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ABSTRACT

Let G be a finite abelian group. Given S ⊆ G, a ∈ G, any set of the form a + S = {a} + S is

called a translate of S. A coloring of the elements of G is S−polychromatic if every translate of S

contains an element of each color. The largest number of colors allowing an S−polychromatic color-

ing of the translates of S is known as the polychromatic number of S, denoted pG(S). Determining

the polychromatic number of finite abelian groups is a relatively new and unexplored method that

can be used to solve the following problem: What is the maximum number of elements in a subset

of G which does not contain a translate of S? This type of problem called a Turán-type problem

is common in extremal graph theory, but is new to the realm of algebra. This dissertation aims to

determine bounds on the desired maximum number of elements, referred to as the Turán number,

using polychromatic colorings on the desired maximum number of elements within the context of

the well known abelian group the integers modulo n, denoted Zn for all n ≥ 3. The problem is also

redefined and explored within the context of nonabelian groups such as the dihedral group and the

dicyclic group.

Trivial bounds are first presented on the Turán number for any group. Results on the im-

provement of the trivial lower bound are then presented. The results involve determining the

polychromatic number for various subsets. The polychromatic number of any subset of cardinality

two of any group is determined. Results related to the polychromatic number of any subset of odd

prime cardinality of Zn are presented. Results related to the polychromatic number of subsets of

cardinality three and n of D2n and subsets of cardinality three of Dicn are also presented.
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CHAPTER 1. INTRODUCTION

1.1 Review of Literature

1.1.1 Basic Graph Theory Terms

A graph is a pair G = (V,E) of disjoint sets where the elements of E are 2−element subsets of

the set V . The elements of V are the vertices (or nodes, or points) of the graph G, the elements of

E are its edges (or lines). Two vertices x, y (i.e. x, y ∈ V ) of G are said to be adjacent or neighbors

if e = {x, y} is an edge of G (i.e. {x, y} ∈ E). Two edges e 6= f are adjacent if they have a vertex

in common. A vertex x is incident with an edge if x ∈ e. The usual way to picture a graph is by

drawing a dot for each vertex and a line between two vertices if there is an edge containing said

vertices. An example of such a structure is a graph called a cycle on n vertices, denoted Cn which

is formed by connecting the n vertices in a closed chain. The figure below is the graph C4 [8].

Figure 1.1 The graph of C4

If, V0 ⊆ V and E0 ⊆ E such that H = (V0, E0), H is a subgraph of a graph G, denoted H ⊆ G.

In particular, C4 ⊆ Q3 where Q3 is the 3−dimensional hypercube. An n−dimensional hypercube,

denoted Qn is a graph whose vertices are n−tuples with entries in {0, 1} and whose edges are pairs

of n−tuples that differ in exactly one position. The figure below is the graph Q3 [18].

Let G = (V,E) and G′ = (V ′, E′) be two graphs. G and G′ are said to be isomorphic i.e.

G ∼= G′, if there is a bijection φ : V → V ′ such that {xy} ∈ E ⇐⇒ {φ(x), φ(y)} ∈ E′ for all
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Figure 1.2 The graph of Q3

x, y ∈ V . Such a bijection φ is called an isomorphism [8]. Note that C4 is a subgraph of Q3 as all

of the faces of the cube shape formed by Q3 are isomorphic to C4. Said another way, Q3 contains

multiple “copies” of C4.

Another notable type of graph is the complete graph on n vertices, denoted Kn, which is a graph

such that all vertices are pairwise adjacent. The below figure is the graph K2.

Figure 1.3 The graph of K2

Yet another type of graph is a hypergraph which is a pair (V,E) of disjoint sets where the

elements of E are non-empty subsets of any cardinality of V . Therefore, graphs are special types

of hypergraphs where all the elements of E are subsets of V of cardinality 2 [8].

A problem common to graph theory involves assigning labels to the edges of a graph so that any

adjacent edges are labeled distinctly. An edge coloring of a graph G = (V,E) is a map χ : E → S

with χ(e) 6= χ(f) for any adjacent edges e and f . The elements of the set S are called colors [8].

Another common problem that can be posed with respect to graphs is: what is the greatest number

of edges that a graph on n vertices can possess without containing a copy of a certain graph H

as a subgraph? A famous result of Pál Turán both answers this question when H is the complete

graph on r vertices and is also viewed as the origin of a branch of mathematics known as extremal

graph theory. The Turán graph, Tn,r, is formed by partitioning a set of n vertices into r subsets,
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with sizes as equal as possible, and connecting two vertices by an edge if and only if they belong to

different subsets. The graph therefore has n mod r subsets of size dnr e and r − (n mod r) subsets

of size bnr c. The below figure is the graph T8,3 [8].

Figure 1.4 The graph of T8,3

Turán’s famous result is as follows.

THEOREM 1.1.1. [8] For all integers r, n with r > 1, every n-vertex graph G such that Kr 6⊆ G

and possesses the maximum number of edges is the Turán graph Tn,r−1.

1.1.2 Basic Group Theory Terms

A group is an ordered pair (G, ?) where G is a set and ? is a function ? : G ×G → G called a

binary operation on G satisfying the following axioms:

(i) (associativity) (a ? b) ? c = a ? (b ? c) for all a, b, c ∈ G.

(ii) (existence of an identity element) There is an element e ∈ G called an identity of G such that

for all a ∈ G, a ? e = e ? a = a.

(iii) (existence of inverses) For each a ∈ G there is an element a−1 ∈ G called an inverse of a such

that a ? a−1 = a−1 ? a = e. [10]

A group is called abelian if a ? b = b ? a for all a, b ∈ G. Usually if a group is abelian the binary

operation is denoted by “ + ”. The integers under addition, (Z,+), is an example of an abelian

group. However, (Z,+) is what is called an infinite group as there are infinitely many elements
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in the set of integers. The groups in question that are of interest for most of this dissertation

are finite groups, that is, groups whose underlying sets consist of only finitely many elements.

An example of such a finite group which is also abelian that will be explored extensively in this

dissertation is known as the integers modulo n denoted Zn (where n ≥ 2) under an operation

known as modular arithmetic. Let n be a fixed positive integer. A relation can be defined on Z by

a ∼ b if and only if n|(b− a). This relation is an equivalence relation as ∼ is reflexive, symmetric,

and transitive. If a ∼ b, a ≡ b mod n is written and read a is congruent to b mod n. For any

k ∈ Z, the equivalence class of a is denoted a and is called the congruence class or residue class

of a mod n and consists of the integers which differ from a by an integer multiple of n. That is,

a = {a + kn|k ∈ Z} = {a, a ± n, a ± 2n, a ± 3n}. These are the n distinct equivalence classes

modn and thus the elements of Zn are denoted 0, 1, . . . , n− 1. The elements are determined by the

possible remainders after division by n and these residue classes partition the integers Z [10].

The process of finding the equivalence class modn of some integer a is often referred to as reducing

a mod n which refers to finding the smallest nonnegative integer congruent to a mod n. An addition

and multiplication for the elements on Zn can be defined by defining an operation called modular

arithmetic. Suppose for a, b ∈ Zn, define their sum and product by

a+ b = a+ b and a · b = ab.

For example, consider Z4. The elements are 0, 1, 2, 3. Some examples which arise from modular

arithmetic are:

2 + 3 = 5 ≡ 1 and 2 · 3 = 6 ≡ 2.

For convenience, when the integers modulo n are used, the bar notation will be dropped.

A group is called nonabelian if it is not true that a ? b = b ? a for all a, b ∈ G [10]. An example

of such a group that will be explored extensively is the dihedral group of order 2n, denoted D2n

with n ≥ 3. This group is formed as follows. The elements of D2n are given as

D2n = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}.



5

That is, each element can be written uniquely in terms of two generators in the form skri for some

k ∈ {0, 1} and 0 ≤ i ≤ n− 1. The group also requires the following relations to hold:

(i) |r| = n and |s| = 2;

(ii) s 6= ri for any i;

(iii) sri 6= srj for all 0 ≤ i, j ≤ n− 1 with i 6= j;

(iv) sr = r−1s;

(v) sri = r−is for all 0 ≤ i ≤ n [10].

It is also necessary to introduce topics related to substructures of groups. Let G be a group. A

subset H of the group is a subgroup if H is nonempty, closed under the operation and inverses i.e.

if x, y ∈ H, then x−1 ∈ H and x?y ∈ H. In this case, H ≤ G is written. Suppose G = Z4, consider

H = {0, 2}. The inverses of 0 and 2 are themselves respectively, while 0+2 = 2 ∈ H. Thus, H ≤ G.

A group is cyclic if it can be generated by a single element. That is, there is some element x ∈ H so

that H = {xn|n ∈ Z}. For example, the element 1 generates Zn for all values of n ≥ 2. Note that

it is possible to form cyclic subgroups of any group G with any element x. That is, for any x ∈ G

where G is a group the cyclic subgroup generated by element x is given by 〈x〉 = {xn|n ∈ Z}. For

any N ≤ G and any g ∈ G, let gN = {gn|n ∈ N} and Ng = {ng|n ∈ N} called respectively a left

coset and a right coset of N in G. Any element of a coset is called a representative for that coset.

The left cosets and right cosets of H = {0, 2} ≤ G = Z4 are equivalent and are 0+H = H = H+0,

1 + H = {1, 3} = H + 1, 2 + H = H = H + 2, 3 + H = {1, 3} = H + 3 [10]. Similarly, some

important terms are those which show how different groups are related to each other. Let (G, ?)

and (H, �) be groups. A map ϕ : G→ H such that

ϕ(x ? y) = ϕ(x) � ϕ(y), for all x, y ∈ G

is called a homomorphism. The map ϕ is called an isomorphism and G and H are said to be

isomorphic, written G ∼= H, if
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(i) ϕ is a homomorphism and

(ii) ϕ is a bijection.

For example, consider the mapping ϕ which sends an element in the subgroup generated by any

element x in any group G to the integers modulo |〈x〉|:

ϕ : 〈x〉 → Z|〈x〉|;xj 7→ j for any nonnegative integer j.

Clearly, the group is injective and surjective. It is also a homomorphism as

ϕ(xj ? xi) = ϕ(xj+i) = j + i = ϕ(xj) + ϕ(xi).

1.1.3 Background of the Problem

As was mentioned in Subsection 1.1.1, Turán’s theorem resolved the following problem: What

is the maximum number of edges that a simple undirected graph on n vertices can contain so that

the graph does not possess a complete subgraph on r vertices? This is the first instance of question

called a Turán-type problem being employed. Such problems have since become commonplace in

extremal graph theory as well as extremal combinatorics and generally follow the outline: maximize

a specified value while averting a given illegal situation. Being as that they are such popular prob-

lems in discrete mathematics, Turán-type problems have been very well examined when it comes

to graphs. However, with respect to mathematical structures such as groups, there are only a few

known results. In this section a Turán-type problem in the hypercube Qn is introduced as well

a coloring technique known as polychromatic coloring and other related results and information.

The coloring in question will be used extensively in this dissertation. It is important to note that

polychromatic colorings can provide bounds for Turán-type problems and thus this is a motivation

for studying such colorings. In addition to this, various coloring results on groups are also given in

order to demonstrate versatility and usefulness of coloring problems on groups.

For graphs G and H, let ex(G,H), the Turán number, denote the maximum number of edges in a

subgraph of G which does not contain a copy of H. In [3], ex(G,H) is studied when the base graph

G is the n−dimensional hypercube Qn. That is, the analogue of Turán’s theorem in the hypercube
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Qn is the motivation. This setting was introduced by Erdős who asked how many edges can a

C4−free subgraph of the hypercube contain [11]. However, in [3] a generalization of the C4−free

subgraph problem is taken in a different direction. That is, for arbitrary d, bounds on ex(Qn, Qd)

are given.

Firstly, the trivial bounds on ex(Qn, Qd) are explained. For convenience, the complementary prob-

lem is introduced. That is, let f(n, d) denote the minimum number of edges one must delete from

the n−cube to make it d−cube-free. Note that f(n, d) = e(Qn)− ex(Qn, Qd). A simple averaging

argument yields that for any fixed d the function f(n,d)
e(Qn) is non-decreasing in n, so a limit cd exists.

Next, trivially, f(d, d) = 1, and so cd ≥ 1
d2d−1 . Otherwise, if one deletes edges of the hypercube on

every dth level, one obtains a Qd−free subgraph. This can be seen as every d−dimensional subcube

must span d+ 1 levels. Therefore, cd ≤ 1
d . The main result in [3] presented in regards to cd is

THEOREM 1.1.2. [3]

Ω

(
log d

d2d

)
= cd ≤


4

(d+1)2
if d is odd

4
d(d+2) if d is even.

All of the arguments in [3] are presented in Ramsey-type framework. A coloring of the edges

of Qn is called d−polychromatic if every subcube of dimension d has all the colors represented on

its edges. Let pc(n, d) be the largest integer p such that there exists a d−polychromatic coloring of

the edges of Qn in p colors. As with cd, pc(n, d) ≤ d2d−1 and f(n, d) ≤ e(Qn)
pc(n,d) . Since pc(n, d) is a

non-increasing function in n, it stabilizes for large n. Let pd be this limit, then cd ≤ 1
pd

is obtained.

The main result in [3] presented in regards to pd is

THEOREM 1.1.3. [3]

(
d+ 1

2

)
≥ pd ≥


(d+1)2

4 if d is odd

d(d+2)
4 if d is even.

Note that the lower bound in Theorem 1.1.3 implies the upper bound in Theorem 1.1.2. In [16],

Theorem 1.1.3 is improved upon by showing the proposed lower bound is actually the value of pd.
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THEOREM 1.1.1. [16]

pd =


(d+1)2

4 if d is odd

d(d+2)
4 if d is even.

Continuing with such work, a new asymptotic bound is given for pd when the hypercube being

examined is Q3 in [17].

PROPOSITION 1.1.1. [17] Let G be the graph obtained by removing two parallel edges of Q3

that are not incident to any common edges. Then pd ≥ 3.

A related problem considers coloring multiple subgraphs within a given graph G. In [5], the

concept of coloring more than one subgraph of a given graph G with respect to polychromatic

colorings is introduced. If G is a graph and H is a set of subgraphs of G, an edge-coloring of G

is H−polychromatic if every graph from H receives all colors on its edges. The H−polychromatic

number of G, denoted polyH(G), is the largest number of colors allowing an H−polychromatic

coloring to exist. If such an H−polychromatic coloring of G uses polyH(G) colors, this coloring

is called an optimal H−polychromatic coloring of G. With these definitions, the work done in [3]

yields that with G = Qn, H is the family of subgraphs of G isomorphic to Qd, and if d is fixed and

n is large, b (d+1)2

4 c ≤ polyH(Qn) ≤
(
d+1

2

)
. The results of interest in [5] concern G being a complete

graph and H being a family of spanning subgraphs. To this end, let F1 = F1(n) be the family of

all 1−factors of Kn, F2 = F2(n) be the family of all 2−factors of Kn, and HC = HC(n) be the

family of all Hamiltonian cycles of Kn. The following results are then given.

THEOREM 1.1.4. [5] If n is an even positive integer, then polyF1(Kn) = blog2 nc.

THEOREM 1.1.5. [5] There exists a constant c such that blog2(n+1)c ≤ polyF2(Kn) ≤ polyHC(Kn) ≤

blog2 nc+ c. Moreover, blog2
8(n−1)

3 c ≤ polyHC(Kn).

It is possible, however, to convert the question of finding the polychromatic number of a given

graph to one of coloring a rectangular grid. In [12], the problem of determining the polychromatic

number of a subgraph G of Qn is transformed. The set of color classes are put into a rectangular



9

grid with the ith row containing the color classes (a, b) with a+b = i and the ith column containing

classes of the form (i, j) as pictured in the following figure.

(0, 0)

(0, 1)(1, 0)

(0, 2)(1, 1)(2, 0)

(0, 3)(1, 2)(2, 1)(3, 0)

(0, 4)(1, 3)(2, 2)(3, 1)(4, 0)

(0, 5)(1, 4)(2, 3)(3, 2)(4, 1)(5, 0)

...
...

...
...

...
...

. . .

Figure 1.5 Color classes in a rectangular grid

Firstly, special notation for hypercubes is employed. The n coordinates of a vertex of the

hypercube are referred to as bits, and given an edge {x, y}, the unique bit where xi 6= yi is called

the flip bit. An edge of Qn is represented by an n−bit vector with a star in the flip bit. Similarly,

an embedding of Qd in Qn is given by an n−bit vector with stars in d coordinates [12].

Next, the desired grid is constructed. A region of the grid is all color classes contained in some

consecutive rows and columns. A shape is a finite set of elements of the grid. Two shapes are

congruent if one is a translation of the other. That is, if S = {(a1, b1), (a2, b2), . . . , (ak, bk)} then

S′ ∼= S” if and only if S′ = {(a1 + i, b1 + j), (a2 + i, b2 + j), . . . , (ak + i, bk + j)} for some i, j ∈ Z.

A shape list is a finite list of shapes S1, . . . , Sk such that if i < j, then Si is not to the right of

Sj . Two shape lists are congruent if each contains the same number of shapes, and corresponding

shapes in the lists are congruent and are horizontal translations of each other. A shape sequence

S is the set of all shape lists congruent to a specific list. An instance of a shape sequence S is

one particular list. Define an i× j parallelogram to be a set of color classes of the following form:

{(a+ α, b+ β) : 0 ≤ α < j, 0 ≤ β < i} [12].
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LEMMA 1.1.1. [12] Consider a shape sequence S of shapes S1, . . . , Sk, with elements in rows

i1, . . . , i`. Let Xi
j be the number of elements in Sj in row i, and let Xi = maxj X

i
j. Then

p(S) ≤
i∑̀

i=is

Xi.

Therefore, the question of determining polychromatic colorings of the hypercube so that every

subgraph G contains every color is changed into a question of coloring the above grid of color classes

so that every shape sequence corresponding to G contains every color.

FACT 1.1.1. Let n ≥ d ≥ 1. Every shape sequence for an embedding of Qd in Qn consists of d

shapes S1, . . . , Sd where Si is a (d − i + 1) × i parallelogram, and each shape occupies the same d

rows. The color classes in Si correspond to the edges using the ith star from the left. Conversely,

every instance of such a shape sequence corresponds to some embedding of Qd in Qn.

The information from [12] is of special interest as grid colorings inspired by the grid colorings

of [12] are used in this dissertation to yield new results on finite groups.

Also, of interest are plane graphs and how one can apply polychromatic colorings to their faces.

Let F (G) denote the set of faces of G. The size of a face f ∈ F (G) is the number of vertices on

its boundary. For a plane graph G, which is a graph G together with an embedding of G into

the plane, let g(G) denote the size of the smallest face in G. For a vertex k−coloring, a face

f ∈ F (G) is polychromatic if all k colors appear on the vertices of f . A vertex k−coloring of G is

polychromatic if every face of G is polychromatic. The polychromatic number of G, denoted p(G),

is the largest number of colors k such that there is a polychromatic vertex k−coloring of G. Define

p(g) = min{p(G)|G plane graph, g(G) = g}. The main result of [1] bounds the minimum possible

polychromatic number for plane graphs G with g(G) = g.

THEOREM 1.1.2. [1] p(1) = p(2) = 1, p(3) = p(4) = 2, and for g ≥ 3,⌊
3g − 5

4

⌋
≤ p(g) ≤

⌊
3g + 1

4

⌋
.

Again, with the motivation for studying polychromatic numbers still being that they provide

bounds for Turán-type problems, it is not just to graphs that polychromatic colorings can be applied.
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In [6] polychromatic colorings are for the first time applied to abelian groups. Let G denote an

arbitrary abelian group. Given S, T ⊆ G and n ∈ G, define the sets S + T = {s+ t : s ∈ S, t ∈ T}

and n+ S = {n}+ S. Any set of the form n+ S is called a translate of S. Given a subset S of G,

a coloring of the elements of G is S−polychromatic if every translate of S contains an element of

each color. The polychromatic number of S, denoted pG(S) or p(S) when the choice of G is clear

is defined to be the largest number of colors allowing an S−polychromatic coloring of the elements

of G to exist. Several examples are provided.

EXAMPLE 1.1.1. If G = Z and |S| = 1 or |S| = 2, then p(S) = |S|. If |S| = 1, then its easy

to show that p(S) = 1 as simply assign every element one color. If p(S) = 2, S = {a, a+ b} where

a, b ∈ Z. Then, a translate of S is {0, b}. If b is odd, simply assign one color to all even integers

and another color to all odd integers. If b is even, then any integer can be written as mb + i for

any m ∈ Z and 0 ≤ i ≤ b − 1, so any translate can be written as {mb + i, (m + 1)b + i} and thus

the assignment is c0 if m is even and c1 if m is odd where c0 and c1 denote distinct colors.

EXAMPLE 1.1.2. If G = Z and |S| = 3, then p(S) = 2 or p(S) = 3. For instance, suppose

S = {0, 1, 5}. Then, every translates of S consists of elements from three distinct modulus classes

(mod 3). Therefore, an S−polychromatic coloring with 3 colors can be constructed by assigning 3

distinct colors to each of the 3 congruence classes (mod 3). That is, p({0, 1, 5}) = 3.

If S = {0, 1, 3}, however, then p({0, 1, 3}) = 2. The proof that p({0, 1, 3}) < 3 follows by way of

contradiction. Suppose there is an S−polychromatic coloring of Z with 3 colors. Call it χ. Then,

χ(0), χ(1), χ(3) are all distinct. For any s ∈ {0, 1, 3} there is a translate that contains both s and

2, so χ(s) = χ(2) and therefore any such coloring is impossible.

It is interesting to note that translates of the integers can be written as hypergraphs. In [2],

a given subset S of the integers and the translates of S are thought of as a hypergraph. More

explicitly, for a set of integers S, let H = H(S) denote the infinite hypergraph whose set of vertices

is the set of integers Z and whose set of edges is the set of all translates of S. That is, V (H) = Z

and E(H) = {x + S : x ∈ Z}. Such a hypergraph H is called a shift hypergraph of S. With

these definitions, [2] explores polychromatic colorings on the integers, however, such colorings are
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referred to as “good” colorings. One of the main results shows that if S ⊂ Z of cardinality at least

4k2, then there exists an S−polychromatic coloring for the shift hypergraph H(S). Also, for large

subsets S, it can be shown that p(S) ≥ (1+O(1))|S|
3 ln |S| [2].

The main result presented in [6] with respect to polychromatic colorings are subsets of Z of cardi-

nality 4.

THEOREM 1.1.6. [6] If S ⊆ Z and |S| = 4, then p(S) ≥ 3.

The proof of Theorem 1.1.6 is quite long. Of particular interest is a small result that reduces

the problem of finding a polychromatic coloring of Z for a specified S of order 4 to finding a

polychromatic coloring of Zm = {0, 1, . . .m− 1} for a particular value of m.

LEMMA 1.1.2. [6] Let a, b, c, k, q ∈ Z with 0 < a < b < c, gcd(a, b, c) = 1, k, q ≥ 1, and

m = c− a+ b. Let S = {0, ka, kb, kc}, S1 = {0, a, b, c}, S2 = {0, b− a, b, 2b− a}. Then

(i) pZ(S) = pZ(S1).

(ii) pZ(S1) ≥ pZm(S1).

(iii) pZm(S1) = pZm(S2).

(iv) If gcd(k, q) = 1, then pZq(S) = pZq(S1).

The significance of Lemma 2.0.10 is not merely because of its usefulness in proving Theorem

1.1.6, but because it provides the first instance of information of polychromatic colorings on the

integers modulo n - one of the large focuses of this dissertation.

In addition to the exploration of polychromatic colorings on the integers modulo n, [6] defines the

relationship between the polychromatic number and a Turán-type problem in an abelian group. A

subset T ⊆ G is a blocking set for subset S if G \ T contains no translate of S. That is, for all

n ∈ G, n + S 6⊆ G \ T . A Turán-type problem defined within the context of an abelian group G

therefore asks: what is the smallest blocking set for a given set S? This is the main question that

concerns this dissertation with respect to finite groups both abelian and nonabelian, however in [6]

the question is relegated to the case where S is finite and G = Z. In this case, any blocking set is



13

countably infinite and so instead of the cardinality of a blocking set, the interest is in the density

of a blocking set. To this end, for any set T ⊆ Z, the upper density d(T ) and lower density d(T )

of T are defined as

d(T ) = lim sup
n→∞

|T ∩ [−n, n]|
2n+ 1

and d(T ) = lim inf
n→∞

|T ∩ [−n, n]|
2n+ 1

.

If d(T ) = d(T ), this common value is called the density of T and denoted d(T ). Next, the parameter

α(S) measures how small the density of a blocking set for a subset S can be. That is,

α(S) = inf{d(T ) : T is a blocking set for S and d(T ) exists}.

The following result gives the relationship between polychromatic colorings and blocking sets.

LEMMA 1.1.3. [6] For any finite set S ⊆ Z, α(S) ≤ 1
p(S) .

The proof of Lemma 1.1.3 relies on the fact that any color class in an S−polychromatic coloring

of the integers forms a blocking set. It is important to note that [6] displays the relationship between

polychromatic colorings and tiling an abelian group by translation which is relevant to original

results on the integers modulo n within this dissertation. Firstly, given a set S ⊆ G, a subset

T ⊆ G is a complement set for S if S + T = G. If it is the case that this sum is unique for every

group element, then S tiles G by translation i.e. if s1, s2 ∈ S, t1, t2 ∈ T , such that s1 + t1 = s2 + t2,

then s1 = s2 and t1 = t2. If S tiles G by translation, this is denoted by S ⊕ T = G. For example,

if S = {0, 1, 5}, then S tiles Z with complement set T = {3n : n ∈ Z}. However, if S = {0, 1, 3},

there is no such T . A relationship between complement sets and blocking sets can be established

as well.

LEMMA 1.1.4. [6] Let G be an abelian group and S ⊆ G. Then T ⊆ G is a complement set for

S if and only if −T is a blocking set for S.

It is essential to note that for any subset T of an abelian group G, let −T denote the set

{−t : t ∈ T}. A result that is particularly important on which a couple of the results presented in

this dissertation rest upon is the following.
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THEOREM 1.1.7. [6] Let G be any abelian group. A finite set S ⊆ G tiles G by translation if

and only if p(S) = |S|. Moreover, if χ is an S−polychromatic coloring of G with |S| colors and T

is the set of elements of G colored by χ with any given color, then S ⊕ T = G.

The following corollary guarantees that given a finite set tiles an abelian group, it is not the

only set that tiles the group.

Corollary 1.1.1. [6] If a finite set S tiles an abelian group G by translation, then any polychromatic

coloring of G with |S| colors is also a (−S)−polychromatic coloring.

Additionally, it suffices to show that a subset tiles a nontrivial subset of an abelian group in

order to show it tiles the entire group.

LEMMA 1.1.5. [6] If a set S ⊆ G tiles a nontrivial subgroup H of G, then S tiles G.

Given Theorem 1.1.7 in [6], there is clearly a connection between tiling by translation and

determining the polychromatic number of a given abelian group. In [9], multiple terms and inter-

esting results related to tiling by translation which is simply referred to as “tiling” are introduced.

Suppose G is a finite abelian group. A factorization of G is a collection (A1, . . . , Ak) of subsets

such that every g ∈ G can be uniquely represented as a1 + . . . ak, where ai ∈ Ai. A factorization

is normed if every subset in the factorization contains 0. A tiling is a special case of a normed

factorization in which there are only two subsets (denoted V and A). Any subset V for which there

exists a subset A such that (V,A) is a tiling of G is called a tile of G. A group G posses the Rédei

property if in every tiling (V,A) of G either V or A is contained in a proper subgroup of G. If G

does not possess the Rédei property then there is some tiling (V,A) of G in which 〈V 〉 = 〈A〉 = G,

where 〈S〉 denotes the subgroup generated by S for any S ⊆ G such tilings are said to be full rank

[9].

Let V − V denote the set {v1 − v2 : v1, v2 ∈ V }. The following results demonstrate the connection

between subgroups and tiling by translation.

PROPOSITION 1.1.2. [9] Let V,A ⊆ G with 0 ∈ V and 0 ∈ A. Then, (V,A) is a tiling of G if

and only if (V − V ) ∩ (A−A) = {0} and |V ||A| = |G|.
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PROPOSITION 1.1.3. [9] A subset V ⊆ G is a tile of G if and only if it is a tile of 〈V 〉.

Tilings (V,A) with the property that 〈V 〉 = G are called proper tilings.

THEOREM 1.1.8. [9] Let V be a tile of G with 〈V 〉 6= G. The z = |G|
|V | , and let m = |G|

|〈V 〉| . The

pair (V,A) is a tiling of G if and only if A has the following form:

1. For i = 0, 1, . . . ,m− 1, let Ai ⊂ 〈V 〉 be such that (V,Ai) is a tiling of 〈V 〉.

2. Let c0 = 0, c1, . . . , cm−1 be a set of coset representatives for G
〈V 〉 .

Then

A = A0 ∪ (c1 +A1) ∪ · · · ∪ (cm−1 +Am−1).

Theorem 1.1.8 implies that all of the tilings of G can be constructed if all of the proper tilings

of the subgroups of G are known. For any A ⊆ G, let A0 = {g ∈ G : g + A = A}. A0 is the set of

periodic points of A and is sometimes called the kernel of A. If 0 ∈ A, then A0 ⊆ A.

PROPOSITION 1.1.4. [9] If 0 ∈ A, then A0 is a subgroup of G contained in A and A is the

union of disjoint cosets of A0.

THEOREM 1.1.3. [9] Let (V,A) be a tiling of G, and let A0 be the kernel of A. Then, ( V
A0
, A
A0

)

is a tiling of G
A0

.

There is not much already known about the polychromatic number or Turán number with

respect to abelian groups and nothing in the context of nonabelian groups. However, coloring

techniques have been applied to groups in the past. For example, coloring sets of natural numbers

is tackled in [4] in order to resolve a conjecture given in [14]. A subset is monochromatic if all

its elements have the same colors and is rainbow if all its elements have distinct colors. Assume

that {1, . . . , n} is colored into r colors. Can an arithmetic progression of length k be found so that

all its elements are colored distinct colors? Such an a colored arithmetic progression is called a

rainbow AP (k). The answer to this question is “no” in general. In [4], conditions on a coloring

of [n] = {1, . . . , n} forcing rainbow AP (3) are explored. Let c : [n] → {A,B,C} be a coloring of
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[n] in three colors. Let M(c) be the cardinality of the smallest color class in c. The value M(n) is

defined to be the largest M(c) over all colorings c of [n] in three colors with no rainbow AP (3).

THEOREM 1.1.4. [4] M(n) ≤ n+4
6 .

Determining how to color arithmetic progressions in other groups is taken further in [7]. Let

S be a finite nonempty subset of G an abelian group. A k−term arithmetic progression (k−AP)

in S is a set of distinct elements of the form a, a + d, a + 2d, . . . , a + (k − 1)d where d ≥ 1 and

k ≥ 2. An r−coloring of S is a function c : S → [r] where [r] = {1, . . . , r}. Such a coloring

is exact if c is surjective. Given an r−coloring c of S, the ith color class is Ci = {x ∈ S :

c(x) = i}. An arithmetic progression is called rainbow if the image of the progression under the

r−coloring is injective. Formally, given c : S → [r], a k−term arithmetic progression is rainbow if

{c(a + id) : i = 0, 1, . . . , k − 1} has k distinct values. The anti-van der Waerden number aw(S, k)

is the smallest r such that every exact r−coloring of S contains a rainbow k−term arithmetic

progression. Some results in [7] include logarithmic bounds on aw([n], 3) and semi-linear bounds

on aw([n], k). However, of special interest is when the group G in question is the integers modulo

n and k = 3. These results include the following:

PROPOSITION 1.1.5. [7] Let m and s be positive integers with s odd. Then

aw(Z2ms, 3) ≤ aw(Zs, 3) + 1.

PROPOSITION 1.1.6. [7] For positive n and k, aw(Zn, k) = n if and only if k = n.

PROPOSITION 1.1.7. [7] For positive n ≥ 5, if n is prime then aw(Zn, n−2) = n−2; otherwise

aw(Zn, n− 2) = n− 1.

Similarly, in [19], it is shown that for a finite abelian group G, aw(G, 3) is determined by the

order of G and the number of groups with even order in a direct sum isomorphic to G. The unitary

anti-van der Waerden number of a group is also defined and determined. An r−coloring of G is

unitary if there is an element of G that is uniquely colored, which will be referred to as a unitary

color. The smallest r such that every exact r−coloring of G that is unitary contains a rainbow

k−term arithmetic progression is denoted by awu(G, k).
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PROPOSITION 1.1.8. [19] For all positive integers n,

awu(Zn, 3) = aw(Zn, 3).

PROPOSITION 1.1.9. [19] For all positive integers n,

aw(G, 3) + aw(Zn, 3)− 2 ≤ aw(G× Zn, 3).

THEOREM 1.1.5. [19] If G is a finite abelian group and n is an odd positive integer, then

aw(G× Zn, 3) = aw(G, 3) + aw(Zn, 3)− 2.

THEOREM 1.1.6. [19] For 1 ≤ i ≤ s, let mi be a positive integer. Then

aw(Z2m1 × Z2m2 × · · · × Z2ms , 3) = 2s+ 1.

Thus, studying colorings in groups in a Ramsey-type framework has become quite interesting

to the realm of discrete mathematics. This is continued in [20] where Ramsey-type functions for

symmetric subsets in finite abelian groups are studied. More specifically, formula are derived for

computing the number of symmetric r−colorings of a finite group G and the number of equivalence

classes of symmetric r−colorings of G.

Let G be a finite group. Given an element g ∈ G, the symmetry on G with the center g is the

mapping ηg : G→ G;x 7→ gx−1g. A subset S ⊆ G is symmetric if it is invariant with respect to some

symmetry on G. Equivalently, S is symmetric if there exists an element g ∈ G (center of symmetry)

such that gS−1g = S. Given r ∈ N, an r−coloring of G is any mapping χ : G→ {1, . . . , r}. Define

the number sr(G) to be the greatest number of the form k
|G| , where k ∈ N such that for every

r−coloring of G there exists a monochrome symmetric subset of cardinality k. The number σr(G)

is the greatest number of the form k
|G| , where k ∈ N such that for every r−coloring χ of G there

exists a subset X ⊆ G of cardinality k and element g such that χ(x) = χ(gx−1g) for all x ∈ X. The

results of [21] include determining bounds on these values and characterizing certain finite groups

which have desired values for these numbers.
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THEOREM 1.1.7. [21] Let G be a finite group of odd order or any finite abelian group, let r ∈ N.

Then

σr(G) ≥ 1

r
and consequently sr(G) ≥ 1

r2
.

THEOREM 1.1.8. [21] σr(G) = 1
r if and only if r divides |2G|.

THEOREM 1.1.9. [21] σr(G) = 1 if and only if one of the following cases holds:

(1) r = 1;

(2) r = 2 and G is a cyclic group of order either 3 or 5;

(3) G is a Boolean group.

THEOREM 1.1.10. [21] Let G be a finite Abelian group and n ∈ N.

(1) If G contains subgroup
⊕
n
Z4, then s2n(G) = 1

4n ;

(2) If G does not contain subgroup Z4, then s2(G) > 1
4 .

Thus, coloring the integers modulo n is not merely a problem relegated to this dissertation, but

has been explored in various other circumstances. Finally, and interestingly, in [13] rather than

color group elements directly, determining how to color Cayley tables of finite groups is explored. A

latin square of order n is an n×n array of cells containing entries from an alphabet of size n (whose

elements are called symbols) in which no entry appears more than once in any row or column.

Given a group G = {g0, g1, . . . , gn−1}, the Cayley table of G, denoted L(G), is the n × n array in

which the cell Li,j contains the group element gigj . From the group axioms it follows that L(G) is

a latin square. If the set T ⊆ L (a) intersects each row and each column of L exactly once and (b)

contains exactly one occurrence of each symbol in L, T is a transversal of L. A partial transversal

is a collection of cells in a Latin square that intersects each row, column, and symbol class at most

once. Define a k−coloring of a latin square L as a partition of its cells into k partial transversals,

and the chromatic number of L, denoted χ(L), as the minimum k for which L is k−colorable. Of

a group G, where p is prime and |G| = pkm with gcd(pk,m) = 1, a subgroup of order pk. The
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famous Sylow Theorems state that, for any p dividing |G|, there exists a Sylow p−subgroup, and

furthermore any two Sylow p−subgroups of G are isomorphic. A complete mapping of a group G

is a bijection θ : G→ G such that the derived mapping η : G→ G defined by η(g) = g · θ(g) is also

a bijection.

THEOREM 1.1.11. [13] Let G be a group of order n. Then the following are equivalent:

1. χ(G) = n.

2. χ(G) ≤ n+ 1.

3. L(G) has a transversal.

4. G has a complete mapping.

5. There is an ordering of the element of G, say g1, g2, . . . , gn, such that g1g2 · · · gn = e where e

is the identity of G.

6. Syl2(G) (Given a group G, the isomorphism class of its Sylow 2−subgroups) is either trivial

or non-cyclic.

THEOREM 1.1.12. [13] Let G be an abelian group of order n. Then

χ(G)


n if Syl2(G) is either trivial or non-cyclic,

n+ 2 otherwise.

There are many ways to color groups in order to solve a plethora of problems. Now, attention

should be drawn to the task at hand which will encompass the remainder of this dissertation. This

task is using a coloring technique on finite groups in order to improve on the bounds of a Turán-type

problem adjusted to be set in group theoretic terms.
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CHAPTER 2. RESULTS ON FINITE ABELIAN GROUPS

In 1941, Hungarian mathematician Pál Turán proved what is now known as Turán’s theorem

which resolved the following problem: What is the maximum number of edges that a simple undi-

rected graph on n vertices can contain so that the graph does not possess a complete subgraph

on k vertices? This is the first instance of question called a Turán-type problem being employed.

Such problems have since become commonplace in the branches of mathematics known as extremal

graph theory and extremal combinatorics and generally follow the outline: maximize a specified

value while averting a given illegal situation. As mentioned previously, results in [3] seek to de-

termine bounds on this maximum value when the base graph is the hypercube Qn and as such a

coloring called polychromatic coloring was introduced to determine said bounds in a Ramsey-type

framework. This coloring technique was then applied to the integers, an infinite abelian group in

[6]. The integers can be used to construct a family of finite groups known as the integers modulo n

as described in Chapter 1 by partitioning the infinite abelian group into finitely many equivalence

classes which consist of infinitely many integers. This finite abelian group is a principal focal point

of this chapter.

What does this Turán-type problem within the context of finite abelian groups look like? The

answer can be posed in the form of the following question.

QUESTION 2.0.1. For a given finite abelian group G, and an arbitrary subset S ⊂ G, what is

the maximum number of elements in a subset of G which does not contain a translate of S?

Firstly, by the word “translate” what is meant is given S ⊆ G where G is an arbitrary finite

abelian group, for any a ∈ G, any set of the form a + S = {a} + S is called a translate of S. The

maximum number of elements in a subset of G which does not contain a translate of that subset

whether G is abelian or not will hereafter be referred to as the Turán number, denoted ex(G,S).

It should also be noted that the question can be reformed into a Ramsey-type question:
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QUESTION 2.0.2. For a given finite abelian group G, and an arbitrary subset S ⊂ G, what is

the minimum number of elements one must delete from G so that it does not contain a translate of

S?

This desired complementary value will hereafter be denoted by f(G,S) and note that f(G,S) =

|G| − ex(G,S). Answering Question 2.0.1 requires improving on a trivial lower bound and trivial

upper bound on ex(G,S) using f(G,S). The trivial lower bound in question is given by |S| − 1.

This is due to the fact that any collection of |S|− 1 elements of the finite group G does not contain

a translate of S. The trivial upper bound is given by |G| − 1. This is because the collection of all

elements in the finite group will contain all translates of S unless, the collection is made smaller by

at least one. That is, for any finite group G, the following Remark can be made.

REMARK 2.0.1. For any S ⊂ G, |S| − 1 ≤ ex(G,S) ≤ |G| − 1 and so 1 ≤ f(n, d) ≤ n+ 1− |S|.

It’s also worth noting that if S = G for any finite group, ex(G,S) = |G| − 1 due to Remark

2.0.1. Thus, all subsets considered in the work that follows are proper.

This chapter concerns itself with the lower bound which is done by improving the upper bound on

f(G,S). The method employed to augment the lower bound comes in the form of polychromatic

colorings which of course were originally applied to a type of graph known as the n−dimensional

hypercube in [3]. With respect to finite abelian groups the following are definitions that will be

used in great detail from this point forward.

Given a subset S of a finite abelian group G, a coloring of the elements of G is S−polychromatic

if every translate of S contains an element of each color. The polychromatic number given a finite

abelian group G and a subset of G called S, denoted pG(S), is the largest number of colors allowing

an S−polychromatic coloring of the translates of S. The notation p(S) is used when the choice of

G is clear from context. These definitions lay the groundwork for partitioning the elements of the

finite group so that a construction of a set which contains the minimum number of elements that

need to be deleted so that no translate of the given subset can be formed. This is explained in

more detail with the following figure and reasoning.

If it is supposed there is a polychromatic coloring of G with respect to subset S and all of the
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Figure 2.1 The relationship between the polychromatic number and the complementary
value

elements belonging to the smallest color class are removed, then G does not possess a translate of S,

so f(G,S) is less than or equal to the cardinality of the smallest color class. Given a simple averaging

argument, that is distributing the elements of the finite group among the color classes, the smallest

color class is less than or equal to |G|
pG(S) . Hence, f(G,S) ≤ |G|

pG(S) and so n − |G|
pG(S) ≤ ex(G,S).

Figure 2 pictorially demonstrates how exactly the polychromatic number yields an upperbound on

f(G,S). From the trivial bounds on the Turán number, it is known that 1 ≤ f(G,S) ≤ |G|−|S|+1.

Therefore, finding the sets S so that pG(S) as large as possible i.e. pG(S) = |S| will yield a tighter

upper bound on f(G,S) than |G|− |S|+1. Thus, these are the subsets that the following work will

largely concentrate on. Similarly, there are many finite abelian groups to consider, however, firstly

the focus will be on the well-known integers modulo n, denoted Zn. Therefore, the discussion in

this chapter will begin with the integers modulo n, and the size of S will be restricted to less than

or equal to 3 and then larger sizes of S will be considered.

2.0.1 The Integers Modulo n, Zn for n ≥ 3

There are a few small groups whose Turán number is known.

EXAMPLE 2.0.1. Let G = Z3. The elements of this group are 0, 1, 2. So, the only subsets of

interest are two element subsets. There are three of them: {0, 1}, {1, 2}, and {0, 2}. These sets are
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also translates of each other. For example, let S = {0, 1}, then 1 + S = {1, 2} and 2 + S = {2, 0}.

The trivial bounds reveal 1 ≤ ex(G,S) ≤ 2. However ex(G,S) must be 1 because any two element

subset of Z3 obviously contains one of the translates.

EXAMPLE 2.0.2. Let G = Z4. The elements of this group are 0, 1, 2, 3. The subsets of interest

are two and three element subsets. The possible two element subsets are {0, 1}, {0, 2}, {0, 3}, {1, 2},

{1, 3}, {2, 3}. Note that with S = {0, 1}, 1+S = {1, 2}, 2+S = {2, 3}, 3+S = {3, 0}. In this case,

the trivial bounds yield 1 ≤ ex(G,S) ≤ 3. However, pG(S) = 2 under the coloring χ(0) = c0 = χ(2)

and χ(1) = c1 = χ(3) and so 4− 4
2 = 4−2 = 2 ≤ ex(G,S). Still, ex(G,S) = 2 as any three element

subset of Z4 contains a translate. If S = {0, 2}, then 1 + S = {1, 3}, 2 + S = {2, 0}, 3 + S = {3, 1}

and pG(S) = 2 under the coloring χ(0) = c0 = χ(1) and χ(2) = c1 = χ(3). Nevertheless, ex(G,S)

as any three element subset of Z4 contains a translate. Next, the possible three element subsets are

{0, 1, 2}, {1, 2, 3}, {2, 3, 0}, {3, 0, 1} and these sets are also translates of each other. For example,

let S = {0, 1, 2}, then 1 + S = {1, 2, 3}, 2 + S = {2, 3, 0}, 3 + S = {3, 0, 1}. The trivial bounds give

that 2 ≤ ex(G,S) ≤ 3. However, ex(G,S) = 2 as any set of three elements is exactly one of the

translates.

Of course, Zn for larger values of n are the finite groups of interest. So, with this in mind

first what will be examined is improving the lower bound on the Turán number of this family of

finite abelian groups with any subset of size two or three. In the following results 〈a〉 denotes the

subgroup generated by element a belonging to the specified group. Note that the result which

immediately follows is one that can be applied to subsets of Zn of any size.

THEOREM 2.0.1. Let t ≥ 2, m1,m2, . . . ,mt−1 ∈ Z are distinct, and a ∈ Zn \ {0}.

Then pZn({0,m1a,m2a, . . . ,mt−1a}) = pZ|〈a〉|({0,m1,m2, . . . ,mt−1}).

Proof. For any x ∈ Zn, x+ {0,m1a,m2a, . . . ,mt−1a} ⊆ x+ 〈a〉. Therefore, partition the translates

of {0,m1a,m2a, . . . ,mt−1a} among the cosets of 〈a〉. If r = [Zn : 〈a〉], then the r collections

of translates are colored identically due to the following isomorphism between elements in the

translates: φ : y + 〈a〉 → z + 〈a〉; y + ia 7→ z + ia for any nonnegative integer i. In particular,
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color the translates whose elements belong to 〈a〉. These translates are of the form {ja, (m1 +

j)a, (m2+j)a, . . . , (mt−1+j)a}. Coloring these translates in Zn is identical to coloring the translates

{j,m1 + j,m2 + j, . . . ,mt−1 + j} in Z|〈a〉| via the following isomorphism between elements in the

translates: 〈a〉 → Z|〈a〉|; ja 7→ j for any nonnegative integer j.

Simply put, Theorem 2.0.1 says that if all of the elements belonging to S also belong to the

subgroup generated by an element, the problem of determining the polychromatic number can be

reduced. Next, a complete characterization of pZn(S) when |S| = 2 is given.

LEMMA 2.0.1.

pZn({0, 1}) =


1 if n is odd

2 if n is even.

Proof. Since S = {0, 1} and all of its translates consist of two elements each, it is only feasible to ei-

ther assign one or two colors to S and its translates. Clearly, it is easy to create an S−polychromatic

coloring consisting of only one color simply by assigning the same color to every element of Zn.

Next, assume n is even. Note that all of the translates of S are of the form {i, i+ 1} for all i ∈ Zn.

That is, consecutive elements appear together in the translates of S. Let χ : Zn → {c0, c1} denote

a coloring defined as follows:

χ(i) = ci mod 2 for all i ∈ Zn

Since n is even, every translate consists of two consecutive and therefore distinctly colored elements.

Now, assume n is odd and assume by way of contradiction that χ′ is an S−polychromatic coloring

consisting of two colors. Then, any such coloring of the translates of S in G ensures without loss

of generality χ′(0) = c0 6= c1 = χ′(1) = χ′(n − 1). Note that n − 1 is even and that χ′(n − 1) =

χ′(n− 1− 2j) for 0 ≤ j ≤ n−1
2 − 1. However, then χ′(1) = c1 = χ′(2) but {1, 2} is a translate.

THEOREM 2.0.2. For all a 6= b ∈ Zn and n ≥ 3 where a′ ∈ Zn such that {0, a′} is a translate of

{a, b},

pZn({a, b}) =


1 if |〈a′〉| is odd

2 if |〈a′〉| is even.
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Proof. Let S = {a, b} for any a 6= b ∈ Zn and n ≥ 3. Then, consider either n−a+S or n−b+S and

so let a′ be either n− a+ b or n− b+ a. By Theorem 2.0.1, pZn(S) = pZn({0, a′}) = pZ|a′|({0, 1}).

By Lemma 2.0.1,

pZn(S) =


1 if |〈a′〉| is odd

2 if |〈a′〉| is even.

Thus, the entire proof of Theorem 2.0.2 involves coloring a simple set in Zn and then extending

this coloring using Theorem 2.0.1. The following result gives the corresponding lower bound on the

Turán number.

Corollary 2.0.1. For all a 6= b ∈ Zn and n ≥ 3 where a′ ∈ Zn such that {0, a′} is a translate of

{a, b},

ex(Zn, {a, b}) ≥


0 if |〈a′〉| is odd

n− n
2 if |〈a′〉| is even.

The proof of Theorem 2.0.3 is long, and is thus divided among the following several results.

THEOREM 2.0.3. For all a 6= b 6= c, d,ma,mb ∈ Zn, n ≥ 3, and j ≥ 0 where a′, b′, d ∈ Zn such

that {0, a′, b′} is a translate of {a, b, c},

pZn({a, b, c}) =



1 if n ≡ 0 mod 7 and a′ = d, b′ = 3d or a′ = d, b′ = 5d and |〈d〉| = 7

2 otherwise

3 if n ≡ 0 mod 3j+1, a′ = 3jma, b
′ = 3jmb,ma ≡ 1 mod 3, and mb ≡ 2 mod 3.

Corollary 2.0.2. For all a 6= b 6= c, d,ma,mb ∈ Zn, n ≥ 3, and j ≥ 0 where a′, b′, d ∈ Zn such that

{0, a′, b′} is a translate of {a, b, c},

ex(Zn, {a, b, c}) ≥



0 if n ≡ 0 mod 7 and a′ = d, b′ = 3d or a′ = d, b′ = 5d and |〈d〉| = 7

n− n
2 otherwise

n− n
3 if n ≡ 0 mod 3j+1, a′ = 3jma, b

′ = 3jmb,ma ≡ 1 mod 3, and mb ≡ 2 mod 3.
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Recall the following definition from [6]. Given a set S ⊂ G, a set T ⊂ G is a complement set for

S if S+T = G. If S has a complement set T such that if s1, s2 ∈ S, t1, t2 ∈ T , then s1 + t1 = s2 + t2

implies s1 = s2 and t1 = t2, then S tiles G by translation. The notation S ⊕ T is written when S

tiles G by translation. Without loss of generality, 0 ∈ S, T for all of the following arguments. These

definitions along with the following result from [6] are indispensable in proving Theorem 2.0.3.

In [6] the following result was proven which yields a divisibility requirement on subsets of Zn so

that p(S) = |S|.

THEOREM 2.0.4. [6] Let G be any finite abelian group. A finite set S ⊂ G tiles G by translation

if and only if p(S) = |S|. Moreover, if χ is an S−polychromatic coloring of G with |S| colors and

T is the set of elements of G colored by χ with any given color, then S ⊕ T = G.

REMARK 2.0.2. Therefore, p(S) = |S| is equivalent to G = S⊕T for some subset T ⊂ G. That

is, |G| = |S| · |T | and hence |S|||G|.

The aim of the following few results is to equivalently characterize the subsets of Zn of order

three with polychromatic number also equal to three using Theorem 2.0.4, Remark 2.0.2, and the

previous definitions.

LEMMA 2.0.2. Suppose S = {0, a, b}, i ∈ S, S ⊕ T = G. If x ∈ i+ T , then x+ a+ b ∈ i+ T .

Proof. Note that becuase S ⊕ T = G, every element of G belongs to exactly one of the sets T ,

a+ T , b+ T .

Case 1: Suppose x ∈ T . If x + a + b ∈ b + T , then x + a ∈ T . However, x + a ∈ a + T . If

x+ a+ b ∈ a+ T , then x+ b ∈ T . However, x+ b ∈ b+ T . So, x+ a+ b ∈ T .

Note that If x ∈ T , then x+m(a+ b) ∈ T for any nonnegative integer m.

Base Case: If m = 0 the statement is clearly true, if m = 1 this follows by the argument given in

Case 1.

Induction Step: Assume x ∈ T =⇒ x+m(a+b) ∈ T . Notice x+(m+1)(a+b) = x+m(a+b)+

a+ b. By the induction hypothesis, x+m(a+ b) ∈ T . Let x1 = x+m(a+ b). Then, x1 +a+ b ∈ T .

Case 2: Suppose x ∈ a+ T . If x+ a+ b ∈ b+ T , then x+ a ∈ T . Notice x+ a− (a+ b) = x− b
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is either in a + T , b + T , or T . However, if x − b ∈ a + T , then x ∈ a + b + T , but as was

assumed x ∈ a + T =⇒ x = a + t1 for some t1 ∈ T . Therefore, x ∈ a + b + T =⇒ t1 ∈ b + T

which is not possible. If x − b ∈ b + T , then x − 2b ∈ T and by case 1 and because 0 ∈ T ,

x − 2b + a + b ∈ T =⇒ x + a − b ∈ T =⇒ x + a ∈ b + T , but it was assumed x + a ∈ T . So,

x− b ∈ T =⇒ x ∈ b+ T , a contradiction.

If x+a+b ∈ T , let k = |〈a+b〉|. By the above induction argument, x+a+b+(k−1)(a+b) = x ∈ T ,

however this is a contradiction. So, x+ a+ b ∈ a+ T .

Case 3: Suppose x ∈ b+ T . If x+ a+ b ∈ a+ T , then x+ b ∈ T . Notice x+ b− (a+ b) = x− a

is either in b + T , a + T , or T . However, if x − a ∈ b + T , then x ∈ a + b + T , but as was

assumed x ∈ b + T =⇒ x = b + t1 for some t1 ∈ T . Therefore, x ∈ a + b + T =⇒ t1 ∈ a + T

which is not possible. If x − a ∈ a + T , then x − 2a ∈ T and by case 1 and because 0 ∈ T ,

x − 2a + a + b ∈ T =⇒ x − a + b ∈ T =⇒ x + b ∈ a + T , but it was assumed x + b ∈ T . So,

x− a ∈ T =⇒ x ∈ a+ T , a contradiction.

If x+a+b ∈ T , let k = |〈a+b〉|. By the above induction argument, x+a+b+(k−1)(a+b) = x ∈ T ,

however this is a contradiction. So, x+ a+ b ∈ b+ T .

REMARK 2.0.3. By case 1 of the proof of Lemma 2.0.2, since 0 ∈ T , 〈a+ b〉 ⊆ T .

LEMMA 2.0.3. If k ∈ Zn and gcd(k, n) = 1 such that a1, . . . , a`−1, ka1, . . . , ka`−1 6= 0 and

kai 6= kaj for all i 6= j, then p({0, a1, a2, . . . , a`−1}) = p({0, ka1, ka2, . . . , ka`−1}).

Proof. Let χk be a r−polychromatic coloring of any translate of {0, ka1, ka2, . . . , ka`−1} in Zn. Set

χ(x) = χk(kx). Then, χ(x) = χk(kx), χ(x + a1) = χk(kx + ka1),. . ., χ(x + a`−1) = χk(kx +

ka`−1). Note that r of these colors are distinct as {kx, kx + ka1, . . . , kx + ka`−1} is a translate of

{0, ka1, . . . , ka`−1} and χk is an r−polychromatic coloring for {0, ka1, ka2, . . . , ka`−1}. Thus, χ is

an r−polychromatic coloring of any translate of {0, a1, a2, . . . , a`−1} in Zn.

Suppose χ is an r−polychromatic coloring of any translate of {0, a1, a2, . . . , a`−1} in Zn. Since

gcd(k, n) = 1, k is an invertible element of Zn. So, set χk(x) = χ(k−1x). Then, χk(x) = χ(k−1x),
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χk(x + ka1) = χ(k−1x + k−1ka1) = χ(k−1x + a1), . . ., χk(x + ka`−1) = χ(k−1x + k−1ka`−1) =

χ(k−1x + a`−1). Note that r of these colors are distinct as {k−1x, k−1x + a1, . . . , k
−1x + a`−1} is

a translate of {0, a1, a2, . . . , a`−1} and χ is an r−polychromatic coloring for {0, a1, a2, . . . , a`−1}.

Thus, χk is an r−polychromatic coloring of any translate of {0, ka1, ka2, . . . , ka`−1} in Zn.

REMARK 2.0.4. Note that the first direction of Lemma 2.0.3 holds for all k ∈ Zn such that

a1, . . . , a`−1, ka1, ka2, . . . , ka`−1 6= 0.

REMARK 2.0.5. If k = n − 1, then k is relatively prime to n for all n ≥ 3 and therefore is an

invertible element in Zn and so Lemma 2.0.3 yields p(S) = p(−S).

Lemma 2.0.3 states that if the polychromatic number of a subset can be determined, then this

also gives the polychromatic number of certain multiples of this subset as well. This result is

actually quite powerful because of its ability to be applied to larger subsets of Zn and because it

will be used in the proof of Lemma 2.0.4.

LEMMA 2.0.4. There is a {0, a, b} − polychromatic coloring of Zn with three colors if and only

if n ≡ 0 mod 3j+1, a = 3jma, b = 3jmb, ma ≡ 1 mod 3, mb ≡ 2 mod 3, and j ≥ 0.

Proof. Suppose n ≡ 0 mod 3j+1, a = 3jma, b = 3jmb, ma ≡ 1 mod 3, mb ≡ 2 mod 3, and j ≥ 0.

Every element of Zn can be written in the form t · 3j + r where t is some positive integer such that

0 ≤ t ≤ |〈3j〉| − 1 and 0 ≤ r ≤ 3j − 1. Let χ be the coloring given by χ(t · 3j + r) = ct mod 3.

Under this coloring every translate of {0, 3jma, 3
jmb} contains three distinct colors as every trans-

late is of the form {t · 3j + r, (t + ma) · 3j + r, (t + mb) · 3j + r} and χ(t · 3j + r) = ct mod 3,

χ((t+ma) · 3j + r) = ct+1 mod 3, and χ((t+mb) · 3j + r) = ct+2 mod 3. If instead ma ≡ 2 mod 3, and

mb ≡ 1 mod 3, the result is proven analogously.

Next, assume the p({0, a, b}) = 3. The condition p({0, a, b}) = 3 is equivalent to S tiling G, by

Theorem 2.0.4. Suppose T ⊂ Zn so that Zn = {0, a, b}⊕T . Then n = 3|T | and so n ≡ 0 mod 3. Let

x ∈ T . By Lemma 2.0.2, x+a+ b ∈ T for any x ∈ T . If x ∈ T , then the coset x+ 〈a+ b〉 is a subset

of T . Therefore, there is some integer k such that k|〈a+ b〉| = |T | = n
3 . Also, |〈a+ b〉| = n

gcd(a+b,n) .

Thus, k n
gcd(a+b,n) = n

3 implies 3k = gcd(a + b, n). Thus, 3|(a + b). Therefore, a ≡ 1 mod 3 and
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b ≡ 2 mod 3, a ≡ 2 mod 3 and b ≡ 1 mod 3, or a ≡ 0 mod 3 and b ≡ 0 mod 3.

If it is the case that a ≡ 1 mod 3 and b ≡ 2 mod 3 or a ≡ 2 mod 3 and b ≡ 1 mod 3, then the

proof is complete for j = 0. If a ≡ 0 mod 3 and b ≡ 0 mod 3, then a = 3jma and b = 3imb for

integers j, i,ma,mb where 1 ≤ j, i and ma,mb 6≡ 0 mod 3. Without loss of generality let j ≤ i.

Note that since p({0, 3jma, 3
imb}) = 3, p({0,ma, 3

i−jmb}) = 3 by Remark 2.0.4 with a multiple of

3j . Therefore, ma + 3i−jmb ≡ 0 mod 3. Since ma 6≡ 0 mod 3, i− j = 0 and mb ≡ −ma mod 3. So,

ma ≡ 1 mod 3 and mb ≡ 2 mod 3 or vice versa.

The translates of {0, 3jma, 3
jmb} consisting entirely of elements in the subgroup generated by 3j are

of the form {3jy, 3j(y+ma), 3j(y+mb)} where y ∈ Zn. Since p({0, 3jma, 3
jmb}) = 3 each of these

translates consists of three distinct colors. Coloring these translates is isomorphic to coloring the

translates of {0,ma,mb} in Z|〈3j〉| by Theorem 2.0.1. Since there is a {0,ma,mb}−polychromatic

coloring consisting of three colors, 3||〈3j〉|. Since 3||〈3j〉| and |〈3j〉| = n
gcd(3j ,n)

, this implies

gcd(3j , n) = 3j . Therefore, n = 3j |〈3j〉| ≡ 0 mod 3j+1. Hence, the proof is complete for j ≥ 1.

The proof of Lemma 2.0.4 quite aptly demonstrates the usefulness and power of Theorem 2.0.4.

The argument given here has been used to extend to subsets of larger size.

Next, in the proof of Theorem, it will be shown that in some cases the polychromatic number is

only one.

LEMMA 2.0.5. If n ≡ 0 mod 7, S = {0, c, 3c} or S = {0, c, 5c} and |〈c〉| = 7 where c ∈ Zn, then

p(S) = 1.

Proof. Without loss of generality, let S = {0, 1, 3}. First, it can be shown that Z7 cannot be

S−polychromatically colored with two colors through an exhaustive search. Now, let S = {0, c, 3c}.

Assume there is a S−polychromatic coloring with two colors, χ, of Zn where n ≡ 0 mod 7 and

|〈c〉| = 7. Consider the translates of S which consist only of the elements belonging to the subgroup

generated by c. These translates are of the form {jc, (j+1)c, (j+3)c}. Coloring these translates in

Zn is isomorphic to coloring {j, j+1, j+3} in Z7 by Theorem 2.0.1; however, this is not possible.
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Much like the proof of Theorem 2.0.2, something simple is colored or rather in this case, is

shown can not be colored and then the coloring or lack thereof is extended using Theorem 2.0.1.

A large part of the proof of Theorem 2.0.3 is showing that the polychromatic number of subsets

of the form {0, 1, `} is at least two. In some cases, explicit colorings are constructed as in Lemma

2.0.7 and Theorem 2.0.7 and in other cases, such colorings are just proven to exist as in Theorems

2.0.5 and 2.0.6. First, however, a lemma notes that in any subset of the form {0, 1, `}, it is only

necessary to consider certain elements for the choice of `.

LEMMA 2.0.6. For all ` ∈ Zn with n ≥ 3 there exists an `′ ∈ Zn so that `′ ≤ n
2 and p({0, 1, `}) =

p({0, 1, `′}).

Proof. As noted in Remark 2.0.5, p(S) = p(−S). If ` > n
2 , then `′ = n − ` + 1 ≤ n

2 . Therefore,

p({0, 1, `}) = p({0,−1,−`}) = p({0, n− 1, n− `}) = p({0, 1, n− `+ 1}).

Lemma 2.0.6 simply states that if for some of the subsets of the form {0, 1, `} an {0, 1, `}−polychromatic

coloring consisting of two colors can be found, then for all such subsets such a coloring can be found.

An interval of Zn, denoted [a, b], consists of the collection of consecutive elements of Zn from a to

b i.e. a, a+ 1, a+ 2, . . . , b− 1, b mod n. An r−polychromatic precoloring of Zn with respect to S is

a coloring of a proper subset of Zn such that for every translate of S it is the case that either all

elements are distinctly colored, two elements are distinctly colored and the third is left uncolored,

two elements are the same color and the third is another color, or one element is colored one color

and the other two elements are left uncolored. The number of elements not colored must also sum

to at least r.

Let χ′ be an r−polychromatic precoloring of Zn and let j be an element of Zn that is not colored by

the precoloring. The element j has an option if there exists at least two colors that can be assigned

to χ′(j) and χ′ is still an r−polychromatic precoloring. An r−polychromatic interval precoloring

is an r−polychromatic precoloring such that there exist elements j and k such that [j, k] are left

uncolored. These definitions will be used in the proofs of Theorem 2.0.5 and Theorem 2.0.6.
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THEOREM 2.0.5. Let S = {0, 1, `} in Zn such that n ≡ r mod `− 2 where r = 0, 1, 2, or 3 and

` is odd. In each case, there is an S−polychromatic coloring of Zn with two colors.

Proof. Let n = m(`− 2) + r. By Lemma 2.0.6, ` ≤ n
2 . So, 2 ≤ m.

In each of the following cases, the n elements of Zn are broken up the into m consecutive

collections of `− 2 elements and a final collection of r elements.

Firstly, let r = 0. Each of the collections of ` − 2 elements is colored by an S−polychromatic

coloring, χ0, which consists of two colors and is defined as follows

χ0(x) =



c0 if x = i(`− 2)

c0 if x = i(`− 2) + 2k + 1 where 0 ≤ k ≤ `−5
2

c1 if x = i(`− 2) + 2k where 1 ≤ k ≤ `−3
2

where 0 ≤ i ≤ m − 1. Note that any translate {x, x + 1, x + `} contains two distinct colors if

x = i(`− 2) + 2k+ 1 where `− 3 ≥ k ≥ 0 or x = i(`− 2) + 2k where `− 3 ≥ k ≥ 1. If x = i(`− 2),

it is colored c0, and so x + 1 is also colored c0. The third element in the translate, x + `, is

(i+ 1)(`− 2) + 2 which is colored c1.

If r = 1, the n elements of Zn are colored by a 2−polychromatic precoloring given by χ0 when

0 ≤ i ≤ m − 2 as in the previous case except for the last collection of ` − 2 elements and the

remaining one element. These elements are colored by a 2−polychromatic interval precoloring, χ1,

as follows

χ1(x) =



c0 if x = n− (2k + 1) where 0 ≤ k ≤ `−1
2

c1 if x = n− (2k) where 2 ≤ k ≤ `−1
2

c1 if x = n− 2

The two translates to check are {n− 2, n− 1, `− 2} and {n− `, n− `+ 1, 0}. Still, χ1(n− 2) = c1,

χ1(n− 1) = c1, χ1(`− 2) = c0, χ1(n− `) = c1, χ1(n− `+ 1) = c1, and χ1(0) = c0.

If r = 2, the n elements of Zn are colored by a 2−polychromatic precoloring given by χ0 when

0 ≤ i ≤ m − 2 as in the previous cases except for the last collection of ` − 2 elements and the

remaining two elements. These elements are colored by a 2−polychromatic interval precoloring,
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χ2, as follows

χ2(x) =



c0 if x = n− `

c1 if x = n− `+ 1

c0 if x = n− `+ 2k + 1 where 1 ≤ k ≤ `−3
2

c1 if x = n− `+ 2k where 1 ≤ k ≤ `−1
2

There is only one translate to check: {n−`+1, n−`+2, 1}. Still, χ2(n−`+1) = c1, χ2(n−`+2) = c1,

and χ2(1) = c0.

If r = 3, the n elements of Zn are colored by a 2−polychromatic precoloring given by χ0 when

0 ≤ i ≤ m−2 as in the previous cases except the last collection of `−2 elements and the remaining

three elements. These elements are colored by a 2−polychromatic interval precoloring, χ3, as

follows

χ3(x) =



c0 if x = n− `− 1

c1 if x = n− 1

c1 if x = n− `+ 2k + 1 where 0 ≤ k ≤ `−3
2

c0 if x = n− `+ 2k where 0 ≤ k ≤ `−3
2

The two translates to check are {n− `− 1, n− `, n− 1} and {n− 2, n− 1, `− 2} which contain two

distinctly colored elements as χ3(n − ` − 1) = c0, χ3(n − `) = c0, χ3(n − 1) = c1, χ3(n − 2) = c1,

and χ3(`− 2) = c0.

THEOREM 2.0.6. Let ` be odd. Let S = {0, 1, `} in Zn such that n ≡ r mod ` − 2 and r ≥

4. There is a 2−polychromatic interval precoloring and at least two options which extend to an

S−polychromatic coloring of Zn with two colors.

Proof. First, by Lemma 2.0.6, assume ` ≤ n
2 . Therefore, ` − 2 ≤ n

2 . Consider the following

2−polychromatic interval precoloring where the n elements of Zn are broken up into m consecutive
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collections of `− 2 elements and a final collection of r elements:

χ(x) =



c0 if x = i(`− 2)

c0 if x = i(`− 2) + 2k + 1 where 0 ≤ k ≤ `−5
2

c1 if x = i(`− 2) + 2k where 1 ≤ k ≤ `−3
2

where 0 ≤ i ≤ m − 2. The final collection of ` − 2 elements and the remaining r elements are

left uncolored save for the following assignments χ(n − r − (` − 2)) = c0, χ(n − r − (` − 3)) = c0,

χ(n − r − (` − 4)) = c1, and χ(n − r + 2) = c1. The aim is to show there is an option between

n− r− (`− 4) and n− r+ 2 and an option between n− r+ 2 and 0 and use these options so that

χ can be extended to a S−polychromatic coloring with two colors.

First, note that if {x, x + 1, x + `} is a translate with x = i(` − 2) + j where 0 ≤ i ≤ m − 2 and

0 ≤ j ≤ `− 3, then this translate consists of two distinctly colored elements. Next, note that n− 1

must be colored c1 as {n − 1, 0, ` − 1} is a translate of S with χ(0) = c0 and χ(` − 1) = c0. The

element n− 2 has an option as the only translate containing n− 2 which also contains two colored

elements is {n − 2, n − 1, ` − 2} with χ(n − 1) = c1 and χ(` − 2) = c0. Now, assigning a color

to n − 2 depends on the parity of the number of elements between n − r + 2 and n − 2. If the

number of elements is even, χ(n − 2) = c0 and n − j such that 3 ≤ j ≤ r − 3 are assigned colors

c1 if j is odd and c0 if j is even. If the number of elements is odd, χ(n − 2) = c1 and n − j such

that 3 ≤ j ≤ r − 3 are assigned c0 if j is odd and c1 if j is even. In either case, the translates

{n − r + 2, n − r + 3, ` − r + 2} and {n − 2, n − 1, ` − 2} always contain two distinct colors. This

also holds true for the first two elements of the translates {n − j, n − j + 1, n − j + `} such that

3 ≤ j ≤ r − 3.

Next, consider the translates {n− `, n− `+ 1, 0} and {n− `+ 1, n− `+ 2, 1}. It is the case that

one of n− ` or n− `+ 1 will always have an option. Since r ≥ 4, n− (`− 2)− r ≤ n− `− 2 ≤ n− `.

Suppose χ(n − ` + 2) = c1. Then χ(1) = c0, so n − ` + 1 has an option. On the other hand, if

the element n− `+ 2 is assigned color c0, the element 1 is assigned color c0, so n− `+ 1 must be

assigned color c1. Next, using these latter assignments the translate {n− `, n− `+ 1, 0} must yield

that there is an option at n− `.
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If r = 4, then n − (r − 2) = n − 2 and n − 1 must be assigned color c1 as noted before. Next,

n − r − (` − 4) = n − 4 − (` − 4) = n − ` which is the third element of the last collection of ` − 2

elements and is therefore colored c1. Since either n− ` or n− `+ 1 has the option, n− `+ 1 must

have the option. Then the translate {n− `, n− `+ 1, 0} contains two distinct colors regardless of

the color that is assigned to n− `+ 1. Suppose n− `+ 1 is colored some fixed color. If n− `+ 1

is colored c0, then the translate {n− `+ 1, n− `+ 2, 1} consists of two distinct colors as n− `+ 2

must be colored c1. If n− `+ 1 is colored c1, then the translate {n− `, n− `+ 1, 0} consists of two

distinct colors.

If r ≥ 5, and there is an odd number of elements between either n− ` or n− `+ 1, color the option

c1 and color the elements of the form n− `+ i+ k with c0 if k is odd with i ∈ {0, 1} (depending on

which element has the option) and c1 if k is even. If there is an even number of elements between

either n− ` or n− `+ 1, color the option c0 and color the elements of the form n− `+ i+ k with

c0 if k is even with i ∈ {0, 1} and c1 if k is odd.

Next, the remaining elements between n− ` or n− `+ 1 and n− r + 2 must be colored. Consider

n− r+ 1 and the translate {n− r+ 1, n− r+ 2, n− r+ `+ 1}. Either n− r+ 1 is an option or not.

If it is not, the other two elements in this translate are colored the same color, so n− r+ 1 must be

a different color. Next, the same reasoning is applied to n− r. This process continues in this way

until the elements n−`+1 and n−` are reached corresponding to translates {n−`+1, n−`+1, 1}

and {n − `, n − ` + 1, 0}. Hence, χ can be extended to an S−polychromatic coloring with two

colors.

The following results, Lemma 2.0.7 and Theorem 2.0.7 conclude the argument for finding the

polychromatic number of subsets of the form {0, 1, `}.

LEMMA 2.0.7. For all n ≥ 9 or n = 5 with n odd, pZn({0, 1, 3}) = 2.
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Proof. Note that Theorem 2.0.6 does not apply to this case as ` − 2 = 1. For the lower bound, if

n ≡ 1 mod 4 consider the following coloring

χ(i) =


c0 if i = 0, 3, 4, 5 or if i ≡ 0, 1 mod 4 and i 6= 0, 1, 2, 3, 4, 5

c1 if i = 1, 2 or if i ≡ 2, 3 mod 4 and i 6= 0, 1, 2, 3, 4, 5.

First, if i is any of the elements 0, 1, 2, 3, 4, or 5, the translate {i, i+1, i+3} consists of two distinct

colors. If the translate in question consists of consecutive elements and i ≥ 6 then i ≡ j mod 4,

i+1 ≡ j+1 mod 4, i+3 ≡ j+3 mod 4, and so two of these elements will be differently colored. There

are three translates to check: {n−3, n−2, 0}, {n−2, n−1, 1}, {n−1, 0, 2}. Then, n−3 ≡ 2 mod 4,

n− 2 ≡ 3 mod 4, and n− 1 mod 0 mod 4. Therefore, χ(n− 3) = c1, χ(n− 2) = c1, χ(n− 1) = c0.

So, all translates contain two distinct colors.

If n ≡ 3 mod 4 consider the following coloring

χ(i) =


c0 if i = 0, 3, 4, 5 or if i ≡ 1, 2 mod 4 and i 6= 0, 1, 2, 3, 4, 5, 6

c1 if i = 1, 2, 6 or if i ≡ 0, 3 mod 4 and i 6= 0, 1, 2, 3, 4, 5, 6.

First, if i is any of the elements 0, 1, 2, 3, 4, 5, or 6, the translate {i, i+1, i+3} consists of two distinct

colors. If the translate in question consists of consecutive elements and i ≥ 7 then i ≡ j mod 4,

i+ 1 ≡ j+ 1 mod 4, i+ 3 ≡ j+ 3 mod 4, so two of these elements will be differently colored. There

are three translates to check: {n−3, n−2, 0}, {n−2, n−1, 1}, {n−1, 0, 2}. Then, n−3 ≡ 0 mod 4,

n − 2 ≡ 1 mod 4, n − 1 mod 2 mod 4. So, χ(n − 3) = c1, χ(n − 2) = c0, χ(n − 1) = c0 and all

translates contain two distinct colors.

If n = 5, consider the coloring χ(0) = c0, χ(1) = c1, χ(2) = c1, χ(3) = c0, χ(4) = c0. Then, the

translates {0, 1, 3}, {1, 2, 4}, {2, 3, 0}, {3, 4, 1}, {4, 0, 2} all contain two distinct colors.

THEOREM 2.0.7. There is a {0, 1, `}-polychromatic coloring of Zn with two colors for ` 6= 0, 1 ∈

Zn if ` 6= 3, 5 and n 6= 7.

Proof. First, ` ≤ n
2 by Lemma 2.0.6. Note that if n is even, there is a {0, 1, `}−polychromatic

coloring of Zn for any ` ∈ Zn by assigining χ(i) = ci mod 2. This can always be guaranteed as the
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first two elements of each translate are differently colored.

If n is odd and ` is even, there is a {0, 1, `}−polychromatic coloring of Zn by the following coloring:

χ(i) =



ci mod 2 if i ≤ 2

c0 if i ≥ 3 and i is odd

c1 if i ≥ 4 and i is even.

Suppose ` = 2m for some positive integer m. Then, all translates are of the form {i, i+ 1, i+ 2m}.

First, assume i = 0, then i+ 1 = 1 and so this translate consists of two distinctly colored elements.

If i = 1, then i + 1 = 2 and so this translate consists of two distinctly colored elements. If i = 2,

then i + 2m is an even number and so is colored with c1. If ` = n − 1, then i + ` = 1 which is

also colored with c1. If i = 3, then i + 1 = 4 and this translate consists of two distinctly colored

elements. If i ≥ 4, then either i or i+ 1 will be assigned c0 and the other will be assigned c1.

If n is odd and ` is odd the result follows from Theorems 2.0.5 and 2.0.6 and Lemma 2.0.7.

The following results wrap up the argument for subsets of size three with polychromatic num-

ber equal to two. The methods used in in the following results are a little different to those used

previously. First, the notion of a specialized coloring on a grid is introduced with results on said

coloring being presented. Then, this grid coloring is utilized to color the remaining subsets of the

integers modulo n that are not captured by the previous results.

Consider the k by k′ grid below

(1,1)

(2,1)

...

(k,1)

(1,2)

(2,2)

...

(k,2)

. . .

. . .

. . .

. . .

(1,k′)

(2,k′)

...

(k,k′)

Figure 2.2 k by k′ grid
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An ell - tile is a subset of a k by k′ grid consisting of a 2 by 2 array of entries with the lower

right entry removed:

(i,j)

(i+1,j)

(i,j+1)

Figure 2.3 ell - tile

Note that when either i = k or j = k′ respectively i+ 1 ≡ 1 or j + 1 ≡ 1.

An ell - tile 2-coloring of a grid is a mapping of the entries in the collection of all possible ell - tiles

in a grid to a set of two colors such that the three entries in each ell - tile consist of two colors.

LEMMA 2.0.8. If k, k′ ≥ 2, then every k × k′ grid has an ell - tile 2-coloring.

Proof. The entries of a grid (i, j) are labeled such that i denotes the row position and j denotes

the column position of the entry.

Case 1: If k and k′ are even, then the entries are colored as follows:

χ((i, j)) = ci+j mod 2 for any (i, j).

First, consider an ell - tile of this grid consisting of (i, j), (i, j + 1), (i+ 1, j). If i+ j is even, then

either both i and j are even or both are odd. If both are even, then i + (j + 1) and (i + 1) + j

are odd. So, the ell - tile contains two distinct colors. If both are odd, i + (j + 1) and (i + 1) + j

are even. So, the ell - tile contains two distinct colors. If i+ j is odd, then i and j are of opposite

parity. So, i+ (j + 1) is even and (i+ 1) + j is even. Therefore, the ell - tile contains two distinct

colors.

Case 2: If k and k′ are odd, then the entries are colored as follows

χ((i, j)) =


ci+j mod 2 if (i, j) 6= (1, k′), (k, 1)

c1 if (i, j) = (1, k′), (k, 1).

First, consider an ell - tile of this grid so that none of (i, j), (i, j + 1), (i+ 1, j) are (1, k′) or (k, 1).

Then, the argument is the same as in case 1.
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Now, assume one of (i, j), (i, j + 1), (i+ 1, j) is (1, k′) or (k, 1).

If i = 1, j = k′, then (i, j) is colored c1 and (i, j + 1) is colored c0.

If i = k, j = 1, then (i, j) is colored c1 and (i+ 1, j) is colored c0.

If i = 1, j + 1 = k′, then (i, j + 1) is colored c1 and (i+ 1, j) is colored c0.

If i = k, j + 1 = 1, then (i, j + 1) is colored c1 and (i, j) is colored c0.

If i+ 1 = 1, j = k′, then (i+ 1, j) is colored c1 and (i, j) is colored c0.

If i+ 1 = k, j = 1, then (i+ 1, j) is colored c1 and (i, j + 1) is colored c0.

Case 3: If exactly one of k and k′ are odd, then without loss of generality, let k′ be odd. The

entries are colored as follows:

χ((i, j)) =



ci+j mod 2 if (i, j) 6= (`, k′) for any `

c0 if (i, j) = (`, k′) for odd values of `

c1 if (i, j) = (`, k′) for even values of `.

First, consider an ell - tile of this grid so that none of (i, j), (i, j + 1), (i + 1, j) are (`, k′) for any

value of `. Then, the argument is the same as in case 1.

Now, assume one of (i, j), (i, j + 1), (i+ 1, j) is (i, k′) for some i.

If i is even and j = k′, then (i, j) is colored c1 and (i+ 1, j) is colored c0.

If i is odd and j = k′, then (i, j) is colored c0 and (i+ 1, j) is colored c1.

If i is even and j + 1 = k′, then (i, j + 1) is colored c1 and (i, j) is colored c0.

If i is odd and j + 1 = k′, then (i, j + 1) is colored c0 and (i, j) is colored c1.

If i+ 1 is even and j = k′, then (i+ 1, j) is colored c1 and (i, j) and (i, j + 1) are both colored c0.

If i+ 1 is odd and j = k′, then (i+ 1, j) is colored c0 and (i, j) and (i, j + 1) are both colored c1.

Hence, every ell - tile contains two distinct colors.

LEMMA 2.0.9. pZn({0, a, b}) = 2 if and only if it is not the case that n ≡ 0 mod 7 and without

loss of generality b = 3a or 5a and |〈a〉| = 7.
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Proof. Case 1: If b ∈ 〈a〉,

then b = ma for some positive integer m and let k = |〈a〉|. So, {0, a, b} = {0, a,ma}. Thus,

pZn({0, a, b}) = pZn({0, a,ma}) = pk({0, 1,m}) = 2 by Theorem 2.0.7.

Case 2: If b 6∈ 〈a〉, then consider the following cases.

If |〈a〉||〈b〉| < n, then there is some positive integer m so that |〈a〉||〈b〉|m = n. Consider the grid

whose dimensions are given by |〈a〉|× |〈b〉| and whose entries of the first row are the elements of 〈b〉

arranged in the order 0, b, 2b, . . . and whose entries of the first column are the elements 0, a, 2a, . . .

arranged in order. The remaining entries in the grid are given by (i + 1, j + 1) = ja + ib where

0 ≤ i ≤ k′− 1 and 0 ≤ j ≤ k− 1 and k = |〈a〉| and k′ = |〈b〉|. Note that any translate of S is of the

form {i, i+ a, i+ b} and every ell - tile in the grid is of the form

i

i+ a

i+ b

Figure 2.4 ell - tile containing i, i+ a, i+ b

By Lemma 2.0.8, there is a coloring for this grid. To color all of the elements in the group,

m − 1 more grids are formed of the same dimension. The entries of these grids are obtained

from the entries of the grid described above by adding an element x to each of the above entries

(i + 1, j + 1) = ja + ib where 0 ≤ i ≤ k′ − 1 and 0 ≤ j ≤ k − 1 such that 1 ≤ x ≤ m − 1. These

grids are then colored identically.

If |〈a〉||〈b〉| = n, then the grid whose dimensions are given by |〈a〉|×|〈b〉| contains all group elements

and is formed and colored as above.

If |〈a〉||〈b〉| > n, then the grid whose dimensions are given by |〈a〉| × |〈b〉| is formed as above. Next,

this grid is broken up into gcd(|〈a〉|, |〈b〉|) × gcd(|〈a〉|, |〈b〉|) blocks of dimensions |〈a〉|
gcd(|〈a〉|,|〈b〉|) ×

|〈b〉|
gcd(|〈a〉|,|〈b〉|) . By Lemma 2.0.8, there exists a coloring for each of these blocks. The only translates

that must be checked are translates that consist of one of i, i + a, or i + b in one block and the

other elements in other blocks and translates such that either two of i, i + a, or i + b are colored
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the same color in one block and the third element appears in another block. Let r′ = |〈b〉|
gcd(|〈a〉|,|〈b〉|)

and r = |〈a〉|
gcd(|〈a〉|,|〈b〉|) .

If r′ is odd and r is even, the two translates that must be checked are when i corresponds to entry

(r, r′− 1) or (r, r′). If i corresponds to entry (r, r′− 1), its color is c0 and i+a corresponds to entry

(1, r′ − 1) which is colored c1. If i corresponds to entry (r, r′), its colored c0 and i+ b corresponds

to entry (r, 1) which is colored c1. This is approached similarly if k′ is even and k is odd.

If r and r′ are both odd, the three translates to check are when i corresponds to entry (1, r′) or

(r, 1), or (r, r′). If i corresponds to entry (1, r′), its color is c1 and i+ b corresponds to entry (1, 1)

which is colored c0. If i corresponds to entry (r, 1), its color is c1 and i + a corresponds to entry

(1, 1) which is colored c0. If i corresponds to (r, r′), its color is c0 and i + b corresponds to entry

(r, 1) which is colored c1.

If r and r′ are both even, the only translate to check is when i corresponds to entry (r, r′) which is

colored c0 and in which case i+ b corresponds to entry (r, 1) and is colored c1.

Now, that the examination of the polychromatic number of three elements subsets is complete,

what can be said of four element subsets and subsets of larger size as well? As mentioned in

Chapter 1, there are some partial results on such subsets, however as the above argument for

sets of cardinality three suggests, the problem becomes much more difficult as the size of the set

increases. So, to ease into the journey of examining larger subsets subsets consisting of arithmetic

progressions will first be explored.

First, consider Proposition 2.0.1 which explores the polychromatic number of a subset of size four

with the progression a, a+ 1, a+ 2, a+ 3.

PROPOSITION 2.0.1. Suppose a ∈ Zn such that n ≥ 5. Then,

pZn({a, a+ 1, a+ 2, a+ 3}) =



2 if n = 5

3 if n 6≡ 0 mod 4 and n 6= 5

4 if n ≡ 0 mod 4
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Proof. Note that a translate of {a, a + 1, a + 2, a + 3} is {0, 1, 2, 3}. So, all translates of {a, a +

1, a+2, a+3} are the translates of {0, 1, 2, 3} and therefore, without loss of generality the following

argument will be given with respect to S = {0, 1, 2, 3}.

If n = 5, note that the translates of S can be colored based on parity i.e. χ(i) = ci mod 2 for

any i ∈ Z5. Each translate will consist of two distinct colors as the first two elements always

have opposite parity since they are consecutive with the exception of 4 + S, however this translate

contains 1 and so contains two distinct colors. Next, by way of contradiction suppose there is an

S−polychromatic coloring χ consisting of three colors. The translates of S are S = {0, 1, 2, 3},

1+S = {1, 2, 3, 4}, 2+S = {2, 3, 4, 0}, 3+S = {3, 4, 0, 1}, 4+S = {4, 0, 1, 2}. Since there are three

colors assigned to S, it is the case that either either 0, 1, 2; 0, 1, 3; 0, 2, 3; or 1, 2, 3 are distinctly

colored. These cases are considered as follows.

Case 1: χ(0) = c0,χ(1) = c1,χ(2) = c2.

Then, 1 + S contains colors c1 and c2 and uncolored elements 3, 4; 2 + S contains colors c0 and c2

and uncolored elements 3, 4; and 3 + S contains colors c0 and c1 and uncolored elements 3, 4. So,

there is no way colors are assigned to 3 and 4 so that each translate consists of three distinct colors.

Case 2: χ(0) = c0,χ(1) = c1,χ(3) = c2.

Then, 1 + S contains colors c1 and c2 and uncolored elements 2, 4; 2 + S contains colors c0 and c2

and uncolored elements 2, 4; and 4 + S contains colors c0 and c1 and uncolored elements 2, 4. So,

there is no way colors are assigned to 2 and 4 so that each translate consists of three distinct colors.

Case 3: χ(0) = c0,χ(2) = c1,χ(3) = c2.

Then, 1 + S contains colors c1 and c2 and uncolored elements 1, 4; 3 + S contains colors c0 and c2

and uncolored elements 1, 4; and 4 + S contains colors c0 and c1 and uncolored elements 1, 4. So,

there is no way colors are assigned to 1 and 4 so that each translate consists of three distinct colors.

Case 4: χ(1) = c0,χ(2) = c1,χ(3) = c2.

Then, 2 + S contains colors c1 and c2 and uncolored elements 0, 4; 3 + S contains colors c0 and c2

and uncolored elements 0, 4; and 4 + S contains colors c0 and c1 and uncolored elements 0, 4. So,

there is no way colors are assigned to 0 and 4 so that each translate consists of three distinct colors.
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Hence, pG(S) = 2.

Next, by Proposition 2.0.2 with n 6≡ 0 mod 4 and n 6= 5, the Frobenius number of A0(4)+A1(3) = n

is 5, and so every such n can be written in the form n = A0(4) +A1(3) and thus pZn(S) ≥ 3. The

upper bound is also 3 by the fact that 4 - n as n is not a multiple of 4 and this is a requirement by

Remark 2.0.2.

Finally, in the case that n ≡ 0 mod 4 and n 6= 5, p(S) = 4 follows by Proposition 2.0.3.

This result rests upon the following two results. Proposition 2.0.2 gives a lower bound for the

polychromatic number of any subset of any size with arithmetic progression a, a+1, a+2, . . . a+m−1

as its elements and Proposition 2.0.3 yields precisely which such subsets have p(S) = |S|. Before

the proof of Proposition 2.0.2 can be presented, there are a few definitions needed for the argument

that will be introduced.

Let S = {0, 1, 2, . . . ,m − 1} where S ⊂ Zn. Let Tm(0) = S and for any j ∈ Zn, Tm(j) =

{j, j + 1, j + 2, . . . , j + (m − 1)} represents any translate of S. Consider the following coloring of

the elements of Zn which will be referred to as a block coloring of Zn. First, break the n elements

of Zn up into a collection of disjoint sets consisting each of a nonnegative number of elements.

These sets must be broken up in such a way that the elements of Zn appear in consecutive order

0, 1, 2, 3, . . . , n − 1. Also, in these sets the position of each element is unique. Finally each set

consists of either m − x,m − (x − 1),m − (x − 2), . . . ,m − 1,m elements of Zn. These sets will

hereafter be referred to as blocks of length i where m− x ≤ i ≤ m.

Next, the elements of these blocks of length i are colored. Starting with the blocks of length m−x,

assign colors c0, c1, c2, . . . , cm−(x+1) in order respectively to the m− x elements of all such blocks.

Then, in the blocks of length m − (x − 1), choose one of the elements to remain uncolored (this

element will be colored later). After this element is chosen, assign colors c0, c1, c2, . . . , cm−(x+1)

in order respectively to the remaining elements of all such blocks. Next, in the blocks of length

m−(x−2), choose two elements to remain uncolored (these elements will be colored later) and one of

these uncolored elements must be in the same position as the uncolored element in blocks of length

m − (x − 1). After these two elements have been specified, assign colors c0, c1, c2, . . . , cm−(x+1)
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in order respectively to the m − x remaining elements of all such blocks. Continue in this way

coloring blocks of length i = m − (x − 3), . . . ,m − 1,m so that in each block, the position of any

uncolored element is also the position of one of the x uncolored elements in blocks of length m.

That is, the collection of positions of uncolored elements in blocks with lengths smaller than m are

proper subsets of the collection of positions of uncolored elements in blocks with length m. The

remaining m − x elements are always assigned colors c0, c1, c2, . . . , cm−(x+1) in order respectively.

Finally, assign the color c0 to all the uncolored elements. When a block and a translate Tm(j) share

elements in common, the block covers some of the elements of Tm(j).

PROPOSITION 2.0.2. If there exist 0 ≤ A0, A1, . . . , Ax ∈ Z such that n = A0m+A1(m− 1) +

A2(m − 2) + . . . + Ax(m − x) where m − 1 ≥ x ≥ 0 is the least such number so that n can be

decomposed into such a linear combination, then the block coloring of Zn is yields pZn({a, a+ 1, a+

2, . . . , a+m− 1}) ≥ m− x.

Proof. First, note that a translate of {a, a + 1, a + 2, . . . , a + m − 1} is {0, 1, 2, . . . ,m − 1}. Also,

m− 1 ≤ n otherwise there are not enough elements to put in S.

So, without loss of generality the following argument will be given so that S = {0, 1, 2, . . .m− 1}.

Suppose n = A0m + A1(m − 1) + A2(m − 2) + . . . + Ax(m − x) where m − 1 ≥ x ≥ 0 is the least

such number so that n can be decomposed into such a linear combination. Then, it is possible to

break the elements of Zn up into blocks of length i for m− x ≤ i ≤ m. For all j ∈ Zn, Tm(j) is the

translate {j, j+1, j+2, j+3, j+4, . . . , j+ i−1, j+ i, j+ i+1, . . . , j+m−x, j+m− (x−1), j+m−

(x−2), . . . , j+m−2, j+m−1}. So, what must be shown is that the elements of each Tm(j) can be

colored with m− x distinct colors. Consider the colors c0, c1, c2, c3, . . . , cj−1, cj , cj+1, . . . , cm−(x+1)

and blocks of lengths m,m − 1,m − 2, . . .m − x. Align the blocks by listing the zeroth position

to be the left endpoint, the next position over being the first position, and so on until the right

endpoint is the m− (x+ 1)th, m− (x+ 2)th, . . . , or m− 1 th position.

Now, color the elements as per the definition of block coloring leaving the first uncolored element

in the blocks of length m − (x − 1) to be the right endpoint position, the uncolored elements of

blocks of length m− (x− 2) to be in the right endpoint position and one over to the left from the
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right endpoint, and so on until the x uncolored elements of blocks of length m are the x elements

in from the right endpoint. These elements are resultantly colored c0. The block coloring is as

pictured below.

element:

color:

position:

d

c0

0th

d+ 1

c1

1st

d+ 2

c2

2nd

· · · cm−(x+1)

m− (x+ 1)th

d+m− (x+ 1)

c0

m− (x+ 2)th

d+m− (x+ 2)

. . . c0

m− 1th

d+m− 1

Figure 2.5 Block Coloring of Zn

If all of the elements of Tm(j) appear in one entire block together, then Tm(j) most assuredly

contains m−x distinctly colored elements. If all of the elements of Tm(j) appear in a block except

for one entry, then this missing entry because of the alignment must be the right or left endpoint.

If it is the right endpoint then all m − x colors appear. If it is the left endpoint, all colors but c0

appear. However, the next block over that includes elements of Tm(j) which starts covering as soon

as the first block ends must have the left endpoint in place which is colored with c0 and so color c0

appears and thus all m−x colors appear. Similarly, without loss of generality, say a block covering

Tm(j) misses its first i slots. Then all the colors c0, c1, . . . , cm−i−1 are guaranteed to appear in the

remaining m− i elements of Tm(j) assuming that x ≥ i as in this case m− x ≤ m− i. If x < i and

consequently m− x > m− i, there are i− x colors missing : cm−i, . . . , cm−(x+1). However, a block

must cover the first i slots and in the worst case scenario this block has length m. In this case, the

positions in the block that are covering the elements in the translate are the m− 1− ith, m− ith,

m − i + 1th, . . ., m − (x + 1)th, . . ., m − 3th, m − 2th, and m − 1th positions. These elements

are colored with cm−(i+1), cm−i, . . ., cm−(x+1), c0, . . ., c0 respectively and so all m− x colors must

appear in this translate. If Tm(j) is covered by three blocks or more, then this means at least one

entire block corresponds with the entries in Tm(j) and so m− x distinct colors must appear.

PROPOSITION 2.0.3. For any a ∈ Zn, pZn({a, a+ 1, a+ 2, . . . , a+m− 1}) = m if and only if

n ≡ 0 mod m.
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Proof. First, note that {0, 1, 2, . . . ,m − 1} is a translate of {a, a + 1, a + 2, . . . , a + m − 1}, so

without loss of generality let S = {0, 1, 2, . . . ,m − 1}. Also, m − 1 ≤ n otherwise there are not

enough elements to put in S.

Let χ be a an S−polychromatic coloring of Zn. Next, what will be show is that pG(S) = m =⇒

χ(i) = χ(i + m). So, suppose pG(S) = m, then every translate of S which is of the form i + S =

{i, i + 1, i + 2, . . . , i + (m − 1)} consists of m distinct colors under χ. Let c0, c1, . . . , cm−1 denote

these m distinct colors. Without loss of generality, assign χ(i+ j) = cj for all 0 ≤ j ≤ m− 1. Note

that {i+ 1, i+ 2, i+ 3, . . . , i+ (m− 1), i+m} is a translate. Then, the elements i+ 1, i+ 2, i+ 3,

. . ., i + (m − 1) are colored with the colors c1,c2, c3, . . ., cm−1 respectively. This forces i + m to

be colored with color c0. Therefore, the n elements of G are being broken up into m color classes

with the same number of elements in each class. That is m|n. This also follows by Remark 2.0.2.

Next, assume n ≡ 0 mod m. Define

χ(i) = ci mod m

to be a coloring which assigns the colors c0, . . . , cm−1 to the elements of G. The translates of S are

of the form i+S = {i, i+1, i+2, . . . , i+(m−1)} for all i ∈ G and obviously every element belongs

to a distinct congruence class modm. So, under χ with all translates consisting of consecutive

elements modm, each translate will consist of m distinct colors. Hence, χ is an S−polychromatic

coloring and the result follows.

Corollary 2.0.3. For any a ∈ Zn \ {0}, b ∈ Zn, pZn({b, b + a, b + 2a, . . . , b + (m − 1)a}) = m if

and only if |〈a〉| ≡ 0 mod m.

Proof. First, note that {0, a, 2a, . . . , (m− 1)a} is a translate of {b, b+a,b+2a, . . . , b+(m-1)a}, so

without loss of generality, let S = {0, a, 2a, . . . , (m− 1)a}. Also, m− 1 ≤ n otherwise there are not

enough elements to put in S.

By Theorem 2.0.1, pZn(S) = p|〈a〉|({0, 1, 2, . . . , (m − 1)}). The result then follows by Proposition

2.0.3.
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On a final note for subsets consisting of arithmetic progressions in Zn, these subsets can also

be formed in the integers. Recall the following result from [6].

LEMMA 2.0.10. [6] Let a, b, c, k, q ∈ Z with 0 < a < b < c, gcd(a, b, c) = 1, k, q ≥ 1, and

m = c− a+ b. Let S = {0, ka, kb, kc}, S1 = {0, a, b, c}, S2 = {0, b− a, b, 2b− a}. Then

(i) pZ(S) = pZ(S1).

(ii) pZ(S1) ≥ pZm(S1).

(iii) pZm(S1) = pZm(S2).

(iv) If gcd(k, q) = 1, then pZq(S) = pZq(S1).

Part (ii) of this theorem can be generalized to arithmetic progressions of any size in Zn and

this is what is accomplished in Theorem 2.0.8.

THEOREM 2.0.8. pZn(S) ≤ pZ(S) for any S = {0, 1, 2, . . . ,m− 1} with m ≥ 2.

Proof. Note that an S−polychromatic coloring of Zn involves coloring elements with more restric-

tions than coloring the translates of S with respect to Z. That is, an S−polychromatic coloring

of Zn involves coloring n translates in which every element appears at total of m times while an

S−polychromatic coloring of Z involves coloring a countably infinite number of translates where

each element appears in m translates total and each translate is consecutive. Now, consider the

following coloring with colors c0, c1, c2, . . . , cm−1:

χ(i) = cj for all j ∈ Z if and only if j ≡ i mod m.

Since all translates of Z are consecutive and consist of m elements each translates will always have

m distinct values each of a different residue modulus m and so each translate will contain m distinct

colors. Also, it is not possible to color the translates with more than m colors as each translate

only contains m elements. Thus, m ≤ pZ(S) ≤ m =⇒ pZ(S) = m.

Finally, it can be seen easily that pZn(S) ≤ m as each of the translates of S only contains m

elements. Therefore, pZn(S) ≤ pZ(S) = m.
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Another subset of interest in Zn are subsets with p(S) = |S|. Recall that Theorem 2.0.4 gives

a divisibility requirement. For subsets of odd prime size it is possible to classify these subsets

completely, for subsets of composite size the problem is much more complicated and remains open.

The proof of the structure of subsets of odd prime size with p(S) = |S| follows and requires the

following notation and Lemma 2.0.11.

DEFINITION 2.0.1. Let S = {0, a1, . . . , a`−1} ⊂ Zn. Let ei denote the equivalence classes

modm for all 0 ≤ i ≤ m− 1 for some integer m. Let |S|ei denote the number of elements in S that

belong to class ei.

LEMMA 2.0.11. If p(S) = |S| for S = {0, a1, . . . , a`−1}, then |S|e0 = |S|ei for all 0 ≤ i ≤ |S| − 1

Proof. By way of contradiction, there is some m so that |S|e0 6= |S|em . First, let |S|e0 < |S|em . Let

|S|e0 = k and |S|em = k+ r for some r ≥ 1. Because p(S) = |S|, S ⊕ T = Zn for some T ⊂ Zn. So,

n = |S|j for some integer j where |T | = j. If any element in Sei is added to any element tz in T for

all 0 ≤ z ≤ j − 1, k elements of the form tz + i result for all 0 ≤ i ≤ |S| − 1 which does not include

i = m. That is, (|S| − 1)(k)(j) elements result. If any element in Sem is added to any element tz in

T for all 0 ≤ z ≤ j− 1, k+ r elements of the form tz +m result. That is, (k+ r)(j) elements result.

Again because S ⊕ T = Zn, the sum (|S| − 1)(k)(j) + (k + r)(j) should be n exactly, however, the

following is obtained:

(|S| − 1)(k)(j) + (k + r)(j) = |S|kj − kj + kj + rj

= |S|kj + rj

= (|S|k + r)j.

So, n = (|S|k + r)j implies |S| = |S|k + r which in turn implies k = 1 and r = 0 which is a

contradiction.

Similarly, let |S|e0 > |S|em . Let |S|e0 = k and |S|em = k − r for some r ≥ 1. Because p(S) = |S|,

S ⊕ T = Zn for some T ⊂ Zn. So, n = |S|j for some integer j where |T | = j. If any element

in Sei is added to any element tz in T for all 0 ≤ z ≤ j − 1, k elements of the form tz + i result
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for all 0 ≤ i ≤ |S| − 1 which does not include i = m. That is, (|S| − 1)(k)(j) elements result.

If any element in Sem is added to any element tz in T for all 0 ≤ z ≤ j − 1, k − r elements of

the form tz + m result. That is, (k − r)(j) elements result. Again because S ⊕ T = Zn, the sum

(|S| − 1)(k)(j) + (k − r)(j) should be n exactly, however, the following is obtained:

(|S| − 1)(k)(j) + (k − r)(j) = |S|kj − kj + kj − rj

= |S|kj − rj

= (|S|k − r)j.

So, n = (|S|k − r)j implies |S| = |S|k − r which in turn implies k = 1 and r = 0 which is a

contradiction.

One can make the observation that if the order of set S is an odd prime and p(S) = |S|, then

|S| divides the sum of the elements in S.

OBSERVATION 2.0.1. If S = {0, a1, . . . , a`−1} ⊂ Zn such that ` is an odd prime and p(S) = `,

then `|a1 + . . .+ a`−1.

Proof. By Lemma 2.0.11, it is either the case that |S|e0 = 1 or |S|e0 = `. If the latter of these

options is true, then a factor of ` can be pulled out of every element in S and so clearly the desired

result hold.

If the former of the above options is true, without loss of generality let ai ≡ ei mod `. Then,

e1 + . . . + e`−1 =
`−1∑
i=1

i = (`−1)(`)
2 . Since ` is odd, ` − 1 must be even and so ` must divide this

sum.

THEOREM 2.0.9. Let S ⊂ Zn and |S| = ` be an odd prime so that p(S) = ` if and only if for

any a ∈ Zn, S = {a, a+ `jm1, a+ `jm2, . . . , a+ `jm`−1} where `j+1|n, j ≥ 0, and 0 6≡ m1 6≡ m2 6≡

. . . 6≡ m`−1 mod `.

Proof. First, note that {0, `jm1, `
jm2, . . . , `

jm`−1} is a translate of S. So, without loss of generality,

the following argument will be given as if S = {0, `jm1, `
jm2, . . . , `

jm`−1}.



49

Every element of Zn can be written in the form t · `j + r where t is some positive integer such that

0 ≤ t ≤ |〈`j〉|− 1 and 0 ≤ r ≤ `j − 1. Let χ be the coloring function given by χ(t · `j + r) = ct mod `.

Under this coloring every translate of S contains ` distinct colors as every translate is of the form

{t · `j + r, (t+m1) · `j + r, (t+m2) · `j + r, . . . , (t+m`−1) · `j + r}

and χ((t+mi) · `j + r) = ct+mi mod ` for 1 ≤ i ≤ `− 1.

Next, assume p(S) = ` and S = {0, a1, . . . , a`−1}. Then, Lemma 2.0.11, |S|e0 ||S| i.e. ` = |S|e0k for

some integer k. Since ` is an odd prime either |S|e0 = 1 or |S|e0 = `.

If |S|e0 = 1, then each element in S belongs to a distinct class mod|S|, without loss of generality,

set a1 = `0m1, . . . a`−1 = `0m`−1 with `0+1|n.

If |S|e0 = `, then every element in S belongs to e0 and the highest power of ` is pulled from each

element to obtain the following:

0 < a1 = `b1c1 < a2 = `b2c2 < . . . < a`−1 = `b`−1c`−1 ≤ n− 1.

Let bq = min{b1, . . . , b`−1}. By Remark 2.0.4 with a multiple of `bq ,

` = p({0, `b1c1, `
b2c2, . . . , `

b`−1c`−1}) ≤ p({0, `b1−bqc1, `
b2−bqc2, . . . , `

b`−1−bqc`−1}) = `.

By Lemma 2.0.11, either |S|e0 = 1 or |S|e0 = `, however the latter option is impossible because at

least one element is not divisible by `. This means bq = b1 = . . . = b`−1.

Note that the translates of {0, `bqc1, . . . , `
bqc`−1} that belong to the subgroup generated by `bq are

of the form:

{`bqy, `bq(y + c1), `bq(y + c2), . . . , `bq(y + c`−1}

for 0 ≤ y ≤ |〈`bq〉| and of course p({`bqy, `bq(y + c1), `bq(y + c2), . . . , `bq(y + c`−1}) = `. By

Theorem 2.0.1, coloring these translates in Zn is equivalent to coloring {0, c1, . . . , c`−1} in Z|〈`bq 〉|.

Since there is a {0, c1, . . . , c`−1}−polychromatic coloring consisting of ` colors, it must be that

`||〈`bq〉|. Also, with `||〈`bq〉| and |〈`bq〉| = n
gcd(`bq ,n)

, this implies gcd(`bq , n) = `bq as the highest

power of ` that can be factored from n must be larger than bq as ` divides n, `bq , and |〈`bq〉|. So,

n = `bq |〈`bq〉| ≡ 0 mod `bq+1. Hence, the proof is complete.
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REMARK 2.0.6. The backward direction is repeatable if ` is a composite number, however the

forward direction is not necessarily repeatable.

Corollary 2.0.4. Let S ⊂ Zn such that n ≥ 3, and |S| = ` is an odd prime. Then, n−r ≤ ex(Zn, S)

if and only if

S = {a, a+ `jm1, a+ `jm2, . . . , a+ `jm`−1} where 0 6≡ m1 6≡ m2 6≡ . . . 6≡ m`−1 mod ` where n = `r.

An interesting problem to consider in the future is what subsets of Zn have p(S) = |S| where

|S| is a composite number. Lemma 2.0.11 yields that such a subset must contains an equal number

of elements per each equivalence class mod|S|. So, one case is if |S|ei = 1 for all 0 ≤ i ≤ |S| − 1.

This case is explored in the following result.

PROPOSITION 2.0.4. Suppose S = {b, b + a1, b + a2, . . . , b + a`−1} ⊂ Zn where b, a1 6= a2 6=

. . . 6= a`−1 ∈ Zn, |S|ei = 1 for all 0 ≤ i ≤ |S|−1, and |S| is a composite number. Then, p(S) = |S|.

Proof. Since |S|ei = 1 for all 0 ≤ i ≤ |S|−1, b 6≡ b+a1 6≡ b+a2 6≡ . . . 6≡ b+a`−1 mod |S|. Consider

the assignment

χ(j) = cj mod |S|.

Since every translate is of the form d + S = {d + b, d + b + a1, d + b + a2, . . . , d + b + a`−1},

every translate contains |S| distinct colors as the elements all belong to distinct congruence classes

mod|S|.

If |S| is composite, |S|e0 > 1, and p(S) = |S|, then finding the form of such subsets is still an

open problem.

It is also worth noting the polychromatic number when S is a subgroup of Zn.

PROPOSITION 2.0.5. If S ≤ Zn, then pZn = |〈a〉| where S = 〈a〉.

Proof. Since Zn is a cyclic group, so are all of its subgroups. That is, there is some a ∈ Zn so that

S = 〈a〉. So, S = {0, a, 2a, . . . , (〈a〉−1)a}. Then, by Theorem 2.0.1 pZn(S) = pZ|〈a〉|({0, 1, 2, . . . , |〈a〉|−

1}). Finally, by Proposition 2.0.4, pZ|〈a〉|({0, 1, 2, . . . , |〈a〉| − 1}) = |〈a〉|.

Note that this also follows from Lemma 1.1.5.
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2.0.2 Results on General Finite Abelian Groups

First, note that if there is an S−polychromatic coloring of any finite abelian group consisting

of any value of colors between 1 and pG(S).

OBSERVATION 2.0.2. If S ⊂ G and pG(S) = m then there exists an S−polychromatic coloring

with m− j colors for all 0 ≤ j ≤ m− 1.

Proof. Every translate can be divided up so that at least m elements belong to m distinct color

classes. Remove j distinct color classes by taking all the elements in these color classes and putting

them in one of the remaining m− j color classes.

Also, if the polychromatic number of a subset of G is known, then an upper bound on the

polychromatic number for any subset of this original subset is obtained.

THEOREM 2.0.10. Let G be a finite abelian group. Let S ⊂ G. Then, p(S′) ≤ p(S) for any

S′ ⊆ S.

Proof. If S = S′, the statement is obviously true. Without loss of generality, suppose the identity

1 belongs to S and S′, then S′ = {1, aj1 , . . . , aj`−1
} ⊂ S = {1, a1, a2, . . . , ak−1} and let χ′ be

an S−polychromatic coloring of S′ with ` colors, then S = { 1︸︷︷︸
c0

, aj1︸︷︷︸
c1

, . . . , aj`−1︸ ︷︷ ︸
c`−1︸ ︷︷ ︸

S′

, , , , , , , . . . ,︸ ︷︷ ︸
remaining elements

}.

With this partitioning, χ′ extends to an S−polychromatic coloring of S and its translates by simply

assigning all remaining elements to at least one color class that has already been used.

The following results generalize Theorem 2.0.1, Theorem 2.0.2, and Corollary 2.0.1 to any finite

abelian group.

THEOREM 2.0.11. The Reduction Theorem for Finite Abelian Groups. Let t ≥ 2, m1,m2, . . . ,mt−1 ∈

Z are distinct, and a ∈ G \ {0} where G is any finite abelian group.

Then pG({0,m1a,m2a, . . . ,mt−1a}) = pZ|〈a〉|({0,m1,m2, . . . ,mt−1}).

Proof. For any x ∈ G, x+ {0,m1a,m2a, . . . ,mt−1a} ⊆ x+ 〈a〉. Therefore, partition the translates

of {0,m1a,m2a, . . . ,mt−1a} among the cosets of 〈a〉. If r = [G : 〈a〉], then the r collections
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of translates are colored identically due to the following isomorphism between elements in the

translates: φ : y + 〈a〉 → z + 〈a〉; y + ia 7→ z + ia for any nonnegative integer i. In particular,

color the translates whose elements belong to 〈a〉. These translates are of the form {ja, (m1 +

j)a, (m2+j)a, . . . , (mt−1+j)a}. Coloring these translates in G is identical to coloring the translates

{j,m1 + j,m2 + j, . . . ,mt−1 + j} in Z|〈a〉| via the following isomorphism between elements in the

translates: 〈a〉 → Z|〈a〉|; ja 7→ j for any nonnegative integer j.

THEOREM 2.0.12. Let G be any finite abelian group. For all a 6= b ∈ G where a′ ∈ G such that

{0, a′} is a translate of {a, b},

pG({a, b}) =


1 if |〈a′〉| is odd

2 if |〈a′〉| is even.

Proof. Let S = {a, b} for any a 6= b ∈ G. Then, consider either −a+ S = S − a or −b+ S = S − b

and so let a′ be either b− a or a− b. By Theorem 2.0.11, pG(S) = pG({0, a′}) = pZ|〈a′〉|({0, 1}). By

Lemma 2.0.1,

pZn(S) =


1 if |〈a′〉| is odd

2 if |〈a′〉| is even.

Corollary 2.0.5. Let G be any finite abelian group. For all a 6= b ∈ G where a′ ∈ G such that

{0, a′} is a translate of {a, b},

ex(G, {a, b}) ≥


0 if |〈a′〉| is odd

|G| − |G|2 if |〈a′〉| is even.

A group G is finitely generated if there is a finite subset A of G such that G = 〈A〉. Note that

any finite abelian group is finitely generated as one can simply take all group elements as the set

of generators. Consider the result from abstract algebra known as the fundamental Theorem of

Finitely Generated Abelian Groups.

THEOREM 2.0.13. [10] Let G be a finitely generated abelian group. Then
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(i)

G ∼= Zr × Zn1 × Zn2 × · · · × Zns ,

for some integers r, n1, n2, . . . , ns satisfying the following conditions:

(i) r ≥ 0 and nj ≥ 2 for all j, and

(ii) ni+1|ni for 1 ≤ i ≤ s− 1

(ii) the expression in (i) is unique: if G ∼= Zr×Zm1×Zm2×· · ·×Zms, where t and m1,m2, . . . ,mu

satisfy t ≥ 0, mj ≥ 2 for all j and mi+1|mi for 1 ≤ i ≤ u− 1, then t = r, u = s, and mi = ni

for all i.

Essentially, what this result states is that any finite abelian group is a product of copies of the

integers and various sizes of the integers modulo n. Next, it should be noted that any results on

the integers modulo n can be extended to direct products of the integers modulo n and specific

subsets.

Corollary 2.0.6. Suppose G ∼= Zq1 × Zq2 × · · · × Zqj × · · · × Zqr , and one of the following is true

(i) Each qj is distinct and

S = {(0, 0, . . . , 0︸︷︷︸
jth component

, . . . , 0)

︸ ︷︷ ︸
rcomponents

, (0, 0, . . . , a1︸︷︷︸
jth component

, . . . , 0)

︸ ︷︷ ︸
rcomponents

, . . . , (0, 0, . . . , at−1︸︷︷︸
jth component

. . . , 0)

︸ ︷︷ ︸
r components

},

then pG(S) = pZqj
({0, a1, . . . , at−1})

(ii) q1 = . . . = qj = . . . = qr and

S = { (0, 0, . . . , 0︸︷︷︸
jth component

, . . . , 0)

︸ ︷︷ ︸
rcomponents

, (a1, a1, . . . , a1︸︷︷︸
jth component

. . . , a1)

︸ ︷︷ ︸
rcomponents

,

. . . , (at−1, at−1, . . . , at−1︸︷︷︸
jth component

. . . , at−1)

︸ ︷︷ ︸
r components

},

then pG(S) = pZqj
({0, a1, . . . , at−1})
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(iii) There is some subcollection of positive integers i1, . . . , in ∈ {q1, q2, . . . , qj , . . . , qr} so that

i1 = . . . = in and

S = {(0, 0, . . . , 0, . . . , 0)︸ ︷︷ ︸
rcomponents

,

(0, . . . , 0, a1︸︷︷︸
i1th component

, 0, . . . , 0, a1︸︷︷︸
i2th component

, 0, . . . , 0, a1︸︷︷︸
inth component

, 0, . . . , 0)

︸ ︷︷ ︸
rcomponents

, . . . ,

(0, . . . , 0, at−1︸︷︷︸
i1th component

, 0, . . . , 0, at−1︸︷︷︸
i2th component

, 0, . . . , 0, at−1︸︷︷︸
inth component

, 0, . . . , 0)

︸ ︷︷ ︸
r components

}

then pG(S) = pZqj
({0, a1, . . . , at−1})

Proof. For (i), the group isomorphism ϕ : G → Zqj ; (0, 0, . . . , ak︸︷︷︸
jth component

, . . . , 0)

︸ ︷︷ ︸
rcomponents

→ ak yields the

result. For (ii), the group isomorphism ϕ : G → Zqj ; (ak, ak, . . . , ak︸︷︷︸
jth component

. . . , ak)

︸ ︷︷ ︸
rcomponents

→ ak yields

the result. For (iii), the group isomorphism

ϕ : G→ Zqj ; (0, . . . , 0, ak︸︷︷︸
i1th component

, 0, . . . , 0, ak︸︷︷︸
i2th component

, 0, . . . , 0, ak︸︷︷︸
inth component

, 0, . . . , 0)

︸ ︷︷ ︸
rcomponents

→ ak yields

the result.

Next, the last result in this chapter begins the exploration of finding the polychromatic number

of subsets taken from a direct product of copies of the integers modulo n. If the direct product in

question includes the integers modulo 2 and the integers modulo n for any even n, the following

result is obtained.

PROPOSITION 2.0.6. If S = {(x, a), (y, b), (z, c)} ⊂ Z2×Z2m for any m ≥ 1 and any x, y ∈ Z2

p(S) =


p2m({0, a′, b′}) if a′ 6≡ b′ mod 2m, and a′ 6≡ 0 mod 2m, and b′ 6≡ 0 mod 2m

2 otherwise

where S′ = {(0, 0), (x′, a′), (y′, b′)} is a translate of S with x′, y′ ∈ Z2 and a′, b′ ∈ Z2m.
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Proof. Suppose S = {(x, a), (y, b), (z, c)}, Then, any of the translates (2−x, 2m−a)+S, (2−y, 2m−

b)+S, or (2−z, 2m−c)+S, yield a translate of the form S′ = {(0, 0), (x′, a′), (y′, b′)}. Next, it is ei-

ther the case that S′ is of the form {(0, 0), (0, a′), (0, b′)}, {(0, 0), (0, a′), (1, b′)}, {(0, 0), (1, a′), (0, b′)},

{(0, 0), (1, a′), (1, b′)}, however in any case the set of translates can be arranged into two distinct

collections as follows.

Case 1: S′ = {(0, 0), (0, a′), (0, b′)}. In which case the two collections of translates are disjoint:

(0, d) + S′ = {(0, d), (0, a′ + d), (0, b′ + d)} and (1, d) + S′ = {(1, d), (1, a′ + d), (1, b′ + d)}.

Clearly, (0, d) and (1, d) never appear in the same translate.

Case 2: S′ = {(0, 0), (0, a′), (1, b′)}. In which case one of the two collects contains two elements

with at 0 in the first component and the other contains two elements with a 1 in the second com-

ponent: (0, d) + S′ = {(0, d), (0, a′ + d), (1, b′ + d)} and (1, d) + S′ = {(1, d), (1, a′ + d), (0, b′ + d)}.

Note also that (0, d) and (1, d) never appear in the same translate as (1, d) + S = {(1, d), (1, d +

a′), (0, d+b′)}, (0, d)+S = {(0, d), (0, d+a′), (1, d+b′)}, (0, d−a′)+S = {(0, d−a′), (0, d), (1, d−a′+

b′)}, (0, d−b′)+S = {(0, d−b′), (0, d−b′+a′), (1, d)}, (1, d−a′)+S = {(1, d−a′), (1, d), (0, d−a′+b′)},

(1, d− b′) + S = {(1, d− b′), (1, d− b′ + a′), (0, d)}.

Case 3: S′ = {(0, 0), (1, a′), (0, b′)}. In which case one of the two collects contains two elements

with at 0 in the first component and the other contains two elements with a 1 in the second com-

ponent: (0, d) + S′ = {(0, d), (1, a′ + d), (0, b′ + d)} and (1, d) + S′ = {(1, d), (0, a′ + d), (1, b′ + d)}.

Note also that (0, d) and (1, d) never appear in the same translate as (1, d) + S = {(1, d), (0, d +

a′), (1, d+b′)}, (0, d)+S = {(0, d), (1, d+a′), (0, d+b′)}, (0, d−a′)+S = {(0, d−a′), (1, d), (0, d−a′+

b)}, (0, d−b′)+S = {(0, d−b′), (1, d−b′+a′), (0, d)}, (1, d−a′)+S = {(1, d−a′), (0, d), (1, d−a′+b′)},

(1, d− b′) + S = {(1, d− b′), (0, d− b′ + a′), (1, d)}.

Case 4: S′ = {(0, 0), (1, a′), (1, b′)}. In which case one of the two collects contains two elements

with at 1 in the first component and the other contains two elements with a 0 in the second com-

ponent: (0, d) + S′ = {(0, d), (1, a′ + d), (1, b′ + d)} and (1, d) + S′ = {(1, d), (0, a′ + d), (0, b′ + d)}.

Note also that (0, d) and (1, d) never appear in the same translate as (1, d) + S = {(1, d), (0, d +

a′), (0, d+b′)}, (0, d)+S = {(0, d), (1, d+a′), (1, d+b′)}, (0, d−a′)+S = {(0, d−a′), (1, d), (1, d−a′+
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b′)}, (0, d−b′)+S = {(0, d−b′), (1, d−b′+a′), (1, d)}, (1, d−a′)+S = {(1, d−a′), (0, d), (0, d−a′+b′)},

(1, d− b′) + S = {(1, d− b′), (0, d− b′ + a′), (0, d)}.

In any case, if χ is a color assignment to the elements of Z2 × Z2m, then making the distinc-

tion χ((0, i)) = χ((1, i)) will ensure that only one collection of translates in each above case

must be colored and the other collection will be colored simultaneously. Thus, the isomorphism

ϕ : Z2 ×Z2m → Z2m : (w, i) 7→ i yields that coloring the translates of S′ in Z2 ×Z2m is isomorphic

to coloring the translates of {0, a′, b′} in Z2m.

Next, consider the cases where either a′ ≡ b′ mod 2m, or a′ ≡ 0 mod 2m, or b′ ≡ 0 mod 2m.

Case 1: a′ ≡ b′ mod 2m. Then S′ = {(0, 0), (0, b′), (1, b′)}. However, consider the translates

(1, 0) + S = {(1, 0), (1, b′), (0, b′)} and (0, 2m − b′) + S = {(0, 2m − b′), (0, 0), (1, 0)}. Now, sup-

pose χ is an S′−polychromatic coloring with three colors, such that without loss of generality

χ((0, 0)) = c0, χ((0, b′)) = c1, χ((1, b′)) = c2. Then, χ((1, 0)) = c0, however (0, 2m − b′) + S can

not be colored with three colors. So, pZn(S′) < 3.

Case 2: Without loss of generality a′ ≡ 0 mod 2m. Then S′ = {(0, 0), (1, 0), (1, b)} or S′ =

{(0, 0), (1, 0), (0, b)}. If it is the former case, then translates (1, 0) + S = {(1, 0), (0, 0), (0, b)} and

(0, b) +S = {(0, b), (1, b), (1, 2b)} ensure any assignment of three colors to S′ will force such assign-

ment of three colors to fail. If it is the latter case, then the translates (1, 0)+S = {(1, 0), (0, 0), (1, b)}

and (0, b) + S = {(0, b), (1, b), (0, 2b)} ensure any assignment of three colors to S′ will force such

assignment of three colors to fail. Thus, pZn(S′) < 3.

Finally, notice that the translates of S′ = {(0, 0), (0, b′), (1, b′)} are of the form (0, d) + S′ =

{(0, d), (0, d + b′), (1, d + b′)} and (1, d) + S′ = {(1, d), (1, d + b′), (0, d + b′)} while the trans-

lates of S′ = {(0, 0), (1, 0), (1, b)} are (0, d) + S′ = {(0, d), (1, d), (1, d + b′)} and (1, d) + S′ =

{(1, d), (0, d), (0, d+b′)} and those of S′ = {(0, 0), (1, 0), (0, b)} are (0, d)+S′ = {(0, d), (1, d), (0, d+

b′)} and (1, d) + S′ = {(1, d), (0, d), (1, d + b′)}. So, the assignment of two colors to the elements

of Z2 × Z2m via χ((0, i)) = c0 and χ((1, i)) = c1 ensures an S′−polychromatic coloring with two

colors in any case.
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REMARK 2.0.7. If Z2 × Z2m+1 where m ≥ 1, then by the Chinese remainder theorem, Z2 ×

Z2m+1
∼= Z4m+2. Determining the polychromatic number and the Turán number of this direct

product is therefore isomorphic to one copy of the integers modulo n.

An exploration of more generalized finite abelian groups is a topic that is still open.
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CHAPTER 3. RESULTS ON FINITE NONABELIAN GROUPS

3.1 Introduction

It is also worth noting that not all finite groups can be classified as abelian. For all groups

which are finite and nonabelian, an analogous question can be introduced:

QUESTION 3.1.1. For a given finite nonabelian group G, and an arbitrary subset S ⊂ G, what

is the maximum number of elements in a subset of G which does not contain a translate of S?

The problem appears to be the same, however, due to the fact that the group operation is not

necessarily commutative, it is possible to create almost twice as many translates as before (2|G|−1

translates to be exact). Suppose G is a finite nonabelian group and S ⊂ G. Then, the left-translate

of S by any group element a of G is a ∗ S. The right-translate of S by any group element a of G is

S∗a. Therefore “translate” in the context of this question means any left- or right-translate. As was

the case with the finite abelian group work, the Turán number, ex(G,S), and the complementary

value, f(G,S), are defined as previously. Similarly, the idea behind tackling the question is to

divide the work into improving on a trivial lower bound and trivial upper bound which are again

given by |S| − 1 and |G| − 1 with the same reasoning as previously given. This chapter concerns

itself with working on the lower bound by examining the complementary problem which comes

in the form of a Ramsey-type question: For a given finite nonabelian group G, and an arbitrary

subset S ⊂ G, what is the minimum number of elements one must delete from G so that it does not

contain a translate of S? Of course, because the problem is a little different, the method used to

solve it must change as well. Therefore, the type of coloring that I have employed to augment the

lower bound with respect to finite abelian groups, must be redefined. Given a subset S of a finite

nonabelian group G, a coloring of the elements of G is SL−polychromatic if every left-translate of

S contains an element of each color. The left-polychromatic number given a finite nonabelian group

G and a subset of G called S, denoted pLG(S) or pL(S) when the choice of G is clear, is the largest
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number of colors allowing an SL−polychromatic coloring of the left-translates of S. A coloring of

the elements of G is SR−polychromatic if every right-translate of S contains an element of each

color. The right-polychromatic number given a finite nonabelian group G and a subset of G called

S, denoted pRG(S) or pR(S) when the choice of G is clear, is the largest number of colors allowing

an SR−polychromatic coloring of the left-translates of S. When referring to all translates left and

right, the following definitions will be used. A coloring of the elements of G is S−polychromatic if

every left- and right-translate of S contains an element of each color. The polychromatic number

given a finite nonabelian group G and a subset of G called S, denoted pG(S) or p(S) when the

choice of G is clear, is the largest number of colors allowing an S−polychromatic coloring of the

translates of S.

When the subset S of a finite nonabelian group G is a normal subgroup, it is worth noting that

left- and right-translates are equal.

OBSERVATION 3.1.1. Suppose S ⊂ G where G is a finite nonabelian group is a normal sub-

group, then for any a ∈ G, a ∗ S = S ∗ a.

However, a big question that is only partially answered in this chapter is whether in general there

is a bijection between the left- and right-translates of any given subset S of any finite nonabelian

group G and more importantly whether it is the case that pL(G) = pR(G).

3.2 Results on General Finite Nonabelian Groups

First and foremost, there are results that apply to any finite nonabelian group in general.

OBSERVATION 3.2.1. If S ⊂ G and pL(S) = m (or pR(S) = m), then there exists an

SL−polychromatic coloring of S and its left-translates (SR−polychromatic coloring of S and its

right-translates) with m− j colors for all 0 ≤ j ≤ m− 1.

Proof. Every left-translate can be divided up so that at least m elements belong to m distinct color

classes. Remove j distinct color classes by taking all the elements in these color classes and putting

them in one of the remaining m− j color classes.



60

Similarly, every right-translate can be divided up so that at least m elements belong to m distinct

color classes. Remove j distinct color classes by taking all the elements in these color classes and

putting them in one of the remaining m− j color classes.

THEOREM 3.2.1. Let G be a finite nonabelian group. Let S ⊂ G. Then, p(S) ≤ min{pL(S), pR(S)}.

Proof. Suppose χ is an S−polychromatic coloring of G, then, χ is also an SL−polychromatic and

an SR−polychromatic coloring. So, p(S) ≤ pLG(S) and p(S) ≤ pRG(S). Since p(S) is less than or

equal to both pLG(S) and pRG(S), p(S) ≤ min{pLG(S), pRG(S)}.

It is worth noting that the inequality in Theorem 3.2.1 can be strict.

PROPOSITION 3.2.1. It is not necessarily the case that pLG(S) = pG(S) = pRG(S).

Proof. Suppose G = S3, the symmetric group of degree 3. The group consists of elements

{(1), (123), (132), (12), (13), (23)}. Suppose further that S = {(1), (12), (123)}. It will be shown

that it is impossible to color the elements of S3 so that an S−polychromatic coloring consisting

of three colors exists but that SL− and SR−polychromatic colorings consisting of three colors do

exist. Note that S is both a left- and right-translate. Suppose that χ is an S−polychromatic col-

oring consisting of three colors, then the three elements of S must be distinctly colored. Without

loss of generality assign χ((1)) = c0, χ((12)) = c1, and χ((123)) = c2. Since a left-translate is

{(12), (1), (23)}, it must be the case that χ((23)) = c2, however {(23), (123), (12)} is a right trans-

late which means χ((23)) = c0. This a contradiction.

An S−polychromatic coloring in two colors can be constructed by the assignment χ((1)) = c0,

χ((12)) = c1, χ((123)) = c1, χ((13)) = c0, χ((132)) = c1, χ((23)) = c0.

An SL−polychromatic coloring in three colors is the assignment χ((1)) = c0, χ((12)) = c1,

χ((123)) = c2, χ((23)) = c2, χ((132)) = c1, χ((13)) = c0.

An SR−polychromatic coloring in three colors is the assignment χ((1)) = c0, χ((12)) = c1,

χ((123)) = c2, χ((23)) = c0, χ((132)) = c1, χ((13)) = c2.

Therefore, pG(S) = 2 < pLG(S) = pRG(S) = 3.
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Before launching into the following examination of the problem in specific finite nonabelian groups,

the examination of the problem in the integers modulo n can actually provide general results for

all finite nonablelian groups.

THEOREM 3.2.2. The Reduction Theorem for Finite Nonabelian Groups. Let G be a finite

nonabelian group. If S = {1, aj1 , aj2 , . . . , ajt−1} ⊂ G such that j1 < j2 < . . . < jt−1 are distinct

integers and 1 6= a ∈ G, then pG(S) = pLG(S) = pRG(S) = pZ|〈a〉|({0, j1, j2, . . . , jt−1}).

Proof. The argument that was applied to Theorem 2.0.1 and Theorem 2.0.11 is essentially repeated.

This is due to the fact that the left and right translates, xS and Sx, of S are equal when x ∈ 〈a〉.

The coloring assignment χ(aj`) = χ(xaj`) = χ(aj`x) for x /∈ 〈a〉 is then made.

THEOREM 3.2.3. Let G be a finite group. Let S = {a, b} ⊂ G such that a 6= b ∈ G. Then,

p(S) =


1 if |a−1b| = |ba−1| is odd

2 if |a−1b| = |ba−1| is even.

Proof. Note that |a−1b| = |ba−1|. Therefore, coloring, without loss of generality, the left-translates

of S is equivalent to coloring the left-translates of {1, a−1b}. By Theorem 3.2.2, pL({1, a−1b}) =

PR({1, a−1b}) = pZ|〈a−1b〉|
({0, 1}).

LEMMA 3.2.1. If pLG(S) = |S| = k or if pRG(S) = |S| = k, then k||G|.

Proof. There are |G| translates with k positions in each translate. Each position ranges through all

elements of G. Let |ci| = r denote the number of elements in the same color class colored ci where

i is any value 0 ≤ i ≤ k− 1. Since each element appears in positions 1 through k in some translate

and each translate contains one single element of each color, there are r translates where the color

ci is used to color the element in the first position, r translates where the color ci is used to color

the element in the second position and so on up to and including the kth position. So, every color

class must contain the same number of elements and |G| = kr as desired.



62

REMARK 3.2.1. If G is a finite abelian group, then by Theorem 2.0.4 in [6], p(S) = |S| is

equivalent to S tiling G by translation and so G = S ⊕ T for some subset T ⊂ G. Therefore,

|G| = |S| · |T |. Hence |S|||G|.

THEOREM 3.2.4. Let G be a finite nonabelian group. Let S ⊂ G. Then, pL(S′) ≤ pL(S) or

pR(S′) ≤ pR(S) for any S′ ⊆ S.

Proof. If S = S′, the statement is obviously true. Without loss of generality, suppose the identity

1 belongs to S and S′, then S′ = {1, aj1 , . . . , aj`−1
} ⊂ S = {1, a1, a2, . . . , ak−1} and let χ′ be an SL-

polychromatic coloring of S′ with ` colors, then S = { 1︸︷︷︸
c0

, aj1︸︷︷︸
c1

, . . . , aj`−1︸ ︷︷ ︸
c`−1︸ ︷︷ ︸

S′

, , , , , , , . . . ,︸ ︷︷ ︸
remaining elements

}. With

this partitioning, χ′ extends to a SL-polychromatic coloring of S and its left-translates by simply

assigning all remaining elements to at least one color class that has already been used.

Similarly, let χ′′ be a SR-polychromatic coloring of S′ with ` colors, then

S = { 1︸︷︷︸
c0

, aj1︸︷︷︸
c1

, . . . , aj`−1︸ ︷︷ ︸
c`−1︸ ︷︷ ︸

S′

, , , , , , , . . . ,︸ ︷︷ ︸
remaining elements

}.With this partitioning, χ′′ extends to a SR-polychromatic

coloring of S and its right-translates by simply assigning all remaining elements to at least one color

class that has already been used.

3.2.1 The Dihedral Group, D2n with n ≥ 2

There are many finite nonabelian groups that one could examine, however, it is not always the

case that one can represent elements of such groups easily. This is not the case with the dihedral

group, denoted D2n for all n ≥ 2 [10]. The dihedral group is the symmetry group of an n−sided

regular polygon, however this family of finite groups can be given by the following presentation

D2n = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}.
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That is, each element can be written uniquely in the form skri for some k ∈ {0, 1} and 0 ≤ i ≤ n−1.

Superscripts of r are understood to be taken modulo n. In addition to the generators r and s, the

group is generated by the following relations.

(i) The generators of the group have orders: |r| = n and |s| = 2;

(ii) s 6= ri for any i;

(iii) sri 6= srj for all 0 ≤ i, j ≤ n− 1 with i 6= j;

(iv) sr = r−1s;

(v) sri = r−is for all 0 ≤ i ≤ n.

It should be noted that in the following examination ◦ is used to denote the group operation on

D2n. Also, Elements of the form sri are called reflections and elements of the form ri are called

rotations for all 0 ≤ i ≤ n− 1.

EXAMPLE 3.2.1. Note that for any two element subset S of D4, ex(D4, S) = 2. This is because

there are four elements of this group 1, r, s, sr and all possible two element subsets are {1, r}, {s, sr},

{1, s}, {r, sr}, {1, sr}, and {r, s}. The two element subsets {1, r} and {s, sr} are the left- and right-

translates of each other; the two element subsets {1, s} and {r, sr} are the left- and right-translates

of each other; and the two element subsets {1, sr} and {r, s} are the left- and right-translates of

each other. The trivial bounds on the Turán number are 1 ≤ ex(D4, S) ≤ 3. An S−polychromatic

coloring with two colors can be constructed in each case χ0(1) = c0 = χ0(s) and χ0(r) = c1 = χ0(sr);

χ1(1) = c0 = χ1(r) and χ1(s) = c1 = χ(sr); and χ2(1) = c0 = χ2(s) and χ2(r) = c1 = χ2(sr). So,

the bounds can be improved to 2 ≤ ex(D4, S) ≤ 3. The three element subsets are {1, r, s}, {1, r, sr},

{1, s, sr}, {r, s, sr}. Any of these three element subsets contains one of the translates in any of the

aforementioned cases and so it must be that ex(D4, S) = 2.

Note that all three element subsets are translates of each other. Let S = {1, r, s}, then r ◦ S =

{r, 1, sr}, s ◦ S = {s, sr, 1}, sr ◦ S = {sr, s, r}, {r, 1, sr} = S ◦ r, {s, sr, 1} = S ◦ s, and {sr, s, r} =

S ◦ sr. So, ex(D4, S) = 2 if S contains three elements as any three element subset of this group
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most assuredly contains one of these three element subsets and so the trivial bound is the value of

the Turán number.

If all of the elements in S are rotations or reflections, then following lemma establishes the

equivalence between this situation and one in the integers modulo n.

LEMMA 3.2.2. If S ⊂ D2n such that S = {ri1 , ri2 , . . . , rim} or S = {sri1 , sri2 , . . . , srim} with

im ≤ n− 1, then pD2n(S) = pZn({i1, i2, . . . , im}) = pLDn
(S) = pRDn

(S).

Proof. If S = {ri1 , ri2 , . . . , rim}, then result follows from Theorem 3.2.2 as all elements belong to

the subgroup generated by element r. If S = {sri1 , sri2 , . . . , srim}, then some left-translates of S are

of the form: sri ◦ S = {ri1−i, ri2−i, . . . , rij−i, . . . , rim−i}. Coloring sri ◦ S is isomorphic to coloring

{i1 − i, i2 − i, . . . , ij − i, . . . , im − i} in Zn since the superscripts of r are taken modulo n. Some

right-translates of S are of the form: S ◦ sri = {ri−i1 , ri−i2 , . . . , ri−ij , . . . , ri−im}. Coloring S ◦ sri is

isomorphic to coloring {i− i1, i− i2, . . . , i− ij , . . . , i− im} in Zn since the superscripts of r are taken

modulo n. Recall by Remark 2.0.5 pZn(S) = pZn(−S). So, pLD2n
(S) = pLD2n

(sri ◦ S) = pZn({i1 −

i, i2− i, . . . , ij− i, . . . , im− i}) = pZn({i− i1, i− i2, . . . , i− ij , . . . , i− im}) = pRD2n
(S ◦sri) = pRD2n

(S).

Also, pZn({i1− i, i2− i, . . . , ij − i, . . . , im− i}) = pZn({i1, i2, . . . , im}). Therefore, coloring left- and

right-translates simultaneously is possible.

So, if S ⊂ D2n such that all of the elements in S are rotations or reflections, the polychromatic

number will be the size of the set S if and only if the superscripts of r tile Zn. If p(S) = |S|, by

Lemma 3.2.1, then |S|||G| = 2n. So, either |S||2 or |S||n. If this is the first case, then without

loss of generality assume the identity 1 is in the the two element subset and so pLD2n
({1, ri}) = 2

if and only if |ri| is even and pLD2n
({1, sri}) = 2 always because |sri| = 2 for any i by Theorem

3.2.3. So, the interesting and definitely nontrivial case is if |S||n which is the focus of the below

work. However, it should be noted that most of the results on this group hinge upon the ability

to construct isomorphisms between the left- and right-translates which do not necessarily indicate

anything about the value of the polychromatic number. They only yield that the left- and right-

polychromatic numbers are equal and so this is most of the work that follows. In the results that
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follow the identity 1 is without loss of generality always assumed to be in subset S.

A more general S ⊂ D2n has the form S = {1, sk1ri1 , sk2ri2 , . . . , skmrim}. If S ⊂ D2n contains both

rotations and reflections, its form is given as S = {1, ri1 , ri2 , . . . , rik , srj1 , . . . , srjt}.

The following result ensures that every subsest of D2n of size at least two containing at least one

rotation and one reflection has a polychromatic number of at least two.

PROPOSITION 3.2.2. If S = {1, ri1 , ri2 , . . . , rik , srj1 , . . . , srjt} such that k, t ≥ 1, p(S) ≥ 2.

Proof. Note that the left-translates of S are ri◦S = {ri, ri+i1 , ri+i2 , . . . , ri+ik , srj1−i, . . . , srjt−i} and

sri ◦ S = {sri, sri+i1 , sri+i2 , . . . , sri+ik , rj1−i, . . . , rjt−i} for all 0 ≤ i ≤ n − 1. The right-translates

of S are S ◦ ri = {ri, ri1+i, ri2+i, . . . , rik+i, srj1+i, . . . , srjt+i} and

S ◦ sri = {sri, sri−i1 , sri−i2 , . . . , sri−ik , ri−j1 , . . . , ri−jt} for all 0 ≤ i ≤ n− 1. Then, each translate

contains at least one rotation and one reflection. Therefore, assigning one color to all rotations and

another color to all reflections ensures that every translate contains two colors.

Corollary 3.2.1. If S = {1, ri1 , ri2 , . . . , rik , srj1 , . . . , srjt} such that k, t ≥ 1, ex(D2n, S) ≥ 2n −
2n
2 = n.

3.2.1.1 Subsets S with pL(S) = pR(S)

Excluding the situation of Lemma 3.2.2, it is not the case that the left- and right-translates of

any subset S are the same.

OBSERVATION 3.2.2. For any S ⊂ D2n, it is not necessarily the case that any right- and

left-translate of S by the same element are equal.

Proof. The general subset S has the form S = {1, sk1ri1 , sk2ri2 , . . . , skjrij , skmrim}. So, an element

in a left-translate of S with application of element skri is of the form skri ◦ skjrij and in a right-

translate of S with application of element skri is of the form skjrij ◦ skri. Now, consider the

following cases:

Case 1: k = 0, kj = 0. Then, skjrij ◦ skri = rij+i and skri ◦ skjrij = ri+ij . These elements are

equal.
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Case 2: k = 0, kj = 1. Then, skjrij ◦ skri = srij+i and skri ◦ skjrij = risrij = srij−i. These

elements are equal if and only if i ≡ −i mod n.

Case 3: k = 1, kj = 0. Then, skjrij ◦ skri = rijsri = sri−ij and skri ◦ skjrij = sri+ij . These

elements are equal if and only if ij ≡ −ij mod n.

Case 4: k = 1, kj = 1. Then, skjrij ◦ skri = srijsri = ri−ij and skri ◦ skjrij = srisrij = rij−i.

These elements are equal if and only if i− ij ≡ ij − i mod n ⇐⇒ 2i ≡ 2ij mod n.

Therefore, left- and right-translates differ in their elements unless special conditions hold.

The rest of the results in this section give the structure of some subsets of D2n that have

pLD2n
(S) = pRD2n

(S). The results on the dihedral group which actually determine these values

heavily depend on the results of this section.

LEMMA 3.2.3. If there is only one rotation in S i.e. S = {1, srj1 , . . . , srjt}, then pLD2n(S) =

pRD2n(S).

Proof. All left-translates of S are of the form either ri ◦ S = {ri, srj1−i, srj2−i, . . . , srjt−i} or sri ◦

S = {sri, rj1−i, rj2−i, . . . , rjt−i} for all 0 ≤ i ≤ n − 1. All right-translates of S are of the form

either S ◦ rn−i = {rn−i, srj1−i, srj2−i, . . . , srjt−i} or S ◦ sri = {sri, ri−j1 , ri−j2 , . . . , ri−jt} for all

0 ≤ i ≤ n − 1. Next suppose χL is an SL−polychromatic coloring of the left-translates. Consider

the mapping φ : D2n → D2n such that φ(rj) = rn−j and φ(srj) = srj for all 0 ≤ j ≤ n − 1. This

mapping ensures all translates contain the desired amount of colors as

φ(ri ◦ S) = {φ(ri), φ(srj1−i), φ(srj2−i), . . . , φ(srjt−i)} 7→

S ◦ rn−i = {rn−i, srj1−i, srj2−i, . . . , srjt−i}

and

φ(sri ◦ S) = {φ(sri), φ(rj1−i), φ(rj2−i), . . . , φ(rjt−i)} 7→

S ◦ sri = {sri, ri−j1 , ri−j2 , . . . , ri−jt}.

Therefore, the left- and right-polychromatic numbers are equal.
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LEMMA 3.2.4. If S = {1, ri1 , sri2 , . . . , srim−1} ⊂ D2n, then pL(S) = pR(S).

Proof. Consider the mapping φ : D2n → D2n such that φ(ri) = rn−i and φ(sri) = sri+n−i1 for all

0 ≤ i ≤ n− 1. All left - translates are of the form

rk ◦ S = {rk, rk+i1 , sri2−k, . . . , srim−1−k}

and

srk ◦ S = {srk, srk+i1 , ri2−k, . . . , rim−1−k}

for all 0 ≤ k ≤ n− 1. Next, consider the right - translates

{rn−k−i1 , rn−k, srn−k+i2−i1 , . . . , srn−k+im−1−i1} = S ◦ rn−k−i1

and

{srn+k, srn+k−i1 , rn−(i2−k), . . . , rn−(im−1−k)} = S ◦ srn+k

for all 0 ≤ k ≤ n− 1. Also,

φ(rk ◦ S) = {φ(rk+i1), φ(rk), φ(sri2−k), . . . , φ(srim−1−k)} = S ◦ rn−k−i1

and

φ(srk ◦ S) = {φ(srk+i1), φ(srk), φ(ri2−k), . . . , φ(rim−1−k)} = S ◦ srn+k

for all 0 ≤ k ≤ n− 1.

LEMMA 3.2.5. If 2 ≤ |S| ≤ 5 and S ⊂ D2n, then pL(S) = pR(S).

Proof. If n = 2. This follows from Theorem 3.2.3.

If n = 3, then S is of the form S1 = {1, ri1 , srj1} or S2 = {1, ri1 , ri2} or S3 = {1, srj1 , srj2}.

Note that by Lemma 3.2.2, pLD2n
(S2) = pZn({0, i1, i2}) = pRD2n

(S2). If S is of the form S1, then

srj1 ◦S = {1, ri1 , srj1} = {srj1 , srj1+i1 , 1} is a left-translate. So, determining the left-polychromatic

number of S1 and its translates is equivalent to determining the left-polychromatic number of S3.

By Lemma 3.2.3, it follows that pLD2n(S1) = pRD2n(S1) and pLD2n(S3) = pRD2n(S3).

If n = 4, then S is of the form S1 = {1, srj1 , srj2 , srj3}, S2 = {1, ri1 , srj2 , srj3}, S3 = {1, ri1 , ri2 , srj1},
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S4 = {1, ri1 , ri2 , ri3}. First, by Lemma 3.2.2, pLD2n(S4) = pRD2n(S4) = pZn({0, i1, i2, i3}). Also,

srj1 ◦S3 = {srj1 , srj1+i1 , srj1+i2 , 1} is a left-translate. So, determining the left-polychromatic num-

ber of S3 and its translates is equivalent to determining the left-polychromatic number of S1. By

Lemma 3.2.3, it follows that pLD2n(S1) = pRD2n(S1) and pLD2n(S3) = pRD2n(S3). By Lemma 3.2.4,

pLD2n(S2) = pRD2n(S2).

If n = 5, then S is of the form S1 = {1, srj1 , srj2 , srj3 , srj4}, S2 = {1, ri1 , srj1 , srj2 , srj3}, S3 =

{1, ri1 , ri2 , srj1 , srj2}, S4 = {1, ri1 , ri2 , ri3 , srj1}, S5 = {1, ri1 , ri2 , ri3 , ri4}. First by Lemma 3.2.2,

pLD2n(S5) = pRD2n(S5). Also, srj1 ◦ S4 = {srj1 , srj1+i1 , srj1+i2 , srj1+i3 , 1} is a left-translate of S4 so

by Lemma 3.2.3, it follows that pLD2n(S1) = pRD2n(S1) and pLD2n(S4) = pRD2n(S4). Also, srj1 ◦ S3 =

{srj1 , srj1+i1 , srj1+i2 , 1, rj2−j1} is a left-translate of S3 so by Lemma 3.2.4, pLD2n(S2) = pRD2n(S2)

and pLD2n(S3) = pRD2n(S3).

LEMMA 3.2.6. If S = {1, ri1 , r2i1 , . . . , r(m−1)i1 , srj1 , . . . , srjt} ⊂ D2n, then pL(S) = pR(S) for

any 0 ≤ i1, j1, . . . , jt ≤ n− 1.

Proof. Consider the mapping φ : D2n → D2n such that φ(ri) = r−i+(m−1)i1 and φ(sri) = sri for all

0 ≤ i ≤ n− 1. The translates map thusly:

φ(rk ◦ S) = {φ(rk), φ(rk+i1), . . . , φ(rk+(m−1)i1), φ(srj1−k), . . . , φ(srjt−k)} 7→

S ◦ r−k = {r−k, r−k+i1 , . . . , r−k+(m−1)i1 , srj1−k, . . . , srjt−k}

and

φ(srk ◦ S) = {φ(srk), φ(srk+i1), . . . , φ(srk+(m−1)i1), φ(rj1−k), . . . , φ(rjt−k)} 7→

S ◦ srk+(m−1)i1 = {srk+(m−1)i1 , srk+(m−2)i1 , . . . , srk+i1 , srk, rk+(m−1)i1−j1 , . . . , rk+(m−1)i1−jt}

for all 0 ≤ k ≤ n− 1.

3.2.1.2 The Polychromatic Number of Subsets of Size 3 or 4

Results on small subsets of the dihedral group are obtained by reimagining the problem in

a geometric setting. That is, drawing from [12] where the problem of finding the polychromatic
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number of a given graph was reinterpreted to one of coloring a rectangular grid and shapes within

that grid, a similar rearranging is done for S ⊂ D2n such that |S| = 3 or 4 and its translates.

DEFINITION 3.2.1. A 2×M grid will hereafter be depicted as

(1, 0)

(2, 0)

· · ·

· · ·

(1, i)

(2, i)

(1, i+ 1)

(2, i+ 1)

· · ·

· · ·

(1,M − 1)

(2,M − 1)

Figure 3.1 2×M grid

where 0 ≤ i ≤M−1 correspond to the columns in the grid. Note that when i = M−1, i+1 = 0.

DEFINITION 3.2.2. A 2× 2 picture frame is a subset of a 2×M grid such that 2× 2 box with

the lower right corner removed (called a lower box) whose top two row entries always appear in the

first row of the 2 ×M grid and whose bottom entry always belongs to the second row of the grid

overlaying a 2 × 2 box with the upper left corner removed (called an upper box) whose top entry

always appears in the first row of the grid and whose bottom two entries always belong to the second

row of the grid as pictured.

(2, i) (2, i+ 1)

(1, i) (1, i) (1, i+ 1)

(2, i+ 1)

Figure 3.2 A 2× 2 picture frame
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DEFINITION 3.2.3. A k− 2× 2 frame coloring is an assignment of the entries in a 2×M grid

so that the entries in every lower box contain k colors and the entries in every upper box contain k

colors.

OBSERVATION 3.2.3. By the above definition, the upper right entry in the lower box and the

upper right in the upper box are the same entry and thus colored the same color. Similarly, the

lower left entry in the lower box and the lower left in the upper box are the same entry and thus

colored the same color. So, if there is a 3−2×2 frame coloring, the upper left in the lower box and

the lower right in the upper box which are different entries must be colored the same color. That

is, indexing the 2×M grid, χ((2, i)) = χ((1, i+ 1)).

PROPOSITION 3.2.3. There is a 3− 2× 2 frame coloring of a 2×M grid if and only if 3|M

Proof. If 3|M , make the following assignment

χ((1, i)) =



c0 if i ≡ 1 mod 3

c1 if i ≡ 0 mod 3

c2 if i ≡ 2 mod 3

χ((2, i)) =



c0 if i ≡ 2 mod 3

c1 if i ≡ 1 mod 3

c2 if i ≡ 0 mod 3.

Then every lower and upper box contains three colors. Next, assume 3 -M and there is a 3− 2× 2

frame coloring χ′. Without loss of generality make the assignment χ′((1, 0)) = c0, χ′((2, 0)) = c1,

and χ′((2, 1)) = c2 since these entries constitute an lower box. Because every upper and lower box

in the grid must contain three distinct colors, entries must be colored as follows

χ′((1, i)) =



c0 if 1 + i ≡ 1 mod 3

c1 if 1 + i ≡ 2 mod 3

c2 if 1 + i ≡ 0 mod 3
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χ′((2, i)) =



c0 if 2 + i ≡ 1 mod 3

c1 if 2 + i ≡ 2 mod 3

c2 if 2 + i ≡ 0 mod 3.

So, if 3 -M , then either M ≡ 1 mod 3 or M ≡ 2 mod 3. If M ≡ 1 mod 3, M − 1 ≡ 0 mod 3 and so

χ′((2,M − 1)) = c1, χ′((2, 0)) = c1, and χ′((1,M − 1)) = c0 which means this lower box does not

contain three distinct colors and a contradiction is reached. If M ≡ 2 mod 3, M −1 ≡ 1 mod 3 and

so χ′((2,M − 1)) = c2, χ′((2, 0)) = c1, and χ′((1,M − 1)) = c1 which means this lower box does

not contain three distinct colors and a contradiction is reached once again.

LEMMA 3.2.7. Any subset S = {1, srj , srm} ⊂ D2n and its left-translates can be written in

gcd(n,m− j) many disjoint 2× n
gcd(n,m−j) grids.

Proof. Note that left-translates srj ◦ S = {srj , 1, rm−j} are of the form consisting of two rotations

and one reflection. That is, the problem is isomorphic to putting a set of this form {1, rk, sr`} and

all of its left-translates in a grid. Let g = gcd(n, k) for simplicity. The left-translates of S can be

represented as 2× 2 picture frames in the following 2× n
g grids

ri

sr`−(n−(k+i))

rk+i

sr`−i

r2k+i

sr`−k−i

r3k+i

sr`−2k−i

· · ·

· · ·

rmk+i

sr`−(m−1)k−i

r(m+1)k+i

sr`−mk−i

· · ·

· · ·

r

(
n
g
−1

)
k+i

sr
`−

(
n
g
−2

)
k−i

Figure 3.3 Left-translates arranged into grid entries

for 0 ≤ i ≤ g − 1 and 0 ≤ m ≤ n
g − 1. Note that sr`−(n−(k+i)) = srk+`−i and sr

`−
(

n
g
−2

)
k−i

=

sr`+2k−i.

LEMMA 3.2.8. If S = {1, srj , srm} ⊂ D2n, then pL(S) = 3 = pR(S) if and only if 3| n
gcd(n,m−j) .

Proof. First, note that by Lemma 3.2.3, the left-translates and the right-translates can be simul-

taneously colored. Next, by Proposition 3.2.3 and Lemma 3.2.7 the result follows.

THEOREM 3.2.5. If S ⊂ D2n so that |S| = 3, then pL(S) = 3 = pR(S) if and only if one of the

following is true:



72

(1) S = {rj , rk, r`} and 3m+1|n, k′ = 3mmk, `′ = 3mm`, and without loss of generality mk ≡

1 mod 3, m` ≡ 2 mod 3;

(2) S = {srj , srk, sr`} and 3m+1|n, k′ = 3mmk, `′ = 3mm`, and without loss of generality

mk ≡ 1 mod 3, m` ≡ 2 mod 3;

(3) S = {rj , rk, sr`} and 3| n
gcd(n,n−k+j) ;

(4) S = {rj , srk, sr`} and 3| n
gcd(n,n−k+`) .

Proof. If (1) or (2), then these cases are isomorphic to coloring {j, k, `} in Zn by Lemma 3.2.2 and

the desired result follows. If (3) or (4) the result follows from Lemma 3.2.8 as there is always a

translate of the form {1, sra, srb} where a, b ∈ Zn.

The other way,

Case 1: S only contains rotations or only reflections. Then, this case is again isomorphic to

coloring {j, k, `} in Zn by Lemma 3.2.2 and the result follows.

Case 2: S contains rotations and reflections. Since pL(S) = 3 = pR(S), 3| n
gcd(n,n−k+j) by Lemma

3.2.8.

THEOREM 3.2.1. If |S| ⊂ D2n such that |S| = 3, then

pRD2n
(S) = pLD2n

(S) =



3 if S = {rj , rk, sr`} and 3| n
gcd(n,n−k+j)

or S = {rj , srk, sr`} and 3| n
gcd(n,n−k+`) ;

pZn(S) if S = {rj , rk, r`} or S = {srj , srk, sr`};

2 otherwise.

Proof. The result follows by Theorem 3.2.5 and Lemma 3.2.2. Also, since there is always a translate

of S = {rj , rk, sr`} or S = {rj , srk, sr`} of the form {1, sra, srb} where a, b ∈ Zn, by Lemma 3.2.7,

by assigning colors to the entries of the grid as

χ((i, j)) =


c0 if i+ j ≡ 0 mod 2

c1 if i+ j ≡ 1 mod 2
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every translate of S consists of 2 colors. The S−polychromatic coloring with two colors also follows

by Proposition 3.2.2.

THEOREM 3.2.2. If |S| ⊂ D2n such that |S| = 3, then

pD2n(S) =


pZn(S) if S = {rj , rk, r`} or S = {srj , srk, sr`};

2 otherwise.

Proof. Firstly, in the case that S contains solely rotations or solely reflections, the argument follows

directly from the fact that these cases are isomorphic to coloring {j, k, `} in Zn by Lemma 3.2.2.

If {a, b, c} contains both rotations and reflections, by Proposition 3.2.2, pD2n({a, b, c}) ≥ 2. Note

that any subset of order three which contains both rotations and reflections has a translate of the

form {1, rk, sr`}. Next, note that a couple left-translates are sr` ◦ {1, rk, sr`} = {sr`, sr`+k, 1}

and sr`−k ◦ {1, rk, sr`} = {sr`−k, sr`, rk} and a couple right-translates are {1, rk, sr`} ◦ sr` =

{sr`, sr`−k, 1} and {1, rk, sr`} ◦ sr`+k = {sr`+k, sr`, rk}. If without loss of generality, 1, rk and sr`

are assigned three distinct colors as follows: χ(1) = c0, χ(rk) = c1 and χ(sr`) = c2, then χ(sr`+k) =

c1 and χ(sr`−k) = c0 for the constraints from the left-translates to be satisfied, however for the

constraints from the right-translates it must be the case that χ(sr`+k) = c0 and χ(sr`−k) = c1. This

is a contradiction. So, if {a, b, c} contains both rotations and reflections, pD2n({a, b, c}) < 3.

Corollary 3.2.2. If |S| ⊂ D2n such that |S| = 3, then

ex(D2n, S) ≥


2n− 2n

pZn (S) if S = {rj , rk, r`} or S = {srj , srk, sr`};

n otherwise.

DEFINITION 3.2.4. A 2× 2 box is a sub-grid of a 2×M grid as pictured

DEFINITION 3.2.5. A k− 2× 2 box coloring of a 2×M grid is an assignment of the entries of

a 2×M grid so that every entry in any 2× 2 box in the grid contains k distinct colors.

LEMMA 3.2.9. If M is even, there exists a 4− 2× 2 box coloring of a 2×M grid.
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(1, i) (1, i+ 1)

(2, i) (2, i+ 1)

Figure 3.4 A 2× 2 box

Proof. Index the entries of the first row of the 2 ×M grid as (1, i) and the entries of the second

row as (2, i) for 1 ≤ i ≤M . Make the following assignments

χ((1, i)) =


c0 if i ≡ 1 mod 2

c2 if i ≡ 0 mod 2

χ((2, i)) =


c1 if i ≡ 1 mod 2

c3 if i ≡ 0 mod 2

Any 2 × 2 box contains the entries (1, i), (1, i + 1), (2, i), (2, i + 1) and by the above coloring

assignment all four entries are distinctly colored.

LEMMA 3.2.10. There exists a 4− 2× 2 box coloring of a 2×M grid if and only if 2|M .

Proof. Suppose there is a 4 − 2 × 2 box coloring of a 2 ×M grid. The following entries in a grid

always form a 2 × 2 box: (1, i), (1, i + 1), (2, i), and (2, i + 1). Also, so do the entries (1, i + 1),

(1, i+2), (2, i+1), and (2, i+2). Therefore, each of these collections of four entries must be colored

distinctly and since there are only four colors being used the colors assigned to the entries (1, i)

and (2, i) and (1, i+ 2) and (2, i+ 2) must be the same. So, the columns of the 2×M grid break

up evenly with half being colored two colors and the other half being colored the other two. That

is, 2|M . The other direction comes from the above Lemma 3.2.9.

PROPOSITION 3.2.4. If S = {1, rk, srj , sr`} ⊂ D2n where 0 ≤ j < ` ≤ n − 1, ` = j + k, and

2| n
gcd(n,k) , then pL(S) = 4 = pR(S).
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Proof. By Lemma 3.2.5, pL(S) = pR(S). Without loss of generality, the following argument will be

accomplished via left-translates. Note that left-translates are of the form ri◦S = {ri, rk+i, srj−i, sr`−i}

while srj−i ◦ S = {srj−i, srj−i+k, rj−(j−i), r`−(j−i)} = {srj−i, sr`−i, ri, rk+i} for all 0 ≤ i ≤ n − 1.

Therefore, the only left-translates that must be considered are of the form ri◦S for all 0 ≤ i ≤ n−1.

Let g = gcd(n, k) for simplicity. Observe that all left-translates of S are the 2 × 2 boxes in the

following disjoint grids.

sr
j−(n

g
−2)k−i

r
(n
g
−1)k+i

· · ·

· · ·

srj−(m−1)k−i

rmk+i

srj−(m−2)k−i

r(m−1)k+i

· · ·

· · ·

srj−i

rk+i

sr`−i

ri

Figure 3.5 Left-translates arranged into a grid

where 0 ≤ i ≤ g − 1 and 0 ≤ m ≤ n
g − 1. By Lemma 3.2.10 since 2|ng , pL(S) = 4 = pR(S).

OBSERVATION 3.2.4. Any subset of the form S = {1, rk, srj , sr`} ⊂ D2n and its left-translates

can be represented as 2× 2 boxes in a 2× 2n grid.

Proof. By Lemma 3.2.5, pL(S) = pR(S). Without loss of generality, the following argument will be

accomplished via left-translates. If n is even consider the following 2× 2n grid

sr
n
2
j+n

2
k−(n

2
−1)`

r−
n
2
j−(n

2
−1)k+n

2
`

· · ·

· · ·

sr(m+1)j+(m+1)k−m`

r−(m+1)j−mk+(m+1)`

sr(m+1)j+mk−m`

r−mj−mk+m`

srmj+mk−(m−1)`

r−mj−(m−1)k+m`

· · ·

· · ·

sr2j+k−`

r−j−k+`

srj+k

r−j+`

srj

1

sr`

rk

sr−k+`

rj+k−`

sr−j−k+2`

rj+2k−`

· · ·

· · ·

sr−(d−1)j−(d−1)k+d`

r(d−1)j+dk−(d−1)`

sr−(d−1)j−dk+d`

rdj+dk−d`

sr−dj−dk+(d+1)`

rdj+(d+1)k−d`

· · ·

· · ·

sr−(n
2
−1)j−n

2
k+n

2
`

r
n
2
j+n

2
k−n

2
`

Figure 3.6 The left-translates of any 4 element subset of D2n arranged in a grid when n
is even

where the entry containing 1 is the entry to the left of the entry containing rk and the entry

containing srj is the entry to the left of the entry containing sr`. Notice that in the first half of
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the grid, the 2×2 box containing r−mj−mk+m`, r−mj−(m−1)k+m`, sr(m+1)j+mk−m`, srmj+mk−(m−1)`

is a left-translate of S of the form ri ◦ S with i = −mj −mk + m` and the 2 × 2 box containing

sr(m+1)j+(m+1)k−m`, sr(m+1)j+mk−m`, r−mj−mk+m`, r−(m+1)j−mk+(m+1)` is a left-translate of S of

the form sri ◦ S with i = (m + 1)j + (m + 1)k − m` for each value of 1 ≤ m ≤ n
2 − 1 as well

as m = 0, n2 . Also, there are two 2 × 2 boxes for each value of 1 ≤ m ≤ n
2 − 1 and one for

m = 0, n2 which yields n translates. Notice that in the second half of the grid, the 2 × 2 box

containing rdj+dk−d`, rdj+(d+1)k−d`, sr−(d−1)j−dk+d`, sr−dj−dk+(d+1)` is a left-translate of S of the

form ri ◦S with i = dj+ dk− d` and the 2× 2 box containing sr−(d−1)j−dk+d`, sr−(d−1)j−(d−1)k+d`,

rdj+dk−d`, r(d−1)j+dk−(d−1)` is a left-translate of S of the form sri ◦ S with i = −(d− 1)j − dk + d`

for each value of 1 ≤ d ≤ n
2 − 1 as well as d = 0, n2 . Also, there are two 2 × 2 boxes for each

value of 1 ≤ d ≤ n
2 − 1 and one for d = 0, n2 which yields n translates. Finally, note that the

entries containing r
n
2

+n
2
k−n

2
`, sr−(n

2
−1)j−n

2
k+n

2
`, r−

n
2
j−(n

2
−1)k+n

2
`, and sr

n
2
j+n

2
−(n

2
−1)` form a 2× 2

box with d = n
2 . Also, r−

n
2
j−(n

2
−1)k+n

2
` = r

n
2
j+(n

2
+1)k−n

2
` and sr

n
2
j+n

2
k−(n

2
−1)` = sr−

n
2
j−n

2
k+(n

2
+1)`

as n
2 ≡ −

n
2 mod n. Similarly and clearly, with d = 0, the entries containing 1, srj , rk, sr` form a

2× 2 box.

If n is odd consider the following 2× 2n grid.

sr
n+1
2

j+n−1
2

k−(n−1
2 )`

r−(n−1
2

)j−(n−1
2

)k+n−1
2

`

· · ·

· · ·

sr(m+1)j+(m+1)k−m`

r−(m+1)j−mk+(m+1)`

sr(m+1)j+mk−m`

r−mj−mk+m`

srmj+mk−(m−1)`

r−mj−(m−1)k+m`

· · ·

· · ·

sr2j+k−`

r−j−k+`

srj+k

r−j+`

srj

1

sr`

rk

sr−k+`

rj+k−`

sr−j−k+2`

rj+2k−`

· · ·

· · ·

sr−(d−1)j−(d−1)k+d`

r(d−1)j+dk−(d−1)`

sr−(d−1)j−dk+d`

rdj+dk−d`

sr−dj−dk+(d+1)`

rdj+(d+1)k−d`

· · ·

· · ·

sr−(n−1
2

)j−(n−1
2

)k+n+1
2

`

r
n−1
2

j+n+1
2

k−(n−1
2

)`

Figure 3.7 The left-translates of any 4 element subset of D2n arranged in a grid when n
is odd

The break-down of this grid is the same as the even case with a couple exceptions. In the

first half of the grid, 0 ≤ m ≤ n−3
2 with two left-translates for each value of m and one left-
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translate corresponding to m = n−1
2 which yields n left-translates. In the second half of the grid,

1 ≤ d ≤ n−1
2 with two left-translates for each value of d and one left-translate corresponding to

d = n+1
2 which yields n left-translates. Notice that with d = n+1

2 in a 2 × 2 box with entries

r(d−1)j+dk−(d−1)`, sr−(d−1)j−(d−1)k+d`, rdj+dk−d`, sr−(d−1)j−dk+d`, then these entries become the

elements r
n−1
2

j+n+1
2

k−(n−1
2

)`, sr−(n−1
2

)j−(n−1
2

)k+n+1
2

`, r−(n−1
2

)j−(n−1
2

)k+n−1
2

`, and sr
n+1
2

j+n−1
2

k−(n−1
2 )`

with −n−1
2 ≡ n−1

2 mod n and −n+1
2 ≡ n+1

2 mod n.

REMARK 3.2.2. Note that rotations can be repeated in entries in the first row while reflections

can also be repeated in entries in the second row.

REMARK 3.2.3. By Proposition 3.2.2, the polychromatic number of any subset of the form

S = {1, rk, srj , sr`} ⊂ D2n is at least 2, so the question becomes how to determine all subsets

of D2n whose translates have an S-polychromatic coloring with three or four colors. The problem

of coloring the above grids with three or four colors is more challenging because elements can be

repeated in the entries.

DEFINITION 3.2.6. A m − n-tooth-comb is a collection of entries in a k × k′ grid where k ≥

n, k′ ≥ m such that m entries make up the stem of the comb and belong to a single column while

n entries make the teeth of the comb and belong to the next column over. Consider the following

figure.

where 1 ≤ d ≤ bm2 c.

LEMMA 3.2.11. For any two positive integers j and k there is a positive integer d so that

dj ≡ dk mod n for any n ≥ 2.

Proof. Let d = n. Then, d(j − k) ≡ 0 mod n =⇒ dj − dk ≡ 0 mod n.

OBSERVATION 3.2.5. Any subset of the form S = {1, rk, rj , sr`} ⊂ D2n and its left-translates

can be represented as 3 − 1-tooth-combs in 2(j − k) 3 ×m + 1 grids where m is the least positive

integer such that (m+ 1)j ≡ (m+ 1)k mod n.
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(i, j)

...

(i+m− 2d, j)

...

(i+m− 2d, j + 1)

...
...

(i+m− 5, j)

(i+m− 4, j + 1)(i+m− 4, j)

(i+m− 3, j)

(i+m− 2, j) (i+m− 2, j + 1)

(i+m− 1, j)

Figure 3.8 A m− n-tooth-comb

Proof. By Lemma 3.2.5, pL(S) = pR(S). Without loss of generality, the following argument will be

accomplished via left-translates. The left-translates of S are of the form rt◦S = {rt, rt+k, rt+j , sr`−t}

for all 0 ≤ t ≤ n−1. These left-translates are in the below j−k 3×m+1 grids as 3−1-tooth-combs

ri

rj+i

sr`−i

rk+i−j

rk+i

sr`−(k+i−j)

r2k+i−2j

r2k+i−j

sr`−(2k+i−2j)

· · ·

· · ·

· · ·

rdk+i−dj

rdk+i−(d−1)j

sr`−(dk+i−dj)

r(d+1)k+i−(d+1)j

r(d+1)k+i−dj

sr`−((d+1)k+i−(d+1)j)

· · ·

· · ·

· · ·

rmk+i−mj

rmk+i−(m−1)j

sr`−(mk+i−mj)

Figure 3.9 The left-translates of a four element subset of D2n arranged in a grid

for all 0 ≤ i ≤ j − k − 1 and 0 ≤ d ≤ m. While srt ◦ S = {srt, srt+k, srt+j , r`−t} for all

0 ≤ t ≤ n− 1. These left-translates are in the below j − k 3×m+ 1 grids as 3− 1-tooth-combs
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sri

srj+i

r`−i

srk+i−j

srk+i

r`−(k+i−j)

sr2k+i−2j

sr2k+i−j

r`−(2k+i−2j)

· · ·

· · ·

· · ·

srdk+i−dj

srdk+i−(d−1)j

r`−(dk+i−dj)

sr(d+1)k+i−(d+1)j

sr(d+1)k+i−dj

r`−((d+1)k+i−(d+1)j)

· · ·

· · ·

· · ·

srmk+i−mj

srmk+i−(m−1)j

r`−(mk+i−mj)

for all 0 ≤ i ≤ j − k − 1 and 0 ≤ d ≤ m.

REMARK 3.2.4. Note that rotations can be repeated in entries in the second two rows of the

first collection of grids while reflections can also be repeated in entries in the second two rows of

the second collection of grids.

REMARK 3.2.5. By Proposition 3.2.2, the polychromatic number of any subset of the form

S = {1, rk, rj , sr`} ⊂ D2n is at least two, so the question becomes determine all subsets of D2n whose

translates have an S-polychromatic coloring with three or four colors. The problem of coloring the

above grids with three or four colors is more challenging because elements can be repeated in the

entries.

3.2.1.3 The Polychromatic Number of Subsets of Size Larger than 4

The largest that a subset of D2n can possibly be made without including all of the group

elements is 2n− 1. The following result gives the left- and right-polychromatic number as well as

the polychromatic number for such a subset.

LEMMA 3.2.12. If |S| = 2n− 1 and S ⊂ D2n, pL(S) = pR(S) = p(S) = n.

Proof. First, consider the left-translates of S. There are always
(

2n−1
2n−2

)
= 2n − 1 such sub-

sets S to check. This can be seen as any S ⊂ D2n is a left-translate of or is in the form

{1, ri1 , . . . , rin−1 , srj1 , . . . , srjn−1} of which there are n or {1, ri1 , . . . , rin−2 , srj1 , . . . , srjn} of which

there are n and where 0 ≤ ik, j` ≤ n − 1 for 1 ≤ k ≤ n − 1 and 1 ≤ ` ≤ n. In fact, all

sets of this form are left-translates of the set S = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−2} as the
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following are the left-translates of S: ri ◦ S = {ri, ri+1, . . . , ri+n−1, sr−i, sr1−i, . . . , srn−2−i} and

sri ◦ S = {sri, sri+1, . . . , sri+n−1, r−i, r1−i, . . . , rn−2−i} for all 0 ≤ i ≤ n− 1. For the lower bound,

consider the SL−polychromatic coloring given by

χ(skri) = ci

for 0 ≤ i ≤ n− 1 and for any k ∈ {0, 1}. The first n elements in ri ◦ S and sri ◦ S will be colored

with these n distinct colors under this SL−polychromatic coloring. For the upper bound, suppose

by way of contradiction that there does exist an SL−polychromatic coloring, χ′, that assigns n+ 1

colors to the elements of D2n. For every element in D2n, there is one left-translate which does not

contain that element as there are 2n − 1 elements in the left-translates and therefore only 2n − 1

opportunities for a single element to appear while there are 2n translates. So, whatever color a

single element is assigned must appear in that left-translate that does not contain it. Therefore,

there are two elements that are colored ci for all 0 ≤ i ≤ n, however, this means there are 2n + 2

elements which is not possible.

Next, consider the right-translates of S. There are also 2n − 1 such subsets as any S ⊂ D2n

is a right-translate of or is in the form {1, ri1 , . . . , rin−1 , srj1 , . . . , srjn−1} of which there are n

or {1, ri1 , . . . , rin−2 , srj1 , . . . , srjn} of which there are n and where 0 ≤ ik, j` ≤ n − 1 for 1 ≤

k ≤ n − 1 and 1 ≤ ` ≤ n. In fact, all sets of this form are right-translates of the set S =

{1, r, r2, . . . , rn−2, s, sr, sr2, . . . , srn−1} as the following are the right-translates of S: S ◦ ri =

{ri, r1+i, r2+i, . . . , rn−2+i, sri, sr1+i, sr2+i, . . . , srn−1+i} and

S ◦ sri = {sri, sri−1, sri−2, . . . , sri−n+2, ri, ri−1, ri−2, . . . , ri−n+1} for all 0 ≤ i ≤ n − 1. For the

lower bound, consider the SR−polychromatic coloring given by

χ(skri) = ci

for 0 ≤ i ≤ n− 1 and for any k ∈ {0, 1}. The last n elements in S ◦ ri and S ◦ sri will be colored

with these n distinct colors under this SR−polychromatic coloring. However, as has been shown

this coloring is also an SL−polychromatic coloring for any such subset S, so pLD2n
(S) = pRD2n

(S) =

pD2n(S) = n.
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This raises the question as to what the left- and right-polychromatic number is of a subset that

contains all rotations and only some of the reflections. From Theorems 3.2.2 and 3.2.4, the left-

and right-polychromatic numbers are at least n. The value is exactly n and this is also true of the

polychromatic number.

LEMMA 3.2.13. If S = 〈r〉 ∪ sri ⊂ D2n for some 0 ≤ i ≤ n− 1, then pL(S) = n = pR(S).

Proof. First consider the left-translates of S. For the lower bound consider the assignment

χ(skrj) = cj

for all 0 ≤ j ≤ n − 1 and any k ∈ {0, 1}. Since each translate contains either n rotations or

n reflections, the assignment is an SL-polychromatic coloring. For the upper bound, suppose

that there does exist an SL-polychromatic coloring with n + 1 colors. Then, in left-translates of

the form rk ◦ S = {rk, rk+1, . . . , rk+n−1, sri−k} for all 0 ≤ k ≤ n − 1, all rotations are distinct

colors and so all reflections are the same color. However, left-translates of the form srk ◦ S =

{srk, srk+1, . . . , srk+n−1, ri−k} yield that such an SL-polychromatic coloring of the left-translates

with n+ 1 colors is impossible.

Now, consider the right-translates of S. For the lower bound consider the assignment

χ(skrj) = cj

for all 0 ≤ j ≤ n − 1. Since each translate contains either n rotations or n reflections, the as-

signment is an SR-polychromatic coloring. For the upper bound, suppose that there does exist

an SL-polychromatic coloring with n + 1 colors. Then, in left-translates of the form S ◦ rk =

{rk, rk+1, . . . , rk+n−1, sri+k} for all 0 ≤ k ≤ n− 1, all rotations are distinct colors and so all reflec-

tions are the same color. However, right-translates of the form S◦srk = {srk, srk−1, . . . , srk−n+1, rk−i}

yield that such an SR-polychromatic coloring of the left-translates with n+ 1 colors is impossible.

Note that by the above arguments, the assignment

χ(skrj) = cj
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for all 0 ≤ j ≤ n − 1 colors left- and right- translates simultaneously and so an S−polychromatic

coloring is obtained. Hence, pL(S) = pR(S) = p(S) = n.

By the previous two results no matter how many reflections are put into a subset with the

subgroup generated by r, the polychromatic is at least n. The above results also bring up a good

point and that is that there is always a lower bound for the polychromatic number of a subset

S ⊂ D2n given by the rotations in the subset.

REMARK 3.2.6. Let R = 〈ri〉 ⊂ D2n be the largest subgroup of 〈r〉 such that R ⊂ S ⊂ D2n, then

n
gcd(n,i) ≤ p(S).

Proof. This follows from Theorem 3.2.2 and Theorem 3.2.4 and noting that |〈ri〉| = n
gcd(n,i) .

If instead of containing all of the rotations in a subset of size n of D2n, one considers such a

subset with one of the rotations replaced by a reflection, the left- and right-polychromatic numbers

will still be n.

LEMMA 3.2.14. If S = (〈r〉\{rj})∪{srk} ⊂ D2n for some 1 ≤ j ≤ n−1 and any 0 ≤ k ≤ n−1,

then pL(S) = pR(S) = n.

Proof. First, note that a left-translate of S is srk◦S = {srk, srk+1, . . . , srk+j−1, srk+j+1, . . . , srk+n−1, 1}.

By Lemma 3.2.3, pL(S) = pR(S), so this argument will be given with respect to left-translates.

Create the following assignment of the rotations except for rj : χ(ri) = ci for all 0 ≤ i < j

and χ(rj+m) = cj+m−1 for 1 ≤ m ≤ n − j − 1. Also, set χ(srk) = cn−1 = χ(rj). Consider

the left-translates of the form r` ◦ S = {r`, r`+1, r`+2, . . . , r`+j−1, r`+j+1, . . . , r`+n−1, srk−`} for all

0 ≤ ` ≤ n − 1. Since the element r`+j does not belong to r` ◦ S, set χ(srk−`) = χ(r`+j) for all

0 ≤ ` ≤ n−1. By the above assignment, r` ◦S consists of n distinctly colored elements. Next, con-

sider left-translates of the form sr` ◦S = {sr`, sr`+1, sr`+2, . . . , sr`+j−1, sr`+j+1, . . . , sr`+n−1, rk−`}

for all 0 ≤ ` ≤ n − 1. Since all rotations have distinct colors, all reflections have distinct colors.

So, all that must ensured is that χ(rk−`) is not the same color as the color of any of the elements

sr`, sr`+1, . . . , sr`+n−1. By the above assignment the only element to be colored the same color as
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rk−` is sr`+j as χ(sr`+j) = χ(srk−(k−`−j)) = χ(rk−`−j+j) = χ(rk−`). The element sr`+j does not

appear in sr` ◦ S, so the left-translate consists of n distinctly colored elements.

The following two results give the form of some subsets of the dihedral group whose left- and

right-polychromatic numbers are the cardinality of the subset and include all of the rotations in

the group except for two which are replaced by two reflections. The proofs involve supplying an

SL−polychromatic coloring and an exhaustive case analysis to show the coloring in question ensures

every element in each translate is colored distinctly.

PROPOSITION 3.2.5. If n is even and S = {1, r, r2, . . . , r
n
2
−2, r

n
2 , r

n
2

+1, r
n
2

+2, . . . , rn−2, sri−
n
2 , sri}

such that n
2 ≤ i ≤ n− 2, then pL(S) = pR(S) = |S| = n.

Proof. First, note that a left-translate of S is

sri ◦ S = {sri, sri+1, sri+2, . . . , sri+
n
2
−2, sri+

n
2 , sri+

n
2

+1, sri+
n
2

+2, . . . , sri+n−2, r
n
2 , 1}. By Lemma

3.2.4, pL(S) = pR(S). Without loss of generality, the following argument will be given with respect

to left-translates. Consider the coloring χ given by χ(rj) = cj for all 0 ≤ j ≤ n
2 − 2, χ(rj) = cj−1

for all n
2 ≤ j ≤ n − 2, χ(r

n
2
−1) = cn−2, χ(rn−1) = cn−1, χ(sri−

n
2
−k) = ck−1 for all 1 ≤ k ≤ n

2 − 1,

χ(sri−k) = cn
2

+k−2 for all 1 ≤ k ≤ n
2 − 1, and χ(sri−

n
2 ) = cn−2, χ(sri) = cn−1. Any left-translate

is of the form

r` ◦ S = {r`, r`+1, r`+2, . . . , r`+
n
2
−2, r`+

n
2 , r`+

n
2

+1, r`+
n
2

+2, . . . , r`+n−2, sri−
n
2
−`, sri−`}

sr` ◦ S = {sr`, sr`+1, sr`+2, . . . , sr`+
n
2
−2, sr`+

n
2 , sr`+

n
2

+1, sr`+
n
2

+2, . . . , sr`+n−2, ri−
n
2
−`, ri−`}

where 0 ≤ ` ≤ n− 1.

For left-translates of the form r` ◦ S, it is clear from the supplied coloring that all rotations are

distinctly colored, so all that must be shown is that the two reflections are colored with two distinct

colors which do not appear in the left-translate already. Note that the only rotations that do not

appear in r` ◦ S are r`+
n
2
−1 and r`+n−1. So, by definition of the coloring, it suffices to show that

the colors assigned to r`+
n
2
−1 and r`+n−1 are the same colors assigned to sri−

n
2
−`, sri−`.

Case 1: `+n−1 ≡ n−1 mod n. Then, ` ≡ 0 mod n. So, `+ n
2−1 ≡ n

2−1. Thus, χ(r`+
n
2
−1) = cn−2
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and χ(r`+n−1) = cn−1. Next, sri−
n
2
−` = sri−

n
2 and sri−` = sri. So, χ(sri−`) = χ(sri) = cn−1 and

χ(sri−
n
2
−`) = χ(sri−

n
2 ) = cn−2.

Case 2: `+n−1 ≡ n
2−1. Then, ` ≡ n

2 mod n. So, `+ n
2−1 ≡ n−1 mod n. Thus, χ(r`+

n
2
−1) = cn−1

and χ(r`+n−1) = χ(r
n
2
−1) = cn−2. Next, sri−

n
2
−` = sri−

n
2

+n
2 = sri and sri−` = sri−

n
2 . So,

χ(sri−`) = cn−2 and χ(sri−
n
2
−`) = cn−1.

Case 3: 0 mod n ≤ ` + n − 1 mod n ≤ n
2 − 2 mod n. Then, χ(r`+n−1) = c`+n−1 mod n = c`−1

and −n
2 mod n ≤ ` + n

2 − 1 mod n ≤ n − 2 mod n and so χ(r`+
n
2
−1) = c`+n

2
−2. Also, 1 mod n ≤

`+n mod n ≤ n
2 − 1 mod n =⇒ 1 mod n ≤ ` mod n ≤ n

2 − 1 mod n and so χ(sri−
n
2
−`) = c`−1 and

χ(sri−`) = cn
2

+`−2.

Case 4: n
2 mod n ≤ ` + n − 1 mod n ≤ n − 2 mod n. Then, χ(r`+n−1) = c`+n−1−1 mod n =

c`−2 mod n. Note that 0 mod n ≤ ` + n
2 − 1 mod n ≤ n

2 − 2 mod n and n
2 + 1 mod n ≤ ` mod n ≤

n − 1 mod n so ` = n
2 + m for some positive integer m and so χ(r`+

n
2
−1) = c`+n

2
−1 mod n =

cn
2

+m+n
2
−1 mod n = cm−1 mod n. Also, χ(sri−

n
2
−`) = cn

2
+n

2
+`−2 mod n = c`−2 mod n and χ(sri−`) =

χ(sri−
n
2
−m) = cm−1 mod n.

Similarly, for left-translates of the form sr` ◦ S, it is clear from the supplied coloring that all

reflections are distinctly colored, so all that must be shown is that the two rotations are colored

with two distinct colors which do not appear in the left-translate already. Note that the only

reflections that do not appear in sr` ◦S are sr`+
n
2
−1 and sr`+n−1. So, by definition of the coloring,

it suffices to show that the colors assigned to sr`+
n
2
−1 and sr`+n−1 are the same colors assigned to

ri−
n
2
−`, ri−`.

Case 1: ` + n − 1 ≡ i mod n. Then, χ(sr`+n−1) = χ(sri) = cn−1. Also, ` + n − 1 − n
2 mod n ≡

i − n
2 mod n and so χ(sr`+

n
2
−1) = χ(sri−

n
2 ) = cn−2. So, ` + n − 1 − ` mod n ≡ i − ` mod n

and thus χ(ri−`) = χ(rn−1) = cn−1. Similarly, n − 1 − n
2 mod n ≡ i − ` − n

2 mod n and so

χ(ri−`−
n
2 ) = χ(r

n
2
−1) = cn−2.

Case 2: ` + n − 1 ≡ i − n
2 mod n. Then, χ(sr`+n−1) = χ(sri−

n
2 ) = cn−2. Also, ` + n − 1 +

n
2 mod n ≡ i mod n and so χ(sr`+

n
2
−1) = χ(sri) = cn−1. So, ` + n

2 − 1 − ` mod n ≡ i − ` mod n

and thus χ(ri−`) = χ(r
n
2
−1) = cn−2. Similarly, n

2 − 1 − n
2 mod n ≡ i − ` − n

2 mod n and so
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χ(ri−`−
n
2 ) = χ(rn−1) = cn−1.

Case 3: `+ n− 1 ≡ i− n
2 − k mod n with 1 ≤ k ≤ n

2 − 1. Then, χ(sr`+n−1) = χ(sri−
n
2
−k) = ck−1.

Also, ` + n − 1 + n
2 mod n ≡ i − n

2 − k + n
2 mod n and so χ(sr`+

n
2
−1) = χ(sri−k) = cn

2
+k−2. So,

` + n
2 − 1 + k − ` mod n ≡ i − ` mod n and because 1 mod n ≤ k mod n ≤ n

2 − 1 mod n =⇒
n
2 mod n ≤ k + n

2 − 1 mod n ≤ n − 2 mod n and so χ(ri−`) = χ(r
n
2

+k−1) = cn
2

+k−2. Similarly,

n
2 − 1 + k − n

2 mod n ≡ i− `− n
2 mod n with 1− 1 mod n ≤ k − 1 mod n ≤ n

2 − 1− 1 mod n and

so χ(ri−`−
n
2 ) = χ(rk−1) = ck−1.

Case 4: ` + n − 1 ≡ i − k mod n with 1 ≤ k ≤ n
2 − 1. Then, χ(sr`+n−1) = χ(sri−k) = cn

2
+k−2.

Also, ` + n − 1 − n
2 mod n ≡ i − k − n

2 mod n and so χ(sr`+
n
2
−1) = χ(sri−k−

n
2 ) = ck−1. So,

` + n − 1 + k − ` mod n ≡ i − ` mod n and because 1 mod n ≤ k mod n ≤ n
2 − 1 mod n =⇒

0 mod n ≤ k − 1 mod n ≤ n
2 − 2 mod n and so χ(ri−`) = χ(rk−1) = ck−1. Similarly, −1 + k −

n
2 mod n ≡ i − ` − n

2 mod n =⇒ k + n
2 − 1 mod n ≡ i − ` − n

2 mod n with 1 − 1 − n
2 mod n ≤

k − 1− n
2 mod n ≤ n

2 − 1− 1− n
2 mod n =⇒ n

2 mod n ≤ k − 1 + n
2 mod n ≤ n− 2 mod n and so

χ(ri−`−
n
2 ) = χ(rk−1−n

2 ) = ck+n
2
−1.

PROPOSITION 3.2.6. n = pLD2n
({1, r, r2, r3, . . . , rn−j−2, rn−j , . . . , rn−4, rn−3, rn−2, sri−j , sri}) =

pRD2n
({1, r, r2, r3, . . . , rn−j−2, rn−j , . . . , rn−4, rn−3, rn−2, sri−j , sri}) for all 1 ≤ j ≤ bn−1

2 c and 0 ≤

i ≤ n− 1.

Proof. First, note that if n is even, then n is at most bn−1
2 c = bn2 −

1
2c = n

2 − 1 = n−2
2 . Next, note

that a left-translate of S is

sri◦S = {sri, sri+1, sri+2, . . . , sri+n−j−2, sri+n−j , . . . , sri+n−4, sri+n−3, sri+n−2, rn−j , 1}. By Lemma

3.2.4, pLD2n
(S) = pRD2n

(S). Without loss of generality, the following argument will be given with

respect to left-translates. Consider the coloring χ given by χ(rk) = ck for all 0 ≤ k ≤ n − j − 2,

χ(rk) = ck−1 for all n − j ≤ k ≤ n − 2, χ(rn−1) = cn−2, χ(rn−j−1) = cn−1, χ(sri−j−k) = ck−1

for all 1 ≤ k ≤ n − 1 − j, χ(sri−j) = cn−2, χ(sri) = cn−1, χ(sri−k) = cn+k−j−2 = ck−j−2 for all

1 ≤ k ≤ j − 1 and subscripts of the colorings are taken modulo n. Any left-translate is of the form

r` ◦ S = {r`, r`+1, r`+2, . . . , r`+n−j−2, r`+n−j , . . . , r`+n−4, r`+n−3, r`+n−2, sri−j−`, sri−`}
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sr` ◦ S = {sr`, sr`+1, sr`+2, . . . , sr`+n−j−2, sr`+n−j , . . . , sr`+n−4, sr`+n−3, sr`+n−2, ri−j−`, ri−`}

where 0 ≤ ` ≤ n− 1.

For left-translates of the form r` ◦ S, it is clear from the supplied coloring that all rotations are

distinctly colored, so all that must be shown is that the two reflections are colored with two distinct

colors which do not appear in the left-translate already. Note that the only rotations that do not

appear in r` ◦ S are r`+n−j−1 and r`+n−1. So, by definition of the coloring, it suffices to show that

the colors assigned to r`+n−j−1 and r`+n−1 are the same colors assigned to sri−j−`, sri−`.

Case 1: ` + n − 1 ≡ n − 1 mod n. Then, χ(r`+n−1) = χ(rn−1) = cn−2. Also, ` + n − 1 − j ≡

n − 1 − j mod n and so χ(r`+n−1−j) = χ(rn−1−j) = cn−1. So, ` + n − 1 ≡ n − 1 mod n =⇒

` + i ≡ i mod n =⇒ ` + i − ` mod n ≡ i − ` mod n and so χ(sri−`) = χ(sri) = cn−1. Similarly,

i− j mod n ≡ i− `− j mod n and so χ(sri−`−j) = χ(sri−j) = cn−2.

Case 2: `+ n− 1 ≡ n− j − 1 mod n. Then, χ(r`+n−1) = χ(rn−j−1) = cn−1. Also `+ n− 1− j ≡

n− 1− j mod n =⇒ `− 1 ≡ −1− j mod n =⇒ ` ≡ −j mod n =⇒ 0 ≡ −`− j mod n =⇒ i ≡

i− `− j mod n and so χ(sri−j−`) = χ(sri) = cn−1. For r`+n−j−1, it is not directly clear what the

element should be colored, so consider the following cases:

Subcase 1: `−n−j−1 ≡ n−1 mod n. Then, χ(r`+n−j−1) = χ(rn−1) = cn−2. Also, `−n−j−1 ≡

n − 1 mod n =⇒ ` − j ≡ 0 mod n =⇒ ` ≡ j mod n. However it has also been noted that ` ≡

−j mod n or equivalently −` ≡ j mod n. So, −j ≡ j mod n. Thus, i−` ≡ i+j mod n ≡ i−j mod n

and so χ(sri−`) = χ(sri−j) = cn−2.

Subcase 2: ` + n − j − 1 ≡ k mod n so that 0 mod n ≤ k mod n ≤ n − j − 2 mod n and so

χ(r`+n−j−1) = ck. Next, ` + n − j − 1 ≡ k mod n =⇒ ` − j − 1 ≡ k mod n =⇒ −j −

1 mod −` + k mod n =⇒ −j − 1 − k ≡ −` mod n =⇒ i − j − 1 − k ≡ i − ` mod n. Also,

0 mod n ≤ k mod n ≤ n− j− 2 mod n =⇒ 1 mod n ≤ k+ 1 mod n ≤ n− j− 1 mod n. Therefore,

χ(sri−`) = χ(sri−j−(k+1)) = ck.

Subcase 3: ` + n − j − 1 ≡ k mod n so that n − j mod n ≤ k mod n ≤ n − 2 mod n and so

χ(r`+n−j−1) = ck−1. Next, `+n− j−1 ≡ k mod n =⇒ −j−1 ≡ k− ` mod n =⇒ i− j−1−k ≡

i − ` mod n. Also, n − j mod n ≤ k mod n ≤ n − 2 mod n =⇒ 1 mod n ≤ k + j + 1 mod n ≤
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j − 1 mod n and so χ(sri−`) = χ(sri−(k+j+1)) = ck−1.

Case 3: `+n− 1 ≡ k so that 0 mod n ≤ k mod n ≤ n− j− 2 mod n. Then, χ(r`+n−1) = ck. Also,

`+ n− 1 ≡ k =⇒ `− 1 ≡ k mod n =⇒ −k− 1 ≡ −` mod n =⇒ i− j − k− 1 ≡ i− j − ` mod n

as well as 0 mod n ≤ k mod n ≤ n− j − 2 mod n =⇒ 1 mod n ≤ k + 1 mod n ≤ n− j − 1 mod n.

Therefore, χ(sri−j−`) = χ(sri−j−(k+1)) = ck. For r`+n−j−1, it is not directly clear what the element

should be colored, so consider the following cases:

Subcase 1: `+n−j−1 ≡ n−1 mod n and so χ(r`+n−j−1) = χ(rn−1) = cn−2. Also, `+n−j−1 ≡

n − 1 mod n =⇒ ` − j ≡ 0 mod n =⇒ −j ≡ −` mod n =⇒ i − j ≡ i − ` mod n and so

χ(sri−`) = χ(sri−j) = cn−2.

Subcase 2: ` + n − j − 1 ≡ n − j − 1 mod n and so χ(r`+n−j−1) = χ(rn−j−1) = cn−1. Also,

`+n− j− 1 ≡ n− j− 1 mod n =⇒ ` ≡ 0 mod n =⇒ 0 mod −` mod n =⇒ i ≡ i− ` mod n and

so χ(sri−`) = χ(sri) = cn−1.

Subcase 3: ` + n − j − 1 ≡ k − j mod n so that n − j mod n ≤ k − j mod n ≤ n − 2 mod n and

so χ(r`+n−j−1) = ck−j−1. Next, ` + n − j − 1 ≡ k − j mod n =⇒ i − k − 1 ≡ i − ` mod n and

with 0 mod n ≤ k mod n ≤ n − j − 2 mod n, then 1 mod n ≤ k + 1 mod n ≤ n − j − 1 mod n. If

1 mod n ≤ k + 1 mod n ≤ j − 1 mod n, then χ(sri−`) = χ(sri−k−1) = cn−j+k+1−2 = ck−j−1. If

j mod n ≤ k + 1 mod n ≤ n − j − 1 mod n, then j − 1 mod n ≤ k mod n ≤ n − j − 2 mod n and

consequently 0 mod n ≤ k − j mod n ≤ n − 2j − 2 mod n since if k − j ≡ n − 1 this is subcase

1. However, it was assumed n − j mod n ≤ k − j mod n ≤ n − 2 mod n and n − j mod n >

n− 2j − 2 mod n with 1 ≤ j ≤ bn−1
2 c unless n is odd and j = n−1

2 . In which case n− j ≡ n+1
2 and

n− 2j − 2 ≡ n− 1 and so j mod k + 1 mod n− j − 1 =⇒ n−1
2 mod n ≤ k + 1 mod n ≤ n−1

2 =⇒

i− (k + 1) ≡ i− n−1
2 ≡ i− j and so χ(sri−`) = χ(sri−k−1) = χ(sri−j) = cn−2. Also, k ≡ n−3

2 and

so k − j − 1 ≡ n− 2 and so χ(r`+n−j−1) = ck−j−1 = cn−2.

Subcase 4: ` + n − j − 1 ≡ k − j mod n so that 0 mod n ≤ k − j mod n ≤ n − j − 2 mod n and

so χ(r`+n−j−1) = c`−j−1. Note that 0 mod n ≤ ` + n − j − 1 mod n ≤ n − j − 2 mod n =⇒ 1 ≤

`− j ≤ n− j − 1. Also, sri−` = sri−j+j−` = sri−j−(`−j) and so χ(sri−`) = c`−j−1.

Case 4: ` + n − 1 ≡ k so that n − j mod n ≤ k mod n ≤ n − 2 mod n. Then, χ(r`+n−1) = ck−1.
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It is not immediately obvious what color should be assigned to r`+n−j−1, so the following cases are

considered:

Subcase 1: χ(r`+n−j−1) = cn−1. Note that `+n−j−1 mod n ≡ n−j−1 mod n =⇒ ` mod n ≡ 0

together with ` + n − 1 ≡ k =⇒ k ≡ n − 1. Therefore, χ(r`+n−1) = χ(rk) = χ(rn−1) = cn−2,

χ(sri−`) = χ(sri) = cn−1, and χ(sri−j−`) = χ(sri−j) = cn−2.

Subcase 2: χ(r`+n−j−1) = cn−2. Note that ` + n − j − 1 ≡ n − 1 =⇒ ` − j ≡ 0 =⇒ ` ≡ j

together with ` + n − 1 ≡ k =⇒ j − 1 ≡ k =⇒ j ≡ k + 1. So, χ(sri−`) = χ(sri−j) =

cn−2 and χ(r`+n−1) = ck−1 = cj−2. Then, it is either the case that χ(sri−j−`) is c`−1 with

1 ≤ ` ≤ n − j − 1 in this case however it was assumed n − j + 1 ≤ ` = k + 1 ≤ n − 1 and

n − j − 1 < n − j + 1 with 1 ≤ j ≤ bn−1
2 c unless j = 1 and so ` = k + 1 = 1 and k = 0 thus

χ(sri−j−`) = χ(sri−1−1) = c0, χ(sri−`) = χ(sri−1) = cn−2, χ(r`+n−1) = χ(r1+n−1) = χ(1) = c0,

and χ(r`+n−j−1) = χ(r1+n−1−1) = χ(rn−1) = cn−2; or χ(sri−j−`) is cn−1 which yields −j − ` ≡

0 =⇒ j ≡ n−j and so `+n−1 ≡ j+n−1 ≡ j−1 ≡ n−j−1 thus χ(r`+n−1) = χ(rn−j−1) = cn−1;

and so χ(sri−j−`) = cj+`+n−j−2 = c`−2 = cj−2 and 1 ≤ j + ` ≤ j − 1.

Subcase 3: χ(r`+n−j−1) = ck−j−1 where n − j ≤ k − j ≤ n − 2. However, it was assumed that

n − j ≤ k ≤ n − 2 and this implies n − 2j ≤ k − j ≤ n − j − 2. Since 1 ≤ j ≤ bn−1
2 c, there is no

value of j which satisfies both of these inequalities.

Subcase 4: χ(r`+n−j−1) = ck−j where 0 ≤ k−j ≤ n−j−2 with k ≡ `+n−1. Note that 0 ≤ k−j ≤

n−j−2 =⇒ j+1 ≤ k+1 ≤ n−1 =⇒ 1 ≤ `−j ≤ n−j−1 and i−` ≡ i−j+j−` ≡ i−j−(`−j),

so χ(sri−`) = c`−j−1 = ck−j as k ≡ ` + n − 1 =⇒ k − j ≡ ` − j − 1. Also, as it was assumed

n−j ≤ k ≤ n−2, then n−j+1 ≤ k+1 ≤ n−1 =⇒ n−2j+1 ≤ `−j ≤ n−j−1 =⇒ 1 ≤ `−j ≤ j−1,

so χ(sri−j−`) = χ(sri−(j+`)) = cn+j+`−j−2 = c`−2 = ck+1−2 = ck−1.

Similarly, for left-translates of the form sr` ◦ S, it is clear from the supplied coloring that all

reflections are distinctly colored, so all that must be shown is that the two rotations are colored

with two distinct colors which do not appear in the left-translate already. Note that the only

reflections that do not appear in sr` ◦ S are sr`+n−j−1 and sr`+n−1. So, by definition of the

coloring, it suffices to show that the colors assigned to sr`+n−j−1 and sr`+n−1 are the same colors



89

assigned to ri−j−`, ri−`.

Case 1: i − ` ≡ n − j − 1 and so χ(ri−`) = χ(rn−j−1) = cn−1. Also, i − j − ` ≡ n − 2j − 1. It is

not readily obvious which colors to assign to ri−j−`, sr`+n−j−1, or sr`+n−1 so the following cases

are considered:

Subcase 1: n − 2j − 1 ≡ n − 1 mod n and so χ(ri−j−`) = χ(rn−2j−1) = cn−2. So, n − 2j − 1 ≡

n− 1 mod n =⇒ −2j ≡ 0 mod n =⇒ 0 ≡ 2j mod n =⇒ j ≡ n
2 , but j ≤ bn−1

2 c <
n
2 .

Subcase 2: n − 2j − 1 ≡ k mod n with n − j ≤ k ≤ n − 2. However, since 1 ≤ j ≤ bn−1
2 c, then

n− 1 ≥ n− j ≥ n− bn−1
2 c =⇒ n− 2 ≥ n− j − 1 ≥ n− bn−1

2 c − 1 =⇒ n− j − 2 ≥ n− 2j − 1 ≥

n− bn−1
2 c − j − 1. Note that n− j > n− j − 2. So this subcase is not possible.

Subcase 3: n − 2j − 1 ≡ k mod n with 0 ≤ k ≤ n − j − 2. So, χ(ri−j−`) = χ(rn−2j−1) = ck =

cn−2j−1. Note that ` − n − j − 1 ≡ n − 2j − 1 + j + ` ≡ n − 2j − 1 + j + i + j + 1 ≡ i and so

χ(sr`+n−j−1) = χ(sri) = cn−1. Note that `+n−1 ≡ n−2j−1+2j+` ≡ n−2j−1+2j+i+j+1 ≡ i+j.

Next it is not readily obvious which colors to assign to sr`+n−1 so the following cases are considered:

Subsubcase 1: `+n−1 ≡ i− j. Then, i− j ≡ i+ j =⇒ 2j ≡ 0 =⇒ j ≡ n
2 which is not possible

as 1 ≤ j ≤ bn−1
2 c.

Subsubcase 2: `+n−1 ≡ i+j ≡ i+j+n−2j−1+2j+1 ≡ k+i+j+2j+1 ≡ i−j−(n−k−4j−1)

with 1 ≤ n − k − 4j − 1 ≤ n − j − 1. Note that n − k − 4j − 1 ≡ n − (n − 2j − 1) − 4j − 1 ≡

2j + 1 − 4j − 1 ≡ n − 2j mod n. So, χ(sr`+n−1) = χ(sri+j) = cn−2j−1. Also, note that since

0 ≤ n− 2j − 1 ≤ n− j − 2 =⇒ 1 ≤ n− 2j ≤ n− j − 1.

Subsubcase 3: ` + n − 1 ≡ i + j ≡ i + j + n − 2j − 1 + 2j + 1 ≡ i − (−k − 3j − 1) with

1 ≤ n − k − 3j − 1 ≤ j − 1. Note that n − k − 3j − 1 ≡ n − (n − 2j − 1) − 3j − 1 ≡ n − j, so

1 ≤ n − j ≤ j − 1. However, 0 ≤ n − 2j − 1 ≤ n − j − 2 =⇒ j + 1 ≤ n − j ≤ n − 1 which is a

contradiction.

Case 2: i− ` ≡ n− 1 mod n. Then, χ(ri−`) = χ(rn−1) = cn−2 and i+ 1 ≡ ` mod n. So, i− j− ` ≡

n− j − 1 and thus χ(ri−j−`) = χ(rn−j−1) = cn−1. Also, `+ n− 1 ≡ i+ 1 + n− 1 ≡ i mod n and so

χ(sr`+n−1) = χ(sri) = cn−1. Finally, `+n−1−j ≡ i−j mod n, so χ(sr`+n−j+1) = χ(sri−j) = cn−2.

Case 3: i− ` ≡ k mod n with 0 ≤ k ≤ n− j− 2, so χ(ri−`) = χ(rk) = ck. Note that i− ` ≡ k =⇒
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` ≡ i−k mod n and so `+n−j−1 ≡ i−j−(k+1) and 0 ≤ k ≤ n−j−2 =⇒ 1 ≤ k+1 ≤ n−j−1.

Thus, χ(sr`+n−j−1) = χ(sri−j−(k+1)) = ck+1−1 = ck. It is not readily obvious which colors to assign

to ri−j−` or sr`+n−1 so the following cases are considered:

Subcase 1: χ(ri−j−`) = χ(rk−j) = cn−2 and so k − j ≡ n− 1 =⇒ k + 1 ≡ j. Thus, `+ n− 1 ≡

`+ k − j ≡ i− k + k − j ≡ i− j and so χ(sr`+n−1) = χ(sri−j) = cn−2.

Subcase 2: χ(ri−j−`) = χ(rk−j) = cn−1 and so k − j ≡ n − j − 1 =⇒ k ≡ n − 1. Thus,

`+ n− 1 ≡ i− k + k ≡ i and so χ(sr`+n−1) = χ(sri) = cn−1.

Subcase 3: χ(ri−j−`) = ci−j−`−1 = ci−j−(i−k)−1 = ck−j−1 with n− j ≤ i− j − ` ≤ n− 2 =⇒ 1 ≤

k ≤ j − 1. Since `+ n− 1 ≡ i− k − 1, χ(sr`+n−1) = χ(sri−(k+1)) = ck+1−j−2 = ck−j−1.

Subcase 4: χ(ri−j−`) = ci−j−` = ci−j−(i−k) = ck−j with 0 ≤ i − j − ` ≤ n − j − 2 =⇒ 1 ≤

k − j + 1 ≤ n − j − 1. Since ` + n − 1 ≡ i − k − 1 ≡ i − j + j − k − 1 ≡ i − j − (k − j + 1),

χ(sr`+n−1) = χ(sri−j−(k−j+1)) = ck−j+1−1 = ck−j .

Case 4: i−` ≡ k mod n with n−j ≤ k ≤ n−2, so χ(ri−`) = χ(rk) = ck−1 and i−` ≡ k mod n =⇒

i − k ≡ ` mod n and i − j − ` ≡ k − j mod n. It is not readily obvious which colors to assign to

ri−j−`, sr`+n−j−1, or sr`+n−1 so the following cases are considered:

Subcase 1: χ(ri−j−`) = χ(rk−j) = cn−2. So, k−j ≡ n−1. Thus, `+n−1 ≡ i−k+k−j ≡ i−j mod n

and so χ(sr`+n−1) = χ(sri−j) = cn−2. Also, ` + n − j − 1 ≡ i − j − k − 1 ≡ i − (k + j + 1) and

n−j ≤ k ≤ n−2 =⇒ 1 ≤ k+j+1 ≤ j−1, so χ(sr`+n−j−1) = χ(sri−(k+j+1)) = ck+j+1−j−2 = ck−1.

Subcase 2: χ(ri−j−`) = χ(ri−j−`) = χ(rk−j) = cn−1. So, k− j ≡ n− j − 1 =⇒ k ≡ n− 1. Thus,

`+n−1 ≡ `+k ≡ i−k+k ≡ i and so χ(sr`+n−1) = χ(sri) = cn−1. Also, `+n−j−1 ≡ i−j mod n.

Thus, χ(sr`+n−j−1) = χ(sri−j) = cn−2. Finally, χ(rk) = χ(rn−1) = cn−2.

Subcase 3: χ(ri−j−`) = χ(rk−j) = ck−j with 0 ≤ k−j ≤ n−j−2 =⇒ 1k−j+1 ≤ n−j−1. Note

that n− j ≤ k ≤ n− 2 =⇒ 1 ≤ k+ j+ 1 ≤ j− 1 and `+n− j− 1 ≡ i− j− k− 1 ≡ i− (k+ j+ 1),

so χ(sr`+n−j−1) = χ(sri−(k+j+1)) = ck+j+1−j−2 = ck−1. Also, ` + n − 1 ≡ ` − 1 ≡ i − k − 1 ≡

i− j + j − k − 1 ≡ i− j − (k − j + 1) and χ(sr`+n−1) = χ(sri−j−(k−j+1)) = ck−j+1−1 = ck−j .

Subcase 4: χ(ri−j−`) = χ(rk−j) = ck−j−1 with n− j ≤ k− j ≤ n−2 =⇒ 1 ≤ k+1 ≤ j−1. Also,

n− j ≤ k ≤ n−2 =⇒ 1 ≤ k+ j+ 1 ≤ j−1. So, `+n−1 ≡ `−1 ≡ i−k−1 ≡ i− (k+ 1) and thus



91

χ(sr`+n−1) = χ(sri−(k+1)) = ck+1−j−2 = ck−j−1. Note that `+n−j−1 ≡ i−j−(k+1) ≡ i−(k+j+1)

and so χ(sr`+n−j−1) = χ(sri−(k+j+1)) = ck+j+1−j−2 = ck−1.

If instead a subset of D2n contains all of the rotations except for rn−3, rn−2, and rn−1, then

pL(S) = n = pR(S) if and only if the remaining three elements in the subset are rotations which

must satisfy certain conditions.

PROPOSITION 3.2.7. Let S = {1, r, r2, . . . , rn−4, sri, srj , srk} ⊂ D2n with n ≥ 7 and pL(S) =

n = pR(S) if and only if without loss of generality j = i+ 1 and k = i+ 2

Proof. By Lemma 3.2.6, with i1 = 1 and m = n− 3, pL(S) = pR(S). So, without loss of generality,

the following argument will be given with respect to left-translates. The left-translates of S are of

the form r` ◦ S = {r`, r`+1, r`+2, . . . , r`+n−4, sri−`, srj−`, srk−`} and

sr`◦S = {sr`, sr`+1, sr`+2, . . . , sr`+n−4, ri−`, rj−`, rk−`} for all 0 ≤ ` ≤ n−1. Consider the following

assignment χ(r`) = c` for 0 ≤ ` ≤ n − 4 with χ(rn−3) = cn−1, χ(rn−2) = cn−2, χ(rn−1) = cn−3,

and χ(sri−`) = c`−1 for all 1 ≤ ` ≤ n − 3 and/or χ(sri+`) = cn−`−1 for all 3 ≤ ` ≤ n − 1 with

χ(sri) = cn−3, χ(srj) = χ(sri+1) = cn−2, χ(srk) = χ(sri+2) = cn−1. The following left-translates

are colored with n distinct colors:

{1, r, r2, . . . , rn−4, sri, sri+1, sri+2} colored c0, c1, c2, . . . , cn−4, cn−3, cn−2, cn−1 respectively

{r, r2, r3, . . . , rn−4, rn−3, sri−1, sri, sri+1} colored c1, c2, c3, . . . , cn−4, cn−1, c0, cn−3, cn−2 respectively

{r2, r3, r4, . . . , rn−4, rn−3, rn−2, sri−2, sri−1, sri} colored c2, c3, c4, . . . , cn−4, cn−1, cn−2, c1, c0, cn−3 respectively

{rn−3, rn−2, rn−1, 1, . . . , rn−7, sri+3, sri+4, sri+5} colored cn−1, cn−2, cn−3, c0, . . . , cn−7, cn−4, cn−5, cn−6

respectively

{rn−2, rn−1, 1, r, . . . , rn−6, sri+2, sri+3, sri+4} colored cn−2, cn−3, c0, c1, . . . , cn−6, cn−1, cn−4, cn−5 respectively

{rn−1, 1, r, r2, . . . , rn−5, sri+1, sri+2, sri+3} colored cn−3, c0, c1, c2, . . . , cn−5, cn−2, cn−1, cn−4 respectively

If 3 ≤ ` ≤ n − 4, then sri−`, sri+1−`, and sri+2−` are colored c`−1, c`−2, c`−3 respectively. Also,

there is some positive integer d so that ` + d = n − 4, so the rotations in r` ◦ S are r`, r`+1,
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. . ., r`+d = rn−4 which are colored c`, c`+1, . . ., cn−4 respectively, r`+d+1 = rn−3, r`+d+2 = rn−2,

r`+d+3 = rn−1 which are colored cn−1, cn−2, cn−3 respectively, and r`+d+4 = 1, r`+d+5 = r, . . .,

r`+n−4 = r`−4 which are colored c0, c1, . . ., c`−4. The colors c0, . . ., c`−4, c`−3, c`−2, c`−1, c`, c`+1,

. . ., cn−4, cn−3, cn−2, cn−1 are distinct and so all left-translates of the form r` ◦S contains n distinct

colors. Next, The following left-translates are colored with n distinct colors:

{sri+1, sri+2, sri+3, . . . , sri−3, rn−1, 1, r} colored cn−2, cn−1, cn−4, . . . , c2, cn−3, c0, c1 respectively

{sri+2, sri+3, sri+4, . . . , sri−2, rn−2, rn−1, 1} colored cn−1, cn−4, cn−5, . . . , c1, cn−2, cn−3, c0 respectively

{sri+3, sri+4, sri+5, . . . , sri−1, rn−3, rn−2, rn−1} colored cn−4, cn−5, cn−6, . . . , c0, cn−1, cn−2, cn−3 respectively

{sri+4, sri+5, sri+6, . . . , sri−1, sri, rn−4, rn−3, rn−2} colored cn−5, cn−6, cn−7, . . . , c0, cn−3, cn−4, cn−1, cn−2

respectively

{sri+5, sri+6, sri+7, . . . , sri−1, sri, sri+1, rn−5, rn−4, rn−3} colored cn−6, cn−7, cn−8, . . . , c0, cn−3, cn−2, cn−5, cn−4,

cn−1 respectively

If ` = i + d for some 0 = d or 6 ≤ d ≤ n − 1, then there is some positive integer m so that

d + m ≡ 0 mod n so that the elements of sr` ◦ S are sri+d, sri+d+1, sri+d+2, . . ., sri+d+m−1 =

sri−1, sri+d+m = sri, sri+d+m+1 = sri+1, sri+d+m+2 = sri+2, sri+3, . . ., sri+d+n−5, sri+d+n−4,

ri−(i+d) = r−d, ri+1−(i+d) = r1−d, ri+2−(i+d) = r2−d. These elements are colored the n distinct

colors cn−d−1, cn−d−2, cn−d−3, . . ., c0, cn−3, cn−2, cn−1, cn−4, . . ., cn−d+4, cn−d+3, cn−d, cn−d+1,

cn−d+2 respectively.

For the other direction, suppose pL(S) = n = pR(S) and n ≥ 7. Without loss of generality, the

following argument is with respect to the left-translates. Then, the elements of S are assigned

n colors without loss of generality as follows χ(r`) = c` for 0 ≤ ` ≤ n − 4 and χ(sri) = cn−3,

χ(srj) = cn−2, χ(srk) = cn−1. Then, the element rn−1 appears in left-translates with r` for all

0 ≤ ` ≤ n− 4 (consider translates rn−1 ◦ S and rn−4 ◦ S) and hence appears in left-translates with

colors c` for all 0 ≤ ` ≤ n−4. So, one of the remaining three colors must be assigned to rn−1. Also,

there are only three left-translates which do not contain rn−1 and so potentially contain reflections
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which do not appear in a left-translate with rn−1. These left-translates are S, r ◦ S, r2 ◦ S and the

reflections in question are sri,sri−1, sri−2, srj , srj−1, srj−2, srk, srk−1, srk−2. So, one reflection

must be in all three of these left-translates because the color that is assigned to rn−1 must appear

in these translates. That is, one of the following must hold: j = i − 1 = k − 2, j = i − 2 = k − 1,

i = j − 1 = k − 2, i = j − 2 = k − 1, k = j − 1 = i − 2, k = j − 2 = i − 1. In any case, the same

relationship among i, j, k is yielded: sri, sri+1, sri+2.

In general, there appears to be a pattern among subsets with pL(S) = n = pR(S) containing

both reflections and rotations. The following observations, lemma, remark, and proposition were

formed in order to partially determine this pattern.

OBSERVATION 3.2.6. Suppose S = {1, ri1 , ri2 , . . . ri`−1 , srj1 , srj2 , . . . , srjn−`} ⊂ D2n and n

colors can be assigned to each left-translate of the form rk ◦ S via an assignment χ so that all

rotations are colored distinctly and all reflections are colored distinctly, then pL(S) = n.

Proof. Suppose χ is such an assignment of colors to the left-translates of S so that n colors are

assigned to each left-translate of the form rk ◦S. The remaining left-translates of S are of the form

s ◦ S = {s, sri1 , sri2 , . . . sri`−1 , rj1 , rj2 , . . . , rjn−`}

and

srz ◦ S = {srz, sri1+z, sri2+z, . . . , sri`−1+z, rj1−z, rj2−z, . . . , rjn−`−z}

for all 1 ≤ z ≤ n−1. Also, since χ ensures that all rotations are colored distinctly and all reflections

are colored distinctly, all that must be shown is that any given rotation and any given reflection in

the same left-translate of the form s ◦ S or srz ◦ S for all 1 ≤ z ≤ n− 1 are not colored using the

same color. The existence of left-translates of the forms

rjf−z ◦ S = {rjf−z, ri1+jf−z, ri2+jf−z, . . . , ri`−1+jf−z, srj1−jf+z, srj2−jf+z, . . . , srz, . . . , srjn−`−jf+z}

and

rjf−id−z ◦ S = { rjf−id−z, rjf−id+i1−z, rjf−id+i2−z, . . . , rjf−id+i`−1−z,

srj1−jf+id+z, srj2−jf+id+z, . . . , srid+z, . . . , srjn−`−jf+id+z }
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for all 1 ≤ f ≤ n− `, 1 ≤ d ≤ `− 1, and 0 ≤ z ≤ n− 1 imply that χ(rjf−z) 6= χ(srid+z).

OBSERVATION 3.2.7. Suppose S = {1, ri1 , ri2 , . . . ri`−1 , srj1 , srj2 , . . . , srjn−`} ⊂ D2n and n

colors can be assigned to each right-translate of the form S ◦ rk via an assignment χ so that all

rotations are colored distinctly and all reflections are colored distinctly, then pR(S) = n.

Proof. Suppose χ is such an assignment of colors to the right-translates of S so that n colors are

assigned to each right-translate of the form S ◦ rk. The remaining right-translates of S are of the

form

S ◦ s = {s, sr−i1 , sr−i2 , . . . sr−i`−1 , r−j1 , r−j2 , . . . , r−jn−`}

and

S ◦ srz = {srz, srz−i1 , srz−i2 , . . . , srz−i`−1 , rz−j1 , rz−j2 , . . . , rz−jn−`}

for all 1 ≤ z ≤ n−1. Also, since χ ensures that all rotations are colored distinctly and all reflections

are colored distinctly, all that must be shown is that any given rotation and any given reflection in

the same right-translate of the form s ◦ S or srz ◦ S for all 1 ≤ z ≤ n− 1 are not colored using the

same color. The existence of right-translates of the forms

S ◦ rz−jf = {rz−jf , rz+i1−jf , rz+i2−jf , . . . , rz+i`−1−jf , srj1−jf+z, srj2−jf+z, . . . , srz, . . . , srjn−`−jf+z}

and

S ◦ rz−jf−id = { rz−jf−id , rz−jf−id+i1 , rz−jf−id+i2 , . . . , rz−jf−id+i`−1 ,

srj1−jf−id+z, srj2−jf−id+z, . . . , srz−id , . . . , srjn−`−jf−id+z }

for all 1 ≤ f ≤ n− `, 1 ≤ d ≤ `− 1, and 0 ≤ z ≤ n− 1 imply that χ(rz−jf ) 6= χ(srz−id).

DEFINITION 3.2.7. Suppose S = {1, ri1 , . . . , rik−1srj1 , . . . , srjt} ⊂ D2n such that k+ t = n. Let

colors used to color S be denoted by ci for all 0 ≤ i ≤ n − 1. Let |S|ci be the number of elements

belonging to S that are colored ci.

LEMMA 3.2.15. Suppose pL(S) = n (also do the same argument for pR(S) = n) where S =

{1, ri1 , . . . , rik−1srj1 , . . . , srjt} ⊂ D2n such that k + t = n, then |S|ci = 2 for all 0 ≤ i ≤ n− 1.
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Proof. Since pL(S) = n (pR(S) = n), n elements must be colored distinctly. Thus, the coloring of

n elements must be determined. Suppose it is not the case that these n elements are distributed

evenly among color classes. Then, there is some color class that contains only one element. However,

this element can not appear in every translate, so this is impossible. Therefore, |S|ci = 2 for all

0 ≤ i ≤ n− 1.

REMARK 3.2.7. If S ⊂ D2n contains both reflections and rotations, it can always be assumed

there are more rotations than reflections.

Proof. Suppose S = {1, rj1 , rj2 , . . . , rjm−1 , sri1 , sri2 , . . . , srim+k} where k,m ≥ 1. Clearly, this trans-

late contains more reflections than rotations. A left-translate of S is

sri1 ◦ S = {1, ri2−i1 , . . . , rim+k−i1 , sri1 , sri1+j1 , sri1+j2 , . . . , sri1+jm−1}

which has more rotations than reflections. A right-translate of S is

S ◦ sri1 = {1, ri1−i2 , . . . , ri1−im+k , sri1 , sri1−j1 , sri1−j2 , . . . , sri1−jm−1}

which contains more rotations than reflections.

Corollary 3.2.3. If S ⊂ D2n such that |S| = n and contains both reflections and rotations, then

it can be assumed that the number of reflections is less than or equal to n
2 .

PROPOSITION 3.2.8. Suppose S ⊂ D2n with n ≥ 2 and S contains k rotations and t reflections

so that |S| = n = k + t and k 6= t. If S = {1, ri1 , . . . , rik−1 , srn−ik+j , . . . , srn−ik+(t−1)+j} for any

0 ≤ j ≤ n − 1 and any 0 ≤ i1, . . . , is, . . . ik−1 ≤ n − 1 so that is 6= id for any k ≤ d ≤ k + (t − 1),

then p(S) ≤ |S| = pL(S) = pR(S).

Proof. First, since k 6= t, it can be assumed that k > t by Remark 3.2.7. Next, if

S = {1, ri1 , . . . , rik−1 , srn−ik+j , . . . , srn−ik+(t−1)+j} for any 0 ≤ j ≤ n− 1 and any 0 ≤ i1, . . . , ik−1 ≤

n− 1, note that n left-translates are of the form

ri ◦ S = {ri, ri+i1 , . . . , ri+ik−1 , srn−ik+j−i, . . . , srn−ik+(t−1)+j−i}.
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So, the rotations in these left-translates can be written uniquely as ri+is for any 0 ≤ i ≤ n− 1 and

1 ≤ s ≤ k− 1 and the reflections can be written uniquely as srn−id+j−i for any k ≤ d ≤ k+ (t− 1)

and 0 ≤ i ≤ n− 1. Thus, an SL−polychromatic coloring is given by χ(ri+is) = ci+is mod n for any

0 ≤ i ≤ n − 1 and 1 ≤ s ≤ k − 1 and χ(srn−id+j−i) = cn−(n−id+j−i)+j mod n = cid+i mod n for any

k ≤ d ≤ k + (t− 1) and 0 ≤ i ≤ n− 1. Thus, ri ◦ S consists of elements that are distinctly colored

ci, ci+i1 , . . ., ci+ik−1
, cik+i, . . ., cik+(t−1)+i. Therefore, by Observation 3.2.6, pL(S) = n. Next, note

that n right-translates are of the form

S ◦ ri = {ri, ri1+i, . . . , rik−1+i, srn−ik+j+i, . . . , srn−ik+(t−1)+j+i}.

So, the rotations in these right-translates can be written uniquely as ris+i for any 0 ≤ i ≤ n−1 and

1 ≤ s ≤ k− 1 and the reflections can be written uniquely as srn−id+j+i for any k ≤ d ≤ k+ (t− 1)

and 0 ≤ i ≤ n − 1. Thus, an SR−polychromatic coloring is given by χ′(ris+i) = cis+i mod n for all

0 ≤ i ≤ n− 1 and 1 ≤ s ≤ k− 1 and χ′(srn−id+j+i) = cn−(n−id+j+i)+j+2i mod n = cid+i mod n for any

k ≤ d ≤ k + (t− 1) and 0 ≤ i ≤ n− 1. Thus, S ◦ ri consists of elements that are distinctly colored

ci, ci1+i, . . ., cik−1+i, cik+i, . . ., cik+(t−1)+i. Therefore, by Observation 3.2.7, pR(S) = n. Hence, by

Theorem 3.2.1 p(S) ≤ n.

There are many subsets of the dihedral group that are left unclassified and future work on this

group is enticing.

3.2.2 The Quaternion Group and the Dicyclic Group

Consider the small quaternion group denoted by Q8 and defined by Q8 = {1,−1, i,−i, j,−j, k,−k}

with products · computed as follows [10]:

1 · a = a · 1 = a, for all a ∈ Q8

(−1) · (−1) = 1, (−1) · a = a · (−1) = −a, for all a ∈ Q8

i · i = j · j = k · k = −1
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i · j = k, j · i = −k

j · k = i, k · j = −i

k · i = j, i · k = −j

Note that because of these relationships, if a 6= b 6= c ∈ Q8 \{±1} where a /∈ 〈b〉, 〈c〉, b /∈ 〈a〉, 〈c〉,

and c /∈ 〈a〉, 〈b〉, then −b ·a = a · b, −a · b = b ·a, −c ·a = a · c, −a · c = c ·a, −b · c = c · b, −c · b = b · c.

Also, a · b, b · a ∈ {±c}, a · c, c · a ∈ {±b}, b · c, c · b ∈ {±a}.

REMARK 3.2.8. By Theorem 3.2.3, the polychromatic number of any two element subset of Q8

has been determined.

PROPOSITION 3.2.9. pQ8({d, e, f}) = 2 for any d 6= e 6= f ∈ Q8.

Proof. First, note that any three element subset of Q8, {d, e, f} has a translate of the form

{1,−de,−df}. Also, note that the order of any element in Q8 \ {±1} is four. For subsets of

Q8 of the form {1, a, a2} or {1, a, a3}, by Theorem 3.2.2, pQ8({1, a, a2}) = pZ4({0, 1, 2}) = 2,

pQ8({1, a, a3}) = pZ4({0, 1, 3}) = 2, and pQ8({1,−1, a}) = pZ4({0, 2, 1}) = 2. Next, suppose b /∈ 〈a〉

and a /∈ 〈b〉 such that S = {1, a, b}. Then, Q8 \ {±1} = {±a,±b,±c}. Suppose, there is an

S−polychromatic coloring with three colors so that without loss of generality χ(1) = c0, χ(a) = c1,

and χ(b) = c2. However, then the assignment χ(c) can not be made because c appears in {c, c·a, c·b}

and {c, a · c, b · c}, so χ(c) = χ(1) = c0, but the translates {−b, a · b, 1} and {−b, b · a, 1} also ex-

ist and imply χ(c) 6= χ(1) . Consider the assignment χ(±1) = c0, χ(±a) = c1, χ(±b) = c0,

and χ(±c) = c1. The left-translates are {−1,−a,−b}, {a,−1, a · b}, {−a, 1, b · a}, {b, b · a,−1},

{−b, a · b, 1}, {c, c · a, c · b}, {−c, a · c, b · c} and the right-translates are {−1,−a,−b}, {a,−1, b · a},

{−a, 1, a · b}, {b, a · b,−1}, {−b, b · a, 1}, {c, a · c, b · c}, {−c, c · a, c · b}. Together with the knowledge

that c · b, b · c ∈ {±a}, a · c, c · a ∈ {±b}, a · b, b · a ∈ {±c}, χ is an S−polychromatic coloring in two

colors.

Corollary 3.2.4. ex(Q8, {d, e, f}) ≥ 4 for any d 6= e 6= f ∈ Q8.
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The question then arises as to which subsets of the quaternion group have p(S) = |S|. Lemma

3.2.1 suggests that the only subsets of Q8 that have p(S) = |S| are subsets of sizes two and four.

Since subsets of size two have already been considered, subsets of size four is the next topic of

discussion.

REMARK 3.2.9. Note that any four element subset of Q8 {a, b, c, d} contains either no elements

of order two, one element of order two, or two elements of order two. If it is the first case, then

a 6= b 6= c 6= d ∈ Q8 \ {±1} and so at least two elements must belong to the same subgroup of order

four, but since each element must have order four, the set is of the form without loss of generality

{a, b, c,−a} if b /∈ 〈c〉 and c /∈ 〈b〉 and {a, b,−b,−a} otherwise. If it is the second case, then without

loss of generality d ∈ {±1} and a 6= b 6= c ∈ Q8 \ {±1} and so the set is of the form {1, a, b, c} if

a /∈ 〈b〉, 〈c〉, b /∈ 〈a〉, 〈c〉, c /∈ 〈a〉, 〈b〉 or {1, a,−a, c} if a /∈ 〈c〉 and c /∈ 〈a〉. Also, {−1, a, b, c} is an

option for the form of this set, however a translate of {1, a, b, c} is {−1,−a,−b,−c}. If it is the

latter most case, then without loss of generality c, d ∈ {±1} and a 6= b ∈ Q8 \ {±1} and so the set

is of the form {1,−1, a, b} if a /∈ 〈b〉 and b /∈ 〈a〉 or {−1, 1, a,−a}.

PROPOSITION 3.2.10. Let S ⊂ Q8 such that |S| = 4. Then, p(S) = |S| if and only if S is a

translate of {1, a,−1,−a} where a ∈ Q8 \ {±1} or of {1, a, b, c} where a 6= b 6= c ∈ Q8 \ {±1} and

a /∈ 〈b〉, 〈c〉, b /∈ 〈a〉, 〈c〉, and c /∈ 〈a〉, 〈b〉 or of {a, b,−b,−a} where a 6= b ∈ Q8 and a /∈ 〈b〉, b /∈ 〈a〉.

Proof. Let a 6= b 6= c ∈ Q8 \ {±1} where a /∈ 〈b〉, 〈c〉, b /∈ 〈a〉, 〈c〉, and c /∈ 〈a〉, 〈b〉. Consider the

coloring given by χ(1) = c0, χ(−1) = c2, χ(a) = c1, χ(−a) = c3, χ(b) = c0, χ(−b) = c1, χ(c) = c2,

χ(−c) = c3. The left- and right-translates are the same three distinct subsets {1,−1, a,−a},

{b,−b, a·b, b·a}, and {c,−c, a·c, c·a}. Since a·b, b·a ∈ {±c} and a·c, c·a ∈ {±b}, all translates contain

four distinct colors. Next, let a 6= b 6= c ∈ Q8 \ {±1} and a /∈ 〈b〉, 〈c〉, b /∈ 〈a〉, 〈c〉, and c /∈ 〈a〉, 〈b〉.

Consider the coloring given by χ(1) = c3 = χ(−1), χ(a) = c2 = χ(−a), χ(b) = c1 = χ(−b),

χ(c) = c0 = χ(−c). Note also that b · c 6= c · b ∈ {±a}, a · c 6= c · a ∈ {±b}, and b · a 6= a · b ∈ {±c}.

The left- and right-translates are {1, a, b, c}, {−1,−a,−b,−c}, {a,−1, a · b, a · c}, {a,−1, b · a, c · a},

{−a, 1, b·a, c·a}, {−a, 1, a·b, a·c}, {b, b·a,−1, b·c}, {b, a·b−1, c·b}, {−b, a·b, 1, c·b}, {−b, b·a, 1, b·c},
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{c, c · a, c · b,−1}, {c, a · c, b · c,−1}, {−c, a · c, b · c, 1}, and {−c, c · a, c · b, 1}. Thus, all translates

four distinct colors. Finally, let a 6= b 6= c ∈ Q8 \ {±1} where a /∈ 〈b〉, 〈c〉, b /∈ 〈a〉, 〈c〉, and

c /∈ 〈a〉, 〈b〉. Consider the coloring given by χ(1) = c3, χ(−1) = c0, χ(a) = c0, χ(−a) = c3,

χ(b) = c1, χ(−b) = c2, χ(c) 6= χ(−c) ∈ {c1, c2}. Note that a · b 6= b · a ∈ {±c}. The left- and

right-translate are {a, b,−b,−a}, {−1, a · b, b ·a, 1}, {c ·a, c · b, b · c, a · c}. Thus, all translates contain

four distinct colors.

By Remark 3.2.9, any such subset’s form is given. Suppose there is an S−polychromatic coloring χ

consisting of four colors in any case. If {a, b, c,−a} is the set in question with a 6= b 6= c ∈ Q8\{±1}

and its translates are considered, a left-translate is {−b, c · b,−1, b}. Without loss of generality

assign the colors c0, c1, c2, and c3 respectively. However, a right-translate is {−b, b · c,−1, b} and

so χ(b · c) = c1. Note that c · b 6= b · c ∈ {±a}. Yet, the existence of translate {a, b, c,−a} ensures

that there is a contradiction. Next, consider {1,−1, a, b} with a 6= b ∈ Q8 \ {±1} and a /∈ 〈b〉 or

b /∈ 〈a〉. Without loss of generality assign the colors c0, c1, c2, and c3 to 1, −1, a, b respectively. The

existence of left-translates {−1, 1,−a,−b} and {a,−a,−1, a·b} ensure χ(−a) = c3. These translates

along with {−a, a, 1, b · a} ensure χ(−b) = c2, χ(a · b) = c0, and χ(b · a) = c1. However, because

{−b, b, a · b, 1} is also a translate a contradiction is reached. Finally, consider {1, a,−a, c} with

a 6= b 6= c ∈ Q8 \ {±1} where a /∈ 〈b〉, 〈c〉, b /∈ 〈a〉, 〈c〉, and c /∈ 〈a〉, 〈b〉. Without loss of generality

assign the colors c0, c1, c2, and c3 to 1, a, −a, c respectively. The translates {−1,−a, a,−c} and

{a,−1, 1, a · c} ensure χ(−1) = c3 but, the translate {c, a · c, c · a,−1} gives a contradiction. In

all other instances the subset has such an S−polychromatic coloring because it is of the desired

form.

Corollary 3.2.5. Let S ⊂ Q8 such that |S| = 4. Then, ex(Q8, S) ≥ 6 if and only if S is a translate

of {1, a,−1,−a} where a ∈ Q8 \{±1} or of {1, a, b, c} where a 6= b 6= c ∈ Q8 \{±1} and a /∈ 〈b〉, 〈c〉,

b /∈ 〈a〉, 〈c〉, and c /∈ 〈a〉, 〈b〉 or of {a, b,−b,−a} where a 6= b ∈ Q8 and a /∈ 〈b〉, b /∈ 〈a〉.

The quaternion group is one of the smaller self-contained finite nonabelian groups that one

learns as an undergraduate student in abstract algebra, however it is actually one group in a larger

family of finite nonabelian groups. Consider the dicyclic group denoted Dicn for each integer n > 1
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is given by the presentation:

Dicn = 〈a, x|a2n = 1, x2 = an, x−1ax = a−1〉.

Thus, every element of Dicn can be uniquely written as akxj where 0 ≤ k < 2n and j = 0 or 1.

The multiplication rules are given by:

(i) akam = ak+m;

(ii) akamx = ak+mx;

(iii) akxam = ak−mx;

(iv) akxamx = ak−m+n

where superscripts of generator a are taken modulo 2n. It follows that Dicn has order 4n. Also,

when n = 2, the dicyclic group is the quaterion group Q8 (simply take a = i and b = j) and when

n is a power of two, is called the generalized quaterion group.

By the above result, it is known which translates of Dicn of cardinality two have p(S) = |S|,

however what is the answer for |S| = 3 and also is it true that pL(S) = pR(S)? Work towards

partial answers to these questions is what follows.

Without loss of generality, in the results and proofs that follow the identity 1 is always assumed to

be an element of S.

LEMMA 3.2.16. If S = {1, ak1 , . . . , akt}, then pLDicn
(S) = pRDicn

= pZ2n(S).

Proof. All left-translates are of the form {ak, ak+k1 , . . . , ak+kt} and {akx, ak−k1x, . . . , ak−ktx} for

all 0 ≤ k ≤ 2n−1. Note that both collections are disjoint from each other. Coloring the former col-

lection of translates is equivalent to coloring translates {k, k+k1, . . . , k+kt} = k+{0, k1, . . . , kt} in

Z2n. Coloring the latter collection of translates is equivalent to coloring {k, k−k1, . . . , k−kt} in Z2n.

Note that subtracting k and then multiplying −1 into {k, k − k1, . . . , k − kt} yields {0, k1, . . . , kt}.

So, pZ2n({k, k − k1, . . . , k − kt}) = pZ2n({0, k1, . . . , kt}) and so if the first collections of trans-

lates can be colored with r colors then so can the second collection of translates. That is to say
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pLDicn
({ak, ak+k1 , . . . , ak+kt}) = r =⇒ pLDicn

({akx, ak−k1x, . . . , ak−ktx}) = r for all 0 ≤ k ≤ 2n− 1.

Next, note that the right-translates are of the form {ak, ak1+k, . . . , akt+k} and {akx, ak1+kx, . . . , akt+kx}

for all 0 ≤ k ≤ 2n − 1. Notice once again these collections are disjoint from each other. Clearly,

coloring either collection of right-translates in Dicn is equivalent to coloring the translates of

{k, k1 + k, . . . , kt + k} = k + {0, k1, . . . , kt} in Zn.

PROPOSITION 3.2.11. If S = {1, ak1 , ak2 , . . . , akr−1 , a`1x, a`2x, . . . , a`tx}, then pDicn(S) ≥ 2.

Proof. Note that the left-translates are ai?S = {ai, ai+k1 , ai+k2 , . . . , ai+kr−1 , ai+`1x, ai+`2x, . . . , ai+`tx}

and aix ? S = {aix, ai−k1x, ai−k2x, . . . , ai−kr−1x, ai−`1+n, ai−`2+n, . . . , ai−`t+n} for all 0 ≤ i ≤

2n−1. The right-translates are S?ai = {ai, ak1+i, ak2+i, . . . , akr−1+i, a`1−ix, a`2−ix, . . . , a`t−ix} and

S ? aix = {aix, ak1+ix, ak2+ix, . . . , akr−1+ix, a`1−i+n, a`2−i+n, . . . , a`t−i+n} for all 0 ≤ i ≤ 2n − 1.

Assign one color to elements of the form ai and another distinct color to elements of the form

aix.

LEMMA 3.2.17. Suppose S = {1, aix, ajx}, then pLDicn
(S) = pRDicn

(S).

Proof. Suppose S = {1, aix, ajx} for any 0 ≤ i, j ≤ 2n−1. Note that any left-translate of S can be

written in the forms {ar, ai+rx, aj+rx} or {arx, ar−i+n, ar−j+n} and any right-translate of S can be

written in the form {a−r, ai+rx, aj+rx} or {arx, ai−r+n, aj−r+n} for all 0 ≤ r ≤ 2n − 1. Consider

φ : Dicn → Dicn such that φ(am) = a−m and φ(amx) = amx for all 0 ≤ m ≤ 2n − 1. Note that

χ(ar−i+n) = a−r+i−n = a−r+i+n since n ≡ −n mod 2n. So, the following correspondence between

left- and right-translates results:

φ(ar ? S) = {φ(ar), φ(ai+rx), φ(aj+rx)} 7→ S ? a−r = {a−r, ai+rx, aj+rx}

and

φ(arx ? S) = {φ(arx), φ(ar−i+n), φ(ar−j+n)} 7→ S ? arx = {arx, ai−r+n, aj−r+n}.

LEMMA 3.2.18. pL(S) = pR(S) for any S ⊂ Dicn such that |S| = 3.
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Proof. Any subset ofDicn is of the form {ak, a`, am}, {ak, a`x, amx}, {ak, a`, amx}, or {akx, a`x, amx}.

Note that a left-translate of {ak, a`, am} is a2n−k ? {ak, a`, am} = {1, a`−k, am−k}, a left-translate

of {ak, a`x, amx} is a2n−k ? {ak, a`x, amx} = {1, a`−kx, am−kx}, a left-translate of {ak, a`, amx} is

am+nx ? {ak, a`, amx} = {am+n−kx, am+n−`x, 1}, and a left-translate of {akx, a`x, amx} is ak+nx ?

{akx, a`x, amx} = {1, ak−`, ak−m}. By Lemma 3.2.16 and Lemma 3.2.17, any subset of the form

{1, aix, ajx} and {1, ai, aj} have a equivalence between their left- and right-polychromatic num-

bers.

PROPOSITION 3.2.12. If S = {1, aix, ajx} ⊂ Dicn such that 3|n and i 6≡ j mod 3 or S =

{1, ai, ajx} ⊂ Dicn, 3|n, 0 ≤ i, j ≤ 2n− 1, and one of the following holds

1. i 6≡ j mod 3

2. i ≡ j ≡ 1 mod 3

3. i ≡ j ≡ 2 mod 3

then pL(S) = pR(S) = 3.

Proof. Suppose S = {1, aix, ajx} and 3|n. By Lemma 3.2.17, pLDicn
(S) = pRDicn

(S). So, without

loss of generality the following argument will be given with respect to left-translates.

Case 1: Without loss of generality, i ≡ 1 mod 3 and j ≡ 2 mod 3. Consider the coloring χ so that:

χ(ar) = χ(arx) = cr mod 3 for all 0 ≤ r ≤ 2n− 1

Then each translate of the form {ar, ar+ix, ar+jx} consists of three distinct colors as the elements are

colored cr mod 3, cr+1 mod 3, and cr+2 mod 3 respectively. Translates of the form {arx, ar−i+n, ar−j+n}

also consist of elements colored cr mod 3, cr+2 mod 3, and cr+1 mod 3 respectively.

Case 2: Without loss of generality, i ≡ 0 mod 3, j ≡ 1 mod 3. Consider the coloring χ so that:

χ(ar) = cr mod 3 and χ(arx) = cr+1 mod 3 for all 0 ≤ r ≤ 2n− 1

Then each translate of the form {ar, ar+ix, ar+jx} consists of three distinct colors as the elements are

colored cr mod 3, cr+1 mod 3, and cr+2 mod 3 respectively. Translates of the form {arx, ar−i+n, ar−j+n}
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also consist of elements colored cr+1 mod 3, cr mod 3, and cr+2 mod 3 respectively.

Case 3: Without loss of generality, i ≡ 0 mod 3, j ≡ 2 mod 3. Consider the coloring χ so that:

χ(ar) = c3−r mod 3 and χ(arx) = c4−r mod 3 for all 0 ≤ r ≤ 2n− 1

Then each translate of the form {ar, ar+ix, ar+jx} consists of three distinct colors as the elements are

colored c3−r mod 3, c4−r mod 3, and c5−r mod 3 respectively. Translates of the form {arx, ar−i+n, ar−j+n}

also consist of elements colored c4−r mod 3, c3−r mod 3, and c5−r mod 3 respectively.

The arguments are repeatable if i and j switch congruence classes.

Suppose S = {1, ai, ajx} and 3|n.

Case 1: Without loss of generality, i ≡ 2 mod 3 and j ≡ 1 mod 3. Consider the coloring χ so that:

χ(arx) = cr mod 3 for all 0 ≤ r ≤ 2n− 1

Then each translate of the form {ar, ar+i, ar+jx} consists of three distinct colors as the elements are

colored cr mod 3, cr+2 mod 3, and cr+1 mod 3 respectively. Translates of the form {arx, ar−ix, ar−j+n}

also consist of elements colored cr mod 3, cr+1 mod 3, and cr+2 mod 3 respectively.

Case 2: Suppose i, j ≡ 1 mod 3. Consider the coloring χ so that:

χ(ar) = cr mod 3 and χ(arx) = cr+1 mod 3 for all 0 ≤ r ≤ 2n− 1

Then each translate of the form {ar, ar+i, ar+jx} consists of three distinct colors as the elements are

colored cr mod 3, cr+1 mod 3, and cr+2 mod 3 respectively. Translates of the form {arx, ar−ix, ar−j+n}

also consist of elements colored cr+1 mod 3, cr mod 3, and cr+2 mod 3 respectively.

Case 3: Suppose i, j ≡ 2 mod 3. Consider the coloring χ so that:

χ(ar) = c3−r mod 3 and χ(arx) = c4−r mod 3 for all 0 ≤ r ≤ 2n− 1

Then each translate of the form {ar, ar+i, ar+jx} consists of three distinct colors as the elements are

colored c3−r mod 3, c4−r mod 3, and c5−r mod 3 respectively. Translates of the form {arx, ar−ix, ar−j+n}

also consist of elements colored c4−r mod 3, c3−r mod 3, and c5−r mod 3 respectively.

Case 4: Suppose i ≡ 1 mod 3, j ≡ 0 mod 3. Consider the coloring χ so that:

χ(ar) = cr mod 3 and χ(arx) = cr+2 mod 3 for all 0 ≤ r ≤ 2n− 1
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Then each translate of the form {ar, ar+i, ar+jx} consists of three distinct colors as the elements are

colored cr mod 3, cr+1 mod 3, and cr+2 mod 3 respectively. Translates of the form {arx, ar−ix, ar−j+n}

also consist of elements colored cr+2 mod 3, cr+1 mod 3, and cr mod 3 respectively.

Case 5: Suppose i ≡ 2 mod 3, j ≡ 0 mod 3. Consider the coloring χ so that:

χ(ar) = c3−r mod 3 and χ(arx) = c5−r mod 3 for all 0 ≤ r ≤ 2n− 1

Then each translate of the form {ar, ar+i, ar+jx} consists of three distinct colors as the elements are

colored c3−r mod 3, c4−r mod 3, and c5−r mod 3 respectively. Translates of the form {arx, ar−ix, ar−j+n}

also consist of elements colored c5−r mod 3, c4−r mod 3, and c3−r mod 3 respectively.

This result does not capture all subsets of Dicn of size three with polychromatic number equal

to three.

3.2.3 A Note on the Symmetric Group of Degree n, Sn

Let Ω be any nonempty set and let SΩ be the set of all bijections from Ω to itself. The set SΩ is

a finite nonabelian group under function composition: ◦. This group is called the symmetric group

on the set Ω. Note that the elements of SΩ are the permutations of Ω, not the elements of Ω itself.

When Ω = {1, 2, 3, . . . , n}, the symmetric group on Ω is denoted Sn and is called the symmetric

group of degree n. A cycle is a string of integers which represents the element of Sn which cyclically

permutes these integers (and fixes all other integers). The cycle (a1a2 . . . am) is the permutation

which sends ai to ai+1, 1 ≤ i ≤ m− 1 and sends am to a1. For example, (213) maps 2 to 1, 1 to 3,

and 3 to 2. In general, for each σ ∈ Sn the numbers from 1 to n can be rearranged and collected

into k cycles of the form

(a1a2 . . . am1)(am1+1am2+2 . . . am2) . . . (amk−1+1amk−1+2 . . . amk
).

This notation is read as for any x ∈ {1, 2, 3, . . . , n}, find x in the above expression. If x is not

followed immediately by a right parenthesis, then σ(x) is the integer appearing immediately to the

right of x. If x is followed by a right parenthesis, then σ(x) is the number which is at the start of
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the cycle ending with x. The product of all the cycles is called the cycle decomposition of σ [10].

For example, let n = 13 and σ ∈ S13 so that σ(1) = 12, σ(2) = 13, σ(3) = 3, σ(4) = 1, σ(5) = 11,

σ(6) = 9, σ(7) = 5, σ(8) = 10, σ(9) = 6, σ(10) = 4, σ(11) = 7, σ(12) = 8, σ(13) = 2. The cycle

decomposition is

σ = (1 12 8 10 4)(2 13)(3)(5 11 7)(6 9).

The symmetric group of degree n can be generated by two elements namely any n−cycle of the

form (a1a2 . . . an) and any 2−cycle consisting of adjacent elements in said n−cycle i.e. (aiai+1). In

much the same fashion as results on the dihedral group were obtained, for further exploration of

the polychromatic number of subsets of Sn, it is useful to note that grids can be used to represent

translates.

DEFINITION 3.2.8. Consider the 2 by n grid

(1, 0)

(2, 0)

· · ·

· · ·

(1, i)

(2, i)

(1, i+ 1)

(2, i+ 1)

· · ·

· · ·

(1, n− 1)

(2, n− 1)

Figure 3.10 2× n grid

where 0 ≤ i ≤ n− 1 correspond to the columns in the grid. Note that when i = n− 1, i+ 1 = 0.

An ar-tile is a shape of the following form within said 2 by n grid.
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(1, i) (1, i+ 1)

(2, i)

Figure 3.11 An ar-tile

OBSERVATION 3.2.8. All left-translates of the subset of Sn containing (1), (aiai+1), and

(a1a2 . . . an) are ar-tiles in multiple 2 by n grids.

Proof. Any element of Sn can be written in cycle decomposition form

a = (a1,1a1,2 . . . a1,k1)(a2,1a2,2 . . . a2,k2) · · · (ar,1, ar,2 . . . ar,kr)

where each cycle is of length ki for 1 ≤ i ≤ r are not necessarily distinct values. The left-translate

that one obtains from composing this element on the left of S = {(1), (aiai+1), (a1a2 . . . an)} is

a ◦ S = {a ◦ (aiai+1, a, a ◦ (a1a2 . . . an)}. Consider the 2 by n grid with some elements of Sn in its

entries as follows

(1)

(aiai+1)

(a1a2 . . . an)

(a1a2 . . . an)(aiai+1)

(a1a2 . . . an)2

(a1a2 . . . an)2(aiai+1)

· · ·

· · ·

(a1a2 . . . an)n−1

(a1a2 . . . an)n−1(aiai+1)

Figure 3.12 Some elements of Sn arranged in a 2× n grid
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Next, apply a via composition to the left-side of every element in the previous grid. The

following grid is obtained.

a

a ◦ (aiai+1)

a ◦ (a1a2 . . . an)

a ◦ (a1a2 . . . an)(aiai+1)

a ◦ (a1a2 . . . an)2

a ◦ (a1a2 . . . an)2(aiai+1)

· · ·

· · ·

a ◦ (a1a2 . . . an)n−1

a ◦ (a1a2 . . . an)n−1(aiai+1)

Figure 3.13 Composition applied to previous 2× n grid

a ◦ S clearly is an ar-tile in this grid.

REMARK 3.2.10. Note that elements can be repeated in the grids described above as a◦(aiai+1)◦

S = {a, a ◦ (aiai+1), a ◦ (aiai+1) ◦ (a1a2 . . . an)} is also a left-translate that appears as an ar-tile in

the following grid:

a ◦ (aiai+1)

a

a ◦ (aiai+1)(a1a2 . . . an)

a ◦ (aiai+1)(a1a2 . . . an)(aiai+1)

· · ·

· · ·

a ◦ (aiai+1)(a1a2 . . . an)n−1

a ◦ (aiai+1)(a1a2 . . . an)n−1(aiai+1)

Figure 3.14 Another 2× n grid containing some of the elements of Sn

Because of Observation 3.2.8 and Remark 3.2.10, work on Sn seems feasible but also challenging

as when translates can be represented within grids where grid elements repeat, extra care must be

taken when assigning colors. Similarly, there are many larger translates on Sn to consider and find

the polychromatic number of as well as the Turán number, but as far as this work is concerned

these problems are completely open.
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CHAPTER 4. CONCLUSION AND FUTURE WORK

The characterization and proof of subsets of size three which have polychromatic number equal

to three given in Theorem 2.0.3 led to the result Theorem 2.0.9 for subsets of Zn of a cardinality

which is odd and prime. In [6], as has been mentioned, Lemma 2.0.10 gives a few partial results in

determining the polychromatic number of subsets of the integers modulo n of size four. The poly-

chromatic number of some subsets of composite cardinalities and whose cardinalities are greater

than or equal to four have been determined in Proposition 2.0.1, Proposition 2.0.3, and Proposition

2.0.4 for example. Nevertheless, a complete characterization of such subsets is still open.

Given the results explored in small subsets of the integers modulo n, it is now possible to extend to

products of these groups such as Zn1 × . . .× Znk
as was done in Section 2.0.2. However, there are

still many subsets of many finite abelian groups left to determine. Furthermore, is it possible to

further apply the Fundamental Theorem of Finitely Generated Abelian Groups to extend results

to all finite abelian groups?

Also, given Theorem 2.0.4 in [6], there is clearly a connection between tiling by translation and

determining the polychromatic number of a given abelian group. In [9], multiple terms and inter-

esting results related to tiling by translation which is simply referred to as “tiling” are introduced.

Therefore, it is highly possible that the results on tiling by translation can aid in the quest to

determine the polychromatic number of any subset of any given abelian group.

The dihedral group D2n was explored extensively with respect to subsets whose left- and right-

translates can be colored with the same number of colors, however, is it very probable that there

are more subsets of S ⊂ D2n with pL(S) = pR(S) left undetermined. Furthermore, for any finite

nonabelian group, is it true that pL(S) = pR(S)? Similarly, what can be said of the value of p(S) for

such subsets? There were many subsets of D2n with pL(S) = pR(S) = |S| with |S| ≥ 4 determined

in results such as Theorem 3.2.5, Proposition 3.2.4, Lemma 3.2.12, Lemma 3.2.13, Lemma 3.2.14,
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Proposition 3.2.5, and Proposition 3.2.6. However, there are still more to determine.

The Dicyclic Group Dicn was explored a little and only some of the subsets of size three with

pL(S) = pR(S) = 3 were determined in Proposition 3.2.12. Finishing this characterization would

be desirable. Similarly, working more extensively with this group and determining other subsets

with pL(S) = pR(S) = |S| such that |S| ≥ 4 is an interesting problem. Moreover, determining

p(S) for subsets of size three and greater is advantageous. After working with finite nonabelian

groups with two generators like the dihedral group and the Dicyclic Group, is it possible to use the

previous methods and extend the results to other finite groups generated by two elements? Along

the same lines, what can be said of the Symmetric group of degree n? Is it possible to use Cayley’s

Theorem to extend results to all groups?

It is also important to note that while determining the polychromatic number of finite groups is an

interesting problem in its own right and helps in improving the lower bound on the Turán number,

there does not appear to be a way to naturally extend this work to improve on the upper bound of

the Turán number. Thus, finding and implementing a method to decrease the upper bound on the

Turán number is a completely open and worthwhile problem.

Finally, this work is very abstract. However, that should not suggest there are no real world appli-

cations. A few such real world applications to Turán-type problems are mentioned in [15]. With

this in mind, how can this work on finite groups relate to the real world?
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CHAPTER 5. EXAMPLES

In this section, selected examples of some of the colorings employed in the previous chapters

are given.

EXAMPLE 5.0.1. In Lemma 2.0.1, S = {0, 1} ⊂ Zn.

Let n = 4. The translates are {0, 1}, {1, 2}, {2, 3}, and {3, 0}. Consider the S−polychromatic

coloring χ(i) = ci mod 2 for all 0 ≤ i ≤ 3. Then, χ(0) = c0, χ(1) = c0, χ(2) = c0, and χ(3) = c1.

EXAMPLE 5.0.2. In Lemma 2.0.4, S = {0, a, b} such that n ≡ 0 mod 3j+1, a = 3jma, b = 3jmb,

ma ≡ 1 mod 3, mb ≡ 2 mod 3, and j ≥ 0.

Let n = 9, a = 1, b = 2. The translates are {0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 7},

{6, 7, 8}, {7, 8, 0}, and {8, 0, 1}. Consider the S−polychromatic coloring χ(t · 3 + r) = ct mod 3 for

all 0 ≤ t ≤ 8 and 0 ≤ r ≤ 0 =⇒ r = 0. Then, χ(0) = c0, χ(1) = c1, χ(2) = c2, χ(3) = c0,

χ(4) = c1, χ(5) = c2, χ(6) = c0, χ(7) = c1, and χ(8) = c2.

EXAMPLE 5.0.3. In Theorem 2.0.5, S = {0, 1, `} in Zn such that n ≡ r mod ` − 2 where

r = 0, 1, 2, or 3 and ` is odd.

Let n = 9, ` = 5, r = 0. The translates are {0, 1, 5}, {1, 2, 6}, {2, 3, 7}, {3, 4, 8}, {4, 5, 0}, {5, 6, 1},

{6, 7, 8}, {7, 8, 3}, and {8, 0, 4}. Consider the S−polychromatic coloring

χ0(x) =



c0 if x = i(3)

c0 if x = i(3) + 1

c1 if x = i(3) + 2

for all 0 ≤ i ≤ 2. Then, χ0(0) = c0, χ0(1) = c0, χ0(2) = c1, χ0(3) = c0, χ0(4) = c0, χ0(5) = c1,

χ0(6) = c0, χ0(7) = c0, χ0(8) = c1.

EXAMPLE 5.0.4. In Theorem 2.0.6, S = {0, 1, `} in Zn such that n ≡ r mod ` − 2 and r ≥ 4

and ` is odd.



111

Let n = 19, ` = 7, r = 4. The translates are {0, 1, 7}, {1, 2, 8}, {2, 3, 9}, {3, 4, 10}, {4, 5, 11},

{5, 6, 12}, {6, 7, 13}, {7, 8, 14}, {8, 9, 15}, {9, 10, 16}, {10, 11, 17}, {11, 12, 18}, {12, 13, 0}, {13, 14, 1},

{14, 15, 2}, {15, 16, 3}, {16, 17, 4}, {17, 18, 5}, and {18, 0, 6}. Consider the 2−polychromatic inter-

val precoloring

χ(x) =



c0 if x = i(5)

c0 if x = i(5) + 2k + 1 where 0 ≤ k ≤ 1

c1 if x = i(5) + 2k where 1 ≤ k ≤ 2

where 0 ≤ i ≤ 1. Then, χ(0) = c0, χ(1) = c0, χ(2) = c1, χ(3) = c0, χ(4) = c1, χ(5) = c0,

χ(6) = c0, χ(7) = c1, χ(8) = c0, χ(9) = c1. Consequently, χ(10) = c0, χ(11) = c0, χ(12) = c1,

χ(13) = c1, χ(14) = c0, χ(15) = c1, χ(16) = c0, χ(17) = c1, χ(18) = c1.

EXAMPLE 5.0.5. In Lemma 2.0.7, set S = {0, 1, 3} in Zn such that either n ≥ 9 or n = 5 with

n odd.

Let n = 11. The translates are {0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 8}, {6, 7, 9},

{7, 8, 10}, {8, 9, 0}, {9, 10, 1}, and {10, 0, 2}. Consider the S−polychromatic coloring χ(0) = c0,

χ(1) = c1, χ(2) = c1, χ(3) = c0, χ(4) = c0, χ(5) = c0, χ(6) = c1, χ(7) = c1, χ(8) = c1, χ(9) = c0,

χ(10) = c0.

EXAMPLE 5.0.6. In Theorem 2.0.7, S = {0, 1, `} in Zn such that n 6= 7 and ` 6= 3, 5.

Let n = 7, ` = 4. The translates are {0, 1, 4}, {1, 2, 5}, {2, 3, 6}, {3, 4, 0}, {4, 5, 1}, {5, 6, 2}, and

{6, 0, 3}. Consider the S−polychromatic coloring χ(0) = c0, χ(1) = c1, χ(2) = c0, χ(3) = c0,

χ(4) = c1, χ(5) = c0, χ(6) = c1.

EXAMPLE 5.0.7. In Lemma 2.0.9, S = {0, a, b} such that n ≡ 0 mod 7 and without loss of

generality b = 3a or b = 5a with |〈a〉| = 7 can not occur simultaneously.

Let n = 12, a = 3, b = 4. The translates are {0, 3, 4}, {1, 2, 5}, {2, 5, 6}, {3, 6, 7}, {4, 7, 8}, {5, 8, 9},

{6, 9, 10}, {7, 10, 11}, {8, 11, 0}, {9, 0, 1}, {10, 1, 2}, and {11, 2, 3}. The following grid can also be

formed
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Figure 5.1 Example of 4 by 3 grid

where any translate {i, i+ 3, i+ 4} is an ell - tile in this grid of the form

i

i+ 3

i+ 4

Figure 5.2 The ell - tiles of the above grid

Since this is a 4× 3 matrix, consider the ell-tile 2-coloring given by

χ((i, j)) =



ci+j mod 2 if (i, j) 6= (`, 3) for any `

c0 if (i, j) = (`, 3) for odd values of `

c1 if (i, j) = (`, 3) for even values of `.

More explicitly, χ((1, 1)) = c0, χ((1, 2)) = c1, χ((1, 3)) = c0, χ((2, 1)) = c1, χ((2, 2)) = c0,

χ((2, 3)) = c1, χ((3, 1)) = c0, χ((3, 2)) = c1, χ((3, 3)) = c0, χ((4, 1)) = c0, χ((4, 2)) = c0,

χ((4, 3)) = c1.

EXAMPLE 5.0.8. In Proposition 2.0.3, for any a ∈ Zn, S = {a, a+ 1, a+ 2, . . . , a+m− 1} and

n ≡ 0 mod m.

Let a = 0, m = 10, n = 20. The translates are {0, 1, 2, . . . , 9}, {1, 2, 3, . . . , 10}, {2, 3, 4, . . . , 11},

{3, 4, 5, . . . , 12}, {4, 5, 6, . . . , 13}, {5, 6, 7, . . . , 14}, {6, 7, 8, . . . , 15}, {7, 8, 9, . . . , 16}, {8, 9, 10, . . . , 17},

{9, 10, 11, . . . , 18}, {10, 11, 12, . . . , 19}, {11, 12, 13, . . . , 0}, {12, 13, 14, . . . , 1}, {13, 14, 15, . . . , 2},

{14, 15, 16, . . . , 3}, {15, 16, 17, . . . , 4}, {16, 17, 18, . . . , 5}, {17, 18, 19, . . . , 6}, {18, 19, 0, . . . , 7}, and
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{19, 0, 1, . . . , 8}. Consider the S−polychromatic coloring χ(0) = c0, χ(1) = c1, χ(2) = c2, χ(3) =

c3, χ(4) = c4, χ(5) = c5, χ(6) = c6, χ(7) = c7, χ(8) = c8, χ(9) = c9, χ(10) = c0, χ(11) = c1,

χ(12) = c2, χ(13) = c3, χ(14) = c4, χ(15) = c5, χ(16) = c6, χ(17) = c7, χ(18) = c8, χ(19) = c9.

EXAMPLE 5.0.9. In Theorem 2.0.9, S = {a, a+ `jm1, a+ `jm2, . . . , a+ `jm`−1} where `j+1|n,

j ≥ 0, and 0 6≡ m1 6≡ m2 6≡ . . . 6≡ m`−1 mod ` where ` is an odd prime and a ∈ Zn.

Let a = 0, ` = 5, j = 1, m1 = 1, m2 = 2, m3 = 3, m4 = 4, n = 25. The translates are

{0, 5, 10, 15, 20}, {1, 6, 11, 16, 21}, {2, 7, 12, 17, 22}, {3, 8, 13, 18, 23}, {4, 9, 14, 19, 24}, {5, 10, 15, 20, 0},

{6, 11, 16, 21, 1}, {7, 12, 17, 22, 2}, {8, 13, 18, 23, 3}, {9, 14, 19, 24, 4}, {10, 15, 20, 0, 5}, {11, 16, 21, 1, 6},

{12, 17, 22, 2, 7}, {13, 18, 23, 3, 8}, {14, 19, 24, 4, 9}, {15, 20, 0, 5, 10}, {16, 21, 1, 6, 11}, {17, 22, 2, 7, 12},

{18, 23, 3, 8, 13}, {19, 24, 4, 9, 14}, {20, 0, 5, 10, 15}, {21, 1, 6, 11, 16}, {22, 2, 7, 12, 17}, {23, 3, 8, 13, 18},

and {24, 4, 9, 14, 19}. Consider the S−polychromatic coloring χ(0) = c0, χ(1) = c0, χ(2) = c0,

χ(3) = c0, χ(4) = c0, χ(5) = c1, χ(6) = c1, χ(7) = c1, χ(8) = c1, χ(9) = c1, χ(10) = c2,

χ(11) = c2, χ(12) = c2, χ(13) = c2, χ(14) = c2, χ(15) = c3, χ(16) = c3, χ(17) = c3, χ(18) = c3,

χ(19) = c3, χ(20) = c4, χ(21) = c4, χ(22) = c4, χ(23) = c4, χ(24) = c4.

EXAMPLE 5.0.10. In Proposition 3.2.3, there is a 3 − 2 × 2 frame coloring of a 2 ×M grid if

and only if 3|M .

Let M = 3. Then, consider the following 3− 2× 2 frame coloring of a 2× 3 grid

c1

c2

c0

c1

c2

c0

Figure 5.3 An example of a grid and a 3− 2× 2 frame coloring



114

EXAMPLE 5.0.11. In Lemma 3.2.9, if M is even, there exists a 4−2×2 box coloring of a 2×M

grid.

Let M = 4. Then, consider the following 4− 2× 2 box coloring of a 2× 4 grid

c2

c3

c0

c1

c2

c3

c0

c1

Figure 5.4 An example of a grid and a 4− 2× 2 box coloring

EXAMPLE 5.0.12. In Lemma 3.2.12, |S| = 2n− 1.

Set n = 3 and S = {1, r, r2, sr, sr2}. The left-translates are {r, r2, 1, s, sr}, {r2, 1, r, sr2, s},

{s, sr, sr2, r, r2}, {sr, sr2, s, 1, r}, and {sr2, s, sr, r2, 1}. The right-translates are {r, r2, 1, sr2, s},

{r2, 1, r, s, sr}, {s, sr2, sr, r2, r}, {sr, s, sr2, 1, r2}, and {sr2, sr, s, r, 1}. Consider the S−polychromatic

coloring given by the following assignment χ(1) = c0, χ(r) = c1, χ(r2) = c2, χ(s) = c0, χ(sr) = c1,

χ(sr2) = c2.

EXAMPLE 5.0.13. In Lemma 3.2.13, let S = {1, r, r2, r3, sr3} with i = 3 and n = 4.

The left-translates are {r, r2, r3, 1, sr2}, {r2, r3, 1, r, sr}, {r3, 1, r, r2, s}, {s, sr, sr2, sr3, r3}, {sr, sr2, sr3, s, r2},

{sr2, sr3, s, sr, r}, and {sr3, s, sr, sr2, 1}. The right-translates are {r, r2, r3, 1, s}, {r2, r3, 1, r, sr},

{r3, 1, r, r2, sr2}, {s, sr3, sr2, sr, r}, {sr, s, sr3, sr2, r2}, {sr2, sr, s, sr3, r3}, and {sr3, sr2, sr, s, 1}.

Consider the S−polychromatic coloring given by the following assignment χ(1) = c0, χ(r) = c1,

χ(r2) = c2, χ(r3) = c3, χ(s) = c0, χ(sr) = c1, χ(sr2) = c2, χ(sr3) = c3.

EXAMPLE 5.0.14. In Lemma 3.2.14, let n = 3, j = 1, k = 2. Then, S = {1, r2, sr2}. The

left-translates are {r, 1, sr}, {r2, r, s}, {s, sr2, r2}, {sr, s, r}, and {sr2, sr, 1}. The right-translates

are {r, 1, s}, {r2, r, sr}, {s, sr, r}, {sr, sr2, r2}, and {sr2, s, 1}. Consider the SL−polychromatic

coloring given by the following assignment χ(1) = c0, χ(r) = c2, χ(r2) = c1, χ(s) = c0, χ(sr) = c1,

χ(sr2) = c2.

EXAMPLE 5.0.15. In Proposition 3.2.5, let n = 4, i = 3 and S = {1, r, r2, sr, sr3}. Then, the

left-translates are {r, r2, r3, s, sr2}, {r2, r3, 1, sr3, sr}, {r3, 1, r, sr2, s}, {s, sr, sr2, r, r3}, {sr, sr2, sr3, 1, r2},
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{sr2, sr3, s, r3, r}, and {sr3, s, sr, r2, 1}. The right-translates are {r, r2, r3, sr2, s}, {r2, r3, 1, sr3, sr},

{r3, 1, r, s, sr2}, {s, sr3, sr2, r3, r}, {sr, s, sr3, 1, r2}, {sr2, sr, s, r, r3}, and {sr3, sr2, sr, r2, 1}. Con-

sider the SL−polychromatic coloring given by the following assignment χ(1) = c0, χ(r) = c2,

χ(r2) = c1, χ(r3) = c3, χ(s) = c0, χ(sr) = c2, χ(sr2) = c1, χ(sr3) = c3.

EXAMPLE 5.0.16. In Proposition 3.2.6, let n = 5, j = 1, i = 4, and S = {1, r, r2, sr3, sr4}.

Then, left-translates are {r, r2, r3, sr2, sr3}, {r2, r3, r4, sr, sr2}, {r3, r4, 1, s, sr}, {r4, 1, r, sr4, s},

{s, sr, sr2, r3, r4}, {sr, sr2, sr3, r2, r3}, {sr2, sr3, sr4, r, r2}, {sr3, sr4, s, 1, r}, and {sr4, s, sr, r4, 1}.

The right-translates are {r, r2, r3, sr4, s}, {r2, r3, r4, s, sr}, {r3, r4, 1, sr, sr2}, {r4, 1, r, sr2, sr3}, {s, sr4, sr3, r2, r},

{sr, s, sr4, r3, r2}, {sr2, sr, s, r4, r3}, {sr3, sr2, sr, 1, r4}, and {sr4, sr3, sr2, r, 1}. Consider the SL−polychromatic

coloring given by the following assignment χ(1) = c0, χ(r) = c1, χ(r2) = c2, χ(r3) = c4, χ(r4) = c3,

χ(s) = c2, χ(sr) = c1, χ(sr2) = c0, χ(sr3) = c3, χ(sr4) = c4.

EXAMPLE 5.0.17. In Proposition 3.2.7, let n = 5, i = 2, and S = {1, r, sr2, sr3, sr4}. Then, left-

translates are {r, r2, sr, sr2, sr3}, {r2, r3, s, sr, sr2}, {r3, r4, sr4, s, sr}, {r4, 1, sr3, sr4, s}, {s, sr, r2, r3, r4},

{sr, sr2, r, r2, r3}, {sr2, sr3, 1, r, r2}, {sr3, sr4, r4, 1, r}, and {sr4, s, r3, r4, 1}. The right-translates

are {r, r2, sr3, sr4, s}, {r2, r3, sr4, s, sr}, {r3, r4, s, sr, sr2}, {r4, 1, sr, sr2, sr3}, {s, sr4, r3, r2, r}, {sr, s, r4, r3, r2},

{sr2, sr, 1, r4, r3}, {sr3, sr2, r, 1, r4}, and {sr4, sr3, r2, r, 1}. Consider the SL−polychromatic color-

ing given by the following assignment χ(1) = c0, χ(r) = c1, χ(r2) = c4, χ(r3) = c3, χ(r4) = c2,

χ(s) = c1, χ(sr) = c0, χ(sr2) = c2, χ(sr3) = c3, χ(sr4) = c4.

EXAMPLE 5.0.18. In Proposition 3.2.8, let n = 4, k = 3, t = 1, j = 2, i1 = 2, i2 = 3, i3 = 1.

Then, the left-translates are {r, r31, s}, {r2, 1, r, sr3}, {r3, r, r2, sr2}, {s, sr2, sr3r}, {sr, sr3, s, 1},

{sr2, s, sr, r3}, and {sr3, sr, sr2, r2}. The right-translates are {r, r3, 1, sr2}, {r2, 1, r, sr3}, {r3, r, r2, s},

{s, sr2, sr, r3}, {sr, sr3, sr2, 1}, {sr2, s, sr3, r}, and {sr3, sr, s, r2}. Consider the SL−polychromatic

coloring given by the following assignment χ(1) = c0, χ(r) = c1, χ(r2) = c2, χ(r3) = c3, χ(s) = c2,

χ(sr) = c1, χ(sr2) = c0, χ(sr3) = c3.

EXAMPLE 5.0.19. In Proposition 3.2.12, let n = 3, i = 1, j = 4. Then S = {1, a, a4x}.

The left-translates are {a, a2, a5x}, {a2, a3, x}, {a3, a4, ax}, {a4, a5, a2x}, {a5, 1, a3x}, {x, a5x, a5},
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{ax, x, 1}, {a2x, ax, a}, {a3x, a2x, a2}, {a4x, a3x, a3}, and {a5x, a4x, a4}. The right-translates are

{a5, a2, a5x}, {a4, a3, x}, {a3, a4, ax}, {a2, a5, a2x}, {a, 1, a3x}, {x, a4, a}, {ax, a3, 1}, {a2x, a2, a5},

{a3x, a, a4}, {a4x, 1, a3}, and {a5x, a5, a2}. Consider the SL−polychromatic coloring given by the

following assignment χ(1) = c0, χ(a) = c1, χ(a2) = c2, χ(a3) = c0, χ(a4) = c1, χ(a5) = c2,

χ(a6) = c0, χ(x) = c1, χ(ax) = c2, χ(a2x) = c0, χ(a3x) = c1, χ(a4x) = c2, χ(a5x) = c0,

χ(a6x) = c1.
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