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INTRODUCTION 

The tapping mode atomic force microscopy (AFM) has been widely used as a tool to 
image sample surfaces [1-3]. It has been modeled as a single degree-of-freedom nonlinear 
oscillator [4-11]. In this model, the tip-sample interactions are described by contact theory 
with adhesion (Johnson-Kendall-Roberts (JKR) theory) [12-14]. The viscoelasticity is 
considered as a friction force by adding a damping constant. Magonov and Elings [15] 
presented experimental results which show different phase sensitivity for stiff and soft 
samples. Anczykowski et al.[16] presented results on amplitude vs. tip-sample separation 
and showed the existence of hysteresis due to nonlinearity and the transition between 
attractive and repulsive forces. Kuhle et al [17] demonstrated experimentally the frequency 
response hysteresis and pointed out the effect of attractive force on this hysteresis using a 
linear interaction force approximation. 

In this paper, we analyze the effects of damping and interaction forces (attractive and 
repulsive) on tapping mode AFM response. A simple analytical approximation is given to 
clarify this behavior. It shows that the phase and amplitude of cantilever vibration is 
dominated by the adhesion (attractive) or elastic (repulsive) force depending on sample 
properties and experimental conditions (amplitude ratio, driving frequency and driving 
amplitude). Instability or hysteresis may occur in the transition between these two states. 
The damping effect can significantly affect this transition. The analysis explains the 
hysteresis phenomena observed in the experimental frequency response and the effect of 
amplitude ratio in the AFM phase image [15]. 

EXPERIMENTAL OBSERVATIONS 

A typical example of the experimentally measured vibration amplitude and phase 
frequency responses in tapping mode AFM is shown in Fig.l. The results were obtained 
using a commercial scanning probe microscope (NanoScope™ ) on a polyethylene sample. 
The frequency response is obtained by tuning the driving frequency slowly in the vicinity 
of the free resonance from high to low or from low to high as indicated by the arrows in the 
figure. The amplitude and phase of the free cantilever vibration are shown in the figure by 
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Figure I. A typical frequency response in tapping mode AFM measured on polyethylene. 
The arrows show the frequency scanning directions. 

dashed lines. As shown in Fig.l(a), from lower frequency to D' and from B' to high 
frequency there is free vibration; as the driving frequency increases to A, the amplitude 
suddenly increases to make the tip contact the surface. After the tip contacts the surface, 
amplitude increases as frequency increases. Then at frequency B which is higher than the 
resonance frequency the amplitude jumps to the free vibration value. The same 
phenomenon happens when the scanning frequency goes from high to low except the jump 
points are different. Similar phenomena have been observed by Anczykowski et al [16] and 
Kuhle et al. [17]. 

Figure 2 shows the experimental phase-amplitude ratio relations which are taken 
from Mogonov and E1ings [15] for soft and stiff materials. As one can see, at high 
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Figure 2. Phase versus setpoint amplitude ratio for soft and stiff materials. Experimental 
results are given by Magonov et al. [15]. 
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amplitude ratio, when the tip touches the sample surface only slightly and the interaction is 
attractive, the phase is negative. As the amplitude ratio decreases, the effect of elastic force 
(repulsive) increases and the phase increases. The transition from negative to positive is 
very sharp for a stiff material. The phase for the stiff material is always higher than that for 
the soft material except near zero amplitude ratio where the phase for the soft material 
dramatically increases. Below we will investigate the effect of interaction forces on these 
behaviors. 

THE SYSTEM MODEL AND APPROXIMATE SOLUTION 

Model Description 

A simple model of tapping mode AFM is a single degree-of-freedom nonlinear 
oscillator as shown in Fig.3. The vibrating system is described by the differential equation 

d 2z dz 
-2 + 2a - + (z + F(z)1 k c ) = Uo COS(WT). 
dT dT 

(I) 

where W c= J kj m, T = t 1 W c and a is the damping constant which includes free 

vibration damping a o and the losses occurring in the sample during the tip sample 

interaction. F(z) is the tip-sample interaction force. 

The static tip-sample interaction forces have been described by the macroscopic 
continuum theories such as the Hertz, Johnson-Kendall-Roberts (JKR) and DeIjaguin
Muller-Toporov (DMT) contact model. The relation between force and deformation in the 
DMT model is [10]: 

F = K.JRd 3/2 - 2mvR , 

where w is the surface energy, K.JRd 3/ 2 is the repUlsive Hertzian contact force and 

11 K = 3«1-v;)1 E, +(l-v;)1 Ec)/4. V,'Vc are the Poisson ratio of the sample and 

cantilever respectively 

m 

...... 
d 

... 

Uo cos(on) 

t Z=Zo 

z 

Figure 3. Model of tapping mode AFM. 
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and Es, Ec are the Young's modulus of sample and cantilever respectively. R represents the 
tip radius. The deformation d=z-zo. If one considers the attractive forces near the surface at 
d<O. the relation between force and deformation can be written as 

{
f(d) 

F-
- K..[iid 3/2 - fo 

d<O 

d~O ' 
(2) 

wheref(d) represents the van der Waals or other long range attractive force and as was 
given in [10]: 

I(d) = ( -I'r' d/ +1 
Ido 

wherej. is the adhesion force 21CWR. d<O and <10<0 is a normalization constant. 

When the tip impacts the material surface energy loss occurs due to viscoelasticity 
and adhesion, especially for polymers and bIological materials. We account for these losses 
using the damping constant as. The radiation losses also can be accounted for by this 

constant. We add this damping constant in equation (1) a = as +ao when deformation 

d>do. 

Approximate Solution 

The vibration amplitude may be considered nearly sinusoidal and the approximate 
solution can be written in the form : 

z = Acos(mr +1"1'). 

Substituting this solution in eq.(l) and using the first order of the Krylov-Bogolubov
Mitropolsky asymptotic approximation [18], the amplitude A and phase l{J can be found 

analytically as: 

Damping a. and resonance frequency m. are calculated as : 
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Z+d 
where e = (Or + qJ and eo = arccos(--_O ) . 

A 

RESULTS AND DISCUSSION 

Amplitude and Phase Response to Driving Frequency 

The experimental results shown in Fig. 1 (a,b) exhibit complicated hysteresis 
behavior appearing near resonance. The analytical solution described above has been used 
to analyze these phenomena. Fig.4(a,b) and Fig.S(a,b) show simulated frequency responses 
under different interaction conditions. Fig.4(a,b) clearly shows competition between 
attractive and repulsive forces controlling the nonlinear resonance behavior resulting from 
the cantilever surface interaction: 1) the adhesion force which leads to softening of the 
vibration system with amplitude increase and bending ofthe resonance curve to lower 
frequency (dashed curve in Fig.4(a,b» and 2) the surface elastic repulsive force leading to 
stiffening of the vibration system with amplitude increase resulting in resonance curve 
bending to higher frequency, shown by the dotted curve in Fig4(a,b). The resulting solid 
line shows the combination of both behaviors (Fig. 4) 

As one can see, there are two frequency ranges where three solutions (two stable and 
one unstable) exist. When the tip approaches the sample surface, the forces change as 
described by eq. (2). At d<O. the interaction force is attractive (adhesion force), and we 
assume in calculations that it affects the amplitude and phase of the cantilever vibration at 
d ~ do and is zero at d<do. Two frequency ranges are dominated by the attractive force: 
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Figure 4. Simulated frequency response in tapping mode. 
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Figure 5. Simulated frequency response in tapping mode. 

DA and C'C with amplitude range shown between the two straight lines in Fig.4(a). When 
the frequency is swept from below toward the free resonance, the cantilever is drawn to the 
surface (the amplitude jumps from point A to point A') due to the attractive adhesion force. 
When the driving frequency is above the free resonance frequency, the vibration does not 
follow the free vibration part of the resonance curve (CB') even though the free vibration 
amplitude is smaller than the tip offset Z. Instead the amplitude first changes on the C''B 
segment ofthe curve and then jumps to point B' which is on the free vibration branch. 

As the frequency is swept from above the free resonance, at position C the nonlinear 
resonance behavior is first dominated by the adhesion force and the amplitude increases 
slowly along CC'. At some distance the repulsive (elastic) force compensates the attractive 
force and the vibration amplitude increases suddenly (jumps) to point C" (since the free 
vibration amplitude is larger). At point C" it stabilizes on the resonance branch C"A' 
controlled by elastic forces. The amplitude changes to point D below resonance where it 
abruptly changes to the free vibration amplitude at point D'. Unlike the CC' segment, the 
solution segment AD corresponding to attractive force domination is unstable. 

Comparison of the frequency responses with different damping shows that the 
transition BB' is significantly dependent on the damping and decreases rapidly to lower 
frequency and amplitude as the damping increases. At the same time the jump position 
DD' increases slightly as the damping increases while the transitions AA' and C'C" are 
only influenced slightly by the damping effect. 

The sudden increase of the vibration amplitude A increases the effective interaction 
time eo and, as follows from eq (4a), the effective damping a •. However, the effective 
damping increase will decrease the vibration amplitude as follows from eq.3b. By 
smoothing the amplitude variation, the damping effect decreases the unstable vibration 
range and smooths the transition between the two states dominated by adhesion and 
elasticity forces. As shown in the phase response in Fig.5(b), without damping, the phase 
is almost constant with frequency and changes from positive to negative phase at very high 
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frequency which is out of the scale range in Fig. 5(b). This phase change at resonance is 
common for small damping and happened in this case due to the nonlinearity at 
ro = roe instead of ro = roo' Similar to the transition BB' (fig.5b) it occurs by ajump on the 

stable free vibration branch (F) instead of the unstable branch (U) of the phase 
characteristic. Since a o «I, the effective damping a e is dominated by sample damping 

as (eq. 4.a). The sample damping as increases the effective damping significantly and 

leads to the shape of the phase characteristic shown by the solid line in fig. 5(b). Therefore 
the phase variation is significantly affected by the damping effect. 

Phase Response on Interaction Forces 

Figure 6 shows simulated dependences of phase versus amplitude ratio for different 
values of interaction forces and damping. For zero sample damping as = 0 , the phase is 

positive for tip/sample interaction controlled by repulsive (elastic) forces (top curve F+ is 
for zero attractive (adhesion) force fo=O). The phase is negative for interaction controlled 
by attractive forces. The phase for zero elastic forces (K=O) is exactly equal in value and 
opposite in sign (F_ curve). 

For very small material damping and nonzero elastic and adhesion interaction forces, 
the phase is on the lower F_ or upper F+ phase curves independently of the actual value of 
these forces. With decrease of NAJ ratio, the transition occurs from the bottom F_ 
adhesion-dominated interaction curve to the top F+ elastic-dominated interaction curve. 
The value of surface stiffness K at which the transition occurs is shown in the figure. One 
concludes that the phase characteristic is absolutely insensitive to the magnitude of the 
interaction forces, however it is very sensitive (phase inversion) to transition from 
attractive to repulsive force control oscillation as the tip approaches the surface during 
tapping. As shown in Fig.6, the phase is significantly dependent on the damping. As 
damping increases, the phase decreases and shifts from repulsive force control F+ to 
attractive force control F_. The damping makes the specimen surface become effectively 
"stiff' which leads to small deformation. At small deformation, the dominant interaction is 
the attractive force. Therefore the phase decreases and the negative regime increases as 
damping increases. 
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CONCLUSION 

By using an analytical model which includes the attractive, repulsive and damping 
forces, the complicated features in tapping mode AFM have been represented and 
supported by experiment. The AFM measured features are dominated by two regimes: 
adhesion force control or elastic force control. Due to the nonlinear character ofthe AFM 
vibration system, the transition between the two regimes depends on the system parameters 
and damping. 
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