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ABSTRACT 

Rust fungal pathogens comprise the largest group of plant pathogenic fungi. Due to 

limitations of their study, like an inability to be cultured or difficulty in making genetic 

modifications, there are many gaps in the knowledge base of these organisms. One rust species, 

Puccinia sorghi, is a worldwide pathogen of maize that can cause significant yield losses. Much 

of the research for P. sorghi focuses on qualitative disease phenotypes of various isolates on 

different maize genetic backgrounds, with limited information regarding the key pathogenicity 

genes (effectors) required for a successful infection within this pathosystem. It is imperative to 

further develop the genomic and phenomic tools available for P. sorghi for use in effector 

characterization screens. 

With the recent advent of long-read sequencing, rust genome assembly has transitioned 

from exceedingly fragmented contigs based on short-read sequencing to large, repeat-resolved 

scaffolds. More complete rust genomes have led to many discoveries about the true genome size, 

repeat content, and gene content of these organisms. Well-annotated assemblies also allow for 

the prediction of candidate effector proteins that function as pathogenicity and virulence 

determinants. In this work, the genomic resources for P. sorghi are expanded with a highly 

contiguous, long-read assembly of a previously undescribed isolate (IA16). Comprehensive 

annotation utilizing expressed sequence tags from several timepoints across the disease cycle in 

maize enabled the prediction of additional candidate effectors for this species. Comparison of 

these candidates to other P. sorghi isolates will lead to discoveries regarding a particular isolate’s 

virulence.  

We also report on the characterization of the members of a rust-specific candidate 

secreted effector protein family present in the P. sorghi IA16 isolate. Of eight candidates, we 
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were able to demonstrate that one is a weak suppressor of the plant hypersensitive immune 

response in the heterologous system Nicotiana benthamiana. This work also utilized an 

automated phenotyping setup to acquire time lapse images of leaves during experimental assays. 

By pairing effector characterization assays with automated phenotyping platforms, we can 

increase throughput, accuracy, and consistency in results. 

Lastly, we detail a machine learning approach to quantifying common rust disease on 

maize leaves. Because plant-pathogen interactions are complex, and small changes to phenotype 

that are undetectable by human measurements may occur, the development of easy-to-use 

computer vision-based phenotyping platforms to provide consistent and quantitative results is 

essential. Additionally, a better understanding of the minimum requirements for a given 

phenotyping approach is useful for future development, as this can increase the speed at which 

new platforms are developed. This work demonstrates machine learning is a viable and accurate 

approach to the quantification of rust disease symptoms, corroborating ground truth experimental 

results. This work also provides extensive image and annotation data for use in future 

applications.  

Overall, this dissertation presents a multi-disciplinary approach to the study of P. sorghi 

that provides both genomic resources and phenotyping pipelines for the study of candidate 

effectors and plant-pathogen interactions.  

.  
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CHAPTER 1.    GENERAL INTRODUCTION 

Pucciniales, an order within Basidiomycota, contains the plant pathogenic rust fungi, 

well-known for their impacts on agriculturally important crop species (Figueroa et al. 2023; 

Avelino et al. 2015; Godoy et al. 2016). Their complex life cycles and genomes make these 

important plant pathogens difficult to study. Recent advances in genome sequencing 

technologies and assemblies, large-scale effector candidate screening, and computer vision-based 

phenotyping platforms have led to better understanding of these species (Petre and Duplessis 

2022; Lorrain et al. 2019; Heineck et al. 2019). 

General Biology of Rust Fungi 

Rust fungi are obligate biotrophs, requiring living host tissue to survive and complete 

their life cycles. Additionally, they are highly specific parasites, infecting narrow ranges of host 

species (Duplessis et al. 2021). As a result, these species are not culturable on synthetic media, 

and their study is limited to within their host species. Rust fungi can produce up to five separate 

spore types, each infecting either a primary (telial) or an alternate (aecial) host, which can be the 

same (autoecious) or different (heteroecious) plant species. Almost all spore types are dikaryotic, 

containing two genetically distinct haploid nuclei within each cell. Aeciospores infect the telial 

host, giving rise to uredinia sori, which produce urediniospores. Urediniospores reinfect the telial 

host in a repetitive, cyclic fashion, where sporulating uredinia give rise to new urediniospores 

that infect new host tissues. This spore stage does not overwinter or survive on dead host tissue, 

and spring infections in colder climates rely on wind dispersal from pathogen reservoirs in 

warmer climates. Eventually, uredinia can transition into telia, producing teliospores, a durable 

spore stage able to overwinter. Upon germination, the nuclei within teliospores undergo 

karyogamy, followed by meiosis, forming haploid basidia. These structures give rise to haploid 
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basidiospores, which infect the aecial host and form pycnia. Receptive hyphae of compatible 

mating types merge, forming aecia followed by aeciospores. Diploid, dikaryotic aeciospores 

return to the telial host, which germinate to form uredinia (Aime et al. 2017). Most rust species 

are macrocyclic and produce all five spore stages, but some are demicyclic (no uredinial stage) 

or microcyclic (only telial and either basidial or pycnial stages). For autoecious rust species 

where only some spore stages have been described, it is difficult to determine if lack of those 

spore stages is due to loss of function, extinction of alternate hosts, or simply have yet to be 

discovered (Lorrain et al. 2019). Puccinia striiformis f. sp. tritici (wheat stripe rust, wheat yellow 

rust), previously believed to be an autoecious species, had its alternate host discovered only 

thirteen years ago, several decades after the species was originally described (Jin et al. 2010; 

Zhao et al. 2013). In other species, such as Phakopsora pachyrhizi (Asian soybean rust), the 

alternate hosts remain unknown (Vittal et al. 2012). 

Research for many rust species has focused on the uredinial stage, as this stage is 

typically responsible for infecting crop species and causing disease epidemics. For most rust 

species, the urediniospores germinate on host plants, and germ tubes locate stomata through 

topographical and chemical signals (Allen et al. 1991), forming structures called appressoria over 

stomatal openings before entering plant tissue. Upon entry through the stoma, infection hyphae 

grow and form haustorial mother cells at mesophyll cells, which break through the plant cell wall 

to form structures known as haustoria. An extrahaustorial matrix and host-derived extrahaustorial 

membrane separates the fungal cell from the host cell, while still allowing for exchange of 

proteins, signaling molecules, and nutrients (Garnica et al. 2014). Additional hyphae continue to 

grow throughout intercellular spaces, developing more haustorial mother cells and haustoria 

before forming a uredinium and urediniospores that burst through the leaf epidermis. Haustoria 
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are of particular interest to rust researchers, as the close relationships they form with host cells 

facilitate nutrient uptake and the delivery of large quantities of secreted proteins (Voegele and 

Mendgen 2003; Catanzariti et al. 2006). 

The Puccinia sorghi-Maize Pathosystem 

Puccinia sorghi is a heteroecious and macrocyclic pathogen with maize and teosinte spp. 

serving as the telial hosts and Oxalis (wood sorrel) spp. serving as the aecial hosts. In maize, 

common rust develops as small, round to oval, brick-red to cinnamon brown pustules (the 

uredinia) on the adaxial and abaxial leaf surfaces, with cooler temperatures and higher humidity 

promoting fungal germination and growth. The sexual spore stages of P. sorghi are observed 

mostly in warmer climates (Guerra et al. 2016; Dunhin et al. 2004; Guerra et al. 2019), with 

occasional reports in temperate climates (Mahindapala 1978). In cooler climates, it is widely 

accepted that P. sorghi infection of maize is initiated in the spring each year from wind-blown 

urediniospores traveling from warmer regions, providing new inoculum to cycle in maize crops 

throughout the spring and summer. There are several qualitative “resistance to Puccinia” (Rp) 

genes in maize, commonly present in dent corn to confer resistance to P. sorghi. The majority of 

these genes are located at the Rp1 locus on the short arm of chromosome 10 (Chavan et al. 2015; 

Hooker 1985). Additional genes have been located at loci on chromosomes 3, 4, 6, and 10 

(Hulbert 1991; Hagan and Hooker 1965; Delaney et al. 1998). Quantitative resistance to 

common rust is present in maize as well, with some of this resistance presenting as adult plant 

resistance (Ren et al. 2021; Quade et al. 2021; Olukolu et al. 2016; Lübberstedt et al. 1998; 

Zheng et al. 2018). Despite the existence of these genetic resistance resources, P. sorghi still 

poses a threat to specialty maize varieties and has historically led to significant yield losses 

(Groth et al. 1983; Pataky 1987). Widespread use of the Rp1-D gene in sweet corn hybrids in the 

United States during the 1980s and 1990s significantly increased selection pressures for P. 
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sorghi populations, resulting in large virulent populations by 1999 (Pataky et al. 2001). 

Fungicides provide an alternative control method but can pose economic and environmental risks 

(Pataky and Eastburn 1993; Dey et al. 2012). The future outlook for P. sorghi is uncertain, as 

climate change and management factors will influence the pathogen’s range and severity. Some 

estimates predict expansion of suitable conditions for P. sorghi in the Northern hemisphere, 

including the United States (Ramirez-Cabral et al. 2017; Figueroa et al. 2023). This expansion 

increases the risk of the development of resistant P. sorghi populations, both to innate resistance 

traits and fungicides, as the expansion of sexual phase habitat and more generations of 

urediniospores would provide more opportunities for genetic recombination and mutation. P. 

sorghi populations are already widely variable, with samples from within a given region having 

differing virulence patterns on various Rp maize lines (Darino et al. 2016; Quade et al. 2021). 

Genomic Resources of Pucciniales Species 

The earliest whole-genome assemblies for rust species were released less than 15 years 

ago (Cantu et al. 2011; Duplessis et al. 2011; Zheng et al. 2013). Since then, the number of 

genomic resources produced for rust fungi has quickly expanded, with over 80 assemblies 

currently available from GenBank, including multiple isolates of the same rust species and fully 

phased haploid assemblies representing both dikaryotic nuclei of a given isolate. Rust genomes 

are particularly large when compared to other Basidiomycetes, with sizes ranging from 60 Mb to 

over 2 Gb with extensive repetitive elements (35-90%) (Aime et al. 2017; Tobias et al. 2021). As 

a result, early assemblies relied on short-read sequences from Sanger or Illumina technologies, 

resulting in highly fragmented contigs and incomplete or truncated gene annotations. Short-read 

assemblies are additionally unable to phase apart the two nuclei present in dikaryotic spore 

stages, instead collapsing divergent haplotypic sequences. As a result, sequencing strategies 

quickly shifted towards long-read sequencing technologies such as PacBio SMRT (Single 
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Molecule, Real-Time) or Oxford Nanopore Technologies. Even though error rates were higher 

for long-read sequencing technologies relative to other next-generation sequencing platforms, 

distal sequences were inherently linked, which enabled increasing assembly contiguity at the 

single read level (Schwessinger et al. 2018; Miller et al. 2018; Xia et al. 2018). Additional 

chromatin interaction information was often generated with 10X Genomics or Hi-C reads, which 

cross-link spatially close DNA sequences before shearing, enabling linking of both proximal 

DNA within a strand or contigs contained within the same nuclei, i.e., phasing. Advances and 

tool development in bioinformatics have contributed to assembly contiguity and phasing as well, 

including SALSA2 (Scaffolding of Long-read Assemblies), FALCON-Phase, and NuclearPhaser 

(Ghurye et al. 2017; Kronenberg et al. 2021; Sperschneider 2022). NuclearPhaser seems 

promising for the correction of phase switching in phased assemblies, where sequences within 

contigs may be phased, but end up assigned to the wrong haplotype, meaning each haplotype 

results in a mixture of sequences from both nuclei. The pipeline has been used with promising 

results in Puccinia coronata f. sp. avenae (oat crown rust), Puccinia triticina (leaf rust of wheat, 

barley, and rye), and Puccinia polysora (southern rust of maize) resulting in chromosome-level 

assemblies (Henningsen et al. 2022; Duan et al. 2022; Liang et al. 2023). Advancements in 

sequencing technologies have also led to the assembly of notoriously difficult genomes. 

Assemblies of three isolates of Phakopsora pachyrhizi, the causal agent of Asian soybean rust, 

were released in 2023, revealing a total genome size of 1.25 Gb, with repetitive elements 

accounting for 93% of the genome sequence (Gupta et al. 2023).  

The number and quality of rust fungi genomes are only expected to increase. Long-read 

sequencing platforms continue to improve and are now on-par with highly accurate Illumina 

short-reads. HiFi (high-fidelity) libraries from PacBio and the newest flow cell chemistry and 
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basecaller from Oxford Nanopore Technologies both boast accuracy rates of 99.9% (Wenger et 

al. 2019). This higher accuracy is already being utilized for rust fungi, with a recent fully phased, 

gapless, and chromosome level assembly published for P. triticina (Li et al. 2023). Higher 

contiguity and better annotation will inform evolutionary and phylogenomic studies, both within 

and between species (Nandety et al. 2022). 

The genomic resources of P. sorghi are limited to a draft assembly of the Argentine 

isolate RO10H11247 (Rochi et al. 2018). The assembly consists of 99.6 Mb contained in 15,722 

scaffolds, assembled from short-read Illumina libraries. The assembly appears relatively 

complete, containing 85% Basidiomycete BUSCOs (Benchmarking Universal Single-Copy 

Orthologs, Manni et al. 2021) and approximately 21,000 gene models. However, due to high 

fragmentation, unknown bases within the assembly, and annotation with non-P. sorghi 

transcripts, gene models are likely incomplete, erroneous, or missing. As there is often 

considerable genetic variation between rust isolates and no other P. sorghi assemblies are 

available, it is unknown how similar the Argentine isolate is to North American isolates (Jochua 

et al. 2008; Anderson et al. 2010; Kolmer 2013). The sequencing of additional isolates could lead 

to insight into the evolutionary history of this pathogen, as has been shown in other rust species 

(Gupta et al. 2023). 

Effector Proteins in Rust Species 

In rust fungi, haustoria feeding structures are well-known for delivering massive amounts 

of proteins and signaling molecules to host plant cells (Voegele and Mendgen 2003; Garnica et 

al. 2014). Of particular interest are secreted effector proteins, pathogenicity factors involved in 

the suppression of plant immune responses or trafficking of nutrients (Rafiqi et al. 2012; Uhse 

and Djamei 2018). Effector proteins of rust fungi typically lack predicted functional annotation 

and homology to other annotated proteins, but are often small and cysteine-rich, with an N-
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terminal secretion peptide for secretion from haustoria. The rapid expansion of genomic 

resources for rust fungi has led to the generation of extensive lists of candidate secreted effector 

proteins (CSEPs) (Gibriel et al. 2016) through computational tools like SignalP (Teufel et al. 

2022) and EffectorP (Sperschneider and Dodds 2022). CSEPs are also predicted from haustoria-

specific transcriptomes (Link et al. 2014; Garnica et al. 2013; Upadhyaya et al. 2015). For 

example, one study isolated haustoria from P. pachyrhizi and Uromyces appendiculatus (bean 

rust), identifying several CSEPs for each species, as well as families of secreted proteins 

common among rusts (Link et al. 2014). 

The large numbers of CSEPs have spurred large functional characterization studies, 

where subsets of effectors are analyzed in various assays to elucidate their function (Gibriel et al. 

2016; Aime et al. 2017). Genetic transformation of rust species is difficult and not routine, 

having only been described in two species to date (Lawrence et al. 2010; Djulic et al. 2011). As a 

result, characterization of CSEPs is often approached with transient assays like host-induced 

gene silencing (HIGS), by expressing candidates in heterologous systems to perform immune 

suppression or subcellular localization assays, or with yeast two-hybrid or co-

immunoprecipitation to identify interaction with host factors (Lorrain et al. 2019). For example, 

after 156 P. pachyrhizi CSEPs were identified (Link et al. 2014), 82 were subsequently 

characterized for their ability to suppress plant basal defense, callose deposition, hypersensitive 

response, or yeast cell death, with 17 showing evidence for suppression (Qi et al. 2018). Of these 

17, one, named PpEC23, was also shown to interact with a soybean SQUAMOSA promoter-

binding like transcription factor (Qi et al. 2016).  

Other studies have utilized CSEPs and haustorial transcriptomes to identify avirulence 

(Avr) proteins, effector proteins recognized by host resistance (R) proteins typically encoded by 
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nucleotide-binding and leucine-rich repeat (NLR) genes (Catanzariti et al. 2006; Wu et al. 2019; 

Periyannan et al. 2017). The combination of genomic data of multiple isolates and haustorial 

transcripts can lead to interesting discoveries in factors responsible for virulence phenotypes. For 

example, one study compared various Australian Puccinia graminis f. sp. tritici (wheat stem 

rust) genome and transcriptome assemblies, including that of an ancestral isolate from 1954. 

When comparing more recent isolates to the ancestral isolate, the researchers discovered several 

mutations in haustoria-specific genes that may explain the development of virulence phenotypes 

on several wheat resistant backgrounds (Upadhyaya et al. 2015). In relevance to maize, two Avr 

proteins were recently discovered in P. polysora through screening of extensive CSEPs, and both 

proteins triggered strong HR phenotypes when co-expressed with the corresponding Rpp 

(resistance to P. polysora) maize gene (Deng et al. 2022; Chen et al. 2022). In P. sorghi, the draft 

genome identified 1,599 predicted secreted proteins, of which a subset are likely CSEPs (Rochi 

et al. 2018), but effector characterization studies or identified Avr proteins for P. sorghi have yet 

to be published. 

Even with a plethora of options, it is often difficult to acquire meaningful data from 

effector characterization screens due to incomplete gene models, redundancy in functions, use of 

heterologous systems, or studies conducted in isolation of other effector proteins (Lorrain et al. 

2019). Time and space constraints can often be a limiting factor in effector screens, because a 

low success rate is compensated for by assessing a large number of candidates. Speed is of 

importance as the virulence phenotypes of rust fungi change quickly. There is a lack of automatic 

data acquisition or computer vision-based methods for phenotyping of effector screens, although 

they may contribute to higher throughput and consistency in screening assays. Given lists of 

hundreds to thousands of candidate effectors in a single species, plus unique variants of those 
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proteins between isolates, higher throughput is needed to screen these effector candidates for 

functions. 

Phenotyping Strategies for Rust Diseases 

Historically, rust disease phenotyping has relied on standard area diagrams, graphical 

representations of disease symptoms at various severities (Peterson et al. 1948). Typically, 

manual quantification of disease symptoms is considered the “gold standard”, but when 

assigning qualitative scores to disease incidence, human error is often high (Bade and Carmona 

2011; Bock et al. 2021; Habib et al. 2022). Prior knowledge and experience, time allotted for 

scoring, and color discrepancies (such as those due to color-blindness) can all influence a 

particular scorer, and scores can vary both from the same person or between people. This is 

particularly evident at higher density disease phenotypes, as people tend to overestimate disease 

as disease percentage increases (Habib et al. 2022). These discrepancies can have impacts both 

on research conclusions and on control method applications, as an overestimation of disease 

might result in additional applications of expensive and environmentally harmful fungicides 

(Bock et al. 2021). 

To reduce the inaccuracies and variabilities of human disease scoring, as well as generate 

phenotyping data not humanly possible, computer vision-based disease phenotyping platforms at 

all scales have been rapidly developed (Mutka and Bart 2015; Simko et al. 2017; Tanner et al. 

2022). The advent of tools like PlantCV (Gehan et al. 2017) have made computer vision 

applications to plant phenotyping more accessible and customizable for a given problem. There 

are several approaches to image-based phenotyping, from fairly simple to particularly complex. 

One basic but powerful approach takes advantage of the distinct borders and contrasting colors 

of red to orange rust symptoms on green plant tissue. Some strategies utilize images of individual 

leaves (Cui et al. 2010) or whole plants at ground level (Agarwal and Samantaray 2016), while 
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others employ drones to take whole-plot aerial images (Ganthaler et al. 2018). Thresholding 

methods can then be applied to the images to segment rust symptoms from healthy leaf tissue 

and background based on HSI (hue saturation intensity) or RGB (red green blue) channels. One 

study assessing soybean rust symptoms, converted RGB images of soybean leaflets to HSI and 

identified rust symptoms based on sharp changes in hue and value (Cui et al. 2010). Another 

study obtained ground and aerial images of needle bladder rust diseased Norway spruce trees, 

and disease quantification as predicted by built-in functions of ImageJ correlated well to 

manually-generated ground truth disease coverage (R2 = 0.87-0.95) (Ganthaler et al. 2018). 

Machine learning (ML) or deep learning is also becoming quite popular in plant disease 

phenotyping. ML models are often applied for feature extraction of disease symptoms coupled 

with classification or quantification in an autonomous manner (Mochida et al. 2018). Deep 

learning can be approached in many ways, but the most common methods utilize supervised 

learning, where manually generated labels, or annotations, inform model predictions. Many 

applications involve disease identification or classification in field settings, where multiple 

diseases can affect a single plot (Ullah et al. 2021; Paliwal and Joshi 2022; Mafukidze et al. 

2022). A recently published study utilized convolutional neural networks (CNNs) to extract 

features of wheat leaves and classify them as healthy or infected with a particular disease. The 

CNNs were able to classify the five classes (healthy, powdery mildew, rust, blight, or septoria) 

with a 98.83% accuracy (Xu et al. 2023). Other approaches aim to quantify disease symptoms 

either on a plant (Heineck et al. 2019) or whole field level (DeSalvio et al. 2022), with 

applications in analysis of resistance trials or informing deployment of control methods. 

 The appeal of ML stems from fast and accurate phenotyping results, where classification 

or quantification of disease symptoms can be completed several times faster than manual 
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methods with potentially more consistent and accurate results (Habib et al. 2022). There are still 

many limitations to ML, however, as developed models have limited applications outside of their 

intended use case, and accuracy is largely dependent on the quality and amount of annotation 

data. For rust diseases in particular, the features (pustules) are very small and numerous, making 

annotation an exceptionally painstaking task. A better understanding of the types of data needed 

to train ML models and reduce the amount of annotation data required are necessary to fast-track 

ML applications in more rust pathosystems. 

Dissertation Organization 

The aim of this dissertation is to develop tools for the identification and characterization 

of effector proteins in the P. sorghi-maize pathosystem. In Chapter 2, I detail an improved 

genome assembly for P. sorghi utilizing long-read Oxford Nanopore sequencing technologies. 

This assembly provides not only a more complete view of this pathogen, but also expands on the 

current knowledge of the diversity within the species through the sequencing of a new isolate. In 

Chapter 3, I analyze eight CSEPs of P. sorghi, related to a previously characterized effector 

protein from P. pachyrhizi. In addition to traditional immune suppression assays, I detail the use 

of a phenotyping box to generate automated time course images throughout experiments. In 

Chapter 4, I discuss an ML pipeline for the quantification of P. sorghi on maize leaves. In 

addition to the development of a tool useful for future studies, particularly those involving 

silencing of maize proteins or pathogenicity factors, the chapter also discusses the effect that the 

type and amount of annotation data has on the ability to answer biologically meaningful 

questions with the resultant ML models. 
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Abstract 

With the recent advance in long-read sequencing, methods for generating linkage 

information between reads, and computational methods for assembly and phasing, rust fungal 

genomes have gone from highly fragmented with limited information on repeat regions, to 

scaffolded, nearly complete to complete genome resources for various species and isolates. In 

this work, we report on a long-read-based genome assembly, scaffolded with Hi-C reads, for the 

Puccinia sorghi isolate IA16, totaling 902 scaffolds. We additionally include pseudophased 

haplotypes, with 1,277 and 1,262 scaffolds. The assembled genome has a haploid size of 174 

Mb, including significant repeat content of 76% and 16,336 predicted genes, of which 742 are 

predicted to code for effector proteins. This assembly provides a more complete view on the 

genomic content of P. sorghi, as well as providing additional information as to the effector 

content and evolution of P. sorghi and other rust pathogens. 

Introduction 

Fungal rust pathogens of the order Pucciniales are responsible for some of the most 

impactful crop diseases. One member of this order, Puccinia sorghi, causes common rust of 

maize and is a global threat to maize production. Climate change models suggest suitable 

environmental conditions for common rust disease are expected to expand in the Northern 
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hemisphere in the next 100 years (Ramirez-Cabral et al. 2017). There are several Rp genes in 

maize that provide resistance to various P. sorghi populations (Hulbert 1997; Chavan et al. 2015; 

Hooker 1985; Delaney et al. 1998; Hagan and Hooker 1965), but many isolates are known to 

overcome individual resistances (Hulbert 1991; Quade et al. 2021). Genomic resources for maize 

are abundant, but high-quality rust fungi genome assemblies have historically been difficult to 

generate (Duplessis et al. 2014). Rust fungi are obligate biotrophs, making it difficult to acquire 

enough tissue for sequencing, and metabolite carryover in genomic DNA isolation methods can 

interfere with sequencing chemistry (Jones and Schwessinger 2021). The genomes of rust fungi 

are large and complex when compared to other fungi, with some haploid sizes reaching over 1 

Gb (Ramos et al. 2015; Tobias et al. 2021; Tavares et al. 2014), and with repetivie sequences 

accounting for up to 90% of the genome (Xia et al. 2022; Liang et al. 2022). Rust fungi are also 

dikaryotic during the majority of their life cycles, with two genetically distinct haploid nuclei 

within each cell, and there have been many recent attempts to fully phase the separate nucleic 

sequences present in the two nuclei (Aime et al. 2017). 

The earliest sequencing projects for rust fungi genomes utilized Illumina short-reads 

(typically 50-300 bp), often resulting in highly fractured assemblies composed of 20,000-50,000 

contigs or scaffolds (Aime et al. 2017). A lack of contiguity limits the gene order information 

required for phylogenetic and evolutionary analyses of these genomes and complicates phasing 

of the two nuclei into two distinct haplotypes. Recent assembly strategies have utilized long-read 

sequencing (typically 5,000-30,000 bp) technologies such as those from Oxford Nanopore 

Technologies and PacBio. Pairing long-read assemblies with linked read information, such as 

from 10X Genomics or Hi-C libraries, can further aid scaffolding and phasing efforts. Presently, 

there are 60 Puccinia genome assemblies available from GenBank, which includes alternate 
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haplotypes of some isolates, with ten containing chromosome-level sequences, and two 

considered complete assemblies. Some strategies for phasing utilized PacBio long-reads in 

conjunction with the FALCON-Unzip pipeline (Chin et al. 2016) to recover haplotypic 

information (Schwessinger et al. 2018; Vasquez-Gross et al. 2020). The development of the 

NuclearPhaser pipeline (Sperschneider 2022) has also aided in the production of phased 

haplotypes in rust fungi assemblies (Henningsen et al. 2022; Liang et al. 2022; Duan et al. 2022). 

The two currently complete assemblies represent the fully phased haplotypes for Puccinia 

triticina isolate Pt15, generated from PacBio HiFi long-reads, Illumina short-reads, and Hi-C 

linked reads (Li et al. 2023). The assembly of additional rust fungal genomes of species with no 

previous assembly and isolates of previously sequenced species will allow for comparative 

genomics between rust pathogens and isolates of the same species (Nandety et al. 2022).   

The current genomic resources for P. sorghi consist of a draft assembly and annotation of 

an Argentine isolate, RO10H11247, originally collected in 2010 (Rochi et al. 2018). The de novo 

assembly was generated from a 200 bp paired-end (PE) library and scaffolded with a 5000 bp 

mate-paired library. The final assembly consists of 15,722 scaffolds with an estimated size of 

99.6 Mb, with 28.6% consisting of unknown bases. The assembly was annotated with whole 

transcriptomic data from Puccinia graminis f. sp. tritici, Puccinia striiformis f. sp. tritici, 

Puccinia triticina, and Ustilago maydis, resulting in ~21,000 predicted protein-coding genes and 

1,599 candidate secreted effector proteins (CSEPs).  

Sequencing technologies and protocols have rapidly improved since the original draft P. 

sorghi genome was reported, thus we aimed to improve on genomic structure information and 

resolve repeat regions of an isolate of P. sorghi from the Midwestern United States. In support of 

this aim, we utilized long-read Oxford Nanopore sequences and short-read Hi-C sequences to 
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assemble a pseudohaplotypic, long-read draft genome for the Iowan P. sorghi isolate IA16. After 

annotation with comprehensive IA16-specific transcriptome, the assembly reported here provides 

another resource for rust fungi phylogenomics and effector identification and evolution. 

Material and Methods 

IA16 isolation 

The IA16 isolate was generated from a P. sorghi sample gathered from a maize field in 

Boone County, Iowa, in 2016. To ensure homogeneity, the isolate was purified with four rounds 

of single pustule isolation, where one well-isolated pustule from the previous round was used to 

inoculate new plants. 

Maize and P. sorghi growth and maintenance 

The sweet corn variety ‘Golden Bantam’ was used to maintain and accumulate P. sorghi 

urediniospores. All plants were grown under 16-hour days in either a greenhouse or growth room 

(22-25˚C). Sweet corn seeds were sown in a peat-based growing medium in plastic 10”x20” 

greenhouse trays inset with 48-well inserts, with two to three seeds per well. When grown in a 

growth room, trays were covered with a transparent plastic dome for a week to aid germination. 

Trays grown in greenhouse conditions were left uncovered. Seedlings were grown until they had 

two to four leaves, or approximately 10-14 days, before inoculation. Initial inoculation utilized 

urediniospores from frozen storage (-80˚C), which were prepared by thawing in a 42˚C water 

bath for five minutes before direct inoculation onto sweet corn seedlings by dusting the thawed 

urediniospores onto leaves.  Subsequent inoculations were conducted by brushing sporulating 

plants onto new seedlings. After inoculation, seedlings were moved to a dew chamber 

constructed from PVC pipe and a waterproof tarp, sprayed thoroughly with water, and left 

overnight. Alternatively, plants were sprayed thoroughly with water and covered with a tall, 

transparent plastic cover overnight. The seedlings were then returned to normal growth 
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conditions and left uncovered. Disease symptoms began appearing at four days after inoculation 

(DAI), with uredinia visible after six to seven DAI, and significant spore production at nine to 

ten DAI. Urediniospores were collected either by tapping sporulating leaves over a piece of 

paper and pouring into a 1.5 mL microcentrifuge tube or via vacuum collection. To vacuum 

collect spores, a cyclone spore collector (Pretorius et al. 2019) connected via tubing to a vacuum 

pump was systematically run across sporulating maize leaves. The 1.5 mL microcentrifuge tubes 

containing the collected spores were placed directly into a -80˚C freezer with no prior flash 

freezing in liquid nitrogen. 

IA16 differential characterization 

Maize inbred lines with various Rp genes were inoculated with IA16 urediniospores and 

scored at seven to ten DAI. Disease development was scored as either virulent (+), with heavy 

pustule coverage, avirulent (-), with either chlorotic flecking or no visible disease development, 

or intermediate (I), with variable or indeterminate symptoms. 

DNA isolation and sequencing 

High molecular weight DNA was extracted from urediniospores according to fungi-

specific protocols (Schwessinger and Rathjen 2017; Schwessinger 2019; Jones et al. 2019; Jones 

and Schwessinger 2021; Duan et al. 2022). DNA samples were sent to the Iowa State University 

DNA Facility for quality analysis, size selection, library preparation, and sequencing. Oxford 

Nanopore Technologies libraries were created with the SQK-LSK109 kit and run on a 

GridIONx5 using FLO-MIN106 flow cells. A total of three libraries were created and run on 

three separate flow cells. Base-calling was done with Guppy 2.1.3, 3.2.10, and 5.1.13 

respectively.  

For Hi-C sequencing, 200 mg of urediniospores were ground in a liquid nitrogen-cooled 

mortar and resuspended in 5 mL of 1% formaldehyde. The mixture was incubated at room 
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temperature for 20 minutes, with periodic vortexing. Glycine was added to a final concentration 

of 125 mM and incubated at room temperature for 15 minutes, again vortexing periodically. The 

spores were centrifuged for one minute at 1000 × g and rinsed with ddH2O after removal of the 

supernatant. The spores were again spun down and the supernatant was removed. The cross-

linked tissue was transferred to a 1.5 mL microcentrifuge tube and stored at -80˚C. The cross-

linked sample was shipped to Phase Genomics (Seattle, WA, USA) on dry ice for DNA 

extraction, Hi-C library generation, and sequencing. The 150-bp paired end library was created 

according to the Proximo Hi-C (Fungal) 3.0 protocol and sequenced with Illumina to a read 

depth of 100 million read pairs (RPs). 

RNA isolation and sequencing 

Seedlings of the maize inbred H95 were inoculated with the IA16 isolate and samples 

were taken at 18 hours post inoculation (HPI), 24 HPI, 3 DAI, 40 HPI, 5 DAI, and 7 DAI, each 

with four biological replicates. Resting spores and germinated spores were also sampled, with 

five biological replicates each. Three 250-bp PE libraries were created from pooled RNA; the 

first included all 28 H95 samples, the second included all five resting spore samples, and the 

third included all five germinated spore samples. The resulting libraries were each sequenced on 

two SP flow cells on a NovaSeq 6000. 

Genome assembly, cleaning, and polishing 

Genome assembly was conducted with Flye 2.9.1 (Lin et al. 2016; Kolmogorov et al. 

2019), using the ‘--scaffold' flag for the collapsed haploid assembly and the ‘--keep-haplotypes’ 

and ‘--min-overlap 10000’ flags for the haplotype assemblies. Mitochondrial and contaminant 

contigs were identified by BLAST+ 2.13 (Sperschneider 2021). Briefly, mitochondrial contigs 

were searched against the NCBI mitochondrial database and moved to a separate file. To identify 
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contaminant contigs for removal, contigs were searched against the NCBI nucleotide database. 

Each assembly was polished twice with medaka 1.5 (https://github.com/nanoporetech/medaka). 

Haplotype phasing and scaffolding 

To create the pseudohaplotypes, HapDup 0.12 was applied to the Flye haplotype 

assembly (Kolmogorov et al. 2019; Shafin et al. 2021). The Hi-C reads were aligned and 

processed with the Arima Genomics Hi-C mapping pipeline 

(https://github.com/ArimaGenomics/mapping_pipeline). Briefly, Hi-C reads were mapped 

individually to each assembly with BWA-MEM from BWA 0.7.17 (https://github.com/lh3/bwa), 

chimeric regions were removed from the 5’ end of each read, and read pairs were matched. 

Assemblies were scaffolded with SALSA 2.2, using the ‘--clean yes’ flag to correct any 

identified mis-assemblies in the input (Ghurye et al. 2017, 2019). BUSCO analysis and 

identification was conducted with BUSCO 5.4.3 with the basidiomycota_odb10 database (Manni 

et al. 2021). 

Annotation of genome assembly 

De novo repeat libraries were predicted with RepeatModeler 2.0.3 with the ‘-LTRStruct’ 

option (Flynn et al. 2020). Repeats were soft-masked by running RepeatMasker 4.1.2 (Smit et al. 

2015) twice in succession, once with the parameter ‘-species fungi’ and again with the ‘-lib’ 

option directing to the RepeatModeler de novo library output. The resultant soft-masked 

assemblies were used for gene annotation. The sequencing output from the six previously 

described RNA sequencing flow cells was combined and reads were trimmed and cleaned with 

Fastp 0.12.4 (Chen et al. 2018; Chen 2023). Cleaned reads were aligned to each assembly with 

HISAT2 2.2.1 (Kim et al. 2019) with the parameters ‘--max-intronlen 3000’ and ‘--dta'. 

Transcripts were assembled with Trinity 2.15.1 (Grabherr et al. 2011; Haas et al. 2013) in 

genome-guided mode with the parameters ‘--jaccard_clip’, ‘--genome_guided_bam’, and ‘--
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genome_guided_max_intron 3000’. Annotation was performed on the soft-masked assemblies 

with funannotate 1.8.15 (Palmer and Stajich 2022). Funannotate train was run first with the 

Trinity assembly using the parameters ‘--jaccard_clip’, ‘--no_normalize_reads’, and ‘--

no_trimmomatic’ as reads were previously cleaned. Funannotate predict was run next with the 

parameter ‘--optimize_augustus’. Erroneous gene models detected by funannotate predict were 

manually removed, and funannotate fix was run to update the gene models. Funannotate update 

was run next with the parameters ‘--jaccard_clip’, ‘--no_trimmomatic’, and ‘--

no_normalize_reads’. Using the “proteins.fa” files from funannotate update, gene model 

annotations were predicted through several methods. InterProScan 5 (Jones et al. 2014; Blum et 

al. 2021) was run through funannotate. The fungal version of antiSMASH 6.1.1 (Blin et al. 2021) 

was run locally. Phobius 1.01 (Käll et al. 2004, 2007), eggNOG-mapper 2.1.9 using the eggNOG 

5.0 database (Huerta-Cepas et al. 2019; Cantalapiedra et al. 2021), and SignalP 6.0 (Teufel et al. 

2022), with the options ‘Eukarya’ and ‘Slow’, were run through their respective web services. 

Finally, funannotate annotate was run, using the aforementioned predicted annotations as input. 

To predict effector proteins, the combined unique predicted secreted proteins from SignalP and 

Phobius were run through EffectorP 3.0 (Sperschneider and Dodds 2022). Genomic feature 

distribution was visualized with karyoploteR 1.27.0, with metrics calculated in 100 kb non-

overlapping sliding windows (Gel and Serra 2017). 

Comparison between IA16 and RO10H11247 isolates 

The online interactive D-GENIES (Cabanettes and Klopp 2018) application was used 

with Minimap2 2.24 (Li 2018) to generate a dot plot to compare the haploid assembly and the 

RO10H11247 assembly. OrthoFinder 2.4.5 (Emms and Kelly 2015) was used to predict 

orthogroups between assemblies. 
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Results 

Virulence of IA16 on various Rp maize lines 

To determine the virulence profile of the IA16 P. sorghi isolate, we inoculated various 

maize inbred lines, sweet corn, or maize H95 lines each carrying a different Rp (resistance to 

Puccinia sorghi) gene. IA16 was virulent (produced sporulating pustules) on the majority of Rp 

genes tested, developing similar pustule coverages as maize lines containing no Rp genes (Table 

1). Two Rp lines, Rp4B and Rp5, had intermediate virulence phenotypes, as fewer pustules 

developed, suggesting partial resistance to IA16. IA16 was avirulent on two lines, Rp1-I and 

RpG, on which some chlorotic flecking developed, indicating a resistance response (Table 1). 

The assembled genome is highly contiguous 

Approximately 3.3 Gb of quality sequences were acquired from three Nanopore flow 

cells, totaling ~20x genome coverage in 271,978 reads (Figure 1). The reads were used to 

generate two assemblies with Flye, one with the ‘--keep-haplotypes’ flag to retain haplotypic 

information and another without, to create a collapsed haploid genome. Both assemblies were 

screened for mitochondrial contigs, which were identified by BLAST matches to the NCBI 

mitochondrial database, high sequencing fold coverage, and low GC content (Sperschneider 

2021). Four mitochondrial contigs were identified for the haploid assembly. Upon closer 

inspection, we found they were two sets of nearly identical sequences, so the shorter contig of 

each set was removed, leaving us with two mitochondrial contigs totaling 80,903 bps. One 

mitochondrial contig was identified in the haplotypic assembly, with 80,857 total bps. Given that 

other Puccinia species have mitochondrial genomes of around 80 kb (Cuomo et al. 2017; 

Vasquez-Gross et al. 2020) and the previously reported P. sorghi genome estimated a 

mitochondrial genome size of 83.8 kb (Darino et al. 2016), we estimate this captures the full 

mitochondrial sequence for IA16.  
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After removing the mitochondrial contigs, both assemblies were assessed for contaminant 

contigs by BLAST against the NCBI nt database (Sperschneider 2021). Nineteen contaminant 

contigs were removed from the haploid assembly and seven were removed from the haplotypic 

assembly, mostly containing maize and Enterobacter matches. Many rust genome assembly 

strategies also remove contigs with less than two-fold coverage. However, as we had lower read 

coverage to begin with, all genomic contigs were retained. Once assemblies were free of 

contaminants, the remaining contigs were polished with the long-reads in two successive rounds 

of medaka. The haplotypic assembly was converted to a diploid assembly with HapDup 

(Kolmogorov et al. 2019; Shafin et al. 2021), which produced two full length pseudohaplotypes, 

hereafter referred to as haplotype A and haplotype B. They are expected to be chimeric 

haplotypes. All three assemblies were scaffolded separately with the Hi-C reads using SALSA2 

(Ghurye et al. 2017) and Basidiomycota BUSCOs were identified in each scaffolded assembly 

(Table 2) (Manni et al. 2021). 

The haploid assembly is composed of 902 total scaffolds, totaling 174 Mb. The majority 

of the genome is contained within very few scaffolds, with an L50 of 16 scaffolds and an L90 of 

57 scaffolds (Table 2). The haplotype assemblies are less contiguous due to contig breaking by 

HapDup but are similar in size to the haploid genome, each containing approximately 170 Mb in 

1,277 (A) and 1,262 (B) scaffolds (Table 2). The L50 and L90 scores of the haplotypes are also 

larger, but still much less than their respective total number of scaffolds, with an L50 of 32 (A) 

or 26 (B) and an L90 of 197 (A) or 190 (B). The haploid assembly has a BUSCO content of 80% 

complete BUSCOs, with an additional 5% of fragmented BUSCOs. The haplotype assemblies 

have fewer BUSCO members and more members are fragmented (Table 2). The haplotypes seem 

to contain unique BUSCOs, and when assessing both haplotypes together, they have 
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approximately 80% of members represented, with 75% complete (Table 3). The GC content is 

approximately 45% in all three assemblies. 

The genome of IA16 is highly repeat-rich 

Repeats were annotated with RepeatMasker using assembly-specific model libraries built 

by RepeatModeler for all three IA16 assemblies. We similarly reannotated the RO10H11247 

assembly to enable a direct comparison between repeat annotation of the two isolates, resulting 

in 34% total repeats for the RO10H11247 isolate, which is nearly identical to the previously 

reported 32.53% (Table 4). This is in stark contrast to the three IA16 assemblies, which all have 

repeat contents of approximately 76%, more than double the previously published assembly, but 

still in line with more recent rust fungi assemblies (Liang et al. 2022; Duan et al. 2022). The 

largest proportion of sequence is composed of retroelements, with ~30% of repeat sequence 

belonging to the Ty3/DIRS1 class and ~6% belonging to the Ty1/Copia class in each IA16 

assembly, followed by ~28% of unclassified repeats (Table 4). Approximately 9% of IA16 

sequence was classified as DNA transposons. The expanded LTR retrotransposon class is 

commonly cited for genome expansion in rust fungi (Tobias et al. 2021; Liang et al. 2022). 

Despite the expanded genome assembly of IA16, the assemblies of the two isolates seem largely 

correlated according to a dot plot (Figure 2). The amount of non-repeat coverage in the genome 

is similar for the two assemblies, with IA16 containing 41 Mb and RO10H11247 containing 37 

Mb (Table 4). 

The genome of IA16 contains similar genic content to other rust fungal species 

To ensure a comprehensive transcriptome, RNAseq data from multiple time points of a P. 

sorghi-maize disease time course, as well as from germinated and resting spores, were used to 

generate transcriptome libraries. Each assembly was annotated with funannotate in the order 

train, predict, fix, update, and annotate, with annotate run with predictions from InterProScan5, 
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antiSMASH, eggNOG mapper, SignalP 6.0, and Phobius. This resulted in 16,336 predicted 

genes in the haploid assembly and ~19,500 within each haplotype assembly (Table 5). However, 

the average gene length is much smaller with the haplotype assemblies, and gene models may 

have been split when constructing the haplotypes, artificially increasing gene number. This is 

supported by the fact that although total gene models are increased for the haplotypes as 

compared to the haploid, there are 11 to 18% fewer predicted secreted proteins, which rely on an 

N-terminus secretion signal. Additionally, gene models are shorter and total gene coverage is 

~16 Mb in each haplotype as compared to the 20.85 Mb in the haploid assembly (Table 5). To 

have a direct comparison, we reannotated the RO10H11247 assembly with the same funannotate 

pipeline using the IA16 ESTs. This resulted in 10,922 gene models, approximately 10,000 fewer 

models than the previously reported 21,087 genes (Table 5) (Rochi et al. 2018). Although the 

number of genes drastically differs between the two methods, the total amount of annotated 

sequence is similar between our annotation (19.32 Mb) and the previous annotation (22.39 Mb). 

The discrepancy may be due to the high number of unknown bases in the reference genome 

paired with the genome-guided approach to transcriptome library generation. Despite this, the 

funannotate pipeline annotated 419 tRNAs, similar to the 405 previously reported (Supplemental 

Table 1) (Rochi et al. 2018). The IA16 assemblies all have approximately 830 tRNAs, but the 

proportions of specific tRNAs is similar between IA16 and RO10H11247 (Supplemental Table 

1). 

To identify predicted secreted proteins, all predicted proteins were analyzed with SignalP 

6.0 and Phobius to identify predicted secretion signals. The combined unique proteins from both 

lists were used as input in EffectorP 3.0, which resulted in 1,845, 1,635, and 1,511 predicted 

secretion proteins for the haploid assembly, haplotype A, and haplotype B, respectively. Of 
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these, 742, 655, and 616 are predicted to be effector proteins (Table 5). We repeated this process 

similarly for both the versions of RO10H11247 annotations (previously reported and 

funannotate), predicting a total of 1,471 secretion proteins and 563 effector proteins for the 

funannotate annotations and 1,609 secretion proteins and 615 effector proteins for the previously 

reported RO10H11247 annotations (Table 5). There are varying numbers of unique orthogroups 

both for all predicted proteins and for effector proteins between the IA16 haplotypes and 

between the haploid IA16 and RO10H11247 proteins, with the majority of differences found 

between the previously reported RO10H11247 proteins and either the IA16 or RO10H11247 

funannotate annotated proteins (Supplemental Table 2). When analyzing the largest 16 scaffolds 

(L50), genomic features appear evenly distributed (Figure 3). In particular, there do not appear to 

be large trends between gene density and CSEP density, similar to other rust species (Tobias et 

al. 2021; Schwessinger et al. 2018; Miller et al. 2018). 

Discussion 

Long-read sequencing technology has been used to great success in the generation of rust 

fungi genome assemblies. Here, we present an assembly for the IA16 isolate of P. sorghi through 

the use of Oxford Nanopore technologies long-read sequences and Hi-C linked reads. Our 

assembly is highly contiguous, with half of the sequence contained in only 16 scaffolds. It is a 

significant improvement over current P. sorghi resources and provides additional information in 

the form of resolved repeat regions and predicted protein coding genes of a different P. sorghi 

isolate. The 742 CSEPs from this assembly will undoubtedly provide exciting avenues for future 

studies, both in regard to characterization studies and comparison between other P. sorghi 

isolates or other rust species. 

Many of the challenges we encountered with the genome assembly likely stem from 

lower Nanopore output than expected coupled with the relatively high error rates of the flow 
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cells used for sequencing. Although fungal-specific high molecular weight gDNA isolation 

protocols were used, it is noted that unidentified contaminants often carry-over and interfere with 

sequencing (Jones and Schwessinger 2021). Presumably as a result of these contaminants, each 

of the three Nanopore flow cells resulted in sub-optimal outputs of 1-1.5 Gb of raw data. The 

large amount of urediniospore tissue required for each Nanopore flow cell limited the number of 

flow cells we were able to run. As a result, the phasing of the assembly presented here is minimal 

and phase switching could not be corrected. We were also unable to utilize the promising 

NuclearPhaser pipeline (Sperschneider 2022), as it is designed to find exactly two haplotypic 

groups, and we consistently had more than two groups with various initial long-read assembly 

strategies and settings. NuclearPhaser relies on haplotigs as input, but it seems the majority of 

contigs for our various assembly attempts are largely collapsed. 

The reduced Nanopore data output also likely contributed to reduction of Basidiomycota 

BUSCOs and gene models when compared to the RO10H11247 assembly. Regardless, the 

majority of BUSCOs present in the haploid assembly are complete, and the assembly is likely 

nearly complete. The most significant difference between the two isolates’ assemblies remains 

the quantity of repeat regions, where IA16 has more than double the identified repeats when 

compared to RO10H11247. The increased number of repeats within the IA16 assembly, and 

particularly retrotransposon repeats, are the likely the main contributors to the size discrepancy 

between the assemblies, as non-repeat length is similar, with 41.1 Mb of non-repeat space in 

IA16 and 37 Mb in RO10H11247. The 28% of unknown sequence within the RO10H11247 

genome are likely largely repeat-rich, hence why they were not assembled from the short 

Illumina reads, but some percentage is likely non-repetitive as well, and may make up for some 

of the discrepancy between the two isolates. Although it is difficult to determine synteny when 
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comparing to a largely fragmented genome, there is a strong correlation between the two 

assemblies (Figure 2). It is likely that the true genome size of RO10H11247 is larger than the 

reported 99.6 Mb due to collapsing of repeat regions, but it is difficult to conclude from the 

available data whether RO10H11247 is a similar size to IA16 or if IA16 has undergone 

significant repeat expansion.  

When specifically comparing predicted protein-coding genes, the haploid assembly of 

IA16 has fewer genes than the published RO10H11247 assembly, but more predicted secreted 

and effector proteins. We also repeated the annotation process with the Funannotate pipeline for 

the RO10H11247 assembly to have a direct comparison, but this strategy resulted in significantly 

fewer genes than either the IA16 assembly or the previous report. We believe this is an artifact of 

the high proportion of unknown bases in the RO10H11247 genome paired with genome-guided 

annotation, as many of the RO10H11247 genes predicted with Funannotate spanned stretches of 

unknown bases, artificially increasing gene size. Both the funannotate annotations and the 

original annotations for RO10H11247 resulted in fewer predicted secreted and effector proteins, 

despite the original having more overall annotations. The reduction in predicted secreted and 

effector proteins likely stems from incomplete gene models, as missing N-terminal sequence, 

where secretion signals are located, would erroneously label secreted proteins as non-secreted, 

and thus as non-effector proteins. 

Currently, no Avr gene has been identified in P. sorghi for any of the described Rp genes 

in maize. The sequencing of this additional P. sorghi isolate may aid in the search for Avr genes, 

particularly in isolates with differing virulence phenotypes on the same Rp lines. For example, 

the IA16 isolate is avirulent on RpG and virulent on Rp1-D while IN2, an isolate from Indiana, 

has the opposite phenotype (Richter et al. 1995). 
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Conclusions 

As high molecular weight DNA extraction methods, sequencing technologies, and 

computational pipelines and strategies continue to develop, we expect more repeat-resolved 

genomes for both additional P. sorghi isolates and other Pucciniales species to be assembled. 

Here we showed that even minimal long-read sequencing can be used to generate a contiguous 

and relatively complete P. sorghi genome. We found that the IA16 isolate contains significantly 

more repeats than previously reported for P. sorghi, with the majority being LTR retroelements, 

similar to other rust fungal species with high percentages of repeat regions (Liang et al. 2022; 

Tobias et al. 2021), with a total haploid genome size of 174 Mb contained within 902 scaffolds. 

The pseudohaplotypes were of a similar size, each with ~170 Mb contained within 1,277 or 

1,262 scaffolds. Using IA16 specific whole transcriptome data, we were able to annotate 16,336 

protein coding genes on the haploid assembly, of which 742 are predicted effectors. This 

assembly appears to be relatively complete and provides both another resource for P. sorghi and 

Pucciniales, as well as a new resource for IA16 and similar Midwestern isolates or races. 
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Figures 

 

Figure 1. Weighted histogram of read lengths obtained from the output from three Nanopore 

flow cells. Each bar indicates total bases contained within reads of a given length. Bin size is 500 

bp. 
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Figure 2. A D-GENIES dot plot showing mapping matches between the haploid IA16 assembly 

and the RO10H11247 assembly. M indicates millions of bases. 

 

 



 
4
4
 

 

Figure 3. The genomic features of the largest 16 scaffolds of the haploid assembly of IA16. Each track is in vertical alignment with its 

respective scaffold at the top of the figure, and all scaffold representations are proportional to their size. Feature content was 

calculated in 100 kb non-overlapping sliding windows. The tracks are of GC density and repeat density as the percentage of sequence 

and gene density, CSEP density, and tRNA density as the number of features per 100 kb. 



45 

Tables 

Table 1. Virulence phenotype of the IA16 P. sorghi isolate on various maize genotypes and Rp 

resistance genes and alleles. Maize lines were inoculated with IA16 urediniospores and scored 7-

10 days later. “+” indicates virulence, “-” indicates avirulence, and “I” indicates an intermediate 

or indeterminable virulence. Rp1-D21 is an autoactive mutant of Rp1-D. 

Background Rp Gene 
Virulence 

Phenotype 

H95 - + 

B104 - + 

B73 - + 

W22 bz1-mum9 - + 

Sweet Corn 

(Golden Bantam) 
- + 

H95 Rp1-A + 

H95 Rp1-B + 

H95 Rp1-C + 

H95 Rp1-I - 

H95 Rp1-J + 

H95 Rp1-Kn1 + 

H95 Rp1-M + 

H95 Rp3-A + 

H95 Rp4-A + 

H95 Rp4-B I 

H95 Rp5 I 

H95 Rp7 + 

H95 RpG - 

H95 RpGA - 

H95 Rp1-D + 

A632 Rp1-D21 + 

B73 Rp1-D21 + 

H95 Rp1-D21 + 
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Table 2. Genome assembly metrics for all three IA16 assemblies plus the previously reported 

RO10H11247 assembly. The BUSCO database basidiomycete_odb10 (1,764 total members) was 

used to calculate BUSCO scores for all four assemblies. 

Assembly Haploid Haplotype A Haplotype B RO10H11247  

Contigs 1444 2757 2763 28117 

Scaffolds 902 1277 1262 15715 

Total Length (Mb) 174.05 170.45 170.59 99.53 

Mean Length Scaffold (kb) 192.96 133.48 135.18 6.33 

N50 (Mb) 3.93 1.56 1.83 0.019 

L50 16 32 26 1530 

N90 (kb) 200.11 63.70 62.79 3.84 

L90 57 197 190 5788 

GC Content 45.18% 44.98% 44.97% 43.15% 

All BUSCOs 84.64% 73.53% 72.17% 88.49% 

Complete BUSCOs 79.59% 63.32% 62.59% 85.37% 

Complete 1404 1117 1104 1506 

Complete and Single Copy 1376 1091 1075 1497 

Complete and Duplicated 28 26 29 9 

Fragmented 89 180 169 55 

Missing 271 467 491 203 

 

Table 3. The basidiomycete_odb10 BUSCO results for the combined haplotype A and haplotype 

B assemblies of IA16. The basidiomycete_odb10 database contains 1,764 members. 

Assembly A + B 

All BUSCOs 80.16% 

Complete BUSCOs 75.40% 

Complete 1330 

Complete and Single Copy 818 

Complete and Duplicated 512 

Fragmented 84 

Missing 350 
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Table 4. Repeat coverage results for the three IA16 assemblies, plus recalculated statistics for 

the RO10H11247 assembly. Percentages shown are of total assembly sequence. Ty1/Copia and 

Ty3/DIRS1 represent the majority of annotated retroelements within each assembly. *This 

metric does not include the 29% of unknown sequence within the RO10H11247 assembly and 

true values are expected to be higher. 

 Haploid Haplotype A Haplotype B RO10H11247  

Total Repeats 76.38% 76.34% 76.51% 34.10% 

Repeat Coverage (Mb) 132.94 130.12 130.52 33.94* 

Non-Repeat Coverage (Mb) 41.11 40.33 40.07 36.96* 

Retroelements 37.33% 36.22% 37.18% 7.48% 

Ty1/Copia 6.51% 6.00% 6.03% 3.17% 

Ty3/DIRS1 30.50% 29.81% 30.42% 3.92% 

DNA transposons 9.67% 8.98% 9.07% 2.68% 

Unclassified 27.73% 29.79% 28.26% 22.93% 
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Table 5. Annotation metrics for the three IA16 assemblies and the RO10H11247 assembly. Genome assemblies were annotated using 

funannotate and the IA16 ESTs. The previously reported RO10H11247 annotation metrics are shown for comparative purposes. 

Predicted secreted and candidate secreted effector protein results were recalculated with the updated programs for the previously 

reported RO10H11247 predicted proteins. “fun.” indicates funannotate results and “PR” indicates results from the previously reported 

annotations. *Value is from previously reported metrics from Rochi, et al 2018. 

Assembly Haploid Haplotype A Haplotype B 
RO10H11247 

(fun.) 

RO10H11247 

(PR) 

Genes 16336 19487 19432 10992 21087* 

Average Gene Length (kb) 1277 838 801 1757 1062* 

Gene Coverage (Mb) 20.85 16.33 15.6 19.32 22.39* 

% of Assembly Covered by Genes 11.98% 9.58% 9.13% 19.41% 22.50%* 

tRNAs 839 829 835 419 405* 

CDS Transcripts 16458 19035 18923 11908 - 

SignalP 6.0 Predicted Secretion Proteins 1128 803 728 957 753 

Phobius Predicted Secretion Proteins 1775 1580 1471 1414 1609 

Transmembrane Proteins 2552 2390 2378 2223 5399 

Total Unique Predicted Secretion 

Proteins 
1845 1635 1511 1471 1690 

Predicted Effectors 742 655 616 563 615 

Predicted Cytoplasmic Effectors 527 498 456 393 449 

Predicted Apoplastic Effectors 215 157 160 170 166 

Cytoplasmic Effectors Predicted Dual-

Localized 
10.40% 7.40% 7.00% 9.90% 7.60% 

Apoplastic Effectors Predicted Dual-

Localized 
15.30% 13.40% 16.90% 17.10% 9.00% 
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Supplemental Tables 

Supplemental Table 1. Breakdown of tRNAs identified within the three IA16 assemblies, plus 

funannotate metrics for the RO10H11247 assembly. 

tRNA Haploid Haplotype A Haplotype B 
RO10H11247 

(fun.) 

Ala 43 42 39 27 

Arg 15 18 16 12 

Asn 13 15 14 8 

Asp 8 9 9 7 

Cys 2 4 5 3 

Gln 10 7 8 6 

Glu 30 29 27 10 

Gly 45 53 47 19 

His 14 16 15 11 

Ile 17 21 16 12 

iMet 3 4 3 2 

Leu 31 32 30 17 

Lys 10 13 11 7 

Met 8 7 10 7 

Phe 6 6 5 4 

Pro 95 91 97 43 

Ser 256 250 269 128 

Thr 214 193 194 78 

Trp 4 3 3 2 

Tyr 3 4 6 6 

Val 12 12 11 10 

Total 839 829 835 419 
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Supplemental Table 2. OrthoFinder orthogroup results for comparisons between each assembly’s annotations. Each orthogroup may 

include orthologues and paralogs and includes all genes that descend from a gene within the last common ancestor. All predicted 

protein sequences for each assembly were compared. “fun.” indicates funannotate results and “PR” indicates results from previously 

reported annotations. 

 
Haplotype A Haplotype B Haploid 

RO10H11247 

(fun.) 
Haploid 

RO10H11247 

(PR) 

RO10H11247 

(fun.) 

RO10H11247 

(PR) 

All Genes 

Total Genes 37958 28366 37536 32986 

Total Orthogroups 11349 8809 8564 8237 

Genes 19035 18923 16458 11908 16458 21078 11908 21078 

Genes in Orthogroups 14082 13855 12605 10713 11913 19694 10277 19835 

Unassigned Genes 4953 5068 3853 1195 4545 1384 1631 1243 

Assembly-Specific 

Orthogroups 287 211 317 108 461 514 135 431 

Genes in Assembly-

Specific Orthogroups 833 632 1034 332 1605 4364 383 4243 

Predicted Effectors 

Total Genes 1271 1305 1357 1178 

Total Orthogroups 226 379 289 292 

Genes 655 616 742 563 742 615 563 615 

Genes in Orthogroups 321 302 531 448 439 374 369 389 

Unassigned Genes 334 314 208 115 303 241 194 226 

Assembly-Specific 

Orthogroups 11 9 17 7 46 40 30 40 

Genes in Assembly-

Specific Orthogroups 29 22 47 15 155 121 74 122 
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Abstract 

Rust fungi, such as Puccinia sorghi (common rust of maize), secrete hundreds of effector 

proteins during their colonization of host plant tissues, altering immune responses and interfering 

with nutrient trafficking. Due to long candidate lists and poor predicted functional annotations, 

few rust effectors have been fully characterized. Rust genomes encode several members of a rust 

protein family named cluster 112, which are small proteins with secretion signal peptides and a 

distinctive 10-cysteine motif. At least one family member from the Asian soybean rust fungus, 

Phakopsora pachyrhizi, has been shown to be involved in plant immune suppression. Here, we 

characterize eight predicted PpEC23 homologs from an Iowan isolate of P. sorghi in plant 

immune response assays. To increase throughput of immune assay experiments, we utilized an 

inexpensive time lapse phenotyping setup to acquire multiple images during the course of a 

single experiment. Our data show that one of the PpEC23 homologs in P. sorghi, 930g11, was 

able to suppress hypersensitive immune response, but does not seem to have a function in 

suppressing basal immunity. 

Introduction 

Fungal rust species (Pucciniales) remain consistent and impactful plant pathogens 

worldwide, causing significant yield losses on many crop species (Figueroa et al. 2023). The 
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study of the molecular mechanisms involved in rust diseases is imperative to better understand 

how these fungi manipulate their host plants. However, many research approaches available to 

other pathosystems are not available for rust fungi. Rust fungi are obligate biotrophs that each 

have highly specific host ranges, resulting in an inability to be cultured on media or non-host 

plant species. Basic information and genomic resources regarding rust fungal species are often 

lacking due to their complicated life cycles and relatively large, repeat-rich genomes.  

Much of the current research on rust fungi focuses on characterization of candidate 

secreted effector proteins (CSEPs) (Lorrain et al. 2019), which are secreted from specialized 

structures call haustoria. Haustoria form close relationships to plasma membranes of host cells, 

allowing for the transfer of nutrients, signaling molecules, and effector proteins (Garnica et al. 

2014). Effector proteins are small, secreted proteins that influence and alter host cell processes to 

aid in fungal colonization and proliferation (Uhse and Djamei 2018; Figueroa et al. 2021). These 

proteins have a wide variety of functions, from modulation of plant immune responses to 

trafficking of nutrients. Although many rust effector candidates lack functional annotation, 

features such as a small size, cysteine-rich, and the presence of an N-terminal secretion peptide 

are commonly used to predict CSEPs within rust genomes. However, many of the effectors are 

encoded by orphan genes or are rust-specific, making identification difficult. As genomic and 

transcriptomic data becomes available for a given rust species, they are mined for these 

potentially unique effector candidates. A typical strategy identifies proteins with predicted 

secretion signals with SignalP (Teufel et al. 2022) followed by effector prediction with EffectorP 

(Sperschneider and Dodds 2022). Such analyses identify a few hundred to 1,000 or more effector 

candidates, many of which have redundant functions.  
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One common characterization method for confirming rust effectors involves prioritizing 

candidates, often through homology to CSEPs from other species, and then conducting assays to 

identify recognition by host resistance proteins (Avirulence effectors) or effector-like functions 

such as immune suppression (de Carvalho et al. 2017; Ramachandran et al. 2017; Liu et al. 

2016). These assays are typically conducted in planta in heterologous systems, such as 

Arabidopsis or Nicotiana benthamiana, to identify potential function, localization, and 

interacting host proteins (Lorrain et al. 2018). One effector screen identified 156 predicted 

CSEPs from Phakopsora pachyrhizi (Asian soybean rust) based on haustorial expression and 

predicted secretion signal peptides (Link et al. 2014). Eighty-two of these candidates were 

cloned, and various experiments were conducted to identify localization and impact on both 

pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered 

immunity (ETI) (Qi et al. 2018). The success rate for identifying effectors shown to influence 

phenotype is often low, even for studies that look at 10s to 100s of effectors (Lorrain et al. 2019). 

Given this low success rate, the throughput of screens for effector functions needs to be 

increased. The utilization of high-throughput phenotyping methods may increase the number of 

effectors that can be characterized in a given experiment, reduce the variability between 

experiments, and allow for more flexible timing during assays. One example of such a system 

involves a platform for imaging the development of Sclerotinia sclerotiorum on detached 

Arabidopsis thaliana leaves and subsequent automatic phenotyping of those images, dubbed 

Navautron (Barbacci et al. 2020). Although not specifically utilized for effector characterization 

immune suppression assays, this system can be easily modified to suit other use cases. 

In Puccinia sorghi (common rust of maize), no CSEP effector screens have been 

published to date, despite the availability of nearly 1,600 putative effectors (Rochi et al. 2018). 
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There are several families of proteins previously identified in various rust genomes, including the 

rust specific cluster 112 family of CSEPs identified from P. pachyrhizi and Uromyces 

appendiculatus (common bean rust) (Link et al. 2014). The cluster 112 proteins contain a 94-

amino acid motif with 10 conserved cysteine residues, which are particularly important for the 

formation of disulfide bridges during protein folding (Zhang et al. 2017; Wiedemann et al. 

2020). At least one cluster 112 member, PpEC23 from P. pachyrhizi, which contains two tandem 

10-cysteine motifs, has been characterized and shown to both suppress hypersensitive response 

(HR) involved in ETI and interact with the soybean SQUAMOSA promotor binding protein-like 

(SPL) transcription factor GmSPL121 (Qi et al. 2016). From the predicted proteins identified by 

Rochi et al. (2018), we have identified 11 P. sorghi CSEPs (isolate IA16) with homology to 

PpEC23. To characterize these homologs, we conducted immune assays in N. benthamiana and 

built a phenotyping box similar to the cabinet in the Navautron system (Barbacci et al. 2020) to 

acquire time lapse images of HR immune assays. The use of a phenotyping box with a Raspberry 

Pi operated camera allowed us to capture time lapse images of up to 96 leaves at once during 

immune assay experiments. Of the eight P. sorghi CSEPs we were able to amplify from cDNA, 

one, namely 930g11, was found to have a small, suppressive effect on HR. 

Materials and Methods 

Identification of PpEC23 homolog targets in P. sorghi 

To identify PpEC23 homologs in P. sorghi, a BLASTP search (E-value threshold 5e-02) 

was conducted using the amino acid sequence of PpEC23 (Qi et al. 2016). The predicted CDSs 

were downloaded from the genome annotation information available for the P. sorghi isolate 

RO10H11247 (Rochi et al. 2018). 
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Amplification and cloning of PpEC23 homologs from the IA16 P. sorghi isolate 

Maize leaf samples were collected seven days after inoculation with P. sorghi isolate 

IA16 and immediately frozen in liquid nitrogen. Using the TRIzol® method, RNA was extracted 

from these samples. cDNA was generated using oligodT primers and Superscript III reverse 

transcriptase, according to the manufacturer’s protocol. SignalP 3.0 (Bendtsen et al. 2004) and 

4.1 (Petersen et al. 2011) were used to predict secretion signals in the available CDS sequence 

for each candidate. To amplify the coding sequences minus the signal peptides (CDSns) from the 

cDNA, specific primers for each candidate were designed using the previously identified 

sequence (Supplemental Table 1). Each PCR product was cloned via a TOPO reaction into pCR8 

and transformed into E. coli One Shot® TOP 10 competent cells. Colonies were confirmed by 

sequencing and plasmids were extracted via miniprep from E. coli cultures. A Gateway™ LR 

Clonase II™ reaction was performed according to the manufacturer’s protocol to recombine each 

CSEP CDSns from pCR8 into the Effector Detector Vector pEDV6, and the resultant plasmids 

were transformed into DH5α E. coli competent cells. Colonies were sequenced again to confirm 

the CDS and ensure it was in-frame with the AvrRps4 type III secretion signal on the pEDV6 

plasmid. Triparental mating was conducted to conjugate each pEDV6-CDSns plasmid into 

Pseudomonas syringae pv. tomato (Pst) DC3000, using E. coli carrying pRK2013 as the helper 

strain. Mating was confirmed via selective plating on LB plates containing gentamicin and 

rifampin and by conducting colony PCR. The 10-cysteine motif alignment of each cloned 

candidate was performed in Clustal Omega (McWilliam et al. 2013; Goujon et al. 2010; Sievers 

et al. 2011) and visualization of residue conservation was executed in Jalview 2.11 (Waterhouse 

et al. 2009). A Pst DC3000 pEDV6-GFP strain was created similarly. 
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Pst DC3000 pEDV6-CSEPns HR immune assays 

The Pst DC3000 pEDV6-CDSns strains and the Pst DC3000 pEDV6-GFP strain were 

grown overnight at 28˚C in liquid LB media containing gentamycin and rifampin with shaking 

~200 RPM. The bacteria were pelleted for 10 minutes at 4,000 RPM and washed once with 

ddH2O. The bacteria were pelleted again, and the pellet was resuspended in 10 mM MgCl2 and 

diluted to an OD600 of 0.2, 0.02, and 0.004. Each bacterial suspension was infiltrated into the 

underside of 4-5 week old N. benthamiana leaves with a needleless syringe. One half of each leaf 

was infiltrated with pEDV6-GFP at each OD600 concentration while the other half was infiltrated 

with pEDV6-CSEPns at each OD600 concentration, resulting in six total infiltration spots per leaf. 

The infiltrated regions on each leaf were dried, marked with a permanent marker, and assessed 

for HR at 18 to 22 hours post infiltration (HPI) on a scale of 0-3, with 0 being no HR and 3 being 

complete HR. 

N. benthamiana transformation with pBI121-3XFLAG-930g11 

Primers designed to add a 3XFLAG tag to the 5’ end of the 930g11ns CDS were used to 

amplify the previously cloned pEDV6-930g11ns. A forward primer containing a BamHI 

restriction site, a 3XFLAG tag, and partial homology to the attB1 site and a reverse primer with 

homology to 930g11, a stop codon, and a SacI restriction site were used to PCR amplify the 

930g11ns CDS from the pEDV6-930g11ns vector. Both pBI121, a binary Agrobacterium 

transformation vector, and the PCR product were digested with BamHI and SacI restriction 

enzymes (New England Biolabs) and ligated together with T4 DNA ligase (New England 

Biolabs), according to the manufacturer’s protocol. DH5α E. coli was transformed with the 

resulting ligation reaction and miniprepped to isolate the plasmid. After confirmation via 

sequencing, the dried plasmid was sent to the University of Nebraska-Lincoln Plant 

Transformation Core Research Facility to be transformed into N. benthamiana.  
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Rooted plants (T0) were received and transplanted into peat-based substrate, covered 

with a clear plastic dome, and placed in a growth room with 16 hour days for two weeks. Over 

the next two weeks, the plastic dome was gradually removed. When plants were fully hardened, 

they were transplanted to larger pots and moved to a greenhouse. Pots were watered with Peter’s 

fertilizer once a week. A western blot was conducted to confirm transgene expression and 

protein accumulation. Briefly, total protein was extracted from T0 plants and run on a 

Criterion™ TGX™ precast gel (BioRad) in SDS-PAGE buffer. The proteins were transferred to 

PVDF membrane via wet transfer and blocked with 5% milk/TBST prior to blocking with anti-

FLAG-HRP antibody. The membrane was incubated with luminol and imaged. After imaging, 

the membrane was stained with Coomassie brilliant blue (CBB) to visualize all transferred 

protein. T1 seed from the six lines with the strongest 930g11ns expression was planted, and 

seedlings were genotyped for the transgene by CTAB extraction of genomic DNA (gDNA) and 

amplification of the transgene using 930g11ns specific primers. One plant without transgene 

expression for each line was saved to serve as an azygous negative control. T2 seed was 

collected from these plants. T2 seed from each transgenic and azygous plant was plated on ½ MS 

media plus kanamycin at 50 µg/µL to test for transgene presence and estimate gene copy 

number. Four lines and their respective azygous counterparts were used in the experiments 

moving forward. All transgenic and azygous plants in each experiment were genotyped as 

previously described. 

Time lapse phenotyping box setup 

The phenotyping boxes made for this project were based on the Navautron system 

(Barbacci et al. 2020). More information on the phenotyping box construction used in this 

manuscript is available at https://github.com/katholan/timelaspe_phenotyping_boxes.git. As an 

overview, two plastic storage bins were used as the main cabinet, where a taller bin composed 

https://github.com/katholan/timelaspe_phenotyping_boxes.git
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the bottom of the cabinet and a shorter bin of the same opening size served as the top. A small 

hole was cut into the roof of the box to mount a Raspberry Pi-operated 70˚ field of view (FOV) 

Arducam M12 low distortion wide-angle camera lens. The low distortion lenses cut down 

substantially on fisheye effect. White LED strip lights were mounted to the top of the 

phenotyping box and remained on during the entire course of each experiment. The Raspberry Pi 

was operated from a laptop with a headless connection. Experiments were run in a room with 

minimal external light. 

Time lapse immune assay experiments 

Pst DC3000 was grown overnight at 30˚C in liquid LB culture with rifampin with 

shaking at ~200 RPM. The bacterial culture was rinsed once with ddH2O and resuspended in 10 

mM MgCl2 to an OD600 of 0.02. Four to five week old N. benthamiana plants that were 

approximately the same size were chosen for each experiment. One side of leaf 3, when counting 

down from the top of the plant, was infiltrated with 10 mM MgCl2 buffer and the other side was 

infiltrated with the previously described Pst DC3000 bacterial suspension. After infiltration, the 

leaves were blotted with paper towels and then allowed to dry for approximately one to two 

hours. A layer of paper towels was laid in the bottom of the phenotyping box, and a small 

amount of water was added to the paper towels so that they were fully soaked but there was 

minimal free-standing water. Three layers of plastic mesh were laid on top of the paper towels to 

prevent the leaves from directly touching the water, as direct contact will prevent the infiltration 

spots from fully drying out, thus confounding results. After drying, leaves were cut and laid 

adaxial side down onto the mesh as flat as possible. The abaxial side is lighter in color, and 

contrast between HR symptoms and the rest of the leaf underside is higher, making it easier to 

phenotype from images. The camera lens was focused manually, and the “lid” was secured to the 

bottom box with twist ties to prevent camera movement. The ‘camera.py’ script from the Python 
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package PiCamera (https://picamera.readthedocs.io/en/release-1.13/) was used to take photos of 

the leaves every hour, starting at 0 hours, for two days.  

After each experiment, photos were copied to a GoogleDrive folder. Leaf regions for a 

single image were acquired with ImageJ/Fiji (Schindelin et al. 2012). These were used to extract 

a particular leaf from each photo in the time lapse. The resultant cropped images were rearranged 

into a grid with 0 HPI at the upper left and the latest HPI (47 HPI) in the lower right for 

phenotyping. Infiltration locations for each leaf at each timepoint were scored on a scale of 0-7, 

with 0 being no discernable HR and 7 being complete HR. The first few hours of all experiments 

were discarded, as many of the infiltration were not dry yet at this point. Leaves with infiltration 

or buffer control sites that never fully dried were discarded. All plants in each experiment, 

regardless of background, were genotyped for the presence of the transgene via CTAB genomic 

DNA extraction and subsequent PCR amplification to determine transgene presence. 

ROS burst assays 

Transgenic and azygous N. benthamiana plants were grown until 4-5 weeks of age. 

Reactive oxygen species (ROS) burst assays were conducted to determine ROS burst response to 

a PAMP (Bredow et al. 2019). Briefly, the second leaf of individual plants was sampled with a 4 

mm biopsy punch and added to a 96-well plate containing 100 µL of ddH2O, adaxial side up. 

The plate was kept in the dark overnight at room temperature. The ddH2O was replaced with 100 

µL of an assay solution containing 100 mM luminol, 10 µg/mL HRP, and 100 nM flagellin-22 

(flg22). The plates were immediately placed into a GloMax® microplate reader and light 

emission data was gathered for 30 cycles, with two minutes per cycle. The experiment was 

repeated twice. 
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Results 

PpEC23 homologs in the P. sorghi isolate IA16 

Using BLASTP and the protein sequence of PpEC23 as the query, eleven candidates in P. 

sorghi were identified in the RO10H11247 genome assembly (Link et al. 2014; Qi et al. 2016; 

Rochi et al. 2018). All eleven P. sorghi genes have largely uninformative predicted annotations, 

namely “hypothetical protein”, “uncharacterized protein”, or “putative signal peptide protein”. 

The percentage of cysteine residues ranges from 3.9% to 10.3% of the total predicted protein. 

The predicted size of each member ranges from 97 to 216 amino acids. The number of cysteines 

in the 10-cysteine motif varies from 7 to 15, and all but one contains the conserved tyrosine 

residue at the third amino acid after the first conserved cysteine residue (Table 1). All but two 

predicted CDSs had predicted secretion signals according to SignalP 3.0 and 4.1 (Bendtsen et al. 

2004; Petersen et al. 2011). 

Of the eleven candidates, eight were successfully amplified from cDNA generated from 

P. sorghi inoculated maize leaves (isolate IA16) collected at 7 days after inoculation (DAI). The 

coding sequences minus the signal peptides were subsequently cloned into the pCR8 TOPO TA-

cloning vector and sequenced. The predicted coding sequences from the reference genomes were 

highly similar to the sequences cloned from the IA16 isolate. However, additional or missing 

stretches of nucleotides and SNPs were observed (Supplemental File 1). The 10-cysteine motif of 

cluster 112 is largely conserved among the 8 cloned members (Figure 1). The length of the motif 

among the members varies from 85-92 base pairs (bps), but all ten cysteine residues are present 

in each motif (Figure 1, Table 1). There are several other conserved residues present in the IA16 

members that are also found in both PpEC23 10-cysteine motifs, such as a tyrosine at the fourth 

residue and a [GxA]xC motif at the ninth cysteine. The previously identified [AFY]xC motif at 
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cysteine two is present in all but one member, and the [YFW]xC motif at cysteine eight is 

present in all eight cloned members (Figure 1). 

Hypersensitive response immune assays 

The CDSns of the eight amplified candidates were transferred into Effector Detector 

Vector pEDV6 (Fabro et al. 2011) in frame with the secretion signal for the AvrRps4 gene, 

enabling secretion via the bacterial type III secretion system. The resulting plasmids were 

transformed via triparental mating into Pseudomonas syringae pv. tomato (Pst) DC3000, which 

contains a functional bacterial type-III secretion system. Pst DC3000 is avirulent on N. 

benthamiana and contains several effectors that trigger HR (Wei et al. 2007). The full-length 

GFP CDS was likewise cloned and used as a negative control for each assay. The previously 

identified immune suppressor PpEC23ns was used as a positive control. 

Three concentrations, namely OD600 0.2, 0.02, and 0.004, of Pst DC3000 pEDV6-

CSEPns were infiltrated into one half of 4-5 week old N. benthamiana leaves, with up to three 

separate leaves per plant. The other half was infiltrated with the Pst Dc3000 pEDV6-GFP control 

(Figure 2a). After 18-22 HPI, the 6 infiltrated regions on each leaf were phenotyped on a scale of 

0-3, with zero being no HR and 3 being complete HR (Figure 2b). Pst DC3000 pEDV6-

PpEC23ns was included as an immune suppression positive control, as it has been previously 

shown to inhibit plant immune response in this assay (Qi et al. 2016). For each bacterial 

concentration, the CSEP score was subtracted from the GFP control score, and these three 

differences were added together for one value per leaf, called the sum of differences. A positive 

sum of differences indicates supression of HR and a negative sum indicates activation of HR. As 

expected, the positive control PpEC23ns showed significant suppression of HR (Figure 2c). Of 

the eight P. sorghi CSEPs tested, only 930g11ns showed significant suppression of HR, with all 

other CSEPs either showing no significant impact on HR (2734g2ns and 1483g10ns) or an 
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increased HR (α=0.05, Figure 2c). Although some leaves infiltrated with 930g11ns indicated no 

impact or increased induction of HR, the majority indicated suppression, with a mean sum of 

differences of 0.83. The remaining CSEPs had mean sums of differences ranging from 0.057 to -

1.48, with more infiltration regions indicating increased induction of HR. Although the other 

CSEPs may have functions outside of suppression of ETI, 930g11ns was the only CSEP that 

showed promise in plant immune suppression in this assay. 

HR immune suppression assays in transgenic N. benthamiana using time lapse images 

As 930g11ns was the only of our eight CSEPs with evidence of immune suppression, we 

cloned it into the pBI121 Agrobacterium binary vector, adding a 3XFLAG tag to the 5’ end of 

the coding sequence. The subsequent vector was used to transform N. benthamiana plants, and 

after two rounds of selfing, T2 seed was collected from four lines showing strong expression of 

the transgene and used for all subsequent experiments (Supplemental Figure 1). Azygous seed 

was also gathered from each line and used as a negative control. 

A similar immune suppression assay to the previous experiment was conducted in the 

930g11ns N. benthamiana lines. However, instead of leaving infiltrated plants in a growth room 

or chamber, detached leaves were placed into a phenotyping box modeled after the Navautron 

cabinet (Barbacci et al. 2020). The boxes were created from two plastic storage bins and LED 

strip lighting, with a wide-angled camera lens controlled by a Raspberry Pi mounted to the top of 

the box (Figure 3a). The boxes are almost fully enclosed, maintaining humidity to prevent 

detached leaves from wilting, and can hold up to 96 individual leaves.  

To conduct these immune suppression assays, Pst DC3000 at an OD600 of 0.02 was 

infiltrated into one side of the first full leaf of 4-5 week old transgenic or azygous plants and a 

mock buffer control (MgCl2) was infiltrated into the other side. Leaves were allowed to dry for 

1-2 hours, then detached and placed in the phenotyping cabinets adaxial side down (Figure 3b). 
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Images were taken every hour, starting at 0 HPI, for two days, for a total of 48 images per leaf. 

Each leaf at each timepoint was scored on a scale of 0-7, with zero being no HR, and 7 being 

complete HR. The area under the curve (AUC) for each leaf was calculated by summing the 

scores for all time points. Although no N. benthamiana lines had significant differences in mean 

AUC, each transgenic line mean AUC was lower than the respective azygous mean AUC, both 

when all lines were compared separately (Figure 3c) and together (Figure 3d). Additionally, the 

mean HR score at each time point for transgenic leaves was consistently lower than the mean for 

azygous leaves (Figure 3e). Although not statistically significant, transgenic 930g11ns plants 

consistently show a reduction in HR phenotype when compared to azygous control plants, both 

when analyzing AUC and mean HR score by time point. Given that in the previous HR 

experiments, 930g11ns appeared to have less of an impact on plant immunity than PpEC23ns, it 

is likely that it has a small impact on ETI suppression and thus is harder to detect. 

ROS burst assays 

As the first two assays both were designed to detect suppression of HR/ETI, we also 

conducted reactive oxygen species (ROS) burst assays to investigate PTI response in the 

presence of flagellin-22 (flg22). Leaf samples were taken from 4-5 week old transgenic or 

azygous plants. After an overnight incubation in water at room temperature to stabilize the leaf 

samples, a luminol-based assay solution containing 100 nM flg22 was added and light emission 

was promptly analyzed using a microplate reader. The total photon count between the transgenic 

and azygous plants for each line was not significantly different, save for line 1C, where the 

transgenic plants had a greater ROS burst (α=0.05, Figure 4a). When examining all lines pooled 

together, there was no significant difference seen between azygous and transgenic plants 

(α=0.05, Figure 4b). For each cycle, transgenic plants consistently have a higher response to 

flg22, as indicated by mean photon count (Figure 4c). Coupling these results together, CSEP 



64 

930g11ns does not seem to have a direct effect on PTI suppression in the transgenic N. 

benthamiana plants and may be a slight activator of PTI. 

Discussion 

Effector screens often begin with large numbers of CSEPs for characterization in order to 

identify and characterize those which significantly contribute to rust diseases. Typically, few 

CSEPs yield significant phenotypes in these screens (Lorrain et al. 2019). This is due to several 

reasons, such as uninformative predicted annotations or highly redundant functions or 

phenotypes. Additionally, rust genomes contain large and expanding gene families that evolve 

quickly, often leaving behind non-functional gene copies or paralogous proteins with different 

gene functions (Aime et al. 2017). This may be why only one of the eight cloned PpEC23 

homologs in P. sorghi showed a plant immune suppression response in our assays, even though 

they all contain the intact 10-cysteine motif of the cluster 112 family. Interestingly, five of the 

cloned CSEPs showed an increased activation of HR in N. benthamiana leaves, which may 

indicate functionality as avirulence factors. There are many functions of effectors outside of 

plant immunity regulation, and it is likely that some CSEPs we identified have functions that 

were not tested for here. Furthermore, although many studies investigate effectors singly for ease 

of interpretation and reduction of confounding factors, no protein functions in isolation. As a 

result, valid functional characterizations will inherently be missed or may be misinterpreted. 

Another interesting aspect was the variation of the PpEC23 homologs between the 

RO10H11247 isolate and the IA16 isolate, illustrating the potential sequence divergence between 

the same CSEPs in different isolates of the same rust species. Isolates developed from temporally 

and spatially different wild populations often have different effector repertoires and differentials 

(Richter et al. 1995; Quade et al. 2021), and additional genomic resources are imperative to 

further dissecting these discrepancies.  
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As additional CSEPs or transcript variants are identified, and if chances of functional 

characterization of effector candidates with an observable phenotype remains low, higher 

throughput methods for conducting and analyzing effector screens is needed. In this manuscript, 

we implemented an inexpensive phenotyping box with a small footprint to generate time lapse 

imaging data during an HR immune suppression assay. During the initial immune suppression 

assay, we found that leaves needed to be checked and phenotyped at multiple time points, as the 

timing of HR varied between experiments. The utilization of a hands-off imaging setup meant 

that during the second immune suppression assay, no valuable data was lost if HR progressed 

quicker than expected. Furthermore, after the initial box setup, the experiment is entirely 

autonomous until complete, and the number of time points and length of experiment can be 

easily scaled up or down as needed without additional labor. Due to a simple design, the boxes 

can be easily modified for different use-cases, such as alternative or additional camera lenses that 

image in infra-red or hyperspectral wavelengths. Currently, the biggest drawback is a lack of a 

compatible automated phenotyping pipeline for this application, meaning all phenotyping is 

manual. However, being able to image up to 96 leaves at a time with no additional input was 

extremely useful for this study. 

Conclusions 

Functional characterization of CSEPs in rust fungi remains a top priority for rust 

researchers, particularly as the quantity and quality of rust genomes increases. Although many 

effector screens in various rust species have been conducted, thousands more CSEPs remain 

without any functional annotation, neither experimentally shown nor predicted. Further 

complicating effector research, conservation of a given effector’s function is not guaranteed 

between rust species, or even between isolates of the same species. 
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To investigate a subset of CSEPs in the common rust pathogen P. sorghi, we identified 

eleven members homologous to PpEC23, a member of the large, rust specific gene family cluster 

112 shown to suppress plant immune response, from predicted P. sorghi proteome data. Of those 

eleven members, eight were successfully cloned and tested in various immune suppression 

assays. Although all eight appear to have intact 10-cysteine motifs, only one member was shown 

to inhibit plant immunity. The other seven candidates either had no effect on plant immunity or 

were found to induce plant immune responses in the experiments presented here. The candidate 

that showed an immune suppression phenotype, 930g11, was found to have a small effect on HR 

immune suppression but did not seem directly involved in PTI suppression in N. benthamiana 

leaves. Additionally, the use of a phenotyping box enabled high throughput of leaves with 

limited hands-on experimental time, as in-person phenotyping and manual photo-taking at the 

end of an experiment were eliminated, while simultaneously supplying additional data in the 

form of time lapse images. 

Acknowledgements 

This study was supported by the Iowa State University Predictive Plant Phenomics 

graduate training program funded by the National Science Foundation (DGE #1545453) and by 

Agricultural and Food Research Initiative grant no. 2019-07318 from the USDA National 

Institute of Food and Agriculture. The funders had no role in the design of the study and 

collection, analysis, and interpretation of data and in writing the manuscript. Any opinions, 

findings, and conclusions or recommendations expressed in this material are those of the authors 

and do not necessarily reflect the views of the funders. We also received support from the Plant 

Sciences Institute, the Lois H. Tiffany Scholarship, and the Gilman Scholarship at Iowa State 

University. We would like to thank the University of Nebraska at Lincoln Plant Transformation 

Core Research Facility for the generation of the transgenic pBI121-930g11ns N. benthamiana 



67 

lines, Hannah Craven for sampling, processing samples, and plant care, Peng Liu for statistics 

advice, and Melissa Bredow and Bliss Beernink for help with protocols. 

Author Contributions 

ME identified the PpEC23 homologs from P. sorghi. KH conducted all experiments, data 

analyses, and interpretations. KH wrote the manuscript and SW edited the manuscript. 

References 

Aime, M. C., McTaggart, A. R., Mondo, S. J., and Duplessis, S. 2017. Phylogenetics and 

Phylogenomics of Rust Fungi. In Advances in Genetics, Academic Press, p. 267–307.. 

Barbacci, A., Navaud, O., Mbengue, M., Barascud, M., Godiard, L., Khafif, M., et al. 2020. 

Rapid identification of an Arabidopsis NLR gene as a candidate conferring susceptibility 

to Sclerotinia sclerotiorum using time-resolved automated phenotyping. Plant J. 

103:903–917. 

Bendtsen, J. D., Nielsen, H., Von Heijne, G., and Brunak, S. 2004. Improved Prediction of 

Signal Peptides: SignalP 3.0. J. Mol. Biol. 340:783–795. 

Bredow, M., Sementchoukova, I., Siegel, K., and Monaghan, J. 2019. Pattern-triggered oxidative 

burst and seedling growth inhibition assays in Arabidopsis thaliana. J. Vis. Exp. :e59437. 

de Carvalho, M. C. da C. G., Costa Nascimento, L., Darben, L. M., Polizel-Podanosqui, A. M., 

Lopes-Caitar, V. S., Qi, M., et al. 2017. Prediction of the in planta Phakopsora 

pachyrhizi secretome and potential effector families. Mol. Plant Pathol. 18:363–377. 

Fabro, G., Steinbrenner, J., Coates, M., Ishaque, N., Baxter, L., Studholme, D. J., et al. 2011. 

Multiple Candidate Effectors from the Oomycete Pathogen Hyaloperonospora 

arabidopsidis Suppress Host Plant Immunity ed. Frederick M. Ausubel. PLoS Pathog. 

7:e1002348. 

Figueroa, M., Dodds, P. N., Henningsen, E. C., and Sperschneider, J. 2023. Global Landscape of 

Rust Epidemics by Puccinia Species: Current and Future Perspectives. In Plant 

Relationships, The Mycota, Springer, Cham, p. 391–423.. 

Figueroa, M., Ortiz, D., and Henningsen, E. C. 2021. Tactics of host manipulation by 

intracellular effectors from plant pathogenic fungi. Curr. Opin. Plant Biol. 62:102054. 

Garnica, D. P., Nemri, A., Upadhyaya, N. M., Rathjen, J. P., and Dodds, P. N. 2014. The Ins and 

Outs of Rust Haustoria ed. Joseph Heitman. PLoS Pathog. 10:e1004329. 

Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., et al. 2010. A new 

bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38:W695–

W699. 



68 

Link, T. I., Lang, P., Scheffler, B. E., Duke, M. V., Graham, M. A., Cooper, B., et al. 2014. The 

haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi and 

their candidate effector families. Mol. Plant Pathol. 15:379–393. 

Liu, C., Pedersen, C., Schultz-Larsen, T., Aguilar, G. B., Madriz-Ordeñana, K., Hovmøller, M. 

S., et al. 2016. The stripe rust fungal effector PEC6 suppresses pattern-triggered 

immunity in a host species-independent manner and interacts with adenosine kinases. 

New Phytol. 

Lorrain, C., Gonçalves dos Santos, K. C., Germain, H., Hecker, A., and Duplessis, S. 2019. 

Advances in understanding obligate biotrophy in rust fungi. New Phytol. 222:1190–1206. 

Lorrain, C., Petre, B., and Duplessis, S. 2018. Show me the way: rust effector targets in 

heterologous plant systems. Curr. Opin. Microbiol. 46:19–25. 

McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y. M., Buso, N., et al. 2013. Analysis 

Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 41:W597–W600. 

Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. 2011. SignalP 4.0: Discriminating 

signal peptides from transmembrane regions. Nat. Methods. 8:785–786. 

Qi, M., Grayczyk, J. P., Seitz, J. M., Lee, Y., Link, T. I., Choi, D., et al. 2018. Suppression or 

Activation of Immune Responses by Predicted Secreted Proteins of the Soybean Rust 

Pathogen Phakopsora pachyrhizi. Mol. Plant-Microbe Interact. 31:163–174. 

Qi, M., Link, T. I., Müller, M., Hirschburger, D., Pudake, R. N., Pedley, K. F., et al. 2016. A 

Small Cysteine-Rich Protein from the Asian Soybean Rust Fungus, Phakopsora 

pachyrhizi, Suppresses Plant Immunity ed. Peter N Dodds. PLoS Pathog. 12:e1005827. 

Quade, A., Ash, G. J., Park, R. F., and Stodart, B. 2021. Resistance in Maize (Zea mays) to 

Isolates of Puccinia sorghi from Eastern Australia. Phytopathology. 111:1751–1757. 

Ramachandran, S. R., Yin, C., Kud, J., Tanaka, K., Mahoney, A. K., Xiao, F., et al. 2017. 

Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses. 

Phytopathology. 107:75–83. 

Richter, T. E., Pryor, T. J., Bennetzen, J. L., and Hulbert, S. H. 1995. New Rust Resistance 

Specificities Associated with Recombination in the Rp1 complex in Maize. Genetics. 

141:373–81. 

Rochi, L., Diéguez, M. J., Burguener, G., Darino, M. A., Pergolesi, M. F., Ingala, L. R., et al. 

2018. Characterization and comparative analysis of the genome of Puccinia sorghi 

Schwein, the causal agent of maize common rust. Fungal Genet. Biol. 112:31–39. 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. 2012. 

Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9:676–682. 



69 

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al. 2011. Fast, scalable 

generation of high-quality protein multiple sequence alignments using Clustal Omega. 

Mol. Syst. Biol. 7:539. 

Sperschneider, J., and Dodds, P. N. 2022. EffectorP 3.0: Prediction of Apoplastic and 

Cytoplasmic Effectors in Fungi and Oomycetes. Mol. Plant-Microbe Interact. 35:146–

156. 

Teufel, F., Almagro Armenteros, J. J., Johansen, A. R., Gíslason, M. H., Pihl, S. I., Tsirigos, K. 

D., et al. 2022. SignalP 6.0 predicts all five types of signal peptides using protein 

language models. Nat. Biotechnol. 40:1023–1025. 

Uhse, S., and Djamei, A. 2018. Effectors of plant-colonizing fungi and beyond. PLOS Pathog. 

14:e1006992. 

Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., and Barton, G. J. 2009. Jalview 

Version 2—a multiple sequence alignment editor and analysis workbench. 

Bioinformatics. 25:1189–1191. 

Wei, C.-F., Kvitko, B. H., Shimizu, R., Crabill, E., Alfano, J. R., Lin, N.-C., et al. 2007. A 

Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 

is able to cause disease in the model plant Nicotiana benthamiana. Plant J. 51:32–46. 

Wiedemann, C., Kumar, A., Lang, A., and Ohlenschläger, O. 2020. Cysteines and Disulfide 

Bonds as Structure-Forming Units: Insights From Different Domains of Life and the 

Potential for Characterization by NMR. Front. Chem. 8:280. 

Zhang, X., Nguyen, N., Breen, S., Outram, M. A., Dodds, P. N., Kobe, B., et al. 2017. 

Production of small cysteine-rich effector proteins in Escherichia coli for structural and 

functional studies. Mol. Plant Pathol. 18:141–151. 

 



 
7
0
 

Figures 

 

Figure 1. Conservation of the 10-cysteine motif in the eight cloned PpEC23 homologs in P. sorghi isolate IA16 and the two motifs of 

PpEC23. Figure was made in Jalview 2.11.2.6 from a Clustal Omega alignment. Color saturation is based on percentage identity by 

conservation with a threshold of 30%. 
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Figure 2. Quantification of hypersensitive response in N. benthamiana leaves after infiltration 

with Pst DC3000 carrying pEVD6-CSEPns constructs. (a) Diagram showing the infiltration 

scheme for each leaf. The left leaf half was infiltrated with a negative GFP control and the right 

half was infiltrated with one of 9 CSEPns constructs, which includes PpEC23ns (a positive 

immune suppressor control) and the eight IA16 PpEC23 homologs. The image was created with 

BioRender.com. (b) One example leaf photographed 22 HPI after infiltration with Pst DC3000 

pEDV6-GFP or pEDV6-930g11ns, with the scores for each infiltration region. (c) After 

subtracting the CSEP score from the GFP score, the differences were summed for each leaf. The 

violin plot represents the density of the sum of differences and the orange point represents the 

mean of each CSEP’s sum of differences. The asterisks represent a significant difference of 

mean when compared to zero (two-sample t-tests for each CSEP, α=0.05). 
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Figure 3. Hypersensitive response in transgenic (TRANS) and azygous (AZ) pBI121-3XFLAG-

930g11ns N. benthamiana leaves after infiltration with Pst DC3000, as conducted in phenotyping  
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boxes. (a) The phenotyping boxes are composed of two plastic storage bins with a Raspberry Pi-

operated camera lens mounted to the top. White LED strip lights cover the lid to supply 

consistent lighting during experiments. (b) An example of an image from a time lapse 

experiment, showing 96 leaves. (c) The area under the curve (AUC) was calculated for each leaf 

and plotted for each line or (d) each genotype. (e) The mean HR score at each timepoint was 

plotted according to genotype. 
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Figure 4. ROS burst assays were conducted on transgenic (TRANS) and azygous (AZ) pBI121-

3xFLAG-930g11ns N. benthamiana leaves in the presence of flg22, and total photon count for 

each sample was summed and graphed according to (a) line or (b) genotype. (c) Mean photon 

count for all samples at each cycle was calculated and plotted according to genotype. 
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Tables 

Table 1. A summary of the eleven identified PpEC23 homologs in the published P. sorghi genome. Predicted % cysteine, predicted 

protein length, and predicted secretion signal are based on the published predicted CDS data. The cloned cysteines in motif and cloned 

motif length are based on the amplified CDS from the IA16 P. sorghi isolate. 

Gene ID Annotation 
Predicted % 

Cysteine 

Predicted 

Protein Length 

Predicted 

Secretion Signal 

Cloned 

Cysteines in 

Motif 

Cloned Motif 

Length 

VP01_134g9* Hypothetical protein 5.69 123 Yes - - 

VP01_172g10 
Uncharacterized 

protein 
6.12 196 Yes 10 86 

VP01_187g6 
Putative signal peptide 

protein 
6.92 130 Yes 10 92 

VP01_930g11 Hypothetical protein 3.94 254 Yes 10 86 

VP01_1483g10 Hypothetical protein 4.63 216 Yes 10 86 

VP01_1638g2* Hypothetical protein 6.22 209 No - - 

VP01_1762g2 Hypothetical protein 10.31 97 Yes 10 86 

VP01_1851g3 Hypothetical protein 4.37 252 Yes 10 89 

VP01_1930g3* Hypothetical protein 4.97 302 No - - 

VP01_2734g2 Hypothetical protein 8.27 133 Yes 10 85 

VP01_3338g6 Hypothetical protein 8.7 138 Yes 10 91 

*No amplification from 7 DAI cDNA. 
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Supplemental Figures 

 

Supplemental Figure 1. A western blot showing the production of 3XFLAG-930g11ns 

(26.71 kDa) in transgenic N. benthamiana lines. Total protein was extracted from T0 plants, 

separated by SDS-PAGE, and transferred to nylon membrane. The membrane was blocked with 

5% skim milk powder, washed, and then incubated with an anti-FLAG-HRP. Asterisks indicate 

lines used in subsequent experiments. The upper image shows anti-FLAG, and the lower image 

shows the Coomassie-stained Rubisco large subunit (RbcL). 
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Supplemental Tables 

Supplemental Table 1. Oligonucleotide primers used in this study. 

ID Notes Direction Primer Sequence 

134g9 Amplification primer, no secretion signal, not amplified F ACCCCTCCTTATCCACCGC 

134g9 Amplification primer, no secretion signal, not amplified R CTCACCCTTAGCGGCAGC 

172g10 Amplification primer, no secretion signal F AGTCCGCACTCCAGTCGTA 

172g10 Amplification primer, no secretion signal R AACGAACAAAGCGAGAAGGC 

187g6 Amplification primer, no secretion signal F TATAACTCTTACGTCGCGACCAC 

187g6 Amplification primer, no secretion signal R TCGCTGAAAACAGTTACCACAAACC 

930g11 Amplification primer, no secretion signal F GAGACATGGAGCTGCACTCA 

930g11 Amplification primer, no secretion signal R CAAAAGGGTAACGCCCGC 

1483g10 Amplification primer, no secretion signal F GATCACGAAGACCACGACCACG 

1483g10 Amplification primer, no secretion signal R GAGGAAAGTGGCGGATACGA 

1638g2 Amplification primer, no secretion signal, not amplified F ATGTCGAGAACCATCTGGTCCAG 

1638g2 Amplification primer, no secretion signal, not amplified R GTCATAGGAGAGCCACGTGGAC 

1762g2 Amplification primer, no secretion signal F TCTACAAAATTCATACCACAAGCACA 

1762g2 Amplification primer, no secretion signal R AGTGCTTTTGAATCGGCAACC 

1851g3 Amplification primer, no secretion signal F GATGCTGGAGACGGGCAA 

1851g3 Amplification primer, no secretion signal R AGCAAACATAAAGGACATGAAGGT 

1930g3 Amplification primer, no secretion signal, not amplified F ATGGAGAAAGTGCATGAAGTGAC 

1930g3 Amplification primer, no secretion signal, not amplified R TTAGTTAGGCTTGAGTAATGTGGAGA 

2734g2 Amplification primer, no secretion signal F ATCGGTGAGACGATGACCTG 

2734g2 Amplification primer, no secretion signal R TGAAGCCCAAGGGATTTTGTTG 
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Supplemental Table 1 Continued 

ID Notes Direction Primer Sequence 

3338g6 Amplification primer, no secretion signal F GCCAGCATCGATTCACCTAC 

3338g6 Amplification primer, no secretion signal R ACTCAGAGGCACGAGATCTG 

pBI121-930 N. benthamaiana transformation plasmid F 

CGCGGATCCATGGACTACAAAGACCAT

GACGGTGATTATAAAGATCATGACATC

GACTACAAGGATGACGATGACAAGAT

CACAAGTTTGTAC 

pBI121-930 N. benthamaiana transformation plasmid R 
GACGAGCTCTCACAAAAGGGTAACGC

CCGCG 

 

 



79 

 

 

Supplemental Files 

Supplemental File 1. Clustal Omega 1.2.4 alignment output for the RO10H11247 predicted P. 

sorghi PpEC23 homologs CDSs (RO) and the cloned IA16 CDSs (IA16). Initial missing matches 

for the IA16 CDSs are indicative of the predicted secretion signals that were not cloned. 

172g10 

RO_172g10        ATGAGTTGTACAACGATTTGCGTCCTCGTATTAGGTCTGGTCACAACATCCCTCTCCAGT 60 
IA16_172g10      ---------------------------------------------------------AGT 3 
                                                                          *** 

 
RO_172g10        CCGCACTCCAGTCGTAGCAGCAGTAGTAGTGGCAGCACTAGTGTTCCCCCCACGTCCGGC 120 
IA16_172g10      CCGCACTCCAGTCGTAGCAGCAGTAGTAGTGGCAGCACTAGTGTTCCCCCCACGTCCGGC 63 
                 ************************************************************ 

 
RO_172g10        GGCGGAAACACCCTCAAGTGCACACGCTATTCCGGCATCAAAGGTCCTAACCCTACTTGT 180 
IA16_172g10      GGCGGAAACACCCTCAAGTGCACACGCTATTCCGGCATCAAAGGTCCTAACCCTACTTGT 123 
                 ************************************************************ 

 
RO_172g10        AACGATGACCGCAAACAAGTGTGCTCAGGAGGCTGTACAGGAGCAATCGTGGCAAGCCAA 240 
IA16_172g10      AACGATGACCGCAAACAAGTGTGCTCAGGAGGCTGTACAGGAGCAATCGTGGCAAGCCAA 183 
                 ************************************************************ 

 
RO_172g10        TGCAAGAAAGAGGGCGACCCTTCGACTCAAGCAGTCCAGCTGATGTGCACGATCAGCTAC 300 
IA16_172g10      TGCAAGAAAGAGGGCGACCCTTCGACTCAAGCAGTCCAGCTGATGTGCACGATCAGCTAC 243 
                 ************************************************************ 

 
RO_172g10        AGTCAGCCCAGTCTGGATCGCGGAGTCTGCGTCAATGAACAAGGCACCTTTGTTTGCCAA 360 
IA16_172g10      AGTCAGCCCAGTCTGGATCGCGGAGTCTGCGTCAATGAACAAGGCACCTTTGTTTGCCAA 303 
                 ************************************************************ 

 
RO_172g10        GGGATCCCGGAGGGCGAAGCCACTTGCACAGGGTGCGCGCTCATCGTCGGTGACCCGAGC 420 
IA16_172g10      GGGATCCCGGAGGGCGAAGCCACTTGCACAGGGTGCGCGCTCATCGTCGGTGACCCGAGC 363 
                 ************************************************************ 

 
RO_172g10        ATCGTCAACAGCTCGTCGCCCGATCCTCCCACTGCGCCCGGAATGAAAACCCCCTCCCCC 480 
IA16_172g10      ATCGCCAACAGCTCGTCGCCCGATCCTCCCACTGCGCCCGGAATGAAAACCCCCTCCCCC 423 
                 **** ******************************************************* 

 
RO_172g10        TCCTCCTCAACATCTCCCGCAACTCCGCTCCCTAGAAAACTCGCTCTCTTTCTCGTCGCG 540 
IA16_172g10      TCCTCCTCAACATCTCCCGCAACTCCGCTCCCTAGAAAACTCGCTCTCTTTCTCGTCGCG 483 
                 ************************************************************ 

 
RO_172g10        TCCAAGCTCCTCGGGCTGTTGGGCCTTCTCGCTTTGTTCGTTTAA 585 
IA16_172g10      TCCAAGCTCCTCGGGCTGTTGGGCCTTCTCGCTTTGTTCGTT--- 525 
                 ******************************************    
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186g6 

 
RO_187g6        ATGCCTCCGTTCAATCTTTCGTCTACCTGCCTCTTGTTCGTCCTGGCCTTGTCGGCTGCT 60 
IA16_187g6      ------------------------------------------------------------ 0 
                                                                             

 
RO_187g6        TCGCTGGTTTCTGCTTATAACTCTTACGTCGCGACCACTTGCAGCAGCTTCAATGTGAAT 120 
IA16_187g6      ---------------TATAACTCTTACGTCGCGACCACTTGCAGCAGCTTCAATGTGAAT 45 
                               ********************************************* 

 
RO_187g6        CCTCAAGGGTCCGAATATATAGCAACATGCAACGGAGACCTGGATTGCAGCAAAGATTGC 180 
IA16_187g6      CCTCAAGGGTCCGAATATATAGCAACATGCAACGGAGACCTGGATTGCAGCAAAGATTGC 105 
                ************************************************************ 

 
RO_187g6        GTCAGTGAGATCGTCGGATCGGACTGTCAGGGTCCGGCCGACAGCGTCACGGTCACTACT 240 
IA16_187g6      GTCAGTGAGATCGTCGGATCGGACTGTCAGGGTCCGGCCGACAGCGTCACGGTCACTACT 165 
                ************************************************************ 

 
RO_187g6        AGTGCATCCCAGAAGTGTCTTACTGGATTCCAAGTCCTCAATCACTCTTCGAAACTTGCT 300 
IA16_187g6      AGTGCATCCCAGAAGTGTCTTACTGGATTCCAAGTCCTCAATCACTCTTCGAAACTTGCT 225 
                ************************************************************ 

 
RO_187g6        TATCTCTGTAAAAACGAATCAGGAAGTTTTACTTGTCAGACAAGAACAGGTGGTGATGCG 360 
IA16_187g6      TATCTCTGTAAAAACGAATCAGGAAGTTTTACTTGTCAGACAAGAACAGGTGGTGATGCG 285 
                ************************************************************ 

 
RO_187g6        GACCGTTGGACATCACAAATGCATATGTAA 390 
IA16_187g6      GTTTGTGGTAACTGTTTTCAGCGA------ 309 
                *:  ** * *..* : ::.:**.:       
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930g11 

 
RO_930g11        ATGGCCACGCTCGCGGTTGCATCCATCATTCCCGCGCTCTCCGCCGGCCTGACCACCGGC 60 
IA16_930g11      ------------------------------------------------------------ 0 
                                                                              

 
RO_930g11        GAGACATGGAGCTGCACTCAATATGCGCAAGCGAATACCCAATCTGCCATCTGCGGCGAT 120 
IA16_930g11      GAGACATGGAGCTGCACTCAATATGCGCAAGCGAATACCCAATCTGCCATCTGCGGCGAT 60 
                 ************************************************************ 

 
RO_930g11        CGACCAAATGCCGTGTGCTCTCAAAAATGTGTCGGCGGTGTTGTTGTTGATGGCTGCTCG 180 
IA16_930g11      CGACCAAATGCCGTGTGCTCTCAAAAATGTGTCGGCGGTGTTGTTGTTGATGGCTGCTCG 120 
                 ************************************************************ 

 
RO_930g11        TCAGCCTCAAATGCATCGGGCCCCTTGACACGTCAAACCTGCACCATCAGCTTTAGCCAC 240 
IA16_930g11      TCAGCCTCAAATGCATCGGGCCCCTTGACACGTCAAACCTGCACCATCAGCTTTAGCCAC 180 
                 ************************************************************ 

 
RO_930g11        ATCTCACCTACCAGTAGCAATTGTGTCAATGGCCAAGGTTCATTCATGTGTTCCGGTGTC 300 
IA16_930g11      ATCTCACCTACCAGTAGCAATTGTGTCAATGGCCAAGGTTCATTCATGTGTTCCGGTGTC 240 
                 ************************************************************ 

 
RO_930g11        CCCACTGGACAAGCCACGTGCTCCGGATGTGTTGATTCAACGCTGCACCTAGACCCAGCC 360 
IA16_930g11      CCCACTGGACAAGCCACGTGCTCCGGATGTGTTGATTCAACGCTGCACCTAGACCCAGCC 300 
                 ************************************************************ 

 
RO_930g11        CTGTCCCAAACTGTGCCACCATTGGCAGCCCCCGCGATTGGTGCCCCGGCTCCTGTTGTC 420 
IA16_930g11      CTGTCCCAAACTGTGCCACCATTGGCAGCCCCCGCGATTGGTGCCCCGGCTCCTGTTGTC 360 
                 ************************************************************ 

 
RO_930g11        GCTGCCAGCTCTTCCCCAGCCGCCTCAACTGTTGCCCCACCCCTTGCAGTTAAGGCGACC 480 
IA16_930g11      GCTGCCAGCTCTTCCCCAGCCGCCTCAACTGTTGCCCCACCCCTTGCAGTTAAGGCGACC 420 
                 ************************************************************ 

 
RO_930g11        GCTCCCTCCGTCTCTTCTGCGGCGCCTGCGGCGCCTGCTGCCCCCGCCCCAGCTGTCACG 540 
IA16_930g11      GCTCCCTCCGTCTCTTCTGCGGC---------GCCTGCTGCCCCCGCCCCAGCTGTCACG 471 
                 ***********************         **************************** 

 
RO_930g11        GCGGCACCTGCTATCTCCACTCAGGTCGTCACCGTATATAGTCAACCCACGACATCCACC 600 
IA16_930g11      GCGGCACCTGCTATCTCCACTCAGGTCGTCACCGTATATAGTCAACCCACGACATCCACC 531 
                 ************************************************************ 

 
RO_930g11        AGGACCTCTGCCCAAGACGAAGATACCCCCCAAAGTGACTCCTCCTCCTCGAACAGTAAC 660 
IA16_930g11      AGGACCTCTGCCCAAGACGAAGATACCCCCCAAAGTGACTCCTCCTCCTCGAACAGTAAC 591 
                 ************************************************************ 

 
RO_930g11        AGTACTACATCGATTGCTTCCATCACTTACACCAATCCCGCGACGCCGTTTGTGGTAACC 720 
IA16_930g11      AGTACTACATCGATTGCTTCCATCACTTACACCAATCCCGCGACGCCGTTTGTGGTAACC 651 
                 ************************************************************ 

 
RO_930g11        CTTGGGCTCTTGGCCGCGGGCGTTACCCTTTTGTGA 756 
IA16_930g11      CTTGGGCTCTTGGCCGCGGGCGTTACCCTTTTG--- 684 
                 *********************************    
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1483g10 

 
RO_1483g10        ATGGTTTTCCGGCCTATAACTTTGAGATCAATGCTCTATTCCGCCGTGTTTATAATTGGC 60 
IA16_1483g10      ------------------------------------------------------------ 0 
                                                                               

 
RO_1483g10        ATTGGAACGGTTGTTCTTGGAGATCACGAAGACCACGACCACGACCAGCATGACCACGAC 120 
IA16_1483g10      ---------------------GATCACGAAGACCACGACCACGACCAGCATGACCACGAC 39 
                                       *************************************** 

 
RO_1483g10        CAGCATGACCACCCCCAGCATGACCACGACCAGGACTGTCACACATATACCGATGCGCGG 180 
IA16_1483g10      CAGCATGACCACCCCCAGCATGACCACGACCAGGACTGTCACACATATACCGATGCGCGG 99 
                  ************************************************************ 

 
RO_1483g10        TCGCCTACTGCTACCTGCAACGAAATTTATAAGTGCACCGGAGGCTGCGCCGGCTATGTC 240 
IA16_1483g10      TCGCCTACTGCTACCTGCAACGAAATTTATAAGTGCACCGGAGGCTGCGCCGGCTATGTC 159 
                  ************************************************************ 

 
RO_1483g10        ACCGCCACTCAGTGCACGCGCAATCCTGGAAACGACGTGAAAGCGTCGAAGACCACGGAG 300 
IA16_1483g10      ACCGCCACTCAGTGCACGCGCAATCCTGGAAACGACGTGAAAGCGTCGAAGACCACGGAG 219 
                  ************************************************************ 

 
RO_1483g10        AAATGCACGCTTGGATATGGAAAGTCGTCGGCAGCCATGACCATTTGCATCAACGAGAAT 360 
IA16_1483g10      AAATGCACGCTTGGATATGGAAAGTCGTCGGCAGCCATGACCATTTGCATCAACGAGAAT 279 
                  ************************************************************ 

 
RO_1483g10        GGCAGTTTCAATTGTTTTGGCCCGACGGATGGGAAAGCCGAGTGCAAAGGCTGCGTTATG 420 
IA16_1483g10      GGCAGTTTCAATTGTTTTGGCCCGACGGATGGGAAAGCCGAGTGCAAAGGCTGCGTTATG 339 
                  ************************************************************ 

 
RO_1483g10        GACGCAAGTCGCCACGTTTCGAACACCACCACCACCTCCTCCAGCTCTCCTCAACCTGGC 480 
IA16_1483g10      GACGCAAGTCGCCACGTTTCGAACACCACCACCACCTCCTCCAGCTCTCCTCAACCTGGC 399 
                  ************************************************************ 

 
RO_1483g10        GATAACTCCAATGCAGGCTCTTCCAACCAACCTGGCTCTAACACCGTTCCCATAGTCGAT 540 
IA16_1483g10      GATAACTCCAATGCAGGCTCTTCCAACCAACCTGGCTCTAACACCGTTCCCATAGTCGAT 459 
                  ************************************************************ 

 
RO_1483g10        ACCAAAGCCCCCGAGAAACCTTCTAACTCTTCCGCCTCTAGCTTCAGTGTTAACATCATC 600 
IA16_1483g10      ACCAAAGCCCCCGAGAAACCTTCTAACTCTTCCGCCTCTAGCTTCAGTGTTAACATCATC 519 
                  ************************************************************ 

 
RO_1483g10        TTCCTGTCGATTGGCGCTCTCGTATCCGCCACTTTCCTCTGA 642 
IA16_1483g10      TTCCTGTCGATTGGCGCTCTCGTATCCGCCACTTTCCTC--- 558 
                  ***************************************    
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1762g2 

 
RO_1762g2        ATGGTGGCGCTCGCTCTATTGGTCACGAATTGGCTTATTTGTGCTGCACTGGGCTCTACA 60 
IA16_1762g2      ------------------------------------------------------TCTACA 6 
                                                                       ****** 

 
RO_1762g2        AAATTCATACCACAAGCACAAAATTGCCACACATACACCAATGCAAACACGAATCATGCC 120 
IA16_1762g2      AAATTCATACCACAAGCACAAAATTGCCACACATACACCAATGCAAACACGAATCATGCC 66 
                 ************************************************************ 

 
RO_1762g2        ACTTGTGGAAATTTTATCTGTCCCTATGGCTGCTCTTGGCCTTTCGTCACCGCGGAGAAC 180 
IA16_1762g2      ACTTGTGGAAATTTTATCTGTCCCTATGGCTGCTCTTGGCCTTTCGTCACCGCGGAGAAC 126 
                 ************************************************************ 

 
RO_1762g2        TGTGTCCCAGCGGCAGCGGCAG-------------------------------------- 202 
IA16_1762g2      TGTGTCCCAGCGGCAGCGGCAGGTGCGCACGCCAATGCCACCTCACAAATATGCCACGTC 186 
                 **********************                                       

 
RO_1762g2        -------------------------------CGTGTATTACGAAGCTTGGTACGTACAAA 231 
IA16_1762g2      GGGTTCTGGAAAGAAGACGATCAAGTTTCTTCGTGTATTACGAAGCTTGGTACGTACAAA 246 
                                                ***************************** 

 
RO_1762g2        TGCACTGGAGGAATCAGCGGTTTTGCTGCTTGCACGGGTTGCCGATTCAAAAGCACTTGA 291 
IA16_1762g2      TGCACTGGAGGAATCAGCGGTTTTGCTGCTTGCACGGGTTGCCGATTCAAAAGCACT--- 303 
                 *********************************************************    
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1851g3 

 

RO_1851g3        ATGCCTATCGCACTCCTCTTTGTCACTGCCTTGTGCACCTCCGTCGTGCTCACCCAAGCC 60 
IA16_1851g3      ------------------------------------------------------------ 0 
                                                                              

 
RO_1851g3        GATGCTGGAGACGGGCAACCTATGGATCTGGACTGTACCACATAC--------------- 105 
IA16_1851g3      GAAGCTGGAGACGGGCAACCTATGGATCTGGACTGTACCACATACGTCAACATAAACACC 60 
                 **:******************************************                

 
RO_1851g3        ----------TGTGTAACAATGTTCCCAACAGGGTGTGCTCTGGTGGCTGCACCGGCTAC 155 
IA16_1851g3      ACTTCTGCCTTGTGTAACAATGTTCCCAACAGGGTGTGCTCTGGTGGCTGCACCGGCTAC 120 
                           ************************************************** 

 
RO_1851g3        GCCAGTAAGTAGTAGTTCATCCTCAAGAATTCCTTCCTCCCCTATCTGCCATTTCAAAAA 215 
IA16_1851g3      GCCA-------------------------------------------------------- 124 
                 ****                                                         

 
RO_1851g3        TTCAACGAAGCATATGGTCACTTCAGCCGCCACCAAGTGCAGTACCAGCCAGGTCTTTGG 275 
IA16_1851g3      --------------------------CCGCCACCAAGTGCAGTACCAGCCAGGTCTTTGG 158 
                                           ********************************** 

 
RO_1851g3        GGACCAAACAGGTCCCCTCACTACTGAAAAATGCACCGTCTCGTTTGGGCCCACGTCTGC 335 
IA16_1851g3      GGACCAAACAGGTCCCCTCACTACTGAAAAATGCACCGTCTCGTTTGGGCCCACGTCTGC 218 
                 ************************************************************ 

 
RO_1851g3        CACCGCCACAATCTGCATCAACGAGAAGAGGTCCTTTACCTGCTATGGCCCCGTAACCGG 395 
IA16_1851g3      CACCGCCACAATCTGCATCAACGAGAAGAGGTCCTTTACCTGCTATGGCCCCGTAACCGG 278 
                 ************************************************************ 

 
RO_1851g3        CACAGCTAACTGCAAGGGATGCACACAATCCTCCGGCTCTACCGACAAGCCACCAAACAA 455 
IA16_1851g3      CACAGCTAACTGCAAGGGATGCACACAATCCTCCGGCTCTACCGACAAGCCACCAAACAA 338 
                 ************************************************************ 

 
RO_1851g3        TCCCCCCGTCGGCGGCTCCTCAGGAAACAACTCTACCAGCACTTCCGGAAACAATTCCAC 515 
IA16_1851g3      TCCCCCCGTCGGCGGCTCCTCAGGAAACAACTCTACCAGCACTTCCGGAAACAATTCCAC 398 
                 ************************************************************ 

 
RO_1851g3        CAACACTCCCGGAAGCACTTTCGGTGACGCTTCCGGCAACACCTCAGTAAGCACATCTGG 575 
IA16_1851g3      CAACACTCCCGGAAGCACTTTCGGTGACGCTTCCGGCAACACCTCAGTAAGCACATCTGG 458 
                 ************************************************************ 

 
RO_1851g3        TAACACTTCCGGTGGCACCTCCGACAAACCTGCCGGCGGCGCAGGAACCGCATCTCCCCC 635 
IA16_1851g3      TAACACTTCCGGTGGCACCTCCGACAAACCTGCCGGCGGCGCAGGAACCGCATCTCCCCC 518 
                 ************************************************************ 

 
RO_1851g3        TTCCACTGGTAGCACCGGCTCCTCTCAGAGCGGGGACAACTCCGCTGGTGCCGCCTTAGG 695 
IA16_1851g3      TTCCACTGGTAGCACCGGCTCCTCTCAGAGCGGGGACAACTCCGCTGGTGCCGCCTTAGG 578 
                 ************************************************************ 

 
RO_1851g3        TCTCAACGGCGTATCCTTGGCCCTTGCAACCTTCATGTCCTTTATGTTTGCTTAA 750 
IA16_1851g3      TCTCAACGGCGTATCCTTGGCCCTTGCAACCTTCATGTCCTTTATGTTTGCT--- 630 
                 ****************************************************    
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2734g2 

 

RO_2734g2        ATGAACGCATTCTTTTACGCCCTGATGTCACTTGCTATTGCTGCAACCAATGTCAGCGCT 60 
IA16_2734g2      ------------------------------------------------------------ 0 
                                                                              

 
RO_2734g2        ATCGGTGAGACGATGACCTGCACTACCTATTCCGCATCGCCGAAAGGCTTTGCCTGCAAC 120 
IA16_2734g2      ATCGGTGAGACGATGACCTGCACTACCTATTCCGCATCGCCGAAAGGCTTTGCCTGCAAC 60 
                 ************************************************************ 

 
RO_2734g2        GACAGGCCCGACATTGTATGCACGGAGGGATGCAAGACATTCGTCACCAGCAGCCAATGC 180 
IA16_2734g2      GACAGGCCCGACATTGTATGCACGGAGGGATGCAAGACATTCGTCACCAGCAGCCAATGC 120 
                 ************************************************************ 

 
RO_2734g2        AAATTTGACAAGTACCCCAAGAAGCCGACGACTTCCGAGCTTTGCACCGTTGGGTTTGGA 240 
IA16_2734g2      AAATTTGACAAGTACCCCAAGAAGCCGACGACTTCCGAGCTTTGCACCGTTGGGTTTGGA 180 
                 ************************************************************ 

 
RO_2734g2        TCTACCAGTGCTACTACCAAGAGTAACCTTTTCCTTCCTCATTTTGCTGTTTGCCTTTGC 300 
IA16_2734g2      TCTACCAGTGCTACTACCAAGAT---------------------------------TTGC 207 
                 **********************                                  **** 

 
RO_2734g2        ATTACTGGTCAGGGCTCCTTCAGCTGCACCGGCAAGTCCACCGGGTCCGCAAAGTGCTAC 360 
IA16_2734g2      ATTACTGGTCAGGGCTCCTTCAGCTGCACCGGCAAGTCCACCGGGTCTGCAAAGTGCTAC 267 
                 *********************************************** ************ 

 
RO_2734g2        GGTTGTGTGGCCTACAACAAAATCCCTTGGGCTTCATAA 399 
IA16_2734g2      GGCTGTGTGGCCTACAACAAAATCCCTTGGGCTTCA--- 303 
                 ** *********************************    
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3338g6 

 
RO_3338g6        ATGAGACCTGCCACTTTTCTGAGAGTGTTTGCCACATGGACCAGTCTCGCTCTTTCGACT 60 
IA16_3338g6      ------------------------------------------------------------ 0 
                                                                              

 
RO_3338g6        TGCGCGGCCAGCATCGATTCACCTACCGTTGAACATTGCCCCTTCTACACCGGCGCCAAT 120 
IA16_3338g6      ------GCCAGCATCGATTCACCTACCGTTGAACATTGCCCCTTCTACACCGGCGCCAAT 54 
                       ****************************************************** 

 
RO_3338g6        ACTAACTCCGCGACCTGCACCACACGCTTCGAGTTCCGATGCGAAGGAGGATGCCAGAAG 180 
IA16_3338g6      ACTAACTCCGCGACCTGCACCACACGCTTCGAGTTCCGATGCGAAGGAGGATGCCAGAAG 114 
                 ************************************************************ 

 
RO_3338g6        AGCTTTGTCGAGGCTCAAGGATGTCTACCGGCCGATAATACCGGCGGCAATTTAACTGCG 240 
IA16_3338g6      AGCTTTGTCGAGGCTCAAGGATGTCTACCGGCCGATAATACCGGCGGCAATTTAACTGCG 174 
                 ************************************************************ 

 
RO_3338g6        CCAACGACTCGAACCTGTGATGTGGAATTTAGTATGGTCACGCCCCGCATCAACTCATGC 300 
IA16_3338g6      CCAACGACTCGAACCTGTGATGTGGAATTTAGTATGGTCACGCCCCGCATCAACTCATGC 234 
                 ************************************************************ 

 
RO_3338g6        GTCAGCAGTACTTATGGCAAGTTCTCATGCAAAGGACCCTCGTCAGGATTTGCGACTTGC 360 
IA16_3338g6      GTCAGCAGTACTTATGGCAAGTTCTCATGCAAAGGACCCTCGTCAGGATTTGCGACTTGC 294 
                 ************************************************************ 

 
RO_3338g6        TCTCAGTGCATCAGGGCTCTGC------ATGGATGCTCAGATCTCGTGCCTCTGAGTTAA 414 
IA16_3338g6      TCTCAGTGCATCAGGGCTCGTGAGTCGCGTGAAATCCCTGGACATATGACCTTGAAAGCG 354 
                 *******************         .**.*: * *:*.:*: .**.*  ***.: .. 

 
RO_3338g6        ------------------------------------------------------------ 414 
IA16_3338g6      ATCCTTAGGCCTCACGCGTGGTGATTGCGGTCTAAAGACTCAATTCATCCGCGATCCATT 414 
                                                                              

 
RO_3338g6        ---------------------------------------------------- 414 
IA16_3338g6      CCCACTTCTTTTCCGTCCAGTGCATGGACGCTCAGATCTCGTGCCTCTGAGT 466 
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Abstract 

Phenotyping in phytopathology has become a critical area of research, particularly as 

pathogen distribution changes and the ability to overcome both innate resistance and control 

methods develop among pathogen populations. Computer vision approaches to analyze plant 

disease data can be both faster and more reliable than traditional, manual approaches. However, 

the requirement of manually annotating training data for the majority of machine learning 

applications can present a challenge for pipeline development. Here, we describe a machine 

learning approach to quantify Puccinia sorghi incidence on maize leaves utilizing U-Net 

convolutional neural network models. We analyze several U-Net models with increasing 

amounts of training image data, either randomly chosen from a large data pool, or randomly 

chosen from a subset of disease time course data. As training dataset size increases, models 

perform better, but the rate of performance decreases. Additionally, the use of a diverse training 

dataset can improve model performance and reduce the amount of annotated training data 

required for satisfactory performance. Models with as few as 48 training images are able to 

replicate the ground truth results within our testing dataset. The final model utilizing our entire 
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training dataset performs similarly to our ground truth data, with an intersection over union value 

of 0.5002 and an F1 score of 0.6669. This work illustrates the capacity of U-Nets to accurately 

answer real world plant pathology questions related to quantification and estimation of plant 

disease symptoms. 

Introduction 

Methods for automated disease phenotyping in phytopathology have become a significant 

area of research as more image and data acquisition technologies are developed and their 

respective costs of implementation decrease (Mutka and Bart 2015; Simko et al. 2017; Tanner et 

al. 2022). Phenotyping systems in plant pathology are often employed for identification of 

disease or the quantification of disease symptoms. An ability to accurately quantify disease can 

be useful for discovering small, additive effects of pest and pathogen control when testing 

pesticides or polygenic resistance traits, and it can inform disease mitigation timing and practices 

(Riaz et al. 2016; Riaz and Hickey 2017). 

The enormous scale of the outputs of many plant phenotyping platforms means data 

analysis usually requires the assistance of computer vision or machine learning (ML) (Saleem et 

al. 2019). As a result, many computer vision approaches have been applied to various rust 

pathogens of plants, belonging to the order Pucciniales. Several members of Pucciniales are 

noteworthy for their significant impact on crops species, including many that infect grass species 

such as Puccinia graminis (wheat stem rust), Puccinia striiformis, (wheat stripe rust), and 

Puccinia sorghi (common rust of maize) (Figueroa et al. 2023). Many researchers still rely on 

standard area diagrams or scoring charts to estimate disease severity (Bade and Carmona 2011; 

Peterson et al. 1948). However, these charts are inherently qualitative in nature, and variation 

among their interpretations can lead to inaccurate conclusions on when and how often control 
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treatments are deployed (Bock et al. 2021). This is further exacerbated by a lack of adequate 

control methods for many rust pathogens, such as Asian soybean rust (Phakopsora pachyrhizi), 

where control is reliant on repeated applications of expensive fungicides to curb infections that 

would otherwise raze the crop (Nascimento et al. 2021). Additionally, climate change alters 

environmental pressures and management practices, which can change disease distribution and 

severity. For example, there have been several recent instances of P. sorghi and related species in 

previously unrecorded regions and new strains able to overcome currently utilized maize 

resistance (R) genes (Check et al. 2022; Halvorson et al. 2021; Quade et al. 2021; Ren et al. 

2021). The rise of resistance in pathogen populations to various control methods makes the need 

for finer-tuned phenotypic assessments of these diseases imperative.  

New phenotyping strategies for rusts have employed computer vision-based image 

processing to replace or complement use of standard area diagrams. For example, many rust 

disease symptoms are a contrasting color to surrounding leaf tissue, making it relatively easy to 

extract disease features based on thresholding of color ranges (Cui et al. 2010; Patil and Bodhe 

2011; Ganthaler et al. 2018). Similar strategies have been employed for Poaceae-infecting rusts 

(Agarwal and Samantaray 2016; Yadav and Dutta 2018). However, thresholding in this manner 

is largely dependent on consistency in lighting, disease symptoms, and plant coloration, and may 

not be flexible enough for some datasets. Discrepancies in these features can result in a dramatic 

decrease in performance for a simple image processing pipeline.  

As an alternative, ML or deep learning has been applied to rust pathosystems as well, as 

the variation between images can be larger as long as similar images are included in training 

datasets (Mochida et al. 2018; Xu et al. 2023), with several studies focusing on rust disease 

quantification of field-plot or aerial images (DeSalvio et al. 2022; Gao et al. 2020; Heineck et al. 
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2019; Mochida et al. 2018). Many ML methods for maize disease classification, including 

Puccinia species, have also been implemented (Mafukidze et al. 2022; Paliwal and Joshi 2022; 

Ullah et al. 2021). Regardless of approach, the proper use of computer vision techniques can lead 

to the development of a consistent and objective phenotyping pipeline that does not rely on prior 

knowledge or expertise. Although computer vision has its own biases and limitations, ML biases 

should be consistent across all images, as opposed to human biases, which can vary between 

scores, as well as inter- and intra-personally (Habib et al. 2022). Additionally, ML methods can 

easily be adjusted and reapplied to an entire experiment or existing datasets can be expanded to 

include new use cases. 

There are limitations to using ML approaches, however. Most applications are restricted 

to narrow use-cases, meaning techniques or models developed for field data are likely not suited 

for individual leaf data. Another prominent hurdle to developing ML pipelines for disease 

identification and quantification is the reliance of most ML approaches on annotated training 

data, which can be tedious and time-consuming to generate and often requires significant domain 

expertise. This can be especially challenging for rust species, due to the small and numerous 

nature of rust pustules on plant tissue. To better understand the requirements for a robust ML 

model for quantifying rust diseases at a greenhouse scale, we utilized the P. sorghi-maize 

pathosystem, which develops numerous small, round to oval, brick-red to dark brown pustules 

called uredinia on maize leaf surfaces.  

Very few studies have utilized ML for surface area quantification of specific diseases on 

maize leaves, and even fewer are at the single-plant scale. One recent example utilizes 

convolutional neural network (CNN) models to classify maize foliar diseases, including common 

rust, followed by quantification (Mafukidze et al. 2022). However, of the four diseases analyzed, 
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only quantification results for Northern corn leaf blight were shown. Another example is the 

PlantCV v2 naive Bayesian machine learning algorithm that was applied as a proof of concept 

for wheat stem rust (Puccinia graminis f. sp. tritici) (Gehan et al. 2017). Two other studies test 

the applicability of a Mask R-CNN algorithm to quantifying common rust symptoms on maize 

leaves (Gerber et al. 2021; Pillay et al. 2021). 

In this study, we aimed to further investigate the applicability of deep learning to P. 

sorghi-maize image data to determine if the developed model could generate informative, 

quantitative data accurate enough to replace labor-intensive manual quantification. We focused 

on quantification of plant disease symptoms at a single leaf scale for use in greenhouse 

applications, as experiments related to plant-pathogen interactions or effector biology are often 

conducted at this scale. Because manually generated training annotations are quite labor-

intensive, we also wanted to better understand the amount of annotated training data required to 

corroborate ground truth data. In line with this goal, we trained several U-Net CNN models with 

supervised learning using increasing amounts of training data. U-Nets consist of an encoder-

decoder architecture with convolutional layers that operate at different spatial scales, and skip-

connections allowing for the preservation of fine-scale detail in their output (Ronneberger et al. 

2015; Zhou et al. 2018). To test the models, we generated two datasets from commonly 

conducted plant pathology experiments to serve as biologically meaningful data. Finally, we 

aimed to develop a pipeline to acquire, process, and quantitatively phenotype future datasets. 

Overall, we found that a relatively small amount of training data is required to obtain 

biologically meaningful results. However, it is imperative that training and validation datasets 

are diverse, especially with respect to small training datasets, which greatly improves model 

performance. 
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Methods 

Differential resistance experiment 

The maize genotype H95 Rp1-D was planted in peat-based substrate and grown in two 

separate growth chambers under 16 hour days and 8 hour nights at 25/21˚C. When plants were 

approximately two weeks old, they were inoculated with urediniospores of P. sorghi isolate IA16 

or IN2 by dusting the spores manually onto seedlings. H95 Rp1-D is susceptible to IA16 and 

resistant to IN2. Plants were then misted with water and covered with a tall plastic cover and left 

in the dark for approximately 24 hours, after which the cover was removed, and the plants were 

returned to their previous day-night cycle. Nine days after the initial inoculation, leaf three from 

each plant was scanned. This experiment was repeated three times for each P. sorghi isolate. A 

total of 78 images were analyzed by the NN models. 

Fungicide gradient experiment 

Sweet corn (cultivar Golden Bantam), susceptible to both the IA16 and IN2 isolates, was 

planted in peat-based substrate and grown in a greenhouse with supplemental light at 16-hour 

days and 8-hour nights. Approximately three weeks after planting, the fungicide Tilt® 

(Syngenta, active ingredient propiconazole) was applied to the seedlings at the equivalent rates 

of 0, 0.5, 2.0, and 4.0 fluid ounces per acre. Five days after fungicide application, seedlings were 

spray-inoculated with urediniospores of the IA16 P. sorghi isolate. This time point was chosen to 

ensure pustules are still able to develop at the higher rates of fungicide, as fungicide efficacy is 

lowered (Mueller et al. 2004). Spores were collected from previously inoculated sweet corn 

seedlings and mixed with mineral oil. Using an airbrush sprayer connected to a compressor set to 

30 PSI, seedlings were spray-inoculated evenly across each experiment. After spraying, the oil 

was allowed to dry, and the seedlings were misted with water and placed in a dark chamber for 
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24 hours before returning to the greenhouse. Nine days after rust inoculation, leaf three from 

each plant was scanned in three of the experimental replicates and leaf four was scanned in one 

of the replicates. The imaged leaf number for each experimental replicate was chosen so that the 

scanned leaf was both sprayed with fungicide and was still alive at the time of scanning. A total 

of 720 images from these experiments were analyzed by the NN models. 

Leaf scanning protocol 

Leaves used in the testing and training datasets were scanned using a Canon CanoScan 

LiDE220 flatbed scanner. Images were taken at 1,200 DPI, with varying numbers of leaves per 

scan, depending on leaf size. Young maize leaves at various time points during disease 

development were scanned to comprise the training dataset. Sweet corn variety Golden Bantam 

was the most common maize genotype imaged, but leaves from the inbred line H95 are also 

represented. Only leaves inoculated with P. sorghi isolate IA16 were included in the training 

dataset, but pustules between the IA16 and IN2 rust isolates have indistinguishable phenotypes. 

The flatbed scanner setup consisted of a blue cardstock (Astrobrights® 65 lb in Lunar Blue™) 

background and a label at the top of each scan. Leaves were cut close to the main stem and laid 

across the scanner glass face down so the adaxial surface was imaged. If the leaf was longer than 

the width of the scanner bed, the proximal end of the leaf was allowed to hang over the side so 

that the distal end, where the majority of pustules develop, was imaged. To enable automatic 

division of each scan into individual leaf images, leaves were laid out on the scanner bed so that 

a rectangular box could be drawn around the entire leaf, limiting overlap with other leaves as 

much as possible. Leaves were carefully laid out to minimize wrinkling. To keep them flat, 

another sheet of blue cardstock was used to slowly cover the leaves from one end to the other to 

prevent curling or twisting. Although this is not represented in the training or testing dataset, 
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current methods substitute the extra sheet of cardstock with several blue rubber bands similar in 

color to the background cardstock that wrap around the scanner bed to hold leaves down while 

setting up the rest of the leaves. This helps minimize wrinkling of the leaves and reduces the 

setup time. The scanner glass was cleaned with 75% ethanol and paper towels between each scan 

to reduce noise from loose spores or debris. Our training dataset pool was comprised of 510 

images. These images contain leaves from multiple experiments and dates and have a wide 

variety of pustule and leaf phenotypes. 

Scanned image processing 

The scanned images were preprocessed to segment leaves into individual images. A 

Python script was used to threshold the leaf regions and crop out individual leaves. First, the 

edge pixels and labels are removed, and an Otsu threshold is applied to the blue channel of each 

scan to identify all leaf regions. Based on the leaf region, a box is drawn around each leaf and 

cropped, resulting in individual leaf images. During the leaf thresholding, the total leaf area in 

pixels is saved for each leaf. Occasionally, the bounding boxes of leaves overlap, resulting in 

images with additional partial or full leaves. Such images were treated as “one” leaf, and the total 

leaf area was saved for each image. These images were annotated and processed the same as 

truly individual leaf images. 

Annotation of datasets 

All ground truth pustule annotations were marked using the ellipse tool in ImageJ Fiji and 

then concatenated into one CSV file for each image in the training and testing dataset 

(Schindelin et al. 2012). In the 510 images of the training dataset, there were 53,714 total 

annotations, which include 22,037,886 positive pustule class pixels. There were a total of 12,156 
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annotations in the 720 images of the testing dataset, which includes 4,002,338 positive class 

pixels. 

Training of U-Net models 

All U-Net models were trained with a batch size of 24 256x256 pixel images. The 

specific 256x256 segments of each image were chosen so that every pixel in the training dataset 

was represented at least once. Training data was augmented with the Albumentations package 

(Buslaev et al. 2020) using the horizontal flips, vertical flips, random 90° rotations, transpose, 

and random sized crop functions. Each 256x256 pixel segment in each batch had a 50% chance 

of being horizontally flipped, a 50% chance of being vertically flipped, a 75% chance of a 

random 90° rotation, a 50% chance of transposition, and a 25% chance of a random size crop 

(minimum size of 128x128 pixels). We used the Adam optimizer with an initial learning rate of 

5e-4 (Kingma and Ba 2015). Performance on a validation set was calculated every 250 iterations. 

The learning rate is reduced by a factor of 10 after 750 iterations of no improvement on the 

validation set to a minimum rate of 5e-6. Training was stopped after 1,500 iterations with no 

improvement. The models are trained with focal loss with α=0.25, and γ=2.0 (Lin et al. n.d.). 

Relative to Zhou et al. (2018), we used one fewer downsampling operation in the 

backbone (denoted as Unet ++ L3), used 32 filters per layer with a 3x3 kernel, and increased the 

number of filters by 32 after each downsampling layer, relative to doubling in the original 

implementation. These changes were made to decrease the total number of trainable parameters 

and decrease computational expense, particularly for use on systems without GPUs. We found 

that these changes did not substantially change the performance of these models for our 

application.  
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Approximately 20% of each model’s training set was randomly chosen as the validation 

set, with training images rounded up to the nearest integer and validation images rounded down 

to the nearest integer. A best threshold (BT) that optimized intersection over union (IoU) of the 

validation set and a 0.5 threshold were tested for each model. The neural network was developed 

in TensorFlow and Keras (Abadi et al. 2016; Harris et al. 2020), with additional processing 

performed using NumPy (Chollet, F. & others, 2015. Keras. Available at: 

https://github.com/fchollet/keras).  

The name of an image not present in our 510-image training dataset was added when 

randomizing data for the UTC models. As a result, some models were trained on one fewer 

image. These models were: UTC1-12, UTC4-12, UTC5-24, UTC2-48, UTC3-48, UTC5-48, 

UTC1-96, UTC2-96, UTC3-96, UTC4-96, UTC5-96, UTC1-192, UTC2-192, UTC3-192, UTC4-

192, and UTC5-192. However, based on the results of these models, it does not appear one fewer 

image had a measurable impact on their performance. 

Metrics and performance analysis 

Each model was tested on the entire 798 image testing dataset. The overall pixel IoU of 

the positive pustule class was used to estimate performance for each of the 70 models, which was 

calculated from the total number of true positive predicted pustule pixels over the intersection of 

true positive, false positive, and false negative pixels over the entire testing dataset. The F1 score 

was calculated from the harmonic mean of pixel precision and recall. The negative class, namely 

leaf and background, was not considered in performance metrics as it tends to be uninformative 

or misleading when it makes up a large portion of the dataset, as is the case in our data. 
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Results 

NN training dataset 

The training dataset consisted of 510 images of maize leaves that have been inoculated 

with P. sorghi urediniospores and their respective annotations. Leaves were imaged with a 

portable flatbed scanner at a 1,200 dots per inch (DPI) resolution, with time points ranging from 

four to fifteen days after rust inoculation (DAI). Since P. sorghi takes approximately seven days 

from urediniospore contact with a leaf to form a developed uredinium, these time points captured 

images of common rust of maize throughout the disease progression from the first appearance of 

pustules at four DAI to fully developed and spore-shedding pustules at seven to fifteen DAI. 

NN testing dataset 

The testing dataset consisted of 798 images taken at nine DAI gathered from two plant 

pathology experiments that simulate real-world applications for our models. The first 

experiment, with 78 images, is a differential disease response trial where the maize line H95 

Rp1-D was inoculated with two P. sorghi isolates, IA16 and IN2. The second experiment, 

consisting of 720 images, is a fungicide gradient experiment in which the fungicide Tilt® 

(Syngenta, active ingredient propiconazole) was sprayed onto sweet corn seedlings at increasing 

concentrations before inoculation with the P. sorghi isolate IA16. 

Annotation of datasets 

Pustules on each whole-leaf image in the training and testing datasets were hand-

annotated with the ellipse tool in Fiji/ImageJ to mark the positive pustule class. Coordinates for 

the individual pustule annotations were collated and saved to a single CSV file for each image. 

Any non-annotated pixels were deemed the non-pustule, negative class, which includes both 

non-pustule leaf tissue and background. Approximately 100 person-hours were required to 

annotate the 1,308 images of the training and testing datasets. A total of 53,714 regions were 
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annotated in the training dataset, and a total of 12,156 regions were annotated in the testing 

dataset. 

NN architecture and training strategies 

Using a U-Net (Ronneberger et al. 2015) convolutional neural network (Lecun et al. 

2015) to perform pixel-wise segmentation of the training images, we trained a total of 70 models. 

Specifically, we used a variation of the original U-Net known as U-Net++, which adds nested 

convolution layers between encoder and decoder to allow for deeper representations at finer 

spatial scales (Zhou et al. 2018). During training, the Albumentations package was used to 

augment the image data with the horizontal flip, vertical flip, random 90˚ rotation, transpose, or 

random crop functions (Buslaev et al. 2020). The model predicts the probability that a particular 

pixel belongs to the pustule class, on a scale of 0 to 1. For each model, 20% of the training 

dataset was randomly chosen as the validation set and two thresholds were tested for each model. 

Thirty-five models, designated U-Net random (UR), were trained on random subsets from the 

training data pool. Models were further divided into model groups, with each group being trained 

on different amounts of training data, namely 6, 12, 24, 48, 96, 192, or 510 images. The training 

process was repeated five times for each model group. The other 35 models, named U-Net time 

course (UTC), were trained with data first picked from a two-week common rust time course 

experiment. These models were divided similarly into model groups. The time course data 

consists of 76 images taken from 4 DAI, when leaves are young and common rust symptoms 

first start appearing, until 15 DAI, where pustules are fully developed and maize leaves are dying 

or dead at their tips. To ensure as much diversity of training images was present for each model 

without being overly biased, leaves were randomly and evenly picked from each DAI. When a 

model group required more images than were available in the time course subset, namely 96 and 
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up, the rest of the training data was chosen randomly from the remainder of the 510 image pool. 

For example, for the models in group 6, we randomly picked one leaf each from either 4 or 5 

DAI, 6 or 7 DAI, 8 or 9 DAI, 10 or 11 DAI, 12 or 13 DAI, and 14 or 15 DAI, to ensure the 

training data contained images across the entire time course. For models in groups 12 and up, an 

image was randomly picked from each DAI until the training dataset for a particular model was 

complete. 

We tested two thresholding methods for each model to determine the cutoff point for 

classifying pixels as the pustule class, namely a set threshold of 0.5 and a model-specific BT, 

where the threshold that maximized IoU of the validation set was used. Results for each of the 

798 testing images were generated for each model at each threshold, for a total of 140 results 

files. Approximately 48 hours were required to train the 70 models and generate the 140 

evaluation files on the testing datasets in sequence on an Nvidia Quadro RTX 6000 GPU. 

Number of training images affects model performance 

As model group increases, model performance also increases, both for UR and UTC 

models (Figure 1a). When considering a single training strategy, we see this effect is more 

pronounced in the UR models than in UTC models (Figure 1a). The largest improvement in IoU 

occurred between model groups 6 and 12 and groups 12 and 24, particularly for the UR models 

(Figure 1a). After group 96, the mean IoU value remains fairly stagnant, with no or minimal 

improvement between model groups, and in the case of the UTC models, a slight reduction in 

improvement (Figure 1a). Variability in performance between models in the same group tends to 

decrease as the training dataset expands. Model group 6, followed closely by group 12, have the 

widest distribution of IoU values, and distributions get tighter as training images are added until 

model group 96, at which point variability increases somewhat, but not to the same extent as in 
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the lowest two groups (Figure 1a). These trends are consistent at an individual leaf image level, 

where we tend to see an improvement in IoU as training dataset size increases, and as more 

pustules are correctly identified (Figure 1b). Overall, models tend to perform better, both in 

terms of higher IoU and reduced variability, when more training data is used, but the added 

benefit of additional data greatly decreases when the number of images in the training datasets 

exceeds 96. 

Training strategy affects model performance 

Although similar trends in performance were observed within each training strategy, the 

UTC training strategy consistently performed better than the UR strategy (Figure 1a). This 

advantage is most obvious in model groups 6 and 12 and is seen to a lesser extent in groups 24, 

48, and 96, as the size of the advantage decreases as overall performance gained from additional 

training data also decreases (Figure 1a). Moreover, the worst performing UTC model, with a BT 

IoU of 0.303, performs 26 times better than the worst performing UR model, which has a BT 

IoU of 0.0115. Six UR models, three each from model groups 6 and 12, perform worse than the 

lowest performing UTC model, UTC5-6 (Figure 1a). Again, although both training strategies 

tighten the distribution of model performance in each model group, the UTC model groups 

consistently are less variable in performance (Figure 1a). The UTC training strategy seems to 

offer a substantial advantage over a fully random UR strategy, particularly at lower model 

groups, giving a higher likelihood of better model performance and reduced variability between 

models in the same group. 

Diversity of training images affects model performance 

Models trained on even the smallest dataset have the potential to be high performing, but 

they also have a greater likelihood of poor performance, particularly for UR models (Figure 1a). 
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This disparity in performance is quite obvious in UR model group 6, which had a large range in 

IoU between the two best and the two worst performing models (Figure 1a). To investigate 

potential reasons for this result, we looked at the training image data for these four models, 

namely UR1-6, UR4-6, and UR2-6, UR5-6, which were the two best and two worst UR-6 

models, respectively. The training images, and particularly the validation subset, for the best UR-

6 models were drastically more diverse in both leaf and pustule phenotype than the worst UR-6 

models (Figure 2). 

Both of the worst performing models had a validation image with almost no pustules, as 

opposed to the best performing UR-6 models, of which each validation image had 175 or more 

annotated pustules (Figure 2, Table 1, Supplemental Table 1). The best UR-6 models training 

datasets also included images of yellowing leaves, a common occurrence in our datasets, of 

which none were present in the worst UR-6 models (Figure 2). In summary, the best performing 

UR-6 models had images that were much more representative of the training and testing datasets 

as a whole than the worst performing UR-6 models. 

Threshold performance depends on training strategy and model group 

The two thresholds, BT and 0.5, greatly affect performance metrics, with BT 

outperforming a 0.5 threshold in most models (Figure 3a,c). Generally, the BT is determined to 

be lower than 0.5, and as a result, the model outputs more false positives but fewer false 

negatives (Supplemental Table 2). In other words, fewer true positives are missed by the model 

when utilizing the BT. The BT, however, leads to poorer performance in UR models with fewer 

training images, namely groups 6, 12, and 24 (Figure 3a). One of these models, UR1-12, 

performs especially poorly when using the BT, dramatically reducing the IoU value (Figure 3b). 

When the differences in IoU between the 0.5 threshold and the BT were compared, we found 
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only two UTC models had a lower performance with the BT, as compared to 17 UR models 

(Figure 3c). In conjunction with previous results, it appears that a best threshold as determined 

by the validation set performs better than a set threshold of 0.5, given a diverse training and 

validation set. 

All models can distinguish between binary positive and negative data 

The inbred maize line H95 is generally susceptible to P. sorghi isolates, however, H95 

lines carrying different Rp resistance genes are resistant to select rust isolates. An H95 line 

carrying the common rust resistance gene Rp1-D is resistant to P. sorghi isolate IN2 (Hulbert 

2002), but it is susceptible to an Iowan isolate that we named IA16. These two isolates were used 

in a binary positive and negative test for the NN models, where maize plants were inoculated 

with one of these two P. sorghi isolates. Overall, no pustules developed on the H95 Rp1-D 

leaves inoculated with IN2, whereas leaves inoculated with IA16 consistently developed varying 

numbers of pustules (Figure 4a-c). When assessing model performance, we looked at total 

pustule predictions per image and the percent coverage of pustules on leaf tissue. Since U-Nets 

are unable to differentiate between individual pustules that overlap, a percent coverage could 

give a more accurate result over the number of pustule predictions, particularly for leaves with 

high amounts of pustules. In the ground truth results, we found the means for both total pustule 

annotations and percent coverage of the IN2 and IA16 inoculated leaves were significantly 

different for both annotations and pustule coverage (ɑ=0.05, Figure 4a,b). When the same two-

sample t-test was conducted for each model and threshold level, all models were able to correctly 

determine that the IA16 and IN2 inoculated leaves had statistically different pustule coverages 

(Table 2). 
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UTC models are most likely to corroborate fungicide gradient ground truth results 

To generate images with a gradient of disease symptoms, maize seedlings were 

inoculated with P. sorghi isolate IA16 five days after being sprayed with fungicide at the 

equivalent rates of 0, 0.5, 2, and 4 fluid ounces per acre, which were expected to provide 

increasing levels of protection (Mueller and Buck 2004). In line with this expectation, we 

observed that as the rate of fungicide increased, the pustule coverage decreased (Figure 4d, 4e). 

Overall, in an ANOVA and follow-up Tukey HSD, we found that the 0 and 0.5 fungicide rates 

were not statistically different from each other, and the 2 and 4 rates were not statistically 

different from each other, with all other pairwise comparisons found to be significantly different 

for both total number of pustules and pustule coverage (ɑ=0.05, Figure 4d, 4e, Supplemental 

Table 3). For this statistical test, fewer models were able to match the ground truth results. 

Models with smaller training datasets, UR models, and UR models using the BT were all less 

likely to corroborate ground truth results (Table 2). Overall, UTC models were the most likely to 

match ground truth results, with 33 out of 35 models being able to do so at both thresholds 

(Table 2). Based on the statistical testing, the UR models in model group 48 or higher and UTC 

models in model group 12 or higher give similar f-statistics and p-values to the ground truth data 

between fungicide treatment groups. 

Identifying a true mean of zero is difficult for all tested models 

The general trends within the ground truth data can be correctly identified by the majority 

of the models tested, but we further investigated the IN2 data. The leaves in these images never 

have any pustules, making this a challenging test for our models. Essentially, a perfect score 

would have no false positives, which is difficult to achieve. We tested our models against the 

null hypothesis that the total annotations and pustule coverage of IN2-inoculated leaves is zero, 
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which gives us a ground truth p-value of 0.162 for both. In other words, there is not enough 

evidence to support the IN2 true mean is not zero, given ɑ=0.05. None of the models were able 

to correctly predict zero pustules, and all had p-values under 0.05 for number of predicted 

pustules, pustule coverage, or both. However, most models using the best threshold have a 

predicted mean close to zero, especially the UTC models, of which all predicted pustule means 

are less than 20 pustules per image, with the majority being less than 10 (Figure 5a). The 

exception to this is a few of the UR models in smaller model groups, which greatly overestimate 

the amount of pustule coverage on the IN2-inoculated leaves (Figure 5). Although no models are 

able to statistically show that the IN2 mean equals zero, the majority of models, and in particular 

UTC models in bigger model groups, have a very low predicted mean. We expect that it is 

unlikely a researcher would come to an incorrect conclusion, namely H95 Rp1-D leaves are not 

resistant to isolate IN2, when interpreting the predicted results for those models. 

Final model yields similar results to ground truth annotations 

We chose our best performing 510 model to compare directly to ground truth annotations, 

namely UTC4-510 using the validation set-determined best threshold. When comparing UTC4-

510’s individual image results to the ground truth results, we see a similar trend for both the 

differential experiment and the fungicide gradient experiment (Figure 6a-d). The model tends to 

overestimate the number of pustules and pustule coverage but predicts a large number of pustules 

for IA16-inoculated leaves, few pustules on IN2-inoculated leaves, and a decreasing pustule 

coverage on leaves treated with increasing rates of the Tilt® fungicide (Figure 6a-d). This model 

is also capable of outperforming hand-annotated data in specific instances. For example, the 

model correctly identified a pustule that had been missed during manual annotation (Figure 6e). 

In contrast, for an image with 8 pustule annotations, nearly all models had an IoU of 0 for that 
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image. Upon closer inspection, none of the annotations were clearly discernible pustules, i.e., 

they were falsely marked (Figure 6f). UTC4-510 had a total of 4 predictions for this leaf, but the 

total area of pustules was very small, and was an improvement over the manual, ground truth 

annotations. In summary, although pustule coverage tends to be slightly overestimated by the 

model in the training dataset, UTC4-510’s results remain relatively similar to the ground truth. 

Discussion 

A significant bottleneck to beginning a new phenotyping project that employs ML is the 

annotation of high-quality training data. For our P. sorghi system, we have a large collection of 

potential training images to choose from. However, we wanted to simulate different levels of 

training data to better inform the development of a ML pipeline in a new pathosystem. From our 

results, additional training data is a large contributor to model success, and the likelihood of a 

particularly poor performing model is greatly decreased as more training data is used. However, 

we consistently found that additional training data had diminishing returns in model 

performance. The 10-fold difference in manual annotation time between model group 48 and 

model group 510 when compared to the negligible return in model performance implies smaller 

amounts of training data may have been sufficient in this use-case.  

Ensuring that the training data captures the phenotypic diversity of a given pathosystem 

helped to increase model success. Utilizing diverse disease time course data proved to be a big 

advantage for smaller training datasets, which informs the types of training data to preferentially 

acquire for future ML applications in phytopathology. The training data in our poorest 

performing models UR-6, which were randomly selected from our entire training pool, had much 

lower pustule counts and the leaf diversity was minimal. In contrast, the training data in our 

highest performing UR-6 models, had many more pustule annotations and included both mostly 
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green leaves and leaves with yellowing leaf tips. Inclusion of these yellowing leaves is especially 

important for experiments with additional treatments beyond P. sorghi inoculation, such as the 

fungicide gradient experiment. Scanned leaves from this experiment are older, as they needed an 

additional fungicide treatment before being inoculated with urediniospores. As leaf tips senesce, 

it becomes more difficult to distinguish pustules from dying leaf tissue, and inclusion of this 

phenotypic diversity in training data seems to be imperative for model success. Utilization of 

disease time course experiments to gather training data enables the collection of comprehensive 

diversity of phenotypes quickly and easily. 

Interestingly, the diversity of the training dataset has a close relationship with which 

threshold technique performed best. For UR models that performed poorly, it was much more 

likely for a set threshold of 0.5 to give a better overall IoU value. When these models used the 

BT, they performed much worse (Figure 5). Selecting a threshold based on a validation set with 

low diversity likely overfits to that narrow phenotype, greatly impacting performance on the 

significantly more diverse testing dataset. Ensuring diverse training and validation sets enables 

the use of the BT strategy, increasing the likelihood of better model predictions and overall 

performance. 

One specific advantage ML phenotyping can have over manual annotation or estimation 

is an equalization of biases across images. Visual and manual assessments are subject to various 

biases, extent of background knowledge, or even time allotted for phenotyping, all of which can 

affect the results of an experiment. Although ML has its own biases and errors, a given model 

will perform nearly identically every time on a given set of data. This can increase 

reproducibility both within and between experiments. In fact, although our final model was not 

perfect, it is able to out-perform manual annotation in some instances.   
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The final model from this study is likely specific to rust symptoms on Poaceae species on 

images from smaller scale greenhouse experiments. There are limitations on the use-cases for 

this model, as all leaves in this study were gathered by the same person using the same scanner 

and background color, and the plants were scanned when they were still relatively young. 

However, future datasets could be expanded to include data gathered from other research groups 

using different equipment, older leaves, or from field conditions to increase the robustness of the 

model. Additional testing would be required to determine if this model architecture works with 

different data, such as different background colors, a different scanner, or older maize leaves. On 

the other hand, although not included in our testing data, some training leaves had mosaic 

symptoms caused by foxtail mosaic virus, and this model may perform well on similarly infected 

leaves. Furthermore, although this model would likely have limited applicability to significantly 

different pathosystems, diseases with similar phenotypes, such as Southern rust of maize 

(Puccinia polysora) may be phenotyped with similar success. 

Conclusions 

As more methods to collect plant phenotypic data are developed, there is an increasing 

need for image processing pipelines. Even when utilizing the same data acquisition platform, 

different problems and datasets will have varying image processing requirements. Additionally, 

high-throughput, accurate, and quantitative phenotyping is needed for plant disease research to 

inform breeding decisions and aid in research involving plant immunity, resistance gene and 

effector biology, and polygenic pathogen resistance traits.  

Starting a plant phenotyping platform from scratch can be intimidating for researchers 

primarily trained as biologists. To better understand the minimum requirements for a new 

phenotyping pipeline, we mimicked various levels of annotated training data and possible 
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outcomes at those levels to inform future pipeline development. Based on our results, a relatively 

small amount of data may be sufficient to begin development of accurate ML models. However, 

it is important to note that training data should be as diverse as possible and include a large 

number of annotations. Models trained on data with limited diversity and few annotations 

performed extremely poorly, whereas ensuring diversity by utilizing disease time course data 

helped to maximize model performance, especially for models trained on smaller training 

datasets. 

Overall, we found that a U-Net neural network is sufficient to quantify common rust 

symptoms on scanned maize leaves. With at least a 48-image training dataset, we were able to 

corroborate ground truth results for both a differential experiment and a fungicide gradient 

experiment. Models trained with larger training datasets, and thus requiring more time devoted to 

annotation of training data, did not have an equal return in performance, but are likely more 

robust when analyzing future datasets. Our final model, UTC4-510, generates results similar to 

ground truth. Additionally, although false negatives and false positives can occur, model-

predicted pustule regions are generally tighter than is feasible by manual annotation and models 

are able to outperform manual annotations in some instances. Our results show that ML models 

hold significant promise for quantifying plant disease in greenhouse experiments and relatively 

little annotated training data can be used to begin development of new pipelines. Reduced 

upfront costs in annotation time can hasten future disease quantification pipelines and model 

training, with the outcome being a more consistent and reliable tool for disease quantification. 
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Appendix. Data Availability 

The entirety of the training and testing datasets are available here: 

https://doi.org/10.25380/iastate.23264180. This data repository includes the raw TIF files for 

each cropped image and its corresponding CSV annotation file and all 140 non-summarized 

model analysis CSV files.  

For more information on the code and techniques used in this publication, see the GitHub 

repository at https://github.com/katholan/Psorghi-UNet-Quantification. Additionally, the names 

of all images used to train each model (training_images.xlsx), the results summaries for each 

model (model_results_summaries.xlsx), the p-values (α=0.05) for all statistical tests for each 

model (statistical_test_results.xlsx), and the model summaries and statistical results for only the 

IN2 leaves (in2_summaries_analyses.xlsx). 

 

https://doi.org/10.25380/iastate.23264180
https://github.com/katholan/Psorghi-UNet-Quantification
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Figure 1. The effect of size of training data set on neural network (NN) model performance. Performance of each NN model as 

measured by the overall intersection over union (IoU) of the testing dataset for each model using the best threshold (BT) to determine 

predictions. Models are grouped by number of images used in the training set. “UR” denotes U-Net models generated with randomly 

selected images. “UTC” denotes U-Net models generated with images selected from a time course spanning common rust disease 

development. Whiskers represent 1.5 times the interquartile range, with points outside classified as outliers. (a) The performance 

according to IoU for all 70 models separated by training strategy. (b) A portion of a single ground truth image and its respective 

annotations. The pixel probabilities for the positive pustule class, their resulting predictions using the BT, and those predictions 

overlaid on the ground truth image are shown for three models using increasing amounts of training data (UTC5-6, UTC3-12, and 

UTC4-510). 
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Figure 2. The effect of image diversity in small training data sets on neural network (NN) model performance. The images used in 

four of the UR-6 models that were trained using six randomly selected leaves: the two UR-6 models that produced the lowest IoU 

values (Worst UR-6), the two UR-6 models that produced the greatest IoU values (Best UR-6). Images are in scale with each other. 

Each image was cropped at a location that best represented the phenotypes within the image. The bottom two leaves of each model 

comprise the validation set for that model. The leaves used for UR1-6 and UR4-6 had minimal pustule and leaf diversity. The leaves 

used for UR2-6 and UR5-6 had large numbers of pustules and were more diverse in appearance. 
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Figure 3. The effect of threshold on NN model performance as determined by the overall IoU of 

the testing dataset for each model. The models are separated by training strategy and threshold.  
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Models are grouped by the number of images used for training. Whiskers represent 1.5 times the 

interquartile range, with points outside classified as outliers. (a) IoU values for each of the model 

groups. UR05 denotes U-Net models trained with randomly selected images and a threshold of 

0.5. URBT denotes U-Net models trained with randomly selected images and the BT. UTC05 

denotes U-Net models generated with images selected from a time course spanning common rust 

disease development and threshold of 0.5. UTCBT denotes U-Net models generated with images 

selected from a time course spanning common rust disease development and the BT. (b) An 

example of thresholds on a portion of a single testing image analyzed by UR1-12. The original 

ground truth and its corresponding annotations are shown alongside UR1-12’s pixel 

probabilities. Below are the predictions and predictions overlaid on the ground truth image for 

both thresholds. A BT in this case produces an IoU of 0.09185438 while a 0.5 threshold 

produces an IoU of 0.45368737. (c) The difference in IoU value between the BT and the 0.5 

threshold for each model. Models are grouped by number of training images used in the training 

dataset. A positive value indicates the BT performs better and a negative value indicates that the 

0.5 threshold performs better for a given model. 
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Figure 4. Ground truth results from the H95 Rp1-D differential experiment and the fungicide 

application experiment. (a) Representative leaves from the Rp1-D differential experiments. Leaf 

3 of H95 Rp1-D plants inoculated with either the virulent IA16 isolate or the avirulent IN2 

isolate at 9 days after inoculation (DAI). For each P. sorghi isolate, (b) the total number of 

manually annotated pustules per image, and (c) the % pustule coverage per image. For each 

fungicide application rate (fluid oz/acre), (d) the number of annotated pustules per image and (e) 

the % pustule coverage per image. 
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Figure 5. Performance of NN models on the IN2 images from the H95 Rp1-D differential 

experiment. The predicted means and 95% confidence intervals for (a) the average number of 

predictions per image and (b) the predicted % pustule coverage per image for each model as 

determined by the BT are shown. 
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Figure 6. Comparison of the top performing neural network (NN) model trained on 510 images (UTC4-510) to ground truth (GT) 

data. The (a) number of regions of interest (ROIs) (either pustule annotations for GT data or pustule predictions for NN data) and (b) 

% pustule coverage for ground truth vs NN predictions for the H95 Rp1-D differential data. The (c) number of ROIs and (d) the % 

pustule coverage for ground truth vs NN predictions for the fungicide gradient data. An example of an instance where the NN model 

outperforms manual annotation, showing a crop of the ground truth image, its corresponding annotations, the model’s pixel 

probabilities and subsequent predictions, and predictions overlaid on the ground truth image. (e) An example of a pustule that was 

originally missed during manual annotation, and (f) an example of not marking ground truth pustules that are not true pustules and 

were originally mis-annotated. 
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Tables 

Table 1. The IoU and number of annotations in the training and validation subsets from the best 

two and worst two performing UR-6 models. Results were assessed at the BT.  

 

Model BT IoU 
Training GT 

Annotations 

Validation GT 

Annotations 

Total GT 

Annotations 

UR1_6 0.031 453 117 570 

UR4_6 0.011 144 155 299 

UR2_6 0.304 2282 406 2688 

UR5_6 0.327 496 384 880 

 

Table 2. The percentage of each model group for each threshold that is able to corroborate all 

ground truth results for the IA16 vs IN2 two-sample t-test of the differential data, the ANOVA 

and subsequent TukeyHSD groups for the fungicide gradient, and the IN2 mean equals zero one-

sample t-test of the differential data. N for each percentage = 5. 

 

Model 

Group 

IA16 vs IN2, two-sample t-

test 

Fungicide Gradient, 

TukeyHSD 

IN2 mu=0, one-

sample t-test 

UR UTC UR UTC UR UTC 

0.5 BT 0.5 BT 0.5 BT 0.5 BT 0.5 BT 0.5 BT 

6 100% 100% 100% 100% 20% 20% 80% 80% 0% 0% 0% 0% 

12 100% 100% 100% 100% 60% 20% 100% 100% 0% 0% 0% 0% 

24 100% 100% 100% 100% 100% 80% 100% 100% 0% 0% 0% 0% 

48 100% 100% 100% 100% 100% 100% 100% 100% 0% 0% 0% 0% 

96 100% 100% 100% 100% 100% 100% 100% 100% 0% 0% 0% 0% 

192 100% 100% 100% 100% 100% 100% 100% 100% 0% 0% 0% 0% 

510 100% 100% 100% 100% 100% 100% 100% 100% 0% 0% 0% 0% 
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Supplemental Tables 

Supplemental Table 1. Images used in the best two and worst two UR-6 models. "Performance" 

indicates whether it was high or low performing in the UR-6 model group. "# GT Annotations" 

is the total number of individual ground truth annotations labeled for each image. 

 

Model Performance Leaf Name Subset 

# GT 

Annotations 

UR1_6 Worst 20200912_0002_16 Training 202 

UR1_6 Worst 20200912_0005_37 Training 88 

UR1_6 Worst B73_Rp1-D21_007 Training 65 

UR1_6 Worst spray_l3-08_203 Training 98 

UR1_6 Worst 20210109_tilt0.5_71 Validation 7 

UR1_6 Worst 20190501_0001_03 Validation 110 

UR4_6 Worst 20190501_0006_39 Training 129 

UR4_6 Worst 20210109_tilt0.0_28 Training 10 

UR4_6 Worst 20210109_tilt0.5_85 Training 5 

UR4_6 Worst 20210109_tilt1.0_129 Training 0 

UR4_6 Worst 20210109_tilt0.5_61 Validation 1 

UR4_6 Worst 20190501_0005_24 Validation 154 

UR2_6 Best cut_l2-02_047 Training 1951 

UR2_6 Best individual_leaves_2_week_day_12_13 Training 93 

UR2_6 Best 7_day_day_7_34 Training 151 

UR2_6 Best 20190501_0001_01 Training 87 

UR2_6 Best individual_leaves_2_week_day_06_59 Validation 175 

UR2_6 Best dust_l3-09_185 Validation 231 

UR5_6 Best 20190501_0005_23 Training 87 

UR5_6 Best cut_l3-07_241 Training 167 

UR5_6 Best individual_leaves_2_week_day_11_12 Training 42 

UR5_6 Best 2020_10_09_09 Training 200 

UR5_6 Best individual_leaves_2_week_day_12_17 Validation 191 

UR5_6 Best 2020_09_30_05 Validation 193 
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Supplemental Table 2. The average performance metrics for each model group-training strategy 

at both thresholds (BT or 0.5). A darker color indicates better performance. Color scales are 

specific to each metric. 

Training 

Strategy 

Model 

Group 
Threshold IoU 

Pustule 

F1 

% TP 

Pixels 

% FP 

Pixels 

% FN 

Pixels 

UR 6 0.5 0.106 0.192 10.62% 75.90% 13.48% 

UR 6 BT 0.037 0.072 3.73% 95.02% 1.25% 

UTC 6 0.5 0.375 0.545 37.48% 14.23% 48.29% 

UTC 6 BT 0.408 0.580 40.80% 36.27% 22.93% 

UR 12 0.5 0.360 0.529 35.97% 15.52% 48.51% 

UR 12 BT 0.138 0.243 13.84% 80.51% 5.64% 

UTC 12 0.5 0.400 0.571 39.99% 10.82% 49.20% 

UTC 12 BT 0.459 0.629 45.93% 31.85% 22.22% 

UR 24 0.5 0.442 0.613 44.17% 12.97% 42.86% 

UR 24 BT 0.406 0.577 40.57% 47.28% 12.15% 

UTC 24 0.5 0.432 0.603 43.17% 11.10% 45.74% 

UTC 24 BT 0.485 0.653 48.48% 31.92% 19.60% 

UR 48 0.5 0.448 0.618 44.77% 12.26% 42.97% 

UR 48 BT 0.460 0.630 45.98% 39.82% 14.20% 

UTC 48 0.5 0.426 0.598 42.61% 10.41% 46.99% 

UTC 48 BT 0.488 0.656 48.76% 33.06% 18.17% 

UR 96 0.5 0.461 0.631 46.07% 11.93% 42.00% 

UR 96 BT 0.468 0.638 46.83% 39.37% 13.80% 

UTC 96 0.5 0.480 0.648 47.96% 12.13% 39.91% 

UTC 96 BT 0.505 0.671 50.55% 35.08% 14.38% 

UR 192 0.5 0.458 0.629 45.84% 10.84% 43.32% 

UR 192 BT 0.481 0.649 48.06% 38.26% 13.67% 

UTC 192 0.5 0.476 0.645 47.64% 11.83% 40.53% 

UTC 192 BT 0.492 0.660 49.23% 37.26% 13.51% 

UR 510 0.5 0.463 0.633 46.28% 10.54% 43.18% 

UR 510 BT 0.489 0.657 48.94% 37.18% 13.88% 

UTC 510 0.5 0.462 0.632 46.19% 10.54% 43.26% 

UTC 510 BT 0.485 0.653 48.51% 38.11% 13.39% 
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Supplemental Table 3. The statistical test results for the ground truth data of the fungicide 

gradient experiment for both the number of ROIs and the % coverage of ROIs on the leaves. The 

ANOVA tests for both metrics had f-statistics of <2e-16. A follow-up Tukey HSD test was 

conducted for each metric to obtain pairwise comparison between the fungicide concentration 

treatment groups (fluid oz/acre), with the resultant p-values reported. Asterisks indicate 

significant results (p-value <0.0005). 

Comparison 

(fluid oz/acre) 
ROIs % Coverage 

0.0 - 0.5 8.89e-01 6.79e-01 

0.0 - 2.0 0.00e+00*** 0.00e+00*** 

0.0 - 4.0 0.00e+00*** 0.00e+00*** 

0.5 - 2.0 9.78e-09*** 6.88e-08*** 

0.5 - 4.0 0.00e+00*** 0.00e+00*** 

2.0 - 4.0 5.17e-01 6.51e-01 
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CHAPTER 5.    GENERAL CONCLUSIONS 

As the rust fungi world enters the era of long-read sequencing, genomic resources are 

expected to continue improving at a rapid rate. Paired with high-quality transcriptome data and 

bioinformatics tools, candidate effector proteins can be quickly identified and selected for further 

characterization. Large-scale characterization studies of candidate effectors are very popular, 

with several common assays used to identify functions like suppression of basal and effector-

triggered immunity or avirulence. These studies have led to several interesting results, detailing 

host targets involved in transcript regulation or immune signaling (Qi et al. 2016; Liu et al. 

2016). However, the success rate of a detectable phenotype in these studies can often be quite 

low (Lorrain et al. 2019). The development of computer vision-based phenotyping has not yet 

been extensively applied to effector studies in rust pathosystems but is sorely needed to increase 

throughput and consistency in results and their interpretation.  

To improve and build upon the current genomic resources for Puccinia sorghi, Chapter 2 

presents a long-read based genome assembly for Iowa isolate IA16. This assembly is expected to 

provide many advantages to the study of this pathogen, as it is highly contiguous with extensive 

resolved repeat regions. Interestingly, this assembly is nearly double the size of the previously 

reported Argentine RO10H11247 isolate (Rochi et al. 2018), which seems to be primarily the 

result of additional repeat sequences in the IA16 genome. This characteristic has been noted in 

other rust species, as well. However, it is important to note that the RO10H11247 assembly was 

generated from short-reads, and thus likely underestimates true genome size due to collapsed 

repeat regions. Deeper examination into the types and distribution of these transposable elements 

in the IA16 assembly are sure to provide insight into the diversification of the species. 

Pseudophasing of the genome was also performed, resulting in two haplotype sequences. The 
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majority of these sequences are expected to be collapsed, but there are likely differences between 

the two, and further study into those differences are bound to be enlightening as well. Within the 

haploid assembly, we predicted a total of 1,845 secreted proteins, of which 742 are also predicted 

to be effectors, providing additional candidates for screening. This list also provides an 

opportunity to compare the IA16 predicted effectors to those from the RO10H11247 assembly, 

undoubtedly providing insight into the differences between the two isolates.  

As there is limited functional annotation for most predicted effectors, in planta 

characterization is necessary to elucidate function. From the hundreds of candidate effectors in 

P. sorghi, we cloned eight candidates homologous to PpEC23, a Phakopsora pachyrhizi effector 

of the rust protein family cluster 112 shown to suppress plant immunity (Link et al. 2014; Qi et 

al. 2016). One P. sorghi candidate was able to suppress hypersensitive immune response in a 

heterologous system, albeit at a lower level than PpEC23 (Qi et al. 2016). Unlike PpEC23, we 

were unable to show that the P. sorghi homolog suppressed plant basal immunity, suggesting it 

may impact basal immunity at a different timepoint than those tested here or may affect 

immunity in a different manner than PpEC23. Additional research into maize factors that interact 

with the PpEC23 homologs may elucidate the differences between the candidates from P. sorghi 

and PpEC23. A yeast two-hybrid library of P. sorghi-infected maize was generated for this 

purpose.  

Another interesting note regards the PpEC23 homologs that we were originally unable to 

amplify from cDNA. The PCR amplification primers were based on the predicted CDSs from the 

RO10H11247 assembly, and any significant differences at the 5’ or 3’ end of the CDSs between 

RO10H11247 and IA16 would mean no product was amplified, even if the gene was transcribed 

in both isolates. This turned out to be the case for two of the three unamplified candidates. These 
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two candidates were predicted in IA16, but with large variations of predicted protein sequence at 

the N-terminus when compared to the RO10H11247 predicted sequence. It will be interesting to 

delve further into differences between the two isolate’s annotations, particularly for predicted 

effector genes. 

Within Chapter 3, we also described the use of a phenotyping box that allowed us to 

generate time course image data in a hands-off manner for an immune response assay. The 

boxes, adapted from another publication (Barbacci et al. 2020), are very inexpensive and flexible 

and their use is expected to increase throughput and consistency between experiments. Although 

not applicable to our dataset, the initial publication regarding these boxes utilized automated 

phenotyping. A similar pipeline could easily be applied to hypersensitive response immune 

assays, especially considering images between timepoints and experiments are very similar. 

We additionally expanded on the phenotyping methods available to rust fungi researchers 

in Chapter 4. Machine learning (ML) is a powerful tool, but many applications require extensive, 

manual annotations of relevant features. By utilizing our large amount of phenotyping data, we 

were able to assess model performance at varying amounts of training data. The probability that 

a particular model’s performance can be increased if researchers utilize datasets with high 

phenotypic diversity, such as those generated by disease time courses. Beyond this, the final 

presented machine learning model performs very well when compared to ground truth data, 

yielding remarkably similar answers. This model can be applied to data from various 

experiments but will first be applied to virus-induced gene silencing (VIGS) (Lange et al. 2013; 

Beernink and Whitham 2023) and host-induced gene silencing (HIGS) (Zand Karimi and Innes 

2022) studies. VIGS experiments involve the silencing of maize proteins suspected to be integral 

to disease pathways while HIGS targets P. sorghi proteins. Silencing of these factors is expected 
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to influence phenotype, and an automatic phenotyping system provides a reproducible way to 

quantify disease. Additionally, phenotypic changes may be small, thus undetectable by manual 

scoring with a standard area diagram. We expect that subtle changes in phenotype may be parsed 

with the U-Net model. Additionally, quantification with the ML model will enable consistent 

quantification of pustules across all treatments. If multiple researchers gather image data, the U-

Net model ensures consistency between the results of each researcher’s images as well.  

Overall, this dissertation provides a comprehensive approach to the identification and 

characterization of candidate effector proteins of P. sorghi, from the development of genomic 

resources for effector mining in a new P. sorghi isolate, to the immune suppression 

characterization of existing predicted effector candidates, to the deployment of phenotyping 

platforms for additional characterization studies. 
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