4. ANOVA for Longitudinal Data with Missing Values

A paper published in the Annals of Statistics, 38, 3630-3659.

Song Xi Chen and Pingshou Zhong
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Abstract

We carry out ANOVA comparisons of multiple treatments for longitudinal studies with

missing values. The treatment effects are modelled semiparametrically via a partially linear

regression which is flexible in quantifying the time effects of treatments. The empirical likeli-

hood is employed to formulate model-robust nonparametric ANOVA tests for treatment effects

with respect to covariates, the nonparametric time-effect functions and interactions between

covariates and time. The proposed tests can be readily modified for a variety of data and model

combinations, that encompass parametric, semiparametric and nonparametric regression mod-

els; cross-sectional and longitudinal data, and with or without missing values.

KEY WORDS: Analysis of Variance; Empirical likelihood; Kernel smoothing; Missing at ran-

dom; Semiparametric model; Treatment effects.

4.1 Introduction

Randomized clinical trials and observational studies are often used to evaluate treatment

effects. While the treatment versus control studies are popular, multi-treatment comparisons

beyond two samples are commonly practised in clinical trails and observational studies. In
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addition to evaluate overall treatment effects, investigators are also interested in intra-individual

changes over time by collecting repeated measurements on each individual over time. Although

most longitudinal studies are desired to have all subjects measured at the same set of time

points, such “balanced” data may not be available in practice due to missing values. Missing

values arise when scheduled measurements are not made, which make the data “unbalanced”.

There is a good body of literature on parametric, nonparametric and semiparametric estimation

for longitudinal data with or without missing values. This includes Liang and Zeger (1986),

Laird and Ware (1982), Wu (1998, 2000), Fitzmaurice et al. (2004) for methods developed

for longitudinal data without missing values; and Little and Rubin (2002), Little (1995), Laird

(2004), Robins, Rotnitzky and Zhao (1995) for missing values.

The aim of this chapter is to develop ANOVA tests for multi-treatment comparisons in

longitudinal studies with or without missing values. Suppose that at time t, corresponding to

k treatments there are k mutually independent samples:

{(Y1i(t), Xτ
1i(t))}

n1
i=1, · · · , {(Yki(t), Xτ

ki(t))}
nk
i=1

where the response variable Yji(t) and the covariate Xji(t) are supposed to be measured at

time points t = tji1, . . . , tjiTj . Here Tj is the fixed number of scheduled observations for the

j-th treatment. However, {Yji(t), Xτ
ji(t)} may not be observed at some times, resulting in

missing values in either the response Yji(t) or the covariates Xji(t).

We consider a semiparametric regression model for the longitudinal data

Yji(t) = Xτ
ji(t)βj0 +M τ (Xji(t), t)γj0 + gj0(t) + εji(t), j = 1, 2, · · · , k (4.1.1)

where M(Xji(t), t) are known functions of Xji(t) and time t representing interactions between

the covariates and the time, βj0 and γj0 are p- and q-dimensional parameters respectively,

gj0(t) are unknown smooth functions representing the time effect, and {εji(t)} are residual

time series. Such a semiparametric model may be viewed as an extended partially linear

model. The partially linear model has been used for longitudinal data analysis; see Zeger and

Diggle (1994), Zhang, Lin, Raz and Sowers (1998), Lin and Ying (2001), Wang, Carroll and

Lin (2005). Wu et al. (1998) and Wu and Chiang (2000) proposed estimation and confidence
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regions for a semiparametric varying coefficient regression model. Despite a body of works on

estimation for longitudinal data, analysis of variance for longitudinal data have attracted much

less attention. A few exceptions include Forcina (1992) who proposed an ANOVA test in a

fully parametric setting; and Scheike and Zhang (1998) who considered a two sample test in a

fully nonparametric setting.

In this chapter, we propose ANOVA tests for differences among the βj0s and the baseline

time functions gj0s respectively in the presence of the interactions. The ANOVA statistics are

formulated based on the empirical likelihood (Owen, 1988 and 2001), which can be viewed as a

nonparametric counterpart of the conventional parametric likelihood. Despite its not requiring

a fully parametric model, the empirical likelihood enjoys two key properties of a conventional

likelihood, the Wilks’ theorem (Owen 1990, Qin and Lawless 1994, Fan and Zhang 2004) and

Bartlett correction (DiCiccio, Hall and Romano 1991; Chen and Cui 2006); see Chen and Van

Keilegom (2009) for an overview on the empirical likelihood for regression. This resemblance to

the parametric likelihood ratio motivates us to consider using empirical likelihood to formulate

ANOVA test for longitudinal data in nonparametric situations. This will introduce a much

needed model-robustness in the ANOVA testing.

Empirical likelihood has been used in studies for either missing or longitudinal data. Wang

et al. (2002, 2004) considered an empirical likelihood inference with a kernel regression impu-

tation for missing responses. Liang and Qin (2008) treated estimation for the partially linear

model with missing covariates. For longitudinal data, Xue and Zhu (2007a, 2007b) proposed

a bias correction method to make the empirical likelihood statistic asymptotically pivotal in a

one sample partially linear model; see also You, Chen and Zhou (2007) and Huang, Qin and

Follman (2008).

In this chapter, we propose three empirical likelihood based ANOVA tests for the equivalence

of the treatment effects with respect to (i) the covariate Xji; (ii) the interactions M(Xji(t), t)

and (iii) the time effect functions gj0(·)s, by formulating empirical likelihood ratio test statistics.

It is shown that for the proposed ANOVA tests for the covariates effects and the interactions,

the empirical likelihood ratio statistics are asymptotically chi-squared distributed, which resem-

bles the conventional ANOVA statistics based on parametric likelihood ratios. This is achieved
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without parametric model assumptions for the residuals and in the presence of the nonparamet-

ric time effect functions and missing values. Hence the empirical likelihood ANOVA tests have

the needed model-robustness. Another attraction of the proposed ANOVA tests is that they

encompass a set of ANOVA tests for a variety of data and model combinations. Specifically,

they imply specific ANOVA tests for both cross-sectional and longitudinal data; for parametric,

semiparametric and nonparametric regression models; and with or without missing values.

The chapter is organized as below. In Section 4.2, we describe the model and the missing

value mechanism. Section 4.3 outlines the ANOVA test for comparing treatment effects due to

the covariates; whereas the tests regarding interaction are proposed in Section 4.4. Section 4.5

considers ANOVA test for the nonparametric time effects. The bootstrap calibration to the

ANOVA test on the nonparametric part is outlined in Section 4.6. Section 4.7 reports simulation

results. We applied the proposed ANOVA tests in Section 4.8 to analyze an HIV-CD4 data

set. Technical assumptions and all the technical proofs to the theorems are reported in the

Appendix.

4.2 Models, Hypotheses and Missing Values

For the i-th individual of the j-th treatment, the measurements taken at time tjim follow a

semiparametric model

Yji(tjim) = Xτ
ji(tjim)βj0 +M τ (Xji(tjim), tjim)γj0 + gj0(tjim) + εji(tjim), (4.2.2)

for j = 1, · · · , k, i = 1, · · · , nj , m = 1, . . . , Tj . Here βj0 and γj0 are unknown p− and q−

dimensional parameters and gj0(t) are unknown functions representing the time effects of the

treatments. The time points {tjim}
Tj

m=1 are known design points. For the ease of notation,

we write (Yjim, X
τ
jim,M

τ
jim) to denote (Yji(tjim), Xτ

ji(tjim),M τ (Xji(tjim), tjim)). Also, we will

use Xτ
jim = (Xτ

jim,M
τ
jim) and ξτ

j = (βτ
j , γ

τ
j ). For each individual, the residuals {εji(t)} satisfy

E{εji(t)|Xji(t)} = 0, Var{εji(t)|Xji(t)} = σ2
j (t) and

Cov{εji(t), εji(s)|Xji(t), Xji(s)} = ρj(s, t)σj(t)σj(s)

where ρj(s, t) is the conditional correlation coefficient between two residuals at two different

times. And the residual time series {εji(t)} from different subjects and different treatments are
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independent. Without loss of generality, we assume t, s ∈ [0, 1]. For the purpose of identifying

βj0, γj0 and gj0(t), we assume

(βj0, γj0, gj0) = arg min
(βj ,γj ,gj)

1
njTj

nj∑
i=1

Tj∑
m=1

E{Yjim −Xτ
jimβj −M τ

jimγj − gj(tjim)}2.

We also require that 1
njTj

∑nj

i=1

∑Tj

m=1E(X̃jimX̃τ
jim) > 0, where X̃jim = Xjim − E(Xjim|tjim).

This condition also rules out M(Xji(t), t) being a pure function of t, and hence it has to be

genuine interaction. For the same reason, the intercept in model (4.2.2) is absorbed into the

nonparametric part gj0(t).

As commonly exercised in the partially linear model (Speckman 1988; Linton 1995), there

is a secondary model for the covariate Xjim:

Xjim = hj(tjim) + ujim, j = 1, 2, . . . , k, i = 1, . . . , nj , m = 1, . . . , Tj , (4.2.3)

where hj(·)s are p-dimensional smooth functions with continuous second derivatives, the resid-

ual ujim = (u1
jim, . . . , u

p
jim)τ satisfy E(ujim) = 0 and ujl and ujk are independent for l 6= k,

where ujl = (ujl1, · · · , ujlTj
). By the identification condition given above, the covariance matrix

of ujim is assumed to be finite and positive definite.

We are interested in testing three ANOVA hypotheses. The first one is on the treatment

effects with respect to the covariates:

H0a : β10 = β20 = . . . = βk0 vs H1a : βi0 6= βj0 for some i 6= j.

The second one is regarding the time effect functions:

H0b : g10(·) = . . . = gk0(·) vs H1b : gi0(·) 6= gj0(·) for some i 6= j.

The third one is on the existence of the interaction H0c : γj0 = 0 and H1c : γj0 6= 0. And the

last one is the ANOVA test for

H0d : γ10 = γ20 = · · · = γk0 vs H1d : γi0 6= γj0 for some i 6= j.

Let Xji = {Xji0, . . . , XjiTj} and Yji = {Yji0, . . . , YjiTj} be the complete time series of the

covariates and responses of the (j, i)-th subject (the i-th subject in the j-th treatment), and
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↼
Y jit,d= {Yji(t−d), . . . , Yji(t−1)} and

↼
Xjit,d= {Xji(t−d), . . . , Xji(t−1)} be the past d observations

at time t for a positive integer d ≤ minj{Tj}. For t < d, we set d = t− 1.

Define the missing value indicator δjit = 1 if (Xτ
jit, Yjit) is observed and δjit = 0 if (Xτ

jit, Yjit)

is missing. Here, we assume Xjit and Yjit are either both observed or both missing. This

simultaneous missingness of Xjit and Yjit is for the ease of mathematical exposition. We also

assume that δji0 = 1, namely the first visit of each subject is always made.

Monotone missingness is a common assumption in the analysis of longitudinal data (Robins

et al., 1995). It assumes that if δji(t−1) = 0 then δjit = 0. However, in practice after missing

some scheduled appointments people may re-join the study. This kind of casual drop-out

appears quite often in empirical studies. To allow more data being included in the analysis,

we relax the monotone missingness to allow segments of consecutive d visits being used. Let

δjit,d =
∏d

l=1 δji(t−l). We assume the missingness of (Xτ
jit, Yjit) is missing at random (MAR)

(Rubin, 1976) given its immediate past d complete observations, namely

P (δjit = 1|δjit,d = 1, Xji, Yji) = P (δjit = 1|δjit,d = 1,
↼
Xjit,d,

↼
Y jit,d)

= pj(
↼
Xjit,d,

↼
Y jit,d; θj0). (4.2.4)

Here the missing propensity pj is known up to a parameter θj0. To allow derivation of a binary

likelihood function, we need to set δjit = 0 if δjit,d = 0 when there is some drop-outs among

the past d visits, which is only temporarily if δjit = 1. This set-up ensures

P (δjit = 0|δjit,d = 0,
↼
Xjit,d,

↼
Y jit,d) = 1. (4.2.5)

Now the conditional binary likelihood for {δjit}
Tj

t=1 given Xji and Yji is

P (δji0, · · · , δjiTj |Xji, Yji) =
Tj∏

m=1

P (δjim|δji(m−1), · · · , δji0, Xji, Yji)

=
Tj∏

m=1

P (δjim|δjim,d = 1,
↼
Xjim,d,

↼
Y jim,d)

=
Tj∏

m=1

[
pj(

↼
Xjim,d,

↼
Y jim,d; θj)δjim{1− pj(

↼
Xjim,d,

↼
Y jim,d; θj)}(1−δjim)

]δjim,d .



130

In the second equation above we use both the MAR in (4.2.4) and (4.2.5). Hence, the parameters

θj0 can be estimated by maximizing the binary likelihood

LBj (θj) =
nj∏
i=1

Tj∏
t=1

[
pj(

↼
Xjit,d,

↼
Y jit,d; θj)δjit{1− pj(

↼
Xjit,d,

↼
Y jit,d; θj)}(1−δjit)

]δjit,d . (4.2.6)

Under some regular conditions, the binary maximum likelihood estimator θ̂j is
√
n-consistent

estimator of θj0; see Chen et al. (2008) for results on a related situation. Some guidelines on

how to choose models for the missing propensity are given in Section 4.8 in the context of the

empirical study. The robustness of the ANOVA tests with respect to the missing propensity

model are discussed in Sections 4.3 and 4.4.

4.3 ANOVA Test for Covariate Effects

We consider testing for H0a : β10 = β20 = . . . = βk0 with respect to the covariates.

Let πjim(θj) =
∏m

l=m−d pj(
↼
Xjil,d,

↼
Y jil,d; θj) be the overall missing propensity for the (j, i)-th

subject up to time tjim. To remove the nonparametric part in (4.2.2), we first estimate the

nonparametric function gj0(t). If βj0 and γj0 were known, gj0(t) would be estimated by

ĝj(t;βj0) =
nj∑
i=1

Tj∑
m=1

wjim,h(t)(Yjim −Xτ
jimβj0 −M τ

jimγj0), (4.3.7)

where

wjim,hj
(t) =

(δjim/πjim(θ̂j))Khj
(tjim − t)∑nj

s=1

∑Tj

l=1(δjsl/πjsl(θ̂j))Khj
(tjsl − t)

(4.3.8)

is a kernel weight that has been inversely weighted by the propensity πjim(θ̂j) to correct for

selection bias due to the missing values. In (4.3.8), K is a univariate kernel function which is

a symmetric probability density, Khj
(t) = K(t/hj)/hj and hj is a smoothing bandwidth. The

conventional kernel estimation of gj0(t) without weighting by πjsl(θ̂j) may be inconsistent if

the missingness depends on the responses Yjil, which can be the case for missing covariates.

Let Ajim denote any of Xjim, Yjim and Mjim and define

Ãjim = Ajim −
nj∑

i1=1

Tj∑
m1=1

wji1m1,hj
(tjim)Aji1m1 (4.3.9)
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to be the centering of Ajim by the kernel conditional mean estimate, as is commonly exercised

in the partially linear regression (Härdle, Liang and Gao, 2000). An estimating function for

the (j, i)-th subject is

Zji(βj) =
Tj∑

m=1

δjim

πjim(θ̂j)
X̃jim(Ỹjim − X̃τ

jimβj − M̃ τ
jimγ̃j),

where γ̃j is the solution of

nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j)
M̃jim(Ỹjim − X̃τ

jimβj − M̃ τ
jimγ̃j) = 0

at given βj . Note that E{Zji(βj0)} = o(1). Although it is not exactly zero, Zji(βj0) can still

be used as an approximate zero mean estimating function to formulate an empirical likelihood

for βj as follows.

Let {pji}
nj

i=1 be non-negative weights allocated to {(Xτ
ji, Yji)}

nj

i=1. The empirical likelihood

for βj is

Lnj (βj) = max{
nj∏
i=1

pji}, (4.3.10)

subject to
∑nj

i=1 pji = 1 and
∑nj

i=1 pjiZji(βj) = 0.

By introducing a Lagrange multiplier λj to solve the above optimization problem and fol-

lowing the standard derivation in empirical likelihood (Owen, 1990), it can be shown that

Lnj (βj) =
nj∏
i=1

{
1
nj

1
1 + λτ

jZji(βj)

}
, (4.3.11)

where λj satisfies
nj∑
i=1

Zji(βj)
1 + λτ

jZji(βj)
= 0. (4.3.12)

The maximum of Lnj (βj) is
∏nj

i=1
1
nj

, achieved at βj = β̂j and λj = 0, where β̂j solves∑nj

i=1 Zji(β̂j) = 0.

Let n =
∑k

i=1 nj , nj/n→ ρj for some non-zero ρj as n→∞ such that
∑k

i=1 ρj = 1. As the

k samples are independent, the joint empirical likelihood for (β1, β2, . . . , βk) is

Ln(β1, β2, . . . , βk) =
k∏

j=1

Lnj (βj).
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The log likelihood ratio statistic for H0a is

`n : = −2 max
β

logLn(β, β, . . . , β) +
k∑

j=1

nj log nj

= 2 min
β

k∑
j=1

nj∑
i=1

log{1 + λτ
jZji(β)}. (4.3.13)

Using a Taylor expansion and the Lagrange multiplier to carry out the minimization in

(4.3.13), the optimal solution to β is k∑
j=1

ΩxjB
−1
j Ωxj

−1 k∑
j=1

ΩxjB
−1
j Ωxjyj

+ op(1), (4.3.14)

where Bj = limnj→∞ (njTj)
−1∑nj

i=1E{Zji(βj0)Zji(βj0)τ},

Ωxj =
1√
njTj

nj∑
i=1

Tj∑
m=1

E

{
δjim

πjim(θ̂j)
X̃jimX̃

τ
jim

}
and

Ωxjyj =
1√
njTj

nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j)
X̃jim(Ỹjim −M τ

jimγ̃j).

The ANOVA test statistic (4.3.13) can be viewed as a nonparametric counterpart of the

conventional parametric likelihood ratio ANOVA test statistic, for instance that considered in

Forcina (1992). Like its parametric counterpart, the Wilks’ theorem is maintained for `n.

Theorem 1 If Conditions (A1-A4) given in the Appendix hold, then under H0a, `n
d→ χ2

(k−1)p

as n→∞.

The theorem suggests an empirical likelihood ANOVA test that rejects H0a if `n > χ2
(k−1)p,α

where α is the significant level and χ2
(k−1)p,α is the upper α quantile of the χ2

(k−1)p distribution.

We next evaluate the power of the empirical likelihood ANOVA test under a series of local

alternative hypotheses:

H1a : βj0 = β10 + cnn
−1/2
j for 2 ≤ j ≤ k

where {cn} is a sequence of bounded constants. Define ∆β = (βτ
10−βτ

20, β
τ
10−βτ

30, · · · , βτ
10−βτ

k0)
τ ,

D1j = Ω−1
x1

Ωx1y1−Ω−1
xj

Ωxjyj for 2 ≤ j ≤ k andD = (Dτ
12, D

τ
13, · · · , Dτ

1k)
τ . Let ΣD = Var(D) and

γ2 = ∆τ
βΣ−1

D ∆β. Theorem 2 gives the asymptotic distribution of `n under the local alternatives.
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Theorem 2 Suppose Conditions (A1-A4) in the Appendix hold, then under H1a, `n
d→ χ2

(k−1)p(γ
2)

as n→∞.

It can be shown that

ΣD = Ω−1
x1
B1Ω−1

x1
1(k−1) ⊗ 1(k−1) + diag{Ω−1

x2
B2Ω−1

x2
, · · · ,Ω−1

xk
BkΩ−1

xk
}. (4.3.15)

As each Ω−1
xj

is O(n1/2), the non-central component γ2 is non-zero and bounded. The power

of the α level empirical likelihood ANOVA test is β(γ) = P{χ2
(k−1)p(γ

2) > χ2
(k−1)p, α}. This

indicates that the test is able to detect local departures of size O(n−1/2) from H0a, which is

the best rate we can achieve under the local alternative set-up. This is attained despite the

fact that nonparametric kernel estimation is involved in the formulation, which has a slower

rate of convergence than
√
n, as the centering in (4.3.9) essentially eliminates the effects of the

nonparametric estimation.

Remark 1. When there is no missing values, namely all δjim = 1, we will assign all

πjim(θ̂j) = 1 and there is no need to estimate each θj . In this case, Theorems 1 and 2 remain

valid. It is a different matter for estimation as estimation efficiency with missing values will be

less than that without missing values.

Remark 2. The above ANOVA test is robust against mis-specifying the missing propensity

pj(·; θj0) provided the missingness does not depend on the responses
↼
Y jit,d. This is because

despite the mis-specification, the mean of Zji(β) is still approximately zero and the empirical

likelihood formulation remains valid, as well as Theorems 1 and 2. However, if the missingness

depends on the responses and if the model is mis-specified, Theorems 1 and 2 will be affected.

Remark 3. The empirical likelihood test can be readily modified for ANOVA testing on

pure parametric regressions with some parametric time effects gj0(t; ηj) with parameters ηj .

When there is absence of interaction, we may formulate the empirical likelihood for (βj , ηj) ∈

Rp+s using

Zji(βj ; ηj) =
Tj∑

m=1

δjim

πjim(θ̂j)

(
Xτ

jim,
∂gτ

j (tjim; ηj)
∂ηj

)τ{
Yjim −Xτ

jimβj − gj0(tjim; ηj)
}

as the estimating function for the (j, i)-th subject. The ANOVA test can be formulated following

the same procedures from (4.3.11) to (4.3.13), and both Theorems 1 and 2 remaining valid after
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updating p with p+ s where s is the dimension of ηj .

In our formulation for the ANOVA test here and in the next section, we rely on the

Nadaraya-Watson type kernel estimator. The local linear kernel estimator may be employed

when the boundary bias may be an issue. However, as we are interested in ANOVA tests

instead of estimation, the boundary bias does not have a leading order effect.

4.4 ANOVA Test for Time Effects

In this section, we consider the ANOVA test for the nonparametric part

H0b : g10(·) = . . . = gk0(·).

We will first formulate an empirical likelihood for gj0(t) at each t, which then lead to an overall

likelihood ratio for H0b. We need an estimator of gj0(t) that is less biased than the one in

(4.3.7). Recall the notation defined in Section 4.2: Xτ
jim = (Xτ

jim,M
τ
jim) and ξτ

j = (βτ
j , γ

τ
j ).

Plugging-in the estimator ξ̂j to (4.3.7), we have

g̃j(t) =
nj∑
i=1

Tj∑
m=1

wjim,hj
(t)(Yjim − Xτ

jimξ̂j). (4.4.16)

It follows that, for any t ∈ [0, 1],

g̃j(t)− gj0(t) =
nj∑
i=1

Tj∑
m=1

wjim,hj
(t)
{
εji(tjim) + Xτ

jim(ξj − ξ̂j) + gj0(tjim)− gj0(t)
}
. (4.4.17)

However, there is a bias of order h2
j in the kernel estimation since

nj∑
i=1

Tj∑
m=1

wjim,hj
(t) {gj0(tjim)− gj0(t)} = 1

2{
∫
z2K(z)dz}g′′j0(t)h2

j + op(h2
j ).

If we formulated the empirical likelihood based on g̃j(t), the bias will contribute to the asymp-

totic distribution of the ANOVA test statistic. To avoid that, we use the bias-correction method

proposed in Xue and Zhu (2007a) so that the estimator of gj0 is

ĝj(t) =
nj∑
i=1

Tj∑
m=1

wjim,hj
(t){Yjim − Xτ

jimξ̂j − (g̃j(tjim)− g̃j(t))}.

Based on this modified estimator ĝj(t), we define the auxiliary variable

Rji{gj(t)} =
Tj∑

m=1

δjim

πjim(θ̂j)
K

(
tjim − t

hj

){
Yjim − Xτ

jimξ̂j − gj(t)− (g̃j(tjim)− g̃j(t))
}
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for empirical likelihood formulation. At true function gj0(t), E[Rji{gj0(t)}] = o(1).

Using a similar procedure to Lnj (βj) as given in (4.3.11) and (4.3.12), the empirical likeli-

hood for gj0(t) is

Lnj{gj0(t)} = max
{ nj∏

i=1

pji

}
subject to

∑nj

i=1 pji = 1 and
∑nj

i=1 pjiRji{gj(t)} = 0. The latter is obtained in a similar fashion

as we obtain (4.3.11) by introducing Lagrange multipliers so that

Lnj{gj0(t)} =
nj∏
i=1

{
1
nj

1
1 + ηj(t)Rji{gj0(t)}

}
,

where ηj(t) is a Lagrange multiplier that satisfies
nj∑
i=1

Rji{gj0(t)}
1 + ηj(t)Rji{gj0(t)}

= 0. (4.4.18)

The log empirical likelihood ratio for g10(t) = . . . = gk0(t) := g(t), say, is

Ln(t) = 2 min
g(t)

k∑
j=1

nj∑
i=1

log(1 + ηj(t)Rji{g(t)}), (4.4.19)

which is analogues of `n in (4.3.13). As shown in the proof of Theorem 3 given in the Appendix,

the leading order term of the Ln(t) is a studentized version of the distance

(ĝ1(t)− ĝ2(t), ĝ1(t)− ĝ3(t), · · · , ĝ1(t)− ĝk(t)) ,

namely between ĝ1(t) and the other ĝj(t) (j 6= 1). This motivates us to propose using

Tn =
∫ 1

0
Ln(t)$(t)dt (4.4.20)

to test for the equivalence of {gj0(·)}k
j=1, where $(t) is a probability weight function over [0, 1].

To define the asymptotic distribution of Tn, we assume without loss of generality that for

each hj and Tj , j = 1, · · · , k, there exist fixed finite positive constants αj and bj such that

αjTj = T and bjhj = h for some T and h as h→ 0. Effectively, T is the smallest common multi-

ple of T1, · · · , Tk. LetK(2)
c (t) =

∫
K(w)K(t−cw)dw andK(4)

c (0) =
∫
K

(2)
c (w

√
c)K(2)

1/c(w/
√
c)dw.

For c = 1, we resort to the standard notations of K(2)(t) and K(4)(0) for K(2)
1 (t) and K(4)

1 (0),

respectively. For each treatment j, let fj be the super-population density of the design points

{tjim}. Let aj = ρ−1
j αj ,

Wj(t) =
fj(t)/{ajbjσ

2
εj}∑k

l=1 fl(t)/{alblσ
2
εl}
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and Vj(t) = K(2)(0)σ2
εjfj(t) where σ2

εj = 1
njTj

∑nj

i=1

∑Tj

m=1E{
ε2
jim

πjim(θj0)}. Furthermore, we define

Λ(t) =
k∑

j=1

b−1
j K(4)(0)(1−Wj(t))2 +

k∑
j 6=j1

(bjbj1)
− 1

2K
(4)
bj/bj1

(0)Wj(t)Wj1(t) and

µ1 =
∫ 1

0

[ k∑
j=1

b
− 1

2
j V −1

j (t)f2
j (t)∆2

nj(t)−
( k∑

s=1

b
− 1

4
s V

− 1
2

s (t)W
1
2

s (t)fs(t)∆ns(t)
)2]

$(t)dt.

We consider a sequence of local alternative hypotheses:

gj0(t) = g10(t) + Cjn∆jn(t), (4.4.21)

where Cjn = (njTj)−1/2h
−1/4
j for j = 2, · · · , k and {∆jn(t)}n≥1 is a sequence of uniformly

bounded functions.

Theorem 3 Assume Conditions (A1-A4) in the Appendix and h = O(n−1/5), then under

(4.4.21),

h−1/2(Tn − µ0)
d→ N(0, σ2

0),

where µ0 = (k − 1) + h1/2µ1 and σ2
0 = 2K(2)(0)−2

∫ 1
0 Λ(t)$2(t)dt.

We note that under H0b : g10(·) = . . . = gk0(·), ∆jn(t) = 0 which yields µ1 = 0 and

h−1/2{Tn − (k − 1)} d→ N(0, σ2
0).

This may lead to an asymptotic test at a nominal significance level α that rejects H0b if

Tn ≥ h1/2σ̂0zα + (k − 1), (4.4.22)

where zα is the upper α quantile of N(0, 1) and σ̂0 is a consistent estimator of σ0. The

asymptotic power of the test under the local alternatives is 1 − Φ(zα − µ1

σ0
), where Φ(·) is the

standard normal distribution function. This indicates that the test is powerful in differentiating

null hypothesis and its local alternative at the convergence rate O(n−1/2
j h

−1/4
j ) for Cjn. The

rate is the best when a single bandwidth is used (Härdle and Mammen, 1993).

If all the hj (j = 1, · · · , k) are the same, the asymptotic variance

σ2
0 = 2(k − 1)K(2)(0)−2K(4)(0)

∫ 1

0
$2(t)dt,
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which means that the test statistic under H0b is asymptotic pivotal. However, when the band-

widths are not the same, which is most likely as different treatments may require different

amount of smoothness in the estimation of gj0(·), the asymptotical pivotalness of Tn is no

longer available, and estimation of σ2
0 is needed for conducting the asymptotic test in (4.4.22).

We will propose a test based on a bootstrap calibration to the distribution of Tn in Section 4.6.

Remark 4. Similar to Remarks 1 and 2 made on the ANOVA tests for the covariate ef-

fects, the proposed ANOVA test for the nonparametric baseline functions (Theorem 3) remains

valid in the absence of missing values or if the missing propensity is mis-specified as long as

the responses do not contribute to the missingness.

Remark 5. We note that the proposed test is not affected by the within-subject depen-

dent structure (the longitudinal aspect) due to the fact that the formulation of the empirical

likelihood is made for each subject. This is clearly shown in the construction of Rji{gj(t)} and

by the fact that the nonparametric functions can be separated from the covariate effects in the

semiparametric model. Again this would be changed if we are interested in estimation as the

correlation structure in the longitudinal data will affect the estimation efficiency. However, the

test will be dependent on the choice of the weight function $(·), and {αj}, {ρj} and {bj}, the

relative ratios among {Tj}, {nj} and {hj}.

Remark 6. The ANOVA test statistics for the time effects for the semiparametric model

can be readily modified to obtain ANOVA test for purely nonparametric regression by simply

setting ξ̂j = 0 in the formulation of the test statistic Ln(t). In this case, the model (4.2.2) takes

the form

Yji(t) = gj(Xji(t), t) + εji(t), (4.4.23)

where gj(·) is the unknown nonparametric function of Xji(t) and t. The proposed ANOVA

test can be viewed as generalization of the tests considered in Mund and Detter (1998), Pardo-

Fernández, Van Keilegom and González-Manteiga (2007) and Wang, Akritas and Van Keilegom

(2008) by considering both the longitudinal and missing aspects. See also Cao and Van Keile-

gom (2006) for a two sample test for the equivalence of two probability densities.
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4.5 Tests on Interactions

Model (4.1.1) contains an interactive term M(Xjim, t) that is flexible in prescribing the

interact between Xjim and the time, as long as the positive definite condition in Condition

A3 is satisfied. In this section we propose tests for the presence of the interaction in the j-

th treatment and the ANOVA hypothesis on the equivalence of the interactions among the

treatments.

We firstly consider testing H0c : γj0 = 0 vs H1c : γj0 6= 0 for a fixed j. In the formulation

of the empirical likelihood for γj0, we treat Mjim = M(Xjim, t) as a covariates with the same

role like Xjim in the previous section when we constructed empirical likelihood for βj0. For

this purpose, we define estimating equations for γj0

φji(γj0) =
Tj∑

m=1

δjim

πjim(θ̂j)
M̃jim(Ỹjim − X̃τ

jimβ̃j − M̃ τ
jimγj0), (4.5.24)

where

β̃j =


nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j)
X̃jimX̃

τ
jim


−1

nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j)
X̃jim(Ỹjim − M̃ τ

jimγj0) (4.5.25)

is the “estimator” of βj at the true γj0. Similar to establishing `nj (βj) in Section 4.3, the

log-empirical likelihood for γj0 can be written as

`γnj
(γj) = 2

nj∑
i=1

log{1 + Λ′jφji(γj)},

where the Lagrange multipliers Λj satisfies
nj∑
i=1

φji(γj)
1 + Λ′jφji(γj)

= 0. (4.5.26)

To test for H0d : γ10 = γ20 = · · · = γk0 vs H1d : γi0 6= γj0 for some i 6= j, we construct the

joint empirical likelihood ratio

`γn : = 2 min
γ

k∑
j=1

nj∑
i=1

log{1 + Λτ
jφji(γ)}, (4.5.27)

where Λj satisfy (4.5.26).

The asymptotic distributions of the empirical likelihood ratios `γnj (0) and `γn under the null

hypotheses as given in the next theorem whose proofs will not be given as they follow the same

routes in the proof of Theorem 1 by exchanging Xjim and βj0 with Mjim and γj0 respectively.
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Theorem 4 Under Conditions (A1-A4) given in the Appendix, then (i) under H0c, `
γ
nj (0) d→

χ2
q as nj →∞; (ii) under H0d, `

γ
n

d→ χ2
(k−1)q as n→∞.

Based on Theorem 4, an α-level empirical likelihood ratio test for the presence of the

interaction in the j-th sample rejects H0c if `γnj (0) > χ2
q,α, and the ANOVA test for the

equivalence of the interactive effects rejects H0d if `γn > χ2
(k−1)q,α. The ANOVA test for H0d

has a similar local power performance as that described after Theorem 2 for the ANOVA test

regarding βj0 in Section 4.3. The power properties of the test for H0c can be established using

a much easier method.

We have assumed parametric models for the interaction in model (4.1.1). A semiparametric

model would be employed to model the interaction given that the model for the time effect is

nonparametric. The parametric interaction is a simplification and avoids some of the involved

technicalities associated with a semiparametric model.

4.6 Bootstrap Calibration

To avoid direct estimation of σ2
0 in Theorem 3 and to speed up the convergence of Tn, we

resort to the bootstrap. While the wild bootstrap (Wu 1986, Liu 1988 and Härdle and Mammen

1993) originally proposed for parametric regression without missing values has been modified

by Shao and Sitter (1996) to take into account missing values, we extend it further to suit the

longitudinal feature.

Let ~toj and ~tmj be the sets of the time points with full and missing observations, respectively.

According to model (4.2.3), we impute a missing Xji(t) from X̂ji(t), t ∈ ~toj , so that for any

t ∈ ~tmj

X̂ji(t) =
nj∑
i=1

Tj∑
m=1

wjim,hj
(t)Xjim, (4.6.28)

where wjim,hj
(t) is the kernel weight defined in (4.3.8).

To mimic the heteroscedastic and correlation structure in the longitudinal data, we estimate

the covariance matrix for each subject in each treatment. Let

ε̂jim = Yjim − Xτ
jimξ̂j − ĝj(tjim).
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An estimator of σ2
j (t), the variance of εji(t), is σ̂2

j (t) =
∑nj

i=1

∑Tj

m=1wjim,hj
(t)ε̂2jim and an

estimator of ρj(s, t), the correlation coefficient between εji(t) and εji(s) for s 6= t, is

ρ̂j(s, t) =
nj∑
i=1

Tj∑
m6=m′

Hjim,m′(s, t)êjimêjim′ ,

where êjim = ε̂jim/σ̂j(tjim),

Hjim,m′(s, t) =
δjimδjim′Kbj

(s− tjim)Kbj
(t− tjim′)/πjim,m′(θ̂j)∑nj

i=1

∑
m6=m′ δjimδjim′Kbj

(s− tjim)Kbj
(t− tjim′)/πjim,m′(θ̂j)

,

and πjim,m′(θ̂j) = πjim(θ̂j)πjim′(θ̂j) if |m −m′| > d; πjim,m′(θ̂j) = πjimb
(θ̂j) if |m −m′| ≤ d

where mb = max(m,m′). Here bj is a smoothing bandwidth which may be different from

the bandwidth hj for calculating the test statistics Tn (Fan, Huang and Li 2007). Then, the

covariance Σji of εji = (εji1, · · · , εjiTj )
τ is estimated by Σ̂ji which has σ̂2

j (tjim) as its m-th

diagonal element and ρ̂j(tjik, tjil)σ̂j(tjik)σ̂j(tjil) as its (k, l)−th element for k 6= l.

Let Yji, δji, tji be the vector of random variables of the (j, i)−th subject,Xji = (Xji(tji1), · · · ,

Xji(tjiTj ))
τ and gj0(tsl) = (gj0(tsl1), · · · , gj0(tslTk

))τ , where s may be different from j. Let

Xc
ji = {Xo

ji, X̂
m
ji }, where Xo

ji contains observed Xji(t) for tj ∈ ~to and X̂m
ji collects the imputed

Xji(t) for t ∈ ~tmj according to (4.6.28). Plugging the value of Xc
ji, we get M c

ji = {Mo
ji, M̂

m
ji },

the observed and the imputed interactions for (j, i)-th subject, and then Xc
ji.

The proposed bootstrap procedure consists of the following steps:

Step 1. Generate a bootstrap re-sample {Y ∗
ji,Xc

ji, δ
∗
ji, tji} for the (j, i)-th subject by

Y ∗
ji = Xc

ji
τ ξ̂j + ĝ1(tji) + Σ̂jie

∗
ji,

where e∗ji’s are i.i.d. random vectors simulated from a distribution satisfying E(e∗ji) = 0 and

Var(e∗ji) = ITj , δ
∗
jim ∼ Bernoulli(πjim(θ̂j)) where θ̂j is estimated based on the original sample

as given in (4.2.6). Here, ĝ1(tji) is used as the common nonparametric time effect to mimic the

null hypothesis H0b.

Step 2. For each treatment j, we re-estimate ξj , θj and gj(t) based on the re-sample

{Y ∗
ji,Xc

ji, δ
∗
ji, tji} and denote them as ξ̂∗j , θ̂

∗
j and ĝ∗j (t). The bootstrap version of Rji{g1(t)} is

R∗ji{ĝ1(t)} =
Tj∑

m=1

δ∗jim

πjim(θ̂∗j )
K

(
tjim − t

hj

){
Y ∗

jim − Xτ
jimξ̂

∗
j − ĝ1(t)− {ĝ∗j (tjim)− ĝ∗j (t)}

}



141

and use it to substitute Rji{gj(t)} in the formulation of Ln(t), we obtain L∗n(t) and then

T ∗
n =

∫
L∗n(t)$(t)dt.

Step 3. Repeat the above two steps B times for a large integer B and obtain B bootstrap

values {T ∗
nb}B

b=1. Let t̂α be the 1− α quantile of {T ∗
nb}B

b=1, which is a bootstrap estimate of the

1− α quantile of Tn. Then, we reject the null hypothesis H0b if Tn > t̂α.

The following theorem justifies the bootstrap procedure.

Theorem 5 Assume Conditions (A1-A4) in the Appendix hold and h = O(n−1/5). Let Xn

denote the original sample, h and σ2
0 be defined as in Theorem 3. The conditional distribution

of h−1/2(T ∗
n − µ0) given Xn converges to N(0, σ2

0) almost surely, namely,

h−1/2{T ∗
n − (k − 1)}|Xn

d→ N(0, σ2
0) a.s.

4.7 Simulation Results

In this section, we report results from simulation studies which were designed to confirm

the proposed ANOVA tests proposed in the previous sections. We simulated data from the

following three-treatment model:

Yjim = Xjimβj +Mjimγj + gj(tjim) + εjim and Xjim = 2− 1.5tjim + ujim, (4.7.29)

where Mjim = tjim × (Xjim − 1.5)2, εjim = eji + νjim, ujim ∼ N(0, σ2
aj

), eji ∼ N(0, σ2
bj

) and

νjim ∼ N(0, σ2
cj

) for j = {1, 2, 3}, i = 1, · · · , nj and m = 1, · · · , Tj . This structure used to

generate {εjim}
Tj

m=1 ensures dependence among the repeated measurements {Yjim} for each

subject i. The correlation between Yjim and Yjil for any m 6= l is σ2
bj
/(σ2

bj
+ σ2

cj
). The

time points {tjim}
Tj

m=1 were obtained by first independently generating uniform[0, 1] random

variables and then sorted in the ascending order. We set the number of repeated measures Tj

to be the same, say T, for all three treatments; and chose T = 5 and 10 respectively. The

standard deviation parameters in (4.7.29) were σa1 = 0.5, σb1 = 0.5, σc1 = 0.2 for the first

treatment, σa2 = 0.5, σb2 = 0.5, σc2 = 0.2 for the second and σa3 = 0.6, σb3 = 0.6, σc3 = 0.3 for

the third.

The parameters and the time effects for the three treatments were
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Treatment 1: β1 = 2, γ1 = 1, g1(t) = 2 sin(2πt)−∆1n(t);

Treatment 2: β2 = 2 +D2n, γ2 = 1 +D2n, g2(t) = 2 sin(2πt)−∆2n(t);

Treatment 3: β3 = 2 +D3n, γ3 = 1 +D3n, g3(t) = 2 sin(2πt)−∆3n(t).

We designated different values of D1n, D2n, D3n,∆1n(t),∆2n(t), and ∆3n(t) in the evaluation

of the size and the power, whose details will be reported shortly.

We considered two missing data mechanisms. In the first mechanism (I), the missing propen-

sity was

logit{P (δjim = 1|δjim,m−1 = 1, Xji, Yji)} = θjXji(m−1) for m > 1, (4.7.30)

which is not dependent on the response Y , with θ1 = 3, θ2 = 2 and θ3 = 2. In the second

mechanism (II),

logit{P (δjim = 1|δjim,m−1 = 1, Xji, Yji)}

=

 θj1Xji(m−1) + θj2{Yji(m−1) − Yji(m−2)}, if m > 2,

θj1Xji(m−1), if m = 2;
(4.7.31)

which is influenced by both covariate and response, with θ1 = (θ11, θ12)τ = (2,−1)τ , θ2 =

(θ21, θ22)τ = (2,−1.5)τ and θ3 = (θ31, θ32)τ = (2,−1.5)τ . In both mechanisms, the first obser-

vation (m = 1) for each subject was always observed as we have assumed earlier.

We used the Epanechnikov kernel K(u) = 0.75(1 − u2)+ throughout the simulation where

(·)+ stands for the positive part of a function. The bandwidths were chosen by the ‘leave-

one-subject’ out cross-validation. Specifically, we chose the bandwidth hj that minimized the

cross-validation score functions

nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j)
(Yjim −Xτ

jimβ̂
(−i)
j −M τ

jimγ̂
(−i)
j − ĝ

(−i)
j (tjim))2,

where β̂(−i)
j , γ̂

(−i)
j and ĝ(−i)

j (tjim) were the corresponding estimates without using observations

of the i−th subject. The cross-validation was used to choose an optimal bandwidth for repre-

sentative data sets and fixed the chosen bandwidths in the simulations with the same sample

size. We fixed the number of simulations to be 500.
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The average missing percentages based on 500 simulations for the missing mechanism I were

8%, 15% and 17% for Treatments 1-3 respectively when T = 5, and were 16%, 28% and 31%

when T = 10. In the missing mechanism II, the average missing percentages were 10%, 8% and

15% for T = 5, and 23%, 20% and 36% for T = 10, respectively.

For the ANOVA test for H0a : β10 = β20 = β30 with respect to the covariate effects,

three values of D2n and D3n: 0, 0.2 and 0.3, were used respectively, while ∆1n(t) = ∆2n(t) =

∆3n(t) = 0. Table 4.1 summarizes the empirical size and power of the proposed EL ANOVA

test with 5% nominal significant level for H0a for 9 combinations of (D2n, D3n), where the sizes

corresponding toD2n = 0 andD3n = 0.We observed that the size of the ANOVA tests improved

as the sample sizes and the observational length T increased, and the overall level of size were

close to the nominal 5%. This is quite re-assuring considering the ANOVA test is based on the

asymptotic chi-square distribution. We also observed that the power of the test increased as

sample sizes and T were increased, and as the distance among the three βj0 was increased. For

example, when D2n = 0.0 and D3n = 0.3, the L2 distance was
√

0.32 + 0.32 = 0.424, which is

larger than
√

0.12 + 0.22 + 0.32 = 0.374 for D2n = 0.2 and D3n = 0.3. This explains why the

ANOVA test was more powerful for D2n = 0.0 and D3n = 0.3 than D2n = 0.2 and D3n = 0.3.

At the same time, we see similar power performance between the two missing mechanisms.

To gain information on the empirical performance of the test on the existence of interaction,

we carried out a test for H0c : γ20 = 0. In the simulation, we chose γ20 = 0, 0.2, 0.3, 0.4,

β20 = 2+γ20 and fixed ∆2n(t) = 0 respectively. Table 4.2 summarizes the sizes and the powers

of the test. Table 4.3 reports the simulation results of the ANOVA test on the interaction effect

H0d : γ10 = γ20 = γ30 with a similar configurations as those used as the ANOVA tests for the

covarites effects reported in Table 4.1. We observe satisfactory performance of these two tests

in terms of both the accurate of the size approximation and the empirical power. In particular,

the performance of the ANOVA tests were very much similar to that conveyed in Table 4.1.

We then evaluate the power and size of the proposed ANOVA test regarding the nonpara-

metric components. To study the local power of the test, we set ∆2n(t) = Un sin(2πt) and

∆3n(t) = 2 sin(2πt) − 2 sin(2π(t + Vn)), and fixed D2n = 0 and D3n = 0.2. Here Un and Vn

were designed to adjust the amplitude and phase of the sine function. The same kernel and
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Table 4.1 Empirical size and power of the 5% ANOVA test for H0a : β10 = β20 = β30.

Sample Size Missingness Missingness
n1 n2 n3 D2n D3n T I II T I II
60 65 55 0.0 0.0 (size) 5 0.042 0.050 10 0.046 0.044

0.2 0.0 0.192 0.254 0.408 0.434
0.3 0.0 0.548 0.630 0.810 0.864
0.0 0.2 0.236 0.214 0.344 0.354
0.0 0.3 0.508 0.546 0.714 0.722
0.2 0.2 0.208 0.262 0.446 0.458
0.2 0.3 0.412 0.440 0.680 0.698
0.3 0.2 0.426 0.490 0.728 0.728
0.3 0.3 0.594 0.620 0.836 0.818

100 110 105 0.0 0.0 (size) 5 0.052 0.054 10 0.042 0.038
0.2 0.0 0.426 0.470 0.686 0.718
0.3 0.0 0.854 0.854 0.964 0.974
0.0 0.2 0.406 0.444 0.612 0.568
0.0 0.3 0.816 0.836 0.936 0.910
0.2 0.2 0.404 0.480 0.674 0.686
0.2 0.3 0.744 0.694 0.944 0.882
0.3 0.2 0.712 0.768 0.922 0.920
0.3 0.3 0.824 0.814 0.972 0.970

bandwidths chosen by the cross-validation as outlined earlier in the parametric ANOVA test

were used in the test for the nonparametric time effects. We calculated the test statistic Tn

with $(t) being the kernel density estimate based on all the time points in all treatments. We

applied the wild bootstrap proposed in Section 4.5 with B = 100 to obtain t̂0.05, the bootstrap

estimator of the 5% critical value. The simulation results of the nonparametric ANOVA test

for the time effects are given in Table 4.4.

The sizes of the nonparametric ANOVA test were obtained when Un = 0 and Vn = 0, which

were quite close to the nominal 5%. We observe that the power of the test increased when

the distance among g1(·), g2(·) and g3(·) were becoming larger, and when the sample size or

repeated measurement T were increased. We noticed that the power was more sensitive to

change in Vn, the initial phase of the sine function, than Un.

We then compared the proposed tests with a test proposed by Scheike and Zhang (1998).
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Table 4.2 Empirical size and power of the 5% test for the existence of interaction H0c : γ20 = 0.

Sample Size Missingness Missingness
n1 n2 n3 γ20 T I II T I II
60 65 55 0.0 (size) 5 0.052 0.048 10 0.048 0.052

0.2 0.428 0.456 0.568 0.636
0.3 0.722 0.788 0.848 0.882
0.4 0.928 0.952 0.948 0.968

100 110 105 0.0 (size) 5 0.054 0.046 10 0.056 0.042
0.2 0.608 0.718 0.694 0.812
0.3 0.940 0.938 0.940 0.958
0.4 0.986 0.994 0.952 0.966

Scheike and Zhang’s test was comparing two treatments for the nonparametric regression model

(4.4.23) for longitudinal data without missing values. Their test was based on a cumulative

statistic

T (z) =
∫ z

a
(ĝ1(t)− ĝ2(t))dt,

where a, z are in a common time interval [0, 1]. They showed that
√
n1 + n2T (z) converges

to a Gaussian Martingale with mean 0 and variance function ρ−1
1 h1(z) + ρ−1

2 h2(z), where

hj(z) =
∫ z
a σ

2
j (y)f

−1
j (y)dy. Hence, the test statistic T (1 − a)/

√
V̂ar{T (1− a)} is used for two

group time-effect functions comparison.

To make the proposed test and the test of Scheike and Zhang (1998) comparable, we con-

ducted simulation in a set-up that mimics the setting of model (4.7.29) but with only the first

two treatments, no missing values and only the nonparametric part in the regression by setting

βj = γj = 0. Specifically, we test for H0 : g1(·) = g2(·) vs H1 : g1(·) = g2(·) + ∆2n(·) for three

cases of the alternative shift function ∆2n(·) functions which are spelt out in Table 4.5 and set

a = 0 in the test of Scheike and Zhang. The simulation results are summarized in Table 4.5.

We found that in the first two cases (I and II) of the alternative shift function ∆2n, the test of

Scheike and Zhang had little power. It was only in the third case (III), the test started to pick

up some power although it was still not as powerful as the proposed test.
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Table 4.3 Empirical size and power of the 5% ANOVA test for H0d : γ10 = γ20 = γ30.

Sample Size Missingness Missingness
n1 n2 n3 D2n D3n T I II T I II
60 65 55 0.0 0.0 (size) 5 0.058 0.058 10 0.068 0.036

0.2 0.0 0.134 0.188 0.232 0.254
0.3 0.0 0.358 0.486 0.510 0.622
0.0 0.2 0.136 0.166 0.230 0.218
0.0 0.3 0.356 0.414 0.466 0.474
0.2 0.2 0.170 0.208 0.286 0.276
0.2 0.3 0.292 0.328 0.462 0.428
0.3 0.2 0.266 0.356 0.498 0.474
0.3 0.3 0.392 0.476 0.578 0.588

100 110 105 0.0 0.0 (size) 5 0.068 0.040 10 0.054 0.046
0.2 0.0 0.262 0.366 0.354 0.432
0.3 0.0 0.654 0.744 0.744 0.820
0.0 0.2 0.272 0.330 0.340 0.334
0.0 0.3 0.590 0.676 0.722 0.672
0.2 0.2 0.282 0.332 0.412 0.410
0.2 0.3 0.528 0.582 0.716 0.640
0.3 0.2 0.502 0.580 0.680 0.728
0.3 0.3 0.672 0.674 0.814 0.808

4.8 Analysis on HIV-CD4 Data

In this section, we analyzed a longitudinal data set from AIDS Clinical Trial Group 193A

Study (Henry et al. 1998), which was a randomized, double-blind study of HIV-AIDS patients

with advanced immune suppression. The study was carried out in 1993 with 1309 patients

who were randomized to four treatments with regard to HIV-1 reverse transcriptase inhibitors.

Patients were randomly assigned to one of four daily treatment regimes: 600mg of zidovudine

alternating monthly with 400mg didanosine (Treatment I); 600mg of zidovudine plus 2.25mg

of zalcitabine (Treatment II); 600mg of zidovudine plus 400mg of didanosine (Treatment III);

or 600mg of zidovudine plus 400mg of didanosine plus 400mg of nevirapine (Treatment VI).

The four treatments had 325, 324, 330 and 330 patients respectively.

The aim of our analysis was to compare the effects of age (Age), baseline CD4 counts
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Table 4.4 Empirical size and power of the 5% ANOVA test for H0b : g1(·) = g2(·) = g3(·) with
∆2n(t) = Un sin(2πt) and ∆3n(t) = 2 sin(2πt)− 2 sin(2π(t+ Vn))

Sample Size Missingness Missingness
n1 n2 n3 Un Vn T I II T I II
60 65 55 0.00 0.00(size) 5 0.040 0.050 10 0.054 0.060

0.30 0.00 0.186 0.232 0.282 0.256
0.50 0.00 0.666 0.718 0.828 0.840
0.00 0.05 0.664 0.726 0.848 0.842
0.00 0.10 1.000 1.000 1.000 1.000

100 110 105 0.00 0.00(size) 5 0.032 0.062 10 0.050 0.036
0.30 0.00 0.434 0.518 0.526 0.540
0.50 0.00 0.938 0.980 0.992 0.998
0.00 0.05 0.916 0.974 1.000 1.000
0.00 0.10 1.000 1.000 1.000 1.000

(PreCD4), and gender (Gender) on Y = log(CD4 counts +1). The semiparametric model

regression is, for j = 1, 2, 3 and 4,

Yji(t) = βj1Ageji + βj2PreCD4ji + βj3Genderji + gj(t) + εji(t), (4.8.32)

with the intercepts absorbed in the nonparametric gj(·) functions, and βj = (βj1, βj2, βj3)τ is

the regression coefficients to the covariates (Age, PreCD4, Gender).

To make gj(t) more interpretable, we centralized Age and PreCD4 so that their sample

means in each treatment were 0, respectively. As a result, gj(t) can be interpreted as the

baseline evolution of Y for a female (Gender=0) with the average PreCD4 counts and the

average age in Treatment j. This kind of normalization is used in Wu and Chiang (2000) in

their analyzes for another CD4 data set. Our objectives were to detect any difference in the

treatments with respect to (i) the covariates; and (ii) the nonparametric baseline functions.

Measurements of CD4 counts were scheduled at the start time 1 and at a 8-week intervals

during the follow-up. However, the data were unbalanced due to variations from the planned

measurement time and missing values resulted from skipped visits and dropouts. The number

of CD4 measurements for patients during the first 40 weeks of follow-up varied from 1 to 9,

with a median of 4. There were 5036 complete measurements of CD4, and 2826 scheduled
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Table 4.5 The empirical sizes and powers of the proposed test (CZ) and the test (SZ) proposed
by Scheike and Zhang (1998) for H0b : g1(·) = g2(·) vs H1b : g1(·) = g2(·) + ∆2n(·).

Sample Size Tests Tests
n1 n2 n3 Un T CZ SZ T CZ SZ
60 65 55 Case I: ∆2n(t) = Un sin(2πt)

0.00(size) 5 0.060 0.032 10 0.056 0.028
0.30 0.736 0.046 0.844 0.028
0.50 1.000 0.048 1.000 0.026
Case II: ∆2n(t) = 2 sin(2πt)− 2 sin(2π(t+ Un))
0.05 1.000 0.026 1.000 0.042
0.10 1.000 0.024 1.000 0.044
Case III: ∆2n(t) = −Un

0.10 0.196 0.162 0.206 0.144
0.20 0.562 0.514 0.616 0.532

100 110 105 Case I: ∆2n(t) = Un sin(2πt)
0.00(size) 5 0.056 0.028 10 0.042 0.018
0.30 0.982 0.038 0.994 0.040
0.50 1.000 0.054 1.000 0.028
Case II: ∆2n(t) = 2 sin(2πt)− 2 sin(2π(t+ Un))
0.05 1.000 0.022 1.000 0.030
0.10 1.000 0.026 1.000 0.030
Case III: ∆2n(t) = −Un

0.10 0.290 0.260 0.294 0.218
0.20 0.780 0.774 0.760 0.730

measurements were missing. Hence, considering missing values is very important in this anal-

ysis. Most of the missing values follow the monotone pattern. Therefore, we firstly model the

missing mechanism under the monotone assumption in next subsection.

4.8.1 Monotone Missingness

We considered three logistic regression models for the missing propensities and used the

AIC and BIC criteria to select the one that was the mostly supported by data. The first model

(M1) was a logistic regression model for pj(
↼
Xjit,3,

↼
Y jit,3; θj0) that effectively depends on Xjit

(the PreCD4) and (Yji(t−1), Yji(t−2), Yji(t−3)) if t > 3. For t < 3, it relies on all Yjit observed

before t. In the second model (M2), we replace the Xjit in the first model with an intercept.
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In the third model (M3), we added to the second logistic model with covariates representing

the square of Yji(t−1) and the interactions between Yji(t−1) and Yji(t−2). In the formulation

of the AIC and BIC criteria we used the binary conditional likelihood given in (4.2.6) with

the respective penalties. The difference of AIC and BIC values among these models for four

treatment groups is given in Table 4.6. Under the BIC criterion, M2 was the best model for

all four treatments. For Treatments II and III, M3 had smaller AIC values than M2, but the

differences were very small. For Treatments I and VI, M2 had smaller AIC than M3. As the

AIC tends to select more explanatory variables, we chose M2 as the model for the parametric

missing propensity.

Table 4.6 Differences in the AIC and BIC scores among three models (M1-M3)

Treatment I Treatment II Treatment III Treatment VI
Models

AIC BIC AIC BIC AIC BIC AIC BIC
M1-M2 3.85 3.85 14.90 14.90 17.91 17.91 10.35 10.35
M2-M3 -2.47 -11.47 0.93 -8.12 0.30 -8.75 -3.15 -12.27

Model (4.8.32) does not have interactions. It is interesting to check if there is an interaction

between gender and time. Then the model becomes

Yji(t) = βj1Ageji + βj2PreCD4ji + βj3Genderji + γj4Genderji × t+ gj(t) + εji(t), (4.8.33)

We applied the proposed test in Section 4.5 for H0c : γj4 = 0 for j = 1, 2, 3 and 4 respec-

tively. The p-values were 0.9234,0.9885,0.9862 and 0.5558 respectively, which means that the

interaction was not significant. Therefore, in the following analyzes, we would not include the

interaction term and continue to use Model (4.8.32).

Table 4.7 reports the parameter estimates β̂j of βj based on the estimating function Zji(βj)

given in Section 4.3. It contains the standard errors of the estimates, which were obtained from

the length of the EL confidence intervals based on the marginal empirical likelihood ratio for

each βj as proposed in Chen and Hall (1994). In getting these estimates, we use the ‘leave-

one-subject’ cross-validation (Rice and Silverman 1991) to select the smoothing bandwidths
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{hj}4j=1 for the four treatments, which were 12.90, 7.61, 8.27 and 16.20 respectively. We see

that the estimates of the coefficients for the Age and PreCD4 were similar among all four

treatments with comparable standard errors, respectively. In particular, the estimates of the

Age coefficients endured large variations while the estimates of the PreCD4 coefficients were

quite accurate. However, estimates of the Gender coefficients had different signs among the

treatments. We may also notice that the confidence intervals from treatments I-IV for each

coefficient were overlap.

Table 4.7 Parameter estimates and their standard errors

Treatment I Treatment II Treatment III Treatment VI
Coefficients

β1 β2 β3 β4

Age 0.0063(0.0039) 0.0050(0.0040) 0.0047(0.0058) 0.0056(0.0046)
PreCD4 0.7308(0.0462) 0.7724(0.0378) 0.7587(0.0523) 0.8431(0.0425)
Gender 0.1009(0.0925) 0.1045(0.0920) -0.3300(0.1510) -0.3055(0.1136)

We then formally tested H0a : β1 = β2 = β3 = β4. The empirical likelihood ratio statistic

`n was 8.1348, which was smaller than χ2
9,0.95 = 16.9190, which produced a p-value of 0.5206.

So we do not have enough evidence to reject H0a at a significant level 5 %. The parameter

estimates reported in Table 4.7 suggested similar covariate effects between Treatments I and

II, and between Treatments III and IV, respectively; but different effects between the first

two treatments and the last two treatments. To verify this suggestion, we carry out formal

ANOVA test for pair-wise equality among the βj ’s as well as for equality of any three βj ’s.

The p-values of these ANOVA test are reported in Table 4.8. Indeed, the difference between

the first two treatments and between the last two treatments were insignificant. However, the

differences between the first three (I, II and III) treatments and the last treatment were also

not significant.

We then tested for the nonparametric baseline time effects. The kernel estimates ĝj(t) are

displayed in Figure 4.1, which shows that Treatments I and II and Treatments III and IV had

similar baselines evolution overtime, respectively. However, a big difference existed between
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Table 4.8 P-values of ANOVA tests for βjs.

H0a p-value H0a p-value
β1 = β2 0.9661 β1 = β2 = β3 0.7399
β1 = β3 0.4488 β1 = β2 = β4 0.4011
β1 = β4 0.1642 β1 = β3 = β4 0.3846
β2 = β3 0.4332 β2 = β3 = β4 0.4904
β2 = β4 0.2523 β1 = β2 = β3 = β4 0.5206
β3 = β4 0.8450

the first two treatments and the last two treatments. Treatment IV decreased more slowly than

that of the other three treatments, which seemed to be the most effective in slowing down the

decline of CD4. We also found that during the first 16 weeks the CD4 counts decrease slowly

and then the decline became faster after 16 weeks for Treatments I, II and III.
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Figure 4.1 (a) The raw data plots with the estimates of gj(t) (j = 1, 2, 3, 4). (b) The estimates
of gj(t) in the same plot: Treatment I (solid line), Treatment II (short dashed line),
Treatment III (dashed and doted line) and Treatment IV (long dashed line).

The p-value for testing H0b : g1(·) = g2(·) = g3(·) = g4(·) is shown in Table 4.9. The

entries were based on 500 bootstrapped resamples according to the procedure introduced in

Section 4.6. The statistics Tn for testing H0b : g1(·) = g2(·) = g3(·) = g4(·) was 3965.00,

where we take $(t) = 1 over the range of t. The p-value of the test was 0.004. Thus, there
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existed significant difference in the baseline time effects gj(·)’s among Treatments I-IV. At the

same time, we also calculate the test statistics Tn for testing g1(·) = g2(·) and g3(·) = g4(·).

The statistics values were 19.26 and 26.22, with p-values 0.894 and 0.860, respectively. These

p-values are much bigger than 0.05. We conclude that treatment I and II has similar baseline

time effects, but they are significantly distinct from the baseline time effects of treatment III

and IV, respectively. P-values of testing other combinations on equalities of g1(·), g2(·), g3(·)

and g4(·) are also reported in Table 4.9.

Table 4.9 P-values of ANOVA tests on gj(·)s.

H0b p-value H0b p-value
g1(·) = g2(·) 0.894 g1(·) = g2(·) = g3(·) 0.046
g1(·) = g3(·) 0.018 g1(·) = g2(·) = g4(·) 0.010
g1(·) = g4(·) 0.004 g1(·) = g3(·) = g4(·) 0.000
g2(·) = g3(·) 0.020 g2(·) = g3(·) = g4(·) 0.014
g2(·) = g4(·) 0.006 g1(·) = g2(·) = g3(·) = g4(·) 0.004
g3(·) = g4(·) 0.860

This data set has been analyzed by Fitzmaurice, Laird and Ware (2004) using a random

effects model that applied the Restricted Maximum Likelihood (REML) method. They con-

ducted a two sample comparison test via parameters in the model for the difference between

the dual therapy (Treatment I-III) versus triple therapy (Treatment VI) without considering

the missing values. More specifically, they denoted Group = 1 if subject in the triple therapy

treatment and Group = 0 if subject in the dual therapy treatment, and the linear mixed effect

was

E(Y |b) = β1 + β2t+ β3(t− 16)+ + β4Group× t

+ β5Group× (t− 16)+ + b1 + b2t+ b3(t− 16)+,

where b = (b1, b2, b3) are random effects. They tested H0 : β4 = β5 = 0. This is equivalent

to test the null hypothesis of no treatment group difference in the changes in log CD4 counts

between therapy and dual treatments. Both Wald test and likelihood ratio test rejected the
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null hypothesis, indicating the difference between dual and triple therapy in the change of log

CD4 counts. Their results are consistent with the result we illustrated in Table 4.9.

4.8.2 Not-monotone Missingness

We also analyzed the data without assuming monotone missingness for the missing values

in this subsection. Instead of monotone assumption, we assume the missing propensity depends

on the past d(t) observations for a given time t as we described at Section 4.2. Recall that

from Section 4.2, if we assume small d for the missing propensity function, more data could be

used for analysis than monotone assumption. We presented the results for d = 1, 2, 3 in this

subsection.

For d = 1, three logistic models were used to model the missing propensity functions. In the

first model (M1) we include intercept, PreCD4, and Yji(t−1) as covariates. In the second model

(M2), only intercept and Yji(t−1) are included. In the third model, we used a nonlinear model

with intercept, Yji(t−1), Y
2
ji(t−1), and PreCD4 as covariates. As we did in previous monotone

case, AIC and BIC value differences among M1-M3 are reported in the following Table 4.10.

We observed that model M1 had the smallest AIC for four treatments among M1-M3. M1 also

had the smaller BIC values than M3, for Treatment II-IV, M2 had slightly smaller BIC values.

So, overall we would choose M1 to model the missing propensity. For d = 2 and d = 3, we

chose the missing propensity function in a similar way, but we do not report the AIC and BIC

values here for saving space.

Table 4.10 Differences in the AIC and BIC scores among three models (M1-M3) for d = 1.

Treatment I Treatment II Treatment III Treatment VI
Models

AIC BIC AIC BIC AIC BIC AIC BIC
M1-M2 -7.885 -2.992 -3.870 1.039 -3.519 1.365 -0.065 5.020
M2-M3 6.506 -3.281 2.125 -7.693 2.278 -7.491 -1.368 -11.155

Table 4.11 reports the parameter estimates and their corresponding standard errors. The

estimates for the coefficient of PrdCD4 are very much similar for d = 1, 2, 3, but the estimates
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for the coefficient of Age and Gender seem more variable among d = 1, 2, 3. Nevertheless, all

of the estimates at one d value are in the 95% confidence interval of the estimates at another

d value. For example, the 95% confidence interval for PreCD4 in Treatment I with d = 1 is

(0.6812, 0.8368) and the corresponding estimates with d = 2, 3 are in this confidence interval.

Basically, we may say the estimates at d = 1, 2, 3 are not significantly different among four

treatments.

Table 4.11 Parameter estimates and their standard errors with d = 1, 2, 3

Treatment I Treatment II Treatment III Treatment VI
Coefficients

β1 β2 β3 β4

d = 1 Age 0.0036(0.0031) 0.0061(0.0036) 0.0039(0.0043) 0.0059(0.0037)
PreCD4 0.7590(0.0389) 0.7440(0.0339) 0.7735(0.0441) 0.8441(0.0334)
Gender 0.0650(0.0874) 0.0343(0.1082) -0.1941(0.1208) -0.1892(0.0790)

d = 2 Age 0.0065(0.0037) 0.0059(0.0042) 0.0002(0.0053) 0.0050(0.0041)
PreCD4 0.7538(0.0429) 0.7282(0.0360) 0.7574(0.0443) 0.8409(0.0392)
Gender 0.0309(0.0895) 0.0318(0.1075) -0.2134(0.1282) -0.3019(0.0910)

d = 3 Age 0.0054(0.0036) 0.0049(0.0040) 0.0056(0.0053) 0.0044(0.0042)
PreCD4 0.7540(0.0443) 0.7666(0.0368) 0.7607(0.0482) 0.8476(0.0406)
Gender 0.0716(0.0955) 0.0942(0.0930) -0.2776(0.1294) -0.2527(0.1081)

Next, we summarize the ANOVA test results on βs with d = 1, 2, 3 at Table 4.12. The

p-values are consistent in the sense that the order of the p-values at different d values were

almost the same. For instance, the test for β2 = β4 always had the smallest p-value among all

the p-values with same d. The tests among β1, β2 and β4 had smaller p-values than the other

tests. All the test results showed some similarity treatment effects due to covariates among

Treatments I-III (dual therapy treatments) and difference comparing to Treatment IV (triple

therapy treatments), but there were not significant.

Finally, Table 4.13 illustrate the ANOVA test for the nonparametric baseline time effect

functions. The p-values were obtained from the bootstrap calibration test we introduced in

Section 4.5. Each p-value were based on 500 times resampling. The bandwidth selection

method and the weight function $(t) are the same with the monotone case. We found that
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Table 4.12 P-values of ANOVA tests on βs with d = 1, 2, 3

H0a p-value H0a p-value
d = 1 β1 = β2 0.9810 β1 = β2 = β3 0.9513

β1 = β3 0.7123 β1 = β2 = β4 0.6240
β1 = β4 0.3855 β1 = β3 = β4 0.7032
β2 = β3 0.7776 β2 = β3 = β4 0.7006
β2 = β4 0.3322 β1 = β2 = β3 = β4 0.8208
β3 = β4 0.8362

d = 2 β1 = β2 0.9910 β1 = β2 = β3 0.9404
β1 = β3 0.6640 β1 = β2 = β4 0.4341
β1 = β4 0.2654 β1 = β3 = β4 0.5296
β2 = β3 0.7375 β2 = β3 = β4 0.5465
β2 = β4 0.2102 β1 = β2 = β3 = β4 0.6614
β3 = β4 0.7282

d = 3 β1 = β2 0.9967 β1 = β2 = β3 0.8562
β1 = β3 0.5803 β1 = β2 = β4 0.5230
β1 = β4 0.2916 β1 = β3 = β4 0.5927
β2 = β3 0.5399 β2 = β3 = β4 0.5723
β2 = β4 0.2762 β1 = β2 = β3 = β4 0.6891
β3 = β4 0.8404
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the p-values when d = 3 are quite similar to the monotone case.

Table 4.13 P-values of ANOVA tests on gj(·)s with d = 1, 2, 3

H0b p-value H0b p-value
d = 1 g1(·) = g2(·) 0.750 g1(·) = g2(·) = g3(·) 0.224

g1(·) = g3(·) 0.068 g1(·) = g2(·) = g4(·) 0.070
g1(·) = g4(·) 0.026 g1(·) = g3(·) = g4(·) 0.038
g2(·) = g3(·) 0.110 g2(·) = g3(·) = g4(·) 0.058
g2(·) = g4(·) 0.016 g1(·) = g2(·) = g3(·) = g4(·) 0.056
g3(·) = g4(·) 0.550

d = 2 g1(·) = g2(·) 0.896 g1(·) = g2(·) = g3(·) 0.358
g1(·) = g3(·) 0.154 g1(·) = g2(·) = g4(·) 0.036
g1(·) = g4(·) 0.016 g1(·) = g3(·) = g4(·) 0.054
g2(·) = g3(·) 0.216 g2(·) = g3(·) = g4(·) 0.106
g2(·) = g4(·) 0.048 g1(·) = g2(·) = g3(·) = g4(·) 0.046
g3(·) = g4(·) 0.446

d = 3 g1(·) = g2(·) 0.886 g1(·) = g2(·) = g3(·) 0.044
g1(·) = g3(·) 0.016 g1(·) = g2(·) = g4(·) 0.010
g1(·) = g4(·) 0.002 g1(·) = g3(·) = g4(·) 0.004
g2(·) = g3(·) 0.042 g2(·) = g3(·) = g4(·) 0.026
g2(·) = g4(·) 0.014 g1(·) = g2(·) = g3(·) = g4(·) 0.004
g3(·) = g4(·) 0.812

4.9 Appendix: Technical Details

We provides the conditions used for Theorems 1-5 and some remark in this Appendix. The

proofs for Theorems 1, 2, 3 and 5 are also contained in this Appendix. The proof for Theorem

4 is largely similar to that of Theorem 1 and hence is omitted.

The following assumptions are made in this Chapter:

A1. Let S(θj) be the score function of the partial likelihood LBj (θj) for a q-dimensional

parameter θj defined in (4.2.6), and θj0 is in the interior of compact Θj . We assume

E{S(θj)} 6= 0 if θj 6= θj0, Var(S(θj0)) is finite and positive definite, and E
(

∂S(θj0)
∂θj0

)
exists and is invertible. The missing propensity πjim(θj0) > b0 > 0 for all j, i,m.
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A2. (i) The kernel function K is a symmetric probability density which is differentiable of

Lipschitz order 1 on its support [-1,1]. The bandwidths satisfy njh
2
j/ log2 nj → ∞,

n
1/2
j h4

j → 0 and hj → 0 as nj →∞.

(ii) For each treatment j (j = 1, · · · , k), the design points {tjim} are thought to be

independent and identically distributed from a super-population with density fj(t). There

exist constants bl and bu such that 0 < bl ≤ supt∈S fj(t) ≤ bu <∞.

(iii) For each hj and Tj , j = 1, · · · , k, there exist finite positive constants αj , bj and T

such that αjTj = T and bjhj = h for some h as h → 0. Let n =
∑k

i=1 nj , nj/n → ρj for

some non-zero ρj as n→∞ such that
∑k

i=1 ρj = 1.

A3. The residuals {εji} and {uji} are independent of each other and each of {εji} and

{uji} are mutually independent among different j or i, respectively; max1≤i≤nj ‖ujim‖ =

op{n
2+r

2(4+r)

j (log nj)−1}, max1≤i≤nj E|εjim|4+r <∞, for some r > 0; And assume that

lim
nj→∞

(njTj)−1

nj∑
i=1

Tj∑
m=1

E{X̃jimX̃τ
jim} = Σx > 0,

where X̃jim = Xjim − E(Xjim|tjim).

A4. The functions gj0(t) and hj(t) are, respectively, 1-dimensional and p-dimensional smooth

functions with continuously second derivatives on S = [0, 1].

Remark: Condition A1 are the regular conditions for the consistency of the binary MLE

for the parameters in the missing propensity. Condition A2(i) are the usual conditions for

the kernel and bandwidths in nonparametric curve estimation. Note that the optimal rate

for the bandwidth hj = O(n−1/5
j ) satisfies A2(i). The requirement of design points {tjim} in

(A2)(ii) is a common assumption similar to the ones in Müller (1987). Condition A2(iii) is

a mild assumption on the relationship between bandwidths and sample sizes among different

samples. In A3, we do not require the residuals {εji} and {uji} being respectively identically

distributed for each fixed j. This allows extra heterogeneity among individuals for a treatment.

The positive definite of Σx in Condition A3 is used to identify the “parameters” (βj0, γj0, gj0)

uniquely, which is a generalization of the identification condition used in Härdle, Liang and
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Gao (2000) to longitudinal data. This condition can be checked empirically by constructing

consistent estimate of Σx.

Derivation of (4.3.14) : To appreciate this, we note from (4.3.12) that via standard deriva-

tions in empirical likelihood (Owen, 1990) that ‖λj‖ = Op(n
−1/2
j ), and

λj = (
nj∑
i=1

Zji(β)Zji(β)τ )−1

nj∑
i=1

Zji(β) + op(n
−1/2
j ), j = 1, 2, . . . , k.

Then we can write

`n = 2min
β

1
2

k∑
j=1

{ nj∑
i=1

Zτ
ji(β)(

nj∑
i=1

Zji(β)Zji(β)τ )−1

nj∑
i=1

Zji(β)

}
+ op

{
(min

j
nj)−1/2

}

= min
β

k∑
j=1

1
njTj

{ nj∑
i=1

Zτ
ji(β)B−1

j

nj∑
i=1

Zji(β)

}
+ op

{
(min

j
nj)−1/2

}
(4.9.34)

where Bj := limnj→∞
1

njTj

∑nj

i=1E{Zji(βj0)Zji(βj0)τ}, which is not related with β for any

β = βj0 + ∆jn and ∆jn = O(n−1/2
j ).

Using the Lagrange method to carry out the minimizations in (4.9.34), we want to minimize

Q =
1
2

k∑
j=1

1
njTj

( nj∑
i=1

Zτ
ji(βj)B−1

j

nj∑
i=1

Zji(βj)

)
−

k∑
j=2

ητ
j (β1 − βj),

where η1, · · · , ηk are lagrange multipliers. Then

∂Q

∂β1
=

1
n1T1

n1∑
i=1

Zτ
1i(β1)B−1

1

n1∑
i=1

T1∑
m=1

δ1im

π1im(θ̂)
X̃1imX̃

τ
1im −

k∑
j=2

ηj ,

and
∂Q

∂βj
=

1
njTj

nj∑
i=1

Zτ
ji(βj)B−1

j

nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂)
X̃jimX̃

τ
jim + ηj , j = 2, . . . , k,

Setting β1 = β2 = · · · = βk = β, then the minima β satisfies

k∑
j=1

1√
njTj

ΩxjB
−1
j

nj∑
i=1

Zji(β) = op(1). (4.9.35)

Inverting (4.9.35) for β, we have

β =
( k∑

j=1

ΩxjB
−1
j Ωxj

)−1( k∑
j=1

ΩxjB
−1
j Ωxjyj

)
+ op(1).

2
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Lemma 1 Suppose (ei1, . . . , eiT )T
i=1 is a sequence of T - dimensional independent random vec-

tors and T is a fixed finite number, and max1≤i≤nE(|eim|δ) <∞ for some δ > 1 and all m. Let

{ajim, 1 ≤ i, j ≤ n, 1 ≤ m ≤ T} be a collection of real numbers such that max1≤j≤n
∑n

i=1

∑T
m=1 |ajim| <

∞. Let dn = max1≤i,j≤n,1≤m≤T |ajim|, then

max
1≤j≤n

|
n∑

i=1

T∑
m=1

ajimeim| = O{max(n1/δdn, d
1/2
n ) log n} a.s.

Proof This can be proved in a similar way as Lemma 1 of Shi and Lau (2000).

Lemma 2 Under assumptions A1, A2(i), A3 and A4, for any 1 ≤ l 6= g ≤ k, under the

hypothesis: βl0 = βg0,{
(Ω−1

xl
BlΩ−1

xl
) + (Ω−1

xg
BgΩ−1

xg
)
}−1/2(Ω−1

xl
Ωxlyl

− Ω−1
xg

Ωxgyg)
d→ N(0, Ip).

Proof Since we know that

Ω−1
xj

Ωxjyj =
1√
njTj

Ω−1
xj

nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j)
X̃jim(Ỹjim − M̃ τ

jimγ̃j)

=
1√
njTj

Ω−1
xj

nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j)
X̃jim(Ỹjim − X̃τ

jimβj0 − M̃ τ
jimγ̃j) + βj0

=
1√
njTj

Ω−1
xj

nj∑
i=1

Zji(βj0) + βj0,

and because samples l and g are mutually independent, we need to show that, for j = l, g,

(Ω−1
xj
BjΩ−1

xj
)−1/2Ω−1

xj
Ωxjyj

d→ N(0, Ip), which is equivalent to show that

1√
njTj

nj∑
i=1

Zji(βj0)
d→ N(0, Bj).

Recall that Ỹjim = X̃τ
jimβj0+M̃ τ

jimγj0+ g̃j0(tjim)+ ε̃jim, where g̃j0(tjim) = gj0(tjim)−gj0(tjim),

ε̃jim = εjim − εjim and

A(tjim) =
nj∑

i1=1

Tj∑
m1=1

wji1m1,h(tjim)A(tji1m1).

Then, it follows that
nj∑
i=1

Zji(βj0) =
nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j)
X̃jim

{
g̃j0(tjim) + M̃ τ

jim(γj0 − γ̃j) + ε̃jim

}

=
nj∑
i=1

Tj∑
m=1

δjim
πjim(θj0)

X̃jim

{
g̃j0(tjim) + M̃ τ

jim(γj0 − γ̃j) + ε̃jim

}
{1 + op(1)}.
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The last equality is true, since θ̂j − θj0 = Op(n
−1/2
j ). At the same time, we can decompose

X̃jim

{
g̃j0(tjim) + M̃ τ

jim(γj0 − γ̃j) + ε̃jim

}
=
{
h̃(tjim) + ujim − u(tjim)

}
{g̃j0(tjim) + εjim − εjim}

= ujimεjim +
{

(h̃(tjim)− u(tjim))εjim + (g̃j0(tjim)− εjim)ujim

}
+
{

(h̃(tjim)− u(tjim))(g̃j0(tjim)− εjim)
}

+ X̃jimM̃
τ
jim(γj0 − γ̃j)

:= I1 + I2 + I3 + I4, say.

From assumptions in A2(i) and the facts that

max
1≤i,i1≤nj ,1≤m,m1≤Tj

wji1m1,h(tjim) = O{(njhj)−1}

and
∑nj

i=1

∑kji

m=1wji1m1,h(tjim) = 1, we have, by applying Lemma 1

max
1≤i≤nj

‖h̃(tjim)− u(tjim)‖ = o(1) a.s., max
1≤i≤nj

|g̃j0(tjim)− εjim| = o(1) a.s., (4.9.36)

max
1≤i≤nj

‖(h̃(tjim)− u(tjim))(g̃j0(tjim)− εjim)‖ = o(n−1/2
j ) a.s..

Therefore,

1√
njTj

nj∑
i=1

Zji(βj0) =
1√
njTj

nj∑
i=1

Tj∑
m=1

{
δjimπ

−1
jim(θj0)

}
(I1 + I2 + I3 + I4)

:= J1 + J2 + J3 + J4, say.

It is easy to see J3 = op(1), J4 = op(1) and from (4.9.36),

|J2| ≤ op(1)×
∥∥∥ 1√

njTj

nj∑
i=1

Tj∑
m=1

{
δjimπ

−1
jim(θj0)

}
ujim

∥∥∥
+ op(1)×

∥∥∥ 1√
njTj

nj∑
i=1

Tj∑
m=1

{
δjimπ

−1
jim(θj0)

}
εjim

∥∥∥ = op(1).

We note that Var(J1) = Bj and J1 is a sum of independent random variables. Therefore, we

will complete our proof by verifying the Linderberg-Feller condition for α′J1, for any α ∈ Rp. Let
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νjim = δjimπ
−1
jim(θj0). Then for any ε > 0, let Ln :=

∑nj

i=1 Var
(∑Tj

m=1 α
′ujimνjimεjim

)
= O(nj),

Λn(ε) =
1
Ln

nj∑
i=1

E
[
I{

Tj∑
m=1

α′ujimνjimεjim ≥ ε
√
Ln}

{ Tj∑
m=1

α′ujimνjimεjim

}2]

≤ C

Ln

nj∑
i=1

E|
∑Tj

m=1 εjim|4+ro{n(r+2)/2
j (log nj)−(4+r)}‖α‖4+r

(ε
√
Ln)r+2

=
C‖α‖4+r

εr+2
o{log−(4+r)(nj)} → 0,

where C is a finite positive constant. This completes the proof of this Lemma. 2

Lemma 3 If the conditions A1, A2, A3 and A4 hold, then under null hypothesis H0a, i.e.

β10 = β20, `n
d→ χ2

p.

Proof Let S1 :=
∑k

j=1 ΩxjB
−1
j Ωxj and S2 :=

∑k
j=1 ΩxjB

−1
j Ωxjyj . In this Lemma, k = 2.

Then,

`n = (Ωτ
x1y1

− Sτ
2S

−1
1 Ωx1)B

−1
1 (Ωx1y1 − Ωx1S

−1
1 S2)

+ (Ωτ
x2y2

− Sτ
2S

−1
1 Ωx2)B

−1
2 (Ωx2y2 − Ωx2S

−1
1 S2) + op(1)

= (Ωτ
x1y1

Ω−1
x1
S1 − Sτ

2 )S−1
1 Ωx1B

−1
1 Ωx1S

−1
1 (S1Ω−1

x1
Ωx1y1 − S2)

+ (Ωτ
x2y2

Ω−1
x2
S1 − Sτ

2 )S−1
1 Ωx2B

−1
2 Ωx2S

−1
1 (S1Ω−1

x2
Ωx2y2 − S2) + op(1)

It is easy to show that

S1Ω−1
x1

Ωx1y1 − S2 = Ωx2B
−1
2 Ωx2(Ω

−1
x1

Ωx1y1 − Ω−1
x2

Ωx2y2),

S1Ω−1
x2

Ωx2y2 − S2 = Ωx1B
−1
1 Ωx1(Ω

−1
x2

Ωx2y2 − Ω−1
x1

Ωx1y1).

Then

`n = (Ωτ
x1y1

Ω−1
x1
− Ωτ

x2y2
Ω−1

x2
)V (Ω−1

x1
Ωx1y1 − Ω−1

x2
Ωx2y2) + op(1),

where

V = (Ωx2B
−1
2 Ωx2)S

−1
1 (Ωx1B

−1
1 Ωx1)S

−1
1 (Ωx2B

−1
2 Ωx2)

+ (Ωx1B
−1
1 Ωx1)S

−1
1 (Ωx2B

−1
2 Ωx2)S

−1
1 (Ωx1B

−1
1 Ωx1)

:= P1 + P2, say.
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We note that

P1 = (Ωx2B
−1
2 Ωx2)S

−1
1 (Ωx1B

−1
1 Ωx1)− (Ωx2B

−1
2 Ωx2)S

−1
1 (Ωx1B

−1
1 Ωx1)S

−1
1 (Ωx1B

−1
1 Ωx1)

and

P2 = (Ωx2B
−1
2 Ωx2)S

−1
1 (Ωx1B

−1
1 Ωx1)− (Ωx2B

−1
2 Ωx2)S

−1
1 (Ωx2B

−1
2 Ωx2)S

−1
1 (Ωx1B

−1
1 Ωx1).

It follows that V = (Ωx2B
−1
2 Ωx2)S

−1
1 (Ωx1B

−1
1 Ωx1).Notice that V is symmetric and V (Ω−1

x1
B1Ω−1

x1
)+

V ′(Ω−1
x2
B2Ω−1

x2
) = I. Thus, to prove the theorem, we just need to show that

(Ω−1
x1

Ωx1y1 − Ω−1
x2

Ωx2y2)
τ
{
(Ω−1

x1
B1Ω−1

x1
) + (Ω−1

x2
B2Ω−1

x2
)
}−1(Ω−1

x1
Ωx1y1 − Ω−1

x2
Ωx2y2)

d→ χ2
p,

which is true as Lemma 2 implies

{
(Ω−1

x1
B1Ω−1

x1
) + (Ω−1

x2
B2Ω−1

x2
)
}−1/2(Ω−1

x1
Ωx1y1 − Ω−1

x2
Ωx2y2)

d→ N(0, Ip).

This completes the proof of Lemma 3. 2

Proof of Theorems 1 Let S1 :=
∑k

j=1 ΩxjB
−1
j Ωxj and S2 :=

∑k
j=1 ΩxjB

−1
j Ωxjyj . From the

definition of `n,

`n =
k∑

j=1

(Ωτ
xjyj

− Sτ
2S

−1
1 Ωxj )B

−1
j (Ωxjyj − ΩxjS

−1
1 S2) + op(1)

=
k∑

j=1

(Ωτ
xjyj

Ω−1
xj
S1 − Sτ

2 )S−1
1 ΩxjB

−1
j ΩxjS

−1
1 (S1Ω−1

xj
Ωxjyj − S2) + op(1).

It can be shown that (similar to the proof of Lemma 3),

`n =



Ω−1
x1

Ωx1y1 − Ω−1
x2

Ωx2y2

Ω−1
x1

Ωx1y1 − Ω−1
x3

Ωx3y3

...

Ω−1
x1

Ωx1y1 − Ω−1
xk

Ωxkyk



τ

Σ0



Ω−1
x1

Ωx1y1 − Ω−1
x2

Ωx2y2

Ω−1
x1

Ωx1y1 − Ω−1
x3

Ωx3y3

...

Ω−1
x1

Ωx1y1 − Ω−1
xk

Ωxkyk


+ op(1), (4.9.37)

where Σ0 is a (k−1)p×(k−1)pmatrix with (j−1)−th (j = 2, · · · , k) diagonal matrix component

as (ΩxjB
−1
j Ωxj )− (ΩxjB

−1
j Ωxj )S

−1
1 (ΩxjB

−1
j Ωxj ) and (p− 1, q− 1)−th (p, q = 2, · · · , k) matrix

component is −(ΩxpB
−1
p Ωxp)S

−1
1 (ΩxqB

−1
q Ωxq).
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To make the derivation easily presentable, we only present the detail proof for k = 3, as

the general case can be done similarly except more tedious. From (4.9.37), we have

`n =

 Ω−1
x1

Ωx1y1 − Ω−1
x2

Ωx2y2

Ω−1
x1

Ωx1y1 − Ω−1
x3

Ωx3y3


τ

Σ0

 Ω−1
x1

Ωx1y1 − Ω−1
x2

Ωx2y2

Ω−1
x1

Ωx1y1 − Ω−1
x3

Ωx3y3

+ op(1), (4.9.38)

where Σ0 =

 A C

Cτ B

,

A = Ωx2B
−1
2 Ωx2 − (Ωx2B

−1
2 Ωx2)S

−1
1 (Ωx2B

−1
2 Ωx2),

B = Ωx3B
−1
3 Ωx3 − (Ωx3B

−1
3 Ωx3)S

−1
1 (Ωx3B

−1
3 Ωx3) and

C = −(Ωx2B
−1
2 Ωx2)S

−1
1 (Ωx3B

−1
3 Ωx3).

From the proof of Lemma 2, we know that

Σ1 = Var

 Ω−1
x1

Ωx1y1 − Ω−1
x2

Ωx2y2

Ω−1
x1

Ωx1y1 − Ω−1
x3

Ωx3y3


=

 Ω−1
x1
B1Ω−1

x1
+ Ω−1

x2
B2Ω−1

x2
Ω−1

x1
B1Ω−1

x1

Ω−1
x1
B1Ω−1

x1
Ω−1

x1
B1Ω−1

x1
+ Ω−1

x3
B3Ω−1

x3

 .

As Σ0 = Σ−1
1 , from (4.9.38) `n

d→ χ2
2p. This completes the proof. 2

Proof of Theorem 2 We note that Σ−1/2
D D

d→ N(k−1)p(γ, I(k−1)p), where D and ΣD are

defined before Theorem 2 and (4.3.15) respectively, and γ = Σ−1/2
D D. From (4.9.38), `n =

DτΣ−1
D D + op(1), therefore `n → χ2

(k−1)p(γ
2), which completes the proof of the theorem. 2

Proof of Theorem 3 Let vj(t, hj) =
∑nj

i=1R
2
ji{g(t)} and

dj(t, hj) =
nj∑
i=1

Tj∑
m=1

δjim

πjim(θ̂j)
K

(
tjim − t

hj

)
.

To simplify notation, we sometimes hide the arguments of vj(t, hj) and dj(t, hj). After plugging

in the leading term of Ln(t) into Tn, we have the leading term of Tn, which is∫ k∑
j=1

v−1
j

[ nj∑
i=1

Rji{0} − dj(
k∑

s=1

v−1
s d2

s)
−1

k∑
s=1

v−1
s ds

ns∑
i=1

Rsi{0}
]2
$(t)dt.
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Note that the leading order term of Ln(t) is
{∑2

j=1 ζj

}−1{
ĝ1(t) − ĝ2(t)

}2
with ζj =

vj(t, hj)/d2
j (t, hj) for k = 2; If k = 3, the leading term of Ln(t) will be ĝ1(t)− ĝ2(t)

ĝ1(t)− ĝ3(t)


′

Hn

 ĝ1(t)− ĝ2(t)

ĝ1(t)− ĝ3(t)

 (4.9.39)

where

Hn =
{ 3∑

j=1

ζ−1
j

}−1 ×

 ζ−1
2 (ζ−1

1 + ζ−1
3 ) −ζ−1

2 ζ−1
3

−ζ−1
2 ζ−1

3 ζ−1
3 (ζ−1

1 + ζ−1
2 )

 .

Under the local alternative gs0(t) = g10(t) + Cns∆ns(t) for s = 2, · · · , k, the test statistic

Tn can be written as

Tn =
∫ 1

0

k∑
j=1

v−1
j

{
B2

n(t) +A2
n(t) + 2An(t)Bn(t)

}
$(t)dt+ op(1)

:= Tn1 + Tn2 + Tn3 + op(1), (4.9.40)

where An(t) = dj

{
Cnj∆nj(t)−

(∑k
s=1 v

−1
s d2

s

)−1∑k
s=1 v

−1
s d2

sCns∆ns(t)
}

and

Bn(t) =
nj∑
i=1

Rji{gj0(t)} − dj

(
k∑

s=1

v−1
s d2

s

)−1 k∑
s=1

v−1
s ds

ns∑
i=1

Rsi{gs0(t)}.

Define σ2
εj = 1

njTj

∑nj

i=1

∑Tj

m=1E{
ε2
jim

πjim(θj0)}, R(K) =
∫
K2(t)dt and Vj(t) = R(K)σ2

εjfj(t).

We first show that (njTjhj)−1vj(t, hj)
p→ Vj(t).According to the definition of vj(t, hj), Rji{g(t)}

and g(t) = gj0(t) +O{(njhj)−1/2}, we get

1
njhjTj

nj∑
i=1

R2
ji{g(t)} =

1
njhjTj

nj∑
i=1

 Tj∑
m=1

K

(
tjim − t

hj

)
νjimεji(tjim)

2

+
1

njhjTj

nj∑
i=1

 Tj∑
m=1

K

(
tjim − t

hj

)
νjim {(gj0(tjim)− gj0(t))− (ĝj(tjim)− ĝj(t))}

2

+
1

njhjTj

nj∑
i=1

 Tj∑
m=1

K

(
tjim − t

hj

)
νjimX

τ
jim(βj0 − β̂j)

2

+ op(1)

:= A1(t) +A2(t) +A3(t) + op(1).

It is easy to see that A3(t) = Op(n−1
j ), since βj0 − β̂j = Op(n−1/2). For A2(t), we note that

the kernel K(t) has support on [−1, 1] and is Lipchitz continuous from assumption A2(i). Then
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a Taylor expansion yields

A2(t) =
1

njhjTj

nj∑
i=1

 Tj∑
m=1

νjimK

(
tjim − t

hj

)
(g′j0(t)− ĝ′j(t))(t− tjim) +Op(h2

j )

2

≤ 1
njhjTj

nj∑
i=1

 Tj∑
m=1

νjimK

(
tjim − t

hj

)2

|g′j0(t)− ĝ′j(t)|2h2
j + op(h2

j ) = op(h2
j ),

since g′j0(t)− ĝ′j(t) = op(1). Note that A1(t) can be written as

A1(t) =
1

njhjTj

nj∑
i=1

Tj∑
m=1

Tj∑
m1=1

K(
tjim − t

hj
)K
(
tjim1 − t

hj

)
νjimνjim1εji(tjim)εji(tjim1)

=
1

njhjTj

nj∑
i=1

Tj∑
m=1

K2

(
tjim − t

hj

)
ν2

jimε
2
ji(tjim)

+
1

njhjTj

nj∑
i=1

Tj∑
m6=m1

K

(
tjim − t

hj

)
K

(
tjim1 − t

hj

)
νjimνjim1εji(tjim)εji(tjim1)

:= A11(t) +A12(t).

Then

E{A12(t)} =
Tj − 1
hj

∫ 1

0

∫ 1

0
K

(
x− t

hj

)
K

(
y − t

hj

)
ρj(x, y)σj(x)σj(y)fj(x)fj(y)dxdy

= hj(Tj − 1)σ2
εj(t)f

2
j (t){1 + o(1)} = O(hj),

which is the case since Tj is finite. Note here, when m 6= m1, A12(t) is similar to the kernel

estimator for a bivariate function. Whereas in two dimensional kernel estimator are divided

by njTjh
2
j . However, the denominator is njTjhj in A12(t), so this term is a smaller order term

comparing to A11(t). From assumptions A2(ii) and A3(i), we know A11(t)
p→ Vj(t).
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Let us first consider the first term in Tn given in (4.9.40),

Tn1 =
∫ 1

0

k∑
j=1

v−1
j B2

n(t)$(t)dt

=
∫ 1

0

k∑
j=1

v−1
j

[ nj∑
i=1

Rji{gj0(t)}
]2
−
∫ 1

0

(
k∑

s=1

v−1
s d2

s

)−1 [ k∑
s=1

v−1
s ds

ns∑
i=1

Rsi{gs0(t)}
]2
$(t)dt

=
∫ 1

0

k∑
j=1

(
1−

[ k∑
s=1

v−1
s d2

s

]−1
v−1
j d2

j

)
v−1
j

[ nj∑
i=1

Rji{gj0(t)}
]2
$(t)dt

−
∫ 1

0

∑
j 6=j1

[ k∑
s=1

v−1
s d2

s

]−1
v−1
j djv

−1
j1
dj1

[ nj∑
i=1

Rji{gj0(t)}
][ nj1∑

i=1

Rj1i{gj10(t)}
]
$(t)dt

:= T (1)
n1 − T (2)

n1 , say, (4.9.41)

Let

S2
j1(t) =

1
njhjTj

nj∑
i=1

Tj∑
m=1

Tj∑
m1=1

δjimδjim1εjimεjim1

πjim(θj0)πjim1(θj0)
K

(
tjim − t

hj

)
K

(
tjim1 − t

hj

)
and

S2
j2(t) =

2
njhjTj

nj∑
i<i1


Tj∑

m=1

δjimεjim
πjim(θj0)

K

(
tjim − t

hj

)


Tj∑
m1=1

δji1m1εji1m1

πji1m1(θj0)
K

(
tji1m1 − t

hj

) .

We observe that

T (1)
n1 =

[ ∫ 1

0

k∑
j=1

{1−Wj(t)}V −1
j (t)S2

j1(t)$(t)dt

+
∫ 1

0

k∑
j=1

{1−Wj(t)}V −1
j (t)S2

j2(t)$(t)dt
]
{1 + op(1)}

:= (T (11)
n1 + T (12)

n1 ){1 + op(1)}.

Since E{S2
j1(t)} = Vj(t)+O(h), E(T (11)

n1 ) =
∑k

j=1

∫ 1
0 (1−Wj(t))$(t)dt = k− 1+O(h) and the

variance of T (11)
n1 is O(n−1h) = o(h), under the condition h = O(n−1/5). Thus

h−1/2{T (11)
n1 − (k − 1)} p→ 0. (4.9.42)

Define ξji(t) = 1√
hjTj

∑Tj

m=1K
(

tjim−t
hj

)
νjimεjim, then we have

T (12)
n1 =

k∑
j=1

nj∑
i6=i1

n−1
j

∫ 1

0
{1−Wj(t)}V −1

j (t)ξji(t)ξji1(t)$(t)dt+ op(h1/2). (4.9.43)
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and

T (2)
n1 =

∑
j 6=j1

nj∑
i=1

nj1∑
l=1

(njnj1)
− 1

2

∫ 1

0

(Wj(t)Wj1(t)
Vj(t)Vj1(t)

)1/2
ξji(t)ξj1l(t)$(t)dt+ op(h1/2). (4.9.44)

Let N =
∑k

j=1 nj . We stack ξji (j = 1, · · · , k, i = 1, · · · , nj) to form a sequence φs, s =

1, · · · , N. Let Gj be the collection of the subscripts of φ whose corresponding ξ are in Treatment

j. Define

Cps(t) =
1

n(p, s)

{ k∑
j=1

I(p ∈ Gj , s ∈ Gj)V −1
j (t)−

k∑
j=1

k∑
l=1

(Wj(t)Wl(t)
Vj(t)Vl(t)

)1/2
I(p ∈ Gj , s ∈ Gl)

}
,

(4.9.45)

where n(p, s) =
∑k

j=1

∑k
l=1(njnl)1/2I(p ∈ Gj , s ∈ Gl) and I(p ∈ Gj , s ∈ Gl) is the usual

indicator function. Using these notations, we may write

UN := T (12)
n1 − T (2)

n1 = 2
N∑

p=1

∑
s<p

ψ(φp, φs), (4.9.46)

where ψ(φp, φs) =
∫ 1
0 Cps(t)φp(t)φs(t)$(t)dt. Then (4.9.46) is a quadratic form with kernel

ψ(φp, φs). Let σ2
ps = Var{ψ(φp, φs)}. Using results for generalized quadratic form with inde-

pendent but not identically distributed random variables (de Jong, 1987) if

{Var(UN )}−1 max
1≤p≤N

N∑
s=1

σ2
ps → 0 and (4.9.47)

{Var(UN )}−2EU4
N → 3, (4.9.48)

then (4.9.46) is asymptotically normally distributed with mean 0 and variance

Var(UN ) = Var(T (12)
n1 ) + Var(T (2)

n1 )− 2Cov(T (12)
n1 , T (2)

n1 ). (4.9.49)

Let us first derive Var(UN ). We note that Var(T (12)
n1 ) =

∑k
j=1

4
n2

j

∑
i<i1

σ2
1,jii1

where

σ2
1,jii1 = EiEi1

[ ∫ 1

0

∫ 1

0

{1−Wj(t)}{1−Wj(u)}
Vj(t)Vj(u)

ξji(t)ξji1(t)ξji(u)ξji1(u)$(t)$(u)dtdu
]

=
1
T 2

j

∑
m,m1

{1−Wj(tjim)}2

V 2
j (tjim)

σ2
εji(tjim)σ2

εji1(tji1m1)

×$2(tjim)
(
K(2)

( tjim − tji1m1

hj

))2 {
1 + o(1)

}
,
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where σ2
εji(tjim) = E{ε2jim/πjim(θj0)}. Since {tjim} are fixed design points generated from a

density fj(t), via a Taylor expansion and by Assumption A2(ii),

Var(T (12)
n1 ) = 2hR(K)−2K

(4)
1 (0)

k∑
j=1

b−1
j

∫ 1

0
(1−Wj(t))2$2(t)dt{1 + o(1)}. (4.9.50)

Similar to our derivation for the variance of T (12)
n1 , it may be shown that

Var(T (2)
n1 ) = 2hR(K)−2

k∑
j 6=j1

K
(4)
bj/bj1

(0)(bjbj1)
−1/2{

∫ 1

0
Wj(t)Wj1(t)$

2(t)dt}{1+ o(1)}. (4.9.51)

From (4.9.49), we also need to calculate the covariance between T (12)
n1 and T (2)

n1 . Using the

same method for calculating variance for T (12)
n1 and T (2)

n1 , we may show that

Cov(T (12)
n1 , T (2)

n1 ) = O(h2), (4.9.52)

In summary of (4.9.50), (4.9.51) and (4.9.52),

Var(UN ) := hσ2
0 = 2hK(2)(0)−2

∫ 1

0
Λ(t)$2(t)dt{1 + o(1)}, (4.9.53)

where Λ(t) is defined just before Theorem 3.

Next we need to establish the conditions (4.9.47) and (4.9.48). For (4.9.47), we have

{Var(UN )}−1 max
1≤p≤N

N∑
s=1

σ2
ps = (hσ2

0)
−1 max

1≤j≤k
1≤i≤nj

{ 1
n2

j

nj∑
i1=1

σ2
1,jii1 +

k∑
j1=1

1
njnj1

nj1∑
i1=1

σ2
2,jij1i1

}
≤ (hσ2

0)
−1
[

max
1≤j≤k
1≤i≤nj

{ 1
n2

j

nj∑
i1=1

σ2
1,jii1

}
+ max

1≤j≤k
1≤i≤nj

{ k∑
j1=1

1
njnj1

nj1∑
i1=1

σ2
2,jij1i1

}]
.

From conditions (A2) and (A3),

max
1≤j≤k
1≤i≤nj

1
n2

j

nj∑
i1=1

σ2
1,jii1 = max

1≤j≤k
1≤i≤nj

1
njTj

∑
m

{1−Wj(tjim)}2

V 2
j (tjim)

σ2
εji(tjim)$2(tjim)

×
{ 1
njTj

nj∑
i1=1

Tj∑
m1=1

σ2
εji1(tji1m1)

(
K(2)

( tjim − tji1m1

hj

))2 }
= max

1≤j≤k
1≤i≤nj

{ 1
njTj

∑
m

{1−Wj(tjim)}2σ2
εji(tjim)σ−2

εj (tjim)f−1
j (tjim)$2(tjim)

}
× {R(K)−2K

(4)
1 (0)}hj = O(n−1h).

And similarly, max 1≤j≤k
1≤i≤nj

{∑k
j1=1

1
njnj1

∑nj1
i1=1 σ

2
2,jij1i1

}
= O(n−1h). These imply (4.9.47).
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It is remain to check (4.9.48). By (4.9.46), we have

E(U4
N ) = E(T (12)

n1 )4 − 4E{(T (12)
n1 )3T (2)

n1 }+ 6E{(T (12)
n1 )2(T (2)

n1 )2} − 4E{T (12)
n1 (T (2)

n1 )3}+ E(T (2)
n1 )4.

(4.9.54)

It can be seen that E{(T (12)
n1 )3T (2)

n1 } = E{T (12)
n1 (T (2)

n1 )3} = 0. At the same time, we observed

that

E(T (12)
n1 )4 = E

{ k∑
j=1

nj∑
i6=i1

n−4
j

[ ∫ 1

0
{1−Wj(t)}V −1

j (t)ξji(t)ξji1(t)$(t)dt
]4}

(4.9.55)

+ 3E
{ k∑

j=1

nj∑
i6=i1

n−2
j

[ ∫ 1

0
{1−Wj(t)}V −1

j (t)ξji(t)ξji1(t)$(t)dt
]2

×
k∑

j1=1

nj1∑
i2 6=i3

i6=i1,i1 6=i3

n−2
j1

[ ∫ 1

0
{1−Wj1(t)}V −1

j1
(t)ξj1i2(t)ξj1i3(t)$(t)dt

]2}
+ o(h).

The term marked by (4.9.55) is O(n−2), hence is negligible; and the second term on the right

hand side converges to 3{Var(T (12)
n1 )}2. Similarly, we can show that E(T (2)

n1 )4 → 3{Var(T (2)
n1 )}2

and 6E{(T (12)
n1 )2(T (2)

n1 )2} → 6Var(T (12)
n1 )Var(T (2)

n1 ). From (4.9.54),

lim
n→∞

{Var(UN )}−2E(U4
N ) = lim

n→∞
3{Var(UN )}−2{Var(T (12)

n1 ) + Var(T (2)
n1 )}2 = 3.

Therefore, (4.9.48) is verified and then we have the asymptotic normality of UN .

In summary of (4.9.42), (4.9.46) and (4.9.53),

h−1/2{Tn1 − (k − 1)} d→ N(0, σ2
0). (4.9.56)

Let us consider Tn2 =
∫ 1
0

∑k
j=1 v

−1
j A2

n(t)$(t)dt. Recall the definition of An(t) in (4.9.40).

From Assumption A2(iii) that there exist finite number aj and bj such that njTjhj = (ajbj)−1nTh

and Cjn = a
−1/2
j b

−1/4
j (nT )−1/2h−1/4. and Then it can be shown that h−1/2(Tn2 − µ1) = op(1)

and where

µ1 =
∫ 1

0

[ k∑
j=1

b
− 1

2
j V −1

j (t)f2
j (t)∆2

nj(t)−
( k∑

s=1

b
− 1

4
s Vs(t)−

1
2W

1
2

s (t)fs(t)∆2
ns(t)

)2]
$(t)dt.
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It remains to consider Tn3 = 2
∫ 1
0

∑k
j=1 v

−1
j An(t)Bn(t)$(t)dt. Using the expression of An(t)

and Bn(t), we can decompose Tn3 as

Tn3 = 2
∫ 1

0

k∑
j=1

v−1
j djCnj∆nj(t)

nj∑
i=1

Rji{gj0(t)}$(t)dt

− 2
∫ 1

0

( k∑
j=1

v−1
j d2

j

)−1( k∑
j=1

v−1
j d2

jCnj∆nj(t)
)( k∑

s=1

v−1
s ds

ns∑
i=1

Rsi{gs0(t)}
)
$(t)dt

:= T (1)
n3 − T (2)

n3 , say.

We know that

T (1)
n3 = 2

∫ 1

0

k∑
j=1

Vj(t)−1fj(t)Cnj∆nj(t)
nj∑
i=1

Rji{gj0(t)}$(t)dt

= 2
k∑

j=1

h
3/4
j T (1j)

n3 {1 + op(1)}

Thus we can say T (1)
n3 is Op(h3/4) if we can show T (1j)

n3 = Op(1). It is sufficient to show that

Var(T (1j)
n3 ) = O(1). Indeed, after some algebra, we get

Var(T (1j)
n3 ) = R(K)−2

∫ 1

0
σεj(y)∆2

j (y)dy
∫
K(2)(z)dz{1 + o(1)} = O(1).

Therefore T (1)
n3 = Op(h3/4). The second term of Tn3, T (2)

n3 can be written in a similar form

as T (1)
n3 , which is also Op(h3/4). Thus Tn3 = Op(h3/4). In summary of these and (4.9.56),

h−1/2Tn3 = op(1), we have via Slutsky Theorem, h−1/2(Tn − (k − 1) − µ1)
d→ N(0, σ2

0). Thus

the proof is completed. 2

Proof of Theorem 5 We want to establish the bootstrap version of Theorem 3. To avoid

repetition, we only outline some important steps in proving this theorem.

We use v∗j (t, hj) and d∗(t, hj) to denote the bootstrap counterparts of vj(t, hj) and d(t, hj)

respectively. Let o∗p(1) and O∗
p(1) be the stochastic order with respect to the conditional

probability measure given the original samples.

We want to show first that

(njhjTj)−1v∗j (t, hj)− V ∗(t) = o∗p(1), as nj →∞. (4.9.57)
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where V ∗(t) = R(K)σ̂2
εjfj(t). This can be seen from the following decomposition,

1
njhjTj

nj∑
i=1

R∗2ji {ĝ1(t)} =
1

njhjTj

nj∑
i=1

 Tj∑
m=1

ν∗jimK

(
tjim − t

hj

)
ε̂jim

2

+
1

njhjTj

nj∑
i=1

 Tj∑
m=1

ν∗jimK

(
tjim − t

hj

)
Xτ

jim(ξ̂j − ξ̂∗j )

2

+
1

njhjTj

nj∑
i=1

 Tj∑
m=1

ν∗jimK

(
tjim − t

hj

){
(ĝ1(tjim)− ĝ1(t))− (ĝ∗j (tjim)− ĝ∗j (t))

}2

+ o∗p(1)

:= A∗1 +A∗2 +A∗3 + o∗p(1),

where ν∗jim =
δ∗jim

πjim(θ̂∗j )
=

δ∗jim

πjim(θ̂j)

(
1− πjim(θ̂∗j )−πjim(θ̂j)

πjim(θ̂j)

)
. Then we can apply πjim(θ̂j)−πjim(θ̂∗j ) =

O∗
p(n

−1/2
j ), ξ̂j−ξ̂∗j = O∗

p(n
−1/2
j ) and ĝ′j(t)−ĝ∗

′
j (t) = o∗p(1) to A∗2 and A∗3. By the similar procedure

as we derive expression for vj(t, hj) in the proof of Theorem 3, we can get (4.9.57).

Corresponding to the leading term of Tn, the leading term of T ∗
n is

∫ 1

0

k∑
j=1

v∗−1
j

[ nj∑
i=1

R∗ji{ĝ1(t)} − d∗j

(
k∑

s=1

v∗−1
s d∗2s

)−1 k∑
s=1

v∗−1
s d∗s

ns∑
i=1

R∗si{ĝ1(t)}
]2
$(t)dt

=
∫ 1

0

k∑
j=1

{1−W ∗
j (t)}V ∗−1

j (t)S∗2j1 (t)$(t)dt+
{∫ 1

0

k∑
j=1

{1−W ∗
j (t)}V ∗−1

j (t)S∗2j2 (t)$(t)dt

−
∫ 1

0

∑
j 6=j1

[ k∑
s=1

v∗−1
s d∗2s

]−1
v∗−1
j d∗jv

∗−1
j1

d∗j1

[ nj∑
i=1

R∗ji{ĝ1(t)}
][ ns∑

i=1

R∗si{ĝ1(t)}
]
$(t)dt

}
:= B∗

1 +B∗
2 ,

where W ∗
j (t) =

fj(t)/{ajbj σ̂2
εj}∑k

l=1 fl(t)/{alblσ̂
2
εl}
, S∗2j1 (t) and S∗2j2 (t) are the bootstrap version of S2

j1(t) and

S2
j2(t) defined in the proof of Theorem 3. Then, using a similar approach to the one used in

establishing the asymptotic normality of Tn1 in (4.9.41) in the proof of Theorem 3. We may

show that

h−1/2{B∗
1 − (k − 1)} = o∗p(1) and h−1/2B∗

2 |Xn
d→ N(0, σ2

0) a.s.

Hence, Theorem 5 is established. 2
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CHAPTER 5. Summary and General Discussion

In Chapter 2 and 3 of this thesis, we discussed the simultaneous tests for high dimensional

data. In Chapter 2, we considered the simultaneous test for regression coefficients, while the

high dimensional test for high dimensional mean under sparsity and dependency was proposed

in Chapter 3. The test proposed for regression coefficients is very powerful against the non-

sparse alternative, i.e., a large number of predictors are associated with the response and most

of which account for only a small effect. The test proposed in Chapter 3 was designed to detect

the sparse alternatives where we have a prior information that only a small portion of the

alternatives are different from the null hypothesis.

The test we developed in Chapter 3 is for the high dimensional means. One of the future

directions is to develop a high dimensional test for regression coefficients under sparsity as-

sumption. The difficulty in high dimensional regression context (p >> n) comparing to that

in means is that the explicitly consistent estimate of coefficients is not available and has to

be found by minimizing a penalized likelihood. Therefore, the method based on threshold

may not be directly applicable except relatively strong conditions are assumed for the design

matrix (Arias-Castro et al., 2010). A more appealing method for constructing test statistic

in such case may base on the likelihood ratio statistics. It would be interesting to investigate

the distribution or asymptotic distribution of the penalized likelihood ratio statistics under the

high dimensional null hypothesis and alternative hypothesis. For the mild dimension case, Fan

and Peng (2004) proposed a parametric penalized likelihood ratio (p5/n→ 0). Tang and Leng

(2010) proposed a penalized empirical likelihood ratio for making inference (p2/n → 0). But

their methods are only applicable when the data dimension is smaller than the sample size. It

is worthwhile to explore how to extend these methods to “large p, small n” cases, where we

have dimension higher than sample size.
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Sparsity is often assumed in the current high dimensional statistical inference literature,

especially in the variable selection context. The assumption serves as a simplification of the

possible complex structure in high dimensional problems. In the regression context, the sparsity

increases the estimation accuracy and makes the consistent variable selection possible. In

the dimension reduction context, the sparsity means effective representation lying in a low

dimension. However, in practice, it is often not clear if a sparsity or non-sparsity model is more

appropriate. So it would be interesting to develop a test which can perform well under both

sparse and non-sparse scenarios in the future.

In Chapter 4, we proposed empirical likelihood ratio based test statistics for comparing

treatment effects in longitudinal data, including ANOVA tests for cohort effects and time

effects. In our proposal, the number of repeated measurement for each individual is assumed

fixed but the sample size growing. In contrast to our setting, some papers in the literature

considered the growing number of repeated measurements but keep the sample size fixed (for

example, Fan and Zhang, 2000). Under their setting, the longitudinal data can be regarded

as functional data (Ramsey and Silverman, 1997). Therefore the functional ANOVA could be

employed to analyze such data. However, most of the longitudinal data only have very limited

repeated measurements. It would be interesting to investigate how to apply the functional

ANOVA technique to longitudinal data with a small number repeated measurements. Recently

developments in applying functional data analysis method to sparsely sampled longitudinal

data can be found in Hall, Müller and Wang (2006) and Yao, Müller and Wang (2005) among

others.
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