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ABSTRACT 

Ice and snow accumulation on airport paved surfaces has the potential to cause fatal 

accidents and monetary loss due to associated flight delays and cancellations. Traditional de-

icing methods involving the application of chemicals or salt, and deployment of large 

machines can create negative environmental and structural impact on airport infrastructure 

systems. Such methods are also considered to be both labor-intensive and safety hazards, 

especially in congested areas such as aprons.      

In recent years, hydronic and/or electrically conductive concrete (ECON) heated 

pavement systems (HPS) have been receiving attention for mitigating problems associated 

with the presence of ice/snow on roadways and paved areas of airfields. In this study, the 

system requirements of electrically-conductive concrete (ECON) heated pavement systems 

were identified for their potential with respect to achieving cost-effective performance. A 

prototype small-scale ECON heated concrete slab was designed,  constructed, and tested 

using an optimized ECON mixture recently developed at Iowa State University (ISU), to 

obtain the efficiency and performance results. This prototype ECON slab provided the lowest 

energy consumption and lowest energy cost among the electrically-heated pavement systems 

developed so far. The two-layer approach utilized in design and construction of the prototype 

ECON slab is cost-effective in terms of construction cost, energy consumption, and 

operational cost savings. Given the promising results from the ECON slab research studies, 

both the airport owner and the FAA have demonstrated interest in providing assistance and 

support in taking this technology developed in-house and implementing it full-scale on-site at 

the DSM airport, representing the first full-scale ECON-based HPS conducted and tested at a 

U.S. airport. Two ECON slabs were designed and constructed in 2016 at the General 
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Aviation (GA) apron at the Des Moines International Airport (DSM), Iowa. Systematic 

design components were identified and construction procedures were developed and 

implemented for ECON-based HPS. Using sensor data collection, the performance of the 

remotely-operated ECON slabs was evaluated under real weather conditions at DSM during 

the 2016-2017 winter season, with results demonstrating that ECON-based HPS offer 

promising deicing and anti-icing capacities for providing uniform heat distribution and 

preventing snow and ice accumulation on the entire area of application under various winter 

weather conditions.  

Going forward, there is an imperative need to investigate and/or develop new 

technologies to best automate and accelerate the construction of large-scale heated 

pavements at airports. This study attempted to partially fulfill that need by conducting a 

detailed review of advanced pavement construction techniques and practices and evaluating 

their efficacy and applicability to construction of HPS at airports. System requirements of 

ECON and hydronic HPS were identified and laboratory experimental investigations were 

carried out to study their efficiency and performance results, leading to the development of a 

design procedure for large-scale HPS at airports. Advanced construction techniques and 

workflows for precast concrete (PC), two-lift paving, and concrete overlays for heated 

pavements were demonstrated using 3D visualizations to provide design and construction 

guidance for large-scale heated airport pavements. A 3-D finite element (FE) model was 

developed for ECON which can be used as a cost-effective evaluation tool for examining the 

effects of various design parameters on the time-dependent heating performance of ECON 

HPS design optimization. 
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CHAPTER 1.    INTRODUCTION 

1.1 Background 

In colder regions, snow and ice on pavement surfaces are among the major concerns 

that may cause infrastructure deterioration, damage to concrete pavement, and negative 

environmental impact through the use of traditional deicing methods (Xi and Olsgard 2000) 

that include spraying chemicals on the pavement surface and employing large snow removal 

machines such as snow plows and snow broom vehicles. There are several drawbacks to 

these traditional methods, including ineffectiveness in removing snow at low temperatures, 

negative environmental impact because of possible contamination of nearby water bodies, 

and increased labor costs. These methods are also challenging to implement in congested and 

smaller areas such as sidewalks, aprons, and taxiways at airports because they could be 

hazardous to airport ground crews as well as to aircraft. 

Heated pavement systems (HPS) offer alternative options for melting ice and snow 

and can be classified into two general categories, hydronic heated-pavement systems (HHPS) 

and electrically-heated pavement systems (EHPS). HHPS melt ice and snow by circulating 

heated fluid through pipes embedded inside pavement structures; the cooled fluid circulates 

back through a heat source that reheats the fluid during each cycle. There are different types 

of heat sources, including geothermal water, boilers, and heat exchangers. Geothermal water 

is considered to be efficient in locations with good geothermal potential (FAA 2011). EHPS 

melt ice and snow using either resistive cables embedded in concrete or electrically-

conductive concrete (ECON). The use of resistive cables embedded inside concrete structures 

has been applied to deicing of snow and ice in Oregon, Texas, and Pennsylvania, and the 

performance of electrical cable was sometimes found inadequate due to the high power 
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density required (Zenewitz 1977) and damage to electrical cables or associated sensing 

elements for triggering the system (Joerger and Martinez 2006).  

In recent years, ECON-based HPS have been receiving attention for use in mitigating 

problems associated with the presence of ice/snow on roadways and paved areas of airfields. 

ECON works by applying a voltage to electrodes embedded in the ECON layer to deliver 

power to conductive materials and thereby melt ice and snow. The effectiveness of the use of 

various conductive materials such as steel fiber, carbon fiber, etc., added to conventional 

concrete to produce ECON with sufficient electrical conductivity (i.e., low electrical 

resistivity), and other favorable engineering properties has been thoroughly investigated 

(Gopalakrishnan et al. 2015).  

1.2 Objective  

The primary objectives of this research are: 

• To identify requirements related to material selection, design, construction, 

and operational performance for an electrically conductive concrete (ECON) 

heated pavement system (HPS). 

• To develop a 3-D finite element (FE) modeling approach as an alternative 

method for evaluating ECON HPS time-dependent heating performance and 

thereby achieve design optimization in a timely manner; and 

• To demonstrate the world’s first full-scale field implementation of ECON 

HPS in a real airport environment. 

The overall goal of this study is to advance the state-of-the-art knowledge concerning design, 

construction, and performance of heated pavement systems. Such well-designed, well-

constructed, and well-performing heated pavement systems prevent ice and snow 
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accumulation on paved surfaces with the potential to dramatically enhance the safety, 

sustainability, and durability of the transportation infrastructure systems.   

1.3 Dissertation Organization 

This dissertation written in the alternative journal paper format is organized as 

follows: Chapter 1 presents general background, research objectives and approach, and 

dissertation organization.  

Chapter 2 provides a state-of-the-art review of heated-pavement systems, including 

hydronic heated-pavement systems (HHPS) and electrically-conductive concrete (ECON) 

heated-pavement systems (HPS) along with their advanced construction techniques, 

highlighting their potential for heated pavement construction. Advanced construction 

techniques considered in this study include use of precast concrete (PC), two-lift paving, and 

concrete overlays. Advantages and limitation of these techniques are reviewed and discussed 

to identify the feasibility of utilizing these techniques in large-scale HPS construction.       

Chapter 3 presents the first journal article: System Requirements for Electrically 

Conductive Concrete Heated Pavements that discusses the system requirements for ECON 

HPS related to material selection, design, and construction to achieve cost-effective 

performance. Design flow was developed for large-scale ECON HPS applications for 

optimizing ECON parameters such as electrode spacing, power, voltage, etc.   

Chapter 4 presents the second journal article: A 3-D Finite Element Model for 

Simulating the Heat Performance of Electrically Conductive Concrete Heated Pavements 

that describes a feasibility study on development of a 3-D finite element (FE) modeling 

approach for use as an alternative method for evaluating ECON HPS time-dependent heating 

performance and thereby achieve design optimization in a timely manner. It describes a 3-D 
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FE model for ECON slab that was developed by examining decoupling of thermal-electrical 

analysis (Joule heating) using COMSOL Multiphysics software and validated though 

comparison with experimental test results. Sensitivity of various ECON HPS design variables 

with respect to heat generation and distribution performance is also described. 

Chapter 5 presents the third journal article: Design and Construction of The World’s 

First Full-Scale Electrically Conductive Concrete Heated Airport Pavement System at A 

US Airport that demonstrates the 2016 design, construction, and performance of the world’s 

first full-scale ECON-based HPS at the Des Moines International Airport (DSM) in Iowa. 

Installation plans and instrumentation methods for electrodes and sensors were identified. 

ECON HPS power density and energy consumption were calculated from data produced 

from electric current and voltage sensors during deicing and ant-icing scenarios.  

Chapter 6 presents the fourth journal article: Development of Construction 

Techniques for Heated Pavements that focuses on developing a conceptual design 

framework and provide construction guidance for electrically conductive concrete (ECON) 

and hydronic heated pavement system (HHPS) using precast concrete (PC), concrete overlay, 

and two-lift paving (2LCP) to expedite construction work during large-scale construction of 

heated pavements and provide different construction techniques  

Chapter 7 summarizes the research work accomplished in this dissertation. It also 

describes the contributions of this study and makes recommendations for future research.  
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CHAPTER 2.    LITERATURE REVIEW  

This chapter attempts to present a comprehensive literature review on recent heated 

pavement systems and advanced pavement construction techniques. HPS can be classified 

into two general categories, HHPS and EHPS. Advanced pavement construction techniques 

include precast concrete (PC), two-lift concrete paving (2LCP), and concrete overlay. In 

addition, each paper will have its own literature review relevant to the paper’s focus.  

2.1 Review on Heated Pavement Systems 

2.1.1 Hydronic Heated Pavement System (HHPS) 

Hydronic heating systems melt ice and snow by circulating heated fluid through pipes 

embedded inside pavement structures. The cooled fluid runs through a heat source which 

reheats the fluid each cycle. There are different types of heat sources: geothermal waters, 

boiler, and heat exchangers. Geothermal water is considered to be efficient in locations with 

good geothermal potential (Lund 2005). The disadvantages of hydronic systems include 

construction difficulties, high installation costs, and challenges associated with repair, if fluid 

leakage occurs. 

HHPS has been implemented in the Klamath Falls Bridge, located in Oregon in 1948 

(Lund 2005). The fluid was heated using geothermal well through a heat exchanger to warm 

the bridge deck surfaces to melt ice and snow and to enhance the skid resistance and, thereby, 

eliminate car accidents. Recently, HHPS using geothermal well as a heat source was 

constructed in the aprons at the Greater Binghamton Airport, located in Binghamton (See 

Figure 2-1) and the total area of the project was a 3,200 ft2 (297 m2) with construction cost of 

$ 1,600,000 (Brill 2016).  The Gardermoen International Airport implemented HHPS using 

Aquifer Thermal Energy Storage (ATES) that was able to heats and cools the aircraft parking 
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with a total area of 7,450 ft2 (700 m2) (Barbagallo 2013). The system was also supported by 

an electric and oil fired and boiler to help increasing the design load of 248 W/m2 since the 

ATES was not capable of meeting the deign load. 

 

Figure 2-1 HHPS using geothermal source (Brill 2016) 
The components of HHPS include heat transfer fluid, piping, fluid heater, pumps, and 

controls as shown in Figure 2-2 (ASHRAE 2015). HHPS melts ice and snow by circulating 

heated fluid through pipes embedded inside concrete structures. The cooled fluid runs 

through a heat source that reheats the fluid for each cycle. A common practice is the use of 

propylene glycol as a heat transfer fluid due to its moderate cost, high specific heat, and low 

viscosity. Pipes can be made of metal, plastic, or rubber. The drawback of using steel pipes is 

their susceptibility to rusting, so, the use of steel embedded in pavement is not a common 

practice. An alternative to steel pipe is plastic pipes such as polyethylene (PE) or cross-linked 

polyethylene (PEX) because it has resistance to corrosion and lower material cost. 



7 

 

Polyethylene (PE) and cross-linked polyethylene (PEX) withstand fluid temperatures up to 

60oC and 93oC, respectively.  

 

Figure 2-2 Detail of HHPS 

The different types of fluid heaters include geothermal hot water, underground 

thermal energy storage (UTES), boilers, and heat exchangers (FAA 2011). The fluid heater 

can be selected based on availability at the project site. Geothermal energy is considered to 

be efficient in locations with good geothermal potential (Joerger and Martinez 2006). The 

efficiency of HHPS in melting ice and snow significantly depends on different factors 

(Ceylan et al. 2014), including fluid temperature, pavement conductivity, pipe depth, and 

pipe spacing. The thermal conductivity of Portland cement concrete (PCC) is higher than for 

Hot-Mix Asphalt (HMA), so PCC has potential to conduct more heat. 

A hydronic slab’s pipes can be arranged in different patterns – serpentine or slinky, 

for example – to provide uniform heat on the hydronic slab surface to prevent ice and snow 
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accumulation. The serpentine pattern (Figure 2-3) is commonly used in melting snow and ice 

on paved surfaces (FAA 2011). In the serpentine pattern, straight pipes are placed on equal 

centers and connected to a manifold using U-shaped pipes. The slinky pattern is placed in a 

circular shape with each circle overlapping the other one. A hydronic heated system was 

constructed into a 44.5 m long and a 17.7 m wide bridge deck in Amarillo, Texas and a 

serpentine pipe pattern was selected (Minsk 1999). The geothermal well was used as the 

energy source to heat the fluid, resulting in a reduction in operation cost.   

 
Figure 2-3 Hydronic pipes pattern (FAA 2011) 

 
The pipe pattern can be designed using industrial software such as LoopCAD 2016 

(LoopCAD 2016). LoopCAD can generate circuit layout drawings and zones for the project 

site and perform detailed hydronic calculations such as energy density based on ASHRAE 

methods (See Figure 2-4). LoopCAD software has the flexibility to adjust the pipe layout 

drawings, and loop lengths are generated by the program. 
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Figure 2-4 Snowmelt design LoopCAD software (LoopCAD 2016) 

2.1.2 Electrically Heated Pavement System (EHPS) 

EHPS melts ice and snow by using either resistive cables embedded in concrete or 

ECON. Recent research studies (Tuan 2008 and Heymsfield et al. 2013) have demonstrated 

that ECON can enable sufficient electrical conduction to facilitate the prevention of ice and 

snow formation when connected to a power source. These research studies serve as 

benchmarks for carrying out further investigations to design and develop the most effective 

ECON for heated airport pavement systems. EHPS reported in literature up to date are 

compared in 

Table 2-1. Carbon fiber grille (Lai et al., 2014) was embedded inside concrete to 

generate heat by supplying electric power. The carbon fiber grille made of steel mesh and 

carbon fiber heating wires was placed at 2-in. below the concrete pavement surface. The size 

of each concrete slab was 15-ft. × 15-ft. × 16-in. Thermometer sensors were placed along the 

concrete at various depths. The study reported that the pavement was heated for 2 hours by 
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supplying 350 w/m2 of power density to melt 1-in. thick of snow by increasing the concrete 

surface temperature from -1.2oC to 3.4oC.  

The ECON HPS is considered as an alternative option to traditional methods because 

it has potential to melt ice and snow in a stipulated time frame and to overcome the 

drawbacks of using traditional de-icing methods (Gopalakrishnan et al. 2015 and Abdualla et 

al. 2016). The earliest patent on the topic of ECON was issued in 1965 (Barnard 1965). Since 

then a number of ECON recipes (i.e., mix proportions, combinations of different conductive 

materials, etc.) and applications have evolved (Freeman and Hymers 1979; Xie et al. 1996; 

Zaleski et al. 2005; Arnott et al. 2005; Tuan et al. 2010; Ramme et al. 2012).  

ECON mixture was developed by using steel and carbon fibers as an additive to 

reduce the electrical resistivity and slab tests were constructed with the developed ECON 

mixture that provides promising results in melting ice and snow (Tuan 2008).  The Nebraska 

department of roads selected a potential bridge site to demonstrate the ECON HPS for the 

Roca Spur Bridge. The bridge deck consisted of 52 slabs; each slab size was 4-ft. × 12-ft. × 

4-in. and had two electrodes and a temperature sensor embedded in the 4-in. ECON layer. 

The average power of the Roca Spur Bridge system was 500 w/m2 and its unit cost was 

about $ 250 per snowstorm (Tuan 2004).  

 

 

 

 

 

 

https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Bruce+W.+Ramme%22
https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Bruce+W.+Ramme%22
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Table 2-1 Comparisons of electrically heated pavement systems reported 

Deicing systems 
Surface 

Temperature 
before heating (oC) 

Surface 
Temperature 

after heating (oC) 

Snow 
melting 
time (h) 

Power 
density 
(W/m2) 

Snow 
thickness 

(in) 
Carbon fiber grille 
(Lai et al. 2014) -1.2

 o
C 3.4

 o
C 2 h 350 W/m

2
 

27mm 
(1in) 

Conductive concrete 
mixing with steel 
fibers and carbon 

particles (Tuan 1998, 
2004) 

-1.1
o
C (30

o
F) 15.6

 o
C (60

o
F) 30 min 516 W/m

2
 

(48 W/ft
2
) 

NA 

NA 9 
o
C 3 days 500 W/m

2
 

(46 W/ft
2
) 

6mm 
(0.24in) 

Carbon fiber tape 
heating panel (Yang 

et al. 2012) 
 

-11.2 
o
C (12

 o
F) 0 

o
C (32

 o
F) 9.3 h 127 W/m

2
 

15mm 
(0.6 in) 

The electrical resistivity of concrete is significantly influenced by the porosity, 

relative humidity and the resistivity of the pore water containing dissolved salts (which in 

turn is influenced by the concrete age, origin, and type of cement) (Simon and Vass 2012). 

Note that, depending on the context, both electrical resistivity and conductivity have been 

used interchangeably in the literature to describe the electrical properties of cement paste, 

mortar and concrete systems. Concrete is a multi-component, micro-porous construction 

material typically comprised of cement, coarse and fine aggregates, and water. Conventional 

or normal concrete is not electrically conductive and is primarily comprised of three phases 

(Spragg et al. 2013): (1) a vapor phase (pore filled with air) with about 1011 Ω-cm of 

electrical resistivity (i.e., extremely low conductivity); (2) a solid phase (aggregate and 

cementitious solids) with about 1017 Ω-cm of electrical resistivity; and (3) a fluid phase (pore 

filled with liquid solution including water) with about 5 to 100 Ω-cm of electrical resistivity. 

Since the fluid phase in concrete has relatively higher conductivity compared to that of vapor 

and solid phases, the conductivity measurements of concrete is higher (or resistivity is lower) 

when the specimen is wet or saturated with liquid solution as opposed to measurements from 
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unsaturated specimens. Note that several factors have been identified to have influence on the 

electrical conductivity measurements in cementitious systems. For instance, Spragg et al. 

(Spragg et al. 2013) reported that specimen geometry, temperature of the specimen during 

the test (related to the mobility of the ionic species in the pore solution), sample storage and 

conditioning (sealed versus saturated) are all key factors that should be considered in 

standardizing tests for measuring electrical resistivity/conductivity of cement-based 

materials.  

Cement-based materials conduct electricity electrolytically through the motion of ions 

in pore solution of a fluid phase and electronically through the continuous contacting motion 

of free electrons of conductive materials in a solid phase (Yehia 2000). Concrete is 

considered as a good electrical insulator in dry condition. The electrical resistivity of air 

dried normal concrete ranges from 600 to 1,000 kΩ-cm (Whittington et al. 1981) and oven 

dried normal concrete has an electrical resistivity of about 108 kΩ-cm (Ramme et al. 2012). 

However, the electrical resistivity of moist concrete is about 10 kΩ-cm and is therefore 

classified as a semiconductor (Ramme et al. 2012). Conductive materials with extremely high 

conductivity values (i.e., electrical resistivity values less than 0.1 Ω-cm) can be used to 

replace aggregate materials in normal concrete to achieve conductive concrete. Reported 

literature suggests that conductive materials incorporated into concrete can broadly be 

categorized as: (1) powders (substituting for fine aggregate in part) – carbon, graphite; (2) 

fibers (substituting for fine aggregate in part) – carbon fiber (CF), steel fiber (SF), steel 

shaving (SS), carbon nano-fiber (CNF); and (3) solid particles (substituting for coarse 

aggregate in part) – steel slag and marconite. Most of the studies reported in the literature 

tried to experiment with various conductive materials individually or in combination, their 

https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Bruce+W.+Ramme%22
https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Bruce+W.+Ramme%22
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dosage rates, and their impact on ECON mechanical properties in an effort to identify the 

optimized conductive material compositions and mix designs to achieve well performing 

ECON. 

None of the reported studies indicate the need for special aggregate gradation 

requirements to achieve well-performing ECON. There is no special reference to strict 

requirements on aggregate type and size for achieving conductive concrete. Most of the 

studies reviewed in this paper investigated limestone mixes. Few studies experimented with 

the idea of either partially or fully replacing limestone aggregate with Blast Furnace Slag 

(BFS) along with smaller amounts of graphite powder, but were not successful in achieving 

desired conductive properties (Heymsfield et al. 2013, Ramme et al. 2012). One study 

(Dehdezi and Dawson 2011) revealed that quartzite has greater thermal conductivity than 

regular aggregates such as limestone and gravel and therefore has great potential for 

enhancing the pavement energy harvesting properties. So far, quartzite has not been 

investigated in electrically conductive concrete. 

Cost-effectiveness is also an important ECON mix design consideration to implement 

ECON for heated pavement systems. However, very few studies have evaluated the cost-

effectiveness of ECON based HPS in depth by employing economic analysis methods such 

as benefit-cost analysis (BCA). Yang et al. (2011) presented simple cost comparison results 

of the currently available ECON based heated pavement systems with radiant snowmelt 

systems such as electrical and hydronic heating systems. The reported installation costs 

ranged from $48/m2 to $205/m2 for ECON based heated pavement systems and are about 

twice expensive than radiant snowmelt systems ($23/m2 to $161/m2). However, the unit 

energy costs of ECON based heated pavement system operations were reported to range from 

https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22Bruce+W.+Ramme%22
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$0.033/[m2-cm] to $0.075/[m2-cm] compared to about $0.368/[m2-cm] in operating other 

snowmelt systems. Although these ballpark cost data comparisons are not enough to establish 

the cost-effectiveness of ECON based heated pavement system, they do demonstrate the 

potential of ECON for pavement deicing applications if reduction in installation costs could 

be achieved using innovative means, including the use of cost-effective conductive material 

systems and economical ECON mix design optimization.   

2.1.3 Snow Melting Heat Flux Requirement 

The minimum design requirement of a heated pavement system is that it must be 

capable of keeping a surface condition of “now worse than wet” and maintaining a surface 

temperature above the freezing point before and during the snow accumulation (FAA 2011). 

The heating requirement for snow melting depends on the rate of snowfall, air temperature, 

relative humidity, and wind speed. The steady-state energy balance equation for required heat 

flux (𝑞𝑞𝑂𝑂) in (W/m2) is presented below: 

𝑞𝑞𝑜𝑜 = 𝑞𝑞𝑠𝑠 + 𝑞𝑞𝑚𝑚 + 𝐴𝐴𝑟𝑟(𝑞𝑞ℎ + 𝑞𝑞𝑒𝑒)                                   (1)                                   

where, 𝑞𝑞𝑠𝑠, 𝑞𝑞𝑚𝑚, 𝐴𝐴𝑟𝑟, 𝑞𝑞ℎ,  𝑞𝑞𝑒𝑒 are sensible heat flux (W/m2), latent heat flux (W/m2), 

snow-free area ratio, convective and radiative heat flux from a snow-free surface (W/m2), 

and heat flux of evaporation (W/m2), respectively. The detailed equation definition and 

parameters are available in the ASHRAE 2015 HVAC handbook (ASHRAE 2015) and the 

FAA advisory Circular AC 150/5370-17 (FAA 2011). The heat flux 𝑞𝑞𝑜𝑜, equation (1), does 

not account for the back and edge heat losses that  increase the total heat slab output (𝑞𝑞𝑜𝑜), 

that can vary from 4 to 20% depending on factors such as pavement construction, operating 

temperature, ground temperature, or back exposure (Viega 2005). 
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The heat requirement for a snow-melting installation are based on classification 

systems I, II or III. Class I (minimum): residential walks or driveways, class II (moderate) 

commercial sidewalks and driveways, and class III (maximum) toll plazas of highways and 

bridges; aprons and loading areas of airports; hospital emergency entrances. These 

classifications are correlated to snow-free area  𝐴𝐴𝑟𝑟 values. Class I has a snow-free area ratio 

of 0 and the surface is allowed to be covered with sufficient thickness of snow before 

beginning to melt the snow. Class II has a snow-free area ratio of 0.5 and the surface must be 

kept clear of snow accumulation, while a wet surface is acceptable. Class III has a snow-free 

area ratio of 1 and the surface must melt snow quickly while it is falling, and the surface 

must remain dry. 

The FAA AC No. 150/5370-17 provides guidance on the minimum performance 

requirements for the design, construction, inspection, and maintenance of heated airport 

pavements (ASHRAE 2015). For airport pavement deicing applications, conductive concrete 

is recommended to be installed as a thin concrete overlay, formulated to satisfy Item P-501 

(Portland Cement Concrete Pavement) specifications.  

2.2 Review on Advanced Pavement Construction Techniques 

This section summarizes a state-of-the-art review of advanced construction 

techniques, highlighting their potential for heated pavement construction. Advanced 

construction techniques considered in this study include PC, two-lift paving, and concrete 

overlays. Advantages and limitation of these techniques are reviewed and discussed to 

identify the feasibility of utilizing these techniques for large-scale HPS construction. 

2.2.1 Precast Concrete (PC)  

PC has demonstrated satisfactory performance in bridges, pavements, buildings, and 

airfield construction. It provides high strength, low permeability, and low cracking potential; 
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these features are consequences of preparing the panels at off-site where quality control can 

be more effectively implemented. The use of PC technique instead of cast-in-place for 

construction of pavements expedites the construction process by eliminating the need for 

concrete strength-gaining time from the construction procedure (Bly et al. 2013; Merritt et al. 

2004; Priddy 2013). PC expedites rehabilitation of airfield pavements where the construction 

work is faster or can be done overnight because PC already has gained its strength and cured 

at the plant (off-site), so no time is needed for PC to attain its strength after finishing the 

reconstruction work. Since flight operations must be resumed in the shortest time frame 

possible, often with only 4 to 6 hours available to complete repairs, the PC technique is a 

good choice for minimization of the downtime of airport pavement facilities (Bly et al. 

2013). 

The PC technique was used to rehabilitate a taxiway at LaGuardia airport, New York 

during September of 2002. The selection of PC as a rehabilitation option over asphalt 

concrete or PCC was due to the fact that the asphalt concrete requires frequent rehabilitation 

because of the highly concentered and repetitive aircraft movements and reduce the 

construction downtime (Chen et al. 2003). This study was initiated to investigate and 

evaluate various PC techniques and the feasibility of placing the PC within a 36-hours closed 

period. The feasibility parameters investigated included the ability to place the PC on a 

milled or newly paved, the bedding materials for the PC slab size, the transportation of the 

PC slabs from the production to the job sites, the weight of the PC slab, and the ability to 

accommodate taxiway lighting (Chen et al. 2003). The PC was designed to accommodate the 

joining of the electrical conduit that was embedded in some PC panels and the electrical 

conduit slots were filled with a rapid-setting, finely-graded concrete mix. Prior to the 
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placement of PC, the existing asphalt concrete was milled to eliminate the surface distresses 

and bedding materials were utilized to provide a uniform base for the PC. The panel size of 

PC was 16 in. (406.4 mm) thick × 12.5 ft. (3.8 m) wide × 25 ft. (7.6 m) long.  

While the sensitivity of PCC to weather conditions does not permit cast-in-place 

concrete paving under all weather conditions, different weather conditions, such as extremely 

cold or hot temperatures would not prevent the construction work if PC was used (Merritt et 

al. 2004). Table 2-2 presents the differences between PC and cast-in-place Portland cement 

concrete pavement (Chang et al. 2004) highlighting their relative advantages and 

disadvantages. 

Table 2-2 Comparison between PC and cast-in-place (FAA 2007) 
 
Rigid Pavement 
Alternative 

Advantages  Disadvantages 

Cast-in-place • High final strength 
• Contractor/Work Crews 
have experience with material  
• Workability of material 
• Specifications, testing 
procedures and design are 
proven 
• Low cost in comparison 
with other rigid pavement 
alternatives 
 

• Length of construction time. 
• Length curing time  
• If concrete does not meet 
specifications in the field then it 
may have to be removed 

Precast concrete • Rapid placement of panels 
• Panels are cast in controlled 
conditions in pre-cast yard 
• Panels are already at loading 
strength when placed 

• High cost 
• Placing and moving panels 
may be difficult 
• Sizes of panels are generally 
smaller than if cast in place 
• Trucking panels to site 
• Requires precise fine grading 
• Edges of panels are easily 
damaged 

 



18 

 

2.2.1.2 Precast Concrete Experience in the United States 

Little has been done or documented with respect to PC construction in airfield 

pavements. Highway PC construction in the US began over 50 to 80 years ago, but it did not 

appear to be a cost-effective technique at that time because of lack of technical information 

that resulted in an increased installation labor requirement. The process of installing PC can 

be time-consuming and require heavy equipment (Priddy et al. 2013), and while many US 

highway agencies did not implement PC technology for a long time, over the last 10 years 

several US highway agencies have been implementing the technology (Tayabji et al. 2013).  

The implementation of PC systems may include both proprietary and non-proprietary 

systems. Figure 2-5a and Figure 2-5b shows the variation of intermittent repair technique 

with dowel bars positioned in existing concrete pavement. The Strategic Highway Research 

Program 2 (SHRP2) project R05 provided a guideline for design and construction of different 

PC applications and developed a guideline for project selection, design, fabrication, 

installation, and rehabilitation of PC systems (Tayabji et al. 2013). PC can be used to repair 

distressed areas of an existing pavement that represent either a small area of localized distress 

or an extended long-distance distress in the pavement. 

  

      (a)                                                                     (b) 

Figure 2-5 Intermittent repair application for existing concrete pavement 
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Because of increases in implementation of the PC, several agencies have participated 

in developing specifications and guidelines for such systems. The American Association of 

State Highway and Transportation Officials (AASHTO) established a Technology 

Implementation Group (TIG) during 2006 that developed a specification for fabrication and 

construction of PC and guidelines for the design of PC systems (Tayabji et al. 2009). 

 The application of PC technology can be classified into intermittent repair and 

continuous application (Tayabji et al. 2009). Full-depth repair (FDRs) and full-panel 

replacement are two types of repair categorized as intermittent repairs. Continuous 

application, unlike intermittent repair of concrete pavement, uses full-scale project 

reconstruction or putting an overlay on existing pavements; this can apply to either Portland 

and asphalt cement concrete pavements. Three different types of PC can be defined as 

continuous systems; (1) jointed precast concrete pavement (JPrCP) systems, (2) precast 

prestressed concrete pavement (PPCP) systems, and (3) incrementally connected precast 

concrete pavements (ICPCP) systems (Tayabji et al. 2009 and Tayabji 2010). 

Various PC types have been assessed in comparison to conventional concrete 

pavement systems; these include joint plain concrete pavement (JPCP) and joint reinforced 

concrete pavement (JRCP) in terms of design concepts, field installation procedures, 

advantages, limitations, and costs (Chang et al. 2004). The PC types evaluated include Super-

slab, Full-depth repair, Stitch-in-time, and Uretek methods (Chang et al. 2004). The Super-

slab system designed by the Fort Miller Co. is intended for use in rapid construction work 

such as highways, ramps, taxiways, and in heavy traffic areas. Furthermore, it can be used to 

reduce user cost and to shorten the duration of construction operation. Precast panels of 

super-slab can be used either for intermittent repairs or continuous paving. The length of 
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each panel can range up to 25 feet, and width can range from a minimum of 4 feet to a 

maximum of 12 feet. Precast pavement panels have dowel bars and tie bars on two sides and 

slots on the other sides. Dowel bars are used to transfer loads to adjacent panels and to 

connect precast panels. A precast panel has two grout ports, one for bedding the grout ports 

and the second to fill the dowel slots. Bedding grout ports are used to fill voids between the 

panels and the graded bedding base. A high-strength grout material is poured through the 

bedding grout port to provide good interlock with adjacent slabs.  

 The Super-slab system was selected for installation in the Tappan Zee Bridge toll 

plaza in New York. The reasons for using Super-slab was that the construction work could be 

conducted during night-time hours and allow opening of lanes during morning rush hours, 

avoiding excessively high user costs. The project sponsor was satisfied with the construction 

results, including the appearance and the quality of the precast panels. The capital cost of this 

project was about $26/ft2 including fabrication, delivery, and installation that, while higher 

than that of a conventional concrete pavement, used PC to dramatically reduce user costs 

resulting from traffic delay caused by pavement rehabilitation operations. 

Full Depth Repairs (FDR), also known as the Michigan method, can be used only for 

intermittent paving, not in continuous paving. The panel size is typically 6ft ×12ft (1.8m × 

3.6m), and each panel contains three dowel bars in each wheel path with the dowels 

embedded in the PC at the transverse joints. The FDR does not require curing after the 

placement of PC since it is prepared and cured off-site.  

 The Uretek method uses small drilled holes to allow the polymer resin to lift the 

panels and fill the underside voids between the panels and the graded bedding base. This 

method can be used for repairing differential settlements and void conditions underneath 
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concrete or asphalt pavements in both highways and airports. Instead of using dowels as in 

the Super-slab system, the Uretek method utilizes a ‘stich-in-time’ system, a procedure that 

places a composite-reinforced resin blade (fiberglass tie) to transfer load into an adjacent 

panel. Once the blade is inserted, the remaining space in the slot is filled with high-density 

polymer resin. The advantage of the stich-in-time method is that it is less expensive than the 

procedure of inserting dowels. Other PC types (Bly et al. 2013) recently applied in airfield 

applications include “Soviet-style” slabs and “US Air Force Methods”. 

2.2.2 Two-Lift Concrete Paving 

Two-lift concrete paving (2LCP) has become a common construction practice in 

Europe where the lower lift can be optimized to enable the use of locally available or 

recycled materials, while the top lift is optimized for long life and functionality (Figure 2-6). 

2LCP involves the placement of two wet-on-wet layers of concrete or bonding wet to dry 

layers of concrete where the bottom layer is relatively thicker and the top layers is relatively 

thinner (Cable 2004). The benefits of 2LCP includes using recycled aggregate that leads to 

cost reduction and production of more sustainable pavements; this method also provides a 

high-quality and durable surface, improves skid resistance, and reduces noise (Cable 2004). 

These benefits could compensate for the required use of two slipform pavers needed for each 

layer, and the extra labor and trucking costs associated with them. The use of 2LCP is 

currently under investigation by several agencies in the United States. 
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Figure 2-6 Two-lift construction of concrete pavement in progress (Hu et al. 2014) 

2LCP is not a new concept and has been around almost as long as concrete paving 

itself (Cable 2004). 2LCP was conceptually developed and first constructed in the United 

States, but it later became more common in Europe (Cable 2004 and Cable and Frentress 

2004). In the early 1950s, the common practice of 2LCP included placement of a mesh layer 

between the bottom layer and top layer of concrete, but recently in the United States a single 

homogenous layer of concrete – the same material – has typically been used, along with 

reducing the pavement slab joint length, thereby reducing the application of 2LCP (Cable 

2004). However, 2LCP has been implemented in the United States since 1970 in Iowa, 

Florida, and Michigan and since the 1930s in European countries, including Austria, 

Belgium, Germany, and the Netherlands (Cable and Frentress 2004).      

2.2.2.1 The United States and Europe’ Experience with Two-Lift Concrete Paving 

The first use of 2LCP was in 1891 in Bellefontaine, Ohio and the method was 

patented in 1906 in Chicago, IL (Cable 2004 and Cable and Frentress 2004). 2LCP was 

implemented in the United States with a top-layer concrete thickness in the range of 1.6-4 
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inch and a bottom layer concrete thickness range of 6-11.8 inch (based on a survey from 

1976 to 2012) (Jensen and Hu 2013). 2LCP was constructed in Lyon County, Iowa to 

demonstrate the feasibility of using recycled aggregate at the bottom lift while the top lift 

was made with high quality aggregates. In 1978, Florida constructed a test section of two-lift 

pavement to investigate the performance of pavement with two different flexural strengths in 

which the top lift had higher flexural strength than the bottom lift due to the use of low-

quality or recycled materials for the bottom lift. The pavement constructed in those projects – 

both in Iowa and Florida – has been reported as being in good conditions (Cable 2004). 

Because of availability of local low-quality aggregate in Kansas, a 2LCP approach was 

adopted using the local aggregate at the bottom lift and imported high-quality aggregate for 

the top lift to provide longevity and functionality. In Michigan, since pavement surface noise 

was an issue, two-lift pavements were built with high-quality aggregates in the top lift, the 

exposed surface, to reduce noise. Application of two-lift paving will help agencies in 

reducing paving costs and environmental impact of pavements.  

In Europe, 2LCP was implemented in different countries where, according to a survey 

from 1989 to 2008, the top-layer thickness of concrete was in the range of 1.6-5.5 in., and the 

bottom layer thickness of concrete was in the range of 6-10 in. (Jensen and Hu 2013). 2LCP 

was used in Germany to reduce noise, increase friction, and achieve a smooth profile by 

building the top lift of pavements with high-quality aggregate that was also resistant to 

freeze-thaw effects (Cable and Frentress 2004). 2LCP was used at the Munich airport, with a 

bottom lift thickness of 9.5 in. and a top lift thickness of 5.5 in. Locally-available aggregates 

were used in the bottom lift and high quality aggregates were used in the top lift. Germany 

has one of the largest companies – Wirgeten GmbH - that manufactures slipform pavers 
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capable of paving with a width between 16.4 feet and 50 feet and a depth of up to 17 in. 

(Cable 2004). The Austrian government enforced regulations on any upcoming new 

construction of highway to utilize site materials such as recycled aggregates in concrete 

mixture; as a result, 2LCP was used to fulfill the new regulations (Cable and Frentress 2004). 

For example, a deteriorated Freeway A1 pavement – a connecting road between Vienna and 

Salzburg – was torn up and its materials were recycled to be used for building new pavement. 

The recycled aggregate was used for the 8.5inch-thick bottom lift since the bottom lift is not 

as sensitive as the 1.6 inch-thick top lift that contained high-quality aggregate to reduce noise 

and increase friction. 

2.2.2.2 Construction of Two-Lift Concrete Paving 

There are no guidance or standards available to specify minimum requirements 

(strength, durability, etc.) for the characteristics of bottom concrete lift nor are there 

guidelines for how to achieve durability, safety, and noise reduction on the top lift (Hu et al. 

2014). 

2LCP requires additional paving machines, mixing plants, belt placers, extra trucks, 

and labor for the second paver, as shown in Figure 2-7 (Hu et al. 2014). Since two types of 

concrete are used in two-lift construction, inspection of incoming concrete loads is required 

to identify the different concrete mixtures for each layer. 2LCP was used in I-70 highway 

construction in Saline County, Kansas in 2008. Figure 2-7a depicts the construction work 

showing a two-lift paving-equipment train that includes a spreader with a belt placer, a 

slipform paver, a burlap drag, and the curing/texturing equipment. The belt placer and 

slipform paver for the bottom lift is shown in Figure 2-7b. The bottom lift was placed with 

the spreader and the first slipform paver, and the bottom lift concrete mixture was stiffened 

by adding viscosity-modifying admixtures to inhibit deformation of the bottom lift during 
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placement of the top lift (Figure 2-7c). In addition, a grid was placed under the concrete 

discharge spreader of the top lift to mitigate the deformation of the bottom lift while placing 

the concrete for the top lift. Dowel baskets were placed prior to paving and tie bars were 

inserted in front of the bottom lift paver. Figure 2-7d illustrates the paving procedures of the 

top lift using the second belt spreader and slipform paver.  

  
                 (a)                                                                         (b) 

   

                 (c)                                                                          (d) 

Figure 2-7 Two-lift construction of concrete pavement in progress: (a) two-lift paving 
equipment train, (b) bottom lift belt placer/spreader and paver, (c) demonstration of 
the concrete stiffness of the bottom lift, and (d) top lift belt placer/spreader and paver 

(Hu et al. 2014 and Gerhardt 2013) 
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The recommended time for placing the top lift of concrete is between 30-60 minutes 

after the placement of the bottom lift concrete to mitigate combining the two concrete 

mixtures and to help obtaining a sufficient bond in the wet-on-wet procedure (Cable 2004). 

Additional equipment demand such as slipform paver, belt placer, bath plant, extra labor, and 

land for placing the equipment has increased the cost of two-lift paving to about twice that of 

single-lift  paving (Gerhardt 2013). This cost could be reduced by using low-quality or 

recycled materials at the bottom lift and by utilizing only one slipform to cast both lifts. In an 

attempt to reduce the construction cost of two-lift paving, GOMACO – an American 

company – and Wirtgen – a German company – have developed a slipform paver to facilitate 

the two lift-paving using one slipform paver for both lifts.  

2.2.3 Concrete Overlays for Highway Application 

Concrete overlay systems have been proposed as cost-effective maintenance and 

rehabilitation solutions for a wide range of combinations of existing pavement types, 

conditions, desired service lives, and anticipated traffic loading. Although they in the past 

have been referred to as ultrathin whitetopping, conventional whitetopping, bonded overlays, 

unbonded overlays, etc.,  they have more recently been classified into two broad types 

(Figure 2-8): the bonded resurfacing family and the unbonded resurfacing family (Mallick 

and El-Korchi 2013 and Torres et al. 2012). Concrete overlays are discussed in detail in the 

national concrete pavement technology center (NCPC) – guide to concrete overlays solution 

2007 – and ACI 325.13R-06 concrete overlays for pavement rehabilitation (ACI 2006). 
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Figure 2-8 Two families of concrete overlay system (Harrington et al. 2007) 

2.2.3.1 Unbonded Resurfacing Family 

Unbonded resurfacing has been used to restore structural capacity of existing 

pavements that are in poor or deteriorated condition. Due to the isolated layer, unbonded 

resurfacing and existing pavement act independently of one another to mitigate reflective 

cracking. Since unbonded resurfacing is structurally isolated from the existing pavement, 

dowel bars should be used to transfer load when the thickness of the pavement is greater than 

8 in. (20.3 cm) and undergoes heavy loads. 

2.2.3.1.1 Unbonded Concrete Resurfacing of Concrete Pavements  

In the past, unbonded resurfacing of concrete pavements was called unbonded 

overlay. The recommended thickness of unbonded resurfacing of concrete pavement is in the 

range of 4-11 in. (10.2-27.9 cm) depending on the anticipated traffic load and condition of 

the existing pavement. Unbonded resurfacing of concrete pavements has been successfully 

implemented with good-to-excellent performance in many states, including California and 

Iowa. The crucial parameters that affect the performance of unbonded concrete resurfacing 
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are separator layer design, resurfacing thickness, joint spacing, and load transfer, as well as 

the condition of the subgrade that may pose failure to the surface, shoulder, and clearance. 

Design  

The design thickness of unbonded concrete resurfacing placed on existing concrete 

pavement may be calculated using a design procedure similar to that for designing a new 

concrete pavement on a rigid base while taking into consideration the separated layer. The 

design procedures for highway roads include the AASHTO 1993 design guide or the 

Portland Cement Association (PCA, 1984) design guideline (Mallick and El-Korchi 2013). 

The FAA advisory circular (AC) 150/5320-6F provides guidance on the design and 

evaluation of pavements used by aircraft at civil airports (FAA 2016). The joints of 

unbonded resurfacing may be matched or mismatched with the existing concrete pavement 

because some states enforce matching the joints of the unbonded resurfacing while others 

deliberately mismatch the joints. The reason for mismatching joints of unbonded resurfacing 

with existing pavement – according to previous specifications – is to increase the efficiency 

of load transfer (Mallick and El-Korchi 2013). The load transfer performance has been 

recognized as better than a new concrete pavement because of the support provided by the 

underlying pavement. Dowels are recommended when unbonded resurfacing must support 

high volumes of traffic. In general, if the unbonded resurfacing thickness exceeds 8 in or 

more, dowels should be used. Short joint spacings are recommended to mitigate the effect of 

curling stresses. Joint spacing is typically 6-15 ft depending on the unbonded resurfacing 

thickness.   

 Since unbonded resurfacing relies on the absence of bonding between the resurfacing 

and the existing pavement, the design of the separator layer can have a dramatic effect on 

pavement performance. The separator layer prevents reflective cracking and isolates the 
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concrete resurfacing from the existing pavement so that both layers move individually. A 

fine-grade asphalt mixture has been recommended as a separator layer and this provides 

excellent results when compared to others such as polyethylene sheeting, liquid asphalt, and 

chip seal; these are not recommended due to poor performance [Mallick and El-Korchi 2013 

and ACI 2006). The thickness of the separator layer is typically 1-1.5 in. depending on the 

existing pavement condition. The separator layer also does not enhance the pavement’s 

structural capacity. The drainage condition of the existing pavement also has a significant 

effect on the separator layer performance, increasing the risk of stripping in the separator 

layer. The separator layer has the potential to cause early-age shrinkage in unbonded 

resurfacing if the weather temperature exceeds 120oF (48.9oC), so proper curing should be 

used to reduce the surface temperature before placing concrete resurfacing. 

Construction 

The construction procedure for unbonded concrete resurfacing of concrete pavement 

is similar to that of placing, spreading, consolidating, and finishing conventional concrete. 

The construction of unbonded resurfacing may entail constructing a new shoulder due to the 

fact that the grade elevation might increase, typically in the range of 10-12 in. (25-30 cm) 

(Mallick and El-Korchi 2013), so if a shoulder is needed, a tied shoulder should be used to 

widen the unbonded resurfacing pavement. The benefits of a tied shoulder are to reduce edge 

stresses and longitudinal cracking. The depth of transverse and longitudinal saw-cuts is 

typically between one-fourth and one-third of the resurfacing concrete thickness. 

2.2.3.1.2 Unbonded Concrete Resurfacing of Asphalt Pavements 

Unbonded concrete resurfacing of asphalt pavements has been used in different states 

as a rehabilitation and maintenance solution providing good to excellent performance. In the 

past, unbonded concrete resurfacing of asphalt pavements was called conventional 
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whitetopping. Unbonded resurfacing has the potential to increase the life of pavements that 

exhibit extensive deterioration, include rutting, shoving, potholes, and pumping (Figure 2-9). 

While distresses asphalt pavement areas do not have to be repaired before placing concrete 

resurfacing, milling may be required if the existing asphalt has extensive deterioration.   

The crucial factor affecting the performance of concrete resurfacing of existing 

asphalt or composite pavement is uniformity of the base support that can contribute to 

enhanced pavement performance. Although this resurfacing type does not rely on bonding, 

some partial bonding between the resurfacing and existing asphalt pavement can contribute 

to better pavement performance. 

 

Figure 2-9 Unbonded concrete resurfacing of asphalt pavement (Harrington et al. 2007) 

Design 

The thickness of unbonded resurfacing of asphalt pavement is typically 4-11 in. 

(10.2-27.9 cm) depending on desired life, anticipated traffic loading, and the condition of the 

existing pavement. The thickness of unbonded resurfacing can be designed using 

conventional concrete pavement procedures such as those given in the AASHTO design 

guide 1993 and the ACPA StresstPave program. Doweling of joints is recommended if the 

unbonded pavement resurfacing undergoes high volume traffic. Joint spacing may be 

estimated – based on extensive experience – in feet as twice the slab thickness in inches.  



31 

 

Short joints are recommended to reduce curling and warping stresses due to high k-

values. There is discrepancy regarding whether dowel bars should be used or not. In previous 

experiences reported by different agencies, unbonded resurfacing without dowel bars was 

used and its performance was reported satisfactory (Mallick and El-Korchi 2013). On the 

other hand, other agencies reported highway faulting problems attributed to the absence of 

dowels in unbonded resurfacing (Mallick and El-Korchi 2013). To accelerate early-age 

strength gains of concrete pavement to significantly reduce the downtime of the traffic lane, 

accelerating admixtures should be used to achieve early opening and reduce road user cost. 

Construction 

Before placing unbonded concrete resurfacing of asphalt pavements, the existing 

pavement should be smooth, free of extensive rutting and surface distortion (See Figure 

2-10). High surface asphalt temperature also has the potential to cause early-age shrinkage in 

unbonded resurfacing if the weather temperature exceeds 120oF (48.9oC), so proper curing 

should be used to reduce the surface temperature before placing unbonded concrete 

resurfacing. The construction procedure of unbonded concrete resurfacing of asphalt 

pavement is similar to placing, spreading, consolidating, and finishing conventional concrete. 

The depth of transverse and longitudinal saw-cut is typically between one-fourth and one-

third of the resurfacing concrete thickness. 

 

Figure 2-10 Asphalt rut depth when determining saw-cut depth (Harrington et al. 2007) 
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2.2.3.2 Bonded Concrete Resurfacing Family  

Bonded concrete resurfacing, in contrast to unbonded concrete resurfacing, can be 

used when the existing pavement is in good or better structural condition, perhaps with some 

surface distress. Bonded resurfacing can be used to extend the life of existing pavements by 

eliminating structural and functional deficiencies such as rutting, pothole problems, surface 

friction, noise, ride quality, etc.  

Bonded concrete resurfacing has been successfully used in existing concrete 

pavements. When bonded resurfacing is placed on concrete pavements – joint plain concrete 

pavement (JPCP) – joints should match with the underlying pavement to prevent reflective 

cracking and to behave as a monolithic pavement. Moreover, the aggregate properties of the 

bonded surfacing should be compatible with those of the underlying pavement to mitigate 

shear stress. When a bonded resurfacing is to be placed on asphalt concrete, it is important to 

ensure that the pavement surface is uniform and free of surface distortion to provide a 

sufficient bond.  

2.2.3.2.1 Bonded Concrete Resurfacing of Concrete Pavements 

In the past, bonded resurfacing of concrete pavements was called bonded overlay. 

The recommended thickness of bonded concrete resurfacing of concrete pavement is in the 

range of 2-5 in (5.1-12.7 cm) and it can be selected based on desired life, anticipated traffic 

loading, and the condition of existing pavement. 

Design 

The design concept of bonded resurfacing is based on the assumption that the bonded 

resurfacing and the existing pavement behave monotonically to reduce stresses and 

deflections. If the bonded resurfacing and existing pavements are not adequately bonded, 
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chances are that an early age cracking will occur due to the increase of curling and loading 

stresses in the concrete resurfacing.  

Before applying bonded concrete resurfacing of concrete pavements, the existing 

concrete pavements should be in good or better structural condition with some surface 

distress as shown in Figure 2-11, so an evaluation of existing pavement is significantly 

important in determining the feasibility of applying bonded concrete resurfacing as the best 

candidate for a rehabilitation solution. The evaluation of existing concrete pavements 

includes falling weight deflection (FWD), visual inspection, and coring of the existing 

pavement. The design thickness of bonded resurfacing can be calculated using AASHTO 

Pavement Design Guide (AASHTO 1993) or the Portland Cement Association (PCA 1984) 

design guideline (Mallick and El-Korchi 2013). The required thickness of bonded resurfacing 

- using the AASHTO approach – is the difference between the structural capacity of a new 

concrete pavement and the effective thickness of the existing pavement. The joints of bonded 

resurfacing of concrete pavements should be matched with existing pavements to eliminate 

reflective cracking and behave as a monolithic pavement. Since the thickness of bonded 

resurfacing is thin, while dowels may not be used, the dowels in the existing pavement can 

transfer the loads to the adjacent slabs. 
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Figure 2-11 Bonded concrete resurfacing of good condition concrete pavement 
(Harrington et al. 2007) 

Construction 

The concrete mixture of bonded resurfacing should be compatible with the existing 

concrete pavement. This recommends using rapid strength materials to quickly gain strength 

as well as considering the effect of thermal expansion, contraction, and shrinkage to 

minimize stresses at the bonding layer. A slump value in the range of 2-3 in. (5.1-7.6 cm) is 

suggested to provide sufficient bonding grout. Fibers added to the bonded resurfacing 

mixture reduce plastic shrinkage cracking and improve toughness and post-cracking 

behavior. The aggregate coefficient of thermal expansion of the resurfacing concrete should 

be comparable to that of the existing concrete to reduce thermal stresses at the bond interface. 

To ensure sufficient bond between bonded resurfacing and existing concrete pavement, an 

assortment of approaches to surface preparation may be implemented, including shot-

blasting, milling, and sandblasting. The most common practice for surface preparation is to 

use shot-blasting followed with air blasting, then placing the resurfacing concrete. A bonding 

agent is not recommended for use as a bonding materials because a bonding agent may cause 
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debonding between the layers if it dries before placing the resurfacing concrete (Delatte 

2014). After paving the resurfacing concrete, the recommended sawing time is in the range of 

4-12 hours as long as the concrete pavement gains its strength to prevent spalling or raveling 

at joints (Mallick and El-Korchi 2013 and Delatte 2014). The suggested saw-cut joint depth 

is half the overlays thickness, although others have recommended a saw-cut extending 

through the entire depth of the overlay. 

2.2.3.2.2 Bonded Concrete Resurfacing of Asphalt Pavements 

Bonded concrete resurfacing has been previously known as ultra-thin whitetopping. 

The recommended thickness of bonded concrete resurfacing of asphalt pavements is in the 

range of 2-5 in. (5.1-12.7 cm) depending on desired life, anticipated traffic loading, and the 

condition of the existing pavement. Good performance of bonded resurfacing of asphalt 

pavement has been successfully implemented in many states. The existing asphalt pavement 

should be structurally in good to fair condition, and asphalt pavements with severe surface 

distress such as rutting, shoving, or alligator cracking may be milled to provide better 

bonding (Delatte 2014). A proper evaluation of asphalt pavement is significantly important to 

ensure the bond quality between the resurfacing concrete and the asphalt pavement and to 

help in evaluating the design thickness of the resurfacing concrete. The evaluation of asphalt 

pavement can be performed using visual inspection, core samples for testing, and a falling 

weight reflectometer (FWD). 

Design 

The design thickness of bonded concrete resurfacing of asphalt pavements can be 

calculated using design procedures of the American Concrete Pavement Association (ACPA 

2006). The joint spacing for bonded resurfacing of asphalt pavements ranges from 3-8 ft (0.9-

2.4 m) and – as a rule of thumb – the joint spacing in feet is typically 1-2 times pavement 
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thickness in inches, and the resurfacing concrete is saw-cut into squares. Use of the 

recommended joint spacing helps in reducing the stresses due to curling and warping. Joints 

should be located in such a way as to avoid the wheel path, or otherwise aggregate interlock 

may be unable to withstand and transfer heavy truck loads (Delatte 2014) and there would be 

no need for sealing the joints. The depth of the saw-cut for longitudinal joints and transvers 

joints should be one-third and one-fourth of the resurfacing concrete thickness, respectively. 

Construction 

Before placing the bonded concrete resurfacing of asphalt, the distresses in the 

existing pavement should be removed. Milling can be used to repair the surface of the 

existing pavement from significant surface distortions and to enhance the bond between two 

layers. Either fixed form or slipform paving can be used to place the bonded concrete once 

the existing surface has been prepared, and the choice depends on the size of the project 

(Mallick and El-Korchi 2013).    

2.2.3.3 Concrete Overlays and ECON Requirements 

Table 2 and table 3 summarize the characteristics of bonded and unbonded concrete 

overlays and also compare them against ECON requirements. The ECON thickness is 

recommended to be in the range of 2-4 in., similar to the thickness of bonded concrete 

overlays. ECON using a bonded concrete overlay will meet the requirements for the bonded 

overlay thickness. The ECON mixture includes conductive materials and other admixtures to 

reduce the electrical resistivity from that of bonded or unbonded concrete mixture as shown 

in Table 2-2 and Table 2-3. Embedding of dowel bars and tie bars in the ECON layer is not 

recommended. 
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2.2.4 Concrete Overlays for Airfield Application 

The use of concrete overlays for airfield pavement have been classified – based on the 

recent FAA advisory circular AC 150/5320-6F (FAA 2016) - into four broad types: PCC 

overlay of existing flexible or rigid pavement, and hot mix asphalt overlay of existing 

flexible or rigid pavement (FAA 2016). PCC overlay of existing flexible or rigid pavement 

will be summarized in term of its design and construction. HMA overlay of existing flexible 

or rigid pavement is not the focus of this report. The design and construction of the concrete 

overlays are discussed in detail in the FAA advisory circular (AC) – airport pavement 

overlays and reconstruction – AC No: 150/5320-6F (FAA 2016). 

 
2.2.4.1 Concrete Overlays of an Existing Rigid Pavement 

Existing pavement characteristics are very important design inputs in the design of 

concrete overlays (FAA 2016). Load transfer capabilities of the existing pavement would 

greatly influence the load-bearing capacity of the concrete overlay for both bonded and 

unbonded concrete overlay; however, bonded overlays are influenced to a greater degree by 

the underlying pavement condition compared to their unbonded counterparts.  
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Table 2-3 Summary of bonded concrete overlays and ECON requirements 

 
 

Items Bonded concrete overlay options ECON requirements 
On asphalt pavements On concrete pavements On composite pavements ECON 

Old name Ultra-thin whitetopping Bonded overlays Not Applicable ECC 
Thickness 2-6 in 2-6 in. 2-6 in. 2-4 in. 

Mixture design     
Fiber Optional Optional Optional Carbon fiber 

Aggregate property 
(CTE) 

Similar or lower than the 
existing pavement 

Similar or lower than the existing 
pavement 

Similar or lower than the existing 
pavement 

Similar or lower than the existing pavement 

Accelerated mixtures Optional Optional Optional Optional 
Joints     

Max. joint spacing (ft) 1.5 times thickness (in) Match existing cracks and joints and 
cut intermediate joints 1.5 times thickness (in) Flexible 

Transverse  joint 
spacing 3-8 ft Match existing joints 3-8 ft Flexible 

Longitudinal joint 
spacing 3-8 ft Match existing joints 3-8 ft Flexible 

Transverse joint saw-
cut depth 

T/3 Full depth plus 0.50 T/3 Flexible 

Longitudinal joint 
saw-cut depth T/3 T/2 (at least) or (Full depth plus 0.50) T/3 Flexible 

Joint pattern Square 
Joints must match with existing 

pavement (to reduce curling stresses, 
smaller overlay panels might be used) 

Square Flexible 

Transverse dowel bars No No No Prefer not to have dowel or tie bars 

Longitudinal  tie bars 
No No No 

Prefer not to have dowel or tie bars 

Separator layer - HMA No No No No 

Joint sealing 

Contraction and 
construction joints should 
be filled with hot-poured 

joint sealant (backer rod is 
not recommended) 

Yes,  hot-poured joint sealant 

Contraction and construction joints 
should be filled with hot-poured joint 

sealant (backer rod is not 
recommended) 

Flexible 
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Table 2-4 Summary of unbonded concrete overlays and ECON requirements 

Items  Unbonded concrete overlay option ECON requirements  
On asphalt pavements On concrete pavements On composite pavements ECON   

Old name Conventional whitetopping Unbonded overlay Not Applicable   
Thickness 4-11 in. 4-11 in. 4-11 in. 2-4 in. 

Mixture design         
Fiber  Optional  Optional  Optional  Carbon fiber  

Aggregate property (CTE) 
Similar or lower than the existing 

pavement 
Similar or lower than the existing 

pavement 
Similar or lower than the existing 

pavement 
Similar or lower than the 

existing pavement 
Accelerated mixtures  Optional  Optional  Optional  Optional  

Joints         

Max. joint spacing (ft) 
T < 6 in. - spacing 2 times T (in.)                                                         
T ≥ 6 in. - spacing 2 times T (in.)                                                         

T > 7 in. - spacing 15 ft 

T < 5 in. - spacing 6 x 6 ft                                                 
T 5-7 in. - spacing 2 times T (in.)                                                         

T > 7 in. - spacing 15 ft 

T < 6 in. - spacing 2 times T (in.)                                                         
T ≥ 6 in. - spacing 2 times T (in.)                                                         

T > 7 in. - spacing 15 ft 
3-6 ft 

Transverse joint saw-cut depth T/4 min - T/3 max T/4 min - T/3 max T/4 min - T/3 max Flexible  
Longitudinal joint saw-cut 

depth T/3 T/3 T/3 Flexible  

Joint pattern Square 

It is not critical to mismatch overlay 
joints to the underlying joints. 

Mismatch joints enhance the benefit 
of load transfer 

Square Flexible  

Transverse dowel bars Yes, when T ≥7 in  Yes, when T ≥7 in Yes, when T ≥7 in 
Prefer not to have dowel or 

tie bars 

Longitudinal  tie bars 
Yes, when T ≥6 in Yes, when T ≥6 in Yes, when T ≥6 in 

Prefer not to have dowel or 
tie bars 

Separator layer - HMA No Typically 1 in. asphalt or geotextile 
fabric No Not Applicable  

Joint sealing Yes,  hot-poured joint sealant  Yes,  hot-poured joint sealant  Yes,  hot-poured joint sealant  Flexible  
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Cores and historical records could be used to characterize the existing condition of the 

pavement. In addition, overall current condition of the existing pavement should be evaluated 

in order to select proper concrete overlay system (bonded or unbonded) and the type, 

location, and extent of any preoverlay repairs needed.  

2.2.4.1 Concrete Overlays of an Existing Rigid Pavement 

Existing pavement characteristics are very important design inputs in the design of 

concrete overlays (FAA 2016). Load transfer capabilities of the existing pavement would 

greatly influence the load-bearing capacity of the concrete overlay for both bonded and 

unbonded concrete overlay; however, bonded overlays are influenced to a greater degree by 

the underlying pavement condition compared to their unbonded counterparts. Cores and 

historical records could be used to characterize the existing condition of the pavement. In 

addition, overall current condition of the existing pavement should be evaluated in order to 

select proper concrete overlay system (bonded or unbonded) and the type, location, and 

extent of any preoverlay repairs needed.  

There are many factors that need to be considered during the concrete overlay design 

process. As a first step, the scope of the planned project and its intended structural 

performance requirements need to be taken into consideration. Expected design life affects 

the thickness design, the amount of repairs needed and in turn, total cost of the project. 

Understanding the current condition of the pavement structure, the projected traffic levels, 

and available pavement material options are other design inputs. There are two types of 

concrete overlays that can be placed on existing rigid pavement: fully unbonded or bonded 

concrete overlays.  
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2.2.4.1.1 Fully Unbonded Concrete Overlay of an Existing Rigid Pavement 

There are not many design procedures and programs available to conduct concrete 

overlay design. The thickness of a fully unbonded overlay can be calculated by using the 

FAA’s FAARFIELD software. The minimum thickness for a fully unbonded concrete 

overlay is 6 in. (150 mm). A thick hot-mix layer or fabric bondbreaker must be placed on the 

existing pavement to prevent bonding between two layers.   

2.2.4.1.2 Bonded Concrete Overlays of an Existing Rigid Pavement 

Bonded concrete overlay can be used only when the existing rigid pavement is in 

good to excellent condition. The FAARFIELD software can be used to design the thickness 

of the bonded overlay. The thickness of a bonded concrete overlay is calculated by 

subtracting the thickness of the existing pavement from the total thickness of the required 

slab as computed by FAARFIELD. The bonded concrete overlay and the existing concrete 

should behave as a monolithic slab and the bonded overlays can be designed as a new 

pavement. To ensure bonding between the existing concrete and a concrete overlay, the 

surface of the existing pavement should be thoroughly cleaned and a bonding agent may be 

required to enhance the bonding between two layers. The design of bonded concrete overlays 

for federal funded project requires FAA approval. Joints in bonded overlays should be 

located within 0.5 inch (13 mm) of joints in the existing base pavement.  

2.2.4.2 Concrete Overlay of an Existing Flexible Pavement 

The design of a concrete overlay on an existing flexible pavement is essentially the 

same as designing a new rigid pavement. The existing asphalt pavement should be evaluated 

before placing a concrete overlay. The FAARFIELD software can be used to design the 

thickness of the bonded overlay and a frictionless interface can be assumed between the 
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concrete overlay and the existing flexible surface. The minimum allowable thickness for a 

concrete overlay of an existing flexible pavement is 6 inches (150 mm). 

2.2.4.3 Concrete Overlay Implementation at an Airport 

Concrete overlay was implemented at the Spirit of St. Louis airport in Chesterfield, 

Missouri on December 1994 (Mowris 1995). This airport is one of the largest GA airports 

and was opened in 1964.  The existing asphalt pavement at the airport site was deteriorated 

due to the increase in the aircraft sizes and weights and a feasibility study for rehabilitation 

showed that concrete overlay was a cost-effective approach to extend the pavement life. The 

FAA provided funds for the project through a pilot program with the Missouri Highway 

Transportation Department (MHTD) (Mowris 1995). The thickness of the concrete overlay 

varied from 3.5 in. to 10.0 in. due to a wide range of aircraft sizes and weights. The thickness 

of the overlay subjected to aircraft loads up to 120,000 pound was 10 in. while the thickness 

of the overlay for aircraft loads up to 12,500 pound was 3.5 in. A comprehensive study was 

carried out to evaluate the subgrade, base and the existing asphalt pavement to ensure that the 

concrete overlay will provide desirable performance.  The performance of the concrete 

overlays were evaluated after 20 years since its completion and it showed good performance 

with regular maintenance.  

2.2.4 Summary: Advantages and Limitations of Advanced Construction Techniques for 
Heated Pavement Applications     

Table 2-5 summarizes advantages and limitation of use of advanced construction 

techniques for heated pavement applications in comparison to use of cast-in-place in HPS 

construction (Chang et al. 2004; Tayabji et al. 2013; Hu et al. 2014; Harrington et al. 2007) 
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Table 2-5 Advantages and limitations of use of advanced construction techniques for 
heated pavement applications 

 Advantages  Limitations 
Precast concrete  • Better concrete quality 

• Better curing conditions – at 
fabrication plant 

• Minimal weather-dependency of 
concrete placement 

• Reduced delay prior to opening to 
traffic – no on-site curing of concrete 

• A mature, but still evolving 
technology 

• Expensive   
• Still relatively new  
• Difficult to achieve smooth surface 

Two-lift paving • Economic paving sections can be 
achieved  

• Many choices available for surface 
texture 

• Improved sustainability by recycling 

• Not a time-efficient process    
• Not sufficient data to support long-term 

performance   
• Majority of the contractors in the United 

States have perceived concerns on two-
lift concrete paving   

• Fewer contractors in the United States 
have completed two-lift paving project 

• Extra permits and land space needed for 
additional equipment 

Concrete overlay • Can be designed to achieve a service 
life in the range of 15 to over 40 years 

• Can be constructed rapidly and with 
effective construction traffic 
management  

• Can be applied to a wide variety of 
existing pavements exhibiting a wide 
range of performance issues 

• Cost effective  

• Lack of consideration of the structural 
contribution of the interlayer and its 
interaction with the overlay and the 
existing pavement in terms of friction or 
bonding 

• Overestimation of the existing pavement 
effective thickness when the existing slab 
is relatively thick 

• Not sufficient data to support long-term 
performance   

• Lack of consideration of curling and joint 
spacing in the concrete overlay 
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CHAPTER 3.    SYSTEM REQUIREMENTS FOR ELECTRICALLY CONDUCTIVE 

CONCRETE HEATED PAVEMENTS 

A journal paper submitted and accepted for publication in Transportation Research 
Board (TRR), Journal of the to The Transportation Research Board 

 
Hesham Abdualla1, Halil Ceylan2, Sunghwan Kim3, Kasthurirangan Gopalakrishnan4, 

Peter C. Taylor5, and Yelda Turkan6 

3.1 Abstract 

Ice and snow on airport pavements can contribute to flight cancellations and delays. 

Traditional deicing methods that involve chemical or salt application can cause 

environmental or structural damage to airport infrastructure. Electric heated pavements, in 

which electric heating energy is transferred to the pavement via embedded insulated 

conductors or conductive materials to maintain surface temperatures above freezing, have 

gained attention as a promising technology for mitigating snow and ice accumulation. The 

objective of the study was to identify the requirements of an electrically conductive concrete 

(ECON) heated pavement system to achieve cost-effective performance. A small-scale 

prototype ECON heated slab was designed and constructed with the optimized ECON 

mixture recently developed at Iowa State University and then tested to determine its 

performance and efficiency. The energy consumption and energy cost of the prototype 

ECON slab were found to be the lowest of the electric heated pavement systems developed to 
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date. The cost-effective two-layer design also can be implemented for large-scale ECON-

based heated pavements by using a precast concrete technique, concrete overlay, and two-lift 

paving. From the prototype ECON slab results, a design flow chart and three-dimensional 

visualizations were developed to discuss the design and construction procedures for real, 

large-scale applications. 

3.2 Introduction 

In cold regions, ice and snow are classified as major concerns on pavement surfaces. 

Traditional deicing methods—which include spraying chemicals on the pavement surface 

and using large machines such as plows and broom vehicles to remove snow—have some 

drawbacks; for example, they can deteriorate infrastructure, damage concrete pavement, and 

adversely affect the environment (1). They may be ineffective at low temperatures, may 

contaminate nearby water bodies, and may require labor hours that translate to increased 

costs. These methods also are challenging to implement in congested and small areas, such as 

sidewalks and airport aprons and taxiways, where airport ground crews and aircraft may be 

in danger. 

A heated pavement system (HPS) that uses hydronic heating, resistive cables, and 

electrically conductive paving materials is recommended as an alternative for melting ice and 

snow. Hydronic heating melt ice and snow by circulating heated fluid through pipes 

embedded in pavement. The cooled fluid runs through a heat source (geothermal water, a 

boiler, or a heat exchanger) that reheats the fluid each cycle. Geothermal water is considered 

to be an efficient heat source in locations with good geothermal potential (2). The 

disadvantages of hydronic systems include construction difficulties, high installation costs, 

and challenges associated with repair in the event of fluid leakage. Resistive cables have 
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been embedded in concrete structures for deicing snow and ice in Oregon, Texas, and 

Pennsylvania. Performance was unacceptable because of the high power density required for 

operation and damage to the electrical cables or associated sensing elements that trigger the 

system (3, 4). 

Even though the concept of electrically conductive concrete (ECON) is not new for 

nonstructural applications such as heating (deicing), sensing, monitoring, and 

electromagnetic interference shielding, the investigation of this concept for application to 

heating airport pavements has been limited (5). Furthermore, little guidance and detailed 

information exist on the design, construction, and performance of ECON-based HPSs. For 

example, key issues to be clarified for real scale applications include heating element 

requirements, detailed design and construction procedures, and energy requirements during 

operations. Because the ECON-based HPS is an emerging technology, its system 

requirements must be addressed to ensure its efficacy, quality, and performance. 

3.3 Objective and Scope 

The objective of this study was to identify the requirements for an ECON-based HPS 

related to material selection, design, construction, and operational performance. A prototype 

ECON slab was constructed and tested to evaluate efficiency and performance. Results from 

the prototype slab evaluation were incorporated into the design of a real, large-scale ECON 

slab constructed with a precast concrete technique. Design flow and three-dimensional (3-D) 

renderings were developed to clarify the design and construction procedures for large-scale 

HPS applications. 
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3.4 ECON Heated Slab Prototype 

3.4.1 Construction Materials 

The main components of the ECON HPS include conductive materials (heating 

elements) for ECON, electrodes, insulation layers, a power supply, and temperature sensors. 

An ECON-based HPS works by applying an electric current through electrodes embedded in 

a conductive concrete layer. Because it has lower electrical resistivity than normal concrete, 

ECON behaves like a conductor of electricity. 

The ability of an ECON HPS to melt snow and ice depends on the electrical 

resistivity (i.e., the reciprocal of electrical conductivity) of conductive materials; the value 

required for deicing applications should be less than 1,000 Ω-cm (5, 6). The electrical 

resistivity of conventional concrete varies according to whether it was air dried, oven dried, 

or not dried at all. The electrical resistivity values of air-dried conventional concrete range 

from 600 to 1,000 kΩ-cm; oven-dried values are about 108 kΩ-cm. When not dry, 

conventional concrete is considered to be a semiconductor, the resistivity value of which is 

about 10 kΩ-cm (5). 

Previous studies have investigated the addition of conductive materials to 

conventional concrete as heating elements (5–16). Such materials typically include steel 

fibers, graphite powder, and carbon particles, and they are incorporated into concrete in 

proportions from 1% to 20% by volume; reported electrical resistivity values range from 400 

to 2.4 × 105 Ω-cm. 

Researchers at Iowa State University (ISU) recently developed a new ECON mix that 

includes carbon fiber–based materials (17, 18). The mix contains 6-mm-long carbon fibers, 

0.75% by volume of the total concrete mix, and uses methylcellulose as an agent to disperse 

the carbon fiber particles evenly and improve electrical conductivity as a result. All 
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components and proportions are listed in Table 3-1. The electrical resistivity value of the ISU 

ECON mix was in the range of 50 Ω-cm at room temperature (i.e., 20°C ambient 

temperature), consistent with electrical conductivity magnitudes reported in previous studies 

(6, 9, 10–16). The 28-day compressive strength of the developed ECON mix was 40 MPa, 

which translates to a 28-day flexural strength value of 4.0 to 5.0 MPa with various strength 

conversion equations included in the American Concrete Pavement Association’s online 

strength converter tool (19). These strength properties meet the minimum strength 

requirements mentioned in the FAA specification (20). Results imply that the developed 

ECON has better electrical properties than ones reported in the literature, with adequate 

mechanical properties. 

Table 3-1 ISU ECON mix proportion 

Components  Type  Content  
Basic  Coarse aggregate Limestone 1,010 kg/m3 
 Fine aggregate River sand 634 kg/m3 
 Fly ash Class F 72 kg/m3 
 Cement Holcim Type I/II 289 kg/m3 
 Water Tap water 162.5 kg/m3  
Admixtures Methylcellulose Dispersive agent 1.4 kg/m3 
 Air entraining agent (AEA) MasterAir AE 90 324 ml/ m3 

 High range water reducer 
(HRWR) MasterGlenium 7500 2.5 kg/m3 

 Carbon fiber 6-mm Synthetic Carbon 
fiber 0.75 (% Vol.) 

Note: Aggregate contents presented are in saturated surface dry condition (SSD) 

Table 3-2 summarizes the electrode types reported in the literature in the use of 

ECON for ice and snow melting purposes. The electrode types reported in the literature in the 

context of ECON’s usage for ice- and snow-melting purposes include steel (9), perforated 

steel (12), perforated stainless steel (14, 21), and galvanized iron (22). Most metallic 

materials identified as electrodes could provide sufficient electric current flow results 
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because the electrical conductivity of ECON is higher than that of any metal. However, one 

important lesson learned from previous studies is that a good bond between the electrodes 

and the conductive concrete is essential to ensure sufficient heating performance. Embedded 

steel plates did not provide desirable heating performance because of smooth bonding 

between the conductive concrete and the electrodes (12). Conductive adhesive was suggested 

to achieve sufficient bonding but reportedly is not cost-effective (13). Perforated steel and 

perforated stainless steel plates with gaps larger than the maximum aggregate size are 

recommended to ensure that conductive concrete can be bonded with the electrode (12, 14, 

21). For the prototype ECON heated slab in this study, perforated galvanized steel with a gap 

size larger than the maximum aggregate size was selected as an electrode for its advantages. 

Perforated stainless steel performs similarly but is not cost-effective. 

Table 3-2 Summary of electrode materials and shapes reported in literature 
 
Material type Shape Result reported Reference 

Steel Circular bar Ineffective bonding and affected by 
corrosion (9) 

Perforated steel Angle plate Effective bonding (12) 
Perforated stainless 
steel Plate Effective bonding and resisted 

corrosion (14,21) 

Galvanized iron Not reported Effective bonding and resisted 
corrosion (22) 

 

As a cost-effective solution, a thin layer of thermal insulation could be applied to 

minimize heat loss and reduce the total heat required to melt ice and snow. The percentage of 

back and edge heat loss can be defined as follows: 0% heat loss if below and edges are 

insulated, 4% heat loss if only below is insulated, 10% heat loss if perimeter and edge are 

isolated, and 20% heat loss if no insulation is used (23). The materials reportedly in use for 

the insulation layer include the epoxy coating and mortar [the sawdust mortar consisting of 

equal parts of cement, sand, and sawdust (24)] and extruded polystyrene insulation board 
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(25). However, epoxy coating and mortar did not provide good thermal insulation and is not 

recommended. The results report that the use of extruded polystyrene foam board as thermal 

insulation was sufficient to prevent heat loss and thus minimize cost of energy consumption. 

Therefore, for the prototype ECON heated slab in this study, extruded polystyrene foam 

board insulation was used to prevent heat loss. 

The resistivity of conductive concrete decreases with increasing voltage, regardless of 

whether alternating current (AC) or direct current (DC) is used, but is lower with AC than 

with DC (22). When used to power ECON, AC takes different paths, is better distributed 

through the slab, and consequently provides even heat (12). However, when used for the 

same purpose, DC takes one path and can create localized hot spots (12). A photovoltaic 

system has been investigated as an alternative energy source but could not provide enough 

power to melt snow and ice through ECON material (9). 

3.4.2 Electrical Circuit Model 

The electrical circuit model for the ECON HPS is illustrated in Figure 3-1. The 

heating element (conductive material) equivalent circuit is represented by a set of resistors R 

(which model the material resistivity) and capacitors C (which insulate between the 

conductive materials). A distributed model is selected to represent the evenly spread 

conductive material under the snow and ice. The circuit to the conductive material is fed by 

an AC power supply to generate the heat to melt snow and ice. A temperature sensor 

(Temp_Sensor in Figure 3-1) could be used in the control circuit to monitor the surface 

temperature of the pavement to control the voltage. 
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Figure 3-1 Electrical circuit model for ECON heated pavement system 

Figure 3-2 illustrates the voltage changes applied to ECON through embedded 

electrodes during the snow- and ice-melting process. After the electric power is turned on, 

voltage increases over a period Ta to a time t1, when the temperature reaches a previously set 

temperature. The sensor then triggers the control circuit to make the voltage rate constant to 

hold the temperature constant. During this period Tb, the surface heats evenly and melts the 

snow and ice. When period Tb elapses at time t2, the sensor triggers the control unit to turn 

off the power. During the period Tc that follows, the charges gained by the capacitors start 

discharging, and the snow and ice melt completely with heat from the temperature drop, 

without any electric power source. 

3.4.3 ECON Heated Slab Design 

To identify any construction and operation issues, a prototype ECON slab (122 cm 

long × 86 cm wide × 10 cm thick) was designed for construction at the ISU Portland Cement 

Concrete Pavement and Materials Research Laboratory (Figure 3-3). The two-layer 10-cm-

thick slab comprised a 5-cm ECON top layer and a 5-cm bottom layer of conventional 

concrete. 
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Note: Ta: time period to reach set voltage and temperature  

t1:  time when the temperature reaches targeted temperature  
Tb: time period to maintain set temperature to allow heating to be equally spread into 

snow and ice melting by providing constant voltage rate    
t2:  time when the sensor triggers the control circuit to turn the power off 
Tc: time period after which the snow and ice is expected to completely melt    
  

Figure 3-2 Voltage changes in snow and ice melting process 

 
The purpose of a thin ECON layer was to lower the cost and to heat the surface as 

much as required to melt snow and ice. The concept of implementing two layers of concrete 

is not new and is a sustainable construction technique for the placement of concrete (e.g., 

concrete overlay and two-lift concrete paving). Two perforated galvanized steel angles 

(3.175 cm long × 3.175 cm wide × 0.32 cm thick) were embedded 65 cm apart in the ECON 

layer. Each hole in the perforated galvanized steel is larger than the maximum aggregate size 

to ensure that the conductive concrete can be bonded with the electrode. The electrodes were 

connected to an AC supply to power the conductive concrete. Temperature sensors were 

installed in both the ECON and the conventional concrete layers. Layers of insulation (2.5 

cm thick) were placed at the edges and bottom of the slab to minimize heat loss. 
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Figure 3-3 Detailed design of the prototype ECON heated slab 

3.4.4 ECON Heated Slab Construction 

Construction of the prototype ECON heated slab at the ISU Portland Cement 

Concrete Pavement and Materials Research Laboratory is demonstrated in Figure 3-4. Layers 

of 2.5-cm-thick extruded polystyrene foam were placed in the slab formwork before paving 

to insulate against heat loss (Figure 3-4a). The ECON slab was constructed in two stages. 

First, a 5-cm-thick layer of conventional concrete was placed into the slab formwork, 

and the top surface was screened and then grooved to provide an effective bond with the 

ECON layer (Figure 3-4b, c, and d). Two angle-shaped perforated electrodes were placed on 

top of the conventional concrete layer (Figure 3-4c). 

Second, a 5-cm-thick layer of ECON was placed on top of the conventional concrete 

(Figure 3-4e). The ECON used in this study is a mixture recently developed at ISU that 

contains 0.75% 6-mm-long carbon fiber by volume and provides about 50 Ω-cm of electrical  
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(a)                                                                 (b) 

  
(c)                                                                 (d) 

  
(e)                                                                 (f) 

  
(g)                                                                 (h) 

Figure 3-4 Construction of the prototype ECON heated slab 
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resistivity with about 40 MPa of 28-day compressive strength. During ECON placement, 

attention was paid to ensure good bonding between the ECON and the perforated electrodes 

(Figure 3-4f). Temperature sensors were installed in both the ECON and the conventional 

concrete layers (Figure 3-4g). The total construction cost for producing the final prototype 

ECON heated slab is estimated to be $130 (Figure 3-4h). The total construction cost depends 

highly on the heating element and the potential for it to provide the desired heat radiation for 

melting snow at an efficient rate of energy consumption. 

3.4.5 Snow-Melting Performance 

After the ECON slab was constructed, a series of experimental tests was conducted to 

evaluate slab performance in melting 2.5 cm of snow from its surface. An AC power supply 

(80 V and 11 A) was used to provide electricity via electrodes to the ECON slab. The 

ambient temperature was −1°C, and the wind speed was 10 mph. The snow-melting process 

of the ECON slab after 2.5 cm of snow was placed on its 1-m2 surface is illustrated in Figure 

3-5. More than one-half of the snow was melted after 25 min of slab operation (Figure 3-5b) 

and most of the snow was completely melted after 35 min (Figure 3-5d). An energy density 

of 880 W/m2 was reported (by multiplying 80 V by 11 A for 1 m2 of ECON slab surface). 

Energy density is correlated with snow-melting time; as energy density increases, melting 

time decreases. 
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(a)                                                                 (b) 

  

(c)                                                                 (d) 

Figure 3-5 Snow melting performance test on prototype ECON slab: (a) placement of 
2.5 cm snow on the heated slab, (b) after 25 minutes, (c) after 30 minutes, (d) after 35 

minutes 

Figure 3-6 is a snapshot of heat distribution taken with an infrared thermographic 

camera about 30 min of operation of the ECON heating slab. The infrared heat map 

demonstrates that the ECON slab can generate enough heat to melt snow and ice 

simultaneously on the entire slab surface. Slightly different heating zones are observed on the 

surface because the nonhomogeneous ECON structure consists of cementitious materials, 

fibers, aggregate, moisture, and pores. 
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Figure 3-6 Infrared thermographic image snapshot of ECON in operation 

The energy consumption and energy cost of the ECON slab to melt 2.5-cm-thick 

snow were estimated and compared with those of electric HPSs previously developed and 

reported in the literature (Table 3-3). For one-to-one comparison, energy consumption was 

calculated from the energy density (in W/m2) and melting time (in hours) by using 

information directly from the literature. Energy cost was estimated by multiplying energy 

consumption (in kW-h/m2) by $0.12/kW-h (i.e., the average electricity cost assumed from 

average 2015 costs). 

 Compared with electric HPSs developed and reported in the literature, the prototype 

ECON slab developed in this study consumes the least energy (0.54 kW-h/m2) and has the 

lowest energy cost ($0.065/m2) (Table 3-3). In other previously developed HPSs, estimated 

energy consumption ranged from 0.70 to 2.28 kW-h/m2, and estimated energy costs ranged 

from $0.084/m2 to $0.274/m2 (14, 25, 26). The better operational performance of the ECON 
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heating slab in this study is attributed to higher conductivity in the newly developed ECON 

mixture, which allows the entire surface to heat uniformly and melt snow and ice quickly. 

Table 3-3 Energy consumption and cost comparisons of electrically heated pavement 
systems 

Deicing 
System 

Ambient 
Temp. 

(oC) 

Melting 
Time 
(min.) 

Snow 
Thickness 

(mm) 

Energy 
Consumption1 

(kW-h/m2)  

Energy Cost2 
(¢/m2) Ref. 

Conductive 
concrete steel 
fiber and steel 
shaving 

2 300 50 2.28 27.4 (26) 

Carbon fiber 
tape heating 
panel 

-11 558 15 1.14 13.6 (25) 

Carbon fiber 
grille -1 120 27 0.70 8.4 (14) 

ISU ECON 
Slab -1 35 25 0.54 6.5 NR3 

Note: 1 an energy consumption of each system was calculated for comparison purpose, 2 average 
electricity cost assumed ¢12/kw-h based on average cost of 2015; 3 NR stands for not required  
 
3.4.6 Large-Scale ECON HPS Design 

Conceptual designs for real, large-scale ECON HPS construction projects were 

developed with 3-D artist rendition and visualization schematics to provide a clear 

understanding of its construction and operation. Figure 3-7 illustrates ECON HPS 

construction with the precast concrete technique. Precast concrete has exhibited high 

performance for bridges, pavements, buildings, and airfield pavements. It provides high 

strength and low permeability with few cracks—features that result from fabricating the 
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panels off site, where quality can be controlled. The incentive to use precast concrete in 

pavement applications has increased because construction can be much more rapid than cast-

in-place construction, which requires a long curing time to attain strength before opening to 

traffic (27–29). 

 

Figure 3-7 3D artist rendition and visualization schematics for construction of ECON 
heated pavement system utilizing precast concrete technique 

A thin ECON slab can be precast with a conventional concrete slab to construct a 

large-scale ECON heated slab by using a construction procedure similar to that followed for 

the prototype ECON slab (Figure 3-7). If needed, a thin ECON slab can be precast and 

placed on a newly constructed (or an existing) conventional concrete slab. Each ECON panel 

contains two electrodes in the edges to provide the electricity that will be converted to heat 

during ECON operation. The polyvinyl chloride conduit and junction box, designed to house 
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and protect the electrical wire and temperature sensors, can be embedded in the subgrade 

layer. Renderings of the ECON HPS in operation are presented in Figure 3-8. 

  
 

 

Figure 3-8 3D artist rendition and visualization schematics of ECON HPS in operation 

The design flow chart for a large-scale ECON heated slab is presented in Figure 3-9. 

The first step involves determining the design criteria, which include snow- and ice-melting 

time, amount of snow and ice to be melted, and the associated power density requirement. 

Design parameters to be determined include slab dimensions [i.e., length (L), width (W), and 

thickness (T)], the distance between electrodes (Ls), electrical resistance (R), and electric 

voltage (V). 

The slab dimensions should be selected with consideration of actual concrete design 

and construction practices. The slab surface area (A) is the product of length L and width W. 

The distance between electrodes Ls can be calculated by subtracting the distance between the 

slab edge and the embedded electrode (d) from the slab length L. Electrical resistance R can 

be calculated by multiplying Ls by the resistivity (ρ) of ECON material and dividing the 

10
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product by the cross section parallel to the electrodes (Ac). By selecting the electric voltage V, 

the electric current (I) and the power density (Pd) can be calculated with other design 

parameter values previously selected. If the calculated Pd value does not meet the power 

density requirement, then the selected design parameter values should be revised to meet the 

power density requirement and additional design criteria. 

To better understand this design procedure, an example is presented. The design 

criteria for snow- and ice-melting performance in this example are similar to those of the 

prototype ECON heating slab discussed previously. For the small-scale prototype ECON 

heating slab (1.22 m long × 0.86 m wide × 0.1 m thick), 880 W/m2 of Pd is required to melt 

2.5 cm of snow in 35 min. The dimensions of the large-scale ECON heated slab are 4.6 m 

long × 4.6 m wide × 35.5 cm thick, which is close to that of concrete slabs used in airport 

pavement construction. This large-scale slab consists of two layers: a 10-cm-thick ECON top 

layer and a 25.5-cm-thick bottom layer of conventional concrete. 

According to the flow chart in Figure 9, the other design parameters (including Ls, R, 

and V) can be selected. If 40 cm is selected for d for two electrodes (i.e., 20 cm for each 

electrode), then Ls is calculated as 4.2 m. By using 50 Ω-cm for ρ (from ECON materials 

used in the prototype ECON slab), Ls equal to 4.2 m, and an Ac of 0.46 m2 (4.6-m-wide × 

0.1-m-thick ECON layer), the R can be calculated as 4.6 Ω. If 300 V is selected for V, then I 

and Pd are calculated as 65 A and 920 W/m2, respectively, for the large-scale ECON heated 

slab. The calculated Pd value of 920 W/m2 is higher than the 880 W/m2 required to melt 2.5 

cm of snow in 35 min. 
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Figure 3-9 Design flow for a large-scale ECON heated slab 

Define design criteria
(power density requirement, 

melting time, and others)  

Select slab size 
(L, W, T)

Calculate distance between 
electrodes (Ls)

Ls = L - d

Calculate resistance (R)

Calculate current (I) 

Calculate power density (Pd)  

Meet design criteria ?

Accept design parameters 
(L, W, T Ls, R, V ) 

Option 4: Change V

Option 3: change R and 

Option 2: change Ls and d

Option 1: change slab size

No

Yes
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It implies that accepting the design parameters determined in this example will melt 

snow more quickly than the selected design criteria (i.e., 35 min). Of course, the design 

parameters determined in this example can be revised if additional design criteria are 

required for each design parameter. 

3.5 Conclusions 

The goal of this study was to identify material, design, construction, and operational 

requirements for the cost-effective performance of an ECON HPS. A prototype ECON 

heated slab was designed and constructed with the use of a new ECON mixture recently 

developed at ISU. To aid the design and construction procedures for real, large-scale HPS 

applications, design flow and 3-D renderings were developed from the results of the 

performance evaluation of the prototype ECON heated slab. The major conclusions are as 

follows: 

• The energy consumption and energy cost of the prototype ECON heating slab were 

the lowest of the electric HPSs developed and reported in the literature to date (14, 

25, 26). Such excellent operational performance is attributed to the recently 

developed ECON mixture that provides higher conductivity (about 50 Ω-cm of 

electrical resistivity) to even surface heating to melt snow and ice quickly. 

• The prototype ECON heating slab comprises a thin ECON top layer on a 

conventional concrete bottom layer. This cost-effective two-layer approach can be 

implemented for a large-scale ECON HPS by using a precast concrete technique, 

concrete overlay, and two lift paving. 

• The design parameters to be determined for the large-scale ECON HPS include slab 

dimensions, distance between electrodes, electrical resistance, and electric voltage. 
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The design flow developed in this study can be used to determine these parameters 

for given design criteria. 

• Key construction materials required for a well-performing ECON HPS are low-

resistivity (i.e., high-conductivity) ECON materials, electrodes that bond well with 

ECON, and cost-effective thermal insulation. 

• ECON should be heated with AC, which enables electrons to take different paths into 

the conductive materials to distribute heat evenly in the slab. 
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CHAPTER 4.    A 3-D FINITE ELEMENT MODEL FOR SIMULATING 

THE HEAT PERFORMANCE OF ELECTRICALLY CONDUCTIVE 

CONCRETE HEATED PAVEMENTS 

A journal paper submitted to The Journal of Cold Regions Engineering - ASCE 

Hesham Abdualla1, Kasthurirangan Gopalakrishnan2, Halil Ceylan3, Sunghwan 

Kim4, Mani Mina5, Peter C. Taylor6, Kristen S. Cetin7 

4.1 Abstract 

 

Electrically conductive concrete (ECON) heated pavement system (HPS) is a 

promising snow and ice removal technology for airports with the advantages of enhanced 

safety for ground crew servicing the aircraft, reduced dependency on deicing salts, and 

minimal use of snow removal equipment. Current ECON HPS design practices do not fully 

consider the time-dependent variables in relation to the achievement of sufficient temperature 

ranges (i.e., above the freezing point) to melt snow and ice, and consequently cannot evaluate 

the heat generation and distribution performance of the ECON HPS designed. To incorporate 

time-dependent heating performance evaluation into ECON HPS design, a 3-D finite element 
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(FE) modeling approach was developed as a new alternative approach. A 3-D FE model of an 

ECON slab (122 cm long × 86 cm wide × 10 cm thick) built at Ames, Iowa was developed 

and validated in comparison to the laboratory experimental test results. By using the 

developed 3-D FE modeling approach, a sensitivity analysis of various design variables on 

heat generation and distribution performance was conducted for a typical large-scale airport 

pavement ECON slab (4.6 m long × 4.6 m wide × 19 cm thick). The results demonstrate that 

the developed 3-D FE modeling approach can be utilized as a cost-effective evaluation tool 

to examine effects of various design parameters on the time-dependent ECON heating 

performance for ECON HPS design optimization. 

4.2 Introduction 

Ice and snow accumulations on paved surfaces in airports have the potential to cause 

flight delays and/or cancellations, pavement deterioration, and safety concerns. It has 

recently been reported that an aircraft skidded off the runway because of the presence of ice 

and snow on the runway at Chicago’s Midway airport and at Detroit Metropolitan airport, 

leading to a fatality and serious injuries (BBC 2006 and CNN 2016). Traditional deicing 

methods, including spraying large amounts of chemical deicing agent on paved surfaces and 

deploying plows and brooms, are costly, labor-intensive, and cause corrosion to vehicles (Xi 

and Olsgard 2000). In recent years, electrically conductive concrete (ECON)-based heated 

pavement systems (HPS) are receiving attention for mitigating problems associated with the 

presence of ice/snow on roadways and paved areas of airfields. ECON works by applying a 

voltage across electrodes embedded in the ECON layer. The ECON layer acts as a resistor, 

generating heat that heats up the concrete, then subsequently melts the ice and snow covering 

the concrete (Sassani et al. 2015). An electrical circuit model was developed to illustrate the 
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ECON HPS, which consisted of resistors and capacitors. The resistors and capacitors were 

the conductive materials and non-conductive materials (insulation between conductive 

materials) respectively (Abdualla et al. 2016).  The effectiveness of the use of various 

conductive materials such as steel fiber, carbon fiber, etc. added to conventional concrete to 

produce ECON with sufficient electrical conductivity (i.e., low electrical resistivity) and 

engineering properties has been thoroughly investigated (Gopalakrishnan et al. 2015). 

Existing heated pavement technologies include hydronic heating and resistive cable heating; 

these have disadvantages such as leakage from hydronic pipes (Lund 2005) and resistive 

cable damage embedded in pavements due to cracking of pavements (Zenewitz 1977; Joerger 

and Martinez 2006).  

ECON-based HPS has the potential to enhance the safety and working conditions of 

the ground staff at airport gates, to reduce dependency on deicing salts, and to minimize the 

use of snow removal equipment. ECON has been developed and tested by Abdualla et al. 

(2016) to demonstrate the feasibility of melting ice and snow as a practical and cost-effective 

solution in comparison to others. ECON system requirements for large-scale HPS 

construction have also been identified, along with a newly-developed methodology for 

designing and optimizing ECON parameters to achieve sufficient heating based on the 

required energy (Abdualla et al. 2016).  

To design ECON HPS, the energy required to achieve satisfactory heating 

performance needed to melt ice and snow should be determined based on local weather 

conditions including rate of the snow, ambient temperature, and wind speed to the location of 

study. After identifying the energy required, ECON parameters including electrode spacing, 

voltage, slab dimensions, and electrical resistivity can be designed and determined. The 
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required energy can be calculated using steady-state energy balance equations by taking into 

consideration the expected rate of snowfall, the air temperature, the relative humidity, the 

wind speed, and the slab dimensions (ASHRAE 2015 and FAA 2011). However, these 

equations do not consider time-dependent variables associated with the ECON HPS 

capability to achieve temperature ranges (i.e., above freezing point) sufficient to melt snow 

and ice and the thermal mass of the materials. Consequently, existing design equations 

cannot be effectively used to evaluate the heat generation and distribution performance of 

most ECON HPS designs.  

Evaluation of ECON HPS heat generation and distribution performance during the 

design stage will help determine more realistic and optimized values for many ECON HPS 

design variables. Experimental tests can be utilized for measuring these changes, but they 

have significant costs and time investment associated with them in testing various design 

options for ECON HPS design optimization. Alternative simulation-based approaches are 

needed to evaluate the thermal characteristics of ECON HPS in a more cost-effective 

manner.   

4.3 Objective and Scope 

The primary objective of this study was to develop a 3-D finite element (FE) 

modeling approach as an alternative method for evaluating ECON HPS time-dependent 

heating performance and thereby achieve design optimization in a timely manner. The 3-D 

FE model for ECON slab was developed by examining the decoupling of thermal-electrical 

analysis (Joule heating) (Sridharan et al. 2011) using COMSOL Multiphysics software 

(COMSOL 2012) and validated though comparison with experimental test results. By 

employing the developed 3-D FE modeling approach, the sensitivity of various ECON HPS 
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design variables to heat generation and distribution performance was identified. This could 

be useful for providing guidance on design optimization. 

4.4 Theoretical Considerations: Joule Heating 

The ECON HPS operates by applying voltage through embedded electrodes in a 

conductive concrete layer. As the conductive concrete acts as a resistor, it generates heat 

energy through Joule heating, which can be numerically evaluated using coupled electrical 

field and heat transfer equations. 

A transient heat conduction model was employed to predict variation of the 

temperature as a function of time and position in an ECON slab. The three dimensional 

mathematical model for transient heat conduction in solids (Cengel 2013) is given by 

Equation 1: 

𝜌𝜌𝐶𝐶𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− ∇ ∙ (𝑘𝑘∇𝑇𝑇) = 𝑄𝑄                                                                                      (1) 

where, ρ is the density in (kg/m3), Cp is the heat capacity in (J/(kg.K)), T is the 

temperature in (OC), t is time in (s), ∇ is the Laplace operator, k is the thermal conductivity in 

(W/(m∙K)), and Q is the rate of heat generation in (W/m3). 

The required electrical current in the ECON layer is generated by applying an 

electrical potential to electrodes embedded within the ECON layer. The three-dimensional 

mathematical model for the electric field in a solid (Tungjitkusolmun et al. 2000) is: 

𝑬𝑬 = −𝛻𝛻𝛻𝛻                                                                                            (2) 

where, V is the electrical potential in (V) and ∇ is the gradient operator. 

Joule heating describes the rate of electrical energy dissipated by electrical current 

flowing through a conductor and is correlated with the amount of electrical energy converted 

into heat (Ogasawara et al. 2010), as described in Equation 3: 
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Q = 𝑱𝑱 ∙ 𝑬𝑬 = ( 𝜎𝜎 ∙ 𝑬𝑬) ∙ 𝑬𝑬                                                                                                      (3)  

where, J is the electrical current density in (A/m2), σ is the electrical conductivity in 

(S/m), and E is the electrical field in (V/m). The value of the electrical conductivity is (σ), 

which depends on the material temperature. 

4.5 Development of 3-D FE Model for ECON Slab   

A description of FE model and subsequent analysis of the heat generation and 

distribution in an ECON slab using decoupling thermal-electrical interfaces in COMSOL is 

presented in the following sections. 

4.5.1 Description of ECON Slab and Geometry Modeling  

A prototype ECON slab (122 cm long × 86 cm wide × 10 cm thick) was constructed 

at Ames, IA (Abdualla et al. 2016) for experimental investigations. The 10-cm-thick layer 

consisted of a 5-cm ECON top layer and a 5-cm conventional concrete bottom layer. Two 

perforated galvanized steel angles were embedded in the ECON layer. These angles were 

connected to an AC power supply to enable generation of heat. Temperature sensors were 

installed in both concrete layers.  Insulation layers of 2.5-cm-thick extruded polystyrene 

foam with an R-value of 1.32 C·m2/W were placed at the edges and the bottom of the slab to 

reduce heat loss. The ECON slab was tested in a controlled laboratory testing environment, 

and temperature was recorded for a total time duration of 9,000 seconds (2.5 hours). 

COMSOL Multiphysics (release 5.1) was used to develop a 3-D FE model of the 

ECON slab. The FE model illustrated in Fig. 1 was developed to numerically simulate the 

heat generation response and distribution under the application of electric potential from an 

AC power supply. The dimensions of the modeled ECON slab mirrored those of the 

prototype tested at ISU - 122 cm long x 86 cm wide x 10 cm thick. Electrodes were also 
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modeled in the 3-D FE model (See Figure 4-1) to be considered as boundaries for electric 

potential values used to generate current flow through the ECON layer. 

 

Figure 4-1 FE model of ISU ECON slab and boundary conditions 
4.5.2 Assumptions and Boundary Conditions 

Since multi-physics interfaces – thermal-electrical coupling – were used to analyze 

the modeled ECON slab, boundary conditions (see Figure 4-1) were assigned for each 

interface to simulate ECON slab heat generation and distribution as a function of time. The 

ECON slab, composed of conventional concrete and ECON, was treated as homogenous and 

isotropic. The various heat transfer mechanisms that could possibly effect thermal 

performance include conduction, convection, and short and longwave radiation. In the 3-D 

FE analysis, only conduction and convection were considered.  The effect of radiation heat 

flux was neglected since the temperature difference between the ECON surface temperature 

and the ambient temperature were considered negligible during snowfall (ASHRAE 2015 

and Zhao et al. 2011).  
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For the transient heat transfer physics, a boundary condition was set up by utilizing 

the energy balance at a solid surface (Cengel 2003), where the convection heat flux equals 

the conduction heat flux at the ECON slab surface (Equation 4). 

𝒏𝒏 · (𝑘𝑘𝛻𝛻𝑇𝑇) = ℎ𝑐𝑐(𝑇𝑇𝑠𝑠𝑠𝑠𝑟𝑟 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑟𝑟)                                                                                             (4) 

where n is the normal vector to the surface, k is the thermal conductivity, Tsur is the 

pavement surface temperature in (OC), Tair is the ambient temperature in (OC), and hc is the 

heat transfer coefficient in (W/m2∙OC)).   

The convection heat transfer coefficient, hc, was calculated based on ASHRAE 

handbook (ASHRAE 2015) by assuming an average wind speed of 16 km/h that was 

obtained during the experimental test. The pavement surface temperature was -1oC at the 

beginning of the experimental tests conducted on the ISU ECON slab, and the ambient 

temperature was equal to -1 oC, so this value was introduced into the COMSOL environment 

as an initial value. It was assumed that the ECON slab edges and the bottom were insulated 

since insulation boards had been placed at these locations.  

The electrical ground and electrical potential boundaries were selected as 0 V and 80 

V, respectively, at each electrode. These represent the power supply voltages assigned to the 

ECON slab during the experimental test to create heat generation in the electrically 

conductive concrete layer. Electrodes were embedded in the electrically conductive layer and 

their material properties were defined in the COMSOL environment to represent the actual 

electrode material and the galvanized steel used in constructing the ECON slab. 

4.5.3 Description of Material Modeling 

The slab modeled in this study is comprised of ECON and conventional concrete. The 

electrical resistivity of ECON is very small in comparison to that of conventional concrete 

that has resistivity values higher than 1,000 kΩ∙cm (Gopalakrishnan et al. 2015). An ECON 
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HPS with lower resistivity (i.e., higher conductivity) can reduce energy demands needed to 

melt snow and ice and improve cost-effectiveness.  

There is an inverse relationship between the electrical resistivity and temperature that 

follows the Arrhenius equation (Chang 2013). The electrical resistivity can be calculated 

using first and second Ohm’s law (Wu 2013) as follows: 

  𝑅𝑅 =  𝑉𝑉
𝐼𝐼 

,𝜌𝜌 =  𝑅𝑅×𝐴𝐴
𝐿𝐿

                                                                                                               (5) 

where, ρ is electrical resistivity (i.e., reciprocal of electrical conductivity), R is the 

electrical resistance, A is the cross-sectional area parallel to the electrodes, L is the electrode 

spacing, V is voltage, and I is electrical current. 

 

Figure 4-2 Correlation between ECON electrical resistivity and temperature 
The material properties used in the FE model were obtained from experimental 

laboratory tests conducted in this study, from the COMSOL library, and from a previous 

study (Tuan 2004). The material property inputs include electrical resistivity, density, heat 

capacity, and thermal conductivity for conventional concrete, electrodes, and ECON (see 
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Table 4-1). The material properties for conventional concrete and galvanized steel electrodes 

were obtained from the COMSOL material library. An experimental test was executed to 

identify the electrical resistivity values of ECON under various temperature conditions 

(Figure 4-2). Figure 4-2 shows that the electrical resistivity value decreases as the 

temperature increases. However, the electrical resistivity values of ECON are only slightly 

differed in the range -1 to 15 oC which are heated pavement operation ranges to melt snow 

and ice. Based on these experimental test results, a constant electrical resistivity value of 70 

Ω∙cm for ECON was used at -1 oC ambient temperature as a constant value in the FE model. 

Table 4-1 Material properties used in FE Simulations 
Material Density 

(kg/m3) 
Thermal conductivity 

(W/m∙K) 
Heat Capacity 

(J/kg∙K) 
Electrical 

Resistivity (Ω∙cm) 

Conventional 
Concrete 

2300 1.4 880 5.4 x 105 

Steel AISI 4340 
(electrodes) 

7850 44 475 1.7 × 10-9 

ECON 2500 4.2 480 70 
 

4.5.4 Description of Mesh Generation  

After defining the geometry features and other required variables including boundary 

conditions and material properties, the element type and FE mesh were defined. A tetrahedral 

element type was used to discretize the ECON slab into smaller elements. The tetrahedral 

element has four points and six edges with two degrees of freedoms with respect to 

temperature and electrical potential. The convergence of the FE model was evaluated using 

different mesh sizes with a number of linear and quadratic tetrahedral elements ranging from 

15,125 to 201,253. The quadratic tetrahedral elements showed that the results tend to better 

match the experimental results as mesh size decreases. The results of FE differed very little 
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when the number of element was greater than 60,000. Therefore, quadratic tetrahedral 

elements at this mesh size were selected and used for meshing the 3-D FE model. 

  The electrical potential was applied through electrodes and the temperature at 

each node was calculated. The embedded electrodes and their surrounding areas were more 

finely meshed (See Figure 4-3) to enhance the interaction between the electrodes and the 

surrounding areas so that the results could be more precisely estimated.

  

(a)                                                                           (b) 

Figure 4-3 ECON mesh distribution: (a) 3-D mesh of ECON slab (b) zoomed of the 
meshed construction region around the electrode and ECON slab 

4.6 Results and Discussions 

A FE analysis of joule heating was conducted using an electrical potential of 80 V to 

power the ECON layer. The temperature distribution of the ECON slab was numerically 

calculated over the interval from 0 to 150 minutes at time divisions of 8 minutes.    

Temperature values on the 3-D FE modeled ECON slab surface are presented in 

Figure 4-4a at 8 minutes, Figure 4-4c at 100 minutes, and Figure 4-4e at 150 minutes. The 

heat initially tends to accumulate in the central part of the ECON surface and then is 

distributed across the entire surface area. The highest temperature predicted by the FE 

analysis was observed in the middle area of the ECON surface and the temperature near the 

electrodes was about 2 to 5 oC less compared to that of the middle area. This could be 
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attributed to the electrodes radiating electrical energy that got converted into heat (energy); 

the middle areas thus heated first and become hotter. 

Temperature distributions inside the 3-D FE modeled ECON slab are presented in 

Figure 4-4b at 8 minutes, Figure 4-4d at 100 minutes, and Figure 4-4f at 150 minutes. 

Because of the low electrical resistivity (i.e., high electrical conductivity) of the ECON layer, 

heat was initially induced in the ECON layer due to its lower resistivity, then transferred 

through conduction into the adjacent conventional concrete layer. This behavior could be 

explained as follows: the electrical energy passing into the ECON layer is converted into heat 

through resistive losses and the heat is then transferred to the other layer through thermal 

conduction by the collision of the molecular particles (Cengel 2003).  

The temperature of the center of the 3-D FE modeled ECON slab surface was 2.2 oC 

at 500 seconds (See Figure 4-4a). The temperatures in the middle depths of the ECON and 

conventional layers were about 2.4 oC and -0.5 oC, respectively, at 8 minutes (See Figure 

4-4b).     

  
(a)        (b) 
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(c)        (d) 

  
(e)        (f) 

Figure 4-4 Changes in temperature Vs time in the 3-D FE modeled ECON slab: (a) the 
surface temperature at 8 minutes, (b) the inside temperature at 8 minutes, (c) the 

surface temperature at 100 minutes, (d) the inside temperature at 100 minutes, (e) the 
surface at 150 minutes, and (f) the inside temperature at 150 minutes 

The temperature of the center of the ECON slab surface was 13.4 oC at 100 minutes 

(See Figure 4-4c) and the temperature at the middle depth of the ECON layer was 15.3 oC at 

100 minutes (See Figure 4-4d). The reason for this difference was that the ECON slab 

surface was exposed to the environment and the convection heat transfer was considered on 

the top surface of the ECON slab.  

The temperatures at the middle depth of the ECON and the conventional layers were 

about 16.4 oC and 17.4 oC, respectively, at 150 minutes (See Figure 4-4e and Figure 4-4f), 

showing that the temperatures inside the two layers were close to one another at 150 minutes. 

This result indicates that thermal stresses will not be an issue due to the small temperature 

differences between the ECON and the conventional layers. The temperature inside the 
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conventional concrete increased with time due to its thermal mass to absorb and store heat as 

well as the effect of the insulation layer that prevents heat loss.  

The temperature changes at the center of the ISU ECON slab during its operation 

were measured (See Figure 4-5a) and compared to those obtained from the 3D-FE model. As 

seen in Figure 4-5b, this comparison acknowledged the validity of the results obtained from 

the FE analysis. The FE model tended to slightly overestimate the predicted temperature in 

comparison to the experimental data. The reason for this difference could be that only 

convection effects were considered in the FE model, but not those due to other sources of 

heat loss such as radiation.    

              

(a) 

Temperature sensor embedded in the center of ECON slab   
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(b) 

Figure 4-5 3D-FE model validation: (a) ISU ECON slab with embedded temperature 
sensor, and (b) comparison of temperature changes between experimental 

measurements and FE simulation results (R2= 0.80) 

4.7 Sensitivity Analysis of the Developed 3-D FE Model 

The design variables for ECON HPS include ECON electrical resistivity, electrode 

spacing, voltage, and ambient temperature. To evaluate the effect of these design variables on 

the heating performance of ECON HPS, sensitivity of these variables to temperature changes 

to the center surface of slab was identified using the developed ECON 3-D FE model.   

The geometry of ECON slab, 4.6 m long × 4.6 m wide × 19 cm thick, was selected to 

represent one of the real large-scale airport pavements. The thickness of the model is made 

up of two layers: a 7.6-cm ECON top layer and an 11.4-cm bottom layer of conventional 

concrete. Table 2 lists the base case values for each variable of the ECON layer. In the one-

at-a-time (OAT) sensitivity analysis, value for one of these variables was changed while the 

other variables were kept constant. The material properties of conventional concrete used as 
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base case values (i.e., constant values) in the sensitivity analysis were obtained from Table 

4-2. 

Table 4-2 Base case variables and values of the ECON layer for sensitivity analysis   
Variables Values 

Electrode spacing 1.5 m 

Electrical resistivity 50 Ω∙cm 

Voltage 220 V 

Width of ECON slab 4.6 m 

Ambient temperature -10 oC 

 

4.7.1 Effect of Electrical Resistivity on Heating Performance  

To better understand the effect of electrical resistivity, the temperature changes with 

time were investigated by alternating the electrical resistivity from 50 to 300 Ω∙cm. Figure 

4-6 shows that increasing the electrical resistivity value of ECON layer - while fixing the 

other variables - the temperature considerably increases within 150 minutes of time duration 

investigated. When the electrical resistivity value was 50 Ω∙cm, the surface temperature 

increased from -10 oC to above-freezing point (i.e., about 1 oC to 2 oC) in about 10 minutes. 

When the electrical resistivity values were 100 Ω∙cm and 200 Ω∙cm, the surface temperature 

increased from -10 oC to above-freezing point in about 25 minutes and over 66 minutes, 

respectively.  However, an electrical resistivity of 300 Ω∙cm was not sufficient enough to 

increase surface temperature to above-freezing point within 150 minutes of time duration 

investigated.  
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Figure 4-6 Changes in ECON temperature time for different electrical resistivity values 

4.7.2 Effect of Electrode Spacing on Heating Performance  

The design of electrode spacing is one of the challenging tasks in achieving an 

efficient ECON system. To investigate the effect of electrode spacing on ECON slab heating 

performance, the changes in ECON temperature with time were investigated by choosing 

three electrode spacing design options which are 1.5 m for 4-electrode installation, 2.3 m for 

3-electrode installation, and 4.6 m for 2-electrode installation on a given ECON slab 

dimension (i.e., 4.6 m long × 4.6 m wide).  

As the electrode spacing increases, the time to achieve temperature above freezing 

point on ECON surface dramatically increases (See Figure 4-7). When 1.5 m and 2.3 m 

electrode spacing design options were selected, the surface temperature increased from -10 

oC to above-freezing point within 30 minutes which is expected to prevent snow and ice 

accumulation after operating ECON pavement system. However, the 4.6 m electrode spacing 

design option could not increase surface temperature to above-freezing point within the 150-

minutes interval.  
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The obtained results are in agreement with Ohm’s law – the relation between 

electrical resistance and electrode spacing – as electrode spacing increases, the resistance 

increases. From these findings, it would be recommended that the electrode spacing in 

ECON slab needs to be optimized by taking into consideration all factors such as electrical 

resistivity, ambient temperature, power supply, etc., for a large-scale project since building 

and testing a large-scale ECON slab is not an efficient way to design electrode spacing. In 

that case, the 3-D FE model is considered to be a useful and powerful tool. 

 

Figure 4-7 Changes in ECON temperature with time for different electrode spacing 
values 

4.7.3 Effect of Voltage on Heating Performance  

Voltage and power density are important parameters to be determined for maintaining 

low-cost operation of the ECON system. Figure 4-8 shows ECON slab temperature changes 

with time for different voltage values ranging from 60 to 220 V. When the applied voltage 

increased from 120 to 220 V, the time to reach temperature above freezing point decreased 

from 42 minutes to 9 minutes. These results are in agreement with the experimental results 

reported in a previous study wherein a set of voltage values were applied during the 
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experiment test and a noticeable increase in the temperature was observed (Wu 2013). 

However, voltage values of 60 V and 80 V could not increase the surface temperature above 

freezing point within the 150-minutes intervals.    

 

Figure 4-8 Changes in ECON temperature with time for different voltage values 
4.7.4 Effect of Ambient Temperature on Heating Performance  

Ambient temperature has been used to determine the required energy for HPS 

operation using the steady-state energy balance equations which do not consider time-

dependent heating performance. The effect of ambient temperature on ECON slab heating 

performance was investigated by alternating three ambient temperature values (-5, -15, -25 

oC) which can represent temperature conditions in a wide range of geographical locations in 

the US in which ECON might be used.   

Figure 4-9 displays the changes in ECON slab temperature with time for different 

ambient temperature conditions. The time required to increase the temperature from -5 oC, -

15 oC, and -25 oC to above-freezing point was about 5, 16, and 32 minutes, respectively. The 
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results indicate that the ECON HPS could be employed in most geographical locations within 

the US by achieving temperatures above freezing point immediately after its operation.  

Based on temperature sensor or weather forecast data, the ECON system could be 

turned on about 30 minutes before the expected snow falling time in some geographical 

locations (or seasonal times) with ambient temperature below -25 oC. In such cases, snow 

and ice will melt more quickly when they hit the ECON HPS surface. Such an operation 

strategy can reduce snow and ice accumulations and consequently reduce electrical power 

demands and run the system more efficiently. 

 

Figure 4-9 Changes in ECON temperature with time for different ambient 
temperatures 

4.8 Conclusions  

The primary goal of this study was to develop a 3-D FE model for evaluating the 

effects of various design parameters on time-dependent ECON heating performance for 

ECON HPS design optimization. A 3-D FE model was developed based on an ECON slab 

(122 cm long × 86 cm wide × 10 cm thick) built at ISU. To validate the 3-D FE model, 

changes in ECON temperature from the 3-D FE model simulations were compared with the 
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temperature change measurements obtained from the center of ISU ECON slab during its 

operation. By employing the developed 3-D FE modeling approach, a sensitivity analysis 

was conducted on various design variables with respect to ECON heat generation and 

distribution performance. For the sensitivity analysis, realistic, large-scale airport pavement 

ECON slab dimensions (4.6 m long ×  4.6 m wide × 19 cm thick) were used. The major 

conclusions of this study are as follows: 

• The developed 3-D FE model for ECON can predict heat generation and distribution 

changes over operational time. It can be utilized as a cost-effective evaluation tool for 

examining the effects of various design parameters on the time-dependent heating 

performance of ECON HPS design optimization.       

• Given the assumed boundary conditions, the model shows that, initially, during the 

ECON operation the temperature is highest at the central area of ECON surface and is 

then distributed across the entire slab.  

• The temperature inside the conventional concrete layer increases with time because 

the insulation layer and the slab boundaries reduce heat losses. This temperature 

comes closer to the temperature inside the ECON layer within 9,000 seconds of time 

after beginning ECON operation. These results indicate that thermal stresses between 

surfaces will not be an issue because there was minor temperature differences 

between the ECON and conventional layers. 

• The ECON electrical resistivity is one of the most influential parameters governing 

the heating performance. As the electrical resistivity value increases, the time to 

achieve temperature above freezing point on ECON surface increases. The 3-D FE 

model results indicate that electrical resistivity ranges of about 50 to 200 Ω∙cm can 
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provide sufficient heat for the realistic ECON slab (4.6 m long × 4.6 m wide × 19 cm 

thick) dimensions representing one of the real, large-scale airport pavement slabs.   

• As the electrode spacing increases, the time to achieve temperature above freezing 

point on ECON surface dramatically increases. Based on the 3-D FE model results, it 

is recommended to design electrode spacing such that more than two electrodes could 

be accommodated in an ECON slab to ensure that the ECON surface temperature will 

be above-freezing. 

• The voltage values and the ambient temperature can also affect the time to achieve 

above-freezing point temperature on ECON surface. As voltage values increase, the 

ECON surface temperature reaches above-freezing point temperature more quickly. 

• Thirty minutes or less are required to increase from ambient temperature ranges (-5, -

15, -25 oC) to above-freezing temperatures. Considering that the ambient temperature 

ranges selected for the study are representative of temperature conditions in a wide 

range of geographical locations in the US, ECON HPS could be employed in most 

geographical locations in the US and be able to achieve above-freezing point 

temperatures in these locations.  
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5.1 Abstract  

Airport agencies spend millions of dollars to remove ice and snow from airport 

pavement surfaces to achieve accessible, safe, and sustainable operations during the winter. 

Electrically conductive concrete (ECON) based heated pavement system (HPS) has gained 

attention as a promising alternative technology for preventing snow and ice accumulation by 

maintaining pavement surface temperatures above the freezing point. The objective of this 

study was to demonstrate the first full-scale ECON-based HPS at a U.S. airport. Two ECON 

slabs were designed and constructed in the General Aviation (GA) apron at the Des Moines 
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International Airport (DSM), Iowa in 2016. Systematic design components were identified 

and construction procedures were developed and implemented for ECON-based HPS. Using 

collected sensor data, the performance of the constructed and remotely-operated ECON slabs 

was evaluated under real weather conditions at DSM in the 2016-2017 winter season. The 

results demonstrate that ECON-based HPS have promising deicing and anti-icing capacities 

promising to provide uniform heat distribution and prevent snow and ice accumulations on 

the entire area of application under various winter weather conditions, including extreme 

cold weather (i.e., arctic blasts).   

5.2 Introduction 

Airport agencies spend millions of dollars per year to remove ice and snow from 

airport pavement surfaces to achieve accessible, safe, and sustainable operations during the 

winter season. The presence of ice or snow on such surfaces has the potential to cause flight 

delays impacting travel throughout the U.S. and worldwide, and may contribute to airplane 

incidents and accidents (1, 2). Using snow removal equipment (SRE) such as brooms and 

plows to remove snow/ice from congested areas is a challenging task and could also lead to 

accidents (3). The use of sand/chemical mixtures has the potential to cause foreign object 

damage (FOD) to aircraft engines, cause corrosion to the overall airplane structure, and lead 

to environmental issues including possible contamination of groundwater and nearby bodies 

of water (4). 

In recent years, new alternative approaches are receiving increased attention for 

mitigating problems associated with the presence of ice/snow on the paved areas of airfields 

and roadways, including engineering surfaces through application of nanotechnology for 

repelling water/ice (5) and heated pavement systems (HPS) (6). Developed technologies for 
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HPS include hydronic heating (7), resistive cables embedded inside concrete structures (8), 

and electrically conductive concrete (ECON) (9-11).  

Electrically conductive concrete (ECON)-based HPS have gained attention as a 

promising alternative technology for preventing snow and ice accumulation by maintaining 

pavement surface temperatures above the freezing point. The advantages of such methods 

include environmental friendliness, extended life and durability of concrete pavements, and, 

most importantly, melting ice and snow in a short period of time (9). ECON, by virtue of its 

lower electrical resistivity compared to that of conventional Portland cement concrete (PCC), 

behaves like an electrical conductor. As electric current flows through the conductive 

material network inside ECON, its resistance results in conversion of electrical energy into 

thermal energy (heat).  

A previous study on ECON HPS implementation for transportation systems was 

focused only on bridge deck winter maintenance (12). However, the use of steel fibers as the 

conductive material for ECON HPS in that study cannot be used for airport pavement 

applications since steel fiber has potential to corrode, creating foreign objective debris 

(FOD), and damaging aircraft tires. In addition, in the previous study, the electrode 

configuration and installation approach isolated each pair of electrodes, requiring 

supplemental construction procedures, which result in additional cost and time penalties. 

Recently, an ECON HPS system design using a newly developed ECON mix design recipe 

for airport pavement application (9, 13) has been developed and evaluated by an Iowa State 

University (ISU) research team, using a prototype ECON heated slab.  Even though there has 

been no guidance with respect to ECON HPS construction practices reported at actual 

airports, it is imperative to investigate full-scale implementation of HPS through field 
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demonstrations in real airport environments. The outcome of such research will result in a 

thorough and practical understanding of heated concrete pavement system operations at 

actual airport sites. 

5.3 Objective and Scope 

The objective of this study was to demonstrate field implementation of ECON HPS in 

real airport environments. Two ECON test slabs were constructed in 2016 in the northern 

General Aviation (GA) apron of Des Moines International Airport (DSM) located in Iowa. 

To construct these slabs, the best design approach under the given airport conditions was first 

identified; then, accordingly, systematic construction details (electrode installation, slab 

instrumentation, power supply, controlling unit, etc.) were planned and executed. Following 

construction, the slabs were constantly monitored using an automated data acquisition 

system. The gathered data were analyzed and the performance of the ECON slabs was 

thoroughly evaluated for a range of winter weather conditions characteristics of cold climate 

zones (ASHRAE Climate Zone 5, 6 and 7) (14), including different snow precipitation rates, 

ice formation conditions, and arctic-blast weather. The rest of the paper is organized in 

sections as follows: full-scale ECON HPS demonstration overview, system design, 

description of materials, instrumentation plan and installation methods, construction and 

instrumentation, DSM ECON heated pavement performance evaluation, and conclusions and 

recommendations. 

5.4 Full-Scale ECON HPS Demonstration Overview  

5.4.1 Construction Site Descriptions 

The location for the ECON HPS field demonstration was in the north GA apron 

reconstruction area at the DSM in Iowa (See Figure 5-1). The selected location was close to 

the main power supply located in Building 69, approximately 15 ft. from the ECON slabs. As 
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part of a GA apron reconstruction project (construction project contractor: Foth Infrastructure 

and Environment, LCC, located in Johnston, Iowa), two slabs were utilized for the ECON 

HSP implementation and demonstration conducted by ISU researchers. Each slab was 15 ft. 

long × 12.5 ft. wide ×7.5 in. thick.  

 

Figure 5-1 ECON HPS construction location at DSM 

5.4.2 Key Components of Full-Scale ECON HPS Demonstration 

The overall components of the ECON HPS for large-scale construction are illustrated 

in Figure 5-2. These include ECON as a conductive paving material (heating element), 

electrodes, temperature sensors, power supply, control unit, and PVC conduits and junction 

boxes. ECON for melting ice and snow on the surface can be placed in a thin concrete layer 

on top of a thicker PCC layer in the HPS structure to save on construction costs while 

providing adequate pavement structural capacity. The construction of the ECON layer should 

be isolated from embedded pavement light and cabling (15). For activation and deactivation 

of the ECON system under certain conditions, temperature sensors installed in the ECON 

layer are used to sense predetermined setpoint temperatures for turning the system ‘on’ and 
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‘off’ should be defined (14, 15). The value of these temperatures is dependent HPS control 

may also be operated using an external thermostat and/or a snow detector as alternative 

options if the temperature sensor fails due to wear and tear resulting from long-term 

operation (14). Using the current control strategy, the HPS should be deactivated when the 

ambient temperature reaches a range of 35 to 41°F (14). The performance of an ECON 

system can be monitored using sensors and a data acquisition system to estimate energy 

density and energy consumption. 

 

Figure 5-2 3D visualization schematic of ECON HPS 

5.5 System Design  

ECON HPS system design is a procedure for determining HPS geometric features 

(slab dimension, layer thickness, etc.) and electrode configuration consistent with given 

airport environments (i.e., winter weather conditions, estimated power density, electric power 

supply capacities available) to ensure adequate heating and structural performance during 

service life. 
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5.5.1 Design of ECON HPS Structures   

To provide a clear understanding of ECON HPS construction, Figure 5-3 illustrates 

the overall 3-D design plan visualization and the structural layer. Each slab is 15 ft. long × 

12.5 ft. wide ×7.5 in. thick and each has six electrodes. The designed ECON HPS structure 

consists of a two-layer 7.5-in-thick combined layer comprised of a 3.5 in. ECON top layer 

and a 4 in. P-501 PCC bottom layer, an 8 in. thick P-209 aggregate base course, and subgrade 

(Figure 5-3a). The purpose of only a thin ECON layer was to lower overall construction costs 

and to heat the surface as much as required to melt snow and ice without having to also heat 

addition concrete above the ECON layer. The concept of implementing two layers of 

concrete placed over another is not new and has been successfully used as a sustainable 

construction technique for placement of concrete such as with concrete overlay or two-lift 

concrete paving (16). 

 To provide electric power to the ECON layer, six angle-shaped perforated electrodes 

(1.5 in. long × 1.5 in. wide × 1/8 in. thick) per slab were embedded 3 ft. apart in the ECON 

layer (Figure 5-3b). Sensor systems were designed for measuring temperature and strain 

changes in the HPS during operation. An electric power sensor systems was also designed to 

monitor and measure power, voltage, and current to evaluate the power density and 

efficiency of the ECON HPS. 

5.5.2 Design of Electrode Configuration   

The electrode spacing of 3 ft. was determined based on the ECON material 

properties, ECON thickness, slab size, and the required amount of electric power. The 

electrode spacing was designed using a design flow (9) that met the design criteria, including 

the amount of snow/ice to be melted and the associated power density requirements. 
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(a) 

 
(b) 

Figure 5-3 ECON HPS design plan visualization: (a) ECON HPS layer structure, and 
(b) 3D installation plan for ECON HPS 

The power density requirement (design load) can either be experimentally obtained or 

estimated using the steady-state energy balance equation for required pavement heat output 

that considers expected rate of snowfall, air temperature, relative humidity, wind speed, and 

dimensions as well as pavement material characteristics (14, 15). A finite-element (FE) 
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method can also be used as a tool for estimation of the required power density and the 

snow/ice melting time for ECON HPS (17). 

5.6 Description of Materials   

5.6.1 ECON/P-501 PCC Mix Design 

The mix design of ECON was developed and tested by researchers at ISU through a 

sequence of more than 40 trial mixes in the laboratory to attain a balance between 

workability, mechanical properties, and electrical conductivity (13). The final ECON mix 

design for field implementation is described in Table 5-1. The mix properties and materials 

were checked and tested for conformance to Federal Aviation Administration (FAA) 

advisory circular (AC) P-501 (18). The 28-day electrical resistivity value of ECON mix was 

about 307 Ω-in. at 73 oF ambient room temperature. The 28-day compressive strength and 

flexural strength of ECON mix were approximately 5,319 and 1,111 psi, respectively. The 

mix contained 1.0 % carbon fibers by volume of the total concrete mix; 70% of carbon fiber 

was a 0.23-in.-long and 30% of was a 0.12-in.-long, and used methylcellulose as an agent to 

evenly disperse the carbon fiber particles and thereby improve electrical conductivity. Derex 

corrosion inhibitor (DCI) is a liquid admixture meeting the requirement of ASTM C1582 that 

can both enhance the conductivity of the ECON mixture and mitigate the corrosive action of 

chlorides on reinforcing steel. The mix design for the P-501 PCC (bottom layer) was 

provided by the construction project contractor (i.e., Foth Infrastructure and Environment, 

LLC) in charge of the design of the reconstruction of the north GA apron at the DSM airport. 
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Table 5-1 ECON mix components and proportions for field implementation 
Components  Type  Content  
Basic  Coarse aggregate  3/4 in. concrete stone 1,001.0 lb./yd3 

Intermediate aggregate 3/8 in. chips 499.0 lb./yd3 
Fine aggregate Concrete sand 1,134.0 lb./yd3 
Cement Holcim type I/II 800.0 lb./yd3 
Water Tap water 337.0 lb./yd3  

Admixtures Methylcellulose Fiber dispersive agent 1.6 lb./yd3 
DCI admixture 30% calcium nitrite solution, 

corrosion inhibitor and 
conductivity improving agent 

42.0 lb./yd3 

Carbon fiber 0.23-in. Synthetic carbon fiber 1.0 (% Vol.) 
Note: Aggregate contents presented are in saturated surface dry condition (SSD) 

5.6.2 Electrodes 

While electrodes made from metallic materials are capable of enhancing electric 

current flow into an ECON layer since their conductivity is higher than that of ECON (9), the 

electrode material should have high resistance to corrosion so that electrodes will not degrade 

or crack, reducing efficiency and effectiveness. Angle-shaped perforated stainless steel 316L 

had 13 gaps (3/8-in-diameter) to allow ECON particles to interlock with the electrodes and to 

provide superior corrosion resistance (9, 19). The electrodes should be sufficiently bonded 

with the ECON to provide sufficient heat performance. The detailed properties for the 316L 

are included in ASTM A240 and ASTM A666. A nylon rod was selected to anchor the 

electrodes both because of its resistance to corrosion and its insulating properties that will 

prevent current leakage into the ground. The nylon-threaded rod and nut size was 4 in. × 3/8 

in. diameter. 

5.6.3 Sensors and Data Acquisition System 

A set of sensors, both wired and wireless, was used to monitor temperature, moisture, 

strain, voltage, and electric current changes in HPS during operations. Before being selected 

as field instruments for the ECON slabs in DSM, these sensors had been evaluated using 

results from previous field studies to fulfill the needs of reliable long-term monitoring (20, 
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21). The wired sensors installed in DSM ECON HPS included Arduino based temperature (± 

2%), Geokon strain gages (± 0.5%), Sensirion relative humidity sensors (± 3%), and 

Decagon electrical conductivity sensors (± 10%). The data acquisition system combined a 

Campbell Scientific CR6 data logger with a Campbell Scientific AM16/32 multiplexer.  

A wireless-based sensing system can provide advantages of being less time-

consuming and less labor-intensive than a wired-sensor system (20, 21). In this study, Monnit 

wireless sensors were used, including industrial and coin cell temperature (± 1%), humidity 

(± 3%), voltage (± 3%), and current (± 2%) sensors. Each Monnit wireless sensor consisted 

of a sensing unit (usually a probe), a cable, a transmission head, and an antenna, with 

measurements first taken by the probe, then sent to the sensor head that would process and 

then transmit the data wirelessly through the equipped external antenna. It should be noted 

that power for these wireless sensors was provided by batteries inside the transmission head 

that could be replaced when power runs low. A gateway was also used to capture data 

emitted from the collection of wireless sensors and upload them to pre-subscribed web-based 

software for real-time monitoring. 

5.6.4 Remote Monitoring and Control System 

The ECON HPS in DSM was equipped with surveillance cameras to monitor the 

ECON slabs, a control system to automatically turn the system on/off based on a setpoint 

temperature, and a remote access system for collecting sensor measurements and manually 

operating the ECON HPS using an off-site smart phone or computer.   

 Two on-site surveillance HD cameras were installed to provide reliable 

weather information from the slab site, to monitor the ECON slabs, and to capture the 

melting process activity during snow events. These cameras provided night vision, were 
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weatherproof, and continually stored video footage and other images using cloud-based 

storage. 

Arduino board microcontrollers was used to control the ECON HPS through the 

universal serial bus (USB) communication interfaces provided by the on-site laptop by 

sending a signal in a code based on a set temperature. The code, developed using Arduino 

1.6.13 software, based on C programming, was used to control the measuring interval and to 

convert data readings into the desired format and units through the serial USB connection to 

the laptop. Once programmed, the Arduinos ran this code in a continuous loop as long as 

power was available. The arduinos were programmed to send data every 5 minutes and to 

provide multiple options for operation of the ECON system. The options were as follows: 

“on” - turn the ECON HPS on, “off” - turn the ECON HPS, and “auto” - turn the ECON HPS 

off when the temperature on the control sensor pin falls below a given threshold. The logic-

based breaker switches, used to control the power of the ECON HPS, were connected to the 

Arduino board microcontrollers and the on-site laptop.  

The remote access system used Splashtop software to provide access to all data 

collected through the airport Wi-Fi from an off-site system from which it could be controlled 

and monitored as needed. The operation of the ECON system could be chosen as either 

automated or manual using a remote access system through a smart phone or computer. 

Splashtop software was used to remotely access an on-site laptop where all data was 

collected. 

5.6.5 Other Materials  

Fiberglass rebar installed in the ECON HPS (See Figure 5-3b) is highly corrosion 

resistant and coated with coarse quartz sand to provide bond adhesion to concrete. Fiberglass 

rebar is also electrically and thermally non-conductive and has a high tensile stress. ¼ in. 
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diameter fiberglass rebar rods were continuously placed perpendicular on top of the 

electrodes and secured using nylon cable ties to prevent potential cracking due to 

environmental load effects. PVC conduit was used to house and secure wires for all sensor 

and electrode systems. A laptop computer was located on-site to control ECON HPS 

operation and to collect and store data from the data acquisition system. 

5.7 Instrumentation Plan and Installation Methods 

Following material selection for the ECON HPS construction, the instrumentation 

plan and installation methods for electrodes, sensors, data acquisition system, and power 

supply system integrated with a remote-monitoring control system were developed based on 

extensive design and field construction experience on the part of the research team. Figure 

5-4 depicts the installation methods and procedures used for electrodes and sensors, and 

Figure 5-4 shows the power supply panel integrated with the remote-monitoring control 

system. 

  
(a)                                                                        (b) 
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(c)                                                                        (d) 

           
(e)                                                                        (f) 

Figure 5-4 Electrode and sensor installations: (a) electrode with anchor, (b) electrodes 
installation, (c) electrode with electrical wire connection, (d) temperature sensor tree 
installation, (e) strain gages installation, and (f) PVC conduit and junction box 

5.7.1 Electrodes Instrumentation Plan and Installation Methods 

A nylon rod 4 in-long and with a 3/8-in-diameter was used to anchor and fix the 

electrodes to prevent movement during the placement of the ECON layer, as shown in Figure 

5-4a. The electrodes can be anchored to the existing pavement using an electric drill to drill 

holes to fix the electrodes to (Figure 5-4b). After fixing the electrode, electrical wire should 

be connected to the electrodes using gauge-ring wire connectors to provide power to the 

ECON layer for generation of heat (Figure 5-4c). 
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Figure 5-5 Power supply panel integrated with remote monitoring control system 

5.7.2 Sensors Instrumentation Plan and Installation Methods 

Sensor locations were selected based on comprehensive plans, ensuring that critical 

locations in terms of temperature, strain, moisture, humidity, and electrical conductivity 

measurements were covered. Sensors were installed after electrode placement by first 

marking their locations on a temperature sensor tree, then mounting the temperature sensors, 

after which the temperature sensor tree was inserted into the drilled hole. A ¼ in. stainless 

steel rod was used for the temperature sensor tree; it was covered with plastic tubing to 

eliminate its effect on electric current during ECON operation. Figure 5-4b shows the 

installation of the temperature sensor tree with a clip used to anchor the wires of the 

temperature sensors.  

Strain gages were fixed using plastic chairs and steel plates at the surface of the PCC 

layer. These plastic chairs held strain gages during ECON placement. An electric drill was 
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used to anchor the strain gages that were then placed in a perpendicular orientation to capture 

the strain measurements in different directions (Figure 5-4e).  

After the installation of sensor and electrode systems, the wires for sensor and 

electrode systems were sorted and placed in PVC conduits connected to a junction box to 

prevent the wires from potential damage during construction. To prevent interruption or 

noise in the sensor data, the electrical wires of the electrodes were placed into separate 

conduits to prevent interference between sensor signals (Figure 5-4f). 

5.7.3 Integration of Power Supply System and Remote Monitoring Control System 

A single-phase power panel (120/240V, 200A power supply) was available in 

Building 69 near the ECON slabs. It was integrated with the electric sensors, data logger 

system, and laptop computer to support remote control and operation of the ECON slabs (See 

Figure 5-5). The power supply had six contactors connected to the electrodes through 

electrical wires, with each contactor connected to two electrodes. The contactors can receive 

remote signals to turn the system on and off based on temperature measurements from 

Arduino-based temperature sensors. Current and voltage sensors were installed to monitor 

and measure power density and consumption for the two ECON slabs, and a 60-Amp circuit 

breaker was used to control the current in each ECON slab. The data acquisition logger, 

connected to a laptop to remotely access and download data, records all data from sensors. 

The electric current and voltage data can be accessed through a web-based system, as 

described in previous sections.   

5.8 Construction and Instrumentation 

Figure 5-6 illustrates the construction process of the ECON HPS at DSM. Fixed-form 

paving was used with a form set on one side of the graded base for the entire 7.5-in thickness. 

A 4-in-thick layer (bottom layer) of P-501 PCC was placed on a prepared 8-in-thick layer of 
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P-209 aggregate based course (Figure 5-6a). Hand screed and hand-operated vibrators were 

used to strike the bottom layer off at the desired elevation and consolidate it. The surface of 

the bottom layer was screeded using brooms to create a rough surface to enhance the bonding 

with the ECON layer (Figure 5-6b). Six angel-shaped perforated electrodes per slab were 

placed on top of the PCC layer (Figure 5-6c), then sensors were placed in different locations 

(Figure 5-6d) and fiberglass rebar rods were continuously placed perpendicular on the 

electrodes (Figure 5-6e). Prior to placing the ECON layer, the surface of the bottom layer and 

the electrodes were thoroughly cleaned using an air-blower, brooms, and a pressure washer 

(Figure 5-6f). 

A vibrating screed (Figure 5-6g), normally used for thin concrete pavements, was 

chosen to pave the two ECON layers, since the area of the ECON slabs was small. A 3.5 in. 

thick ECON layer was paved on top of a 4 in. thick P-501 PCC layer on November 03, 2016 

(Figure 5-6h). The vibrating screed was attached with a vibrating motor to help consolidate 

and smooth the ECON layer. Caution was taken during the placement of the ECON layer to 

prevent any damage to the electrode and sensor systems. The ECON electric power supply 

system was tested to check wiring connections to the electrodes before placing the ECON 

layer. 

A white-pigmented concrete compound was applied to the surface as a curing 

compound to avoid plastic and drying shrinkage and thermal stress cracking. A saw-cutting 

device was used to construct joints for control of cracking and to allow expansion and 

contraction due to temperature and moisture changes. The joints were cleaned and sealed 

using backer rod material and joint sealant. The bottom layer (4-in. PCC layer) was saw-cut 

at the joint so that both layers behave as monolithic pavement structures. 
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(a)                                                             (b) 

   
(c)                                                             (d) 

   
(e)                                                             (f) 

   
(g)                                                             (h) 
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Figure 5-6 ECON HPS construction procedures at DSM: (a) P-501 PCC placement, (b) 
screed PCC surface, (c) electrode installation, (d) sensors installation, (e) fiberglass and 
nylon cable tie installation, (f) ECON surface cleaning, (g) vibrating screed, and (h) 
ECON placement 

5.9 DSM ECON Heated Pavement Performance Evaluation 

To evaluate the performance of the constructed ECON slabs in DSM under winter 

weather conditions, the ISU team operated the ECON HPS and collected data from 

December 2016 to February 2017.  

Figure 5-7 illustrates the excellent ECON HPS performance results. The performance 

of the ECON HPS was very successful and capable of preventing snow accumulation on the 

ECON surface even while the apron all around the test slabs was covered with 1.2 in of snow 

in December 10, 2016 (Figure 5-7a and Figure 5-7b). Figure 5-7c shows the performance of 

the traditional snow removal method, viz., blows and brooms vehicles to remove snow, in 

comparison to the ECON HPS, that provides a safe environment and a reliable system, while 

mitigating the adverse effects of using traditional snow removal method. To provide 

evidence of the temperature uniformity of the ECON surface, an infrared (IR) thermographic 

camera was used to capture the heat distribution during the operation (Figure 5-7d), and this 

IR heat map demonstrates that the ECON slab could generate sufficient heat for preventing 

snow accumulation over the entire slab surface. 
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(a)                                                                          (b) 

  
(c)                                                                          (d) 

Figure 5-7 ECON HPS performance results: (a) a 1.2-in. thickness of snow 
accumulation at DSM in December 10, 2016, (b) ECON performance results in 
December 10, 2016, (c) ECON performance verse traditional method, (d) infrared 
thermographic image of the ECON slabs 

Table 5-2 summarizes the constructed ECON slab operation performance results 

under various winter weather conditions during 2016-2017, ranging from light to severe 

snow storms and including arctic blast weather conditions that continued for two days 

(December 18 to 19 in 2016) (22). Two scenarios – anti-icing and deicing cases– were 

executed to examine the ECON HPS operation under different weather conditions. The anti-

icing case refers to preheating the ECON slabs before snowfall, while the deicing case refers 

to heating the ECON slabs during/or after the snowfall. The wireless electric sensors installed 

measure electric current changes during ECON HPS operations while applying a 210 V 
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voltage. The average electric current measurements during ECON HPS operations were used 

to estimate the average power density and the energy consumption values listed in Table 5-2. 

Table 5-2  Summary of ECON performance 

Date Condition 
Average Air 
Temp. (

o
F) 

Wind Speed 
(mph) 

Total Snow 
Thickness 

(in) 

Average 
Power 

Density 
(W/ft2) 

Operation 
Time 

Minutes 
(hrs.) 

Energy 
Consumption 

(kW-h/ft2) 

Dec. 10, 2016 Anti-icing 25 8 1.2 38 420 (7) 0.27 

Dec. 18-19, 2016 Deicing -11 16 1 39 1,286 (21.4) 0.84 

Jan. 25, 2017 Deicing 14 14 0.5 38 90 (1.5) 0.06 

Feb. 08, 2017 Deicing 14 13 1.5 35 210 (3.5) 0.12 

Feb. 24, 2017 Deicing 22 17 0.8 37 150 (2.5) 0.09 

Mar. 13, 2017 Deicing 21 13 1.3 33 120 (2) 0.07 

Note: The anti-icing case is defined as preventing ice or snow accumulation on paved surface by preheating the 
ECON surface prior to snowfall or ice and the deicing case is defined as melting ice or snow following ice or 
snow accumulation on a paved surface. 

The ECON performance results of December 10, 2016 demonstrate how ECON HSP 

works under anti-icing conditions. The ECON HPS was preheated to prevent ice and snow 

accumulation on ECON slabs before snowfall, then turned on at 5:40 am (i.e., about 3-hours 

before the snowfall event) based on a weather forecast reporting that snowfall was expected 

to begin at 7:40 am. The actual snowfall occurred from 9:00 am to 12:40 pm (i.e., about 4-

hour snowfall event), thus the ECON HPS operational time was from 5:40 am to 12:40 pm 

(i.e., about a 7-hour operation), sufficient to prevent snow accumulation on the ECON 

surface. The energy consumption for this operation was 0.22 kWh/ft2, while the average air 

temperature, relative humidity, and wind speed were 23 oF, 74%, and 8 mph respectively.  

 The ECON performance results of December 18 to 19, 2016 demonstrate how ECON 

HSP worked under arctic blast weather conditions. The ECON HPS was turned on after snow 

and ice had accumulated on ECON slabs, and outdoor ambient temperatures were very low 
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(i.e., an average of -11oF). The melting process took longer in comparison to other events 

(Table 5-2), although eventually snow and ice were melted. The energy consumption for this 

operation was 0.59 kWh/ft2.  

As seen for other dates of operation, under deicing conditions existing from January 

25, 2017 to March 13, 2017, the ECON HPS appeared to be operating effectively under these 

weather conditions. The lowest energy consumption was 0.05 kWh/ft2 to melt 0.5 in. of snow 

accumulation, while the highest energy consumption was 0.10 kWh/ft2 to melt 1.5 in. of 

snow accumulation on the ECON slabs. The energy consumption varied due to the impact of 

the snowfall time, air temperature, operation time, and wind speed.  

5.10 Conclusions and Recommendations  

The goal of this study was to demonstrate system design, construction, and 

performance of an ECON HPS, the first such facility built at a U.S. airport. A full-scale 

implementation of two ECON slabs was designed and constructed at Des Moines 

International Airport (DSM), Iowa in 2016. Sensor instrumentations and a control unit were 

incorporated into the design of the ECON HPS to monitor the performance and support 

remote operation of the system. The ECON’s power density, energy consumption, and 

performance during deicing and anti-icing were summarized and evaluated based on actual 

data obtained from the set of sensors implemented. The following summarize the results 

discussed in this work:     

• Two ECON test slabs were constructed in the northern General Aviation (GA) apron 

of Des Moines International Airport (DSM), Iowa in 2016 as the first full-scale 

electrically conductive concrete heated airport pavement system in a US airport (or in 

the world to the best of the authors' knowledge and belief). The constructed ECON 
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HPS demonstrated deicing and ant-icing capacities for providing uniform heat 

distribution and preventing snow and ice accumulations on the entire area of 

application under various winter weather conditions, including extremely cold 

weather (i.e., arctic blast).   

• The energy consumption of the ECON HSP for a deicing application ranged from 

0.05 kW-h/ft2 to 0.10 kW-h/ft2 required to melt 0.5 to 1.5 in. of snow/ice 

accumulations under various winter weather conditions, except the arctic blast event 

that required 0.59 kW-h/ft2 to melt 1 in. of snow/ice accumulations. The energy 

consumption of the ECON HSP for the anti-icing application was estimated at 0.22 

kW-h/ft2 for preventing snow and ice accumulations for 7 hrs. 

• The ECON HSP in DSM was constructed using a two-lift approach that placed a thin 

ECON layer (top layer) on a P-501 PCC layer (bottom layer). This approach can be 

effective not only to save in construction costs instead of constructing a single thick 

ECON layer, but also to facilitate the electrode installation and electrical wire 

connections. 

• The surface of the P-501 PCC layer (bottom layer) was screeded to create a rough 

surface to provide satisfactory bonding between the two layers.  

• Perforated stainless steel was used for the electrodes because of its high corrosion 

resistance, and so that electrodes will not be reduced in efficiency; the use of stainless 

steel also eliminated cracking potential that would be possible with steel or 

galvanized steel.  
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• Electrodes should be placed at least 1to 2 inches below the ECON surface so as not to 

interfere with a paver’s vibrator, pan, and augur when slipform paving is used during 

large-scale construction. 
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CHAPTER 6.    DEVELOPMENT OF CONSTRUCTION TECHNIQUES 
FOR HEATED PAVEMENTS  

A journal paper to be submitted to The Journal of Cold Regions Engineering - ASCE 

Hesham Abdualla1, Halil Ceylan2, Sunghwan Kim3, Peter C. Taylor4, Kristen Cetin5, 

Kasthurirangan Gopalakrishnan6 

6.1 Abstract  

Ice and snow accumulations on paved surfaces at airports have potential for causing 

flight delays and/or cancellations, pavement deterioration, and safety concerns. The use of 

deicing chemical agents and/or deployment of snow removal equipment (SRE) to remove 

snow/ice has potential for causing foreign object damage (FOD) to aircraft engines or 

corrosion to overall airplane structure, potentially leading to undesirable environmental 

issues, and is also typically costly and time-consuming. In recent years, heated-pavement 

systems (HPS), categorized as hydronic heated-pavement systems (HHPS) and electrically-

conductive concrete (ECON) based heated-pavement systems (HPS) represent alternative 

options for melting ice and snow on paved surfaces. The objective of this study was to 

develop systematic design and construction guidance for ECON based HPS and HHPS using 

two-lift concrete paving (2LCP), concrete overlay, and precast concrete (PC) to expedite 

construction work during large-scale construction of heated pavements. The outcome of this 

study will help contractors and transportation agencies envision the constructability of 
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different components, including heating elements, electrodes configurations, and material 

selections, in HHPS and ECON based HPS. 

6.2 Background 

Ice and snow accumulation on paved surfaces has potential for reducing pavement 

surface skid resistance and thereby cause hazardous conditions that may lead to aircraft 

incidents and accidents (McCartney 2014; FAA 2008). The use of deicing chemical agents or 

deployment of snow removal equipment (SRE) to remove snow/ice has potential for causing 

foreign object damage (FOD) to aircraft engines and corrosion to overall airplane structure, 

leading to undesirable environmental issues (Xi and Patricia 2000), and is also typically 

costly and time-consuming (Anand et al. 2016). 

 Heated pavement systems (HPS) represent alternative options for melting ice and 

snow and can be classified into two general categories, hydronic heated-pavement systems 

(HHPS) and electrically-heated pavement systems (EHPS). HHPS melt ice and snow by 

circulating heated fluid through pipes embedded inside pavement structures, with the cooled 

fluid circulated back through a heat source that reheats the fluid during each cycle. There are 

different types of heat sources, including geothermal water, boilers, and heat exchangers. 

Geothermal water is considered to be efficient in locations with good geothermal potential 

(FAA 2011). EHPS melt ice and snow using resistive cables embedded in regular concrete or 

electrically-conductive concrete (ECON). The use of resistive cables embedded inside 

concrete structures has been applied to deicing of snow and ice in Oregon, Texas, and 

Pennsylvania; in those applications the performance of electrical cable was sometimes found 

inadequate due to the high power density required (Zenewitz 1977) and damage to electrical 

cables or associated sensing elements for triggering the system (Joerger and Martinez 2006).  
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PC has demonstrated satisfactory performance in bridges, pavements, buildings, and 

airfield construction. It provides high strength, low permeability, and low cracking potential, 

features that are consequences of preparing the panels off-site where quality control can be 

more effectively implemented. Using a PC technique instead of cast-in-place for construction 

of pavements can expedite the construction process by eliminating the need for concrete 

strength-gaining time as for on-site construction procedures (Merritt et al. 2004; Priddly et al. 

2013). PC technology enables rapid repair of pavement facilities and can be beneficially 

applied in situations where extended road closures could increase road congestion and result 

in increased lost work time, fuel consumption, and user-delay costs (Kohler at al. 2004). A 

study has shown that estimated daily user-delay costs for a four-lane divided facility carrying 

50,000 vehicles per day can be as high as $383,000 per day for 24-hour lane closure, 

compared to only $1,800 per day for nighttime-only lane closure (Priddly et al. 2013).  

Little has been done or documented with respect to PC construction in airfield 

pavements. The PC technique was used to rehabilitate a taxiway at LaGuardia airport, New 

York during September 2002. The selection of PC as a rehabilitation option over asphalt 

concrete or Portland cement concrete (PCC) was due to the fact that the asphalt concrete 

requires frequent rehabilitation if under the influence of highly concentered and repetitive 

aircraft movements; the PC approach also reduces the construction downtime (Chen et al. 

2003). 

Two-lift concrete paving (2LCP) in which a lower lift can be optimized to enable the 

use of locally available or recycled materials, while a top lift is optimized for long life and 

functionality, has become a common construction practice in Europe. 2LCP involves either 

sequential placement of two wet-on-wet layers of concrete or bonding wet to dry layers of 
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concrete, where the bottom layer is thicker than the top layer (Cable, 2004). The benefits of 

2LCP may include using recycled aggregate to achieve cost reduction and production of 

more sustainable pavements; this method can also provide a high-quality and durable surface, 

improve skid resistance, and reduce road noise (Cable, 2004) and these benefits could 

compensate for the extra labor and trucking costs associated with the requirement for two 

slip-form pavers. The use of 2LCP is currently under investigation by several agencies in the 

United States. 

Concrete overlay systems have been proposed as cost-effective maintenance and 

rehabilitation solutions for a wide range of combinations of existing pavement types, 

conditions, desired service lives, and anticipated traffic loading. Although in the past these 

approaches have been referred to as ultrathin whitetopping, conventional whitetopping, 

bonded overlays, unbonded overlays, etc., they have more recently been classified into two 

broad types: the bonded resurfacing family and the unbonded resurfacing family (Harrington 

et al. 2007 and ASHRAE 2015). Concrete overlays are discussed in detail in the national 

concrete pavement technology center (NCPC) – guide to concrete overlays solution 2007 – 

and ACI 325.13R-06 concrete overlays for pavement rehabilitation (ACI 2006).  

Concrete overlays for airfield pavement have been classified – based on the recent 

FAA advisory circular AC 150/5320-6F (FAA 2016) - into four broad types: PCC overlay of 

existing flexible or rigid pavement, and hot mix asphalt overlay of existing flexible or rigid 

pavement [26]. The design and construction of concrete overlays are discussed in detail in 

the FAA advisory circular (AC) – Airport Pavement Overlays and Reconstruction – AC No: 

150/5320-6F (FAA 2016). 
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Design and construction procedures for HPS using advanced technologies such as PC, 

concrete overlays, and 2LCP have not previously been investigated. An important benefit of 

different advanced construction techniques for HPS is that they provide alternative options 

for constructing HPS in new or existing pavements and can accelerate construction 

procedures. For example, construction of a HPS as an overlay not requiring demolition of 

existing good-condition pavement has great potential as a cost-effective approach. 

6.3 Objectives 

The objective of this research is to develop construction guidance for large-scale 

ECON based HPS and HHPS using 2LCP, concrete overlay, and PC technologies to promote 

good construction practices. To this end, systematic design and 3-D visualization of 

construction procedures have been developed to support envisioning the constructability of 

ECON based HPS and HHPS using different construction technologies. The reminder of the 

paper is organized into sections as follows: overall conceptual design of ECON HPS and 

HHPS, ECON HPS and HHPS using 2LCP, concrete overlay, and PC, and conclusions.  

6.4 Overall Conceptual Design of ECON HPS 

Figure 6-1 depicts a conceptual design for ECON HPS using 3-D visualization, 

illustrating the main components that include conductive paving materials (heating 

elements), electrodes, a power supply, a control unit, and temperature sensors (Abdualla et 

al., 2016).  The Iowa State University (ISU) research team has developed an ECON mixture 

with desirable electrical and mechanical properties for airfield pavement ant-icing and 

deicing applications (Abdualla et al., 2016 and Sassani et al., 2017). Electrodes carry 

electrical current into the ECON, within which heat is generated through resistive heating. 

This particular electrode configuration and installation approach for large-scale ECON HPS 
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has been investigated and developed to provide sufficient heat performance and cost-

effective solutions (Abdualla et al., 2017). The ECON HPS could be operated using either a 

120V or a 210V power source, based on system design parameters such as electrode spacing 

and ECON materials properties. The selection of electrode spacing can be achieved using a 

design flow (Abdualla et al., 2016) that meet the design criteria, including the amount of 

snow/ ice to be melted and the associated power density requirement. The power density can 

be experimentally obtained or calculated using a steady-state energy balance equation for 

required pavement heat output (ASHRAE, 2015). A sensor system (i.e., temperature sensors) 

could be integrated into the ECON HPS to trigger system operation, including activation, 

deactivation, and maintenance of snow and ice-free surfaces based on a selected temperature. 

  

 

Figure 6-1 Conceptual design of ECON HPS 

6.5 Overall Conceptual Design of HHPS 

HHPS are typically closed-loop systems as shown in Figure 6-2 in which the fluid 

releases heat into the pavement, then returns to a heat source to be sent back through the 

pipes (Barbagallo 2013). The fluid can be heated by one of several different types of fluid 
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heaters, including geothermal hot water, underground thermal energy storage (UTES), 

boilers, and heat exchangers (FAA 2011), with the selection based on availability at the 

project site. Geothermal water would be considered efficient in locations with good 

geothermal potential (Joerger and Martinez 2006). Geothermally-heated hydronic systems 

often incorporate heat pumps to obtain greater heating capacity, because in many places 

ambient ground temperatures are not high enough to melt the snow (Minsk 1999). The 

efficiency of HHPS in melting ice and snow depends significantly on various factors, 

including fluid temperature, pavement conductivity, pipe depth, and pipe spacing (Ceylan et 

al. 2014). The components of HHPS include heat transfer fluid, piping, a fluid heater, pumps, 

and controls (ASHRAE 2015). While pipes can be made of metal, plastic, or rubber, a 

drawback of steel pipes is their susceptibility to rusting, so the use of steel embedded in 

pavement is not a common practice. An attractive alternative to steel pipe is plastic pipe 

made of polyethylene (PE) or cross-linked polyethylene (PEX) because it is corrosion-

resistant and offers lower material cost. Polyethylene (PE) and cross-linked polyethylene 

(PEX) can withstand fluid temperatures up to 140oF and 200oF, respectively (ASHRAE 

2015). Propylene glycol is commonly used as a heat transfer fluid because of its moderate 

cost, high specific heat, and low viscosity. 

Figure 6-3 shows the construction steps required for constructing the ECON using 

2LCP. The major difference between the construction of ECON using 2LCP and typical 

2LCP is that the ECON using 2LCP is constructed in two layers, wet-on-dry, to facilitate 

electrode installation and wire connections for the electrode system. 
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Figure 6-2 Schematic of HHPS 

6.6 ECON HPS Using 2LCP 

Step 1: Prepare the Base Layer, Place Dowel Baskets, and PVC Conduits. Prepare and 

compact the base layer, install dowel baskets, and install PVC conduits to accommodate the 

electrode system wires (Figure 6-4). The PVC conduit should be placed at the bottom of the 

base layer and on top of the subgrade layer to protect the PVC conduit from being damaged 

or displaced during placement of the PCC layer.   

Step 2: Place PCC Layer. Place the PCC layer (bottom layer) using slip-form paving (See 

Figure 6-5). The surface of the PCC layer should be screeded with brooms to create a rough 

surface for enhancing bonding with the ECON layer. Extra attention should be given during 

concrete paving to protect the PVC conduit embedded in the base layer, and since the PVC 

conduit must not interfere with the slip-form paver’s vibrators, pan, and auger, its location 

and spacing should be chosen so as not to interfere with the vibrators and thereby avoid PVC 

damage.   
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Figure 6-3 Work sequence of ECON HPS using 2LCP 

 

Figure 6-4 Prepare base and place dowel baskets and PVC conduits 
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Figure 6-5 Place PCC layer 

Step 3: Place Electrode System and Power Supply. After placing the PCC, electrodes 

should be placed and fixed using nylon rods, and electrical wire connections then made for 

the electrode system (See Figure 6-6). The recommended time for placing the electrodes on 

top of the PCC layer is when the PCC layer has gained sufficient strength to support them. 

Since this issue may pose challenges for a “wet-on-wet” process in 2LCP, it is recommended 

that only a “wet-on-dry” method be considered as the 2LCP method for ECON HPS 

construction. Note that a “wet-on-dry” choice implies that the first lift should have been 

cured for 24 hours prior to placing the next lift.  This will require “wet” curing. A wax-based 

curing compound cannot be used because it could act as a bond breaker between the concrete 

lifts. Saw-cut joints will be needed in the slab to prevent shrinkage cracking, and the top 

layer should also be saw-cut at precisely the same locations as those in the bottom layer. A 

power supply system can be specified based on an energy density sufficient to heat the 

ECON surface enough to prevent ice and snow accumulation. 
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Figure 6-6 Place electrodes 

Step 4: Place ECON Layer. The ECON layer can be placed as the top layer with the second 

paver forming the final pavement profile of the ECON HPS (See Figure 6-7). Prior to placing 

the ECON layer, electrodes should be cleaned using an air-blower, brooms, and a pressure 

washer to ensure sufficient bonding between electrodes and the ECON layer. Electrodes 

placement should not cause slipform paving clearance problems and should not interfere with 

the vibrators, auger, or pan.  Electrodes should be located within 2-in of the ECON surface to 

provide clearance for slipform paving (See Figure 6-8a and Figure 6-8b). The vibrators are 

generally positioned no more than 4-in. below the finished pavement surface (Kohn et al., 

2003). The vibrator spacing should be different from the electrode spacing to prevent damage 

or interference with the electrodes. 
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Figure 6-7 Place ECON layer 

   
               (a)                                                              (b) 

Figure 6-8 Paving considerations: (a) ECON cross section and (b) Slip-form paver 

6.7 ECON HPS Using Concrete Overlay 

Figure 6-9 shows the construction steps required for constructing ECON HPS using 

concrete overlay. Concrete overlay systems can be classified into a bonded resurfacing 

family and an unbonded resurfacing family. The construction sequence of the ECON HPS 

using either type of concrete overlay system may be similar, except that for an unbonded 

concrete overlay a separate interlay should be placed on the existing concrete pavement to 
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mitigate the reflective cracking potential. The construction sequence of the ECON HPS using 

concrete overlay involves the following four major steps: 

 

Figure 6-9 Work sequence of ECON HPS using concrete overlay 

Step 1: Prepare Existing Pavements and Place the Electrodes System. Place and secure 

the electrodes on the existing concrete; wire connections can be made later (See Figure 6-10). 

Perforated stainless steel 316-L is recommended for electrode materials because of its high 

corrosion resistance. The existing surface may require pre-resurfacing repairs to meet the 

required elevation. Threaded nylon rods and nuts can be used to fix electrode positions on the 

conventional concrete surface to prevent electrode movement during pouring of the ECON 

layer, as shown in Figure 6-10a and Figure 6-10b. Nylon materials are used to avoid 

corrosion and electrical current leakage to the ground as well as to prevent interaction with 

the electrical field. The electrodes can be anchored on the existing pavement using a drilling 

machine to drill holes to fix the electrode positions (See Figure 6-10c and 6-10d). 
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(a)                                                                   (b) 

  
     (c)                                                                     (d) 

                    

Figure 6-10 Fixing electrodes on existing pavement: (a) nylon rods and nuts, (b) 
electrode with nylon rod, (c) drill hole to fix electrode, and (d) placement of electrode 

Figure 6-11 shows the electrode installation layout on an existing pavement. 

Electrodes should be placed within each individual slab so that they will not cross the 

pavement joints, and installing the electrodes at the designed spacing ensures the 

performance of the ECON HPS and the required energy density. A minimum of 2 in. 

clearance above the top of the electrodes is recommended to prevent any cracking along the 

electrode lengths. 

To speed up the installation of electrodes on existing pavement, electrodes for a given 

slab can be assembled together (See Figure 6-12) and then placed and secured using nylon 

threaded rods and nuts. The fiberglass rebar is intended to support and assemble the 

electrodes so that all electrodes can be simultaneously placed and then secured. Fiberglass 
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rebar for assembling and supporting the multiple-electrode assemblies can be placed across 

pre-drilled holes in the electrodes. Electrodes connected with fiberglass rebar may be pre-

assembled and shipped to the project site to expedite construction procedures. 

 

Figure 6-11 Electrodes installation on existing pavement 

 

Figure 6-12 Electrodes assembly installation on existing pavement 
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Step 2: Connect Electrical Wires for Electrodes Systems. Electrical wires may be placed 

either right on the existing concrete surface or by forming a trench in which to place the 

wires (See Figure 6-13). These wires should pass under the joints to protect them (See Figure 

6-14) from damage because of concrete expansion or contraction at the saw-cut joints of the 

ECON layer.  

 

Figure 6-13 Electrical wire connections for the electrode system 

Step 3: Place the ECON Layer. The ECON layer can be placed after placing, securing 

electrodes, and connecting the electrode wires. Concrete overlays are constructed using 

conventional equipment and procedures (Harrington and Fick 2014).  Figure 6-15 shows the 

recommended placement of concrete overlay for large areas such as parking (Harrington and 

Riley 2012) that could be similarly applied for airfield concrete pavement. These types of 

placements are known as block placement (See Figure 6-15a) and strip placement (See 

Figure 6-15b). 
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Figure 6-14 Electrical wire details at joints (ASHRAE 2015) 

Block placement may be used to expedite the paving procedure and to reduce the formwork 

for large areas. Laser screeds are one of the options to be used for block placement. This 

method, a common practice for parking lots, may also be used in airfield pavements since 

they also have large areas. Strip placement, in comparison to block placement, is considered 

a very highly-productive paving method in which a slipform paver can be used for the strip 

placement at pre-designed widths. 

Consideration and Recommendation Before Placing the ECON Layer: 

• Electrodes should be located 2 in. below the ECON surface to provide clearance for 

slipform paving (See Figure 6-8a) 

o Electrodes should not interfere with the vibrators and auger (See Figure 6-8b) 
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• Electrodes should be cleaned prior to placing the ECON layer using an air-blower, 

brooms, and a pressure washer to ensure sufficient bond between electrodes and the 

ECON layer 

• Ensure that the electrode elevations are equal  

• Electrodes should be placed and fixed to prevent any electrode movement while 

placing the ECON layer 

• Electrode system connections should be tested to ensure that the power supply is 

properly providing power to the ECON HPS  

• Visual inspection of electrode system connections is also recommended  

  
(a) Block placement                                           (b) Strip placement 

Figure 6-15 Placement of the ECON layer: (a) block placement and (b) strip placement 
(Harrington and Riley 2012) 

An ECON layer may be placed as either a bonded or an unbonded layer depending on 

existing pavement conditions. The main difference between unbonded and bonded overlays 

is an HMA layer or Geotextile fiber placed on the existing layer to break the bond between 

two layers 
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 Figure 6-16 shows the cross-section of the ECON slab using a bonded overlay. For 

highway applications, bonded concrete overlays (top layer) are generally 2-5 in. thick 

(Harrington and Fick 2014) with recommended joint spacing of the bonded concrete overlay 

in the range of 3-8 ft. to reduce curling and warping stresses (Harrington and Fick 2014). For 

airfield applications, the thickness of bonded concrete overlays and joint spacing should be 

designed according to FAA AC150/5320-6F (FAA 2016).  

 

Figure 6-16 ECON layer for bonded concrete overlay 

Figure 6-17 shows the cross section of an ECON slab utilizing unbonded overlay 

techniques. For highway applications, an unbonded concrete overlay is generally between 4 

and 11 in. thick and the typical recommended joint spacing is between 6 and 15ft., depending 

on the thickness of the overlay (Harrington and Fick 2014). For airfield applications, the 

minimum thickness of unbonded concrete overlay is 6 in. thick (FAA 2016). If the unbonded 

overly thickness is greater than 4 in., the top layer may be divided into two layers; the top 

layer is the ECON layer and the bottom layer is regular concrete, as can be seen in Figure 

6-17. 
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 The recommended ECON layer (top layer) thickness is in the range of 2 to 4 in. The 

electrode number and spacing can be designed according to the energy density required to 

meet the required heating performance, i.e., it should be capable of maintaining the 

temperature of the ECON surface above the freezing point. The electrodes are installed and 

fixed on a prepared surface, and the ECON layer (top layer) can be placed on any existing 

surface such as concrete, asphalt, or composite. 

 

Figure 6-17 ECON layer for unbonded concrete overlay 

Step 4: Install Power Supply and Control System. The power supply and the control 

system should be placed near the PVC junction box where both electrical and sensor wires 

can go through a junction box and then connect to the power supply and the control system 

(See Figure 6-18). The control system is comprised of a data acquisition unit for collecting 

temperature sensors, a laptop, and operator interface units. The control system is designed to 

turn the system on/off either manually or automatically based on programing for temperature 

values provided. The power supply is comprised of contactors, circuit breakers, and electrical 

sensors. The contactors can remotely receive a signal for turning the system on or off based 
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on temperature sensor readings. The circuit breaker is designed to monitor the electrical 

current usage and to not allow drawing more than the designed value. The circuit breaker will 

turn the system off if current values exceed the designed values.   

 

Figure 6-18 ECON HPS using concrete overlay 

6.8 ECON HPS Using PC 

The work sequence required for constructing ECON HPS using PC is presented in 

Figure 6-19. The major difference between the construction of ECON HPS using PC and that 

of a typical PC installation is that ECON HPS using PC requires electrodes embedded in the 

ECON layer to allow current to pass through the ECON layer and thereby release heat that 

warms the paved surfaces and melts ice and snow. The construction sequence for ECON 

HPS using PC involves the following four major steps: 
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Figure 6-19 Work sequence of ECON HPS using PC 

Step1: Fabricate ECON Slab off-site. The ECON slab can be fabricated using off-site 

construction as shown in Figure 6-20a and 6-20b. The total thickness of the ECON slab can 

be divided into two layers; the top layer is the ECON layer and the bottom layer is the PCC 

layer. The PCC layer can be placed after positioning dowel bars and providing slots for load 

transfer to adjacent slabs. Electrodes should be anchored to the bottom layer using nylon 

anchor rods. The precast ECON slabs can be cured and tested before their transfer to a 

construction site. Each ECON slab contains two electrodes located at its edges to provide 

electrical connectability. The number of electrodes and their spacing can be determined and 

designed to provide sufficient heat generation to prevent snow and ice accumulation based on 

the required energy density for each specific project site. Finally, to enhance the bond 

between the two layers, the ECON layer can be placed after anchoring and securing the 

electrodes while the bottom layer is still wet. The ECON layer is generally 2 to 4 in. in 

thickness to reduce ECON slab construction costs and to primarily heat only the top ECON 

surface. 
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(a)                                                                           (b) 

Figure 6-20 3D Visualization of ECON heated slab fabrication using PC 

Step2: Prepare the Base Layer and Install PVC Conduits. Prepare and compact the 

subgrade and base layers to meet the required density, and install PVC conduits and junction 

box to accommodate the electrical wires for the electrode system (See Figure 6-21). The 

installation of PVC conduits can be accomplished after preparing the base layer.  Trenching 

should be provided for installation of PVC conduits whose positions should align with 

electrodes so that wires can be connected to the electrodes for providing electrical energy. An 

alternative option for installing the PVC would be that the PVC could be placed at the bottom 

of the base layer while sitting on top of the subgrade layer; this option is used for in-

pavement lighting conduit. 

Step 3: Place the ECON Slabs. Transfer the precast ECON slabs into the construction site 

and place them on the prepared base layers (See Figure 6-22a). The ECON slab has dowel 

bars and slots like those in a traditional precast panel to transfer mechanical loads. The 

ECON slab includes two electrodes embedded in ECON layer to provide connections to 

electrical wires after placing the ECON slab, and the exposed electrodes at the edges (See 

Figure 6-22b) of the ECON slabs should be placed above the PVC conduits so that such 
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electrical connections can be made. The wires should not cross the joints because of potential 

damage to them. 

 
Figure 6-21 Preparing the base layer and installing PVC conduits and junction box 

Step 4: Install Power Supply. Install the power supply and the control unit. The power 

supply system can be specified based on the designed energy density sufficient to heat the 

ECON surface to prevent ice and snow accumulation. The ECON system can be operated 

under from a 120V or 240V power source based on the designed electrode spacing and 

ECON material properties such as electrical resistivity. All electrical wires should be 

connected to the electrode system and tested before filling voids above the exposed 

electrodes (See Figure 6-22c), after which the voids can be filled with conductive patching 

concrete. The voids of the dowel slots may be filled with grout as in traditional precast 

panels. The grout can be pumped through a dowel grout port and a bedding grout port 

(Chang et al. 2004). 
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           (a) 

 
           (b) 
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          (c) 

Figure 6-22 ECON construction sequence using PC: (a) place ECON slab, (b) connect 
electrical wires to the electrode systems, (c) fill voids with conductive patching materials 

6.9 HHPS Using 2LCP 

Figure 6-23 depicts the construction steps required for constructing a HHPS using 

2LCP. The major difference between the construction of a HHPS using 2LCP and one with 

typical 2LCP is that the HHPS using 2LCP involves the placement of embedded pipes into 

the PCC pavement through which hot fluids are circulated and thereby release heat to warm 

the paved surfaces and melt ice and snow. The construction sequence for a HHPS using 

2LCP involves the following three major steps.  
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Figure 6-23 Work sequence of HHPS using 2LCP 

Step 1: Prepare the Base Layer, Install Dowel Baskets, and Place the PCC layer. This 

step involves several tasks, including preparing and compacting the base layer, then installing 

dowel baskets, and finally placing PCC layer (bottom layer) on the prepared bases (See 

Figure 6-24). Instead of using a two-lift paving approach, the pipes could be placed on the 

prepared base layer before concrete paving if the designed pavement thickness is not too 

thick (i.e., less than 11 in. thick). In such a case, a wire mesh and plastic chairs could be 

utilized for positioning the pipes on the prepared base layer to prevent movement while 

pouring the concrete.     

Step 2: Place Pipes on PCC layer (Bottom Layer). Define the pipe pattern and spacing and 

the location of the manifold. Pipe could be placed on top of the P-501 (bottom layer) and 

anchored using clip (Figure 6-25a). The pipe pattern and spacing are based on the energy 

density required for melting ice and snow at the specific project site. To prevent them from 

being damaged, the pipes should not interfere with the saw-cuts at the joints. The joint 

options recommended for protecting the pipes across the joints are presented in Figure 6-25b 

(FAA 2011 and ASHRAE 2015). The pipes should be inspected using air testing to identify 

any cracks or leakages before pouring the concrete.   
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Figure 6-24 the base layer preparation for HHPS 

 

(a) 
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(b) 

Figure 6-25 HHPS using 2LCP: (a) place pipes and top layer (concrete layer) and (b) 
pipe details for concrete construction (ASHRAE 2015) 

Step 3: Place PCC Layer (Top Layer). Place the PCC layer and connect pipes to a heat 

source. The PCC can be placed after ensuring that the pipes will not cause slipform paving 

clearance problems. Pipes should be located 2 in. below the concrete surface to provide 

appropriate clearance for a slipform paver’s vibrators and auger (See Figure 6-26a and 6-

26b). The fluid circulated in the closed-loop pipe can be heated using geothermal energy, as 

shown in Figure 6-27. A geothermal energy system costing1.6 million dollars was installed at 

the greater Binghamton airport to heat an area of 260 m2 (Ziegler 2013), and while this seems 

quite expensive, the resulting reduction in operational costs of using geothermal energy 

makes such a system cost-effective.  
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   (a)                                                                 (b) 

Figure 6-26 Paving considerations: (a) cross section of HHPS and (b) slipform paver 

 

Figure 6-27 HHPS using 2LCP with geothermal wells as heat source 

6.10 HHPS Using Concrete Overlays 

The construction sequence of HHPS using concrete overlay shown in Figure 6-28 

involves the following two major steps: 

Step 1: Prepare Existing Pavements and Place Pipes. Prepare the existing pavement, place 

pipes on existing pavement, and identify manifold locations. The preparation for existing 
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pavement depends on its condition, and if necessary the existing surface may be milled to 

meet the required elevation. 

 

Figure 6-28 Work sequence of HHPS using concrete overlay 

Pipes are installed on existing pavement and either anchored using clips or tied to 

wire mesh to prevent their movement while pouring concrete (See Figure 6-29). Choice of 

pipe pattern and spacing, size, and lengths are based on the required energy density for the 

specific project location. To prevent damaging them, the pipes should not interfere with the 

saw-cuts at the joints. The recommended joint options for passing the pipes through the joints 

are shown in Figure 6-25b (ASHRAE 2015). The number of manifolds required depends on 

the project size and total length of pipe. Insulation layers such as extruded polystyrene (XPS) 

boards can be placed on the existing pavement before placing pipes to reduce the heat loss. 

The pipes should be air-tested for cracks or leakage before placing the concrete.  

 Step 2: Place PCC Layer. Place the concrete layer and connect pipes to the heat source. 

Concrete can be placed after ensuring that the pipes will not cause slipform paving-clearance 

problems. Pipes should be located at least 2 in (5 cm) below the concrete surface to provide 

clearance for slipform paver vibrators and augers (See Figure 6-26a and 6-26b). After 

identifying and connecting the manifolds to the pipes, the manifold should be connected to 

the heat source. The fluid circulated in the closed-loop pipes can be heated using geothermal 

energy as shown in Figure 6-30, and can be operated automatically using the control system 

to turn the system on/off based on a set temperature value and readings from embedded 
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temperature sensors in the concrete. To provide satisfactory operation the hydronic-heated 

system should be warmed up for some time before snow and ice have accumulated on the 

pavement surface (ASHRAE 2015).     

 
Figure 6-29 HHPS using concrete overlay 

 

Figure 6-30 HHPS using concrete overlays with geothermal wells as heat source 

HHPS can be installed using either bonded or unbonded concrete overlay techniques, 

and cross-sections of HHPS using bonded and unbonded concrete overlays are shown in 
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Figure 6-31a and Figure 6-31b. In HHPS using bonded concrete overlay techniques, pipes 

are installed and anchored using wire ties on a prepared existing surface (See Figure 6-31a). 

In HHPS using unbonded concrete overlay techniques, pipes are placed and anchored on 

separator layers if the top layer thickness is small (See Figure 6-31b). 

 
             (a) 

 
               (b) 

Figure 6-31 HHPS cross section (a) using bonded concrete overlay, (b) using unbonded 
concrete overlay 
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6.11 HHPS Using PC 

Figure 6-32 depicts the construction steps required for constructing a HHPS using 

PC. The major difference between the construction of HHPS using PC and typical PC 

installation is that a HHPS using PC requires installation allowing hot fluids to run through 

the pipes and thereby release heat to warm paved surfaces and melt ice and snow. The 

construction sequence for a HHPS using PC involves the following three major steps: 

 

Figure 6-32 Work sequence of HHPS using PC 

Step1: Fabricate Hydronic Heated Slab Off-Site. A hydronic heated slab can be fabricated 

off-site using PC (Figure 6-33) with formwork designed to facilitate placement of the pipes, 

the wire mesh, the dowel bars, and the slots (Figure 6-33a and Figure 6-33b). The formwork 

has open areas to permit inlet and outlet pipes to be connected to other hydronic slabs. The 

pipe is placed on top of wire mesh to elevate it closer to the surface and hold it there while 

the concrete is poured. A minimum of 2 in. of concrete cover extending above the top of the 

pipe is typically required (ASHRAE 2015). The pipe pattern can be designed for a particular 

job site to provide sufficient heat for melting ice and snow. After securing the pipe, concrete 

is poured into the formwork and is then screeded and cured before transferring the completed 

structure to a construction site (Figure 6-33c and Figure 6-33d). 
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(a)                                                                    (b) 

 
(c)                                                                   (d) 

Figure 6-33 Hydronic heated slab fabrication using PC 

Step2: Prepare the Base Layer and Place Hydronic Heated Slabs. Prepare and compact 

both subgrade and base layers to satisfy density requirements and identify manifold locations 

to define pipe circuit length and pattern, with the pipe pattern and pipe spacing adjusted 

based on the project site, geometry, size, required energy, and locations. Like a traditional PC 

structure, the slab has dowel bars and slots to provide load transfer, and it can be transported 

and placed into position at the project site. The pipes can be interconnected at the joints after 

placing the hydronic slabs, filling the dowel slot voids, and ensuring that the desired panel 

elevation is achieved. Figure 6-34a and Figure 6-34b show the pipe pattern and the 

connections between hydronic-heated slabs, respectively.     
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(a) 

 

 
(b) 

Figure 6-34 Hydronic heated slabs assembly 

Step3: Connect Pipes to Energy Source. After identifying and connecting the manifold to 

the pipes, it should be connected to the heat source to permit fluid to circulate in the 

embedded pipe through a heat source (Figure 6-35). A HHPS can be operated automatically 

using a control system to turn the system on and off based on  set temperature value that can 
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be measured by temperature sensors embedded in the concrete. To provide satisfactory 

operation the HHPS should be warmed up before snow and ice accumulates on the surface 

(ASHRAE 2015).       

 

Figure 6-35 HHPS with geothermal wells as heat source 

6.12 Conclusions  

The goal of this study was to develop a conceptual design framework and provide 

construction guidance for electrically conductive concrete (ECON) and hydronic heated 

pavement system (HHPS) using precast concrete (PC), concrete overlay, and two-lift paving 

(2LCP).  The results of this work can be enumerated as follows:  

• Construction considerations and 3D visualization workflows for HPS were developed 

through the use of different construction techniques to develop more robust 

construction schemes and well-performing heated airport pavements  

• HPS using PC is a viable option for accelerating construction procedures, reducing 

labor costs, and minimizing traffic disruption. In addition, the heat distribution of the 
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pavement surface is enhanced because the HPS panels are fabricated offsite where 

quality can be better controlled 

• HPS using two-lift paving has potential for expediting the construction work of HPS 

for new construction through the use of a slipform paver. The mixture of the bottom 

lift could be used to mitigate the heat loss by using lightweight aggregates 

• HPS using concrete overlays has the benefit of facilitating the HPS’s components 

such as electrodes or pipes easily in comparison to other construction techniques. It is 

also suitable for construction of existing pavements and is considered a cost-effective 

solution 

• Design details such as joint interfaces and material selection was provided to ensure 

that good construction practices using advanced construction techniques were 

followed 
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CHAPTER 7.    CONCLUSION AND RECOMMENDATION FOR 
FUTURE WORK 

7.1 Summary  

The objective of this research study was to develop and demonstrate the feasibility of 

using heated pavement systems as an alternative promising technology for preventing 

ice/snow accumulation on paved surfaces to mitigate the use of conventional deicing 

methods. Such systems have the potential to keep airports accessible, safe, and sustainable 

during the winter season.   

System requirements related to material selection, design, construction, and 

operational for an ECON-based HPS were identified. A small-scale prototype ECON slab 

was designed and constructed at the ISU Portland Cement Concrete Pavement and Materials 

Research Laboratory, then tested to determine its performance and efficiency. The ECON 

mix contained 6-mm-long carbon fibers, 0.75% by volume of the total concrete mix, and 

used methylcellulose as an agent to disperse the carbon fiber particles evenly and as a result 

improve electrical conductivity. The electrical resistivity value was 50 Ω-cm at room 

temperature (i.e., 20°C ambient temperature). Perforated steel bars with gaps larger than the 

maximum aggregate size was used for electrodes to ensure that conductive concrete can be 

bonded with an electrode to support electrical current flow within the ECON layer.  

A series of experimental tests were conducted to evaluate ECON slab performance in 

terms of melting surface snow/ice and to calculate energy consumption and cost. The 

literature indicates that ECON performance provides the lowest energy consumption and cost 

in comparison to electrically-heated pavement systems. The better operational performance 

of the ECON heating slab in this study is attributed to higher conductivity in the newly 
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developed ECON mixture that allows the entire surface to heat uniformly and quickly melt 

snow and ice.    

A developed 3-D finite element (FE) modeling approach could be used for designing 

and optimizing ECON parameters such as electrode spacing, power input, etc., to meet the 

design criteria for achieving the best heating performance. A 3-D FE model for an ECON 

slab was developed using COMSOL Multiphysics software and validated though comparison 

with experimental test results. Sensitivities of various ECON HPS design variables to heat 

generation and distribution performance were identified to identify the critical variables 

having the most influence on heating performance.   

The design, construction, and performance of the world’s first full-scale ECON-based 

HPS at a U.S. airport was demonstrated. Two ECON slabs were designed and constructed at 

the General Aviation (GA) apron at the Des Moines International Airport (DSM), Iowa, in 

2016. The challenges and solutions of taking a prototype small-scale ECON heated concrete 

slab developed by ISU and implementing it at full scale in the airport were identified and 

addressed. Systematic design components were identified and construction procedures were 

developed and implemented for ECON-based HPS. Using sensor data, the performance of 

the constructed and remotely-operated ECON slabs was evaluated under real weather 

conditions at DSM during the 2016-2017 winter season, with results demonstrating that 

ECON-based HPS offer promising deicing and anti-icing capacities with respect to providing 

uniform heat distribution and preventing snow and ice accumulatios on the entire area of 

application under various winter weather conditions. 

Advanced construction techniques and workflows using heated pavements with 

precast concrete (PC), two-lift paving, and concrete overlays were demonstrated through 3D 
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visualizations to provide design and construction guidance for large-scale heated airport 

pavement systems. A detailed review of advanced pavement construction techniques and 

practices, including precast concrete, two-lift paving, and concrete overlay, were addressed 

to evaluate their efficacy and applicability to construction of HPS at airports.  

7.2 Conclusions 

The major conclusions corresponding to each study objective are as follows: 

7.2.1. A Prototype Small-Scale ECON Slab. This study identified ECON’s system 

requirements and the use of ECON HPS as a cost-effective solution for preventing snow/ice 

accumulation on paved surface to eliminate related airport incidents and accidents. The 

results for the prototype ECON slab were evaluated and the following conclusions can be 

drawn:   

• The energy consumption and energy cost of the prototype ECON heating slab was the 

lowest of the electric HPSs developed or reported in the literature to date. Such 

excellent operational performance is attributed to a recently-developed ECON 

mixture that provides higher conductivity (about 50 Ω-cm of electrical resistivity) to 

even out surface heating to melt snow and ice quickly. 

• The prototype ECON heating slab is comprised of a thin ECON top layer on a 

conventional concrete bottom layer. This cost-effective two-layer approach can be 

implemented for large-scale ECON HPS using precast concrete, concrete overlay, and 

two-lift paving techniques. 

• The design parameters to be determined for a large-scale ECON HPS include slab 

dimensions, inter-electrode distance, electrical resistance, and voltage. The design 
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flow developed in this study can be used to determine values of these parameters for 

given design criteria. 

• Key construction materials required for a well-performing ECON HPS are low-

resistivity (i.e., high-conductivity) ECON materials, electrodes that bond well with 

ECON, and cost-effective thermal insulation. 

• ECON should be heated with AC to enable electrons to follow different paths through 

the conductive materials to distribute slab heat evenly. 

7.2.2 Examination and Development of a 3-D Finite Element Model for Studying ECON 

HPS as an Alternative Design Approach to Optimize the ECON HPS Variables. A 3-D 

finite-element (FE) model of ECON HPS was developed for predicting heat performance 

under different input conditions (i.e., weather conditions, electrode spacing, ECON material 

properties, etc.) and it was validated through comparison with laboratory experimental test 

results. The major conclusions of this study are as follows: 

• The developed 3-D FE model for ECON can predict heat generation and distribution 

changes over operational time. It can be utilized as a cost-effective evaluation tool for 

examining the effects of various design parameters on the time-dependent heating 

performance of optimized ECON HPS design.       

• Given the assumed boundary conditions, the model shows that, during ECON 

operation, the temperature is initially highest in the central area of the ECON surface 

and then distributed across the entire slab.  

• The temperature inside the conventional concrete layer increases with time because 

the insulation layer, and the slab boundaries reduce heat losses. This temperature 

becomes close to the temperature inside the ECON layer, indicating that thermal 
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stresses between surfaces will not be an issue because there are only small 

temperature differences between the ECON and conventional layers. 

• The ECON electrical resistivity is one of the most influential parameters governing 

heating performance, and as the electrical resistivity increases, the time before 

achieving a temperature above the freezing point on the ECON surface increases. The 

3-D FE model results indicates that electrical resistivity ranges of about 50 to 200 

Ω∙cm can provide sufficient heat for realistic ECON slab (4.6 m long × 4.6 m wide × 

19 cm thick) dimensions representing an actual large-scale airport pavement slab.   

• As the electrode spacing increases, the time to achieve a temperature above the 

freezing point on the ECON surface dramatically increases. Based on the 3-D FE 

model results, it is recommended that design electrode spacing should be designed 

such that more than two electrodes could be accommodated within an ECON slab to 

ensure that an ECON above-freezing surface temperature can be achieved. 

• Voltage values and ambient temperatures can also affect the time before achieving 

above-freezing point temperatures on an ECON surface. As voltage increases, the 

ECON surface temperature reaches an above-freezing point temperature more 

quickly.  

• Thirty minutes or less are required to increase surface temperatures from ambient (-5, 

-15, -25 oC) to above-freezing temperatures. Considering that the ambient 

temperature ranges selected for the study are representative of temperature conditions 

for a wide range of geographical locations in the US, ECON HPS employed in most 

geographical locations in the US should be able to achieve above-freezing point 

surface temperatures at those locations.    
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7.2.3. Design and Construction of the World’s First Full-Scale ECON Heated Airport 

System. This study demonstrated the field implementation of ECON HPS in a real airport 

environment. The major conclusions of this study are as follows: 

• The constructed ECON HPS demonstrated deicing and ant-icing capacities providing 

uniform heat distribution and preventing snow and ice accumulations on the entire 

area of application under various winter weather conditions, including extremely cold 

weather (i.e., arctic blast).   

• The energy consumption of the ECON HSP for the deicing application ranged from 

0.05 kW-h/ft2 to 0.10 kW-h/ft2 required to melt 0.5 to 1.5 in. of snow/ice 

accumulation under various winter weather conditions, except for an arctic blast event 

that required 0.59 kW-h/ft2 to melt 1 in. of snow/ice accumulation. The energy 

consumption of the ECON HSP for the anti-icing application was estimated at 0.22 

kW-h/ft2 for preventing snow and ice accumulations for a 7-hr interval. 

• The ECON HSP in DSM was constructed using a two-lift approach that placed a thin 

ECON layer (top layer) on a P-501 PCC layer (bottom layer). This approach can be 

effective not only in saving in the construction costs of a single thick ECON layer, 

but also in facilitating electrode installation and wire connections. 

• The surface of the P-501 PCC layer (bottom layer) was screeded to create a rough 

surface that provided adequate bonding between the two layers.  

• Because of its high corrosion resistance and so electrodes would not be reduced in 

efficiency, perforated stainless steel was used for the electrodes; the use of stainless 

steel also eliminated the cracking potential possible with steel or galvanized steel.  
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• Electrodes should be placed at least 1to 2 inches below the ECON surface so as not to 

interfere with a paver’s vibrator, pan, and auger when slipform paving is used for 

large-scale construction. 

7.3 Recommendations 

The following recommendation are drawn from the studies presented in this 

dissertation. 

7.3.1 Recommendation for ECON System Design and Full-Scale ECON HPS 
Construction 

The recommendations for achieving successful long-term performance summarized 

below are based on lessons learned during the design and construction of the first full-scale 

of ECON HPS.    

• Proper selection of materials for ECON HPS components, including ECON mixture 

and electrodes, can enhance the performance and increase the service life of ECON 

HPS. For example, galvanized steel is not recommended for use as electrodes because 

the coating material (i.e., zinc) protecting the steel from corrosion could eventually 

degrade and peel off when electrical power is applied. 

• Steel fibers or shavings should be avoided in the ECON mix for airport application 

due to potential corrosion problems.   

• A two-lift paving technique is the best approach for constructing ECON slabs; it is 

challenging to achieve wet-on-wet paving because electrode installation requires 

extra time for anchoring on the bottom lift, i.e., it should be allowed to stiffen to 

support the electrodes. 

• For mass paving of ECON materials, slip-form or laser-screed paving would be the 

best option for enhancing the construction process. 
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7.3.2 Recommendation for Finite Element Model 

The followings recommendations are suggested for use of the 3-D finite element (FE) 

model as an alternative tool for optimizing the ECON HPS parameters.   

• The time required to heat the ECON surface above freezing point (i.e., 1~2 oC) is 

highly dependent on weather conditions such as ambient temperature, wind speed, 

etc., and it can be estimated either from data-driven models using historical 

experimental data, or through physics-based thermodynamic models such as finite-

element (FE) model simulation. 

• Avoid the use of a constant value of ECON electrical resistivity. Consider the 

electrical resistivity of the ECON sample as temperature-dependent when using the 

finite-element models to obtain more accurate analytical results.    

7.3.2 Recommendations for Advanced Construction Techniques for HPS 

To best automate and accelerate the construction work, the following 

recommendations are suggested for large-scale construction of heated pavement systems 

using PC, two-lift paving, and concrete overlay. 

• Two-lift paving technique is the best approach for constructing ECON HPS. 

• Contractors should be trained and educated in constructing ECON HPS using 

different techniques and should practice by constructing a small ECON area before 

paving larger areas.  

• Provide a 3-D visualization of the ECON construction work so that contractors can 

easily understand and envision correct construction procedures. 
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• The surface of the bottom layer (regular concrete) should either be grooved or 

brooms/burlaps used to create a rough surface to achieve sufficient bonding between 

the two layers. 

• Dowel baskets should be placed in the bottom layer (the PCC layer).  

• Contraction/expansion joints should be used to isolate ECON slabs from PCC slabs to 

allow free movement during ECON heating operations.  

• Electrodes should be positioned perpendicular to the traffic direction to reduce the 

likelihood of potential cracking from vehicle loads. Placing electrodes on a fresh 

concrete surface is challenging, so wet-on-wet procedures probably cannot be 

achieved.  

• Electrodes should be placed at least 2 inches below the surface to avoid interference 

with a paver’s vibrator, pan, and auger. 

• Electrode material should be resistant to corrosion while applying voltage to 

electrodes. To address this issue, stainless steel 316-L is the recommended option for 

avoiding such corrosion problem.  

• Reduce the electrical resistivity (i.e., the reciprocal of electrical conductivity) of the 

ECON mixture to provide better heat performance. 

7.3.2 Recommendation for Future Research 

The followings recommendations are proposed for future research: 

• Investigate the long-term bonding between the ECON layer and the Portland cement 

concrete (PCC) layer and the expansion and contraction phenomena of both layers 

during ECON operation. 
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• Investigate the potential for developing more sustainable ECON mixes such as the 

use of recycled carbon fibers in ECON.     

• Provide cost-effective guidance for ECON maintenance, including preservation, 

rehabilitation, and reconstruction. Investigate ECON heating performance when the 

ECON layer is cracked (i.e., small or large cracks). 

• Develop a 3-D finite-element model for estimating dollar values of ECON 

operational costs for large-scale heated airport pavements and the energy required to 

warm the ECON surface for various pavement thicknesses.  

• Investigate the curling and warping behavior of the ECON HPS during operation and 

the effect of the ECON temperature gradient.  

• Investigate long-term ECON performance by measuring the effect of electrical 

resistivity on heating performance.    

• Investigate the long-term ECON performance by measuring the electrical resistivity 

that has an effect on the heating performance.  

• Assess the energy requirements and financial viability of installing a heated pavement 

system at an airport and its cost compared to that using conventional snow-removal 

strategies. 

• Future studies can use the findings of this study to design and construct full-scale 

implementation of HPS using two-lift paving through field demonstration at actual 

airport environments. It would be beneficial to develop a mix design for the bottom 

lift to mitigate heat loss during HPS operation. 
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APPENDIX PERFORMANCE EVALUATION of ECON HPS at DSM  

This appendix shows the detailed performance of the ECON HPS at DSM airport 
under different weather conditions for the first year (December 08, 2016 to March 13, 2017) 

 
• First Performance Evaluation (12/08/2016):  

 
Table 1 Weather condition 

 
Date December 08, 2016 
Snow thickness No snow event 
Operation time See the note below 
Mean temperature 19°F (-7°C) 
Minimum temperature 12°F (-11°C) 
Maximum temperature 25°F (-3.8°C) 
Wind speed 18 mph 
Average relative humidity 61 % 
Minimum relative humidity 55 % 
Maximum relative humidity 67 % 

Note: the ECON system was turned on at 6:00 am, however, the circuit breaker controlling electrodes in slab 1 
was turned off and only slab 2 started at 6:00 am. Slab 1 operation started from 9:55 am to 5:00 pm. Slab 2 
operation stated from 6:00 am to 5:00 pm 
 

 
Figure 1 Slab 1 temperature and current measurements  
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 Figure 2 Slab 2 temperature and current measurements  
 

• Second Performance Evaluation (12/10/2016):  
 

Table 2 Weather condition 
  

Date December 10, 2016 
Snow thickness 1.2 inch  
Operation time 7 hours 
Mean temperature 25°F (-3.8°C) 
Minimum temperature 22°F (-5.5°C) 
Maximum temperature 28°F (-2.2°C) 
Wind speed 8 mph 
Average relative humidity   77 % 
Minimum relative humidity 65 % 
Maximum relative humidity 87 % 
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Figure 3 Slab 1 temperature and current measurements  

 

 
Figure 4 Slab 1 sensors location   
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Figure 5 Slab 2 temperature and current measurements  

 
 

 
Figure 6 Slab 2 sensors location   
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Figure 7 Performance of ECON HPS during snowfalls using surveillance cameras 

 
Figure 8 shows the ECON slab 1 surface temperatures in comparison to the adjacent 

slab (a regular PCC slab) during operation time at 02:00 pm. The surface temperature on 

ECON slab 1 was about 12 oC (54 oF) and the temperature reading from the sensor located at 

0.5-in from the ECON slab 1 was about 21 oC (70 oF). A temperature difference of about 9 oC 

was observed. However, a surface temperature of -8.5 oC (16 oF) in the regular PCC slab was 

much lower than the temperature readings observed in ECON slab 1.     
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Figure 8 Surface temperature reading at ECON slab 1 and adjacent slab during operation 
time  

 
Figure 7 and figure 9 illustrates the performance of the ECON slab. There was no 

accumulation on the ECON slabs during the snowfall while the total snowfall accumulation 

was 1 inch. The performance of the ECON slab did not only prevent snow accumulation, but 

also completely made the ECON slab surface dry.   

 

 
(a) 
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(b) 

Figure Performance of the ECON HPS: (a) heavy snow remove machine verse ECON 
HPS and (b) snow removal truck verse ECON HPS   

 
• Third Performance Evaluation (12/18-19/2016):  

 
Table 3 Weather condition 

 
Date December 18-19, 2016 
Snow thickness 0.5-1 inch (arctic blast weather) 
Operation time 21 hours 
Mean temperature -4°F (-20°C) 
Minimum temperature -11°F (-24°C) 
Maximum temperature 3°F (-16°C) 
Wind speed 9 mph 
Average relative humidity   67 % 
Minimum relative humidity 60 % 
Maximum relative humidity 75 % 
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Figure 10 Slab 1 temperature and current measurements  

 

 
Figure 11 Slab 2 temperature and current measurements  
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(a) 

 
(b) 

Figure 12 Performance of the ECON HPS at DSM: (a) snow accumulation on slabs 
before turning the system on and (b) snow and ice free surface   

 
 

• Forth Performance Evaluation (01/05/2017):  
 

Table 4 Weather condition 
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Date January 05, 2017 
Snow thickness No snow 
Operation time 8 hours 
Mean temperature 10°F (-12°C) 
Minimum temperature 5°F (-15°C) 
Maximum temperature 15°F (-9.5°C) 
Wind speed 9 mph 
Average relative humidity   67 % 
Minimum relative humidity 60 % 
Maximum relative humidity 75 % 

 

 
Figure 13 Slab 1 temperature and current measurements  
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Figure 14 Slab 1 sensors location   

 
 

 
Figure 15 Slab 2 temperature and current measurements 
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Figure 16 Slab 1 sensors lcation   

 
• Fifth Performance Evaluation (01/20/2017):  

 
Table 5 Weather condition 

 
Date January 20, 2017 
Snow thickness No snow 
Operation time 2 hours 
Mean temperature 22°F (-6.0°C) 
Minimum temperature 15°F (-9.5°C) 
Maximum temperature 30°F (-1.0°C) 
Wind speed 6 mph 
Average relative humidity   95 % 
Minimum relative humidity 89 % 
Maximum relative humidity 100 % 

 
 

  
(a)                                                                          (b) 
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(c)                                                                          (d) 
Figure 17 Performance of the ECON HPS: (a) thermal image after 20 minutes of operation, 
(b) 30 minutes of operation, (c) after 40 minutes of operation, and (d) after 50 minutes of 

operation 
 

• Sixth Performance Evaluation (01/24/2017):  
 

Table 6 Weather condition 
 

Date January 24, 2017 
Snow thickness No snow 
Operation time 1 hour 
Mean temperature 22°F (-6.0°C) 
Minimum temperature 31°F (-0.5°C) 
Maximum temperature 14°F (-10°C) 
Wind speed 6 mph 
Average relative humidity   95 % 
Minimum relative humidity 89 % 
Maximum relative humidity 100 % 
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(a)                                                                                (b) 

  
(c)                                                                                (d) 

  
(e)                                                                                (f) 

 
Figure 18 Infrared thermographic image of the ECON slabs: (a) at 0 minutes, (b) after 30 
minutes, (c) after 40 minutes, (d) after 45 minutes, (e) after 50 minutes, and (f) after 55 

minutes 
 

• Seventh Performance Evaluation (01/25/2017):  
 
  Table 7 Weather condition 
 

Date January 25, 2017 
Snow thickness 0.5 inch 
Operation time 5 hours 
Mean temperature 23°F (-5°C) 
Minimum temperature 14°F (-10°C) 
Maximum temperature 31°F (-0.5°C) 
Wind speed 14 mph 
Average relative humidity   93 % 
Minimum relative humidity 85 % 
Maximum relative humidity 100 % 
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Figure 19 Slab 1 temperature and current measurements  

 

 
Figure 20 Slab 2 temperature and current measurements  
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(a)                                                                         (b) 
Figure 21 Surface temperature: (a) ECON surface temperature during Operation time 

and (b) adjacent PCC Slab 
 

  
(a)                                                                          (b) 
Figure 22 Performance of the ECON HPS at 2 hours of operation: (a) thermal camera 

and (b) operation of melting snow and ice on ECON surface  
 

  
(a)                                                                          (b) 
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(c)                                                                          (d) 
 

Figure 23 Performance of the ECON HPS after snow completely melted when ISU 
team reached at DSM airport: (a) after 2 hours and 50 minutes of operation, (b) after 2 hours 

and 53 minutes of operation, (c) after 2 hours of operation, and (d) after 3 hours and 46 
minutes of operation 

 
• Eight Performance Evaluation (02/08/2017):  

 
Table 8 Weather Condition 

 
Date February 08, 2017 
Snow thickness 1.6 inch 
Operation time 6 hours and 50 minutes 
Mean temperature 19°F (-7°C) 
Minimum temperature 14°F (-10°C) 
Maximum temperature 23°F (-5°C) 
Wind speed 13 mph 
Average relative humidity   65 % 
Minimum relative humidity 45 % 
Maximum relative humidity 84 % 
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Figure 24 Slab 1 temperature and current measurements  

 

 
(a) 
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(b) 

 
(c) 
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(d) 

Figure 25 Performance of the ECON HPS at DSM, IA: (a) after 2 hours and 48 
minutes of operation, (b) after 3 hours and 45 minutes of operation, (c) after 4 hours and 12 

minutes of operation, and after 4 hours and 38 minutes of operation. 
 

• Nine Performance Evaluation (02/24/2017):  
 

Table 9 Weather condition 
 

Date February 24, 2017 
Snow thickness 0.5~1 inch 
Operation time 5 hours and 50 minutes 
Mean temperature 31°F (-0.5°C) 
Minimum temperature 22°F (-5.5°C) 
Maximum temperature 40°F (4.4°C) 
Wind speed 17 mph 
Average relative humidity   81 % 
Minimum relative humidity 68 % 
Maximum relative humidity 93 % 
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(a) 

 
(b) 
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(c) 

 
(d) 
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(e) 

 
(f) 
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(g) 

 
Figure Performance of the ECON HPS at DSM, IA: (a) before turning on the HPS (b) 

after 1 hours and 20 minutes of operation, (c) after 1 hours and 37 minutes of operation, (d) 
after 2 hours and 13 minutes of operation, (e) after 2 hours and 39 minutes of operation, (f) 
after 2 hours and 41 minutes of operation, and (g) after 3 hours and 14 minutes of operation 

 
• Tenth Performance Evaluation (03/13/2017):  

 
Table 10 Weather condition 

 
Date March 13, 2017 
Snow thickness 1.0~1.5 inch 
Operation time 3 hours and 20 minutes 
Mean temperature 26°F (-3.3°C) 
Minimum temperature 21°F (-6.1°C) 
Maximum temperature 30°F (-1.1°C) 
Wind speed 13 mph 
Average relative humidity   81 % 
Minimum relative humidity 65 % 
Maximum relative humidity 93 % 
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Figure 27 A 1.0~1.5 inch snow thickness  

 

 
(a) 
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(b) 

 
(c) 
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(d) 

Figure 28 Performance of the ECON HPS at DSM, IA: (a) before turning on the HPS 
(b) after 1 hours and 5 minutes of operation, (c) after 1 hours and 23 minutes of operation, (d) 

after 1hours and 50 minutes of operation 
 

Table 11 1st year Summary of ECON performance   
 

Date  ECON 
slab 

Air 
temp. 
(
o
F)  

Wind 
speed 
(mph) 

Average 
snow 

thickness 
(in) 

Average 
power 
density 
(W/ft

2
) 

Operation 
time minutes 

(hrs.) 

Energy 
consumption 

(kWh/ft
2
) 

Unit cost 
(¢/ft

2
) 

Unit cost 
(¢/yd

2
/ 

hour) 

Dec. 10, 
2016 

Slab 1 25  8 1.2 38 420 (7) 0.27 2.15 2.77 
Slab 2 25  8 1.2 31 420 (7) 0.22 1.73 2.23 

Dec. 18-19, 
2016 

Slab 1 -11 16 1 39 1286 (21.4) 0.84 6.70 2.80 
Slab 2 -11 16 1 27 1286 (21.4) 0.59 4.70 1.96 

Jan. 25, 2017 Slab 1 14 14 0.5 38 90 (1.5) 0.06 0.45 2.66 
Slab 2 14 14 0.5 32 90 (1.5) 0.05 0.38 2.00 

Feb. 08, 2017 Slab 1 14 13 1.5 35 210 (3.5) 0.12 0.98 2.57 
Slab 2 14 13 1.5 29 210 (3.5) 0.10 0.81 2.00 

Feb. 24, 2017 Slab 1 22 17 0.8 37 150 (2.5) 0.09 0.75 2.80 
Slab 2 22 17 0.8 33 150 (2.5) 0.08 0.66 2.40 

Mar. 13, 
2017 

Slab 1 21 13 1.3 33 120 (2) 0.07 0.53 2.50 
Slab 2 21 13 1.3 31 120 (2) 0.06 0.50 2.00 
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Second year evaluation of the ECON HPS at DSM airport under different weather conditions 
for the first year (December 24, 2017 to December 29, 2017) 
 

• First Performance Evaluation (12/24/2017):  
 

Table 12 Weather condition 
 

Date December 24, 2017 
Snow thickness 1.0 inch 
Operation time 5 hours and 30 minutes 
Mean temperature 19°F (-7°C) 
Minimum temperature 24°F (-4°C) 
Maximum temperature 14°F (-10°C) 
Wind speed 21 mph 
Average relative humidity   79 % 
Minimum relative humidity 93 % 
Maximum relative humidity 57 % 

 
 
 

 
Figure 29 Slab 1 temperature and current measurements  
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(a) 

 
(b) 
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(c) 

 
(d) 
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(e) 

 
(f) 
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(g) 

 
(h) 

Figure 30 Performance of the ECON HPS at DSM: (a) system turned on at 3:30 AM 
(b) after 1 hours of operation, (c) after 2 hours of operation, (d) after 4 hours operation, (e) 

after 4 hours and 55 minutes operation, (f) after 4 hours and 56 minutes of operation, (g) after 
5 hours and 10 minutes of operation, and (h) after 5 hours and 20 minutes of operation 
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Figure 31 Infrared thermography of the ECON HPS at DSM 
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• Second Performance Evaluation (12/27/2017 to 12/28/2017):  
 

Table 13 Weather condition 
 

Date December 27, 2017 to December 28, 2017 
Snow thickness 1.1 inch 
Operation time 10 hours and 55 minutes 
Mean temperature 11°F (-11°C) 
Minimum temperature 19°F (-7°C) 
Maximum temperature 3°F (-16°C) 
Wind speed 8 mph 
Average relative humidity   77 % 
Minimum relative humidity 86 % 
Maximum relative humidity 67 % 

 

 
Figure 32 temperature and current measurements  

 



208 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 
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(e) 

 
(f) 
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(g) 

 
(h) 
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(i) 

Figure 33 Performance of the ECON HPS at DSM: (a) system turned on at 9:10 AM 
(b) after 55 minutes of operation, (c) after 2 hours of operation, (d) after 2 hours and 15 
minutes of operation, (e) after 2 hours and 55 minutes operation, (f) after 3 hours and 20 

minutes of operation, (g) after 4 hours of operation, and (h) after 4 hours and 40 minutes of 
operation, (i) after 5 hours and 40 minutes 

 
• Third Performance Evaluation (12/29/2017):  

 
Table 14 Weather condition 

 
Date December 29, 2017  
Snow thickness 2 inch 
Operation time See figure A-29 
Mean temperature 10°F (-12°C) 
Minimum temperature 16°F (-8°C) 
Maximum temperature 5°F (-15°C) 
Wind speed 6 mph 
Average relative humidity   82 % 
Minimum relative humidity 92 % 
Maximum relative humidity 67 % 
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Figure 35 temperature and current measurements  

 

 
(a) 
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(b) 

 
(c) 
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(d) 

Figure 36 Performance of the ECON HPS at DSM: (a) system turned on at 12:10 PM 
(b) after 2 hours of operation, (c) after 3 hours of operation, and (d) after 4 hours and 20 

minutes of operation 
 

 
Figure 37 Infrared thermography of the ECON HPS at DSM 
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Table 15 2st year Summary of ECON performance   
 

Date  Condition 
Air 

temp. 
(
o
F)  

Wind 
speed 
(mph) 

Average 
snow 

thickness 
(in) 

Average 
power 
density 
(W/ft

2
) 

Operation 
time minutes 

(hrs.) 

Energy 
consumption 

(kWh/ft
2
) 

Unit 
cost 

(¢/ft
2
) 

Unit cost 
(¢/yd

2
/ 

hour) 

Dec. 24, 2017 Deicing 19.4 20.5 1.0 27 330 (5.5) 0.15 1.19 1.95 
Dec. 27-28, 

2017 Deicing 3.2 7.4 1.1 24 2,220 (37) 0.88 7.06 1.70 

Dec. 27-28, 
2017 Deicing 3.2 7.4 0.98 28 240 (4) 0.11 0.91 2.00 

Dec. 29, 2017 Ant-icing 10.4 8.0 2.0 32 240 (4) 0.13 1.02 2.30 
 
 

 
Figure 38 Strain changes during heating operation 
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Figure 39 Measured field resistivity of the ECON slab for different weather conditions and 

operation tests 

 
Figure 40 Temperature and current measurements 
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(a) 

 
(b) 

 



219 

 

 
(c) 

Figure 41 ECON performance: (a) Temperature variation across slab thickness on December 
12, 2017, (b) sensors location, and (c) Deicing event on December 12, 2017 
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