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1

CHAPTER 1. Introduction and Experimental Results

No matter how complex a multicellular organism is, its embryonic development begins with

a single cell, the fertilized ovum. This cell’s DNA contains the blueprints for every cell type that

exists in the mature organism. It divides and proliferates, forming a small cluster of 16 identical

cells termed the morula. These cells continue dividing, eventually forming the blastocyst. The

exterior cells of the blastocyst form the trophoblast, and the interior cells are termed the

inner cell mass (ICM). The ICM eventually becomes the embryo as it continues through

embryogenesis, but the trophoblast develops into the embryonic portion of the placenta. This

is the first occurrence during development of differentiation. Differentiation is the process

by which these cells begin to express genes specific to a certain cell type. As development

progresses, the cells of the ICM start to follow different paths. The descendents of these cells

eventually become neurons, osteocytes, endothelial cells, and every other specific cell type in

the mature organism. The different types of cells can be identified via the proteins they express

and the behaviors they exhibit. The path the uncommitted cells choose depends on signals in

their environment.

Cells express receptors for many different molecules. Activation of these receptors can

initiate signal transduction cascades that can induce the cell to start transcribing different

regions of DNA, depending on which receptors are activated. Activation of different receptors

(or combinations of receptors) can therefore result in a myriad of possible protein combinations

that can be expressed by the cell. The cells that are uncommitted to any pathway are termed

stem cells. A progenitor cell is a stem cell that has chosen a general path, such as that leading

to a neural-type cell. However, the progenitor cell has not yet chosen a specific fate. For

example, the progenitor cell that has committed to the neural pathway could still become
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either a neuron or an astrocyte. Some of these stem and progenitor cells still exist in the

adult organism. They are used by the body to repair itself in the event of injury. It is in this

capacity that we would like to better understand these cells. Specifically, how do these cells

differentiate? What determines their fate?

The pathway of interest here is that of the differentiation of neural progenitor cells into

neurons. During embryonic development, neurogenesis occurs throughout the neural tube,

the precursor of the brain. These neuroepithelial cells can become any type of neural cell,

depending on the specific transcription factors they express. The cells are exposed to different

gradients of bone morphogenetic proteins (BMPs), Sonic hedgehog (Shh), and Wnt proteins,

among other inductive signalling molecules. The interactions of these molecules, both with each

other and with the cells of the neural tube, determine the type of neural cell they become.

However, in the mature organism neurogenesis primarily occurs in two regions of the adult

brain: the subventricular zone ([2]) and the dentate gyrus of the hippocampus ([17]). A

better understanding of this mechanism within the mature organism could potentially lead

to procedures to repair or regenerate a damaged retina. One such investigation into neural

progenitor cell differentiation is given in [44]. In this investigation adult rat hippocampal

progenitor cells (AHPCs) are exposed to hippocampal astrocytes and laminin under various

conditions. The percentage of AHPCs expressing class III β-tubulin (TUJ1) is measured.

TUJ1 is an early neuronal marker, indicating that these cells have begun to differentiate into

neurons.

Experiments were performed over two types of polystyrene substrates: one substrate was

smooth, and the other had microgrooves etched into the plate. Results were gathered for four

experimental conditions: control, noncontact coculture, contact coculture, and conditioned

media. In all experiments performed, the polystyrene substrate was first coated with laminin.

For the control experiment (1), AHPCs were plated on the laminin. For the contact coculture

experiment (2), astrocytes were plated on the laminin and grown for two days, after which

AHPCs were plated on the astrocytes in direct contact with them. For the noncontact cocul-

ture experiment (3), AHPCs were plated on the laminin and the astrocytes were held in an
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Table 1.1 Percent observed differentiation (TUJ1 expression level)

Experiment AHPC cells AHPC+Astrocyte AHPC+Astrocyte AHPC in Astrocyte
only in contact in non contact secreted media
(1) (2) (3) (4)

Patterned 16% 35% 75% 38%
Non patterned 17% 20% 73% 41%

Table 1.2 Percent observed differentiation (TUJ1 expression level)

IL6 added 0 .00001 .0001 .001 .01 .1 1 10 100
(ng/mL)

19% 20% 20% 27% 25% 31% 37% 35% 36%

insert above the AHPCs, allowing diffusion of chemicals but preventing direct contact. For

the conditioned media experiment (4), AHPCs were plated on the laminin and astrocytes were

cultured separately. The media from the astrocyte culture, containing astrocyte secreted fac-

tors, was then fed to the AHPCs every 24 hours for six days. The percentages of cells that

express TUJ1 after six days for each of these experiments are shown in Table 1.1.

Once it was hypothesized that the soluble extracellular protein interleukin-6 (IL6) was in-

ducing differentiation, a second set of experiments was performed, where certain concentrations

of IL6 were added to the control experiment on the smooth substrate every 48 hours ([41]).

The percentages of cells that express TUJ1 after six days for each of these experiments are

shown in Table 1.2.

It was also shown in [44] that when the cells differentiate into early neurons they sprout neu-

ritic extensions that tend to align parallel to the grooves on the patterned substrate, but which

radiate out from the cell randomly on the smooth substrate with no bias in their alignment.

When cultured with astrocytes, the neurites also exhibited a tendancy to align with astrocyte

cytoskeletal filaments. However, not much movement of the cell body itself is observed during

these experiments.

The goals of this dissertation are to derive a biologically-reasonable mathematical model
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that simulates these experimental results and to analyze the resultant model in order to help

guide future research in this area. In Chapter 2 a brief review of cellular communication

is provided, and the protein IL6 is introduced. Chapter 3 focuses on a system of ordinary

differential equations (ODEs) used to model the kinetics of the biological mechanism for IL6-

induced differentiation of AHPCs. This system models the cellular densities and chemical

concentrations present over the six day period of the biological experiment. It is referred

to as the population model throughout the dissertation, as the densities/concentrations are

proportional to the numbers of cells/molecules. A sensitivity analysis for the population model

is performed in Chapter 4 in order to examine how sensitive the output for the percentage of

cells that differentiate is to each parameter in the ODE system. Chapter 5 looks beyond the

first six days to examine the long-term behavior of the system. Steady state concentrations

are calculated for each species, and their stability is analyzed. This is attempted through

local linearization around each steady state, and in one case is studied globally throughout the

biologically feasible region through the use of a Lyapunov function. In Chapter 6 the population

model is expanded to include spatial variation and is explored under various chemotactic

conditions. Chapter 7 presents discussions of the numerical methods used to generate the data

in chapter 6. Finally, chapter 8 is a discussion of conclusions of this research and areas for

future work.
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CHAPTER 2. Cellular Communication

Cellular communication can occur either through direct contact or via diffusible signalling

molecules. These diffusible signals could include paracrine (short-range) factors like IL6, which

bind to surface receptors and initiate signal transduction cascades, or hormones like estrogen,

which diffuse through the cytosolic membrane and bind to a protein receptor, which then binds

directly to DNA. Some paracrine factors and hormones could also bind to surface receptors

and open ion channels. Direct contact between a cell and extracellular matrix proteins such as

fibronectin and laminin could include integrin binding, which can both mediate cellular adhe-

sion and migration, or initiate a signal transduction cascade. Binding can also occur between

adjacent cells through the use of cadherins. This cell-cell binding can initiate signal transduc-

tion cascades in one or both cells. Possible responses to these signals include alterred gene

expression, increased proliferation, or even migration toward/away from the signal. Biological

systems can use various combinations of these mechanisms, resulting in the great complexity

of biological responses that exists in nature. In the hypothesized mechanism for AHPC differ-

entiation into neurons, astrocytes secrete the cytokine interleukin-6, inducing differentiation

via a pathway for this diffusible signalling molecule. It is also proposed here that the secretion

rate is modulated via direct contact between astrocytes and the AHPC target cells.

2.1 Cytokines and Interleukin-6

The signalling molecule hypothesized to induce differentiation in this biological system is a

cytokine. Cytokines are small soluble messenger proteins or peptides important for cell-to-cell

communication in immunological responses, hemapoiesis, neurogenesis, and embryogenesis.

They typically have a small mass of between 8 and 30 kDa (kiloDaltons) and act over short



6

distances as autocrine or paracrine factors. They typically act at very low concentrations.

Their activity is often redundant, in that similar cellular responses may be obtained through

binding by several different cytokines. The cytokine family includes interleukins (IL), inter-

ferons (INF), tumor necrosis factors (TNF), colony-stimulating factors, and growth factors.

Many of the processes during embryonic development are regulated by cytokines. They are

also used in the immune system both as messengers between cells in defense reactions and also

as chemoattractants during the process of inflammation. ([29],[15])

Interleukins are a group of cytokines that were initially discovered as messengers between

white blood cells (leukocytes). They have since been found to be produced by other cell types.

They have many uses during development. For example, during embryogenesis muscles form

through a response to IL-4, which myotubes secrete to attract additional myoblasts. During

hemapoiesis, IL-3 promotes the survival and proliferation of erythroid progenitor cells. During

mammalian birth, IL-1β activates enzymes that stimulate production of the prostaglandin

hormones that are responsible for uterine contractions. ([20])

The cytokine of most interest here is interleukin-6 (IL6). IL6 has many varied applications.

It is used for growth promotion of myeloma cells and hematopoietic progenitors, promotion of

thrombopoiesis, induction of neuronal survival and differentiation, and the differentiation of

mouse myeloid leukemia cell line M1 to the macrophage cell line. It is often expressed at points

of inflammation. It is also expressed by Schwann cells at points of lesion when the hypoglossal

nerve is injured. The related cytokine IL6R is detectable in the nerve cell bodies. ([54])

In the IL6 pathway, IL6 first binds to one receptor. This receptor complex then binds to

another receptor, initiating a signal transduction cascade. IL6 binds to an IL6 receptor (IL6R)

on the surface of the target cell, attaching to the extracellular α-subunit. The cytosolic portion

is comprised of only 82 amino acids, and is not involved in signalling. This complex must then

associate with two transmembrane gp130 receptors in order to initiate a signal transduction

cascade inside the cell. Once the complex associates with a gp130 homodimer, protein tyrosine

kinases of the JAK family are activated. These JAKs are associated with the cytoplasmic

region of gp130. They phosphorylate tyrosine residues on gp130, allowing STAT3 to associate
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with gp130, which is then itself phosphorylated. STAT3 dimerizes with another phosphorylated

STAT3, and this dimer relocates to the nucleus, where it binds to corresponding regions of

DNA to activate transcription of neighboring genes. The RAS/MAPK signalling pathway may

also be activated by stimulation of gp130. ([35],[54])

Whereas all cells express gp130 receptors on their surface, not all cells express the surface

IL6 receptor. To bind to these cells, IL6 must use a mechanism known as transsignalling.

During transsignalling, IL6 first binds to a soluble IL6 receptor (sIL6Rα). The {IL6:sIL6Rα}

complex then induces the homodimerization of gp130 receptors on another cell, binding to

the complex, and initiating the cascade. It is named transsignalling because sIL6Rα can be

produced by a different cell than the cell to which the complex binds. Hence sIL6Rα acts as

a paracrine factor. There are two known mechanisms by which it can be produced. It could

be formed due to alternative splicing of the mRNA for the IL6 receptor, or it could be formed

by proteolysis of the extracellular α-subunit of a surface IL6 receptor, a process known as

shedding. The ligand binding domain is identical both on the surface IL6R and the soluble

sIL6Rα, and as a result the binding affinity of IL6 is nearly identical in either case. Neither IL6

nor the IL6 receptor alone can bind to gp130 to initiate the signal cascade; they first must be

bound as a complex. Hence, since the cytosolic portion of the surface IL6R does not contribute

to the cascade, sIL6Rα acts as an agonist for IL6 signalling. ([35])

In addition to sIL6Rα, there also exists a soluble gp130 receptor (sgp130). sgp130 is

generated either by a cell shedding the extracellular domain or as a result of alternative splicing

of the mRNA for the gp130 receptor. sgp130 acts as an inhibitor to the {IL6:sIL6Rα} complex

since it can bind the complex but lacks the cytosolic portion of the gp130 dimer needed to

initiate the signal transduction cascade. Hence it is an antagonist to IL6 signalling in systems

utilizing this pathway. The {IL6:sIL6Rα} complex can bind to either gp130 or sgp130, however

the {IL6:IL6R} complex associates rapidly with two molecules of gp130, and steric hinderance

prevents sgp130 from associating with {IL6:IL6R}. Therefore sgp130 is not an antagonist to

IL6 signalling via this pathway. ([24])
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2.2 Cell Migration

The migration of cells is a common occurrence in nature. It can be seen everywhere, e.g.,

the migration of bacteria, the movements of mesenchymal cells during embryogenesis, and the

movement of neutrophils toward bacteria within a mature organism with an active immune

system. Since cell movements occur in such varied locations in nature, it is not surprising

that multiple mechanisms for movement have evolved over time. An excellent reference for cell

movements is [9].

Swimming and crawling are two common forms of movement. Swimming is the propulsion

of cells through a solution due to the beating of surface appendages. Crawling is the motion

of a cell over a surface due to alternating cycles of extension and contraction, which are often

visible by deformation of the cellular surface. This motion is aided by anchorage of the cell to

the surface by use of integrin proteins.

Escherichia Coli swim by use of between six and ten flagella, each rotated by its own

molecular motor in the cell wall. Mammalian sperm possess just one flaggelum, which is bent

by the actions of proteins (including dynein) within the flagellum. Paramecium swim by the

coordinated movement of thousands of cilia on the cell surface, driving water over the cell in

a coordinated fashion.

Most migratory cells of the mammalian body move by crawling instead of swimming.

This occurs through the use of filopodia, lamellipodia, and pseudopodia. They are related

structures, comprising actin filaments that polymerize, pushing on the plasma membrane and

causing a protrusion to develop. Filopodia can be considered to be one dimensional protrusions,

lamellipodia are two dimensional, and pseudopodia are three dimensional. Epithelial cells,

fibroblasts, and some neurons use lamellipodia, and migrating growth cones use lamellipodia

and filopodia. Amoebae commonly use pseudopodia. The protrusion attaches to the substrate

by forming focal adhesions around integrins. Corticol contraction propels the cell’s contents

forward in an effort to relieve some of the tension formed by exerting the protrusion and

forming the focal adhesion. Finally, focal adhesions at the rear of the cell are disassembled.

Migratory cells undergo random motion, but in the presence of certain stimulatory chem-
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icals they can undergo directed movement. Receptors on the surface of the lamellipodia or

filopodia detect chemicals in their environment. Chemotaxis is the process by which cells mi-

grate in response to a gradient in a certain chemical in the vicinity of the cell. Binding of a

chemoattractant leads to a greater increase in actin polymerization within the area of highest

chemoattractant concentration. As the distribution of actin becomes greater in this area, the

protrusions become localized to this area, and the cell moves in this direction. This is an

especially important process during the formation of neuritic processes, and most dramatically

within the axon. The growth cone of the axon forms a lamellipodium and uses many filopo-

dia to explore its environment. The growth cone must use these guidance cues to lead the

axon very long distances (relative to cell size) in order to find its proper location within the

organism.
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CHAPTER 3. Population Model for Cellular Differentiation

The goal of this chapter is to build a system of ordinary differential equations modeling

the essential features of the IL6 mechanism discussed in Chapter 2. This mechanism includes

two signalling pathways: pathway #1, which uses surface receptors, and pathway #2, which

uses soluble receptors. There is also a soluble inhibitor of pathway #2 present in the system.

The end result of the IL6 signalling is the production of an intracellular molecule J , inducing

differentiation of the AHPC.

To build a system of ODEs for this mechanism, three scales of densities must be considered:

cell densities, (soluble) chemical concentrations, and (surface) receptor densities. The soluble

proteins and cell surface receptors involved in this model have similar masses of 20-50 kD and

80-250 kD, respectively, while the cells are much larger, comprised of millions of proteins. The

difference in scale can be visualized easily by comparing a grain of rice to a standard room in a

house. The length of the rice is roughly one-thousandth the length of the room. A eukaryotic

cell is about one-thousandth the length of the last joint of a finger, and a protein is about

one-thousandth the length of a cell ([21]).

The cell culture system under consideration consists of three cell types: progenitor cells

(AHPC), differentiated cells (TUJ1-expressing cells, early neurites), and astrocytes. Cells

move from the progenitor population into the differentiated population in response to cytokines

secreted by the astrocytes. The species included in this model are listed in Table 3.1. The

mechanism of action is illustrated by the wiring diagram in Figure 3.1.
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Table 3.1 Variables and their definitions

Species Chemical Abbreviation Concentration/Density

interleukin-6 IL6 [Ai]
soluble IL6 receptor sIL6Rα [Ril]

IL6 ligand-soluble receptor complex {IL6:sIL6Rα} [Aa]
soluble glycoprotein-130 sgp130 [Gp]

IL6, sIL6Rα, sgp130 trimeric complex {IL6:sIL6α:sgp130} [Ao]
surface IL6 receptor on AHPC IL6R [Rp

il]
IL6 ligand-surface receptor complex {IL6:IL6R} [As]

transmembrane glycoprotein-130 on AHPC gp130 [Rp
gp130]

IL6-induced signal transduction factor [J ]
(a hypothesized intracellular protein)

progenitor cell AHPC Np

TUJ1 expressing cell Nd

astrocyte Na

Figure 3.1 Schematic of action for cellular communication through the IL6
mechanism.
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3.1 Building the Model

The steps in the hypothesized intercellular signal are modeled by the following reactions.

We first consider pathway #1. Astrocyte-secreted IL6 (Ai) first binds to the IL6 receptor (Rp
il)

on the surface of the AHPC, forming the complex As. This complex then binds to the surface

gp130 homodimer (Rp
gp130), initiating a signal transduction cascade. This cascade leads to

the production of the intracellular molecule J . In accordance with their biological activities,

Ai can be termed ”inactive IL6” and As ”surface (activated) IL6”. These reactions can be

summarized as

Ai +Rp
il

bk1

bk−1

As,

As +Rp
gp130

bl1

bl−1

{As : Rp
gp130}

bl2→ J +Rp
gp130 +Rp

il.

We now consider pathway #2. Astrocyte-secreted IL6 (Ai) first binds to the astrocyte-secreted

soluble IL6 receptor (Ril), forming the soluble complex Aa. This complex can be referred to as

”activated IL6”, since it can bind directly to Rp
gp130, initiating the signal transduction cascade,

producing J . These reactions can be summarized as

Ai +Ril
l1


l−1

Aa,

Aa +Rp
gp130

ν1


ν−1

{Aa : Rp
gp130}

ν2→ J +Rp
gp130.

Competitive inhibition of pathway #2 can occur through the reaction

Aa +Gp
k1


k−1

Ao

in which the activated IL6 (Aa) binds to the astrocyte-secreted soluble gp130 receptor (Gp),

forming the complex Ao. Ao can be termed ”inhibited IL6” since it is not bound to the cell

membrane and hence cannot initiate an intracellular signal transduction cascade.

The kinetics of these reactions are given by the following system of ordinary differential
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equations, formed through simple mass action considerations:

d[Ai]
dt

= −l1[Ai][Ril] + l−1[Aa]− k̂1[Ai][R
p
il]N

p + k̂−1[As]Np,

d[Ril]
dt

= −l1[Ai][Ril] + l−1[Aa],

d[Aa]
dt

= l1[Ai][Ril]− l−1[Aa]− k1[Aa][Gp] + k−1[Ao]

− ν1[Aa][R
p
gp130]N

p + ν−1[{Aa : Rp
gp130}]N

p,

d[Gp]
dt

= −k1[Aa][Gp] + k−1[Ao],

d[Ao]
dt

= k1[Aa][Gp]− k−1[Ao],

d[Rp
il]

dt
= −k̂1[Ai][R

p
il] + k̂−1[As] + l̂2[{As : Rp

gp130}],

d[As]
dt

= k̂1[Ai][R
p
il]− k̂−1[As]− l̂1[As][R

p
gp130] + l̂−1[{As : Rp

gp130}],

d[{As : Rp
gp130}]

dt
= l̂1[As][R

p
gp130]− (l̂−1 + l̂2)[{As : Rp

gp130}],

d[Rp
gp130]
dt

= −l̂1[As][R
p
gp130] + (l̂−1 + l̂2)[{As : Rp

gp130}]

− ν1[Aa][R
p
gp130] + (ν−1 + ν2)[{Aa : Rp

gp130}],

d[{Aa : Rp
gp130}]

dt
= ν1[Aa][R

p
gp130]− (ν−1 + ν2)[{Aa : Rp

gp130}],

d[J ]
dt

= l̂2[{As : Rp
gp130}] + ν2[{Aa : Rp

gp130}].

In these equations, the cytokine concentrations [Ai], [Ril], [Aa], [Gp], and [Ao] are measured

in nmol/mL and the surface receptor concentrations [Rp
il], [As], [{As : Rp

gp130}], [Rp
gp130], and

[{Aa : Rp
gp130}] are measured in nmol/cell. The concentration of the intracellular molecule [J ]

is also measured in nmol/cell. Np denotes the density of progenitor cells, and is included in

the differential equations for Ai and Aa due to the different units used for soluble molecules

and surface receptors.

Hippocampal astrocytes have been shown experimentally to secrete IL6 ([5]). In this model

it is hypothesized that astrocytes also secrete the two soluble receptors sIL6Rα and sgp130.

Thus the production and degradation of the soluble proteins, along with the degradation of
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the soluble intracellular molecule J , satisfy the rate laws

d[Ai]
dt

= Sai(t) + a1Na − µai[Ai],

d[Ril]
dt

= Sil(t) + baNa − µil[Ril],

d[Aa]
dt

= Saa(t)− µaa[Aa],

d[Gp]
dt

= Sgp(t) + saNa − µgp[Gp],

d[Ao]
dt

= Sao(t)− µao[Ao],

d[J ]
dt

= −µj [J ],

where Na denotes the density of astrocytes and Sai(t), Sil(t), Saa(t), Sgp(t), and Sao(t) are

possible source terms. The astrocyte density Na and the source functions Sz(t) are chosen

according to experimental conditions. For example, if there are no astrocytes present (as in

the experiments with AHPCs alone or in the conditioned media experiments), then Na = 0. In

the latter of these two cases, the source functions would be used to model the daily treatment

of astrocyte conditioned medium. For example, they could be written as

Sz(t) =
N∑

i=1

Z0δ(t− ti)

where ti, i ∈ {1, 2, ..., N}, are the times at which the astrocyte-conditioned medium is in-

troduced to the culture, with Z0 being the concentration of the protein Z present in the

conditioned medium. This is the only experiment in which the source functions Sai(t), Sil(t),

Saa(t), Sgp(t), and Sao(t) are taken to be not identically zero.

The last step in the IL6 mechanism is the production of the intracellular molecule J , and

it is hypothesized within this simplified mechanism that the differentiation of the AHPC is

a direct response to the concentration of J . However, since J is produced through the IL6

mechanism alone in this mathematical model, but differentiation is occuring during the control

experiment where there are no astrocytes present to produce IL6, a certain level of background

differentiation must be included. In the model, the differentiation of AHPCs into neurons can

be expressed as the ”chemical” equation

NpK1(Np,Nd)+K2([J ])−→ Nd.
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The background differentiation occurs via some unknown mechanism. For the simulations in

this dissertation the function governing this rate of differentiation is taken to be

K1(Np, Nd) = θ1

(
θ2 + (

Nd

Np +Nd
)2

)−1

for some empirical constants θ1 and θ2. These constants are obtained through data from

the controlled experiment. When IL6 is present, we can assume that the process causing

differentiation via the background mechanism is still active. However, the differentiation due

to this mechanism cannot be distinguished from that due to the IL6 mechanism. The form for

the function K1 is chosen because it results in a consistent low level of differentiation during

the other experiments (∼ 10%). The function governing the rate of IL6-induced differentiation

is taken here to be sigmoidal, under the assumption that a certain threshold of J must be

reached to have any appreciable level of differentiation occuring. Thus K2([J ]) is taken to be

K2([J ]) =
κ1[J ]2

κ2
2 + [J ]2

for some constants κ1 and κ2. Np will decrease as cells differentiate. However, since [J ] is

measured in nmol/cell, it will not decrease as the cells differentiate.

Finally, we include simple logistic growth for the proliferation of the progenitor cells. When

a cell divides, it is assumed here that division is symmetric so that the molecules of J are divided

equally among the daughter cells. Since [J ] is measured in nmol/cell, proliferation results in a

decrease in J . During proliferation only the unbound receptors Rp
il and Rp

gp130 are synthesized,

and the receptors are divided equally among the daughter cells. Therefore nmol/cell of bound

surface receptors also decreases during proliferation. To see how the receptor concentrations

are changing, note that the total nmol of Z is given by [Z] ·Np, where Z is a surface receptor

or bound surface receptor complex. Differentiating, we have that

d([Z]Np)
dt

=
d[Z]
dt

Np + [Z]
dNp

dt
= 0,
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which implies that

d[Z]
dt

= − [Z]
Np

dNp

dt

= − [Z]
Np

·M1N
p
(
1− Np +Nd

Nmax

)
= −[Z]M1

(
1− Np +Nd

Nmax

)
.

Denoting the total concentration of Rp
il (Rp

gp130) in both bound and unbound states by [Rp
il]0

([Rp
gp130]0) nmol/cell, and letting η = M1

(
1− Np +Nd

Nmax

)
, yields the equations

d[Rp
il]

dt
= ([Rp

il]0 − [Rp
il])η,

d[As]
dt

= −[J ]η,

d[{As : Rp
gp130}]

dt
= −[{As : Rp

gp130}]η,

d[Rp
gp130]
dt

= ([Rp
gp130]0 − [Rp

gp130])η,

d[{Aa : Rp
gp130}]

dt
= −[{Aa : Rp

gp130}]η,

d[J ]
dt

= −[J ]η,

dNp

dt
= −

{
K1(Np, Nd) +K2([J ])

}
Np +Npη,

dNd

dt
=

{
K1(Np, Nd) +K2([J ])

}
Np.

Superimposing the above effects yields the system

d[Ai]
dt

= Sai(t) + a1Na − l1[Ai][Ril] + l−1[Aa]− k̂1[Ai][R
p
il]N

p

+ k̂−1[As]Np − µai[Ai],

d[Ril]
dt

= Sil(t) + baNa − l1[Ai][Ril] + l−1[Aa]− µIl[Ril],

d[Aa]
dt

= Saa(t) + l1[Ai][Ril]− l−1[Aa]− k1[Aa][Gp] + k−1[Ao]

− ν1[Aa][R
p
gp130]N

p + ν−1[{Aa : Rp
gp130}]N

p − µaa[Aa],

d[Gp]
dt

= Sgp(t) + saNa − k1[Aa][Gp] + k−1[Ao]− µgp[Gp],

d[Ao]
dt

= Sao(t) + k1[Aa][Gp]− k−1[Ao]− µao[Ao],
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d[Rp
il]

dt
= −k̂1[Ai][R

p
il] + k̂−1[As] + l̂2[{As : Rp

gp130}] + ([Rp
il]0 − [Rp

il])η,

d[As]
dt

= k̂1[Ai][R
p
il]− k̂−1[As]− l̂1[As][R

p
gp130] + l̂−1[{As : Rp

gp130}]− [As]η,

d[{As : Rp
gp130}]

dt
= l̂1[As][R

p
gp130]− (l̂−1 + l̂2)[{As : Rp

gp130}]− [{As : Rp
gp130}]η,

d[Rp
gp130]
dt

= −l̂1[As][R
p
gp130] + (l̂−1 + l̂2)[{As : Rp

gp130}]− ν1[Aa][R
p
gp130]

+ (ν−1 + ν2)[{Aa : Rp
gp130}] + ([Rp

gp130]0 − [Rp
gp130])η,

d[{Aa : Rp
gp130}]

dt
= ν1[Aa][R

p
gp130]− (ν−1 + ν2)[{Aa : Rp

gp130}]− [{Aa : Rp
gp130}]η,

d[J ]
dt

= l̂2[{As : Rp
gp130}] + ν2[{Aa : Rp

gp130}]− µj [J ]− [J ]η,

dNp

dt
= −

{
K1(Np, Nd) +K2([J ])

}
Np +Npη,

dNd

dt
=

{
K1(Np, Nd) +K2([J ])

}
Np.

Two conservation laws exist for this system:

[Rp
il]0 = [Rp

il] + [As] + [{As : Rp
gp130}],

[Rp
gp130]0 = [Rp

gp130] + [{As : Rp
gp130}] + [{Aa : Rp

gp130}].

The surface receptors act in a fashion similar to enzymes, in that they take a substrate (IL6) and

convert it to product (J). Numerical simulations show that the concentrations of the surface

receptor complexes [As], [{As : Rp
gp130}], and [{Aa : Rp

gp130}] quickly come to equilibrium with

the other species in the system. In accordance with the Michaelis-Menten hypothesis, we

assume that the time rate of change of these complexes are small,

d[As]
dt

≈ 0,
d[{As : Rp

gp130}]
dt

≈ 0,
d[{Aa : Rp

gp130}]
dt

≈ 0.

This will lead to a simplification of the above system. (A nondimensionalization will be per-

formed as a part of future work, explicitly showing the existence of the different time scales and

hence providing a mathematical justification for this approximation.) The population model
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(3.1) for AHPC differentiation becomes:

d[Ai]
dt

= Sai(t) + a1Na − l1[Ai][Ril] + l−1[Aa]− k̂1[Ai][R
p
il]N

p + k̂−1[As]Np − µai[Ai],

d[Ril]
dt

= Sil(t) + baNa − l1[Ai][Ril] + l−1[Aa]− µil[Ril],

d[Aa]
dt

= Saa(t) + l1[Ai][Ril]− l−1[Aa]− k1[Aa][Gp] + k−1[Ao]

− ν1[Aa][R
p
gp130]N

p + ν−1[{Aa : Rp
gp130}]N

p − µaa[Aa],

d[Gp]
dt

= Sgp(t) + saNa − k1[Aa][Gp] + k−1[Ao]− µgp[Gp],

d[Ao]
dt

= Sao(t) + k1[Aa][Gp]− k−1[Ao]− µao[Ao],

d[J ]
dt

= l̂2[{As : Rp
gp130}] + ν2[{Aa : Rp

gp130}]− µj [J ]− [J ]η,

dNp

dt
= −

{
K1(Np, Nd) +K2([J ])

}
Np +Npη,

dNd

dt
=

{
K1(Np, Nd) +K2([J ])

}
Np,

with AHPC receptor concentrations

b =
L[Rp

gp130]0 + ([Rp
gp130]0 − [Rp

il]0)[Ai]

K̂ + [Ai]
+
L̂(V + [Aa])

V
,

c =
−L̂(V + [Aa])[Ai][R

p
il]0

V (K̂ + [Ai])
,

[As] = (−b+
√
b2 − 4c)/2,

[{Aa : Rp
gp130}] =

L[Rp
gp130]0 + [Ai]([R

p
gp130]0 − [Rp

il]0) + (K̂ + [Ai])[As]
(L+ [Ai])(V + [Aa])

[Aa],

[{As : Rp
gp130}] =

[Ai][R
p
il]0 − (K̂ + [Ai])[As]
L+ [Ai]

,

[Rp
il] = [Rp

il]0 − [As]− [{As : Rp
gp130}],

[Rp
gp130] = [Rp

gp130]0 − [{Aa : Rp
gp130}]− [{As : Rp

gp130}],

where L =
bl2+ηck1

, L̂ = L̂m + ηbl1 , V = Vm + η
ν1

, and K̂ = K̂d + ηck1
. Initial conditions must

accompany this system. Under the assumption that there are no cytokines present initially, and

that the only cell population present are the undifferentiated AHPCs (and possibly astrocytes),
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the initial conditions are

[Ai]0 = [Aa]0 = [Ao]0 = 0

[Ril]0 = [Gp]0 = 0

[Rp
il]0 = n1, [Rp

gp130]0 = n2

[As]0 = [{Aa : Rp
gp130}]0 = [{As : Rp

gp130}]0 = 0

Np(0) = Np
0 , Nd(0) = 0.

3.2 Numerical Results

The biological experiments occur on two different substrates. One set of experiments is

performed on a smooth substrate, and the other set is performed on a plate that has parallel

grooves etched into it. The first set can be simulated numerically on a two-dimensional surface.

The second set can be simulated numerically on a three-dimensional surface, using grooves of

finite thickness. However, it is claimed here that analysis of the population model will suffice

for simulating most of the experiments. First, during the course of the experiments, the astro-

cytes are observed to be stationary, and little to no movement of cell bodies has been observed

for the AHPCs or the TUJ1-expressing cells. Secondly, in all experiments, the AHPCs are

plated with a uniform density. Finally, in all experiments except the contact coculture on the

patterned substrate, all cytokines are being added to the system in a uniform manner. Due to

the assumptions of homogeneity of all species, the homogeneous addition of all chemicals to

the system, and the experimental observation of little to no movement of the cells of interest,

the population model should suffice for simulating the following experiments: control (both

substrates), IL6-pulse (which are only performed on smooth substrates), noncontact coculture

(both substrates), conditioned media (both substrates), and contact coculture (smooth sub-

strate only). Spatial considerations must be taken into account when simulating the contact

coculture on the patterned substrate, since the astrocyte density is not uniform and hence

cytokines are not added in a uniform fashion to the system. This case will be considered in

Chapter 6.
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All population models are simulated using the classical 4th order Runge-Kutta method.

Simulations are executed in Fortran 90, with the resultant data illustrated graphically with

Matlab. The values of the parameters used are given in Tables 3.4-5 at the end of the chapter.

3.2.1 Control

In this experiment, a uniform layer of AHPCs is applied to the laminin at a density of

1.5 × 104 cells/cm2. No astrocytes are added to the system. There is no IL6 entering this

system, so the only differentiation occuring is due to the background mechanism. The system

of ODEs reduces to

dNp

dt
= −θ1Np

(
θ2 + (

Nd

Np +Nd
)2

)−1

+M1N
p

(
1− Np +Nd

Nmax

)
,

dNd

dt
= θ1N

p

(
θ2 + (

Nd

Np +Nd
)2

)−1

,

Np
0 = 1.5× 104, Nd

0 = 0.

The constants θ1 and θ2 were chosen with the aid of the ODE modeling program Berkeley

Madonna. Values for these two parameters were found that yielded approximately 20% differ-

entiation after six days, a rate similar to the level found experimentally, namely 16-19% after

six days. The time course simulation is shown in Figure 3.2. This mechanism of simulating

the background differentiation is discussed further in Appendix A.

3.2.2 IL6-pulse Experiments

The next task is to find κ1 and κ2, the constants controlling the cell’s response to J . This

can be accomplished using the data in Table 1.2. In these experiments, AHPCs were cul-

tured on laminin and in the absence of astrocytes. However, fresh media containing various

concentrations of IL6 was added every other day until the end of the experiment. A signif-

icant increase in the percentage of AHPCs expressing TUJ1 was observed for IL6 added at

concentration at or greater than 0.1 ng/mL.

Notice that the entries in each of the last three columns in Table 1.2 are nearly equal. This

cannot be due to a maximum response to J , since then the model will be unable to surpass
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Figure 3.2 Percentage of cells expressing TUJ1 over a six day period. The
differentiation expressed in this figure is due solely to the back-
ground mechanism.

35-40% differentiation, and hence it will not recreate noncontact coculture results. Therefore

it is assumed that this ”leveling off” is acheived through saturation of the Rp
il receptor. This

receptor is chosen since, if Rp
gp130 were saturating, we would again be unable to surpass 35-40%

differentiation since both pathways utilize this receptor.

In these experiments, differentiation is only occuring via Pathway 1 and the background

mechanism, not Pathway 2. The system of ODEs describing this situation is given by

d[Ai]
dt

= Sai(t)− k̂1[Ai][R
p
il]N

p + k̂−1[As]Np − µai[Ai],

d[J ]
dt

= l̂2[{As : Rp
gp130}]− µj [J ]− [J ]η,

dNp

dt
= −

{
K1(Np, Nd) +K2([J ])

}
Np +Npη,

dNd

dt
=

{
K1(Np, Nd) +K2([J ])

}
Np,

[Ai]0 = [J ]0 = 0

Np
0 = 1.5× 104, Nd

0 = 0
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with receptor concentrations

b =
L[Rp

gp130]0 + ([Rp
gp130]0 − [Rp

il]0)[Ai]

K̂ + [Ai]
+ L̂,

c =
−L̂[Ai][R

p
il]0

K̂ + [Ai]
,

[As] = (−b+
√
b2 − 4c)/2,

[{As : Rp
gp130}] =

[Ai][R
p
il]0 − (K̂ + [Ai])[As]
L+ [Ai]

,

[Rp
il] = [Rp

il]0 − [As]− [{As : Rp
gp130}],

[Rp
gp130] = [Rp

gp130]0 − [{As : Rp
gp130}],

where L, L̂, and K̂ defined as before. The constants κ1 and κ2 were estimated via the Metropo-

lis algorithm ([46]). These parameters are defined as

(κ1, κ2) = argmin(cκ1,cκ2)∈Ωκ

( 8∑
i=1

||P sim
i (144)− P exp

i ||2
)
,

where P exp
i is the percent differentiated after six days during the experiment with treatment

of 10−6+i ng/mL in Table 1.2, P sim
i (144) is the percent differentiated found through the corre-

sponding simulation, and Ωκ is an appropriate space of values for κ1 and κ2. An initial position

in Ωκ yielding similar values to Table 1.2 was found by using the program Berkeley Madonna.

This choice was then refined by generating a random walk through Ωκ. The direction of move-

ment, corresponding to new combinations of κ1 and κ2, is chosen randomly. Define the energy

at step j of the random walk by

E(j) =
8∑

i=1

||P j
i (144)− P exp

i ||2.

If E(j+1) ≤ E(j), the step is accepted. If E(j+1) > E(j), the step is accepted with probability

xE(j+1)−E(j), for some x ∈ (0, 1). These ”bad” moves during the random walk are occasionally

permitted in order to prevent the random walk from becoming ”trapped” at a local minimum.

This minimization process yielded values κ1 and κ2 producing the simulation results in Table

3.2. Time course simulations are shown in Figure 3.3. The percentage of differentiation due to

the function simulating the background mechanism is shown in Figure 3.4. The time course of
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Table 3.2 Percent observed differentiation (TUJ1 expression level)
IL6 added 0 .00001 .0001 .001 .01 .1 1 10 100
(ng/mL)

Experimental(%) 19 20 20 27 25 31 37 35 36

Simulation(%) 20.1 20.12 20.14 20.72 23.47 28.67 35.11 37.06 37.26

[As] + [{As : Rp
gp130}] in comparison to [Rp

il]0 is shown in Figure 3.5, illustrating that the Rp
il

receptors are saturating as the concentration of available IL6 increases.

3.2.3 Noncontact Coculture

In this experiment, a uniform layer of AHPCs is applied to the laminin at a density of

1.5 × 104 cells/cm2. A uniform layer of astrocytes, also at a density of 1.5 × 104 cells/cm2,

is held above the AHPCs in an insert that allows diffusion of molecules but prevents direct

contact between AHPCs and astrocytes. IL6 signalling can now occur through both pathways.

Pathway 1 was seen earlier to be limited by [Rp
il]. However, pathway 2 does not use Rp

il. The

time course simulation is shown in Figure 3.6. The percentage of cells that have differentiated

after six days is found to be 66.3% from the simulation. This is a similar increase from the

control as is seen experimentally, where 73-75% of cells differentiate. The time course of

differentiation due to the function simulating the background mechanism is shown in Figure

3.7.

3.2.4 Conditioned Media

In this experiment, a uniform layer of AHPCs is applied to the laminin at a density of

1.5 × 104 cells
cm2 . Astrocytes, also at a density of 1.5 × 104 cells

cm2 , are cultured separately. Every

24 hours, the media from the astrocyte culture, now containing astrocyte-secreted factors, is

removed and added to the AHPC culture. The concentrations of factors in this astrocyte-
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Figure 3.3 (left) Percentage of cells expressing TUJ1 over a six day pe-
riod. The differentiation expressed in this figure includes both
IL6-induced differentiation and that due to the background
mechanism. Eight experiments are illustrated. The bottom
curve represents the time course for a treatment of media con-
taining 10−5 ng/mL IL6 added every 48 hours. The top curve
represents the time course for a treatment of media containing
102 ng/mL IL6 added every 48 hours. Some curves overlap.

Figure 3.4 (right) Percentage of cells expressing TUJ1 over a six day pe-
riod. The differentiation expressed in this figure is due solely to
the background mechanism. Eight experiments are illustrated.
The top curve represents the time course for a treatment of
media containing 10−5 ng/mL IL6 added every 48 hours. The
bottom curve represents the time course for a treatment of me-
dia containing 102 ng/mL IL6 added every 48 hours. Some
curves overlap. As higher concentrations of IL6 are added, the
contribution to the percent differentiated due to the function
K1(Np, Nd) decreases until it reaches a minimum of around
10%. The increases in differentiation that result in the simula-
tion of Table 1.2 can therefore be attributed to the IL6 mecha-
nism.
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Figure 3.5 Time course of the concentration of bound Rp
il receptors. The

bottom curves represents the time course for a treatment of me-
dia containing 10−5 ng/mL IL6 added every 48 hours. The top
curve represents the time course for a treatment of media con-
taining 102 nmol/mL IL6 added every 48 hours. Saturation of
Rp

il receptors is clear from the graph.

Figure 3.6 Percentage of cells expressing TUJ1 over a six day period. The
differentiation expressed in this figure includes both IL6-induced
differentiation and that due to the background mechanism.

Figure 3.7 Percentage of cells expressing TUJ1 over a six day period. The
differentiation expressed in this figure is due solely to the back-
ground mechanism.
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conditioned media are given by the solution of

d[Ai]
dt

= a1Na − l1[Ai][Ril] + l−1[Aa]− µai[Ai]

d[Ril]
dt

= baNa − l1[Ai][Ril] + l−1[Aa]− µil[Ril]

d[Aa]
dt

= −(l2 + l−1)[Aa] + l1[Ai][Ril]− k1[Aa][Gp] + k−1[Ao]

d[Gp]
dt

= saNa − k1[Aa][Gp] + k−1[Ao]− µgp[Gp]

d[Ao]
dt

= k1[Aa][Gp]− (k−1 + k2)[Ao]− µao[Ao]

with initial conditions

[Ai]0 = [Aa]0 = [Ao]0 = [Ril]0 = [Gp]0 = 0.

Using the same secretion rates as for the noncontact coculture, the simulation yields 38.83%

of cells differentiated. This is a similar decrease from the noncontact coculture as is seen

experimentally, where 38-41% of cells differentiate. One explanation for this result is that

contact between AHPCs and astrocytes is required to alter the secretion rates for the active

proteins Ai, Ril, and Gp from astrocytes. The time course simulation is shown in Figure 3.8.

The time course of differentiation due to the function simulating the background mechanism

is shown in Figure 3.9.

3.2.5 Contact Coculture

Only the experiment on the smooth substrate is considered here. Spatial nonhomogeneities

exist on the patterned substrate for the contact coculture experiment, so this situation is

considered in Chapter 6. A uniform layer of astrocytes is applied to the laminin on the smooth

substrate at a density of 1.5 × 104 cells/cm2 and cultured for two days. A uniform layer of

AHPCs is then applied to the astrocytes at a density of 1.5×104 cells/cm2. The only difference

between this experiment and the noncontact coculture experiment is that the AHPCs and

astrocytes are in direct contact. This direct cell-cell contact may include binding by cadherins

or other cell adhesion molecules (CAM) on the surface of these cells. It is hypothesized here

that this binding alters the secretion rates of the soluble proteins.
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Figure 3.8 Percentage of cells expressing TUJ1 over a six day period. The
differentiation expressed in this figure includes both IL6-induced
differentiation and that due to the background mechanism.

Figure 3.9 Percentage of cells expressing TUJ1 over a six day period. The
differentiation expressed in this figure is due solely to the back-
ground mechanism.

It will be shown in Chapter 4 that varying the secretion rate of the inhibitor Gp within

biologically reasonable ranges does not affect the level of differentiation. To determine how

to vary the other two secretion rates, it is important to understand the biological behavior of

this system. The values for differentiation on smooth and patterned substrates are 20% and

35% respectively. These are approximately the same values as the minimum and maximum

achieved during the IL6-pulse experiments. During those experiments, only the first pathway

was active. Hence it is reasonable to assume that contact initiates a signal transduction

cascade whose end result is to stop the secretion of the soluble IL6 receptor Ril. However, the

extracellular concentration of IL6 is still similar to that achieved through the pulse experiments

with greater than 0.1 ng/mL IL6 added to the system every other day. To achieve less than 23%

differentiation on the smooth substrate, the parameter a1 must be set to less than 5 × 10−14

nmol/cell·hr. This is (1/200)th of its rate when astrocytes are not in contact with AHPCs.

The time course simulations are shown in Figure 3.10. The time course of differentiation due

to the function simulating the background mechanism is shown in Figure 3.11.
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Figure 3.10 Percentage of cells expressing TUJ1 over a six day pe-
riod. The differentiation expressed in this figure includes both
IL6-induced differentiation and that due to the background
mechanism.

Figure 3.11 Percentage of cells expressing TUJ1 over a six day period. The
differentiation expressed in this figure is due solely to the back-
ground mechanism. When Ai is secreted at these low values,
the function simulating the background mechanism becomes
more prominent, and the differences in the two graphs show
that little differentiation is due to IL6.
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Table 3.3 Percent observed differentiation (TUJ1 expression level)
Experiment % diff. observed % diff. from model % due to K1(Np, Nd)

IL6 pulse, 10−5ng/mL 20%(S) 20.12% 20.116%
IL6 pulse, 10−4ng/mL 20%(S) 20.14% 20.06%
IL6 pulse, 10−3ng/mL 27%(S) 20.72% 18.97%%
IL6 pulse, 10−2ng/mL 25%(S) 23.47% 15.82%
IL6 pulse, 10−1ng/mL 31%(S) 28.67% 12.78%
IL6 pulse, 100ng/mL 37%(S) 35.11% 10.68%
IL6 pulse, 101ng/mL 35%(S) 37.06% 10.16%
IL6 pulse, 102ng/mL 36%(S) 37.26% 10.11%

Control 17%,/19%(S) 20.12% 20.12%
16%(P)

Noncontact 73%(S) 66.3% 6.28%
75%(P)

Conditioned Media 41%(S) 38.83% 9.53%
38%(P)

Contact 20%(S) 23.30% 17.25%

3.3 Discussion

The results from the numerical simulations are shown in Tables 3.3. They show that the

experimental behavior can be matched by an IL6-mediated mechanism alone. The background

differentiation remains low and fairly constant, so the differences in percent of differentiation

shown in column 3 of Table 3.3 are due to the IL6 mechanism. Unfortunately, the background

mechanism is unknown, and its results cannot be distinguished from that due to IL6 through

the available biological experiments. These results suggest that:

(1) AHPCs do not affect the secretion rates of IL6 and sIL6Rα when not in direct contact.

(2) When in direct contact, CAM binding inhibits the secretion of sIL6Rα and decreases the

secretion of IL6. This could be due to alterring rates of transcription.



30

Table 3.4 Table of Kinetic Constants

Parameter Description Value Comments

Ld, `−1, `1 Binding of
Ld inactivated IL6 Ai 30 nM [49]
`−1 to soluble 5 hr−1 [23]
`1 IL6 receptor Ril 167(nmol

mL )−1hr−1 calc.

Kd, k−1, k1 Binding of
Kd active IL6 Aa 3 nM [49]
k−1 to soluble 5 hr−1 sim.
k1 gp130 receptor Gp 1667(nmol

mL )−1hr−1 calc.

K̂d, k̂−1, k̂1 Binding of
K̂d inactivated IL6 Ai 100 pM [49]
k̂−1 to surface 500 hr−1 sim.
k̂1 IL6 receptor Rp

il 1.67× 106(nmol
mL )−1hr−1 cal.

L̂d, ̂̀−1, ̂̀
1, ̂̀

2 Binding of
L̂d surface complex 10 pM [49]̂̀−1 As = {Ai : Rp

il} 5 hr−1 sim.̂̀
1 to surface 5× 105(nmol

mL )−1hr−1 calc.̂̀
2 gp130 receptor Rp

gp130 .002 hr−1 sim.

Vd, ν−1, ν1, ν2 Binding of
Vd active IL6 Aa 60 pM [49]
ν−1 to surface 5 hr−1 sim.
ν1 gp130 receptor Rp

gp130 8.33× 104(nmol
mL )−1hr−1 calc.

ν2 .5 hr−1 sim.
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Table 3.5 Table of Constants

Parameter Description Value Comments

µai decay of IL6 .173 hr−1 [32]
µil decay of sIL6Rα .173 hr−1 sim.
µaa decay of activated IL6 .173 hr−1 sim.
µgp decay of sgp130 .173 hr−1 sim.
µao decay of inhibited IL6 .173 hr−1 sim.
µj decay of differentiation factor .173 hr−1 sim.

a1 IL6 secretion rate 1× 10−11 nmol
cell·hr [41]

ba sIL6Rα secretion rate 2× 10−10 nmol
cell·hr sim.

sa sgp130 secretion rate 1× 10−11 nmol
cell·hr sim.

Rp
il,0 density of IL6 receptors on AHPC 1.66× 10−12 nmol

cell sim.
Rp

gp130,0 density of gp130 receptors on AHPC 1.66× 10−10 nmol
cell sim.

M1 cell growth parameter .0213hr−1 [37]
Nmax carrying capacity 1× 105 cells

cm2 calc.

Dai diffusion of inactive IL6 4.86× 10−4 cm2

hr calc.
Dil diffusion of sIL6Rα 3.9× 10−4 cm2

hr calc.
Daa diffusion of activated IL6 3.38× 10−4 cm2

hr calc.
Dgp diffusion of sgp130 2.84× 10−4 cm2

hr calc.
Dao diffusion of inhibited IL6 2.44× 10−4 cm2

hr calc.
Dp random movement of AHPCs 3.6× 10−8 cm2

hr calc.
Dd random movement of neurons 3.6× 10−8 cm2

hr calc.

θ1 differentiation parameter 10−4hr−1

θ2 differentiation parameter 10−2

κ1 differentiation parameter 3.9hr−1

κ2 differentiation parameter 5.3× 10−13 nmol
cell
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CHAPTER 4. Sensitivity Analysis of Population Model

Sensitivity analysis is an important component of the analysis of any mathematical model.

This is especially true in mathematical biology, where there typically is much uncertainty in

parameters for kinetic rates, dissociation constants, and secretion rates. For example, consider

the dissociation constant for the reaction

Ai +Rp
il

ck1

dk−1

As.

The parameter K̂d =
dk−1ck1

has been measured experimentally to be in the range of 500-750

pM ([49]). Due to this uncertainty, it may be informative to view it as a random variable

with a certain probability distribution rather than as a fixed value. In this example this

parameter could possibly be viewed as K̂d ∼ U(500, 750) or K̂d ∼ N(625, 75), where U(α, β)

is the uniform distribution with endpoints α and β and N(µ, σ) is the normal distribution

with mean µ and standard deviation σ. Representing a parameter as a random variable over a

certain probability distribution results in uncertainty in the output of the model. The purpose

of sensitivity analysis is to look at how variations in the input parameters affect variations in

the output of the system. If there is a strong effect, the system is said to be sensitive to that

parameter, and further experimental work may need to be done to lower the uncertainty in

that parameter. Conversely, if there is little to no correlation, the system is insensitive to that

parameter. These results may be used to simplify mathematical models while still retaining

reasonable accuracy of the simulation.

There are two types of sensitivity analysis (SA): local sensitivity and global sensitivity.

With local sensitivity analysis, one calculates the parametric gradient at a specific point in the

parameter space. These values can be normalized, providing sensitivity coefficients that can be

compared directly. They estimate which parameters are most influential on a specific output
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at that particular point in the parameter space. However, these coefficients only measure

sensitivity at a particular set of parameter values. In a dynamical system such as system (3.1)

on p.18, there is much uncertainty in many parameters. Therefore one would like to have a

measure of which parameters are most influential over the entire space of uncertainty, not just

at the set of nominal values from Tables 3.4-5. With global sensitivity analysis, one varies

all parameters of interest simultaneously over the entire range of each individual parameter.

However, the sensitivity coefficients are then dependent on the range over which each parameter

is varied. Therefore it is wise to choose a biologically relevant range for each parameter before

calculating sensitivity coefficients.

There are two main classes of global SA techniques: sampling-based methods and variance-

based methods (ANOVA - analysis of variance). The most reliable sampling-based method

is to calculate Partial Rank Correlation Coefficients (PRCC) and the most reliable, albeit

computationally expensive, ANOVA technique is the Extended Fourier Amplitude Sensitivity

Test (eFAST) ([28]). Reliability in this context is defined as reproducibility of the results

over multiple trials. In short, PRCC calculates how strong of a monotone relationship exists

between a parameter and the output over the entire space of uncertainty, and whether it is

a positive or negative correlation. eFAST calculates the percentage of the variance of the

output that is attributable to each parameter, and whether it is due to that parameter solely

or through its interactions with other parameters.

In this chapter, multiple sensitivity analyses are discussed with various probability distri-

butions for both PRCC and eFAST. These will show three main results. First, although the

system is sensitive to variations in input, many of the parameters that cause the highest amount

of uncertainty are recorded in the literature. However, some of the most influential unknown

parameters are involved with the production or decay of the intracellular differentiation factor

J , and as such the intracellular mechanism leading to differentiation should be studied in more

detail. Secondly, the biological inhibitor Gp does not seem to have a measurable effect on the

percentage of cells that have differentiated after six days. As such, it can be removed from the

mathematical model without altering simulation results. Finally, the sensitivity analyses show
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that the system is more sensitive to parameters in the second pathway (via soluble receptors)

than in the surface receptor pathway. Hence it may be hypothesized that the second pathway

is more influential with respect to differentiation than the surface receptor pathway.

4.1 Partial Rank Correlation Coefficients (PRCC)

There are many parameters in this model. One of the aspects that is most important

to understand is the relationships between increases or decreases in a parameter’s value and

corresponding changes in the output of interest. This is the idea of correlation. To measure

the strength of the relationship, and whether it is a positive or negative correlation, one uses

a correlation coefficient. For two random variables X and Y , it is calculated as

ρxy =
Cov(X,Y )√

V ar(X)
√
V ar(Y )

where V ar(X) is the variance of X and Cov(X,Y ) is the covariance of X and Y . Given a

sample of n data points {(xi, yi)}n
i=1, this can be calculated via the sample variances and sample

covariance. The sample variance (sx) of X is a measure of the average deviation from the mean

x of the set {xi}n
i=1 and is defined by s2x =

n∑
i=1

(xi − x)2

n− 1
. (The factor n− 1 is used instead of n

so that the expected value of the sample variance equals the (population) variance, E(sx) = σx.

([4])) The sample covariance is a natural extension of this idea, cxy =

n∑
i=1

(xi − x)(yi − y)

n− 1
. The

Correlation Coefficient for the data set {(xi, yi)}n
i=1 is then given by

rxy =

n∑
i=1

(xi − x)(yi − y)√√√√ n∑
i=1

(xi − x)2

√√√√ n∑
i=1

(yi − y)2

=
cxy

sxsy
.

Note that rxy =
< v1, v2 >

||v1||||v2||
, where v1 = (x1 − x, ..., xn − x), v2 = (y1 − y, ..., yn − y), and

< ·, · > is the standard inner product on Rn. By applying the Cauchy-Schwarz inequality, one

gets that |rxy| ≤ 1.
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Correlations between two variables x and y based on two sets of data can be viewed graph-

ically through a scatterplot by plotting the data set {xi} on the x-axis and the corresponding

data set {yi} on the y-axis, such that (xi, yi) are measurements from the same experiment. A

scatterplot can reveal whether increases in x correspond to increases in y (positive correlation)

or decreases in y (negative correlation). Moreover, linear or other trends may be revealed.

A positive linear correlation between two data sets is illustrated in the scatterplot in Figure

4.1. Although not all data points are on a straight line, there is a definite correlation between

increasing x and increasing y in Figure 4.1. A weaker correlation exists between x and y in

Figure 4.2. An example where increases in x does not correspond to any discernible changes

in y appears in Figure 4.3.

Figure 4.1 (left) Data set showing a correlation between increasing the in-
put variable x and a corresponding increase in the output vari-
able y.

Figure 4.2 (right) Data set showing a correlation between increasing the in-
put variable x and a corresponding increase in the output vari-
able y. However, the correlation is weaker than Figure 4.1 as
there is much more deviation from the mean at any point x.

The Correlation Coefficient measures the strength of the linear relationship between the

two data sets {xi}n
i=1 and {yi}n

i=1 from the n experiments. The coordinate set {(xi, yi)}n
i=1 can

be analyzed by forming a best-fit line through the set of points (xi, yi) through the use of the

Method of Least Squares. The regression line ŷ = b0 + b1x is formed by finding b0 and b1 such
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Figure 4.3 Data set showing no correlation between increasing the input
variable x and corresponding changes in the output variable y.

that the function H(b0, b1) =
n∑

i=1

(yi − b0 − b1xi)2 is minimized. Standard calculus can show

that rxy =
b1sx

sy
. Rearranging this equation to solve for b1 shows that if x is increased by 1%

of its standard deviation, then y will change by rxy% of its standard deviation. Hence strong

linear correlations will occur with |rxy| close to 1, and weak linear correlations will occur with

|rxy| close to 0.

Often, more than one parameter is varied simultaneously, and the corresponding values of

the output are recorded. If there are p variables, and data sets of n trials are generated, this

results in a coordinate set {xi1, xi2, ..., xip, yi}n
i=1. To see the correlation between the individual

data sets {xj} and {y}, the linear effect of the other parameters on the output y must first be

removed. This is done by forming the regressions:

x̂j = c0 +
p∑

k=1,k 6=j

ckxk

ŷ = b0 +
p∑

k=1,k 6=j

bkxk.

The components of the vectors x̂j and ŷ can both be written in the form ẑi = β0+
p∑

k=1,k 6=j

βkxik+



37

εi, for ẑ = x̂j or ẑ = ŷ, so that ẑ = X̃β + ε where

X̃ =



1 x11 · · · x1,j−1 x1,j+1 · · · x1p

...
...

...
...

...

1 xj−1,1 · · · xj−1,j−1 xj−1,j+1 · · · xj−1,p

1 xj+1,1 · · · xj+1,j−1 xj+1,j+1 · · · xj+1,p

...
...

...
...

...

1 xn,1 · · · xn,j−1 xn,j+1 · · · xn,p


,

ẑ and ε are n × 1 column vectors, and β is a p × 1 column vector. We need to minimize the

sum

S(β) =
n∑

i=1

(
zi − β0 −

p∑
k=1,k 6=j

βixki

)2
= (z − X̃β)T (z − X̃β).

Standard calculus shows that the minimum occurs when β = (X̃T X̃)−1X̃z. Finally, ẑ =

β0 +
p∑

k=1,k 6=j

βkxk. This is performed for both z = y and z = xj . The parial correlation

coefficient (PCC) between xj and y is then given by the correlation coefficient between xj − x̂j

and y − ŷ. Hence the PCC is a measure of the linear relationship between xj and y, with

the linear effects of the other parameters removed. A more thorough discussion of correlation

coefficients and partial correlation coefficients is provided in Kendall’s ”The Advanced Theory

of Statistics, Vol. 2” ([27]).

Correlation coefficients provide a measure of the linear relationship between a model’s

input and output. However, this idea can be generalized to provide a measure of the nonlinear

but monotonic relationships between the input parameter x and the output y through a rank

transformation. For a rank transform, the data points {xi}n
i=1 and {yi}n

i=1 are assigned natural

numbers corresponding to their position if all data points are written in ascending order. A

correlation coefficient is then calculated for this rank transformed data. For example, for data

(1, 1), (4, 16), (5, 25), and (10, 100), there is a nonlinear but monotonic relationship between

{xi}4i=1 and {yi}4i=1. However, if the data are rank transformed as (1, 1), (2, 2), (3, 3), and

(4, 4), a linear relationship now exists among the transformed data. The correlation coefficient

formed for the rank transformed data is referred to as the rank correlation coefficient. This

idea can also be extended to PCC, allowing one to calculate partial rank correlation coefficients
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(PRCC), which measure the monotonic relationships existing between an input parameter and

the output with the monotonic effects of the other parameters removed.

The PRCC analysis presented in this paper begins by choosing appropriate sample points

within the parameter space. This is done through the method of Latin Hypercube Sampling

(LHS). For each of the k parameters of interest, the domains of the corresponding probability

density functions (pdf) are divided into N subintervals of equal probability. A sample point

in the parameter space is then found by choosing one of these subintervals for each parameter,

followed by choosing one random point from within each of these subintervals. A second

point is then chosen by repeating this process using only the remaining subintervals for each

parameter. A total of N sample points are chosen from the parameter space. The points are

chosen as specified above through the algorithm presented in [53]. Once the sample points

have been chosen, the model is evaluated at each of the points, and the percentage of cells

that have differentiated after six days is recorded. PRCC’s are then calculated using the

corresponding Matlab command within the statistical toolbox. Finally, p-values are computed

using the statistical toolbox in order to determine if the PRCC’s are significantly different

from 0. Discussions of the statistics used to generate the p-value for PRCC are provided by

Kirschner ([28]) and Anderson ([3]).

4.2 Extended Fourier Amplitude Sensitivity Test (eFAST)

Fourier Amplitude Sensitivity Test (FAST) is a variance decomposition method initially

developed by Cukier et.al. and published in 1973 ([13]). A review of this method including

some modifications was published in 1978 ([14]). The extended version (eFAST) was later

published by Saltelli in 1998 ([47]). It is a global sensitivity analysis, in that all parameters

are varied simultaneously throughout the parameter space. The variance of the output of

interest is then partitioned among the input factors, quantifying how much variance is due to

variation in each parameter within their respective pdf’s. This decomposition quantifies both

the percentage of variance due to the main effect of a parameter and the percentage due to the

total effect of a parameter. The main effect is given by the first-order sensitivity coefficient.
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This is due solely to variation in the parameter. The total effect is the sum of both the first-

order sensitivity coefficient and the higher-order sensitivity coefficients. These include effects

due to interactions between the parameter of interest and other parameters. An interaction

effect can be identified as occurring when the effect due to one parameter differs for different

values of another parameter.

A mathematical derivation of the FAST method following the presentations provided in

[14] and [47] is given in Appendix B. The method begins by assigning each parameter a unique

integer frequency. A search curve is formed through the parameter space by way of a variable

transformation xi(t) = gi(sin(ωit)) for each parameter xi. Through a proper choice of gi, each

parameter will oscillate within its range, sampling points in accordance with its pdf. This re-

sults in corresponding oscillations in the output. The variance of the output is represented as

a Fourier Series, separating the oscillations into the components occurring at different frequen-

cies. Under appropriate assumptions on the frequencies, the effect due solely to parameter

i (assigned frequency ωi) is given by the Fourier coefficients at ωi and its harmonics. The

other terms represent higher-order effects. It is shown in Appendix B that the variance can be

written as

D = 2
∞∑
i=1

(A2
i +B2

i )

where Ai and Bi are the coefficients of the Fourier expansion. Defining Di = 2
∞∑

p=1

(A2
pωi

+B2
pωi

),

the percentage of variance due solely to parameter i, i.e. the main effect, is given by Si =
Di

D
.

The eFAST method extends this idea, allowing one to compute a parameter’s total effect.

It is based on the idea that the Fourier coefficients of the harmonics of the chosen frequencies

rapidly converge to zero. Assign the parameter of interest a high frequency ωi, and the com-

plementary set of parameters low frequencies, denoted by {ω∼i}. Repetition is allowed within

{ω∼i}. These frequencies are chosen so that max{ω∼i} =
ωi

2M
where M is an interference

parameter discussed in Appendix B, and is usually taken to be 4 or 6. The coefficients of

Fourier series whose frequencies are below
ωi

2
will not include any effect due to ωi, and due to



40

the rapidity with which the harmonics converge to zero,

D∼i

D
=

ωi/2∑
j=1

(A2
j +B2

j )

∞∑
j=1

(A2
j +B2

j )

approximates the main effect due to the complementary set. That is, the effect due solely to

the parameters that are not i. This includes all interactions among themselves, but not with

i. The total effect of parameter i can then be given by STi = 1− D∼i

D
.

Multiple search curves can be generated within the parameter space by introducing a

random phase-shift into the transformation functions, xi(t) = gi(sin(ωit+ φi)). Since different

combinations of parameters are tested along each curve, the sensitivity indices will be slightly

different. Those recorded in this chapter are the means of these samples.

To determine the significance of these sensitivity indices, a dummy parameter is introduced.

This parameter is not included in the system of ODEs, and therefore should have Sdummy = 0

and STot,dummy = 0. However, the eFAST algorithm assigns small but nonzero sensitivity

indices to it. Kirschner ([28]) suggests that the nonzero first-order index can be attributed

to interference and aliasing effects (Appendix B), while the total effect index is due to the

simplifying assumptions used in its calculation. A two-sample t-test is performed with the

data from the dummy parameter and the parameter of interest, using the statistical toolbox

within Matlab. Those that are significantly higher than the dummy parameter are given in

the following tables.

4.3 Results of Local Sensitivity Analysis

The parametric gradient was evaluated at the nominal values from Tables 3.4-5, in order

to rank the variables according to how influential they are at the point of interest within the

parameter space. Each parameter is varied one at a time by 1% of its nominal value. An

approximation to
∂y

∂kj
is found, where y represents the percentage of cells differentiated after

six days, and kj is the j − th parameter. These coefficients are normalized to make them
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comparable to each other by forming the quantities

Sj =
kj

y

∂y

∂kj
≈ kj

y

y(kj + .01kj)− y(kj)
(kj + .01kj)− kj

=
y(kj + .01kj)− y(kj)

.01y(kj)
.

The quantity Sj approximates the percent change in y due to a 1% change in parameter kj .

The results of this local sensitivity analysis are present in Table 4.1. Note that the parameters

involved with the inhibitor sgp130 possess five of the six lowest sensitivities.

Table 4.1 Sensitivity Coefficients from the Parametric Gradient:

Parameter Sj Parameter Sj

µj -.9593 ν−1 3.97× 10−2

Na .8737 `−1 1.82× 10−2̂̀
2 .6083 µaa −1.47× 10−2

Rp
il,0 .6030 K̂d −2.13× 10−3

a1 .4373 L̂d −1.09× 10−3

Rp
gp130,0 .4352 k̂−1 1.04× 10−3

ba .4333 sa −8.35× 10−6

Ld -.4301 Kd 8.27× 10−6

µai -.4293 µgp 8.24× 10−6

µil -.4272 µao −8.01× 10−6

Vd -.4267 ̂̀−1 3.23× 10−6

ν2 .3906 k−1 −2.77× 10−7

4.4 Results of Global Sensitivity Analysis

For the remainder of this chapter, output refers to the percentage of cells differentiated after

six days. The nominal values are those found in Tables 3.4-5. For each group of parameters

varied, three parameter spaces are explored. The first can be considered the ”full” parameter

space. It consists of wide ranges for each parameter, using either uniform or log uniform

distributions, depending on the size of the interval. The second is a more local parameter

space. It consists of varying each parameter with a normal distribution whose mean is it’s

nominal value. The standard deviation of this normal distribution is equal to one-sixth of it’s

mean. The third parameter space is similar to the second one, in that it is also a more local

parameter space. It also consists of varying each parameter with a normal distribution with
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it’s nominal value as the mean. However, the standard deviation depends on which group

the parameter belongs to: decay rate, secretion rate, dissociation constant, kinetic rate, or

receptor/cell density. In this space, each parameter within a group has the same standard

deviation regardless of its mean, so that each distribution within a group is ”equal”, just

shifted around different means. The standard deviation is set at one-sixth of the smallest

nominal value within a group. Significant eFAST results are written in the form X/Y , where

X is Si (the main effect), the percentage of variance due solely to the parameter, and Y is STi

(the total effect), the percentage of variance attributable to the parameter due to both its sole

action and its interactions with other parameters. For the eFAST plots, the cross-hatched bar

represents the main effect, and the dotted bar represents higher-order effects, so that the total

height of the bar is STi.

One observation of the eFAST plots is that, for the third type of parameter space tested,

there is usually one parameter with most of the variance attributed to it. This is due to the

distribution of each parameter relative to its mean. In this space, each parameter within a

group is varied by the same amount. However, say for example one dissociation constant Ad

has a mean of 10 nM, and another Bd has a mean of 10 µM. We vary them using normal

distributions around their means, both with standard deviations of 1 nM. Then 68% of the

values for Ad are within ±10% of its mean, 10 nM. However, 68% of the values for Bd are

within ±.01% of it’s mean, 10 µM. In this case, variation of Ad should have a stronger effect

than variation of Bd. Hence the second parameter space may be more informative, since in

this space all parameters are varied by the same proportional amounts relative to their means.

4.4.1 Decay Rates

In this section, the decay rates are varied simultaneously while all other parameters are

kept constant at their nominal values. Two sets of simulations are given. In the first set

of simulations, all decay rates are assigned a uniform pdf, with µi ∈ [.1155, .6931] hr−1 for

i ∈ {ai, il, aa, gp, ao, j}. This corresponds to varying the half-lives between values of 1 hour

and 6 hours. In the other set of experiments, the decay rates are varied according to normal
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distributions with mean values of .173, corresponding to a half-life of 4 hours. Standard devia-

tions used for both of the parameter spaces are the same in this case, since the nominal values

are equal. The standard deviation is taken to be 1
6(.173). Partial Rank Correlation Coeffi-

cients and eFAST sensitivity coefficients are presented in Table 4.2 and illustrated graphically

in Figures 4.4-7.

Three decay rates have a significant influence on the output: µai, µil, µj . For all three rates,

a negative correlation exists between them and changes in the output. This is expected, since

if Ai and Ril decay at a faster rate, there will be less Ai and Aa available to initiate signal

transduction. The parameter µaa could be hypothesized to have the same effect, however it

appears to be negligible.

The most influential of these parameters is µj , the decay rate of the intracellular molecule

that results in the differentiation of AHPCs. Most of the variance in the output can be

attributed to this parameter. This is reasonable considering this molecule is directly involved

with differentiation. The parameters associated with the inhibitor sgp130, µgp and µao, do not

appear to have a significant influence on the output.

Table 4.2 Distributions for sensitivity plots, varying decay rates:

Parameter Code Uni. Dist. PRCC eFAST (1st/Tot.)

dummy 1 U(.1155,.6931) — —
µai 17 U(.1155,.6931) -.7470 2.40/7.26
µil 18 U(.1155,.6931) -.7354 2.06/6.24
µaa 19 U(.1155,.6931) -.0751 —
µgp 20 U(.1155,.6931) — —
µao 21 U(.1155,.6931) — —
µj 22 U(.1155,.6931) -.9885 89.52/95.22

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(.173,.0288) — —
µai 17 N(.173,.0288) -.8334 14.83/17.37
µil 18 N(.173,.0288) -.8298 14.60/17.15
µaa 19 N(.173,.0288) -.0567 —/2.15
µgp 20 N(.173,.0288) — —
µao 21 N(.173,.0288) — —
µj 22 N(.173,.0288) -.9579 67.49/69.91
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Figure 4.4 (left) PRCC results, varying decay rates over entire parameter
space.

Figure 4.5 (right) eFAST results, varying decay rates over entire parameter
space.

4.4.2 Production Constants

In this section, the secretion rates are varied simultaneously. These are the rates at which

astrocytes secrete IL6 (a1), sIL6Rα (ba), and sgp130 (sa). All other parameters are kept

constant at their nominal values. Three sets of simulations are shown. In the first set of

simulations, all secretion rates are assigned a log uniform pdf, with z ∈ [1 × 10−12, 1 × 10−9]

nmol
cell·hr for z ∈ {a1, ba, sa}. A log uniform distribution is chosen to prevent undersampling of

the region [1× 10−12, 1× 10−11], which is an area with a significant effect when tested around

the nominal values. This range corresponds biologically to astrocytes secreting between 600

and 600,000 of each of these molecules per cell per hour. In the second set of simulations,

the secretion rates are varied according to normal distributions centered around their nominal

values, and with standard deviations of 1
6 of the mean. The third set of simulations show

the results when this standard deviation is held constant for all three rates, at 1
6(1 × 10−11).

Partial Rank Correlation Coefficients and eFAST sensitivity coefficients are presented in Table

4.3 and illustrated graphically in Figures 4.8-13.

Two secretion rates have a significant effect on output: a1 and ba. Both of these parameters
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Figure 4.6 (left) PRCC results, varying decay rates with normal distribu-
tions.

Figure 4.7 (right) eFAST results, varying decay rates with normal distri-
butions.

exhibit a positive monotonic relationship between changes in the parameter and changes in the

output. This is expected, since if Ai and Ril are produced at a faster rate, more active molecules

are available to initiate signal transduction cascades. Both of these parameters appear to be

equally influential, since equal percentages of the variance in output can be attributed to each

parameter. The parameter for the secretion rate of the inhibitor sgp130, sa, does not appear

to have a significant effect on the output.

The first two sets of simulations exhibit a roughly equal sensitivity to a1 and ba. However,

the third set of simulations show an exaggerated effect of varying a1 compared to ba, since it is

being varied by a higher percentage relative to its mean. However, sa is changed by the same

proportion and still exhibits no significant sensitivity.

4.4.3 Dissociation Constants

In this section, the dissociation constants are varied simultaneously. These parameters each

determine the binding affinity between ligands and their respective receptors. It is a measure

of how tightly they bind. The dissociation constant is equal to the concentration of ligand at

which half of the receptors are bound to the ligand and the other half remains unbound. Low
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Table 4.3 Distributions for sensitivity plots, varying secretion rates:

Parameter Code Uni. Dist. PRCC eFAST

dummy 1 LU(1e-12,1e-9) — —
a1 14 LU(1e-12,1e-9) .9558 41.49/59.78
ba 15 LU(1e-12,1e-9) .9509 40.24/58.53
sa 16 LU(1e-12,1e-9) — —

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1) — —
a1 14 N(1e-11) .9442 48.44/51.93
ba 15 N(2e-10) .9423 47.24/50.48
sa 16 N(1e-11) — —

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1e-11,1.7e-12) — —
a1 14 N(1e-11,1.7e-12) .9990 96.53/99.69
ba 15 N(2e-10,1.7e-12) .7259 .23/1.69
sa 16 N(1e-11,1.7e-12) — —

Figure 4.8 (left) PRCC results, varying secretion rates rates over entire
parameter space.

Figure 4.9 (right) eFAST results, varying secretion rates over entire pa-
rameter space.
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Figure 4.10 (left) PRCC results, varying secretion rates with normal dis-
tributions, σi = 1

6µi.

Figure 4.11 (right) eFAST results, varying secretion rates with normal dis-
tributions, σi = 1

6µi.

Figure 4.12 (left) PRCC results, varying secretion rates with normal dis-
tributions, with equal standard deviations.

Figure 4.13 (right) eFAST results, varying secretion rates with normal dis-
tributions, with equal standard deviations.
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values for the dissociation constant signify a tight binding, while higher values indicate that

the ligand can more easily dissociate from its receptor. All other parameters are kept constant

at their nominal values. Three sets of simulations are shown. In the first set of simulations, all

dissociation constants are assigned a log uniform pdf, with z ∈ [1× 10−6, 1× 10−1] µM for z ∈

{Ld,Kd, K̂d, L̂d, Vd}. A log uniform distribution is chosen to get an even sampling of all orders

within this range since some of the dissociation constants have been found experimentally to

act in the range of 10-100 pM, while others have been found to act at 10-100 nM. In the other

two sets of simulations, the dissociation constants are varied according to normal distributions

centered around their nominal values. The second set uses standard deviations of 1
6 of the

mean. The third set of simulations use a common standard deviation of 1
6(1× 10−6). Partial

Rank Correlation Coefficients and eFAST sensitivity coefficients are presented in Table 4.4 and

illustrated graphically in Figures 4.14-19.

Two dissociation constants were found to have a significant effect on output in the first two

simulations: Ld and Vd. Ld governs the binding of IL6 to its soluble receptor sIL6Rα to form

activated IL6. This activated IL6 binds to the gp130 receptor dimer on the AHPC to initiate

signal transduction via the second pathway, with this binding governed by the dissociation

constant Vd. Both of these parameters exhibit a negative monotonic relationship between

changes in the parameter and changes in the output. This is expected, since if Ai binds less

tightly to Ril, less activated IL6 will be available to initiate the signal transduction cascade.

Likewise, if activated IL6 binds less tightly to Rp
gp130, Aa will be less effective at initiating

the signal transduction cascade. When varied with a normal distribution around their nominal

values with standard deviations chosen relative to their means, both of these parameters appear

to be equally influential, since equal percentages of the variance in output can be attributed to

each parameter. However, when varied over the wider log-uniform distribution, Vd appears to

be more influential. In addition, over the log-uniform distribution K̂d and L̂d, the dissociation

coefficients involved with the first pathway, appear to have a slightly significant effect on the

output. However, much less of the variance in the output can be attributed to these parameters

in comparison to Ld and Vd. When using normal distributions with equal standard deviations,
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most of the variance is attributable to Vd. However, Vd is being varied by a higher percentage

relative to its mean than the other parameters in this case.

Alterring binding strength for the second pathway causes much more variability in differ-

entiation than alterring binding strength for the first pathway. These results suggest that the

second pathway, utilizing soluble receptors, has a much stronger effect on the differentiation

of AHPCs than the first pathway. The dissociation constant Kd, governing the binding of

activated IL6 (Aa) to its inhibitor (sgp130), does not appear to have a significant effect on the

output.

Table 4.4 Distributions for sensitivity plots, varying dissociation constants:

Parameter Code Uni. Dist. PRCC eFAST (1st/Tot.)

dummy 1 LU(1e-6,1e-1) — —
Ld 3 LU(1e-6,1e-1) -.6160 23.49/48.42
Kd 5 LU(1e-6,1e-1) — .04/1.18
K̂d 7 LU(1e-6,1e-1) -.1508 .99/4.02
L̂d 10 LU(1e-6,1e-1) -.1354 .77/3.51
Vd 13 LU(1e-6,1e-1) -.7626 49.75/75.48

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1) — —
Ld 3 N(30e-3) -.9457 47.65/51.47
Kd 5 N(3e-3) — —
K̂d 7 N(100e-6) — —
L̂d 10 N(10e-6) — —
Vd 13 N(60e-6) -.9437 47.27/50.25

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1e-3,1.7e-6) — —
Ld 3 N(30e-3,1.7e-6) -.0500 —
Kd 5 N(3e-3,1.7e-6) — —
K̂d 7 N(100e-6,1.7e-6) -.0553 —
L̂d 10 N(10e-6,1.7e-6) -.3361 —/.04
Vd 13 N(60e-6,1.7e-6) -.9992 96.66/99.91
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Figure 4.14 (left) PRCC results, varying dissociation constants over entire
parameter space.

Figure 4.15 (right) eFAST results, varying dissociation constants over en-
tire parameter space.

Figure 4.16 (left) PRCC results, varying dissociation constants with nor-
mal distributions, σi = 1

6µi.

Figure 4.17 (right) eFAST results, varying dissociation constants with nor-
mal distributions, σi = 1

6µi.
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Figure 4.18 (left) PRCC results, varying dissociation constants with nor-
mal distributions, with equal standard deviations.

Figure 4.19 (right) eFAST results, varying dissociation constants with nor-
mal distributions, with equal standard deviations.

4.4.4 Kinetic Rates

In this section, the kinetic rates are varied simultaneously. These rates are measurements

of how fast the reactions occur. For reversible reactions, kinetic rates appear in pairs; for

example, `1 is the rate for Ai binding to Ril to form the complex Aa, while `−1 is the rate for

the dissociation of Aa back into its constituent parts Ai and Ril. They are related through the

dissociation constant; for example, Ld = `−1

`1
, or equivalently, `−1 = Ld`1. Experimentally it is

much easier to measure the dissociation constant than it is to measure these rates separately.

Since all other parameters are held constant at their nominal values, including the disso-

ciation constants, only one rate constant from each pair is varied explicitly for the sensitivity

analysis. Changing this one parameter has the effect of simultaneously changing the rate

constant for the alternate direction because of the fixed dissociation constants. Therefore, in

reality, these sensitivity coefficients are not necessarily measures of the sensitivity solely to

those parameters in the table (ex. `−1). Instead, it is a measure of the sensitivity to the

pair of rate constants (ex. `−1 and `1). However, note that ̂̀
2 and ν2 are rates from irre-

versible reactions, and as such the sensitivity to each of these parameters is due solely to these
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parameters.

In the first set of simulations, all kinetic rates are assigned a log uniform pdf, with z ∈

[1 × 10−3, 1 × 10+3] hr−1 for z ∈ {`−1, k−1, k̂−1, ̂̀−1, ̂̀2, ν−1, ν2}. A log uniform distribution

is chosen to get an even sampling of all orders within this range. In the other two sets of

simulations, the kinetic rates are varied according to normal distributions centered around their

nominal values. The second set uses standard deviations of 1
6 of the mean. The third set of

simulations use a common standard deviation of 1
6(.002). Partial Rank Correlation Coefficients

and eFAST sensitivity coefficients are presented in Table 4.5 and illustrated graphically in

Figures 4.20-25.

When varying the parameters locally around their nominal values using normal distri-

butions, two parameters appear to be the most important: ν2 and ̂̀
2. These are the two

parameters governing the rates of the final reactions in the two pathways. They both govern

the rate of production of the differentiation factor J . When using normal distributions with

equal standard deviations, the most influential parameter is ̂̀
2, accounting for nearly all of

the variance in the output. However, this is the parameter being varied by the largest amount

relative to its mean in this case.

An interesting situation occurs when considering the larger parameter space. The param-

eter k̂−1, which governs the binding of soluble activated IL6 to the surface Rp
gp130 receptor,

accounts for a majority of the variance in the output. When local distributions are considered,

the system does not show sensitivity to this parameter. This indicates that there is a range

of high sensitivity to this parameter, although it is farther from the mean than the areas the

normal distributions sample heavily. This result makes sense since this parameter governs the

rate of the Aa binding to the cell. If it becomes too low, the second pathway is essentially

shut off. This result indicates that this parameter should be studied more to try to reduce the

uncertainty in it’s value. Finally, note that in all cases, the parameter k−1, governing the rate

of binding of activated IL6 to its inhibitor sgp130, does not appear to be significant. It does

appear in the table under the PRCC column for the large parameter set, however the p-value

associated with it is .0451. (Parameters with p-values less than .05 are included here.)
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Table 4.5 Distributions for sensitivity plots, varying kinetic rates:

Parameter Code Uni. Dist. PRCC eFAST (1st/Tot.)

dummy 1 LU(1e-3,1e+3) — —
`−1 2 LU(1e-3,1e+3) .1538 1.83/12.77
k−1 4 LU(1e-3,1e+3) -.0200∗ —
k̂−1 6 LU(1e-3,1e+3) .7337 62.58/79.46̂̀−1 8 LU(1e-3,1e+3) — —̂̀

2 9 LU(1e-3,1e+3) .3178 8.55/17.43
ν−1 11 LU(1e-3,1e+3) .2249 2.58/14.78
ν2 12 LU(1e-3,1e+3) .2276 2.18/13.38

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1) — —
`−1 2 N(5) .1276 0.19/2.37
k−1 4 N(5) — —
k̂−1 6 N(500) — —̂̀−1 8 N(5) — —̂̀

2 9 N(.002) .9692 68.32/71.13
ν−1 11 N(5) .2618 0.46/2.70
ν2 12 N(.5) .9266 27.87/30.28

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1,3.3e-4) — —
`−1 2 N(5,3.3e-4) — —
k−1 4 N(5,3.3e-4) — —
k̂−1 6 N(500,3.3e-4) — —̂̀−1 8 N(5,3.3e-4) — —̂̀

2 9 N(.002,3.3e-4) .9992 97.07/99.95
ν−1 11 N(5,3.3e-4) — —
ν2 12 N(.5,3.3e-4) .0539 —

*: p-value is .0451



54

Figure 4.20 (left) PRCC results, varying kinetic rates over entire parame-
ter space.

Figure 4.21 (right) eFAST results, varying kinetic rates over entire param-
eter space.

Figure 4.22 (left) PRCC results, varying kinetic rates with normal distri-
butions, σi = 1

6µi.

Figure 4.23 (right) eFAST results, varying kinetic rates with normal dis-
tributions, σi = 1

6µi.
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Figure 4.24 (left) PRCC results, varying kinetic rates with normal distri-
butions, with equal standard deviations.

Figure 4.25 (right) eFAST results, varying kinetic rates with normal dis-
tributions, with equal standard deviations.

4.4.5 Densities of Cell Receptors and Astrocytes

In this section, the densities of astrocytes and the AHPC surface receptors are varied

simultaneously. The astrocytes produce the molecule IL6 and the soluble receptors sIL6Rα

and sgp130, and binding to the surface receptors must occur for the cells to communicate.

The communication via binding and the resultant signal transduction induces the AHPC to

produce the differentiation factor J .

In the first set of simulations, the cell surface receptor densities are assigned a log uniform

pdf, with z ∈ [1 × 10+2, 1 × 10+5] receptors per cell. The astrocyte density is varied with a

uniform distribution with Na ∈ [1× 10+4, 1× 10+5] cells per cm2. The reason for the smaller

distribution for Na has to do with the consequences of lowering this parameter too much. Na

produces IL6, the basis of all of the activity. If Na has a log uniform pdf of [1×10+2, 1×10+5],

then for Na in the lower regions, it does not produce enough IL6 for any substantial amount

of differentiation to occur. Most parameters will appear to be insensitive, while Na will have

a strong effect on the output. For the experiments being considered in this thesis, Na is a

known quantity, within the range [1 × 10+4, 1 × 10+5] cells per cm2. Hence we will restrict
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the distribution of this parameter in order to have an effective study of the sensitivity of the

model to the other parameters. In the other two sets of simulations, the densities are varied

according to normal distributions centered around their nominal values. The second set uses

standard deviations of 1
6 of the mean. The third set of simulations use a common standard

deviation of 1
6(1 × 10+3). Partial Correlation Coefficients and eFAST sensitivity coefficients

are presented in Table 4.6 and illustrated graphically in Figures 4.26-31.

The results show sensitivity to all three parameters. Over the large parameter space,

Rp
gp130,0 appears to be the most important, which makes sense since this receptor is utilized by

both pathways. When considered more locally, Na is the most important when the standard

deviations of the normal distributions are relative to their nominal values. However, when

varied with an equal standard deviation, Rp
il,0 is the most important. This parameter is being

varied by the largest percentage of its mean in this case.

Table 4.6 Distributions for sensitivity plots, varying receptor and astrocyte
densities:

Parameter Code Uni. Dist. PRCC eFAST (1st/Tot.)

dummy 1 LU(1e+2,1e+5) — —
Rp

il,0 23 LU(1e+2,1e+5) .7711 24.22/42.01
Rp

gp130,0 24 LU(1e+2,1e+5) .8972 57.38/75.17
Na 25 U(1e+4,1e+5) .2627 .92/5.77

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1) — —
Rp

il,0 23 N(1e+3) .8951 27.36/30.30
Rp

gp130,0 24 N(1e+5) .8198 14.11/17.04
Na 25 N(3e+4) .9450 54.69/58.23

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1e+4,167) — —
Rp

il,0 23 N(1e+3,167) .9990 96.83/99.72
Rp

gp130,0 24 N(1e+5,167) .1360 —
Na 25 N(3e+4,167) .7080 .92/5.77
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Figure 4.26 (left) PRCC results, varying receptor/astrocyte densities over
entire parameter space.

Figure 4.27 (right) eFAST results, varying receptor/astrocyte densities
over entire parameter space.

Figure 4.28 (left) PRCC results, varying receptor/astrocyte densities with
normal distributions, σi = 1

6µi.

Figure 4.29 (right) eFAST results, varying receptor/astrocyte densities
with normal distributions, σi = 1

6µi.
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Figure 4.30 (left) PRCC results, varying receptor/astrocyte densities with
normal distributions, with equal standard deviations.

Figure 4.31 (right) eFAST results, varying receptor/astrocyte densities
with normal distributions, with equal standard deviations.

4.4.6 Parameters involved with sIL6Rα and sgp130

In this section, all parameters involved with the soluble receptors, excluding decay con-

stants, are varied simultaneously. The main result here is that the parameters involving the

inhibitor sgp130 (k−1,Kd, and sa) do not have significantly different effect on the output than

does the dummy parameter. The most important of the parameters that do show a significant

effect are Ld, Vd, ν2, and ba. The parameter distributions and PRCC and eFAST coefficients

are provided in Table 4.7. The results are illustrated graphically in Figures 4.32-37.

4.4.7 Unknown Parameters

In this section, the parameters for which no value was found recorded in the literature were

varied. All other parameters are held at their nominal values, which are within the ranges

reported in the literature. Three sets of simulations are shown. In the first set of simulations,

parameters are varied over a wide range relative to their nominal values. These are sampled

using either uniform or log-uniform distributions. In the other two sets of simulations, these

parameters are varied more locally around their nominal values via normal distributions. The
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Table 4.7 Distributions for sensitivity plots, varying parameters related to
sIL6Rα and sgp130 activity:

Parameter Code Uni. Dist. PRCC eFAST (1st/Tot.)

dummy 1 LU(1e-3,1e+3) — —
`−1 2 LU(1e-3,1e+3) .4126 4.13/15.65
Ld 3 LU(1e-6,1e-1) -.7165 18.83/43.08
k−1 4 LU(1e-3,1e+3) -.0362 —
Kd 5 LU(1e-6,1e-1) .0680 .04/—
ν−1 11 LU(1e-3,1e+3) .5850 9.29/27.54
ν2 12 LU(1e-3,1e+3) .5846 8.58/26.38
Vd 13 LU(1e-6,1e-1) -.7718 20.31/44.43
ba 15 LU(1e-12,1e-9) .5045 4.94/18.01
sa 16 LU(1e-12,1e-9) -.0666 —

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1) — —
`−1 2 N(5) .0842 —
Ld 3 N(30e-3) -.8583 25.94/29.94
k−1 4 N(5) — —
Kd 5 N(3e-3) — —
ν−1 11 N(5) .1742 0.36/—
ν2 12 N(.5) .8274 20.32/23.47
Vd 13 N(60e-6) -.8545 26.13/29.66
ba 15 N(2e-10) .8557 24.45/27.84
sa 16 N(1e-11) — —

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1,3.3e-4) — —
`−1 2 N(5,3.3e-4) — —
Ld 3 N(30e-3,1.7e-6) — —
k−1 4 N(5,3.3e-4) — —
Kd 5 N(3e-3,1.7e-6) — —
ν−1 11 N(5,3.3e-4) — —
ν2 12 N(.5,3.3e-4) .1580 —
Vd 13 N(60e-6,1.7e-6) -.9905 88.57/91.85
ba 15 N(2e-10,1.7e-12) .9019 8.18/10.99
sa 16 N(1e-11,1.7e-12) — —



60

Figure 4.32 (left) PRCC results, varying parameters involved with sIL6Rα
and sgp130 activity over entire parameter space.

Figure 4.33 (right) eFAST results, varying parameters involved with
sIL6Rα and sgp130 activity over entire parameter space.

Figure 4.34 (left) PRCC results, varying parameters involved with sIL6Rα
and sgp130 activity with normal distributions, σi = 1

6µi.

Figure 4.35 (right) eFAST results, varying parameters involved with
sIL6Rα and sgp130 activity with normal distributions,
σi = 1

6µi.
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Figure 4.36 (left) PRCC results, varying parameters involved with sIL6Rα
and sgp130 activity with normal distributions, with equal stan-
dard deviations (see Table 4.11).

Figure 4.37 (right) eFAST results, varying parameters involved with
sIL6Rα and sgp130 activity with normal distributions, with
equal standard deviations (see Table 4.11).

parameters that are the most influential, and as such should be studied biologically in more

detail, are as follows: k̂−1, ̂̀
2, ν2, ba, R

p
il,0, and Rp

gp130,0. Note that in order to study ν2 and̂̀
2, the intracellular mechanism leading to differentiation needs to be studied in more detail.

In particular, the intracellular mechanism producing the differentiation factor J would need

to be explored. Partial Rank Correlation Coefficients and eFAST sensitivity coefficients are

presented in Table 4.8 and illustrated graphically in Figures 4.38-43.

4.4.8 All Parameters

In this section, all parameters are varied simultaneously. Each parameter can be considered

as belonging to one of the following groups: decay rates, secretion rates, dissociation constants,

kinetic rates, or receptor/cell densities. Three sets of simulations are shown. In the first set

of simulations, each parameter is assigned either a uniform or log uniform pdf, whose range

depends on which group it belongs to. In the other two sets of simulations, the parameters are

varied according to normal distributions centered around their nominal values. The second set
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Table 4.8 Distributions for sensitivity plots, varying unknown parameters:

Parameter Code Uni. Dist. PRCC eFAST (1st/Tot.)

dummy 1 LU(1e-3,1e+3) — —
`−1 2 LU(1e-3,1e+3) .0266 —
k−1 4 LU(1e-3,1e+3) — —
k̂−1 6 LU(1e-3,1e+3) .7038 44.93/67.49̂̀−1 8 LU(1e-3,1e+3) .0653 .12/1.69̂̀

2 9 U(1e-3,1e+3) .3790 11.29/24.38
ν−1 11 LU(1e-3,1e+3) .0303 .08/2.25
ν2 12 LU(1e-3,1e+3) .0450 .08/2.14
ba 15 LU(1e-12,1e-9) .0603 —
sa 16 LU(1e-12,1e-9) — —
Rp

il,0 23 U(1e+2,1e+5) .5198 14.45/36.84
Rp

gp130,0 24 U(1e+2,1e+5) .1909 2.18/12.55

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1) — —
`−1 2 N(5) .0424 —
k−1 4 N(5) — —
k̂−1 6 N(500) — —̂̀−1 8 N(5) — —̂̀

2 9 N(.002) .8700 28.21/31.08
ν−1 11 N(5) .1248 —
ν2 12 N(.5) .7475 11.21/13.33
ba 15 N(2e-10) .7779 14.25/16.67
sa 16 N(1e-11) — —
Rp

il,0 23 N(1e+3) .8689 29.28/32.07
Rp

gp130,0 24 N(1e+5) .7822 14.53/17.15

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1,3.3e-4) — —
`−1 2 N(5,3.3e-4) — —
k−1 4 N(5,3.3e-4) — —
k̂−1 6 N(500,3.3e-4) — —̂̀−1 8 N(5,3.3e-4) — —̂̀

2 9 N(.002,3.3e-4) .9426 48.55/51.33
ν−1 11 N(5,3.3e-4) — —
ν2 12 N(.5,3.3e-4) — —
ba 15 N(2e-10,1.7e-12) .1043 .06/—
sa 16 N(1e-11,1.7e-12) — —
Rp

il,0 23 N(1e+3,167) .9418 48.37/51.17
Rp

gp130,0 24 N(1e+5,167) .0198∗ —

*: p-value is .0480
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Figure 4.38 (left) PRCC results, varying unknown parameters over entire
parameter space.

Figure 4.39 (right) eFAST results, varying unknown parameters over entire
parameter space.

Figure 4.40 (left) PRCC results, varying unknown parameters with normal
distributions, σi = 1

6µi.

Figure 4.41 (right) eFAST results, varying unknown parameters with nor-
mal distributions, σi = 1

6µi.
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Figure 4.42 (left) PRCC results, varying unknown parameters with normal
distributions, with equal standard deviations (see Table 4.13).

Figure 4.43 (right) eFAST results, varying unknown parameters with nor-
mal distributions, with equal standard deviations (see Table
4.13).

uses standard deviations of 1
6 of the mean. The third set of simulations use a standard deviation

common to all members of the particular group to which the parameter belongs. Partial Rank

Correlation Coefficients and eFAST sensitivity coefficients are presented in Tables 4.9-11 and

illustrated graphically in Figures 4.44-49.

When varied throughout the ”large” parameter space, utilizing uniform/log-uniform distri-

butions, the output does not appear to be very sensitive to the variations in the decay rates.

The other groups, however, do appear to have significant effects on the output. Many of the

eFAST sensitivities are very similar, and there is apparently much variance occurring due to

interactions among the parameters. When the distributions are considered more locally, then

the decay rates appear to be influential on the output. The most influential parameter in this

local space is µj , the decay rate of the intracellular differentiation factor. Other important

parameters in this space are: ̂̀
2, Ld, ν2, Vd, R

p
il,0, R

p
gp130,0, a1, and ba. Many of these parame-

ters are known. However, ̂̀
2, ν2, and µj are all involved with the intracellular differentiation

molecule, and since the model exhibits sensitivity to these parameters, a goal of future work

should be to better understand the intracellular mechanism leading to AHPC differentiation.
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Table 4.9 Distributions for sensitivity plots, varying all parameters:

Parameter Code Uni. Dist. PRCC eFAST (1st/Tot.)

dummy 1 U(1,10) — —
`−1 2 LU(1e-3,1e+3) .0609 —/6.47
Ld 3 LU(1e-6,1e-1) -.1535 .86/12.72
k−1 4 LU(1e-3,1e+3) — —/1.76
Kd 5 LU(1e-6,1e-1) — —
k̂−1 6 LU(1e-3,1e+3) .4276 7.43/27.55
K̂d 7 LU(1e-6,1e-1) -.5450 13.59/37.58̂̀−1 8 LU(1e-3,1e+3) .1934 1.41/10.61̂̀

2 9 LU(1e-3,1e+3) .3344 7.43/22.43
L̂d 10 LU(1e-6,1e-1) -.2795 3.39/16.96
ν−1 11 LU(1e-3,1e+3) .1670 .81/9.84
ν2 12 LU(1e-3,1e+3) .1768 .92/9.30
Vd 13 LU(1e-6,1e-1) -.2322 —/12.49
a1 14 LU(1e-12,1e-9) .4455 7.01/24.20
ba 15 LU(1e-12,1e-9) .0970 —/7.23
sa 16 LU(1e-12,1e-9) — —
µai 17 U(.1155,.6931) -.1066 .32/3.56
µil 18 U(.1155,.6931) -.0278 —/2.35
µaa 19 U(.1155,.6931) — —/1.98
µgp 20 U(.1155,.6931) — —
µao 21 U(.1155,.6931) — —
µj 22 U(.1155,.6931) -.1449 .47/4.10
Rp

il,0 23 U(1e+2,1e+5) .4003 9.31/28.40
Rp

gp130,0 24 U(1e+2,1e+5) .3504 7.65/25.65
Na 25 U(1e+4,1e+5) .1745 1.35/7.50
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Table 4.10 Distributions for sensitivity plots, varying all parameters:

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1) — —
`−1 2 N(5) .0290 —
Ld 3 N(30e-3) -.5175 5.72/8.91
k−1 4 N(5) — —
Kd 5 N(3e-3) — —
k̂−1 6 N(500) — —
K̂d 7 N(100e-6) — —̂̀−1 8 N(5) — —̂̀

2 9 N(.002) .6546 9.99/12.94
L̂d 10 N(10e-6) — —
ν−1 11 N(5) .0337 0.07/—
ν2 12 N(.5) .4799 3.56/6.14
Vd 13 N(60e-6) -.5155 4.28/6.66
a1 14 N(1e-11) .5246 4.81/7.64
ba 15 N(2e-10) .5196 4.15/6.57
sa 16 N(1e-11) — —
µai 17 N(.173) -.5170 5.61/8.62
µil 18 N(.173) -.5112 5.93/9.00
µaa 19 N(.173) -.0246 —
µgp 20 N(.173) — —
µao 21 N(.173) — —
µj 22 N(.173) -.8096 22.27/26.12
Rp

il,0 23 N(1e+3) .6456 9.18/12.41
Rp

gp130,0 24 N(1e+5) .5137 5.42/8.42
Na 25 N(3e+4) .7703 20.28/25.36
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Table 4.11 Distributions for sensitivity plots, varying all parameters:

Parameter Code Norm. Dist. PRCC eFAST (1st/Tot.)

dummy 1 N(1,3.3e-4) — —
`−1 2 N(5,3.3e-4) — —
Ld 3 N(30e-3,1.7e-6) — —
k−1 4 N(5,3.3e-4) — —
Kd 5 N(3e-3,1.7e-6) — —
k̂−1 6 N(500,3.3e-4) — —
K̂d 7 N(100e-6,1.7e-6) — —̂̀−1 8 N(5,3.3e-4) — —̂̀

2 9 N(.002,3.3e-4) .7801 15.33/17.86
L̂d 10 N(10e-6,1.7e-6) — —
ν−1 11 N(5,3.3e-4) — —
ν2 12 N(.5,3.3e-4) .0215∗ —
Vd 13 N(60e-6,1.7e-6) -.1342 .22/—
a1 14 N(1e-11,1.7e-12) .6800 8.07/10.24
ba 15 N(2e-10,1.7e-12) .0478 —
sa 16 N(1e-11,1.7e-12) — —
µai 17 N(.173,.0288) -.6811 9.04/11.51
µil 18 N(.173,.0288) -.6826 8.42/10.76
µaa 19 N(.173,.0288) -.0287 —
µgp 20 N(.173,.0288) — —
µao 21 N(.173,.0288) -.0287∗∗ —
µj 22 N(.173,.0288) -.8986 40.64/43.75
Rp

il,0 23 N(1e+3,167) .7765 14.76/17.56
Rp

gp130,0 24 N(1e+5,167) — —
Na 25 N(3e+4,167) .0582 .07/—

*: p-value is .0319 **: p-value is .0172
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Figure 4.44 (left) PRCC results, varying all parameters over entire param-
eter space.

Figure 4.45 (right) eFAST results, varying all parameters over entire pa-
rameter space.

Figure 4.46 (left) PRCC results, varying all parameters with normal dis-
tributions, σi = 1

6µi.

Figure 4.47 (right) eFAST results, varying all parameters with normal dis-
tributions, σi = 1

6µi.
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Figure 4.48 (left) PRCC results, varying all parameters with normal dis-
tributions, with equal standard deviations within subgroups of
parameters (see Table 4.15).

Figure 4.49 (right) eFAST results, varying all parameters with normal dis-
tributions, with equal standard deviations within subgroups of
parameters (see Table 4.15).



70

CHAPTER 5. Steady State Analysis of the Population Model

In this chapter, steady-state solutions are calculated for the population model, and lin-

earized stability results are established. These results are performed both for the full system

and for a simplified system comprised solely of the cellular equations, where the rate of dif-

ferentiation is assumed constant. The phase plane of the simplified system is analyzed in this

chapter, and in Appendix C a solution of this system is derived in the form of a formal power

series. However, the first step in studying ODEs is to verify that there is a unique solution. The

following theorem can be used to establish existence and uniqueness. Proofs of this and many

other similar theorems can be found in any standard text on Ordinary Differential Equations.

The following is from [8].

Theorem 5.1. Let f be a vector function (with n components) defined in a region D of (n+1)-

dimensional Euclidean space. Let the vectors f , ∂f/∂yk (k = 1, ..., n) be continuous in D. Then

given any point (t0, ξ) in D there exists a unique solution φ of the system

y′ = f(t,y)

satisfying the initial condition φ(t0) = ξ. The solution φ exists on any interval I containing t0

for which the points (t, φ(t)), with t in I, lie in D. Furthermore, the solution φ is a continuous

function of the ”triple” (t, t0, ξ).

The biological region mentioned in this chapter refers to the space where the concentrations

of all species are nonnegative and cells are present with total density at or below the carrying

capacity,

Ω+ = {v ∈ R11 : [Z] ≥ 0 and Np +Nd ∈ (0, Nmax]}
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for

Z ∈ {Ai, Ril, Aa, R
p
il, As, R

p
gp130, {As : Rp

gp130}, {Aa : Rp
gp130}, J,N

p, Nd}.

Theorem 5.1 can be used to establish the existence and uniqueness of a solution of system

(3.1) on p.18. It also says that the solution can be extended for all time t > 0 provided the

concentrations of the species remain nonnegative and bounded above by some constant M .

Theorem 5.2: A unique solution to system (3.1) with initial conditions in the biological region

exists and can be extended from time t = 0 to any positive time t > 0.

Proof. f is clearly continuous in Ω+, as each component of the vector is comprised of sums of

continuous functions. Define g([J ], Np, Nd) =
κ1[J ]2

κ2
2 + [J ]2

Np + θ1

(
θ2 + ( Np

Np+Nd )2
)−1

Np. The

partial derivatives of g are given by

∂g

∂[J ]
=

2κ1κ
2
2[J ]

(κ2
2 + [J ]2)2

Np

∂g

∂Np
=

κ1[J ]2

κ2
2 + [J ]2

+
θ2

[
θ2(Np +Nd)2 + (Np)2 − 2Nd( (Np)2

Np+Nd )
]

[
(Np +Nd)(θ2 + ( Np

Np+Nd )2)
]2

∂g

∂Nd
=

2θ1(Np)3

(Np +Nd)
[
θ2(Np +Nd) + (Np)2

]2 .

These functions are all continuous in Ω+. All other terms in f are polynomials and as such

are infinitely continuously differentiable. Hence ∂f/∂yk (k = 1, ..., n) are all continuous in Ω+,

and therefore a unique solution exists for all sets of initial conditions in Ω+.

All species are bounded below by 0, since
d[Z]
dt

(η′) ≥ 0 for each species Z, where the

component for [Z] in η′ ∈ Ω+ is zero. It remains to be shown that the concentrations of all

species are bounded above by some constant M for all time t > 0. This can be accomplished

by looking at relationships among the species and employing Gronwall’s inequality. Let µ =
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min{µai, µil, µaa, µgp, µao}.

dNp

dt
+
dNd

dt
= M1N

p

(
1− Np +Nd

Nmax

) 
= 0, if Np +Nd = Nmax

≥ 0, if 0 < Np +Nd < Nmax

=⇒ Whenever the initial vector ξ ∈ Ω+, then for all t > 0, Np, Nd ≤ Nmax = B1.

d[Rp
il]

dt
+
d[As]
dt

+
d[{As : Rp

gp130}]
dt

= 0

=⇒ [Rp
il] + [As] + [{As : Rp

gp130}] = [Rp
il]0 + [As]0 + [{As : Rp

gp130}]0

=⇒ max
{

[Rp
il], [As], [{As : Rp

gp130}]
}
≤ [Rp

il]0 + [As]0 + [{As : Rp
gp130}]0 = B2

d[Rp
gp130]
dt

+
d[{As : Rp

gp130}]
dt

+
d[{Aa : Rp

gp130}]
dt

= 0

=⇒ [Rp
gp130] + [{As : Rp

gp130}] + [{Aa : Rp
gp130}]

= [Rp
gp130]0 + [{As : Rp

gp130}]0 + [{Aa : Rp
gp130}]0

=⇒ max
{

[Rp
gp130], [{Aa : Rp

gp130}]
}

≤ [Rp
gp130]0 + [{As : Rp

gp130}]0 + [{Aa : Rp
gp130}]0 = B3

d[J ]
dt

= l̂2[{As : Rp
gp130}] + ν2[{Aa : Rp

gp130}]− µj [J ]−M1[J ]
(

1− Np +Nd

Nmax

)
≤ l̂2B2 + ν2B3 − µj [J ]

=⇒ [J ] ≤
(

[J ]0 −
l̂2B2 + ν2B3

µj

)
e−µjt +

l̂2B2 + ν2B3

µj

=⇒ [J ] ≤ max
{

([J ]0,
l̂2B2 + ν2B3

µj
)
}

= B4
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d[Gp]
dt

+
d[Ao]
dt

= saNa − µgp[Gp]− µao[Ao]

≤ saNa − µ([Gp] + [Ao])

=⇒ [Gp] + [Ao] ≤
(

[Gp]0 + [Ao]0 −
saNa

µ

)
e−µt +

saNa

µ

=⇒ max{[Gp], [Ao]} ≤ max
{

[Gp]0 + [Ao]0,
saNa

µ

}
= B5

d[Ai]
dt

+
d[Aa]
dt

= a1Na − k̂1[Ai][R
p
il]N

p + k̂−1[As]Np − k1[Aa][Gp] + k−1[Ao]

− ν1[Aa][R
p
gp130]N

p + ν−1[{Aa : Rp
gp130}]N

p − µai[Ai]− µaa[Aa]

≤ a1Na + k̂−1B2B1 + k−1B5 + ν−1B3B1 − µ([Ai] + [Aa])

=⇒ [Ai] + [Aa] ≤
(

[Ai]0 + [Aa]0 −
(a1Na + k̂−1B2B1 + k−1B5 + ν−1B3B1)

µ

)
e−µt

+
(a1Na + k̂−1B2B1 + k−1B5 + ν−1B3B1)

µ

=⇒ max{[Ai], [Aa]} ≤

max
{

[Ai]0 + [Aa]0,
(a1Na + k̂−1B2B1 + k−1B5 + ν−1B3B1)

µ

}
= B6

d[Ril]
dt

+
d[Aa]
dt

= baNa − k1[Aa][Gp] + k−1[Ao]− ν1[Aa][R
p
gp130]N

p

+ ν−1[{Aa : Rp
gp130}]N

p − µil[Ril]− µaa[Aa]

≤ baNa + k−1B5 + ν−1B3B1 − µ([Ril] + [Aa])

=⇒ [Ril] + [Aa] ≤
(

[Ril]0 + [Aa]0 −
(baNa + k−1B5 + ν−1B3B1)

µ

)
e−µt

+
(baNa + k−1B5 + ν−1B3B1)

µ

=⇒ [Ril] ≤ max
{

[Ril]0 + [Aa]0,
(baNa + k−1B5 + ν−1B3B1)

µ

}
= B7

Letting B = max{B1, ..., B7}, we see that for all species Z, 0 ≤ [Z] ≤ B. These bounds were

found independent of t, hence the solution curves can be extended for all t > 0.
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Figure 5.1 Time course of [J ] (left) over a six day period for the noncontact
experiment. Parameters are given in Tables 3.4-5.

Figure 5.2 Corresponding time course of
κ1[J ]2

κ2
2 + [J ]2

(right). Note that both

[J ] and
κ1[J ]2

κ2
2 + [J ]2

are increasing very slowly after about 24

hours.

5.1 Analysis of a Simplified System

Consider the cellular equations in the ODE system:

dNp

dt
= − κ1[J ]2

κ2
2 + [J ]2

Np +M1

(
1− Np +Nd

Nmax

)
,

dNd

dt
=

κ1[J ]2

κ2
2 + [J ]2

Np,

Np(0) = Np
0 , Nd(0) = 0.

Although [J ] depends on the other molecular species in the system, it is possible for it’s

concentration to become approximately constant after a short period of time. Figure 5.1

shows the time course of [J ] for the noncontact coculture experiment based on the parameters

in Tables 3.4-5, and Figure 5.2 shows the corresponding time-course of
κ1[J ]2

κ2
2 + [J ]2

. Provided
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[J ] is approximately constant, the above system can be written as

dx

dt
= βx

(
1− (x+ y)

)
− γx

dy

dt
= γx

x(0) = x0, y(0) = 0

where x =
Np

Nmax
, y =

Nd

Nmax
, γ =

κ1[J ]2

κ2
2 + [J ]2

, and β =
M1

Nmax
. It is possible to find a solution

for this system in the form of a formal power series. However, the phase plane will be analyzed

first.

Because x is a scaled population density, it can be assumed that x0 ≥ 0. However, since

(x, y) = (0, y) is a steady state solution for this system for all y, we consider the case where

x0 > 0. First note that positivity holds for both x(t) and y(t) for all t. To see this, note that

if x(t0) = 0 for some t0 > 0, then x(t) = 0 for all t > t0. Therefore, if x0 > 0 then x(t) ≥ 0 for

all t. As for y, we have that y(t) is strictly increasing for x(t) > 0, and constant for x(t) = 0.

Since x(t) ≥ 0, y(t) is necessarily nonnegative, and in fact is a strictly monotone increasing

function of t for all t ≤ t0. Denote the solutions by x = φ(t), y = ψ(t), with φ(0) = x0 and

ψ(0) = 0. Since ψ(t) is strictly increasing, ψ can be inverted, so t = ψ−1(y). It follows that

x = φ(ψ−1(y)). Applying the chain rule,

dx

dy
=
dx

dt

dt

dy
=
dx

dt

1
dy/dt

since differentiating y = ψ(t) with respect to y yields 1 = ψ′(t)
dt

dy
=
dy

dt

dt

dy
. Letting µ = β

γ ,

and denoting x̂(y) = φ(ψ(y)),

dx̂

dy
=
βx̂

(
1− (x̂+ y)

)
− γx̂

γx̂

= µ
(
1− (x̂+ y)

)
− 1

= −µ(x̂+ y) + (µ− 1)

dx̂

dy
+ µx̂ = −µy + (µ− 1)

[eµyx̂]′ = [−µy + (µ− 1)]eµy
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eµyx̂ = x̂(0) +
∫ y

0
(−µseµs + (µ− 1)eµs)ds

x̂(y) = e−µyx̂(0) + e−µy

∫ y

0
(−µseµs + (µ− 1)eµs)ds

which upon integrating yields

x̂(y) = e−µy
(
x̂(0)− 1

)
+ (1− y)

where x̂(0) denotes the value of x when y = 0. Since y is strictly increasing when x 6= 0, and

x0 > 0, we have that the only time t when y(t) = 0 is when t = 0. Hence x̂(0) = x(0) = x0,

and so

x̂(y) = e−µy
(
x0 − 1

)
+ (1− y).

This is the equation that describes the curves in the phase plane. However, more information

can be found by analyzing the ODEs. The nullcline satisfying
dy

dt
= 0 is the line x = 0, and

the nullclines satisfying
dx

dt
= 0 are the lines x = 0 and x = −y + (1− 1

µ). Hence there exists

a line of nonisolated critical points

(0, y∗) = {(x, y) ∈ R2
+ : x = 0}

where R2
+ = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}. To determine the stability properties of these

critical points, consider the Jacobian of f(x, y), where f(x, y) =

 βx(1− (x+ y))− γx

γx

 .

The Jacobian is given by J(x, y) =

 β(1− 2x− y)− γ −βx

γ 0

. The eigenvalues of J(0, y∗)

are

λ1 = 0,

λ2 = β

(
(1− 1

µ
)− y∗

)
.

First note that both eigenvalues are real numbers. λ1 corresponds to the neutrally stable

direction along the line of critical points. Hence any of these critical points can be stable, but

not asymptotically stable. If y∗ < 1 − 1
µ , then λ2 > 0, therefore the critical point (0, y∗) is

unstable. If y∗ > 1− 1
µ , then λ2 < 0, therefore the critical point is stable.
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Two different phase planes are possible, depending on the relation between β and γ. If

β < γ, then the nullcline x = −y+(1− 1
µ) does not intersect R2

+. In this case, all critical points

(x, y) on the line x = 0 with y > 0 are stable. The phase plane for this case is illustrated in

Figure 5.3. Moreover, the largest population of AHPCs present at any time would correspond

to x0, since in this case
dx

dt
≤ 0 for all (x, y) ∈ R2

+. This is the case where the differentiation

constant is larger than the proliferation constant.

If γ < β, then the nullcline x = −y + (1 − 1
µ) intersects R2

+. In this case, if y∗ < 1 − 1
µ

then (0, y∗) is unstable, but if y∗ > 1− 1
µ then (0, y∗) is stable. The phase plane for this case

is illustrated in Figure 5.4. If x0 < 1 − 1
µ the AHPC density will increase for a short time

before it starts to decrease, eventually resulting in all cells differentiating into neurons, since
dx

dt
> 0 for (x, y) satisfying x < −y + (1 − 1

µ). However, since
dx

dt
< 0 for (x, y) satisfying

x > −y + (1 − 1
µ), it can be seen that the largest population of AHPCs possible corresponds

to max{x0, (1− 1
µ)− 1

µ ln(µ(1− x0))}. Moreover, due to the stability properties of (0, y∗), at

least (1− 1
µ)Nmax neurons will be produced, regardless of the initial AHPC population. This

is the case where the proliferation constant is greater than the differentiation constant.

The final density (of differentiated cells) ys can be determined by using the equation x̂(y).

When reaching the steady state, x = 0, the corresponding ys is the solution of the equation

e−µys(x0 − 1)− ys + 1 = 0. Note that, as should be expected, 0 < ys ≤ 1, since x̂(0) > 0 and

x̂(1) ≤ 0, with equality holding only in the case x0 = 1.

The equation relating the initial condition to a steady state along the line (0, y∗) also

shows that there is a one-to-one correspondence between x0 and ys. To see this, the equation

e−µys(x0 − 1)− ys + 1 = 0 must be differentiated implicitly. Note that

dys

dx0
=

e−µys

µe−µys(x0 − 1) + 1

=
e−µys

µys + (1− µ)
since µe−µys(x0 − 1) = µ(ys − 1)

=
1
µe

−µys

ys − (1− 1
µ)

> 0

for all stable steady states, i.e. ys > 1 − 1
µ . Hence, if x1 < x2, then ys(x1) < ys(x2); every

initial condition results in a unique final density of neurons.
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Figure 5.3 (left) Representative phase plane for the case γ > β, using
γ = .03 and β = .0213. The only nullcline in R2

+ corresponds to
the line of nonisolated critical points, x = 0. All solution curves
exhibit x strictly decreasing and y strictly increasing. Any num-
ber of neurons can be produced, up to the carrying capacity,
depending on the relation between β and γ.

Figure 5.4 (right) Representative phase plane for the case γ < β, using
γ = .013 and β = .0213. Nullclines in R2

+ are x = 0 and
x = −y + (1 − 1

µ). A line of nonisolated steady states exists,
x = 0. (0, y∗) is unstable for y∗ < 1− 1

µ and stable for y∗ > 1− 1
µ .

Hence at least (1− 1
µ)Nmax neurons will be produced.
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5.2 Steady-State Solutions of the Full System

The above analysis gives a general idea of the behavior of the system. However, some

questions still remain. What are the steady state concentrations of the cytokines and surface

receptors? How does the behavior of the system depend on astrocyte density? How will the

steady state concentrations of the other species depend on (Nd)∗, if at all?

The sensitivity analysis presented in Chapter 4 showed that the species Gp and Ao do

not have any appreciable affect on the percentage of cells differentiated after six days. The

biological system under observation could instead reasonably be modelled by a system of ODEs

that do not take these two proteins into consideration. Eliminating these proteins from the

ODE system is acceptable from a biological standpoint, considering the ODE system is itself

just a simplified representation of the biology. Astrocytes likely secrete many other proteins,

but the ODE system only considered IL6, sIL6Rα, and sgp130.

Of interest here are the steady state solutions related to IL6-induced differentiation. The

background mechanism is unknown, and was simulated with a function of Np and Nd. The

function

K1(Np, Nd) = θ1

(
θ2 + (

Nd

Np +Nd
)2

)−1

was chosen as the rate of background differentiation to model a small amount of differentiation

due to another mechanism, not to infer that this is the rate that is occuring in nature. It is

only meant to apply for short periods of time. As t → ∞, this modeling function will cause

all cells to differentiate, masking the effects due to IL6. We are only concerned with the IL6

mechanism here, so we remove K1(Np, Nd) and instead consider steady state solutions for the

system

d[Ai]
dt

= a1Na − l1[Ai][Ril] + l−1[Aa]− k̂1[Ai][R
p
il]N

p + k̂−1[As]Np − µai[Ai],

d[Ril]
dt

= baNa − l1[Ai][Ril] + l−1[Aa]− µil[Ril],

d[Aa]
dt

= l1[Ai][Ril]− (l−1 + µaa)[Aa]− ν1[Aa][R
p
gp130]N

p + ν−1[{Aa : Rp
gp130}]N

p,
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d[Rp
il]

dt
= −k̂1[Ai][R

p
il] + k̂−1[As] + l̂2[{As : Rp

gp130}] + η([Rp
il]tot − [Rp

il]),

d[As]
dt

= k̂1[Ai][R
p
il]− k̂−1[As]− l̂1[As][R

p
gp130] + l̂−1[{As : Rp

gp130}]− η[As],

d[Rp
gp130]
dt

= −l̂1[As][R
p
gp130] + (l̂−1 + l̂2)[{As : Rp

gp130}]− ν1[Aa][R
p
gp130]

+ (ν−1 + ν2)[{Aa : Rp
gp130}] + η([Rp

gp130]tot − [Rp
gp130]),

d[{As : Rp
gp130}]

dt
= l̂1[As][R

p
gp130]− (l̂−1 + l̂2)[{As : Rp

gp130}]− η[{As : Rp
gp130}],

d[{Aa : Rp
gp130}]

dt
= ν1[Aa][R

p
gp130]− (ν−1 + ν2)[{Aa : Rp

gp130}]− η[{Aa : Rp
gp130}],

d[J ]
dt

= l̂2[{As : Rp
gp130}] + ν2[{Aa : Rp

gp130}]− µj [J ]− η[J ],

dNp

dt
= − κ1[J ]2

κ2
2 + [J ]2

Np + ηNp,

dNd

dt
=

κ1[J ]2

κ2
2 + [J ]2

Np

where [Rp
il]tot = [Rp

il]0+[As]0+[{As : Rp
gp130}]0, [Rp

gp130]tot = [Rp
gp130]0+[{Aa : Rp

gp130}]0+[{As :

Rp
gp130}]0, and η = M1

(
1− Np+Nd

Nmax

)
. The steady states depend on whether or not astrocytes

are present. If the fixed value Na > 0, there is one curve of steady states in the biological

region Ω+, parameterized by (Nd)∗. It is given by

S1 = (A∗i , R
∗
il, A

∗
a, R

p
il
∗, A∗s, R

p
gp130

∗, {As : Rp
gp130}

∗, {Aa : Rp
gp130}

∗, J∗, (Np)∗, (Nd)∗),

where

A∗i =
a1Na − µaax

µai
,

R∗il =
baNa − µaax

µil
,

A∗a = x,

Rp
il
∗ = [Rp

il]tot −A∗s − {As : Rp
gp130}

∗,

A∗s =
(−b+

√
b2 − 4c)

2
,

Rp
gp130

∗ = [Rp
gp130]tot − {Aa : Rp

gp130}
∗ − {As : Rp

gp130}
∗,

{As : Rp
gp130}

∗ =
A∗i [R

p
il]tot − (K̂ +A∗i )A

∗
s

L+A∗i
,
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{Aa : Rp
gp130}

∗ =
L[Rp

gp130]tot +A∗i ([R
p
gp130]tot − [Rp

Il]tot) + (K̂ +A∗i )A
∗
s

(L+A∗i )(V +A∗a)
A∗a,

J∗ =
l̂2{As : Rp

gp130}∗ + ν2{Aa : Rp
gp130}∗

µj + η
,

(Np)∗ = 0,

(Nd)∗arbitrary,

with the following quantities abbreviated:

x =
L̃µaiµil

µaa
+ (a1 + ba)Na −

√[
L̃µaiµil

µaa

]2 +
[
(a1 − ba)Na

]2 + 2(a1 + ba)NaL̃
µaiµil
µaa

2µaa
,

b =
L[Rp

gp130]tot + ([Rp
gp130]tot − [Rp

il]tot)A∗i
K̂ +A∗i

+
L̂(V +A∗a)

V
,

c =
−L̂(V +A∗a)A

∗
i [R

p
il]tot

V (K̂ +A∗i )
, η = M1(1−

(Nd)∗

Nmax
), L̃ =

l−1 + µaa

l1
,

K̂ = K̂d +
η

k̂1

, L =
l̂2 + η

k̂1

, L̂ = L̂m +
η

l̂1
, V = Vm +

η

ν1
.

A second curve of steady states (S2) exists where the square root is added instead of subtracted

within the equation for x, but the other species satisfy the same relationships as in S1. However,

S2 is not in the biological region Ω+. To see this, suppose a1 ≥ ba. Then A∗i < 0, since then

a1Na − µaax < a1Na −
(a1 + ba)Na

2
− (a1 − ba)Na

2
= 0.

Similarly, assuming a1 < ba results in R∗il < 0.

There are two more curves of steady states (S3, S4), that correspond to (S1, S2), which are

not in Ω+. These are formed by setting A∗s =
−b−

√
b2 − c

2
with all other terms unchanged

from S1 and S2. A∗s is found by considering the roots of (A∗s)
2 + b(A∗s) + c = 0. Since c < 0,

the roots (A∗s)+ and (A∗s)− satisfy (A∗s)+(A∗s)− < 0, so that only one root is positive. Since

(A∗s)+ is the component in (S1, S2), S3 /∈ Ω+ and S4 /∈ Ω+.

When Na = 0, there are two curves of steady states, parameterized by (Nd)∗, existing

within the biological region:

T1 = (0, 0, 0, [Rp
il]0, 0, [R

p
gp130]0, 0, 0, 0, 0, (N

d)∗),

T2 = (0, 0, 0, [Rp
il]0, 0, [R

p
gp130]0, 0, 0, 0, Nmax − (Nd)∗, (Nd)∗),
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again with (Nd)∗ arbitrary. Two more curves of steady states exist outside of this region,

T3,4 =
( µil

µai
z, z,− µil

µaa
z,Rp

il
∗, A∗s, R

p
gp130

∗, {As : Rp
gp130}

∗, {Aa : Rp
gp130}

∗, J∗, 0, (Nd)∗
)
,

with (Nd)∗ again arbitrary, z = − µai

µaa
L̃, A∗s = (A∗s)+ for T3, A∗s = (A∗s)− for T4, and the other

species given by the corresponding equations in S1. T3 and T4 are clearly not in Ω+ since

R∗il = z < 0. Finally note that the steady states S2, S3, S4, T3, and T4 could have non-real

components since A∗i < 0 or A∗a < 0 may cause b2 − 4c < 0.

The critical points S1, T1, T2 are what one would expect from the biology. If astrocytes are

present, they will be producing cytokines that lead to the production of J . Hence the only way

differentiation will stop is if there are no AHPCs left to differentiate (S1). If astrocytes are not

present, then no differentiation will occur (via the IL6 pathway). So if there are no progenitor

cells, nothing happens (T1). If progenitor cells are present, they will proliferate until the total

cell density reaches the carrying capacity (T2). In both cases T1 and T2, (Nd)∗ = Nd(0)

provided that [Z](0) = 0 for all chemical densities so that no differentiation can occur. Also

note that lim
Na→0+

S1 = T1 and lim
Na→0+

S2 = T3.

5.3 Stability of the Biologically Relevant Steady-State Solutions of the

Full System

To determine the stability of the critical points in Ω+, we first consider the Jacobian,

J(~x), of f(~x), where
d~x

dt
= f(~x) is the above system of differential equations. Defining

η = M1(1 − (Np)∗+(Nd)∗

Nmax
), we can write J(~x) =

 J1 J2 J3

J4 J5 J6

 where the blocks J1, J2,

J3, J4, J5, and J6 are given by:

J1(~x) =

0BBBBBBBBBB@

−(l1R∗il + ck1Rp∗
il Np∗ + µai) −l1A∗i l−1 −ck1A∗i Np∗

−l1R∗il −(l1A∗i + µil) l−1 0

l1R∗il l1A∗i −(l−1 + ν1Rp∗
gp130Np∗ + µaa) 0

−ck1Rp∗
il 0 0 −(ck1A∗i + η)ck1Rp∗

il 0 0 ck1A∗i

1CCCCCCCCCCA
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J2(~x) =

0BBBBBBBBBB@

dk−1Np∗ 0 0 0

0 0 0 0

0 0 −ν1A∗aNp∗ ν−1Np∗

dk−1
bl2 0 0

−(dk−1 + bl1Rp∗
gp130 + η) dl−1

bl1A∗s 0

1CCCCCCCCCCA

J3(~x) =

0BBBBBBBBBB@

0 −ck1A∗i Rp∗
il + dk−1A∗s 0

0 0 0

0 −ν1A∗aRp∗
gp130 + ν−1{Aa : Rp

gp130}∗ 0

0 −([Rp
il]tot −Rp∗

il )( M1
Nmax

) −([Rp
il]tot −Rp∗

il )( M1
Nmax

)

0 A∗s( M1
Nmax

) A∗s( M1
Nmax

)

1CCCCCCCCCCA

J4(~x) =

0BBBBBBBBBBBBB@

0 0 0 0

0 0 −ν1Rp∗
gp130 0

0 0 ν1Rp∗
gp130 0

0 0 0 0

0 0 0 0

0 0 0 0

1CCCCCCCCCCCCCA

J5(~x) =

0BBBBBBBBBBBBB@

bl1Rp∗
gp130 −(dl−1 + bl2 + η) bl1A∗s 0

−bl1Rp∗
gp130

dl−1 + bl2 −(bl1A∗s + ν1A∗a + η) ν−1 + ν2

0 0 ν1A∗a −(ν−1 + ν2 + η)

0 bl2 0 ν2

0 0 0 0

0 0 0 0

1CCCCCCCCCCCCCA

J6(~x) =

0BBBBBBBBBBBBBB@

0 {As : Rp
gp130}∗(

M1
Nmax

) {As : Rp
gp130}∗(

M1
Nmax

)

0 −([Rp
gp130]tot −Rp∗

gp130)( M1
Nmax

) −([Rp
gp130]tot −Rp∗

gp130)( M1
Nmax

)

0 {Aa : Rp
gp130}∗(

M1
Nmax

) {Aa : Rp
gp130}∗(

M1
Nmax

)

−(µj + η) J∗( M1
Nmax

) J∗( M1
Nmax

)

− −2κ1κ2
2J∗

(κ2
2+(J∗)2)2

Np∗ −
` κ1(J∗)2

κ2
2+(J∗)2

− η
´
−Np∗( M1

Nmax
) −Np∗( M1

Nmax
)

2κ1κ2
2J∗

(κ2
2+(J∗)2)2

Np∗ κ1(J∗)2

κ2
2+(J∗)2

0

1CCCCCCCCCCCCCCA

To determine the stability properties of the critical points, the Jacobian will be evaluated

at each critical point, and the eigenvalues of the resultant matrix will be calculated. For each
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steady state, either three or six eigenvalues will be left as the roots of cubic polynomials (pi(ξ))

with real positive coefficients. These roots can be evaluated explicitly using available formulas.

However, these expressions will be quite complicated, and of little use, since all that is needed

is the sign of the real parts of these eigenvalues. All real roots of these polynomials must be

negative, since pi(ξ) > 0 for all ξ > 0. However, it is possible for a cubic polynomial to have

two complex conjugate roots. Since some eigenvalues will be represented as roots of cubic

polynomials, the following theorem is needed.

Theorem 5.5: Consider the cubic polynomial p(x) = x3 + bx2 + cx + d. If b, c, d are all

positive and two of the zeros of p(x) are complex conjugates, their real components satisfy the

conditions:

(i) positive if bc < d

(ii) negative if bc > d

(iii) zero if bc = d.

Proof. Assume that p(x) has two complex conjugate roots. To locate these roots, consider the

modulus of p(x),

q(z) = |p(z)|2 = [α3 − 3αβ2 + b(α2 − β2) + cα+ d]2 + (3α2β − β3 + 2bαβ + cβ)2,

where z = α + iβ for α, β ∈ R. The equation p(z) = 0 is equivalent to q(z) = 0. To find the

solutions of q(z) = 0, one must solve the system of equations

α3 − 3αβ2 + b(α2 − β2) + cα+ d = 0

3α2β − β3 + 2bαβ + cβ = 0.

Since we are concerned with the complex roots of p, we can assume β 6= 0. Dividing the second

equation by β, we have β2 = 3α2 + 2bα + c. Substituting this for β2 in the first equation, we

get

α3 + (
7
8
b)α2 +

1
4
(c+ b2)α+

1
8
(bc− d) = 0.
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Hence the real parts of the complex roots of p(x) must be the real roots of

q̂(x) = x3 + (
7
8
b)x2 +

1
4
(c+ b2)x+

1
8
(bc− d)

that satisfy the condition

m = 3x2 + 2bx+ c > 0.

Denote one of these roots by α. Note that q̂ ′(x) = 3x2 + 7
4bx+ 1

4(c+ b2) > 0 for all x > 0.

If bc − d < 0, then q̂(0) < 0. Since lim
x→∞

q̂(x) = ∞, there exists an α > 0 with q̂(α) = 0.

Moreover, the condition 3α2 + 2bα+ c > 0 is satisfied at this α. Hence the real part of the the

complex solutions of p(x) is positive. If bc = d, then q̂(0) = 0. At this α, m = c > 0, so the

real part of the complex solutions of p(x) is zero.

If bc − d > 0, then q̂(0) > 0. Since q̂ ′(x) > 0 for all x > 0, there can be no α ≥ 0 such

that q̂(α) = 0. Hence in this case the real part of the complex solutions of p(x) must be

negative.

First consider the case where Na 6= 0. The only set of critical points in the biological range

is the curve S1. At S1, (Np)∗ = 0, and as a result, η = M1(1 − (Nd)∗

Nmax
). The eigenvalues of

J(S1) are:

λ1 = 0

λ2 = η − κ1(J∗)2

κ2
2 + (J∗)2

λ3 = −(η + µj)

λ4 = λ5 = −η

λ6−8 : Roots of p1(λ) = λ3 + b1λ
2 + c1λ+ d1

λ9−11 : Roots of p2(λ) = λ3 + b2λ
2 + c2λ+ d2

where

b1 = µai + µil + µaa + l−1 + l1(A∗i +R∗il)

c1 = µaiµil + (l−1 + µaa)(µai + µil) + l1(A∗iµai +R∗ilµil + µaa(A∗i +R∗il))

d1 = µaiµil(µaa + l−1) + l1µaa(A∗iµai +R∗ilµil)
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b2 = (k̂1A
∗
i + k̂−1 + η) + (l̂1(A∗s +Rp∗

gp130) + l̂−1 + l̂2 + η + ν1A
∗
a + ν−1 + ν2 + η)

c2 = b2 + (l̂1(A∗s +Rp∗
gp130) + l̂−1 + l̂2 + η)(ν1A

∗
a + ν−1 + ν2 + η)− ν1 l̂1A

∗
aA

∗
s + l̂1R

p∗
gp130(l̂2 − k̂−1)

d2 = (k̂1A
∗
i + k̂−1η)

(
(l̂1(A∗s +Rp∗

gp130) + l̂−1 + l̂2 + η)(ν1A
∗
a + ν−1 + ν2 + η)− ν1 l̂1A

∗
aA

∗
s

)
+ l̂1R

p∗
gp130(l̂2 − k̂−1)(ν1A

∗
a + ν−1 + ν2 + η).

The coefficients b1, c1, and d1 are all clearly positive along S1. Moreover, b1c1 > d1 since

b1c1 =
[
µaiµil(µaa + l−1) + l1µaa(A∗iµai +R∗ilµil)

]
+ µaiµil(µai + µil + l1(A∗i +R∗il)

+ l1(A∗iµai +R∗ilµil)(µai + µil + l−1 + l1(A∗i +R∗il))

+
(

(l−1 + µaa)(µai + µil) + l1µaa(A∗i +R∗il)
)
·
(
µai + µil + µaa + l−1 + l1(A∗i +R∗il)

)
>

[
µaiµil(µaa + l−1) + l1µaa(A∗iµai +R∗ilµil)

]
= d1.

Applying Theorem 5.5 to the polynomial p1 proves that Re(λi) < 0 for i = 6, 7, 8.

The coefficient b2 is clearly positive along S1. c2 and d2 are also positive, since they contain

positive terms identical to their negative terms. Moreover, b2c2 > d2 since

b2c2 = (k̂1A
∗
i + k̂−1 + η)

(
(l̂1(A∗s +Rp∗

gp130) + l̂−1 + l̂2 + η)(ν1A
∗
a + ν−1 + ν2 + η)− ν1 l̂1A

∗
aA

∗
s

)
+ (k̂1A

∗
i + k̂−1 + η)

(
l̂1R

p∗
gp130(l̂2 − k̂−1) + (k̂1A

∗
i + k̂−1 + η)(l̂1(A∗s +Rp∗

gp130)

+ l̂−1 + l̂2 + η + ν1A
∗
a + ν−1 + ν2 + η)

)
+ l̂1R

p∗
gp130(l̂2 − k̂−1)(ν1A

∗
a + ν−1 + ν2 + η)

+ l̂1R
p∗
gp130(l̂2 − k̂−1)(l̂1(A∗s +Rp∗

gp130) + l̂−1 + l̂2 + η)

+
(
l̂1(A∗s +Rp∗

gp130) + l̂−1 + l̂2 + η + ν1A
∗
a + ν−1 + ν2 + η

)
·
(

(k̂1A
∗
i + k̂−1 + η)(l̂1(A∗s +Rp∗

gp130) + l̂−1 + l̂2 + η + ν1A
∗
a + ν−1 + ν2 + η)

+ (l̂1(A∗s +Rp∗
gp130) + l̂−1 + l̂2 + η)(ν1A

∗
a + ν−1 + ν2 + η)− ν1 l̂1A

∗
aA

∗
s

)
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> (k̂1A
∗
i + k̂−1 + η)

(
(l̂1(A∗s +Rp∗

gp130) + l̂−1 + l̂2 + η)(ν1A
∗
a + ν−1 + ν2 + η)− ν1 l̂1A

∗
aA

∗
s

)
+ l̂1R

p∗
gp130(l̂2 − k̂−1)(ν1A

∗
a + ν−1 + ν2 + η)

= d2

where the last inequality again holds due to the presence of postive terms identical to the

negative terms. Applying Theorem 5.5 to the polynomial p2 proves that Re(λi) < 0 for

i = 9, 10, 11.

Note that λ1 and λ2 correspond to the eigenvalues of the simplified system discussed earlier.

If γ =
κ1(J∗)2

κ2
2 + (J∗)2

, β = M1, and µ =
β

γ
, then λ2 = β[1− (Nd)∗

Nmax
− 1

µ ]. If (Nd)∗ < Nmax(1− 1
µ), then

λ2 > 0, while if (Nd)∗ > Nmax(1− 1
µ), then λ2 < 0. It is also assumed that (Nd)∗ ∈ (0, Nmax]

in the biological region, so clearly λ3−4 ≤ 0 with λ3−4 < 0 for (Nd)∗ < Nmax. All other eigen-

values are either negative real numbers or are complex numbers with negative real components.

To determine local stability of the steady state, we make use of the following claim.

Claim 5.6: Let L be a one-dimensional curve of nonisolated steady states, and let J(x∗) be

the Jacobian matrix of the system evaluated at one of these steady states (x∗). If all but one

of the eigenvalues of this matrix have negative real components and the remaining eigenvalue

is 0, then the steady state x∗ is locally stable but not asymptotically stable.

Remarks on Claim 5.6: The key statement of this claim is that we are considering the

local linearlization around a point on a curve of nonisolated steady states. If this point were

isolated, the claim would clearly be false, (see any text on qualitative theory of differential

equations, [8] for example). In the case of a linear system of differential equations, the state-

ment is true. The zero eigenvalue corresponds to the neutrally stable direction along the line

of steady states ([45]), with the line corresponding to the eigenvector for λ = 0. However, I

have been unable to find a proof of this statement in the literature in the case of a nonlinear

system with nonisolated steady states. The result itself was applied in the analysis provided

in [7].
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In our case, it should be true for S1, if not in general. This can be seen by considering

the biology. As long as AHPCs are present and astrocytes continue supplying the cells with

IL6, the AHPCs will continue to differentiate. The only way that differentiation will cease is if

either (1) all cells have differentiated, or (2) there are no more differtiation factors available to

the system. Since the astrocytes are secreting factors at a constant rate, the mechanism must

continue until all AHPCs have differentiated. The proteins being produced by the astrocytes

are not being used; they are just being produced and decaying. It is a ”simple” mechanism

(as opposed to a chemical oscillator), and as such the concentrations of these proteins should

approach equilibrium values.

When an eigenvalue of the linearization of a nonlinear ODE has a zero real component, one

often employs center manifold theory to investigate stability. In this case, it would correspond

to generating a one-dimensional invariant manifold. Stability of the critical point on the mani-

fold is equivalent to local stability of the critical point. However, calculating a center manifold

for this system is a very involved calculation (which is as yet uncompleted), and determining

stability on this center manifold may not be possible due to the complexity of the reduced

system. See [11], [33], and [43] for discussions of Center Manifold Theory. �

The critical points along the curve S1 where (Nd)∗ < Nmax(1− 1
µ) are clearly unstable due

to the positivity of one of the eigenvalues. However, due to λ1 = 0 we cannot simply apply the

principle of linearized stability when (Nd)∗ > Nmax(1− 1
µ). Since we have a curve of nonisolated

steady states we instead apply Claim 5.6. The other ten eigenvalues are negative, so the critical

points along the curve S1 where (Nd)∗ > Nmax(1− 1
µ) are stable, but not asymptotically stable.

Biological reasoning also leads to the conclusion that these steady states should be stable, and

was discussed both during the analysis of the steady states for the simplified system provided

earlier in this chapter, and in the remarks for Claim 5.6.

Now consider the case whereNa = 0. There are two curves of critical points in the biological

range: T1 and T2. We first look at T1. Along this curve, (Np)∗ = 0 and η = M1(1 − (Nd)∗

Nmax
).
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The eigenvalues of J(T1) are:

λ1 = 0, λ5 = −(l−1 + µaa)

λ2 = −µai, λ6 = −(ν−1 + ν2 + η)

λ3 = −µil, λ7 = λ8 = −η

λ4 = −(µj + η), λ9 = η

λ10−11 =
1
2

(
−[γ + l̂2 + l̂−1 + η]±

√
(γ + l̂2 + l̂−1 + η)2 − 4(l̂−1(η + k̂−1) + γ(l̂2 + η))

)
where

γ = k̂−1 + l̂1[R
p
gp130]tot + η.

All points along T1 are unstable due to the presence of the positive eigenvalue λ9. This is

a logical result when considered from a biological standpoint. In the absence of astrocytes,

this critical point is only attainable if there are no AHPCs present initially. If any AHPCs

are introduced, they will then proliferate until the total cell population reaches the carrying

capacity. No astrocytes are present to produce the proteins needed for these AHPCs to dif-

ferentiate. If some proteins are introduced to the system at time t = 0 some differentiation

will occur provided Np(0) > 0, but the proteins decay, and the remaining cells will be still be

capable of proliferation. This reasoning also hints to points along the curve T2 being stable.

We now consider T2. Along this curve, (Np)∗ = Nmax − (Nd)∗ and η = 0. The eigenvalues

of J(T2) are:

λ1 = λ2 = λ3 = 0, λ4 = −µil, λ5 = −µj , λ6 = −(Np)∗
M1

Nmax

λ7−8 =
1
2

(
−[ν−1 + ν2 + γ1]±

√
(ν−1 + ν2 + γ1)2 − 4(ν−1(l−1 + µaa) + ν2γ1)

)
λ9−11 : Roots of p(λ) = λ3 + bλ2 + cλ+ d

where

γ1 = l−1 + µaa + ν1[R
p
gp130]tot(Np)∗

γ2 = µai + k̂1[R
p
il]tot(Np)∗
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b = γ2 + l̂−1 + l̂2 + k̂−1 + l̂1[R
p
gp130]tot

c = γ2 · (l̂−1 + l̂2 + l̂1[R
p
gp130]tot) + l̂2(k̂−1 + l̂1[R

p
gp130]tot) + k̂−1(µai + l̂−1)

d = γ2 l̂2 l̂1[R
p
gp130]tot + k̂−1µai(l̂−1 + l̂2).

The coefficients b, c, and d are all clearly positive along T2. Moreover, bc > d since

bc = γl̂2 l̂1[R
p
gp130]tot + γ ·

(
γ2(l̂−1 + l̂2 + l̂1[R

p
gp130]tot) + l̂2k̂−1 + k̂−1(µai + l̂−1)

)
+ k̂−1µai(l̂−1 + l̂2) + k̂−1µai ·

(
l̂1[R

p
gp130]tot + k̂−1

)

+
(
l̂−1 + l̂2 + l̂1[R

p
gp130]tot + k̂−1

)
·
(
γ(l̂−1 + l̂2 + l̂1[R

p
gp130]tot) + l̂2(k̂−1 + l̂1[R

p
gp130]tot) + k̂−1 l̂−1

)
> γl̂2 l̂1[R

p
gp130]tot + k̂−1µai(l̂−1 + l̂2)

= d.

Applying Theorem 5.5 again proves that Re(λi) < 0 for i = 9, 10, 11. However, there is a

problem due to the existence of three zero eigenvalues. Only one of these would correspond

to the neutrally stable direction along the one-dimensional curve of steady states, therefore

we cannot apply Claim 5.6. Hence we cannot conclude that points along T2 are stable just by

considering the local linearization around T2. However, the curve T2 is likely stable due to the

biological reasoning presented after the analysis of T1.

Since we are attempting to establish stability of points along the curve T2, for which

(Np)∗ 6= 0, we assume Np does not approach 0 as t → ∞. Then, since Np(t0) = 0 implies

Np(t) = 0 for all t > t0, there exists ε > 0 such that Np(t) > ε for all t > 0. Recall that for

any solution φ(t) of the ODE system with φ(0) = ξ ∈ Ω+, φ(t) ∈ Ω+ for all t > 0. Define the

function

V (~x) = 2[Ai] + [Ril] + 3[Aa] +Np

(
2[As] + 3[{Aa : Rp

gp130}] + 2[{As : Rp
gp130}] + J

)
+

1
2

(
Nmax − (Np +Nd)

)2
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where ~x = ([Ai], [Ril], [Aa], [As], [{Aa : Rp
gp130}], [{As : Rp

gp130}], [J ], Np, Nd)T . This function

is positive definite in Ω+ since V (ξ) = 0 for all ξ ∈ T2 and V (ξ) > 0 for all ξ ∈ Ω+\{T2}.

Moreover, it can be interpreted as the distance of φ(t) to the curve of steady states T2. [Rp
il]

and [Rp
gp130] are not included in this function, because if [As] → 0, [{Aa : Rp

gp130}] → 0, and

[{As : Rp
gp130}] → 0, conservation laws show that [Rp

il] → [Rp
il]tot and [Rp

gp130] → [Rp
gp130]tot.

Taking the derivative of V (~x) with respect to time along the solution curve,

dV

dt
=

∑ ∂V

∂xi

∂xi

∂t
= ∇V · f(~x)

= −
[
Np

(
2ν2[{Aa : Rp

gp130}] + l̂2[{As : Rp
gp130}] + µjJ

)
+ 2µai[Ai] + µil[Ril] + 3µaa[Aa]

+
κ1[J ]2

κ2
2 + [J ]2

Np(2[As] + 3[{Aa : Rp
gp130}] + 2[{As : Rp

gp130}] + [J ])

+
(
Nmax − (Np +Nd)

)(
M1N

p(1− Np +Nd

Nmax
)
)]

< −
[
ε

(
2ν2[{Aa : Rp

gp130}] + l̂2[{As : Rp
gp130}] + µjJ

)
+ 2µai[Ai] + µil[Ril] + 3µaa[Aa]

+ ε
κ1[J ]2

κ2
2 + [J ]2

(2[As] + 3[{Aa : Rp
gp130}] + 2[{As : Rp

gp130}] + [J ])

+
(
Nmax − (Np +Nd)

)(
M1N

p(1− Np +Nd

Nmax
)
)]

≤ 0 in Ω+.

Define the subspace ω` = (0, 0, 0, [Rp
il]tot− [As]∗, [As]∗, [R

p
gp130]tot, 0, 0, 0, Nmax− (Nd)∗, (Nd)∗),

where [As]∗ > 0 and (Nd)∗ ∈ (0, Nmax) are both arbitrary. The above calculation shows that
dV

dt
< 0 for all ξ ∈ Ω+\ω`, but

dV

dt
= 0 for all ξ ∈ ω`. This shows that the curve of steady

states T2 is stable. Any solution curve φ(t) with initial condition ξ ∈ Ω+ will remain ”near”

T2 as t→∞, in the sense that the distance between the two curves, measured by V (~x), does

not increase. This is provided φ(t) is such that Np does not converge to 0.

However, we can claim that T2 is asymptotically stable. First note that
dV

dt
< 0 for all

ξ ∈ Ω+\ω`. Choose any number Nd
∞ ∈ (0, Nmax) and consider the line

~L = (0, 0, 0, [Rp
il]tot − [As]∗, [As]∗, [R

p
gp130]tot, 0, 0, 0, Nmax −Nd

∞, N
d
∞),



92

so that ~L ⊂ ω`. Evaluating the vector field f(~x) at any point along the line ~L shows that
d[Ai]
dt

> 0,
d[As]
dt

< 0,
d[Rp

il]
dt

> 0,
d[Rp

gp130]
dt

< 0, and
d[{As : Rp

gp130}]
dt

> 0. In other words, if

the solution curve intersects the line ~L, it does not remain on the line; the vector field drives the

curve back into Ω+\{ω`}, where
dV

dt
< 0. Hence the curve of steady states T2 is asymptotically

stable. Note however that nothing has been said about the stability of individual steady states

along T2; we have only shown here that

[Ai] → 0, [Ril] → 0, [Aa] → 0, [Rp
il] → [Rp

il]tot, [As] → 0, [J ] → 0

[Rp
gp130] → [Rp

gp130]tot, [{Aa : Rp
gp130}] → 0, [{As : Rp

gp130}] → 0, Np+Nd → Nmax.

A derivation of the Lyapunov function V (~x), and a more detailed computation showing
dV

dt
≤ 0

along the solution curve φ(t), are provided in Appendix D.
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CHAPTER 6. Spatial Variation and Chemotaxis

This dissertation has thus far been solely concerned with a population model for the ex-

periments discussed in Chapter 1. However, there is a spatial element that must be addressed.

Experiments are performed on one of two types of substrates. One type is smooth, consisting

of a uniform layer of laminin coating a nonpatterned polystyrene substrate. The other type

of substrate can be referred to as the patterned substrate. The polystyrene substrate is mi-

croetched to introduce multiple evenly-spaced parallel grooves. The grooves may be termed

troughs, and they are separated by mesas. The groove width is 16 µm, the mesa width is 13

µm, and the mesa height (groove depth) is 4 µm. A uniform layer of laminin is then applied

to the substrate.

First consider the simulations on the nonpatterned substrate. A spatial model would

consider activity over a two-dimensional region [0, Lx] × [0, Ly]. However, it can be claimed

that analysis of the population model will suffice due to the spatial homogeneity of all species

involved. In each experiment, AHPCs are plated uniformly, and astrocyte density is either

uniform or nonexistent. It has been observed that there is little to no movement of the cell

bodies of either the AHPCs or the astrocytes during these experiments. All molecules present

on the nonpatterned substrate are therefore either added uniformly by adding homogeneous

cultured media to the system, or they are secreted by the astrocytes which are present in a

uniform density, again causing the addition of chemicals to be uniform.

Now consider the simulations on the patterned substrate. When astrocytes are not present

on the plate (i.e. all but the contact coculture experiment), all chemicals are again added

to the system uniformly as described above. Moreover, there is little to no cell movement

occuring. Hence the uniform layer of AHPCs plated on the substrate remains uniform. By
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the same reasoning as the smooth substrate experiments, it can be argued that the population

model will suffice for the analysis. Note also that for the experimental data in Table 1.1, the

same percentage of cells differentiated regardless of whether the experiments occurred on the

patterned or nonpatterned substrate. This is another argument for considering the population

model in this instance.

This reasoning no longer holds for the contact coculture on the patterned substrate. In this

experiment, a uniform layer of astrocytes is applied to the laminin at a density of 1.5×104 cells

cm2

and cultured for two days. After this period of time, it is found that the astrocytes have

aggregated in the grooved regions. The AHPCs are then plated above the astrocytes, in direct

contact with them. Since astrocytes are secreting active molecules in this system, we no longer

can use the assumption that all molecules are being added to the system uniformly. Hence

AHPCs in some regions may be exposed to different concentrations of active molecules than

AHPCs in other regions. Thus we must consider a spatial model. However, instead of modeling

this environment as a three-dimensional region, we may consider cellular differentiation on a

representative two-dimensional region. When the astrocytes arrange themselves in the grooves,

they roughly form a striped monolayer. AHPCs are then plated onto these astrocytes. Thus

their action is occurring on a two-dimensional region. The grooves then correspond to regions

of high astrocyte density, and the mesas correspond to regions of low astrocyte density. The

astrocyte density of the representative portion of the plate used in the numerical simulations

is illustrated in Figure 6.1.

To understand how to modify the population model to take into account spatial considera-

tions, it is important to understand the mathematical aspects of random motion (i.e. diffusion)

and directed motion (i.e. chemotaxis).

6.1 Spatial Movement of Molecular/Cellular Species

The model under consideration in this chapter involves spatial variations existing in only

two dimensions, corresponding to those of the flat surface AHPCs are placed on. Concentra-

tions of species are considered to be homogeneous with respect to the height dimension. Let A
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Figure 6.1 Astrocyte density for numerical simulations. Regions of high
density correspond to troughs and regions of low density corre-
spond to mesas.

be an arbitrary rectangle of this two-dimensional surface, and let S denote its boundary. The

rate of change of the quantity of Z within A is equal to the net inflow of Z through through S

plus the net change in Z within A due to production and degradation. The net inflow through

S is the negative of the net outflow, so

∂

∂t

∫∫
A

[Z]dxdy =
∫∫
A

Q(z)dxdy −
∫
S

J (z) · ndS.

Q(z) is the net change in Z due to production and degradation per unit area per unit time. It

has units of
cells

cm2 · hr
. J (z) is the flux of Z, the net amount leaving A through a unit length

segment of S per unit time, and n is the outward unit vector normal to S. It has units of

mass per length per time, in our case
cells

cm · hr
. Applying the divergence theorem, and assuming

[Z](x, y) is continuous, yields∫∫
A

(∂[Z]
∂t

+∇ · J (z) −Q(z)
)
dxdy = 0.

This is true for all regions A, therefore the integrand must be zero,

∂[Z]
∂t

= −∇ · J (z) +Q(z).
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The function Q(z) is given by the kinetic terms of the population model. The term we must

study is J (z), the flux of species Z. This term describes the net movement of Z.

To examine the flux of Z, we consider a system where there is no production or degradation

of Z, that is Q(z) = 0. Then
∂[Z]
∂t

= −∇ · J . We first examine the case where there are no

attractive or repelling forces present and movement is in one dimension only. Due to the

bombardment of a molecule of Z by other molecules of Z, we assume that after a time ∆t, a

molecule at x moves to either x − ∆x or x + ∆x. Since there are no attractive or repelling

forces, and the bombardment of other molecules is random, the probability of moving in either

direction is equal, both being 1/2.

Figure 6.2 Diagram for the derivation of the flux terms. The box is labelled
V , and the surface the molecules pass through is S.

Consider this one dimensional movement within a small box V , a portion of the environment

where the molecules reside. Half of the molecules in the box V will leave the box through S,

and let A be the area of S. Half of the molecules in an identical box between x + ∆x and

x+ 2∆x will enter V through S. Hence the net outflow through S is

1
2

∫ x+∆x

x
[Z](s)Ads− 1

2

∫ x+2∆x

x+∆x
[Z](s)Ads

every ∆t hours. Therefore

J (z) =
1

2∆t

[ ∫ x+∆x

x
[Z](s)ds−

∫ x+2∆x

x+∆x
[Z](s)ds

]
molecules exit through S per unit area per unit time. Define G(x) =

∫ x

0
[Z](s)ds and F (x) =
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∫ x+∆x

x
[Z](s)ds. Expanding G with a Taylor series to the second order, we get

G(x+ ∆x) = G(x) +G′(x)∆x+G′′(x)
(∆x2

2

)
+O(∆x3)

=
∫ x

0
[Z](s)ds+ [Z](x)∆x+

d[Z]
dx

(∆x2

2

)
+O(∆x3)

G(x+ 2∆x) = G(x+ ∆x) +G′(x+ ∆x)∆x+G′′(x+ ∆x)
(∆x2

2

)
+O(∆x3)

=
∫ x+∆x

0
[Z](s)ds+ [Z](x+ ∆x)∆x+

d[Z]
dx

(∆x2

2

)
+O(∆x3).

Note that

J (z) =
−1
2∆t

[
F (x+ ∆x)− F (x)

]
=
−1
2∆t

[ ∫ x+2∆x

x+∆x
[Z](s)ds−

∫ x+∆x

x
[Z](s)ds

]
=
−1
2∆t

[ ∫ x+2∆x

0
[Z](s)ds− 2

∫ x+∆x

0
[Z](s)ds+

∫ x

0
[Z](s)ds

]
=
−1
2∆t

[
G(x+ 2∆x)− 2G(x+ ∆x) +G(x)

]
=
−1
2∆t

[
G(x+ ∆x) +G′(x+ ∆x)∆x+G′′(x+ ∆x)

(∆x2

2

)
−G(x+ ∆x)

−G(x)−G′(x)∆x−G′′(x)
(∆x2

2

)
+G(x) +O(∆x3)

]
=
−1
2∆t

[
G(x+ ∆x) +G′(x+ ∆x)∆x+G′′(x)

(∆x2

2

)
+O(∆x3)−G(x+ ∆x)

−G(x)−G′(x)∆x−G′′(x)
(∆x2

2

)
+G(x) +O(∆x3)

]
= − ∆x

2∆t

[
G′(x+ ∆x)−G′(x)

]
+O

(∆x3

∆t

)
= −∆x2

2∆t

[ [Z](x+ ∆x)− [Z](x)
∆x

]
+O

(∆x3

∆t

)
.

Taking the limit as ∆x→ 0 and ∆t→ 0 such that lim
∆x,∆t→0

[∆x2

2∆t

]
= D, we get J (z) = −D∂[Z]

∂x
,

the flux of Z. This can be repeated along the y-axis (and also the z-axis) to show that in the

absence of attractive and repulsive forces, the flux is J (z) = −D∇[Z]. That is, molecules flow

down their gradient, from regions of high density to regions of lower density.

Now consider the case where cells undergo chemotaxis, so that the movement of Z is influ-

enced by another chemical C. Suppose that the decision of when the cells move is independent

of the decision of where to move ([42]). We can then assume as above that after a time ∆t, a
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molecule at x moves to either x−∆x or x+∆x. This movement is governed by a continuously

differentiable function f(C), which is related to the chemotactic sensitivity, a measure of how

strong of an influence C has on Z. For simplicity we use f
(
C(x ± ∆x

2 )
)

to determine if a

molecule of Z moves right or left. (At the end of the derivation, we take the limit as ∆x→ 0

and this becomes a reading of C in the immediate neighborhood of the cell. Long-range sam-

pling is not included in this derivation; that situation is discussed in [39]). All cells take one

step of length ∆x every ∆t period of time, so the probability that Z moves right/left from x is

T±(x) =
f
(
C(x± ∆x

2 )
)

f
(
C(x− ∆x

2 )
)

+ f
(
C(x+ ∆x

2 )
) . The flux of cells through S out of V is then given

by

J (z) =
−1
∆t

[ ∫ x+2∆x

x+∆x
T−(s)[Z](s)ds−

∫ x+∆x

x
T+(s)[Z](s)ds

]
.

Defining

g(x) = f
(
C(x)

)
G±(x) =

∫ x

0

g(s± ∆x
2 )

g(s− ∆x
2 ) + g(s+ ∆x

2 )
[Z](s)ds

and proceeding as above, we get

J (z) = − 1
∆t

[
G−(x+ 2∆x)−G−(x+ ∆x)−G+(x+ ∆x) +G+(x)

]
= − 1

∆t

[
G−(x+ ∆x) +G′

−(x+ ∆x)∆x+G′′
−(x+ ∆x)

(∆x2

2

)
+O(∆x3)

−G−(x+ ∆x)−G+(x)−G′
+(x)∆x−G′′

+(x)
(∆x2

2

)
+O(∆x3) +G+(x)

]
= − 1

∆t

[
G−(x+ ∆x) +G′

−(x+ ∆x)∆x+G′′
−(x)

(∆x2

2

)
+O(∆x3) +O(∆x3)

−G−(x+ ∆x)−G+(x)−G′
+(x)∆x−G′′

+(x)
(∆x2

2

)
+O(∆x3) +G+(x)

]
= −∆x

∆t

[
G′
−(x+ ∆x)−G′

+(x)
]

+
(∆x2

2∆t

)[
G′′
−(x)−G′′

+(x) +O(∆x)
]

= −∆x2

∆t

[ 1
∆x

(
G′
−(x+ ∆x)−G′

+(x)
)]

+
(∆x2

2∆t

)[
G′′
−(x)−G′′

+(x) +O(∆x)
]

= −∆x2

∆t
g(x+

∆x
2

)
[ 1
∆x

( 1
g(x+ ∆x

2 ) + g(x+ 3∆x
2 )

[Z](x+ ∆x)

− 1
g(x+ ∆x

2 ) + g(x+ 3∆x
2 )

[Z](x) +
1

g(x+ ∆x
2 ) + g(x+ 3∆x

2 )
[Z](x)

− 1
g(x− ∆x

2 ) + g(x+ ∆x
2 )

[Z](x)
)]

+
(∆x2

2∆t

)[
G′′
−(x)−G′′

+(x) +O(∆x)
]
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Finally, since

lim
h→0

(
g(x+ 3h

2 ) + g(x+ h
2 )

)−1
−

(
g(x+ h

2 ) + g(x− h
2 )

)−1

h

= lim
h→0

[ g(x+ h
2 ) + g(x− h

2 )− g(x+ 3h
2 )− g(x+ h

2 )(
g(x+ h

2 ) + g(x− h
2 )

)(
g(x+ 3h

2 ) + g(x+ h
2 )

)
h

]

= lim
h→0

[g(x+ 3h
2 )− g(x− h

2 )
h

· −1(
g(x+ h

2 ) + g(x− h
2 )

)(
g(x+ 3h

2 ) + g(x+ h
2 )

)]
=
−2g′(x)
4g2(x)

we get that in the limit as ∆x→ 0 and ∆t→ 0 such that lim
∆x,∆t→0

∆x2

2∆t
= D,

J (z) = −Dg(x)
g(x)

∂[Z]
∂x

+D
g′(x)g(x)
g2(x)

[Z](x)

= −D∂[Z]
∂x

+D
g′(x)
g(x)

[Z](x)

= −D∂[Z]
∂x

+D
f ′(C)
f(C)

[Z](x)
∂C

∂x

= −D∂[Z]
∂x

+ χ(C)[Z]
∂C

∂x
.

This can be repeated along the y-axis (and also the z-axis) to show that in the presence of

an attractive and repulsive force, the flux is J (z) = −D∇[Z] + χ(C)[Z]∇[C]. The first term

represents random motion, while the second term represents directed motion. The function

χ(C) = D
(

ln (f(C)
)′

is referred to as the chemotactic sensitivity. If χ(C) > 0, then positive

taxis occurs; [Z] tends to move up the gradient of C to regions of higher concentration. If

χ(C) < 0, then negative taxis occurs; [Z] tends to move down the gradient of C to regions

of lower concentration. This motion can either work in concert with, or in opposition to, the

tendency to move down the gradient of [Z] to regions of lower concentration of the moving

species Z. This interplay can have interesting consequences; see [31] and [42] for details.

If [Z] responds to multiple attractive and repulsive forces, the flux term can be generalized

to one of the form

J (z) = −D∇[Z] + [Z]
N∑

i=1

χi(Ci)∇Ci.

One may also extend this idea to a quorom-sensing mechanism, where the rate of random

motion of [Z] depends on its population density, so that J(z) = −D([Z])∇[Z]. This can occur
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in models for insect dispersal, where population pressures can influence the rate of dispersal. A

typical forms for D([Z]) are D([Z]) = D0

( [Z]
[Z]0

)m
or D([Z]) = D0

[
1 + ε

( [Z]
[Z]0

)m]
, for m > 0,

and D0, ε, and [Z]0 positive constants. This situation is discussed more in [39]. Responses

to long-range stimuli are also presented in [39]. Many aspects of diffusion, from both the

microscopic and macroscopic viewpoint are presented in [6]. Finally, these same equations for

the flux terms can be derived through a reinforced random walk, where one considers how

the probability density changes according to the chemical master equation. This approach is

studied in [42]. The presentation provided here is based on the work in [25].

6.2 Spatial Model for the Contact Coculture

Movement of the cell types Np and Nd occur in two-dimensions, and the mathematical

derivations of their flux terms are given above. It has been observed that little cell movement

is occuring in the experiments of interest, so we let the corresponding flux terms be comprised

solely of random motion,

J (np) = −Dp∇Np, J (nd) = −Dd∇Nd.

No chemotaxis is occurring with these flux terms. The soluble chemicals are of a much smaller

scale with respect to size than the cells, and are moving in three dimensions within the media.

However, we assume their concentrations are homogeneous with respect to their height within

the fluid so that we only consider movement in two dimensions. The relevant relationship is

that 0.5 mL of media covers 1 cm2 plate with a uniform thickness. Molecules are much simpler

than cells, so we assume that those of interest do not undergo significant attractive or repulsive

influences from other chemicals. They then move solely under diffusion, so J (z) = −Dz∇[Z]

for Z ∈ {Ai, Ril, Aa, Gp, Ao}.

The movement of J presents some difficulty. J is an intracellular molecule measured in
nmol

cell
, so its movement is coupled to the movement of Np. Let η = [J ] ·Np, so that the units

of η are
nmol

cm2
. The change in η with respect to time is given by

∂η

∂t
= −∇ · J (η) +Q(η).
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The mechanisms producing J increase η at the rate

(̂̀2[{As : Rp
gp130}] + ν2[{Aa : Rp

gp130}])N
p.

It decays at the rate −µjη. Proliferation of Np does not alter η since no J is being created or

destroyed during this process, however differentiation decreases η at the rate

−
( κ1[J ]2

κ2
2 + [J ]2

Np +
θ1

θ2 +
(

Nd

Np+Nd

)2N
p
)
[J ].

For every AHPC that moves, [J ] nmol of J move, so the flux of η is J (η) = [J ]J (np). Recall

that if φ is a scalar function and F is a vector field,

∇ · (φF ) = ∇φ · F + φ∇ · F.

Applying this identity, we have

∇ · J (η) = ∇ · ([J ]J (np))

=
(
∇[J ]

)
· J (np) + [J ]∇ · J (np)

which, after rearranging and dividing by Np, yields the relation

−
(
∇[J ]

)
·
(J (np)

Np

)
=
−1
Np

∇ · J (η) +
[J ]
Np

∇ · J (np).

Finally,

∂[J ]
∂t

=
∂

∂t

( η

Np

)
=

1
Np

∂η

∂t
− η

(Np)2
∂Np

∂t
=

1
Np

∂η

∂t
− [J ]
Np

∂Np

∂t

=
−1
Np

∇ · J (η) + ̂̀
2[{As : Rp

gp130}] + ν2[{Aa : Rp
gp130}]− µj [J ]

− κ1[J ]2

κ2
2 + [J ]2

[J ]− θ1

θ2 +
(

Nd

Np+Nd

)2 [J ] +
[J ]
Np

∇ · J (np)

−M1[J ]
(
1− Np +Nd

Nmax

)
+

κ1[J ]2

κ2
2 + [J ]2

[J ] +
θ1

θ2 +
( Nd

Np +Nd

)2
[J ]

=
−1
Np

∇ · J (η) +
[J ]
Np

∇ · J (np) + ̂̀
2[{As : Rp

gp130}] + ν2[{Aa : Rp
gp130}]

− µj [J ]−M1[J ]
(
1− Np +Nd

Nmax

)
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so that we finally get the equation for [J ]:

∂[J ]
∂t

= −
(
∇[J ]

)
·
(J (np)

Np

)
+ ̂̀

2[{As : Rp
gp130}]+ν2[{Aa : Rp

gp130}]−µj [J ]−M1[J ]
(
1−N

p +Nd

Nmax

)
.

By defining γ = M1

(
1−Np +Nd

Nmax

)
we get the following system of reaction-diffusion equations

for our model:

∂[Ai]
d∂t

= Dai∆[Ai] + Sai(t) + a1Na − l1[Ai][RIl] + l−1[Aa]− k̂1[Ai][R
p
Il]N

p + k̂−1[As]Np − µai[Ai],

∂[RIl]
∂t

= Dil∆[RIl] + SIl(t) + baNa − l1[Ai][RIl] + l−1[Aa]− µIl[RIl],

∂[Aa]
∂t

= Daa∆[Aa] + Saa(t) + l1[Ai][RIl]− l−1[Aa]− k1[Aa][Gp] + k−1[Ao]

− ν1[Aa][R
p
gp130]N

p + ν−1[{Aa : Rp
gp130}]N

p − µaa[Aa],

∂[Gp]
∂t

= Dgp∆[Gp] + Sgp(t) + saNa − k1[Aa][Gp] + k−1[Ao]− µgp[Gp],

∂[Ao]
∂t

= Dao∆[Ao] + Sao(t) + k1[Aa][Gp]− k−1[Ao]− µao[Ao],

∂[J ]
∂t

= −
(
∇[J ]

)
·
(−Dp∇Np

Np

)
+ l̂2[{As : Rp

gp130}] + ν2[{Aa : Rp
gp130}]− µj [J ]− γ[J ],

∂Np

∂t
= Dp∆Np − κ1[J ]2

κ2
2 + [J ]2

Np − θ1

θ2 +
( Nd

Np +Nd

)2
Np + γNp,

∂Nd

∂t
= Dd∆Nd +

κ1[J ]2

κ2
2 + [J ]2

Np +
θ1

θ2 +
( Nd

Np +Nd

)2
Np,

with AHPC receptor concentrations

b =
L[Rp

gp130]0 + ([Rp
gp130]0 − [Rp

il]0)[Ai]

K̂ + [Ai]
+
L̂(V + [Aa])

V
,

c =
−L̂(V + [Aa])[Ai][R

p
il]0

V (K̂ + [Ai])
,

[As] = (−b+
√
b2 − 4c)/2,

[{Aa : Rp
gp130}] =

L[Rp
gp130]0 + [Ai]([R

p
gp130]0 − [Rp

Il]0) + (K̂ + [Ai])[As]
(L+ [Ai])(V + [Aa])

[Aa],

[{As : Rp
gp130}] =

[Ai][R
p
il]0 − (K̂ + [Ai])[As]
L+ [Ai]

,

[Rp
il] = [Rp

il]0 − [As]− [{As : Rp
gp130}],

[Rp
gp130] = [Rp

gp130]0 − [{Aa : Rp
gp130}]− [{As : Rp

gp130}],
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where L =
bl2+γck1

, L̂ = L̂m + γbl1 , V = Vm + γ
ν1

, and K̂ = K̂d + γck1
.

To aid in the numerical simulations, it is useful to consider the evolution of η instead of

[J ], so we can instead use

∂η

∂t
= −∇ ·

(
η
J (np)

Np

)
+ (̂̀2[{As : Rp

gp130}] + ν2[{Aa : Rp
gp130}])N

p

−
( κ1η

2

κ2
2(Np)2 + η2

+
θ1

θ2 +
(

Nd

Np+Nd

)2

)
η − µjη.

Note that the movement of η due to the random motion of Np can be viewed as a chemotactic

repulsion of η down the gradient of Np:

J (np) = −D∇Np

⇒ η
J (np)

Np
= −Dη

Np
∇Np = −Dη∇ ln(Np).

Initial conditions for the spatial model are identical to the population model:

[Ai](x, y, 0) = [Aa](x, y, 0) = [Ao](x, y, 0) = [RIl](x, y, 0) = [Gp](x, y, 0) = 0

[Rp
Il](x, y, 0) = [Rp

il]0, [Rp
gp130](x, y, 0) = [Rp

gp130]0

[As](x, y, 0) = [{Aa : Rp
gp130}](x, y, 0) = [{As : Rp

gp130}](x, y, 0) = 0

Np(x, y, 0) = Np
0 , Nd(x, y, 0) = 0.

We must also specify the distribution of astrocytes since it is nonuniform. We simulate a

319µm × 319µm section of the plate and normalize lengths, so that Lx = Ly = 1. Since the

groove width is 16µm and the mesa width is 13µm, this magnification corresponds to a region

with 11 grooves and 10 full mesas, with an additional half-mesa on each end. This particular

area for the simulation then has 55.2% of its area in the grooved regions and 44.8% on the

mesas. It has been observed that approximately 90% of astrocyte density is in the grooved

regions and 10% of astrocyte density is on the mesas. Hence the density in the grooved region

is given by[(1.5× 104cells

cm2

)
· (total area of plate) · (90%)

]
·
( 1

total area of grooves

)
=

(1.5× 104cells

cm2

)
· (90%) ·

(
% of area in grooves

)−1

= 2.44565× 104 cells

cm2
.
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The density on the mesas is calculated similarly, yielding a density of 0.3343× 104 cells

cm2
.

Finally, this model must also include boundary conditions. To derive these, consider the

pattern of the substrate, which is the inverse of that illustrated in Figure 6.1. Note that the

substrate, and hence the astrocyte density, is constant in the direction along the grooves and

mesas, Na(x, y1) = Na(x, y2) for all y1, y2 ∈ [0, Ly]. Since this 319µm× 319µm subplate is one

of many identical subplates comprising the 1cm × 1cm plate, it is natural to assume no-flux

boundary conditions in this direction. This boundary condition is valid under the asssumption

that identical concentrations of species Z leave the subplate through this boundary as enter

the subplate through this boundary from an adacent subplate. The B.C.’s are then given

by
∂[Z]
∂y

= 0 for Z ∈ {Ai, Ril, Aa, Gp, Ao} and J (z) · ν = 0 for z ∈ {np, nd} where ν is the

outward unit normal vector, along the boundaries (x, 0) and (x, Ly) for x ∈ [0, Lx]. Note

that [J ] automatically satisfies the no-flux B.C.’s when Np satisfies them. The other direction

along the subplate can be considered to have periodic boundary conditions, again due to

this subplate being one of many repeating identical subplates. The B.C.’s are then given by

[Z](0, y, t) = [Z](Lx, y, t) for all y ∈ [0, Lx] and Z ∈ {Ai, Ril, Aa, Gp, Ao, J}, and with Np or

Nd in place of [Z].

6.3 Results

All of the surfaces generated by the simulations have the property that they are constant

along the grooves/mesas. This is due to the homogeneity of all species in this direction.

Therefore, rather than presenting three-dimensional surfaces of the entire plate, a profile is

taken of the surface. Two graphs will be shown. A two-dimensional graph is formed by

superimposing profiles taken at twelve hour intervals in the same plot. A three-dimensional

surface is formed by taking profiles at six hour intervals and plotting them against time.

6.3.1 Random Motion of Progenitor Cells

Experimentally it has been shown that approximately 35% of the cells on the patterned

substrate differentiate after six days in the contact coculture experiment. Meanwhile, on the
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smooth substrate, only about 20% of the cells differentiate. During the noncontact coculture

experiment, both on the smooth substrate and the patterned substrate, approximately 70% of

the cells differentiate. The only difference between the contact coculture and the noncontact

coculture is the direct contact between the astrocytes and AHPCs. In Chapter 3 it was

discussed that the second pathway of the IL6 mechanism (via soluble receptors) is likely being

inactivated by the direct contact. This would occur by inhibiting the secretion of Ril from the

astrocytes. However, to reduce differentiation to 20%, we also needed to reduce the secretion

of Ai to (1/200)th of its normal rate. Since this behavior occurs during direct contact, it

could possibly be mediated by cadherin binding. On the patterned substrate, much of the

astrocyte density is in the grooves. The area of the astrocytes accessible to the AHPCs is

decreased relative to that available on the smooth substrate. Therefore there would be less

cadherin binding, so it would be reasonable to assume that the secretion of Ai is not reduced

as drastically on the patterned substrate. Figure 6.3 shows that if a1 is lowered to (1/25)th of

its noncontact rate, then we can achieve approximately 35% differentiation after six days.

6.3.2 Exploration of Other Flux Terms

Although little to no cell movement has been observed in this system, it is interesting

to see numerically what effects chemotactic movement may have. In this section, we start

with the above system using a1 = (1 × 10−11)/200 nmol
cell·hr and ba = 0 as the basal case, and

add various chemotactic terms to see the effects. Without chemotaxis, this system yields

23.47% differentiation. When all species are homogeneous and no movement occurs (which is

simulated with the population model), the maximum level of differentiation possible over a six

day period with only the first IL6 pathway is approximately 35%, due to the saturation of Rp
il.

We will explore this case by allowing chemotactic movement of AHPCs up the gradient of IL6.

However, there is a slight problem with this. The diffusion rate of Ai can be approximated

from its radius to be 4.86× 10−4 cm2

hr . With this rate, Ai diffuses quickly over the substrate, so

that its concentration is roughly uniform, and hence there is little to no gradient for the cells

to follow. Therefore we reduce the diffusion coefficient to 4.86× 10−8 nmol
cm2·hr

, which is of
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Figure 6.3 (left) Time evolution of profile, every 6 hours, no taxis. (right)
Proflies taken every 12 hours to show densities in different re-
gions.
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the same order as the rates calculated for the cells. This allows gradients of Ai to exist, and

allows chemotaxis to occur.

Since we are allowing chemotaxis of Np to gradients of Ai, we now have a flux term of the

form

J (np) = −Dp∇Np + χ(Ai)Np∇[Ai].

We first take χ(Ai) to be constant, and then we take it to be a saturable function. Since IL6

is an active differentiation factor for AHPCs, we assume that it is an attracting molecule, so

that we have positive taxis. First let χ(Ai) = χ0. Three cases are presented in Figure 6.4,

Figure 6.5, and Figure 6.6. We have χ0 = 1 × 103 cm2

µM ·hr for Figures 6.4, χ0 = 1 × 104 cm2

µM ·hr

for Figure 6.5, and χ0 = 1 × 105 cm2

µM ·hr for Figure 6.6. In each case, cells are being driven up

the gradient of [Ai] onto the areas of high astrocyte density. The attraction is progressively

greater as one moves through these graphs. The case where χ0 = 1×103 cm2

µM ·hr does not yield a

significantly different result from the non-taxis case, with 23.55% of cells differentiating. The

case where χ0 = 1× 104 cm2

µM ·hr also yields similar results to the non-taxis case, with 25.87% of

cells differentiating. The number of differentiated cells on the mesas is similar to the number

of differentiated cells in the troughs. However, there is a noticable difference between the

percentages of cells that have differentiated in the two regions. Close to 40% of the cells on

the mesas have differentiated and only about 20% of cells in the troughs have differentiated.

This situation will occur in most of the taxis systems presented here. Only Np is being driven

up the gradient of Ai. Therefore, the differentiated cells remain on the mesas, while the

undifferentiated cells are leaving this area. The regions of highest Ai concentration are the

centers of the grooves. Most undifferentiated cells are being attracted to this area, so there

will be a lower portion of cells in this area that have differentiated. This result is much more

pronounced when χ0 = 1 × 105 cm2

µM ·hr . In this case, 44.39% of cells differentiate, with almost

100% differentiation on the areas of lowest astrocyte density and near background levels in

areas of highest astrocyte density. This result is suprising considering the population model

only permits about 35% differentiation when only the first pathway is utilized, due to the

saturation of the Rp
il receptor. When experimenting more with the population model, it can
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be seen that the level of differentiation can be increased to 45% by restricting proliferation.

The AHPCs are being strongly driven up the gradient of [Ai], and their density surpasses the

carrying capacity in these regions. Hence proliferation ceases here, and in fact the cells start

to die due to the logistic term. It is only Np being driven up this gradient, so this results in a

higher proportion of those that remain being in the differentiated state.

The next type of chemotactic response simulated uses a sigmoidal function, χ(Ai) =
χ0[Ai]2

α2 + [Ai]2
. It exhibits a saturable response. For high concentrations of IL6, χ(Ai) ≈ χ0.

For [Ai] = α, χ(Ai) = χ0/2. For low concentrations of IL6, there is little to no chemotactic

sensitivity, so cells in this environment do not move in response to gradients in [Ai]. Three

cases are presented in Figure 6.7, Figure 6.8, and Figure 6.9. We have χ0 = 1× 103 cm2

µM ·hr and

α = 1× 10−9 nmol
mL for Figure 6.7, χ0 = 1× 105 cm2

µM ·hr and α = 1× 10−9 nmol
mL for Figure 6.8, and

χ0 = 1 × 105 cm2

µM ·hr and α = 4 × 10−9 nmol
mL for Figure 6.9. The results in Figure 6.7 (23.54%

differentiation) and Figure 6.8 (46.99% differentiation) are nearly identical to the results in

Figure 6.4 (23.55%) and Figure 6.6 (46.86%), respectively. However, the results in Figure 6.9

(43.84%) differ from Figure 6.8 due to the higher concentration of IL6 needed for a measurable

response, caused by to the increase in α.

One final mechanism of taxis was simulated. This case is an alteration of those presented

in Figure 6.5 and Figure 6.6. We still have cells moving up the gradient in [Ai] with χ0 =

1× 104 cm2

µM ·hr (or 105, respectively). However, we now introduce a quorum-sensing mechanism

where AHPCs undergo random motion down the gradient of Np as before when the total cell

density is low relative to the carrying capacity. But when Np +Nd ≈ Nmax, the diffusion down

the gradient of Np increases. The flux of Np is now

J (np) = −Dp

[
1 + 3

(Np +Nd

Nmax

)3]
∇Np + χ0N

p∇[Ai].

Hence we have two competing forces. Np moves up the gradient of [Ai], but as Np + Nd

approaches Nmax, Np has a much stronger incentive to move down the gradient in Np and as a

result Np is also being driven down the gradient of [Ai]. In the case where χ0 = 1× 104 cm2

µM ·hr ,

we have 24.07% of cells differentiating, slightly less than when the quorum-sensing mechanism

was absent. However, note that cell densities are more uniformly distributed across the plate
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than they previously were. These results are illustrated in Figure 6.10. In the case where

χ0 = 1× 105 cm2

µM ·hr , we have 32.67% of cells differentiating, much less than when the quorum-

sensing mechanism was absent, and instead near the value of maximum differentiation available

in the population model when only the first pathway is used. In this case, the quorum-sensing

mechanism is preventing the cell density from accumulating at carrying-capacity levels, or as

in the case without this mechanism, 2.5 times greater than the carrying capacity. Since the

cell density is under the carrying capacity, the logistic term is not leading to death of the cells.

As a result, the percentage of cells that are in the differentiated state is not artificially inflated

due to the death of nondifferentiated cells.
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Figure 6.4 (left) Time evolution of profile, every 6 hours, weak constant
chemotaxis (χ0 = 1e + 3) up IL6 gradients. (right) Profiles
taken every 12 hours to show densities in different regions.
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Figure 6.5 (left) Time evolution of profile, every 6 hours, moderate con-
stant chemotaxis (χ0 = 1e+4) up IL6 gradients. (right) Profiles
taken every 12 hours to show densities in different regions.
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Figure 6.6 (left) Time evolution of profile, every 6 hrs, strong constant
chemotaxis (χ0 = 1e+5). (right) Profiles taken every 12 hrs to
show densities in different regions.
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Figure 6.7 (left) Time evolution of profile, every 6 hours, weak saturable
chemotaxis (χ0 = 1e + 3) up IL6 gradients. (right) Proflies
taken every 12 hours to show densities in different regions.



114

Figure 6.8 (left) Time evolution of profile, every 6 hours, strong saturable
chemotaxis (χ0 = 1e + 5) up IL6 gradients. (right) Proflies
taken every 12 hours to show densities in different regions.
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Figure 6.9 (left) Time evolution of profile, every 6 hours, strong saturable
chemotaxis (χ0 = 1e + 5) up IL6 gradients, but higher con-
centrations of IL6 needed for strong effect to become apparent.
(right) Proflies taken every 12 hours to show densities in dif-
ferent regions.



116

Figure 6.10 (left) Time evolution of profile, every 6 hours, variable dif-
fusion with moderate constant chemotaxis (χ0 = 1e + 4) up
IL6 gradients. (right) Proflies taken every 12 hours to show
densities in different regions.
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Figure 6.11 (left) Time evolution of profile, every 6 hours, variable diffu-
sion with strong constant chemotaxis (χ0 = 1e + 5) up IL6
gradients. (right) Proflies taken every 12 hours to show den-
sities in different regions.
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CHAPTER 7. Numerical Methods for the Spatial Model

This chapter includes brief descriptions of the numerical methods used for performing the

simulations for the PDE system presented in Chapter 6. The solution to the PDE system was

numerically approximated by using a Finite Volume approach as discussed in [50]. In the case

where the diffusion coefficients were constant, the resultant system was solved using an efficient

Fast Fourier Transform (FFT) method as discussed in [51]-[52]. In the case where the diffusion

coefficients were variable, exhibiting a dependence on the species that is diffusing (a quorum-

sensing mechanism), the PDE was numerically approximated using an Iterative Alternating

Direction Implicit (ADI) Method discussed below. Issues such as stability and convergence

are not discussed here; the reader is referred to the original publications for details. All PDE

simulations were performed with Fortran 90.

7.1 Characteristics and Transport

Partial differential equations involving advection can usually be studied by looking at their

characteristic curves. In physical applications, the characteristic curves correspond to the

curves along which ”material” flows or is transported. To see this, consider the first-order

PDE a(x, t)ux + b(x, t)ut + c(x, t)u = 0. The characteristic curves satisfy

dx

ds
= a(x, t)

dt

ds
= b(x, t).
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Solving this system yields the parametrically-defined curve {(x(s), t(s)) : 0 < s < ∞}. Along

this curve,

du

ds
=
∂u

∂x

dx

ds
+
∂u

∂t

dt

ds

= a(x, t)ux + b(x, t)ut

= −c(x, t)u.

Letting v(s) = u(x(s), t(s)), we see that this is equivalent to the ODE
dv

ds
= −c(s)v. That is,

the PDE is simplified to an ODE along the characteristic curve. Hence along this curve we are

only looking at how u(x(0), t(0)) changes; this ”material” is being transported along the curve.

For a concrete example, consider the PDE ut + V ux = 0 with initial condition u(x, 0) = φ(x).

The characteristics are defined by

dt

dτ
= 1, t(0) = 0

dx

dτ
= V, x(0) = ξ

which has solutions t = τ and x = vτ + ξ. Our new coordinates are ξ = x − V t and τ = t.

Letting w(τ) = u(x(τ), t(τ)), we get

dw

dτ
= 0

w(0) = φ(ξ)

which has the solution w(τ) = φ(ξ), or equivalently, u(x, t) = φ(x − V t). Hence φ(x) is a

profile that remains constant as it travels along the characteristics.

The characteristic variables can be interpreted as a new coordinate system that varies with

time. One analogy is to think of a chemical being dumped in a river. It’s concentration u(x, t)

could be measured with a fixed coordinate system relating to the river bank. Alternatively,

we could let the coordinate system ”flow” along with the river and measure the concentration

of the chemical with respect to this system. Consider the reaction-convection equation ut =

Duxx−V ux for constant V . The characteristics associated with ut +V ux are provided above.

The change of variable ξ = x− V t, τ = t transforms ut = Duxx − V ux into uτ = Duξξ. With
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respect to the river example, this says that the chemical is diffusing (in new coordinates) as it

is moving downstream (along the characteristics, the new coordinate system).

In summary, mathematically the characteristics are simply a change of variables. Within

the new coordinate system the PDE takes a simpler form, and the new coordinates themselves

have an important physical interpretation relating to transport of material along specific curves.

This presentation is based on material in [18]. For a more thorough discussion of charactersitics

and their applications to partial differential equations, see [19].

7.2 Finite Volume Methods

We would like to approximate the solution u(x, y, t) of a PDE over a specific spatial do-

main, in our case a square section of the experimental plate. To accomplish this, we first cover

the domain with a uniform grid, so that the distance between consecutive grid points in the

horizontal direction is ∆x and the distance between consecutive grid points in the vertical

direction is ∆y. This grid can now be viewed in two (related) ways. First, one could approxi-

mate u(x, y, t) by discretizing the derivatives in the PDE and using these to approximate the

values of u at the lattice points at discrete times. For example, the PDE ut = D∆u could be

discretized as

un+1
i,j − un

i,j

∆t
= D

[un
i+1,j − 2un

i,j + un
i−1,j

∆x2
+
un

i,j+1 − 2un
i,j + un

i,j−1

∆y2

]
where un

i,j ≈ u(xi, yj , tn) = u(x0 + i∆x, y0 +j∆y, n∆t), with (x0, y0) being the lower left corner

point of the above grid. These approximations are typically classified as Finite Difference

Methods.

The other viewpoint considers the rectangular regions formed by the grid (cells) and ap-

proximates the average value of u(x, y, t) within each cell at discrete times. These methods

are referred to as Finite Volume Methods. The average value of u(x, y, t) within the cell

[xi, xi+1] × [yj , yj+1] at time tn is Un
i,j =

1
∆x∆y

∫ yj+1

yj

∫ xi+1

xi

u(x, y, tn)dxdy. This quantity is

also an approximation to the value of u(x, y, tn) at the midpoint of the cell. Finite Volume

Methods are useful for PDEs involving advection through application of the divergence theo-

rem. For example, consider the PDE ut = ∇ · f(u), and let Ri,j = [xi, xi+1] × [yj , yj+1]. We
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can first integrate the PDE with respect to time to get

u(x, y, tn+1) = u(x, y, tn) +
∫ tn+1

tn

∇ · f(u)dt.

We now integrate both sides of the equation over the region Ri,j and divide by the area of Ri,j ,

to get

1
∆x∆y

∫∫
Ri,j

u(x, y, tn+1)dA =
1

∆x∆y

∫∫
Ri,j

u(x, y, tn)dA+
1

∆x∆y

∫∫
Ri,j

∫ tn+1

tn

∇· f(u)dtdA,

or equivalently,

Un+1
i,j = Un

i,j +
1

∆x∆y

∫∫
Ri,j

∫ tn+1

tn

∇ · f(u)dtdA.

In our applications, f will be continuous with respect to x, y, and t within Ri,j , allowing us to

interchange the order of integration in the final integral. Applying the divergence theorem,

Un+1
i,j = Un

i,j +
∫ tn+1

tn

[ 1
∆x∆y

∫
∂Ri,j

f(u) · νdS
]
dt

where ν is the outward unit normal vector on the boundary of Ri,j (∂Ri,j). We can then use

any number of methods to approximate the final integral, completing the derivation of the

finite volume scheme.

7.3 A Finite Volume Scheme for the PDE System

The cellular equations in our model may include advection and are of the form

ut +∇ · (u∇ξ(v)) = ∇ · (κ∇u) + g(u, v, x, y, t).

For now we assume κ is constant. This equation is a good candidate for a finite volume

approximation due to the presence of the term ∇ · (u∇ξ(v)). A finite volume scheme has been

derived in [50] for this type of equation, using properties of the characteristics to approximate

the left-hand side of the PDE. The following is simply a restatement of this method’s derivation,

and is provided in [50].

First form a mesh over the rectangular domain [0, 1] × [0, 1] as specified above, with Mx

subintervals in the x direction and My subintervals in the y direction. There are then Mx×My
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cells covering the domain. Choose the mesh so that each cell has dimensions ∆x × ∆y =

1
Mx

× 1
My

. The sides of each cell are given by the coordinates xi = i∆x and yj = j∆y for

i = 0, 1, ...,Mx and j = 0, 1, ...,My. Label each cell Ri,j = [xi−1, xi]× [yj−1, yj ], and denote the

midpoints of these cells by (x̄i, ȳj) for i = 1, 2, ...,Mx and j = 1, 2, ...,My. We are interested

in advective transport to (α, β) ∈ Ri,j at time tn+1 for some i, j. The characteristic curves

associated with the left side of the equation are defined by

dx

dt
= ξx(x, y, t), x(tn+1) = α,

dy

dt
= ξy(x, y, t), y(tn+1) = β.

These characteristics can be found for any (α, β) ∈ Ri,j , yielding a characteristic preimage

R̂i,j(tn) that gets mapped to Ri,j in ∆t under the flow of this ODE system.

Noting that ut +∇ · (u∇ξ(v)) =< ∂x, ∂y, ∂t > · < uξx, uξy, u >, we integrate the PDE over

the solid volume Qn+1
i,j = {(x, y, t) : (x, y) ∈ R̂i,j(t), t ∈ [tn, tn+1]} to derive our scheme.∫∫∫

Qn+1
i,j

(∇ · (κ∇u) + g)dV =
∫∫∫

Qn+1
i,j

< ∂x, ∂y, ∂t > · < uξx, uξy, u > dV

=
∫∫

∂Qn+1
i,j

u < ξx, ξy, 1 > ·νdS

=
∫∫

Ri,j

u(x, y, tn+1)dA−
∫∫

bRi,j(tn)
u(x, y, tn)dA

Note that by using the characteristic curves to sweep out the region Qn+1
i,j we are integrating

over, < ξx, ξy, 1 > ·ν = 0 along the sides of Qn+1
i,j . This is due to < ξx, ξy, 1 > being tangent to

these surfaces and T ·n = 0 for every tangent and normal vector along the surface. Meanwhile,

the normal vector along Ri,j is < 0, 0, 1 > and the normal vector along R̂i,j(tn) is < 0, 0,−1 >,

leading to the final equality.

Note that
∫∫

Ri,j

u(x, y, tn+1)dA ≈ Un+1
i,j ∆x∆y. To calculate

∫∫
bRi,j(tn)

u(x, y, tn)dA, we

need to be able to approximate the location of the characteristic preimage. We assume for this

method that Di,j
k,m = R̂i,j(t, n) ∩ Ri+k,j+m = ∅ for |k| > 1 and |m| > 1; that is, all portions

of R̂i,j(tn) lie within either Ri,j or cells adjacent to it. Denoting the area of Di,j
k,m by |Di,j

k,m|,

we have that
∫∫

bRi,j(tn)
u(x, y, tn)dA ≈

1∑
k,m=−1

Un
i+k,j+m|D

i,j
k,m|. This sum can be approximated

using the following equations, appropriately modified for boundary cells when either no-flux



123

or periodic boundary conditions are present. The details of the derivation are provided in [50].

θx
i,j =

−∆t
∆x

(ξ(vn+1
i+1,j) + ξ(vn+1

i,j )
2

)(vn+1
i+1,j − vn+1

i,j

∆x

)
θy
i,j =

−∆t
∆x

(ξ(vn+1
i,j+1) + ξ(vn+1

i,j )
2

)(vn+1
i,j+1 − vn+1

i,j

∆y

)
ai,j = min{0, θx

i,j}, Ai,j = max{0, θx
i,j}

bi,j = min{0, θy
i,j}, Bi,j = max{0, θy

i,j}

Sab
i,j = ai,jbi,j , SaB

i,j = ai,jBi,j−1, SAb
i,j = Ai−1,jbi,j , SAB

i,j = Ai−1,jBi,j−1

Ex,n
i,j = ai,jU

n
i,j +Ai,jU

n
i+1,j , Ey,n

i,j = bi,jU
n
i,j +Bn

i,j ,

Tn
i,j = Sab

i,jU
n
i,j + SaB

i,j+1U
n
i,j+1 + SAb

i+1,jU
n
i+1,j + SAB

i+1,j+1U
n
i+1,j+1

With these definitions, we define Ci,j({V n+1}, {Un}) ≈
1∑

k,m=−1

Un
i+k,j+m|D

i,j
k,m| by

Ci,j({V n+1}, {Un}) =
1∑

k,m=−1

M i,j
k,mU

n
i+k,j+m

= Un
i,j + Ex,n

i,j − Ex,n
i−1,j + Ey,n

i,j − Ey,n
i,j−1 + Tn

i,j − Tn
i,j−1 − Tn

i−1,j + Tn
i−1,j−1.

We still must approximate one more integral,
∫∫∫

Qn+1
i,j

(∇·(κ∇u)+g)dV . We can approximate

the reaction term for the sinks and sources by
∫∫∫

Qn+1
i,j

gdV ≈ g(Un+1
i,j , V n+1

i,j , x̄i, ȳj , tn+1)∆x∆y∆t.

The remaining integral can be approximated via the divergence theorem to get∫∫∫
Qn+1

i,j

∇ · (κ∇u)dV ≈ ∆t
∫∫

Ri,j

∇ · (κ∇u)|tn+1dA

= ∆t
∫

∂Ri,j

κ∇u|tn+1 · νdS

≈ κ∆t
{[Un+1

i,j − Un+1
i,j−1

∆y

]
· (−1) ·∆x+

[Un+1
i+1,j − Un+1

i,j

∆x

]
· (1) ·∆y

+
[Un+1

i,j+1 − Un+1
i,j

∆y

]
· (1) ·∆x+

[Un+1
i,j − Un+1

i−1,j

∆x

]
· (−1) ·∆y

}
=
κ∆t∆x∆y

∆y2
(Un+1

i,j−1 − 2Un+1
i,j + Un+1

i,j+1)

+
κ∆t∆x∆y

∆x2
(Un+1

i−1,j − 2Un+1
i,j + Un+1

i+1,j).

Letting rx =
κ∆t

(∆x)2
and ry =

κ∆t
(∆y)2

, we define

∆κ
i,j{Un+1} = rx(Un+1

i−1,j − 2Un+1
i,j + Un+1

i+1,j) + ry(Un+1
i,j−1 − 2Un+1

i,j + Un+1
i,j+1),
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yielding the finite volume scheme

Un+1
i,j = Ci,j({V n+1}, {Un}) + ∆t∆κ

i,j{Un+1}+ ∆tgn+1
i,j (Un+1

i,j , V n+1
i,j , x̄i, ȳj , tn+1).

7.4 FFT Method for Numerically Solving the Finite Volume Scheme for

the PDE System

The system of PDEs we are dealing with is highly coupled. However, they fall into two

classes:

ut +∇ · (uξ(v)∇v) = ∇ · (κ∇u) + g(u, v, x, y, t)

vt = ∇ · (σ∇v) + f(u, v, x, y, t)

over a two-dimensional bounded rectangular domain Ω. All equations satisfy no-flux boundary

conditions on two opposing sides and periodic boundary conditions on the other two opposing

sides. The solution to this system can be approximated with the scheme

un+1
i,j = Ci,j({vn+1}, {un}) + ∆t∆κ

i,j{un+1}+ ∆tgn+1
i,j (un+1

i,j , vn+1
i,j )

vn+1
i,j = vn

i,j + ∆t∆σ
i,j{vn+1}+ ∆tfn+1

i,j (un+1
i,j , vn+1

i,j ),

through the use of the finite volume method provided above. At the core of this implicit

method lies the approximation of a two-dimensional Poisson equation −∇ · (κ∇u) = g, due to

the diffusion term. (The advection portion of the PDE yielded an explicit quantity, based on

the previous timestep, and therefore casues no additional difficulty.) An efficient method for

approximating this system is provided in [51], with details on its implementation provided in

[52] and [55]. The following is simply a restatement of this method’s derivation as provided in

[51], with slight alterations due to the differing boundary conditions.

Assuming κ is constant, −κ∆u = g. Using a five-point stencil, the equation −κ∆u = g

can be discretized as

−
[ κ

∆x2
(ui+i,j − 2ui,j + ui−1,j) +

κ

∆y2
(ui,j+1 − 2ui,j + ui,j−1)

]
= gi,j .

Note that this is just ∆κ
i,j{u} as defined above. Column vectors u and g can be formed by

evaluating u(x, y) and g(x, y) at the cell centers and then placing the entries corresponding
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to (x̄i, ȳj) at the i + (j − 1)Mα position of the vector. Let N = MαMβ. The N × N matrix

satisfying Au = g is a tridiagonal block matrix derived from the discretization. The matrices

associated with the stencil are

P̃α =
κ

∆x2



2 −1 1

−1 2 −1
. . . . . . . . .

−1 2 −1

1 −1 2


,

a Mα ×Mα matrix corresponding to the periodic boundary conditions, and

Ñβ =
κ

∆y2



1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 1


,

a Mβ ×Mβ matrix corresponding to the no-flux boundary conditions. Define r̃x =
rx
∆t

and

r̃y =
ry
∆t

. The matrix A has the form

A =



r̃yIα + P̃α −r̃yIα

−r̃yIα 2r̃yIα + P̃α −r̃yIα
. . . . . . . . .

−r̃yIα 2r̃yIα + P̃α −r̃yIα

−r̃yIα P̃α


.

Using Kronecker Products (discussed in [16]), we can write

A =
[(
Iβ ⊗ P̃α

)
+

(
Nβ ⊗ (r̃yIα)

)]
or equivalently,

A =
[ κ

∆x2
(Iβ ⊗ Pα) +

κ

∆y2
(Nβ ⊗ Iα)

]
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where P̃α =
κ

∆x2
Pα, Iz is the identity matrix of dimensions Mz×Mz, and Ñβ =

κ

∆y2
Nβ. The

properties of Kronecker products used above are

(A⊗B) =


a11B · · · a1nB

...
. . .

...

an1B · · · annB


and

(kA)⊗B = A⊗ (kB) = k(A⊗B).

Define the components of the n × n FFT matrix by [Fn]r,q = ωr,q
n = exp(−2π(r − 1)(q −

1)i/n). Then F−1
n = 1

n F̄n and F T
n = Fn. In [4] it is shown that with this definition of Fn,

FnPnF
−1
n = Λ(P )

n where Λ(P )
n is an n× n diagonal matrix with [Λ(P )

n ]ii = 4 sin2
((i− 1)π

n

)
. It

is shown in [2] that if the matrix Vn is defined with components [Vn]r,q = cos
((r − 1

2)(q − 1)π
n

)
,

then V T
n NnV

−T
n = Λ(N)

n where Λ(N)
n is an n×n diagonal matrix with [Λ(N)

n ]ii = 4 sin2
((i− 1)π

2n

)
.

The method for solving the system Au = g presented in [51] is derived under the assumption

of no-flux boundary conditions on all sides of the rectangular region Ω. However, in our case

we have two opposing sides with no-flux B.C.’s, while the other two opposing sides satisfy

periodic B.C.’s. This method can be easily modified for our case. Above we have

[
r̃x(Iβ ⊗ Pα) + r̃y(Nβ ⊗ Iα)

]
u = g.

Multiplying both sides by [V T
β ⊗ F T

α ], and using the properties (A ⊗ B)−1 = (A−1) ⊗ (B−1),

(A⊗B)(C ⊗D) = (AC)⊗ (BD), and the fact that Fn = F T
n , we get

[V T
β ⊗ F T

α ]
[
r̃x(Iβ ⊗ Pα) + r̃y(Nβ ⊗ Iα)

]
[(V T

β )−1 ⊗ (F T
α )−1][V T

β ⊗ F T
α ]u = [V T

β ⊗ F T
α ]g[

r̃x

(
(V T

β IβV
−T
β )⊗ (F T

α PαF
−T
α )

)
+ r̃y

(
(V T

β NβV
−T
β )⊗ (F T

α IαF
−T
α )

)]
[V T

β ⊗ F T
α ]u = [V T

β ⊗ F T
α ]g[

r̃x(Iβ ⊗ Λ(P )
α ) + r̃y(Λ

(N)
β ⊗ Iα)

]
[V T

β ⊗ F T
α ]u = [V T

β ⊗ F T
α ]g

Defining f = [V T
β ⊗ F T

α ]g and w = [V T
β ⊗ F T

α ]u, we get the diagonal system

[
r̃x(Iβ ⊗ Λ(P )

α ) + r̃y(Λ
(N)
β ⊗ Iα)

]
w = f.
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Finally, it is shown in [51]-[52] that if the vectors are converted to matrices by the relation

zi+(j−1)Mα
= [zα×β]i,j , then this system is equivalent to r̃xΛ(P )

α wα×β + r̃ywα×βΛ(N)
β = fα×β,

which can easily be solved to obtain

(wα×β)i,j =
(fα×β)i,j

r̃xλ
(P )
i + r̃yλ

(N)
j

.

Efficient algorithms for performing these computations are provided in [52] and [55].

To solve the full system, we need to advance from the values of the current time step,

{un} for each cell type and {vn} for each soluble molecule, to the next time step, {un+1}

and {vn+1}. Due to the coupling of the equations within the implicit numerical scheme, it

is most convenient to solve the system through iteration. For each time step, we have a

system of the form F (u, v) = 0, G(u, v) = 0 where F (u, v) = Mσv − ∆tf(u, f) − h and

G(u, v) = Mκu−∆g(u, v)− C(v). Our matrices Mσ and Mκ are defined by

Mσ = I + σ∆t[
1

∆x2
(Iβ ⊗ Pα) +

1
∆y2

(Nβ ⊗ Iα)]

Mκ = I + κ∆t[
1

∆x2
(Iβ ⊗ Pα) +

1
∆y2

(Nβ ⊗ Iα)]

and have eigenvalues

λ
(σ)
i,j = 1 + ∆t

( σ

∆x2
λ

(P )
i +

σ

∆y2
λ

(N)
j

)
λ

(κ)
i,j = 1 + ∆t

( κ

∆x2
λ

(P )
i +

κ

∆y2
λ

(N)
j

)
.

In these equations, h depends on the known values of v from the previous time step, and C(v)

depends both on the known values of u from the previous time step and the current values of

v from the new time step. We can solve this system through iteration with Newton’s Method.

Newton’s Method in this case takes the form

xk+1 = xk − [DF (xk)]−1F (xk)

where F (xk) is a vector andDF (xk) is its Jacobian matrix, defined componentwise by [DF ]i,j =

∂Fi
∂xj

. Note that this could also be written as [DF (xk)](δxk+1) = −F (xk), with xk+1 = xk +
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δxk+1. To find un+1 and vn+1, we start with u(0) = un and sequentially solve the equations

F (u(n), v(n+1)) = 0

G(u(n+1), v(n+1)) = 0.

The equations for the Newton’s iteration are given in [51]-[52] as

Mσδv −∆tDf (v(k))δv = F (u(k), v(k))

v(k+1) = v(k) − δv

Mκδu−∆tDg(u(k))δu = G(u(k), v(k+1))

u(k+1) = u(k) − δu,

where the Jacobian matrices Df (v) and Dg(u) are diagonal N ×N matrices with [Df (v)]k,k =
∂f

∂v
(u(k)

i,j , vi,j , x̄i, ȳj , tn+1) where k = i+ (j − 1)Mα for i = 1, ...,Mα and j = 1, ...,Mβ . Dg(u) is

defined analagously.

The problem now is to solve an equation of the form Mx − Dx = Mw − b for unknown

x, where w and b are known quantities defined explicitly through data from the previous

iteration. The quantity x is the increment for one step of Newton’s iteration above. To solve

such a system via iteration, we consider it as Mx(p+1) −Dx(p) = Mw− b. If we let our initial

approximation be x(0) = 0, we get x(1) = w −M−1b. The next iterate can be found to be

Mx(2) −Dx(1) = Mw − b, or equivalently, Mx(2) = Dx(1) + Mx(1). Since x(0) = 0, this can

be rearranged to M(x(2) − x(1)) = D(x(1) − x(0)). If we let y(p) = x(p) − x(p−1), this equation

becomes My(2) = Dy(1), where y(1) = x(1) by choice of x(0). This is the idea behind our

iterative method. To solve for the Newton iterates above, we iterate My(p+1) = Dy(p), so that

x(p+1) = x(p) + y(p+1) for p = 1, 2, .... At each step, we can use the FFT method described

above to solve for y(p+1).

7.5 An ADI Method for the Variable-Diffusion Problem

A method for discretizing the PDE

ut +∇ · (u∇ξ) = ∇ · (κ∇u) = g(u, x, y, t), (x, y) ∈ Ω, t > 0,
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∂u

∂ν
= 0, (x, y) ∈ ∂Ω, t > 0,

utilizing a finite volume, cell-centered approach is outlined in [50]. It results in a system of the

form

Un+1
i,j =

1∑
k,m=−1

M i,j
k,mU

n
i+k,j+m + ∆i,j{Un+1}+ ∆tGn+1

i,j

where

Gn+1
i,j = g(Un+1

i,j , xi, yj)

and

∆i,j{Un+1} = rx(Un+1
i−1,j − 2Un+1

i,j + Un+1
i+1,j) + ry(Un+1

i,j−1 − 2Un+1
i,j + Un+1

i,j+1),

with rx =
κ∆t

(∆x)2
and ry =

κ∆t
(∆y)2

. At the core of solving this problem is a 2-dimensional

Poisson equation −κ∆u = f subject to Neumann boundary conditions ∂u
∂ν = 0 on ∂Ω. The

resultant Au = f̃ system can be solved efficiently using the fast Fourier transform method in

[51] since the matrix A has a special structure as described in [51].

We are now interested in the PDE

ut +∇ · (u∇ξ) = ∇ · (κ(u)∇u) = g(u, x, y, t), (x, y) ∈ Ω, t > 0,

∂u

∂ν
= 0, (x, y) ∈ ∂Ω, t > 0,

where κ(u) ≥ Kmin > 0 is an increasing, differentiable function. The finite volume approach

discussed in [50] is still valid, except that we now need to approximate the integral∫∫∫
Qn+1

i,j

∇ · (κ(u)∇u)dV.

Similarly to the constant κ case, by using implicit Euler and the divergence theorem, we get∫∫∫
Qi,jn+1

∇ · (κ(u)∇u)dV ≈ ∆t
∫∫

Ri,j

∇ · (κ(u)∇u)|tn+1dA = ∆t
∫

∂Ri,j

κ(u)∇u|tn+1 · ~ndS

≈ Li,j{Un+1}∆x∆y

where the operator Li,j{Un+1} is defined by

Li,j{Un+1} = rx
[
Kn+1

i−1,jU
n+1
i−1,j − (Kn+1

i−1,j +Kn+1
i+1,j)U

n+1
i,j +Kn+1

i+1,jU
n+1
i+1,j

]
+ ry

[
Kn+1

i,j−1U
n+1
i,j−1 − (Kn+1

i,j−1 +Kn+1
i,j+1)U

n+1
i,j +Kn+1

i,j+1U
n+1
i,j+1

]
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with rx =
∆t

(∆x)2
, ry =

∆t
(∆y)2

, and

Kn+1
i−1,j = κ

(Un+1
i−1,j + Un+1

i,j

2

)
, Kn+1

i+1,j = κ
(Un+1

i+1,j + Un+1
i,j

2

)
,

Kn+1
i,j−1 = κ

(Un+1
i,j−1 + Un+1

i,j

2

)
, Kn+1

i,j+1 = κ
(Un+1

i,j+1 + Un+1
i,j

2

)
.

This results in the system

(1) Un+1
i,j =

1∑
k,m=−1

M i,j
k,mU

n
i+k,j+m + Li,j{Un+1}+ ∆tGn+1

i,j

where

Gn+1
i,j = g(Un+1

i,j , xi, yj)

as before. This problem is no longer able to be solved as the constant κ case was, since the

Poisson equation at the core of this problem would now be −∇ · (κ(u)∇u) = f subject to

Neumann boundary conditions ∂u
∂ν = 0 on ∂Ω. The matrix A in the Au = f̃ system has lost

the special structure needed for an FFT method.

System (1) corresponds to a nonlinear equation of the form A(v)v = b(v), where A(v)

denotes a pentadiagonal matrix dependent on v, and a vector b(v) also dependent on v. More

specifically, we have to solve the system M(κi,j(v))v = ∆tf(v) + h, where

h =
1∑

k,m=−1

M i,j
k,mU

n
i+k,j+m. M(κi,j(v)) is a MαMβ ×MαMβ block triangular matrix,

M(κi,j(v)) =



T1 D1

D1 T2 D2

. . . . . . . . .

DMβ−2 TMβ−1 DMβ−1

DMβ−1 TMβ


,
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Ti is a triadiagonal Mα ×Mα matrix where, with k = (i− 1)Mα.

Ti =



1 + bk+1 + d1 −bk+1

−bk+1 1 + ek1,2 + d2 −bk+2

. . . . . . . . .

−bk+Mα−2 1 + ekMα−2,Mα−1 + dMα−1 −bk+Mα−1

−bk+Mα−1 1 + bk+Mα−1 + dMα


,

bi = rxκ(
vn+1
k+i + vn+1

k+i+1

2
) for i = 1, ...,Mα and k = (i− 1)Mα

ek1,2 = bk+1 + bk+2

cj = ryκ(
vn+1
j + vn+1

Mα+j

2
) for 1 ≤ j ≤ (Mβ − 1)Mα

cj = 0 whenever j < 1 or j > (Mβ − 1)Mα

dj = ck+Mα+j + ck−Mα+j for j = 1, ...,Mα

and Di is a diagonal Mα ×Mα matrix where

Di =



−ck+1

−ck+2

. . .

−ck+Mα−1

−ck+Mα


.

To solve the equation M(κi,j(v))v = ∆tf(v) + h we will be using Newton’s Method (since

in the system being modelled, f will also depend on other species, all of which are being

solved through Newton’s Method). Define the function F (v) = M(κi,j(v))v − ∆tf(v) − h.

We are interested in finding v such that F (v) = 0. Newton’s Method can be stated as:

v(k+1) = v(k) − [DF (v(k))]−1F (v(k)), or equivalently,

[DF (v(k))](v(k+1) − v(k)) = −F (v(k))
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which is also equivalent to

[DF (v(k))]δv = M(κi,j(v(k)))v(k) −∆tf(v(k))− h

v(k+1) = v(k) − δv

v(0) = vn

It is easy to see that [DF (v(k))] = M ′(κi,j(v(k)))v(k) +M(κi,j(v(k)))−∆tD(v(k)) where D(v(k))

is the Jacobian matrix given in [51] andM ′(κi,j(v)) is a tensor that can be viewed as a 1×MαMβ

vector, where the i-th element is the MαMβ ×MαMβ matrix

∂M(κi,j(v(k)))
∂vi

.

Carrying out the calculations shows that

[DF (v(k))] = M
(
κ′i,j(v

(k)) · (
v

(k)
i + v

(k)
j

2
)
)

+M(κi,j(v(k)))− I −∆tD(v(k)).

Recall that a symmetric real-valued diagonally dominant matrix with nonnegative real diago-

nal entries is positive semi-definite. [DF (v(k))] is a pentadiagonal matrix that satisfies these

hypotheses, provided that ∆t < 1/||fv||∞. We could use a preconditioned conjugate gradient

method to solve this equation, or in fact any of a number of iterative methods, however we

choose to solve this with an iterative ADI method. This method is chosen because the amount

of work needed at each step up the iteration is only O(n), and is easy to implement numerically.

Each iteration involves solving a sequence of two diagonally dominant tridiagonal system of

equations, which can easily be solved.

We need to solve the system

[M
(
κ′i,j(v) · (

vi + vj

2
)
)

+M(κi,j(v))− I −∆tD(v)]δv = b

where b = M(κi,j(v))v−∆tf(v)−h. Set A = [M
(
κ′i,j(v) · (

vi+vj

2 )
)

+M(κi,j(v))− I−∆tD(v)].

Note that A can be written as A = M(κ̃i,j(v)) − ∆tD(v) where κ̃i,j(v) = vκ′i,j(v) + κi,j(v).

Split A so that A = B + C, where B = 1
2(I + D) + (κ̃δ2x) and C = 1

2(I + D) + (κ̃δ2y) where

D = −∆tD(v), (κ̃δ2x) denotes the matrix comprising only those terms of M(κ̃i,j(v)) including
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rx, and (κ̃δ2y) denotes the corresponding matrix for ry. The iterative ADI method ([22],[38])

then consists of:

(I +B)δv(m+1/2) = b+ (I − C)δv(m)

(I + C)δv(m+1) = b+ (I −B)δv(m+1/2).

Note that through a simple substitution this could also be written as:

(I +B)δv(m+1/2) = b+ (I − C)δv(m)

(I + C)δv(m+1) = 2δv(m+1/2) − (I − C)δv(m).

Assuming this method converges, we would like to see it converge to the solution of Aδv = b.

(I + C)δv(m+1) = 2δv(m+1/2) − (I − C)δv(m)

= 2[(I +B)−1b+ (I +B)−1(I − C)δv(m)]− (I − C)δv(m)

(I +B)(I + C)δv(m+1) = 2b+ 2(I − C)δv(m) − (I +B)(I − C)δv(m)

= 2b+ (I −B)(I − C)δv(m).

Since the method converges by assumption, take δv(m+1) = δv(m) = δv.

(I +B)(I + C)δv = 2b+ (I −B)(I − C)δv

(I +B + C +BC − I +B + C −BC)δv = 2b

(2B + 2C)δv = 2b

Aδv = b

Hence provided that the method converges, it will converge to the solution. Note that the

iterative method is the same as the iteration δv(m+1) = Tδv(m) + b̃, where T = (I +C)−1(I +

B)−1(I − B)(I − C). For the iterative method to converge, we need the spectral radius ρ to

satisfy ρ(T ) < 1. To find conditions for T to converge, we need two results from linear algebra.

Theorems 7.1 is from [22], theorem 7.2 is from [10], and some ideas in theorems 7.3 and 7.4

are based on proofs in [22].
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Theorem 7.1: The products AB and BA have the same spectrum, except possibly a zero

eigenvalue:

σ(AB) \ {0} = σ(BA) \ {0}.

Proof: Let the eigenvector e 6= 0 belong to the eigenvalue λ ∈ σ(AB) \ {0}; ABe = λe. Since

λe 6= 0, v := Be does not vanish. Multiplication by B yields BABe = λBe, i.e., BAv = λv,

with v 6= 0. λ ∈ σ(BA) \ {0} proves σ(AB) \ {0} ⊂ σ(BA) \ {0}. The reverse inclusion is

analogous. �

Theorem 7.2: Gershgorin Circle Theorem. Let A be an n × n matrix and Ri denote the

circle in the complex plane with center aii and radius
∑n

j=1,j 6=i |aij |; that is,

Ri =
{
z ∈ C

∣∣∣|z − aii| ≤
n∑

j=1,j 6=i

|aij |
}
,

where C denotes the complex plane. The eigenvalues of A are contained within R =
⋃n

i=1Ri.

Moreover, the union of any k if these circles that do not intersect the remaining (n-k) contains

precisely k (counting multiplicities) of the eigenvalues.

Theorem 7.3: Define the rational function R(x) =
1− x

1 + x
. Then σ(R(B)) = R(σ(B)) and

σ(R(C)) = R(σ(C)).

Proof: Consider B. The proof for C is identical. We will see below that if β ∈ σ(B),

then β > 0 under the condition that ∆t <
1

||f ||∞
. Hence (I +B) is invertible.

Let µ ∈ R(σ(B)). Then µ =
1− λ

1 + λ
for some λ ∈ σ(B). We want to show that µI − R(B)

is singular. Note first that R(B) is well-defined, since I +B is invertible.

µI − (I +B)(I +B)−1 =
1− λ

1 + λ
I − (I −B)(I +B)−1

=
1− λ

1 + λ
(I +B)(I +B)−1 − (I −B)(I +B)−1

=
[1− λ

1 + λ
(I +B)− (I −B)

]
(I +B)−1
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=
[1− λ

1 + λ
I +

1− λ

1 + λ
B − I +B

]
(I +B)−1

=
[1− λ− 1− λ

1 + λ
I +

1− λ+ 1 + λ

1 + λ
B

]
(I +B)−1

=
−2

1 + λ
(λI −B)(I +B)−1.

Taking determinants of both sides we see that µI−R(B) is singular since λ ∈ σ(B). Therefore,

R(σ(B)) ⊆ σ(R(B)).

Now let µ ∈ σ(R(B)). We assume µ 6= −1, since if µ = −1 then R(B) is not well-defined.

We want to show that µ ∈ R(σ(B)), i.e., show ∃λ ∈ σ(B) such that µ =
1− λ

1 + λ
. Since

µI − (I −B)(I +B)−1 is singular, we see that all of the following are also singular:

[µ(I +B)− (I −B)](I +B)−1 = [µI + µB − I +B](I +B)−1

= [(µ− 1)I + (µ+ 1)B](I +B)−1

= −(µ+ 1)
[1− µ

µ+ 1
I −B

]
(I +B)−1

Hence we have that λ =
1− µ

µ+ 1
∈ σ(B). A little algebra then shows that µ =

1− λ

1 + λ
, and

therefore µ ∈ R(σ(B)). Hence we have that R(σ(B)) = σ(R(B)). �

Theorem 7.4: If ∆t <
1

||f ||∞
, then the iterative ADI method described above will converge to

δv, the solution of

[
M

(
κ′i,j(v) · (

vi + vj

2
)
)

+M(κi,j(v))− I −∆tD(v)
]
δv = M(κi,j(v))v −∆tf(v)− h.

Proof: We have that the method will converge provided that ρ((I + C)−1(I + B)−1(I −

B)(I − C)) < 1, where ρ denotes spectral radius. By theorem 7.1, ρ((I + C)−1(I + B)−1(I −

B)(I −C)) = ρ((I +B)−1(I −B)(I −C)(I +C)−1). Since B, C are real symmetric, they are

Hermitian, and so too are (I + B)−1(I − B) and (I − C)(I + C)−1. In particular, they are

normal matrices, and so ρ[(I+B)−1(I−B)] = ||(I+B)−1(I−B)||2 and ρ[(I−C)(I+C)−1] =
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||(I − C)(I + C)−1||2. By properties of norms and spectral radius,

ρ((I +B)−1(I −B)(I − C)(I + C)−1) ≤ ||(I +B)−1(I −B)(I − C)(I + C)−1||2

≤ ||(I +B)−1(I −B)||2||(I − C)(I + C)−1||2

= ρ[(I +B)−1(I −B)]ρ[(I − C)(I + C)−1]

= ρ[(I −B)(I +B)−1]ρ[(I − C)(I + C)−1].

By theorem 7.3 we have that

σ[(I −B)(I +B)−1] =
{1− β

1 + β
: β ∈ σ(B)

}
and

σ[(I − C)(I + C)−1] =
{1− β

1 + β
: β ∈ σ(C)

}
.

Thus we require all β to satisfy |1− β

1 + β
| < 1, or equivalently, β > 0.

Consider B = 1
2I −

∆t
2 D(v) + κ̃δ2x. Since κ > 0, κ′ ≥ 0, and v ≥ 0 (see the remark below),

we have that (κ̃δ2x)ii > 0 and (κ̃δ2x)ij ≤ 0, i 6= j, with

(κ̃δ2x)ii =
n∑

j=1,j 6=i

|(κ̃δ2x)ij |.

By Gershgorin Circle Theorem, we have that if λ ∈ σ(κ̃δ2x), then λ ≥ 0. We would like to

guarantee the condition that if λ ∈ σ(B), then λ > 0. Note that when adding 1
2I −

∆t
2 D(v)

to κ̃δ2x, we are only altering the diagonal element. This will shift the center of the circle for

each row, but will not change its radius. If the circle is shifted to the left at all, then there is

a possibility that an eigenvalue will be negative. Hence we need 1
2 −

∆t
2 D(v)ii > 0 for all i, or

equivalently, ∆t < 1
D(v)ii

for all i. We can guarantee this if we introduce the restriction that

∆t < 1
||f ||∞ . The proof for C is identical. Hence, provided that

∆t <
1

||f ||∞
,

we will have that ρ(T ) < 1, and therefore the iterative ADI method converges. �

Remark: In the proof of convergence we use that v ≥ 0, where v = v(k), the k-th iterate of the
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Newton’s iteration. However, if for some component i of the vector v is less than 0, v(k)
i < 0, we

can still show convergence provided that the function κ(x) satisfies −xκ′(x) ≤ κ(x). Note that

this condtition is automatically satisfied if v ≥ 0 since κ′(x) ≥ 0 ∀x > 0 in a quorum-sensing

mechanism. This condition can be weakened to where the method will converge provided

−vi + vj

2
κ′(

vi + vj

2
) ≤ κ(

vi + vj

2
) holds for all nonzero elements on a diagonal of (κ̃δ2x) where

vi appears with vi < 0. This should only be in 5 positions in the matrix when using the five

point stencil. We should still consider the following question: if we assume v(k) ≥ 0, can we

show that the Newton’s method yields v(k+1) ≥ 0 for this particular problem? If the answer is

yes, then we do not need the further restriction on κ(u).
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CHAPTER 8. Conclusions and Future Work

The goals of this project were to hypothesize a mechanism to explain the experimental

results provided in Chapter 1, show that they were both biologically reasonable and could

simulate the behaviors exhibited within these tables, and finally to study the mathematical

model and see if we could form any hypotheses to help guide future work. Before the molecule

IL6 was suggested, many other mechanisms were tested numerically against the results in Table

1.1. A few of these are presented in Appendix E. They were all biologically reasonable, but

for various reasons were discarded. Once IL6 was suggested, and the results in Table 1.2 were

found, we could use this data to form the differentiation parameters and thereby show that

the experimental results can be simulated by the model. This finding lends more credence to

the hypothesis that the IL6 mechanism is responsible for the variations within the table.

A sensitivity analysis was performed on the model to determine which parameters are the

most influential on the output. This analysis shows three main results. First, although the

system is sensitive to variations in input, many of the parameters that cause the highest amount

of uncertainty are recorded in the literature. However, some of the most influential unknown

parameters are involved with the production or decay of the intracellular differentiation factor

J , and as such the intracellular mechanism leading to differentiation should be studied in more

detail. Secondly, the biological inhibitor Gp does not seem to have a measurable effect on the

percentage of cells that have differentiated after six days. As such, it can be removed from the

mathematical model without altering simulation results. Finally, the sensitivity analyses show

that the system is more sensitive to parameters in the second pathway (via soluble receptors)

than in the surface receptor pathway. Hence it may be hypothesized that the second pathway

is more influential with respect to differentiation than the surface receptor pathway.
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Steady states were calculated for the population model in chapter 5, and their stability

was explored. It was found that if Na > 0 (astrocytes are present), then there is one curve

(S1) of nonisolated steady states in the biological region. This curve corresponds physically to

the situation where all progenitor cells have differentiated. Steady states satisfying (Nd)∗ >

(1 − 1
µ)Nmax were shown to be stable to small perturbations in the initial conditions, where

µ =
β

γ
, with β = M1 (the proliferation constant) and limt→∞

κ1[J ]2

κ2
2 + [J ]2

= γ being considered

as a differentiation constant. If Na = 0, two curves (T1, T2) of steady states exist within the

biological region. The curve T1 is unstable, and corresponds physically to the case where no

AHPCs are present initially. If any AHPCs are introduced to the system, they will proliferate

until the carrying capacity is reached, due to the lack of a differentiation factor. This steady

state is on the curve T2 and was found to be stable to small perturbations in initial conditions.

Chapter 6 showed that the experimental results for the contact coculture can be recreated

by blocking the second pathway (ba = 0) and limiting the available IL6 (decrease a1). It is

hypothesized that this behavior is due to cadherins or CAM binding between astrocytes and

AHPCs. Chemotaxis was also explored, showing that we can alter differentiation results by

artificially forming gradients in IL6 concentration and attracting cells up these gradients. In

the absence of an apoptotic component in the logistic growth term, blow-up of the solution may

be possible, depending on the strength of the taxis. However, this behavior can be prevented

by including a quorum-sensing mechanism, preventing uncontrolled aggregation.

The mechanism for IL6-induced differentiation of AHPCs has been analyzed in some detail

throughout this dissertation. However, in addition to Claim 5.6 from Chapter 5, there are four

other areas that need to be considered for future work.

(1) The results of the control experiment must be accounted for. This differentiation is

occurring in the absence of IL6. What is causing this?

(2) The difference between the contact and noncontact cocultures must be studied. To gen-

erate the difference in levels of differentiation, we are currently alterring the rates of secretion
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of IL6 and sIL6Rα. We hypothesized that this is occurring via cadherins or CAM binding.

The coefficients in the model (a1, ba) may be replaced by contact-dependent functions. Is this

occurring biologically? If not, how else may these differences arise?

(3) The intracellular mechanism leading to differentiation should be studied in more detail.

For this model, we hypothesized the existence of an intracellular molecule J , created through

a signal transduction cascade, that the leads to TUJ1 expression. How does the intracellular

mechanism lead to increased TUJ1 expression? The protein J could be considered an impor-

tant molecule within the cascade, possible a STAT protein. Is the mechanism used in the model

an adequate depiction of this cascade, capturing its basic features, or does more complexity

need to be introduced?

(4) Although not much cell movement is observed, the neuritic extensions appearing after

differentiation are observed to be undergoing directed movement. We ignore this effect in our

modelling as the volume of these extensions is small compared to the cell bodies during this

early phase. However, we should account for why these processes exhibit the particular behav-

iors observed. This is currently being investigated using a hybrid model, where the neurite is

divided into discrete compartments existing on a grid for a cellular automatan model. ODEs

model the transmission of molecules between compartments, and the neurite itself elongates

directionally depending on probabilities generated by available intracellular and extracellular

proteins.
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APPENDIX A. Discussion of the Background Function

When no atrocytes or IL6 are added to the AHPC culture, about 18% of the cells express

the protein TUJ1 after six days. TUJ1 is an early neuronal marker, indicating that the cell

has differentiated. This mechanism leading to the background level of differentiation has not

yet been identified.

In order to simulate the other results properly, the background level should be accounted

for. Since this mechanism is presently unknown, we introduce an artificial function into the

ODE system meant to simulate this background differentiation. Since this is an artificial

construction, the goal of the modelling becomes recreating differences between different ex-

periments as opposed to recreating the specific levels of differentiation. The differences must

be due to the IL6 mechanism, not different actions of this function. However, it needs to be

mentioned that this function is only meant to be included for initial simulations, those covering

the first six days of culture. It is an artificial construction, and any hypothesis of long-term

behavior based on this funciton may not be valid.

The coefficient on Np for the rate of differentiation due to the background mechanism is

taken to be

f(Np, Nd) =
θ1

θ2 +
(

Nd

Np+Nd

)2 .

As the percentage of cells that have differentiated
( Nd

Np +Nd

)
increases, this coefficient de-

creases. Hence it is most prevalent during the initial periods, when this ratio is approximately

zero. The graph of f(Np, Nd) for
Nd

Np +Nd
∈ [0, 1] is provided in Figure A.1.

In accordance with the above comments, we remove this term when studying long-term

behavior of the IL6 mechanism. However, the function has been chosen so that the rate of
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Figure A.1 The value of the differentiation coefficient, f(Np, Nd), after the
given percentage of cells has already differentiated.

differentiation due to this function becomes negligible as
Nd

Np +Nd
→ 1. This allows us to

study differentiation for times above but near six days without much interference from this

function. The results of the control experiment described in Chapter 3 are shown for 250 days

in Figure A.2 to illustrate the negligible nature of this function as
Nd

Np +Nd
→ 1.

The system

dNp

dt
= −θ1Np

(
θ2 + (

Nd

Np +Nd
)2

)−1

+M1N
p

(
1− Np +Nd

Nmax

)
,

dNd

dt
= θ1N

p

(
θ2 + (

Nd

Np +Nd
)2

)−1

,

admits an infinite number of steady states, with (Np)∗ = 0 and (Nd)∗ arbitrary. Stability

of these steady states can be analyzed similarly to the steady states of the simplified system

presented in Chapter 5. Note that this says that all cells would differentiate. This may not

be biologically correct. However, as stated above, this function is only meant to be used for

these initial time periods in this simulation as we do not understand what mechanism this

differentiation is occurring by. A back term could be introduced into this system to control

this effect, thereby yielding a single steady state. However, a back term would have the

unwanted effect of reducing the level of differentiation due to the IL6 mechanism and causing

the full system to also have a single steady state value even when IL6 is present. This value



143

Figure A.2 Control experiment, differentiation due solely to the background
function, for 250 days. Notice how slowly the curve is increas-
ing relative to the time axis.

would depend on the parameters of the back term, and thus can be made to be any arbitrary

value. A long-term analysis of the IL6 effect on this system would need to remove this back

term. However, this is exactly what we are already doing with the background function when

performing long-term analysis.
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APPENDIX B. Mathematical Description of FAST

Cukier et.al. introduced the Fourier Amplitude Sensitivity Test (FAST) in a paper in 1973

([13]). The method has since become widely used to perform global sensitivity analysis due to

its reliability and its ability to assess the importance of various parameters in the presence of

nonlinear and even non-monotonic relationships. The basic idea behind the method is to assign

frequencies to each parameter of interest and vary these parameters simultaneously along search

curves in the parameter space. The search curves oscillate in each dimension in accordance

with the frequency of that parameter. The variance in the output is decomposed as a Fourier

Series to explicitly show the contribution to the variance occurring at each frequency. These

are used to derive partial variances attributable to each parameter, which are then interpreted

as sensitivity measures.

The mathematical derivation of the FAST method is based on the presentations given in

[14] and [47]. Some aspects of the derivation are further elaborated on in [12], [34], and [48].

Let x = (x1, x2, ..., xn) be a random vector of input parameters with pdf P (x). Suppose the

components of x are each uncorrelated continuous random variables, where the pdf of xi is given

by pi(xi). Then P (x) =
n∏

i=1

pi(xi). The output of interest from this model is the percentage

of cells that have differentiated after six days. In this sensitivity analysis, we would like to

decompose the variance of this output into partial variances attributable to each parameter.

These can be separated into main effects, variance attributable solely to variation in a specific

parameter, and total effects, variance attributable to both the main effect of a parameter and

its interactions with other parameters. Hence we are concerned with the variance of an output

function y = f(x). The m-th moment of y can be defined by < y(m) >=
∫

Ω
fm(x)P (x)dx,

where Ω ⊂ Rn is the input parameter space.
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The idea behind the eFAST method is to use a transformation to express this n-dimensional

integral by a one-dimensional integral, via a space-filling curve. This curve is referred to as

the search curve. Parameterize each xi by the parametric equation

xi(t) = gi

(
sin(ωit)

)
for all i ∈ {1, 2, ..., n}, with −∞ < t < ∞. It was shown by Cukier et.al. ([14]) that if the

functions gi satisfy

π
√

1− u2pi(gi(u))
dgi(u)
du

= 1

then the total arc length of the portion of the search curve between xi and xi +dxi is pi(xi)dxi.

To solve this equation for gi, first write the equation as pi(gi)dgi =
1
π

du√
1− u2

. Integrating

yields

Fi(gi) =
∫ gi

−∞
pi(t)dt =

1
π

arcsin(u) + C

where Fi is the cumulative distribution function (CDF) of the pdf pi. In [9], Saltelli suggests

using C = 1
2 , as then Fi(gi) ∈ [0, 1]. If Fi is continuous and strictly increasing, this can be

solved to yield gi(u) = F−1
i

( 1
π

arcsin(u)+ 1
2

)
, where F−1

i is the inverse cumulative distribution

function (ICDF) for pi. The ICDF for a uniform distribution is given by F−1(y) = a+(b−a)y.

The ICDF for a log uniform distribution is likewise given by F−1(y) = exp{log(a) + [log(b)−

log(a)]y}. The ICDF for a normal distribution can be approximated with the statistical toolbox

in Matlab. A list of ICDF’s for many other distributions is provided in Appendix A of [34].

This list includes a rational function approximation to the ICDF of the normal distribution.

If the frequencies {ωi}n
i=1 are chosen to be incommensurate, i.e.

n∑
i=1

aiωi = 0 does not

hold for any set of integers {ai}n
i=1, the curve x(s) is space-filling in the sense that it comes

arbitrarily close to any point in the parameter space for some s ([56]). Hence the search curve

will explore the whole parameter space with density specified by the pdf P (x). Moreover, if

we define y(m) = lim
T→∞

1
2T

∫ T

−T
fm(x(s))ds, then by Weyl’s ergodic theorem ([13]), < y(m) >=

y(m), i.e. ”the phase-space average equals the time average”. The moments can then be

expressed as one-dimensional integrals. The variance of the output function f is defined as

D =< y(2) > − < y(1) >2= y(2) − (y(1))2.
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There are two problems encountered when using this formulation. First is the inability

to achieve incommensurate frequencies due to the finite precision of computers, since to be

incommensurate the frequencies would by necessity need to be irrational. Integer frequencies

are used instead. Denoting f(x1(s), ..., xn(s)) by f(s), it then holds that f(s) = f(s + 2π).

The search curve is now a closed path in the parameter space, and is no longer space-filling,

so the ergodic hypothesis that < y(m) >= y(m) no longer holds. However, Cukier et.al. ([14])

showed that this error can be minimized through appropriate choices for the frequencies.

We now have that y(m) =
1
2π

∫ π

−π
fm(s)ds, and we define D̂ = y(2)−(y(1))2 =

1
2π

∫ π

−π
f2(s)ds−( 1

2π

∫ π

−π
f(s)ds

)2
. Since f(s) is 2π-periodic, it can be expressed as a Fourier Series

f(s) = A0 +
∞∑
i=1

{Ai cos(is) +Bi cos(is)}

where A0 =
1
2π

∫ π

−π
f(s)ds = y(1), and for i = {1, 2, ...}, Ai =

1
π

∫ π

−π
f(s) cos(is)ds and

Bi =
1
π

∫ π

−π
f(s) sin(is)ds. By Parseval’s theorem,

y(2) = A2
0 + 2

∞∑
i=1

{A2
i +B2

i },

and therefore D̂, which is an approximation to the variance D, is given by

D̂ = 2
∞∑
i=1

{A2
i +B2

i }.

Each parameter is oscillating in its own parameter space with a specific frequency. This

leads to corresponding oscillations in the output at linear combinations of all of these frequen-

cies. If the coefficients are incommensurate, then D̂i = 2
∞∑

k=1

{A2
ki + B2

ki} is the variance due

solely to variation in the parameter oscillating at frequency ωi, as was shown by Cukier et.al.

in [14]. Therefore, Si =
D̂i

D̂
is the main effect of parameter i, the percentage of the variance

due solely to parameter i.

However, we are using integer frequencies instead of incommensurate frequencies. Consider

the following example: let there be two parameters, and assign frequencies ω1 = 3 and ω2 = 4.

The coefficient A2
12 + B2

12 is a harmonic for both frequencies, so variation in the output at
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frequency ω = 12 contains contributions from both parameters, and the amount due to either

parameter individually cannot be ascertained. This is the problem of interference. Although

these interferences cannot be avoided, these effects can be ”postponed” to the higher frequencies

of the Fourier Series. Then, since the Fourier coefficients rapidly converge to zero for higher

harmonics, we approximate the above series with 4-6 harmonics of the specified frequencies,

avoiding the interference while retaining most of the information provided by the specified

frequencies. Let M denote the number of harmonics considered. The frequencies are chosen

such that
n∑

i=1

aiωi 6= 0 for
n∑

i=1

|ai| ≤M + 1

for integers ai. A set of frequencies that satisfies this property is said to be free of interference

through order M . The higher that M is set, the ”more incommensurate” the frequencies

become, allowing them to search the parameter space more thoroughly. In the eFAST method,

where one parameter is assigned a high frequency ωi and the other parameters are assigned

frequencies {ω∼i} with max{ω∼i} =
ωi

2M
, this limit on the maximum that the complementary

set of frequencies can be assigned prevents interference between the complementary set and

parameter i. Hence D̂∼i = 2
ωi/2∑
i=1

(A2
i + B2

i ) measures the contributions to the variance due

solely to the complementary set of parameters, so that the total effect of parameter i can be

measured by STi = 1− D̂∼i

D̂
.

Finally, there is one other effect that needs to be discussed. This is the process of aliasing.

Aliasing is a result of using discrete sampling. If a sample of Ns equally spaced points is used

over the interval (−π, π), the Nyquist critical frequency is defined as one-half of the sampling

frequency, ωNy =
Ns

2
. It is a well-known phenomenon in information theory and in signal

processing that any frequency components outside of the range (−ωNy, ωNy) are aliased to

lower frequencies. To avoid this affect, ensuring that the coefficients of the Fourier Series

belonging to ωi and its harmonics do not contain any of this extra information, we need to

ensure that the information outside of this range is negligible. This is done by taking the

largest meaningful harmonic, Mωi <
Ns

2
. This equation can be rearranged to provide us with

a lower limit for the number of sample points Ns that must be taken. If the largest frequency
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assigned to a parameter is ωmax, then we need to sample at least Ns = 2Mωmax +1 points per

search curve.
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APPENDIX C. A Formal Power Series Solution of the Simplified System

Consider the cellular equations in the ODE system:

dNp

dt
= − κ1[J ]2

κ2
2 + [J ]2

Np +M1

(
1− Np +Nd

Nmax

)
,

dNd

dt
=

κ1[J ]2

κ2
2 + [J ]2

Np,

Np(0) = Np
0 , Nd(0) = 0.

Although [J ] depends on the other molecular species in the system, it is possible for it’s

concentration to become approximately constant after a short period of time. Given this

assumption, this system can be written as

dx

dt
= βx

(
1− (x+ y)

)
− γx

dy

dt
= γx

x(0) = x0, y(0) = 0

where x =
Np

Nmax
, y =

Nd

Nmax
, γ =

κ1[J ]2

κ2
2 + [J ]2

, and β =
M1

Nmax
. Here we find a solution for this

system in the form of a formal power series.

In chapter 5 we calculated the solution to
dx

dy
, finding that x̂(y) = e−µy(x0− 1)+ (1− y), a

curve that provides a relation between the solution curves x(t) and y(t). Using this relationship

we can find a solution to this coupled system in the form of a formal power series. First y(t)

will be calculated, and then x(t) can be found by substituting y(t) into x̂(y). If convergence

of the series can be proven, it would provide a way to calculate the densities of AHPCs and

neurons at any time t for the simplified system, which would then provide an approximation
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to the solution of the full system. To solve for y(t), first substitute x̂(y) into
dy

dt
.

dy

dt
= λe−µy − γy + γ

y(0) = 0

where λ = γ
(
x0 − 1

)
. Assume y(t) =

∞∑
n=0

ant
n. Noting that

∞∑
n=0

(n+ 1)an+1t
n =

∞∑
n=1

nant
n−1,

we find

∞∑
n=0

(n+ 1)an+1t
n = λexp

(
− µ

∞∑
n=0

ant
n
)
− γ

( ∞∑
n=0

ant
n
)

+ γ

= λ
∞∏

n=0

exp(−µant
n)− γ

( ∞∑
n=0

ant
n
)

+ γ

= λe−µa0

∞∏
n=1

exp(−µant
n)− γ

( ∞∑
n=0

ant
n
)

+ γ

= λe−µa0

∞∏
n=1

( ∞∑
m=0

(−µant
n)m

m!

)
− γ

( ∞∑
n=0

ant
n
)

+ γ

= λe−µa0

∞∑
n=0

[ ∑
α·N=n

(−µ)|α|
∏∞

j=1 a
αj

j

α!

]
tn − γ

( ∞∑
n=0

ant
n
)

+ γ

where α is an infinite multiindex of nonnegative integers andN is the vectorN = (1, 2, 3, ...). In

other words, the inner sum is over all partitions of the positive integer n. Equating coefficients,

and defining Λ = λe−µa0 and Cn =
∑

α·N=n

(−µ)|α|
∏∞

j=1 a
αj

j

α!
, we get a series y(t) =

∞∑
n=0

ant
n

with recursively defined coefficients:

a0 = y(0),

a1 = Λ− γa0 + γ,

an =
Cn−1Λ− γan−1

n
, n ≥ 2.

Since y(0) = 0 and λ = γ(x0 − 1), we have that a0 = 0, a1 = γx0, and Λ = λ. In addition,

since α is comprised of nonnegative integers, and αj · j > n for j > n if αj > 0, we can

truncate the infinite product so that Cn =
∑

α·N=n

(−µ)|α|
∏n

j=1 a
αj

j

α!
. As an aside, note that the
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coefficient Cn is
1
n!

times the exonential Bell partition polynomial Bn(x1, ..., xn) evaluated at

{xi = −µai · i!}n
i=1. The exponential Bell partition polynomials are defined as

Bn =
∑ n!

k1!(1!)k1k2!(2!)k
2 . . . kn!(n!)kn

xk1
1 x

k2
2 . . . xkn

n ,

where the summation is over all partitions of n, i.e. over all nonnegative integer solutions

(k1, ..., kn) of the equation k1 + 2k2 + ... + nkn = n. These functions are described in more

detail in [57]-[58].

Theorem 5.4: The coefficients an for n ≥ 2 can be written as

an = λ

n−1∑
i=1

[( i!
n!

)
(−γ)(n−1)−iCi

]
− (−γ)(n−1)x0

n!
.

Proof. This can be shown through induction.

a2 = λ
1∑

i=1

[( i!
2!

)
(−γ)1−iCi

]
− (−γ)2x0

2!

= λ
[1
2
γ0C1

]
− γ2x0

2

=
λC1 − γ2x0

2

=
ΛC1 − γa1

2

Now assume that the hypothesis is true for ak−1, k ≥ 3. The formula needs to be verified for

ak to complete the induction.

ak =
λCk−1 − γak−1

k

=
λCk−1

k
+

(−γ)
k

[
λ

k−2∑
i=1

(
i!

(k − 1)!

)
(−γ)(k−2)−iCi −

(−γk−1)x0

(k − 1)!

]
=
λCk−1

k
+

[
λ

k−2∑
i=1

(
i!
k!

)
(−γ)(k−1)−iCi −

(−γk)x0

k!

]
= λ

(k − 1)!
k!

(−γ)(k−1)−(k−1)Ck−1 +
[
λ

k−2∑
i=1

(
i!
k!

)
(−γ)(k−1)−iCi −

(−γk)x0

k!

]
= λ

k−1∑
i=1

[( i!
k!

)
(−γ)(k−1)−iCi

]
− (−γ)(k−1)x0

k!
.
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The solution to the original IVP is

y(t) = γx0t+
∞∑

n=2

[
λ

n−1∑
i=1

[( i!
n!

)
(−γ)(n−1)−iCi

]
− (−γ)(n−1)x0

n!

]
tn

x(t) = e−µy(t)
(
x0 − 1

)
+ (1− y(t)).

All solutions of this system with x0 > 0 satisfy limt→∞(x, y) = (0, y∗). The time courses

of Np and Nd are given in terms of a formal power series. If convergence of the series can be

proven, it would allow one to calculate (or estimate) the percentage of differentiation at any

moment of time for this reduced system. Moreover, this would provide an estimate for the

solution of the full system.
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APPENDIX D. Derivation of the Lyapunov Function

Consider an ODE y′ = f(y) with critical point x∗. Let V : Rn → R be a scalar-valued

function satisfying the following properties:

(1) V should be positive definite; that is, V (x) ≥ 0 for all x in some neighborhood U around

a critical point x∗, with V (x∗) = 0 and V (x) > 0 for all x ∈ U\{x∗}, and

(2) V has continuous first-order partial derivatives at every point of U .

A function satisfying both of these properties is referred to as a Lyapunov function for the

differential equation. Define V ′
∗(y) = ∇yV (y) · f(y), the time derivative of V with respect to

the system y′ = f(y). Their usefulness is due to the following theorems ([8]):

Theorem C.1. If there exists a scalar function V (y) that is positive definite and for which

V ′
∗(y) ≤ 0 (the derivative with respect to y′ = f(y) is nonpositive) on some region Ω containing

the origin, then the zero solution of y′ = f(y) is stable.

Theorem C.2. If there exists a scalar function V (y) that is positive definite and for which

V ′
∗(y) is negative definite on some region Ω containing the origin, then the zero solution of

y′ = f(y) is asymptotically stable.

Although the theorems are for the critical point x = 0, they can be easily generalized to

any critical point. They can be considered to be a measure of the ”distance” of points along

the solution curve to the steady state, and as such are very useful in the study of stability of

steady state solutions of nonlinear systems of ODEs. They are especially useful when linearized

stability results are not valid for the nonlinear system.
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Of interest here are the steady states of system (3.1). In particular, we are concerned

with the stability of the curve of nonisolated steady states T2(s), as defined in Chapter 5.

Linearized stability analysis is not valid in this case due to the three zero eigenvalues of the

Jacobian matrix. Hence we need to use a Lyapunov function to investigate the long-term

behavior.

There are many conservation laws for this system, and the only terms not appearing in

multiple equations are the decay rate terms. We can make use of these conservation laws by

looking for a Lyapunov function of the form

V (~x) = α1[Ai] + α2[Ril] + α3[Aa] +Np(α4[As] + α5[{Aa : Rp
gp130}] + α6[{As : Rp

gp130}] + α7[J ])

+
1
2

(
Nmax − (Np +Nd)

)2

where ~x = ([Ai], [Ril], [Aa], [As], [{Aa : Rp
gp130}], [{As : Rp

gp130}], [J ], Np, Nd). Let φ(~x) be a

solution curve of system (3.1). Then the time derivative of V (~x) along φ(~x) is

V ′
∗(~x) = ∇xV · f(~x)

= α1
d[Ai]
dt

+ α2
d[Ril]
dt

+ α3
d[Aa]
dt

+
dNp

dt

(
α4[As] + α5[{Aa : Rp

gp130}]

+ α6[{As : Rp
gp130}] + α7[J ]

)
+Np

(
α4
d[As]
dt

+ α5

d[{Aa : Rp
gp130}]

dt

+ α6

d[{As : Rp
gp130}]

dt
+ α7

d[J ]
dt

)
−

(
Nmax − (Np +Nd)

)
·
(dNp

dt
+
dNd

dt

)
= (α1 + α2 − α3)`−1[Aa] + (α3 − α1 − α2)`1[Ai][Ril] + (α1 − α4)k̂−1[As]Np

+ (α5 − α3)ν1[Aa][R
p
gp130]N

p + (α3 − α5)ν−1[{Aa : Rp
gp130}]N

p

+ (α7 − α5)ν2[{Aa : Rp
gp130}]N

p + (α4 − α1)k̂−1[Ai][R
p
il]N

p

+ (α6 − 4)̂̀1[As][R
p
gp130]N

p + (α4 − α6)̂̀−1[{As : Rp
gp130}]N

p

+ (α7 − α6)̂̀2[{As : Rp
gp130}]N

p −
(
K1(Np, Nd) +K2([J ])

)
×(

α4[As] + α5[{Aa : Rp
gp130}] + α6[{As : Rp

gp130}] + α7[J ]
)

−
(
Nmax − (Np +Nd)

)[
M1N

p(1− Np +Nd

Nmax

]
− α1µai[Ai]

− α2µil[Ril]− α3µaa[Aa]− α7µj [J ]Np.
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In order to for this function to be nonpositive throughout Ω the coefficients αi should satisfy

α1 = α4 α7 ≤ α5

α4 = α6 α7 ≤ α6

α3 = α5 α1 + α2 = α3.

We can convert this to a system of equations by introducing slack variables s1 ≥ 0 and s2 ≥ 0

to form

α1 = α4 α7 + s1 = α5

α4 = α6 α7 + s2 = α6

α3 = α5 α1 + α2 = α3.

Gauss-Jordan elimination can be used to solve this underdetermined system. There are an

infinite number of solutions, and they can be represented parametrically as

α1 = α7 + s2 α4 = α1

α2 = s1 − s2 α5 = α3

α3 = α7 + s1 α6 = α1

α7, s1, s2 arbitrary.

The solutions of interest here must satisfy αi > 0 for all i, s1 ≥ 0, and s2 ≥ 0. If we set s1 = 2,

s2 = 1, and α7 = 1, we get the solution

α1 = 2, α3 = 3, α5 = 3, α7 = 1,

α2 = 1, α4 = 2, α6 = 2,

These coefficients produce the function examimed in Chapter 5:

V (~x) = 2[Ai] + [Ril] + 3[Aa] +Np(2[As] + 3[{Aa : Rp
gp130}] + 2[{As : Rp

gp130}] + [J ])

+
1
2

(
Nmax − (Np +Nd)

)2
.

V ′
∗(~x) is clearly nonpositive when the concentration/densities of the species are nonnegative.

It is shown in Chapter 5 that it is in fact a Lyapunov function, provided Np ≥ ε > 0.
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APPENDIX E. Alternate Mechanisms Explored

This project initially began as an exploration of mechanisms that could explain the results

in Table 1.1. Since IL6 was not initially hypothesized as the active molecule, there were many

possible mechanisms explored, each with different responses to ”active molecules”. However,

once IL6 was hypothesized, it was shown to be an important molecule in this mechanism (Table

1.2). Due to the importance of IL6, the focus in this appendix is on the modeling performed

after IL6 was hypothesized as the active inducer of differentiation. Four mechanisms will be

presented. Two are simplified versions of the IL6 mechanism, and another is an extension of

the IL6 mechanism, including secretion of a protease. The first mechanism includes the effect

of the laminin substrate on differentiation, based on the claim that both laminin and IL6 are

needed for differentiation. It also includes a different activity for IL6 than is included in the

other models.

Effect of the Extracellular Matrix

This first mechanism is a departure from the other mechanisms presented here, in that

the response to IL6 does not occur on the AHPC iteself, but instead on the laminin substrate.

Early discussions on the biological mechanism involved the possibility that laminin is necessary

for (or at the least enhances) neuronal differentiation. In this mechanism, astrocytes secrete

IL6 (C ′) which acts as a protease. It promotes differentiation by releasing a differentiation

factor I from the laminin complex {F : I}. Astrocytes also inhibit differentiation by releasing



157

an inhibitor (A) of the differentiation factor I. These reactions can be summarized by

{F : I}
l1


l−1

F + I

C ′ + {F : I}
`′1


`′−1

{C ′ : F : I}
`′2→C ′ + F + I

A+ Ia
ν1


ν−1

Ii

Ia +Npm1→Nd.

Letting ν = ν1
ν−1

, and assuming the third reaction is at equilibrium, the population model

corresponding to this mechanism is given by

d[C ′]
dt

= b1Na − µc′ [C ′]

d[A]
dt

= a1Na − µa[A]

d[{F : I}]
dt

= −l1[{F : I}] + l−1[F ][I]− `′1`
′
2

`′−1 + `′2
[C ′][{F : I}]

+ λ
(Np +Nd

Nmax

)
[{F : I}] ·

(
1− [{F : I}] + [F ]

Fmax

)
d[F ]
dt

= l1[{F : I}]− l−1[F ][I] +
`′1`

′
2

`′−1 + `′2
[C ′][{F : I}]

d[I]
dt

= l1[{F : I}]− l−1[F ][I] +
`′1`

′
2

`′−1 + `′2
[C ′][{F : I}]−m1[Ia]Np − µI [I]

Ia(t) =
I(t)

1 + ν[A]
dNp

dt
= M1N

p
(
1− Np +Nd

Nmax

)
−m1[Ia]Np

dNd

dt
= m1[Ia]Np.

Since AHPCs have been shown to express mRNA for the IL6 receptor ([41]), the more recent

models under consideration have focused on mechanisms using the IL6 pathways for signal

transduction. However, it could still be possible that integrin binding between AHPCs and

laminin are necessary for the AHPC to differentiate in response to IL6.

Variants of the IL6 Mechanism

The IL6 mechanism presented in this dissertation has been shown to simulate all exper-

imental results from Tables 1.1 and 1.2. However, it is still a simplification of the full IL6
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mechanism. For example, it includes binding of activated IL6 to a gp130 dimer Rp
gp130, with-

out any modeling of the process of dimerization. Simplifications are needed when modeling

biological mechanisms due to the complexity of the mechanisms and the uncertainty of many

of the parameters involved. When simplifying a model, one should always recall the words of

Albert Einstein: ”Everything should be made as simple as possible, but no simpler.” In this

section three alternate mechanisms are presented along with brief explanations of why they

were not used for this dissertation.

The first mechanism under consideration includes the interactions among the soluble pro-

teins, but does not include any of the surface receptors explicitly. Differentiation occurs by

activated IL6 (Aa) binding to the AHPC. In this model, AHPCs do not express the receptor

for inactive IL6 (Ai) on the membrane, but they may secrete Ril. These reactions can be

summarized by

Ai +Ril
l1


l−1

{Ai : Ril} = Aa
l2→ degradation products

Aa +Gp
k1


k−1

Ao
µao→ degradation products

Aa +Np
ν1


ν−1

{Aa : Np} ν2→Nd.

The population model corresponding to this mechanism is given by

d[Ai]
dt

= Sai(t) + a1Na − l1[Ai][Ril] + l−1[Aa]− µai[Ai]

d[Aa]
dt

= Saa(t)− (l2 + l−1)[Aa] + l1[Ai][Ril]

− βν1[Aa]Np + βν−1[{Aa : Np}]− k1[Aa][Gp] + k−1[Ao]

d[Ril]
dt

= Sil(t) + baNa + bpN
p − l1[Ai][Ril] + l−1[Aa]− µil[Ril]

d[Gp]
dt

= Sgp(t) + saNa − k1[Aa][Gp] + k−1[Ao]− µgp[Gp]

d[Ao]
dt

= Sao(t) + k1[Aa][Gp]− (k−1 + µao)[Ao]

dNp

dt
= M1N

p
(
1− Np + [{Aa : Np}] +Nd

Nmax

)
− ν1[Aa]Np + ν−1[{Aa : Np}]

d[{Aa : Np}]
dt

= ν1[Aa]Np − (ν−1 + ν2)[{Aa : Np}]

dNd

dt
= ν2[{Aa : Np}].
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This model does not account for the background differentiation. Unfortunately, this model

was not able to numerically recreate all of the other experimental observations given in Tables

1.1 and 1.2 for biologically reasonable values. Parameter values often failed to recreate the

dramatic increase observed for the noncontact coculture, or were unable to recreate the general

behavior in Table 1.2. Moreover, although AHPCs express mRNA for the IL6 receptor ([41]),

it is not known if they express the membrane receptor IL6R or secrete the soluble receptor

sIL6Rα.

The second mechanism under consideration is similar to the first mechanism, but includes a

more complicated response to Aa. The idea behind the response to Aa is based on a hypothesis

in [49]. It is known that the complex of Ai, Ril, and the monomeric form of Rp
gp130 (Rp

mgp)

can exist as either the tetrameric complex {Ai : Ril : (Rp
mgp)2} or the hexameric complex

{(Ai)2 : (Ril)2 : (Rp
mgp)2}. In other words, either one or two molecules of Aa can bind a gp130

dimer. In [49] it is hypothesized, based on previous research, that the transition between the

tetrameric and hexameric state of this complex serves as a molecular switch between active

and inactive receptor complexes. Binding of one Aa complex to a surface gp130 dimer on an

AHPC initiates a signal transduction cascade resulting in differentiation of the AHPC. If two

Aa complexes bind to the same gp130 dimer on the AHPC, the signal transduction cascade is

not triggered. This effect can be modeled by the function K2([Aa]) =
κ1[Aa]

κ2 + [Aa]2
. The rate of

differentiation initially increases with increasing concentrations of [Aa], but as [Aa] continues to

increase, the likelihood of two complexes binding the gp130 dimer increases. Therefore, after

a certain peak value, the rate of differentiation starts to decrease in response to increasing

[Aa]. Figure E.1 shows the rate of differentiation in response to different concentrations of

[Aa]. Letting K1(Np, Nd) denote the coefficient for background differentiation as discussed

previously, the population model corresponding to this mechanism is given by

d[Ai]
dt

= Sai(t) + a1Na − l1[Ai][Ril] + l−1[Aa]− µai[Ai]

d[Aa]
dt

= Saa(t)− (l2 + l−1)[Aa] + l1[Ai][Ril]− βK2([Aa])Np − k1[Aa][Gp] + k−1[Ao]

d[Ril]
dt

= Sil(t) + baNa + bpN
p − l1[Ai][Ril] + l−1[Aa]− µil[Ril]
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Figure E.1 Coefficient governing the rate of differentiation for increasing
concentrations of activated IL6.

d[Gp]
dt

= Sgp(t) + saNa − k1[Aa][Gp] + k−1[Ao]− µgp[Gp]

d[Ao]
dt

= Sao(t) + k1[Aa][Gp]− (k−1 + µao)[Ao]

dNp

dt
= −

{
K1(Np, Nd) +K2([Aa])

}
Np +M1N

p
(
1− Np +Nd

Nmax

)
dNd

dt
=

{
K1(Np, Nd) +K2([Aa])

}
Np.

This system of equations was able to simulate all results shown in Tables 1.1 and 1.2. (In fact,

the concentration of [Aa] yielding the maximum differentiation response corresponds to the

concentration present during the noncontact coculture experiment.) To simulate the contact

coculture results, contact would have to increase the secretion rates a1 and ba, lowering the

rate of differentiation by increasing the inhibitory effect of overstimulation. However, a side

effect of this response is that, when the astrocyte density Na is decreased, [Aa] will decrease,

lessening the inhibitory effect, and leading to an increase in differentiation. This hypothesis was

tested with biological experiments. However, the increase in differentiation due to decreasing

astrocyte density was not observed.
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Finally we consider an extension of the mechanism treated in this dissertation. One of

the advantages of explicitly including both membrane receptor concentrations and cellular

densities is that we can include molecules such as proteases that alter the number of receptors

per cell but do not alter the number of cells. This is opposed to simply letting the cell density

be proportional to the membrane receptor concentrations. In the final variant of the IL6

mechanism presented in this dissertation, we hypothesize that contact between the astrocytes

and AHPCs induce the astrocytes to secrete a protease for Rp
gp130. The rest of the model is

identical to that considered in the dissertation. Since this protease is only included in the

contact coculture experiment, the model automatically matches the data from all of the other

experiments. However, to simulate the drop in differentiation from ∼ 70% in the noncontact

coculture to ∼ 20% in the contact coculture, one would need to cleave nearly 100% of the

Rp
gp130 present, which is most likely not occuring biologically. However, it is possible that this

mechanism is occuring in conjunction with a decrease in secretion of IL6 and/or sIL6Rα. This

combination of behaviors is an effect that can be explored in future work.
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